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Abstract

We investigate the possibility to gauge discrete Abelian symmetries. An algebraic

approach to understanding general Abelian discrete groups, which govern the cou-

pling structure of a physical theory is presented. In particular, the embedding of a

general Abelian discrete group Zd1 × · · · × Zdr into a general Abelian gauge group

U(1)k via spontaneous symmetry breaking of the continuous group is elaborated in

detail. A promising candidate for the embedding of any discrete gauge symmetry

is string theory. The algebraic approach to general discrete Abelian groups estab-

lishes new possibilities of controlling the coupling structure in string derived model

building. We discuss phenomenological consequences of discrete Abelian symmetries

arising in string derived MSSM models. A simple discrete R-symmetry, ZR4 , which

contains matter parity as non-anomalous subgroup, is capable of resolving multiple

issues such as dimension four and five proton decay as well as the µ-problem.



Zusammenfassung

Wir untersuchen diskrete Abelsche Eichsymmetrien. Eine algebraische Sichtweise

allgemeiner diskreter Abelscher Gruppen, welche die Kopplungsstruktur einer phy-

sikalischen Theorie bestimmen, wird dargelegt. Insbesondere wird die Einbettung

einer allgemeinen diskreten Abelschen Gruppe Zd1 × · · · × Zdr in eine allgemeine

Abelsche Eichgruppe U(1)k, mittels spontaner Symmetriebrechung der kontinuier-

lichen Gruppe, erarbeitet. Ein viel versprechender Kandidat für die Einbettung

einer jeglichen diskreten Eichsymmetrie ist String Theorie. Der algebraische Zu-

gang zu allgemeinen diskreten abelschen Gruppen eröffnet neue Möglichkeiten die

Kopplungsstruktur in Modellen, die einen stringtheoretischen Ursprung haben, zu

kontrollieren. Wir diskutieren die Auswirkungen von diskreten Abelschen Sym-

metrien auf die Phänomenologie von MSSM Modellen mit stringtheoretischem Ur-

sprung. Eine simple diskrete R-Symmetrie, ZR4 , welche ‘matter parity’ als nicht

anomale Untergruppe enthält, ist in der Lage mehrere offene Fragen, wie Dimension

vier und fünf Protonzerfall sowie das µ-Problem, zu lösen.
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Chapter 1

Introduction

Symmetries are an obvious concept of nature as we can observe many examples in

our everyday life. Since physics is devoted to describing nature as accurately as

possible, symmetries consequently have to play a certain role in physics. Yet, far

from being limited to occasional appearances in physics, symmetries rather occur to

be a guiding principle for theoretical physics. Although every physicist most likely

has a fair notion of what the term “symmetry” means, it is useful to be more specific

and define it exactly. Loosely speaking one would equalize a symmetry with some

kind of invariance. From a rigorous mathematical point of view, the notion of a

symmetry is inseparably connected with the concept of a group [1]. For G a group

and M a nonempty set, the map

Φ : G×M →M ,

which shall have the homomorphic properties

Φ(e,m) = m

Φ (g,Φ(h,m)) = Φ(gh,m)

for all m ∈ M and g, h ∈ G defines a group action of G on M . Here, e denotes

the neutral element of G. If the group action of G leaves some given mathemat-

ical structure on M invariant, G is called a symmetry group and Φ a symmetry

transformation.

Symmetries are either continuous or discrete, Abelian or non-Abelian, global or

local. In a physical theory they can appear as spacetime symmetries or internal

symmetries, they can be equipped with a grading, yet they can even be broken.

Most of these attributes provide information about the symmetry group G, or its

group action Φ.
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Continuous symmetry transformations require the symmetry group to be a Lie-

group. Conveniently, these can be described by their Lie-algebra, i.e. by a finite set

of generators. Continuous symmetries enjoy a reputation in physics, since invari-

ance of the action induces a conservation law for each symmetry due to Noether’s

theorem. In contrast, the group action of discrete symmetries cannot be described

by continuous transformations. While for a global symmetry the transformation law

is the same everywhere in spacetime, a local symmetry allows the transformation

law to vary smoothly for different points of the spacetime manifold. This additional

freedom can be thought of as a choice of reference frame at every spacetime point

and reflects a redundancy in the description of the physical system, which is the

basis of a gauge theory. As long as the transformation only depends on spacetime

we have an internal symmetry, while a spacetime symmetry shows a non-trivial

transformation of the spacetime coordinates themselves.

