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Abstract—It is an intriguing fact that the array gain of densely
packed antenna arrays can be much larger than the number of
antennas which comprise the antenna array. However, their large
array gain seems to be inaccessible in practice, for it tends to be
all eaten up by a loss of e�ciency that accompanies such super-
gain e�ects. In this paper, the authors argue that the assertion
given above is based on a less than optimum choice of antenna
separation inside the array as well as on less than optimum an-
tenna excitation currents. We demonstrate that if both those is-
sues are addressed optimally super-gain actually can be obtained
with high e�ciency. Compact antenna arrays therefore deserve
to be given more attention in both the antenna-, and the signal
processing layers of abstraction, for the successful application of
such arrays requires optimum design in both layers.

I. Introduction

It is well known that arrays of closely spaced antennas can pro-
vide array gain which grows super-linearly with the number N
of antennas [1], and approaches N 2 from below as the distance
between neighboring antennas is reduced more and more [2].
However, such »super-gain« arrays have a bad reputation of
being excessively ine�cient [3]. The main reason for the bad
e�ciency lies in the fact that the optimum antenna excitation
currents which are necessary for achieving high array gains
can have comparatively huge magnitude, which causes exces-
sive dissipation in the lossy antenna elements. This means that
almost all power which is supplied to the antenna array is dis-
sipated into heat, and only but very little (as little as a fraction
of 10−14 is exempli�ed in [3]) can actually be radiated, render-
ing super-gain arrays essentially useless. In [4] it is argued that
the term »super-gain« is a misnomer, for the gain is all eaten
up by the loss in e�ciency.

In this paper, we argue that such bad e�ciency reputation
of super-gain arrays comes about because of two e�ects: non-
optimum antenna spacing, and non-optimum excitation cur-
rent. In fact, when both the separation between antennas and
the currents that are used to excite them are chosen optimally,
high array gains actually can be obtained from lossy anten-
nas with high e�ciencies (something around 90%, or so). We
suggest that super-gain arrays should be given more attention
from both the antenna-, and the signal processing communi-
ties, for optimum solutions in both �elds are necessary to suc-
cessfully apply super-gain antenna arrays.

In this paper, we �rst provide a brief introduction to super-
gain e�ects for lossless antenna arrays. The loss of array ef-
�ciency is then discussed which occurs when the antennas
are allowed to be lossy. It will become clear that e�ciency
can be greatly improved if both optimum antenna spacing and
optimum excitation currents – which take the antenna losses

into account – are applied. The performance of the optimum
con�guration with respect to array gain is compared to the
standard approach and shown to deliver huge improvement.
These promising results indicate that compact antenna arrays
may deserve more attention in future research from both the
antenna- and the signal processing communities.

II. Radiated Power

In order to understand super-gain e�ects it is helpful to recall
how the radiated power depends on the antenna excitation
currents. Let us �rst consider only a single antenna. From elec-
tromagnetic �eld theory, the radiated power can be obtained
by integrating the Poynting vector over any closed surface ∂V,
that completely surrounds the antenna [5]. With E⃗ and H⃗, de-
noting the vectors of complex phasors of the electric and mag-
netic �eld, this becomes:

Prad = ∫
∂V

Re{E⃗∗× H⃗}dA⃗ . (1)

We can make the surface ∂V large enough such that it is lo-
cated in the antenna’s far-�eld. Assuming the antenna is made
of thin wire, the electromagnetic far-�eld resembles a spheri-
cal transversal-electric wave [4]. In spherical coordinates (see
le� hand side of Figure 1):

[ Er Eθ Eϕ ] = e−jkr

r
[ 0 Fθ(θ , ϕ) Fϕ(θ , ϕ) ] , (2)

wherein k = 2π/λ is the wave number, λ is the wave length,
and Fθ , and Fϕ are functions speci�c to the antenna used. The

empty-space Maxwell equation: H⃗ = j

ωµ0
∇ × E⃗ used on equa-

tion (2), with µ0 = 4π × 10−7H/m and ω denoting the angular
frequency, requires that

Hθ = −Eϕ/Z0, and Hϕ = Eθ/Z0. (3)

Herein, Z0 = µ0c ≈ 377Ω and c is the speed of light. Choos-
ing the surface ∂V to be a sphere with radius r centered in
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Figure 1. Left: De�nition of the spherical coordinate system. Right: Array
of two antennas and a point P in the far-�eld.
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the origin, we have dA⃗ = e⃗r dθdϕ sin θ, such that (1) can be
written with the help of (2) and (3) explicitly as:

Prad = 1

Z0
∫

2π

0
∫

π

0

∣E ∣2 r2sin(θ)dθdϕ, (4)

where ∣E ∣2 = ∣Eθ ∣2 + ∣Eϕ ∣2 = ∣∣E⃗ ∣∣22 is the intensity of the electric
�eld. Let us write (2) in the following equivalent way:

E⃗ = α̃(θ , ϕ) ⋅ e−jkr
r
⋅ e⃗0(θ , ϕ) , e⃗0 ⋅ e⃗0 = 1, e⃗0 ⋅ e⃗r = 0, (5)

where α̃(θ , ϕ) describes the directional characteristics of the
antenna, while the unity vector e⃗0(θ , ϕ) describes the wave’s
polarization. Substituting (5) into (4) then yields:

Prad = 1

Z0
∫

2π

0
∫

π

0

∣α̃(θ , ϕ)∣2 sin(θ)dθdϕ. (6)

Notice that ∣α̃(θ , ϕ)∣2 = ∣Fθ(θ , ϕ)∣2 + ∣Fϕ(θ , ϕ)∣2, as follows by
comparing the squared Euclidean norms of (5) and (2). Now,
consider two identical antennas, one located in the origin, as
before, and another one which is displaced by the distance d
along the negative z-axis, as shown on the right hand side of
Figure 1. The electric �eld at a point P, far away from the an-
tennas, can be written as the linear superposition E⃗ = E⃗1 + E⃗2,
of the electric �elds generated by each antenna:

E⃗1 = α1(θ , ϕ) ⋅ e−jkr
r
⋅ e⃗0,1(θ , ϕ) ,

E⃗2 = α2(θ , ϕ) ⋅ e−jkr′
r′
⋅ e⃗0,2(θ , ϕ) ,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(7)

where r and r′ are the distances between the point P, and the
�rst and the second antenna, respectively (see right hand side
of Figure 1). Calling i1 and i2 the excitation current of the �rst
and second antenna, respectively, we have

α1(θ , ϕ) = α(θ , ϕ) ⋅ i1,
α2(θ , ϕ) = α(θ , ϕ) ⋅ i2 . } (8)

If the antenna is made of thin (radius less than about λ/200)
wire that is not too long (< λ/2), then a vanishing excitation
current also implies that the current vanishes everywhere on
the thin and short wire (see e.g., [4], pages 17–19). When no
current �ows in the whole wire it does not alter the electro-
magnetic �eld – it essentially becomes »invisible« [6]. Assum-
ing this so-called canonical minimum scattering [7] property
holds true for both antennas, the function α(θ , ϕ) in (8) is
not in�uenced by the neighboring antenna – it is the same
function one would obtain if only one antenna was present in
the �rst place. The distance r′ can be expressed in terms of r,
and elevation θ (see right hand side of Figure 1):

r′ = r

√
1 +

d2

r2
+
2d

r
cos θ ≈ r + d cos θ , r ≫ d . (9)

Now let the two identical canonical minimum scattering an-
tennas be oriented in the same way. This means that in the
point P far removed from the array, both antennas excite a
�eld with the same polarization, hence e⃗0,1 = e⃗0,2 = e⃗0 . In a

large enough distance r ≫ d in the far-�eld we therefore ob-
tain from E⃗ = E⃗1 + E⃗2, using (7), (8) and (9):

E⃗ = α(θ , ϕ) e−jkr
r
(i1 + i2 e−jkd cos θ ) e⃗0(θ , ϕ) (10)

= α(θ , ϕ) aH(θ)i ⋅ e−jkr
r

e⃗0(θ , ϕ) , (10a)

where we have collected the current phasors into the vector

i = [i1 i2]T and de�ned the array steering vector:

a(θ) = [ 1 e−jkd cos θ ]H . (11)

Herein the superscripts T and H denote the transpose and the
complex conjugate transpose operation, respectively. Compar-
ing (10a) with (5), we see that

α̃(θ , ϕ) = α(θ , ϕ) ⋅ aH(θ)i. (12)

Substituting (12) into (6) we �nd:

Prad = iH⎛⎜⎜⎝Z
−1
0

2π

∫
0

π

∫
0

∣α(θ , ϕ)∣2a(θ)aH(θ)sin(θ)dθdϕ⎞⎟⎟⎠i, (13)