All of these different types of symmetries eventually played a role in the historical

success of theoretical physics, which is a story of unification. Newton’s mechanics

unified Kepler’s description of planetary motion with Galilei’s law of falling bodies.

This early theory already is dominated by symmetries. It is equipped with the

Galilei group as spacetime symmetry group, which induces conservation of important

physical quantities, such as momenta, angular momenta and energy.

Later Maxwell’s theory of electromagnetism unified electric with magnetic forces.

This theory was a remarkable achievement in many ways. First, it is invariant

under Poincaré symmetry, an extended spacetime symmetry that paved the way

for Einstein’s special relativity, renewing the understanding of spacetime. Second,

Maxwell’s theory exhibits a realization of an Abelian gauge symmetry.

The next step in the unification process combined quantum mechanics, special rel-

ativity and the gauge principle to form the first quantum field theory, quantum

electrodynamics, which consistently describes the electromagnetic force. Thereby

gauge symmetry provides the theory with (bosonic) gauge fields acting as force car-

riers, here represented by the photon. The idea of generalizing the gauge theory

ansatz to non-Abelian symmetry groups, brought up by Yang and Mills, finally pro-

vided the necessary ingredient to describe also the strong and the weak force by

quantum field theoretical methods. The final step to obtain the remarkably suc-

cessful Standard Model of elementary particle physics, based on the internal gauge

group SU(3)C × SU(2)L × U(1)Y , was to break the SU(2)L × U(1)Y part of the

gauge group spontaneously down to U(1)em by the Higgs mechanism, giving the

observed mass to the weak interaction gauge bosons. However, the success of the

Standard Model is not only due to gauge symmetry. Discrete spacetime symmetries

have played an important role in the construction of the Standard Model. Experi-
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Introduction

mental evidence of parity violation in weak processes motivated a chiral theory. The

Standard Model with its three generations was able to yield a natural explanation

for the observed CP violation due to the complex phase of the CKM matrix. Addi-

tionally, approximate global flavor symmetries of the Standard Model have helped

to understand the phenomenology of baryons and mesons.

Despite its great success there are open questions indicating that the Standard

Model is to be considered an effective theory, i.e. a low energy limit of some, yet

unknown, more fundamental theory. The large parameter space of the Standard

Model, neutrino oscillations and the origin of dark matter and dark energy ask

for physics beyond the Standard Model. So does the hierarchy problem, i.e. the

stabilization of the weak scale against the Planck scale, and, last but not least, the

unsolved problem of quantizing gravity.

A prominent candidate for ‘beyond the Standard Model physics’ is the realization

of supersymmetry, which is a graded symmetry. It is capable to solve the hierarchy

problem and consequently has been implemented in a minimal way, resulting in

the Minimal Supersymmetric Standard Model (MSSM). The MSSM arguably states

the most acknowledged extension of the Standard Model, apparently because of

its appealing feature of gauge coupling unification at a scale of 1016 GeV. Yet, the

MSSM introduces further problems of its own, for instance, renormalizable gauge

invariant operators lead to rapid proton decay.

At this point, internal discrete symmetries come into play, which were somewhat

neglected in the progress of theoretical physics discussed so far. A simple discrete

Abelian Z2 symmetry, known as matter parity or R-parity, is introduced in order to

forbid the rapid proton decay operators. As a pleasant side effect, it yields a dark

matter candidate, since now the lightest supersymmetric particle is stable. Due to

its appealing effects, this global discrete symmetry was broadly accepted, although

it was introduced ad hoc and lacked a theoretical origin.

Furthermore, arguments arose, which disfavor global discrete symmetries in high en-

ergy physics. They are expected to be violated by quantum gravity effects, however,

it was shown that this cannot happen to discrete gauge symmetries – a new concept

of discrete symmetry, which was thought of being a remnant of a spontaneously

broken gauge group. In context of the MSSM such discrete gauge symmetries soon

were studied from a bottom-up perspective, i.e. disregarding their concrete origin,

yet taking seriously anomaly freedom, which is mandatory for gauge symmetries.

The only present candidate for the pending aim of consistently unifying all funda-

mental forces, including gravity, in a single theory is string theory. Desiring the

MSSM as its low energy limit, heterotic string theory appears to be a suitable start-

ing point, since it is automatically equipped with a large enough gauge group to

11



Outline of the thesis

embed the Standard Model. In particular, orbifold compactifications of heterotic

string theory are known for their ability to yield a low energy limit resembling the

MSSM.

Yet, such a top-down approach to string derived MSSM models has to reduce the

rank of the string gauge group, which typically entails the breaking of an Abelian

gauge group U(1)k. Clearly, this scenario potentially gives rise to discrete gauge

symmetries, which then provide the MSSM limit with matter parity or yet further

discrete symmetries bearing phenomenological consequences.

The main purpose of this thesis is to systematically analyze discrete Abelian gauge

symmetries in full generality. Consequently, we will study the discrete symmetry

patterns, which result from the spontaneous breaking of a general Abelian group

U(1)k. We will then use the acquired algebraic understanding of general discrete

Abelian groups to discuss their phenomenological impact in string derived MSSM

models.

1.1 Outline of the thesis

The thesis is organized as follows. In the next chapter, chapter 2, we specify the argu-

ments motivating discrete gauge symmetries, given by topological quantum fluctua-

tions and the domain wall problem. Then, we discuss the realization of discrete sym-

metries as global or gauged symmetries in the beyond the Standard Model physics

literature. The implementation of global discrete symmetries will be represented

by flavor physics, while we illustrate the discrete gauge approach by MSSM model

building. Finally, we show that string theory provides low energy model building

with a reasonable origin for discrete gauge symmetries. We will focus particularly

on the possibility of discrete gauge symmetries arising from a spontaneously broken

Abelian group.

Chapter 3 elaborates in detail the breaking of a general Abelian gauge group U(1)k

down to a remnant Abelian discrete group. We begin with a simple example, the

breaking of a single U(1) gauge symmetry, which shows us how a discrete gauge

symmetry can continue to remain. Next, we put this basic U(1) → Zq example on

a theoretical footing. Then, we discuss the problem of generalizing to an arbitrary

Abelian gauge group U(1)k. In order to resolve this issue, we introduce the geo-

metrical concept of the charge lattice, which will guide us towards a deep algebraic

comprehension of discrete Abelian groups. In particular, the obvious notion of a

lattice basis change in the geometrical charge lattice picture suggests an algebraic

freedom of unimodular transformations. Via the Smith normal form, this leads to

a description of the remnant discrete symmetries in terms of the invariant factor

12



Introduction

decomposition of finitely generated Abelian groups. After visualizing our results

by means of an illustrative example, we close the chapter with a comprehensive

discussion of the associated algebraic aspects of discrete Abelian groups.

Chapter 4 deepens our understanding of discrete Abelian groups by focusing on

redundant and equivalent configurations. A redundancy occurs if the discrete sym-

metry allowed by the vacuum of the spontaneously broken theory is not fully realized

by the remaining field content. We explain how to calculate the true discrete sym-

metry group of the theory. By agreeing on the invariant factor decomposition, we

have eliminated equivalent descriptions of the discrete Abelian group because of

isomorphisms; yet, further freedom concerning the discrete charge assignment due

to automorphisms remains. The automorphism group of discrete Abelian groups

is known; we review its construction and give a simple, but non-trivial example by

means of the automorphisms of Z2 × Z4. We then show that the coupling struc-

ture of the remaining fields, which is governed by the discrete symmetries, can be

expressed by means of linear congruence equations and we prove their invariance

under automorphisms. We proceed by addressing another freedom in assigning dis-

crete charges for theories with unbroken U(1) factors, in the MSSM literature well

known as hypercharge shifts. Finally, we illustrate the methods of this chapter by

means of a concrete example.

With chapter 5 we turn the discussion towards phenomenological implementations

and consequences of discrete Abelian symmetries. First, we review discrete anomaly

constraints, which have to be fulfilled for any discrete gauge symmetry. Next, we

discuss discrete R-symmetries, a possibility of any supersymmetric theory. We then

explain the identification of matter- or R-parity, which is of great importance for

MSSM model building. The algebraic understanding of discrete Abelian groups

resolves this issue rigorously. Finally, we comment on F - and D-term constraints,

which restrict the vacuum expectation value (VEV) assignment in supersymmetric

theories if supersymmetry is to maintain unbroken.