One can easily generalize this result to the case when more
than two, say N antennas are arranged into a uniform linear
array (ula). All we have to do is to de�ne the array steering
vector and the excitation vector accordingly:

a(θ) = [ 1 e−jkd cos θ e−2jkd cos θ ⋯ e−(N−1)jkd cos θ ]H , (14)

i = [ i1 i2 i3 ⋯ iN ]T . (15)

III. Array ImpedanceMatrix

We can also think of the N-element antenna array as a linear
N-port circuit, where each port corresponds to the feedpoint
of each antenna. Each port is characterized by two quantities:
a complex voltage phasor v ∈ CCN×1 ⋅V and a complex current
phasor i ∈ CCN×1

⋅A. The latter is identical to the excitation cur-
rent vector (15). Because of linearity, the relationship between
voltage and current at the ports must be a linear one:

v = Zi, (16)

where Z ∈ CCN×N ⋅Ω, is the so-called impedance matrix [8] of
the antenna array. Using the two port variables, the total active
power �owing into the N-port is given by:

Pin = Re{vH i} , (17)

where Re{⋅} is the realpart operation. Because antennas are
reciprocal [4], we have that Z = ZT. Using this fact, we obtain
by substituting (16) into (17):

Pin = Rr ⋅ i
H
Ci, (18)

where

C = Re{Z} /Rr =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 ∗ ∗ ∗
∗ 1 ∗ ∗
⋮ ⋯ ⋱ ⋮

∗ ∗ ∗ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∈ RRN×N (19)
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is the normalized realpart of the impedance matrix which con-
tains unity on its main diagonal, and

Rr = Re{(Z)k ,k} , ∀k (20)

is the radiation resistance of each antenna [4]. Let us for the
moment assume that the antennas are lossless. Because then
no power is dissipated there must be

Pin = Prad , for lossless antennas. (21)

That is, all power that is supplied to the antenna array is ra-
diated. From (21) then follows with (18) and (13):

C =

2π

∫
0

π

∫
0

∣α(θ , ϕ)∣2 a(θ)aH(θ) sin(θ)dθdϕ
2π

∫
0

π

∫
0

∣α(θ , ϕ)∣2 sin(θ)dθdϕ
. (22)

The (normalized) realpart C of the array impedance matrix
Z can, therefore, be computed purely from the far-�eld radia-
tion pattern ∣α(θ , ϕ)∣2 of each antenna, and the array steering
vector a(θ , ϕ). That is, even though the o�-diagonal elements
of Z are a function of the mutual near-�eld coupling of the
antennas in the array, the realpart of Z can be obtained purely
from far-�eld considerations! On the other hand, the imagi-
nary part of Z can only be obtained from the near-�eld. How-
ever, since the computation of the active input power (here
equal to radiated active power) only requires the knowledge of
the realpart of Z, we do not have to worry about its imaginary
part in this context.
In the remaining of this paper we will assume that the in-

dividual antennas of the ula are isotropic. While isotropic
antennas do not really exist, it can be shown that their theo-
retical application is justi�ed from a �eld-theoretic view point
[9], because they lead to qualitatively the same realpart of the
impedance matrix as obtained for a ula of Hertzian dipoles.
For isotropic radiators

α(θ , ϕ) = const, (23)

such that we obtain from (23), (22) and (14):

C =
⎡⎢⎢⎢⎢⎢⎢⎣

1 j0(kd) j0(2kd) j0(3kd) ⋯
j0(kd) 1 j0(kd) j0(2kd) ⋱
⋮ ⋱ ⋱ ⋱ ⋱

⎤⎥⎥⎥⎥⎥⎥⎦
, (24)

where the function j0 is de�ned as:

j0(x) = sin x

x
. (25)

Recall that k = 2π/λ. Because (25) has equidistant roots at in-
teger multiples of π, we see from (24), that

d/λ ∈ 1

2
⋅NN Ô⇒ C = IN , (26)

where IN is the N × N identity matrix. In a ula of isotrops
with inter-element spacing d equal to integer multiples of half

the wavelength, the isotrops are uncoupled. For all other val-
ues of d the isotrops are, however, coupled. For d < λ/2 the
coupling is strong and ultimately leads to a rank de�cient all-
ones matrix C, when d → 0. The matrix C has the property

C = C
T = C

H
> 0, ∀d > 0. (27)

The last property means that the array always radiates positive
active power for any non-zero excitation current i.