In chapter 6 we discuss a string derived MSSM model, which is equipped with a

discrete Abelian R-symmetry ZR4 . We begin with a short synopsis of orbifold com-

pactifications of heterotic string theory and their ability to produce the exact MSSM

spectrum. Enhanced discrete symmetries are an appealing possibility to ameliorate

the phenomenology of such models. We address the impact of a simple ZR4 symme-

try, which is “anomalous”, i.e. its anomaly is canceled by the Green-Schwarz mech-

anism. This entails the breaking of the discrete symmetry at the non-perturbative

level. Yet, a Z2 subgroup serving as matter parity remains unbroken, which resolves

dimension four proton decay. The ZR4 symmetry forbids dimension five proton de-

cay and the µ-term at the perturbative level. Both quantities become reintroduced

13
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by non-perturbative terms, however, highly suppressed. Thus the leading effect for

proton decay accounts for dimension six operators and the µ-term is expected to be

near the electroweak scale.

The last chapter contains our conclusions. The appendix provides fundamental

definitions and theorems of basic algebra and group theory.

A short note on our notation: in order to improve readability, we parenthesize single

upper indices to emphasize those from ordinary powers. Over repeated indices is

to be summed if not stated otherwise. Boldface symbols x denote column vectors,

while xT indicates a row vector.

1.2 List of publications

Parts of this work have been published in refereed scientific journals, as listed below.

• Björn Petersen, Michael Ratz and Roland Schieren, “Patterns of remnant dis-

crete symmetries”, JHEP08(2009)111.

• Rolf Kappl, Björn Petersen, Stuart Raby, Michael Ratz, Roland Schieren and

Patrick K. S. Vaudrevange, “String-derived MSSM vacua with residual R sym-

metries”, arXiv:1012.4574 [hep-th], to appear in Nuclear Physics B.

The main idea of chapter 3 and section 4.1 have been presented in [2]. Section 4.2

and section 5.2 as well as the model of chapter 6 were discussed in [3].
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Chapter 2

Global versus local discrete

symmetries

We start by summarizing why local discrete symmetries are favored against global

discrete symmetries and discuss their perspectives in model building, giving ongoing

research examples of fields where discrete symmetries of global and local type are

implemented. As mentioned above, there are certain arguments and motivations to

consider gauged discrete symmetries.

• Topological fluctuations of spacetime suggest violations of any global symme-

try.

• Stable domain walls originating from global discrete symmetries in the early

universe are phenomenologically problematic.

• String theory provides us with a large rank gauge group, giving plenty of

possibilities for remnant gauged discrete symmetries.

Those arguments cannot exclude the existence of global symmetries in real physics

definitely, but they strongly suggest a certain antipathy against global symmetries.

The last point will motivate us to study discrete Abelian gauge symmetries in full

generality, closing a gap in the literature. So far, the discussion of discrete Abelian

groups was typically constricted to cyclic groups, a sub-category of general Abelian

discrete groups.

2.1 Topological fluctuations

For any theory of quantum gravity to allow the description of black holes, the

topology of spacetime needs to deviate from flat space. It is assumed that thus

15



Topological fluctuations

all possible spacetime topologies should be allowed [4], including non simply con-

nected ones. For instance, black hole evaporation would be accompanied by a closed

universe branching off from asymptotically flat spacetime. Such a closed universe,

i.e. a compact manifold without boundary, could then connect to another universe

(see figure 2.1(a)), or to the same one, therefore forming a handle, which results

in a fundamental change of topology: from simply to non-simply connected (see

figure 2.1(b)). These topology changing closed universes, also called wormholes, are

(a) Wormhole connecting two asymptotic flat re-
gions of spacetime

(b) Spacetime handle (sketch)

Figure 2.1: Closed universes induce topological variations in spacetime.

known to be instable macroscopically [5]. However, they could contribute on the

virtual level of quantum fluctuations – therefore, one speaks of topological fluctua-

tions.

Now, if a wormhole branches off carrying away some amount of any conserved global

charge, the charge conservation is violated for an observer in the ‘parent’ universe.