IV. Super-Gain with Lossless Antennas

The receive power at a point P in the far-�eld (see right hand
side of Figure 1) is proportional to the squared magnitude of
the electric �eld strength. Thus, from (5), (12) and (23), the
receive power can be expressed in the following way:

PRx = γ ⋅ ∣aH(θ)i∣2 , (28)

where γ > 0 is a (distance depending) constant. The optimum
excitation current for beamforming into the direction θ with
lossless (ideal) antennas is given by:

i
ideal
opt = argmax

i

PRx

Prad
= argmax

i

∣aH(θ)i∣2
iHCi

. (29)

That is, the optimum excitation current yields the largest pos-
sible receive power for a given radiated power. Alternatively, it
minimizes the radiated power for a given receive power. The
second equality in (29) is due to (18), (21) and (28). Because
C = CH

> 0, there also is C1/2 = CH/2, where C
1/2 is a matrix

square root of C, that is, C1/2
C

1/2 = C. In the new variable
x = C1/2

i, (29) can be rewritten in the form:

x
ideal
opt = argmax

x

∣aH(θ)C−1/2x∣2
∣∣x∣∣22 = const ⋅ C−1/2a(θ),

where again C
−H/2 = C−1/2 is used. With the inverse transfor-

mation i = C−1/2x, the optimum excitation current is given
by i

ideal
opt = const ⋅ C−1a(θ). Expressing the constant in terms

of radiated power (by application of (18 and (21)), we �nd:

i
ideal
opt =

¿ÁÁÀ Prad/Rr

aH(θ)C−1a(θ) ⋅ C−1a(θ). (30)

Substituting (30) for i in (28) yields for the maximum possible
receive power

max PRx = γPrad
Rr

⋅ a
H(θ)C−1a(θ). (31)

For reference, the receive power that would result if only one
antenna was present in the array is given by:

PRx ∣N=1 = γPrad
Rr

⋅ ∣(a)k ∣2 = γPrad
Rr

a
H
a/N , ∀k . (32)

This comes about because C = 1 for N = 1, and all elements of
the steering vector a have the same magnitude. We de�ne the
array gain Aideal of the lossless array as the ratio of maximum
possible receive power using optimum excitation of all N an-
tennas, and the reference receive power which results from
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Figure 2. Array gain Aideal in the »end-�re« direction, as function of the
antenna separation for di�erent number N of antennas.

having only one antenna excited but radiating the same power
in both cases. Hence,

Aideal = max PRx

PRx ∣N=1 ∣Prad=const (33)

= N
a
H(θ)C−1a(θ)
aH(θ)a(θ) . (33a)

The array gain depends on the direction (θ) of beamforming,
and on the antenna separation d (mostly via C). The largest
array gain is obtained in the direction θ = 0, the so-called
»end-�re« direction, and approaches N 2, for small antenna sep-
aration [2], [10]. Figure 2 illustrates the dependencies of the
array gain (33a) on the antenna separation d, and the number
N of lossless antennas.

V. Super-Gain with Lossy Antennas

Let us now investigate the case when we allow the antennas to
be lossy. A lossy antenna dissipates power when a non-zero ex-
citation current �ows. With lossy antennas the approach from
Section IV to achieve super-gain can easily lead to a complete
disaster. To see why this is so, have a look at the squared Eu-
clidean norm of the excitation current (30):

∣∣iidealopt ∣∣22 = Prad
Rr

⋅
a
H(θ)C−2a(θ)

aH(θ)C−1a(θ) . (34)

Because the matrix C approaches the rank de�cient all-ones
matrix as d → 0, it turns out that

lim
d→0
∣∣iidealopt ∣∣22 → ∞.

Let each lossy antenna have a dissipation resistance Rd. Then
the total power Pdiss = Rd ⋅ ∣∣iidealopt ∣∣22 , which is dissipated by the
antenna array grows unboundedly, too, as d → 0. This causes
excessive heating and it is the reason why super-gain arrays
may have terribly low array e�ciency.

To illustrate this phenomenon, let us consider a uniform lin-
ear array of N = 4 lossy isotrops for which Rd/Rr = 10−3. Imag-
ine the isotrops are very densely spaced such that they are sep-
arated by the distance d = λ/100, and excited for beamforming
in the »end-�re« direction using the excitation current from
(30). We obtain Pdiss ≈ 5 × 107Prad. In this way, to radiate just
one microwatt of active power, one would have to dissipate
50 Watts in the antennas. This translates into a horribly low
array e�ciency of approximately 2× 10−8. Clearly, this array is
next to useless, despite it has a high array gain of Aideal ≈ 16.
In other words, even though the antenna array makes nearly
the most out of its radiated power, it unfortunately radiates
almost nothing of the supplied power but rather transforms
practically all the delivered power irreversibly into heat. This
is the reason why [4] calls »super-gain« a misnomer, for the
product of array gain and array e�ciency can be much less
than unity.
The main problem here is that one should not have placed

the antennas as closely as λ/100 in the example case above.
Moreover, the excitation current vector should have taken into
account that the antennas are lossy. We suggest that a better
way to choose the excitation current is the following:

i
lossy
opt = argmax

i

PRx

Prad + Pdiss
. (35)