Thus, a low energy effective theory will contain non-renormalizable operators, which

break any global symmetry at some order in perturbation theory. These might be

sufficiently suppressed, although for theoretical extensions, which lead in the di-

rection of a fundamental theory, global symmetries should be considered as rather

unreliable [6, 7].

However, this argument does not apply to a gauged symmetry; a closed universe

needs to carry trivial charge under any gauge symmetry. This can be understood as

follows. As an example, consider electric charge Q; via Gauss’s law one can express

16



Global versus local discrete symmetries

it as a surface integral over the boundary S

Q =

∫
S

E · dA , (2.1)

with electric field E and infinitesimal area element dA. But the wormhole has no

boundary. Thus, its electric charge has to vanish and therefore we have charge

conservation in each asymptotic region. The argument holds for any Yang-Mills

gauge group [8], and even for discrete gauge symmetries [9, 10]. The notion that any

discrete symmetry cannot be global, but has to be gauged in order to be compatible

with quantum gravity, has been corroborated very recently in [11].

2.2 Domain walls

There is another, cosmological argument that calls global discrete symmetries into

question: a spontaneously broken global discrete symmetry in the early universe

can lead to a domain structure of the universe separated by stable domain walls.

These are afflicted with surface mass density and thus would result in non observed

anisotropies of the universe [12]. In contrast to ferromagnetic domain structures,

domain walls do not emerge because of a favorable energetic state, but due to the

degeneracy of the vacuum state. There is no reason for causally separated regions

of the early universe to settle in any particular degenerate vacuum state. Hence,

causally disconnected regions are expected to take different vacua, therefore building

up the domain structure.

In contrast, discrete gauge symmetries – initially – are free of such problems. This

is because in the gauged case, the degeneracy of the vacuum reflects the redundancy

in the description of the system. In other words, the degenerate vacuum states

become identified; that is, connected by a gauge transformation. Thus, once the

spontaneous breaking of the discrete gauge symmetry occurs each domain is in the

same physical state, since it may not depend on the gauge degree of freedom. So

much for the argument, a concrete implementation has been established as well.

A discrete gauge symmetry should have a continuous embedding. The continuous

symmetry is broken at a high scale, resulting in the appearance of cosmic strings,

while the breaking of the remnant discrete gauge symmetry at another scale gives

rise to domain walls a priori. However, in the case of gauged discrete symmetries,

the domain walls will be bounded by the strings, which leads to their vaporization

[13, 14]. Yet, also for discrete gauge symmetries the domain wall problem becomes

reintroduced if inflation occurs between the two breaking scales, which appears to

be a likely scenario [13].

17



Discrete symmetries in bottom-up physics

Nevertheless, we should remark that global discrete symmetries suffer from the do-

main wall problem generically, while for discrete gauge symmetries it is reintroduced

only under certain assumptions.

A possibility to avoid the domain wall problem is to consider anomalous discrete

symmetries, since in that case the degeneracy of the vacuum states becomes sus-

pended by an energetic gap, which entails the annihilation of the domain structure

[13]. This also holds for “anomalous” discrete gauge symmetries, i.e. symmetries

only appearing to be anomalous at the perturbative level, yet their anomaly is

canceled by the Green-Schwarz mechanism. Such a non-perturbative cancellation,

facilitated by string theory, gives rise to an approximate discrete symmetry, broken

by exponentially suppressed terms [15]. Those also generate an energy splitting be-

tween the domains, thus allowing for their annihilation under certain conditions, as

discussed in [16].

2.3 Discrete symmetries in bottom-up physics

From a model building perspective, discrete symmetries constitute a popular ap-

proach to resolve phenomenological drawbacks. Typically, discrete symmetries tend

to be imposed ad hoc in low energy effective theories, without a particular theo-

retical motivation of those symmetries. Limiting ourselves to ‘beyond the Standard

Model’ physics, still a variety of issues in bottom-up models are attempted to be

solved by discrete symmetries. Examples are multi-Higgs models [17, 18, 19], the

strong CP problem [20, 21, 22], flavor physics and the MSSM. Below, we will present

the latter two as representatives where discrete symmetries are introduced as global

symmetries or where their gauged origin was studied extensively in the literature.

The question whether discrete spacetime symmetries like CP might have a gauged

origin has been addressed in [23]. There, it has been argued that quantum gravita-

tional violations of CP as a global symmetry would conflict with the smallness of

the electric dipole moment of the neutron. It is shown that a “CP equivalent” can

be gauged in the context of dimensional compactification, e.g. superstring theory. It

then becomes spontaneously broken at a scale lower than 109 GeV, which preserves

a tiny dipole moment and accounts for CP violation as well as resolves the strong

CP problem. In the following, we will focus on internal symmetries.

2.3.1 Flavor physics

One major branch of particle physics where discrete symmetries have been utilized

extensively is flavor physics. In the literature one can find a vast number of attempts
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Global versus local discrete symmetries

for (partially) solving the flavor puzzle, i.e. the quest for the origin of fermion masses

and mixings, their hierarchies, and the difference of the flavor parameters in the neu-

trino sector. Unfortunately, most of those attempts do not consider such high energy

arguments, which have been introduced above; that is, discrete flavor symmetries

usually do not exhibit a gauged embedding but are imposed ad hoc. Some of those

scenarios might arise as effective theories, where operators violating the global dis-

crete symmetries are sufficiently suppressed, while others might not. Of course there

are counterexamples, where these questions are addressed [24], in fact.

Why are discrete symmetries so popular within the context of flavor? In principle,

the Froggatt-Nielsen mechanism [25] yields a promising way to explain fermion mass

matrices and mixings by means of a continuous Abelian symmetry. By breaking a

(gauged) flavor U(1) at a high scale ΛB close to, say, the Planck scale, a small param-

eter ΛB
MP

is naturally generated. The differences of magnitude of fermion mass matrix

entries then are due to different powers of this small parameter, which are connected

to the charge assignment under the broken Abelian group. However, Abelian sym-

metries that generate a realistic mass pattern often appear to be anomalous [26],

at least naively. Yet, this is not necessarily in contradiction with an embedding of

the Froggatt-Nielsen mechanism into a string derived model due to Green-Schwarz

anomaly cancellation [27, 28, 29]. Yet, an Abelian symmetry cannot account for

bi-tri-maximal mixing schemes in the lepton sector [30], which seems to be favored

by recent neutrino oscillation data.

Ignoring the high energy arguments against global symmetries, discrete symmetries

are rather appealing from a bottom-up perspective, since one does not need to worry

about stringent anomaly constraints or Goldstone bosons while breaking the discrete

symmetry. That horizontal symmetries have to be broken at some point has been

proven in [31, 32] for the quark sector, else degenerate quarks or zero mixing angles

would emerge. These authors also pointed out the value of Abelian discrete hor-

izontal symmetries, giving non-trivial examples based on general discrete Abelian

groups, i.e. non-cyclic ones.

In the lepton sector the implementation of discrete non-Abelian groups was studied

extensively, see e.g. [33, 34, 35, 36, 37] or [38, 39] for reviews on the subject, how-

ever, attempts to provide a high energy origin of such non-Abelian discrete flavor

symmetries [40] are rather few and far between.

2.3.2 The MSSM

The supersymmetrization of the Standard Model arranges each Standard Model field

and its superpartner in GSM supermultiplets and adds an additional Higgs doublet.

In table 2.1, the matter and Higgs superfields with generation index i = 1, 2, 3 are
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presented.

Qi Ūi D̄i Li Ēi Hd Hu

(3,2) 1
3

(3̄,1)− 4
3

(3̄,1) 2
3

(1,2)−1 (1,1)2 (1,2)−1 (1,2)1

Table 2.1: Matter and Higgs superfields and their SU(3)C × SU(2)L quantum numbers.
The subscripts denote hypercharge Y .

Here we have expressed the entire matter field content as left chiral superfields; that

is, right handed fields as left handed antifields. The renormalizable superpotential

allowed by gauge invariance consists of the following terms [41]

W = hEij LiHdĒj + hDij QiHdD̄j + hUij QiHuŪj + µHdHu (2.2a)

+ λijk LiLjĒk + λ′ijk LiQjD̄k + λ′′ijk ŪiD̄jD̄k + κi LiHu . (2.2b)

Yet, the terms in the second line (2.2b) violate lepton number, except for the λ′′

term, which violates baryon number. This leads to rapid proton decay, which is phe-

nomenologically unacceptable. Therefore, the MSSM is equipped with a discrete Z2

symmetry, either R-parity Rp acting on the component fields or equivalently matter

parity Mp acting on the superfields, which both forbid all terms in (2.2b). Under

Rp all Standard Model fields are even and all superpartners odd, while for matter

parity all matter superfields are odd and Higgs as well as vector superfields are even.