The excitation is chosen to achieve the largest possible receive
power given a total supplied power, or alternatively, to mini-
mize total supplied power for given receive power. Note that:

Ptot = Prad + Pdiss (36)

= Rr ⋅ i
H
Ci + Rd ⋅ i

H
i

= Rr ⋅ i
H (C + Rd

Rr

IN) i. (37)

The optimum excitation current for the lossy array equals:

i
lossy
opt =

¿ÁÁÁÁÀ
Ptot/Rr

aH(θ)(C + Rd

Rr

IN)−1a(θ)
⋅ (C + Rd

Rr

IN)−1a(θ).
(38)

When we compare (38) with (30), we can observe that there is
a diagonal loading of the matrix C. Because C > 0, this diago-
nal loading leads to a regularization which reduces the condi-
tion number of the diagonally loaded matrix. For Rd > 0, no
rank de�ciency occurs and the optimum excitation current re-
mains �nite even when d → 0. Substituting (38) for i in (28)
yields the maximum receive power that can be obtained for a
given total supplied power Ptot:

max PRx = γPtot
Rr

⋅ a
H(θ)(C + Rd

Rr

IN)−1a(θ). (39)

We again choose, as a reference, the receive power that would
be obtained when only one but lossless transmit antenna was
excited:

PRx ∣N=1,Rd=0
= γPrad

Rr

⋅ ∣(a)k ∣2 = γPrad
Rr

a
H
a/N , ∀k . (40)
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Figure 3. Array gain (as function of antenna separation) of a uniform linear
array of N = 4 lossy isotrops, when beamforming in »end �re« direction is
applied. The di�erent curves correspond to di�erent amounts of antenna loss,
quanti�ed by the ratio Rd/Rr , of dissipation and radiation resistance.

In this way, we can generalize the de�nition of the array gain
from (33) to include the case of lossy antennas:

Alossy = max PRx

PRx ∣N=1,Rd=0

∣
Ptot=const

= N ⋅
a
H(θ)(C + Rd

Rr

IN)−1a(θ)
aH(θ)a(θ) .

(41)
This quanti�es how much more receive power we can obtain
when all N lossy antennas are used, compared to the case of
having only one but lossless antenna, while the total supplied
power is the same in both cases. Note that

Alossy ≤ Aideal, (42)

where equality holds only if Rd = 0. This comes about because
C
−1 and (C + (Rd/Rr)IN)−1 have the same eigenvectors, but

the latter has smaller corresponding eigenvalues, because C is
positive de�nite, and Rd/Rr > 0.
Figure 3 shows the array gain from (41) in »end-�re« direc-

tion for a ula of N = 4 isotropic radiators for several values
of Rd/Rr as function of the antenna separation d. For lossless
antennas (Rd = 0) the largest array gain is achieved as d → 0
and approaches N 2 from below. However, as Rd > 0, we see
that too small values of d are unfavorable for the array gain
because of the unavoidable loss of e�ciency that occurs de-
spite that the excitation is optimized with the losses in mind.
On the other hand we see that there is an optimum antenna
separation which depends on Rd/Rr for which the array gain
is maximized. We can see from Figure 3 that this optimum
distance is always less than half of the wavelength. Moreover,
provided the antennas are spaced this optimum distance apart
the array gain is always larger than it would be for uncou-
pled isotrops (large, or half wavelength spacing; recall (26)).
In other words, when done sensibly, the super-gain always out-
weights the antenna loss, and an array gain larger than that
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Figure 4. The optimum antenna separation for »end-�re« beamforming as
function of the amount of loss (Rd/Rr).

obtainable for uncoupled antennas can be obtained. This is
true regardless of the amount of loss, that is, for every value
of Rd/Rr. Note from Figure 3, that for Rd/Rr ≤ 10−2, one can
achieve with N = 4 antennas a transmit array gain Alossy > 10,
provided one uses the optimum antenna separation and ap-
plies the optimum antenna excitation.
The optimum antenna separation depends on the direction

of beamforming, number of antennas, and the ratio Rd/Rr.
Figure 4 shows the results for the »end-�re« direction and a
uniform linear array of isotropic radiators. E.g., with N = 4 an-
tennas which have Rd = 10−3 × Rr we have dopt ≈ 0.21λ. How-
ever, N = 8 antennas with an Rd = 10−2 × Rr need a little bit
more room to breath. They are most happy with 0.37λ space
between neighbors. Note from Figure 4 that the more anten-
nas we have, or the more lossy they are, the more close dopt
comes to λ/2.