A pleasant side effect of the discrete symmetry is that the lightest supersymmetric

particle (LSP) is stable and yields a natural cold dark matter candidate. Further-

more, superpartners can only be produced in even numbers.

However, one should be aware that for rapid proton decay to be forbidden, either

lepton or baryon number violating terms need to vanish in (2.2b). Yet, within such

R-parity violating scenarios, the stability of the LSP is lost and there are stringent

bounds on the size of those Rp violating terms due to baryogenesis [41].

Even if the whole line (2.2b) is forbidden, non-renormalizable operators of dimension

five and six are dangerous for the experimental bounds on proton decay [42].

The idea of gauged discrete symmetries has been taken seriously by Ibáñez and Ross

[43, 44], who attempted to classify the anomaly free cyclic discrete gauge symmetries

of the MSSM. They found an alternative to R-parity, baryon triality B3, which for-

bids baryon number violating dimension four and five operators and in turn allows

for Rp violating ones. Finally, Dreiner, Luhn and Thormeier [45] suggested proton-

hexality P6, which is just the direct product of Mp and B3, isomorphic to a cyclic

group of order six Z6
∼= Z2 × Z3. Thus P6 cherry-picks the appealing properties of
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both, matter parity and baryon triality.

It was then tried to obtain such discrete gauge symmetries for the MSSM from

a top-down perspective [46], also in context of Grand Unification [47, 48], where

proton-hexality turned out to be GUT incompatible [49, 50]. Discrete R-symmetries

tend to be more agreeable with the appealing idea of Grand Unification [51]. Under

certain assumptions, it was shown that there is a unique GUT compatible discrete

symmetry of the MSSM: ZR4 [52]. One of these assumptions is a perturbatively for-

bidden µ-term, which becomes reintroduced at the non-perturbative level, therefore

being well suppressed. In order for this to happen, the discrete symmetry forbidding

the µ-term has to be “anomalous”, i.e. the anomaly is canceled by a Green-Schwarz

mechanism. We will demonstrate a similar scenario below, presenting a string de-

rived ZR4 symmetry with promising phenomenological features.

2.4 Discrete symmetries from string theory

From a string inspired top-down approach to phenomenology, the need for discrete

symmetries in order to suppress proton decay was stressed early by Witten [53].

There, it was also noted that such discrete symmetries have to emerge out of string

theory rather than being introduced ad hoc. However, the utilization of discrete sym-

metries naturally arising by the breakdown of the large rank gauge group, present

in certain string theories, was somewhat limited to its non-Abelian parts.

In this work, we will pursue another idea. We will study the remnant discrete gauge

symmetries, which potentially arise by breaking the Abelian parts of the gauge

group. The breaking of the rank 16 gauge group E8×E8 or SO(32), provided by het-

erotic string theory, down to the Standard Model gauge group SU(3)×SU(2)×U(1)

has to be rank reducing, which naturally entails the spontaneous breaking of some

amount of U(1) factors [54]. Our discussion focuses on orbifold compactifications

of heterotic string theory due to their capabilities to draw the bridge to low energy

phenomenology [55, 56, 57, 58]. Compactifying on an orbifold breaks the gauge

group, yet preserves its rank. Hence, such a general Abelian gauge group, U(1)k,

typically remains to be broken via the Higgs mechanism at a later stage [59].

In what follows, we will systematically elaborate the remnant Abelian discrete sym-

metry group arising by spontaneously breaking a general Abelian gauge group U(1)k.

Of course, the breaking of non-Abelian gauge groups can yield further non-Abelian

discrete symmetries and even an additional Abelian discrete symmetry group. How-

ever, the systematical approach concerning non-Abelian discrete gauge symmetries
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seems involved1, since the breaking mechanism depends on the representation of

the non-Abelian group. Our approach is free of this issue, because all irreducible

representations of finite Abelian groups are 1-dimensional [54]. If remnant discrete

Abelian groups of non-Abelian gauge groups are found for any concrete model, how-

soever, they can easily be incorporated into our approach.