VI. Array Efficiency

With (38), the power dissipated in the array when its antennas
are optimally excited equals:

Pdiss = Rd ⋅ ∣∣i lossyopt ∣∣2
2
= Ptot

Rd

Rr

⋅

a
H(θ)(C + Rd

Rr

IN)−2a(θ)
aH(θ)(C + Rd

Rr

IN)−1a(θ)
.

(43)The array e�ciency is then de�ned as:

η = Prad
Prad + Pdiss

= Prad
Ptot

= Ptot − Pdiss
Ptot

, (44)

the ratio of radiated power and total power supplied into the
antenna array. Applying (43) in (44) then yields for the e�-
ciency of the optimally excited lossy antenna array:

η = 1 −
Rd

Rr

⋅

a
H(θ)(C + Rd

Rr

IN)−2a(θ)
aH(θ)(C + Rd

Rr

IN)−1a(θ)
. (45)
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Figure 5. Array e�ciency as function of Rd/Rr for di�erent number of
antennas. Beamforming is done in the »end-�re« direction.

For the purpose of illustration, consider again our array of
N = 4 lossy antennas with Rd/Rr = 10−3. This time, however,
the antenna spacing is not chosen to be so small as λ/100, but
instead equals the optimum distance d = 0.212λ (see Figure 4).
Using (43), we see that the dissipated power this time is given
by Pdiss ≈ 0.06× Ptot, which translates into an array e�ciency
of about 94%. With this array, we can radiate a large power of,
say 10 Watts, while dissipating only about 0.6 Watts power in
the antennas. At the same time, we see from (41), that we have
an array gain of Alossy ≈ 12.85 which is less than 1dB below the
maximum array gain of 16, but more than 5dB larger than the
number of antennas. This example suggests that, by optimum
spacing of the antennas in conjunction with optimum antenna
excitation (beamforming), it is possible to extract a fairly large
amount of super-gain without losing much in array e�ciency.

In Figure 5, the array e�ciency of a ula of lossy isotropic
radiators is shown. The array is employed for beamforming in
the »end-�re« direction (that is, θ = 0). The distance between
antennas is chosen such as to maximize the array gain (see
Figure 4). One can see that the array e�ciency depends only
very little on the number of antennas. It mostly depends on
the ratio Rd/Rr. From Figure 5 we can observe that the array
e�ciency is actually quite high, provided that the optimum
antenna separation is chosen and the optimum excitation (38)
is used. For 10−4 < Rd/Rr < 10−2, the array e�ciency ranges be-
tween 80% and 99.5%.

Assuming optimum antenna spacing is chosen, we obtain
the array gain of a uniform linear array of isotrops excited for
beamforming in the »end-�re« direction shown as the solid
curves in Figure 6 for di�erent ratios Rd/Rr. When the radi-
ators are lossless (that is, Rd = 0), the maximum array gain
equals the square of the number of radiators. When Rd > 0,
but still small compared to Rr, the array gain �rst starts grow-
ing almost quadratically with the number of radiators, but the
growth �attens out into a linear growth for large number of
antennas. E.g., if Rd = 10−4 × Rr, then for N ≥ 5, the growth is
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Figure 6. Array gain as function of antenna number for beamforming in
»end-�re« direction.

practically linear. Nevertheless, when we compare to the case
of uncoupled antennas (dashed curve in Figure 6), we see that
even for very lossy radiators, the absolute values of array gain
are pretty large. E.g., if Rdiss = 10−2 × Rrad, and M = 10, we see
that the super-gain array achieves an array gain which is 3.4
times larger than with uncoupled antennas.

VII. Conclusion

The common belief that super-gain is regularly »eaten up« by
the simultaneous loss in antenna e�ciency is found to be true
only if the antenna separation is chosen to be too small. Op-
timum antenna separation in conjunction with optimum an-
tenna excitation (beamforming), makes it possible to obtain
a large amount of super-gain while still maintaining a reason-
ably large array e�ciency. Consequently, compact antenna ar-
rays deserve more attention in future research.
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