1 Except the trivial case of a remnant discrete center (see appendix A.3) of a non-Abelian group,
which will be left invariant by any VEV in the adjoint representation, since the elements of the
adjoint are equal to elements of the group itself and the center is defined to commute with all
group elements. For a VEV out of an arbitrary irreducible representation transforming under
SU(N) as a (m, n) tensor, it is trivial that the center ZN is left invariant if m− n = 0 mod N ,
as can also be found in [60].
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Chapter 3

Patterns of Abelian discrete gauge

symmetries

This chapter addresses the breaking of a general Abelian gauge group U(1)k down

to a discrete subgroup. Since the only Abelian discrete subgroup of a U(1) is a cyclic

(see appendix A.4) Zn group, it is not surprising that the Abelian discrete subgroup

of U(1)k will be representable by a direct product of cyclic groups. However, not

every product of cyclic groups is itself isomorphic to a cyclic group, so that new

structures arise.

First, an illustrative example will show how to break an Abelian single U(1) gauge

symmetry so that a discrete group remains. This example is then put on a theoretical

footing that allows to calculate systematically the discrete symmetry group respected

by the vacuum of the broken phase. Generalizing to the case U(1)k will lead to

the concept of charge lattices, a suggestive picture manifesting the metamorphoses,

which an arbitrary Abelian discrete symmetry group is able to undergo. Finally, we

will fix the resulting ambiguities in terms of the Smith normal form, and shed light

on the obtained symmetry patterns from an algebraic point of view.

3.1 Introductory example

In order to get a notion of how to break a continuous symmetry down to a discrete

symmetry in a physical theory, the following intuitive simplest example [9, 61] is

helpful. Consider two complex scalar fields ψ and φ of different charge under a

common U(1) gauge symmetry

ψ 7→ eiα(x)ψ , (3.1)

φ 7→ eiqα(x)φ . (3.2)

23



Systematical approach

Besides the standard renormalizable Lagrangian for both of the scalars (and a ki-

netic term for the gauge fields), we can write down the following gauge invariant

interaction terms with coupling constants β, γ, δ

β φφ∗ ψψ∗ , γ ψqφ∗ , δ ψ∗qφ (3.3)

and powers of these. Now, assume the U(1) symmetry is spontaneously broken due

to a vacuum expectation value 〈φ〉 = v, developed by the q charged field φ,

φ(x)
SSB−→ v + φ

′
(x) . (3.4)

As a consequence, the Lagrangian of the broken theory contains the terms vψq and

vψ∗q, which are obviously no more U(1) invariant, though, they still are manifestly

invariant under the transformation

ψ 7→ e
2πi
q
mψ , m ∈ Z , (3.5)

which corresponds to the residual discrete Abelian symmetry Zq.
For a low energy observer having no knowledge of the field φ, (3.5) appears to be

an ordinary global discrete symmetry. It is its local origin why it is called discrete

gauge symmetry.

3.2 Systematical approach

We will now put this mechanism, which we understood by looking at the explicit

coupling structure so far, on a neat theoretical footing. Let us reconsider the simple

case of a single U(1) local theory from above. In order to break it, let the q charged1

field attain a VEV, just as in (3.4). To which subgroups does the VEV break the

theory? That is a common problem in the quantum field theory literature, it has to

be checked whether there are subgroups, which leave the VEV invariant. Usually

one is looking for invariant generators α(i) at the infinitesimal level

α(i)〈φ〉 = 0 , (3.6)

i.e. for continuous invariant subgroups. In the present case of a single U(1) this reads

αv = 0, which of course can only be satisfied trivially as U(1) has no continuous

subgroups. Yet, one could imagine that the VEV respects some discrete subgroup.

Therefore, we have to switch to the finite level of group elements, which promotes

1 For (notational) convenience we will consider integer charges throughout this work.
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(3.6) to

eiqαv = v . (3.7)

This equation obviously has the solutions

α = 2πm
q
, m ∈ Z (3.8)

so that some field ψ with charge p under the very same U(1) still has the invariant

transformation

ψ 7→ e2πi p
q
mψ (3.9)

after the breaking. Since the discrete charge p is mapped onto itself for some integer

values of m, it becomes defined modulo n (see appendix A.2), i.e. we have a residual

Zn symmetry, where n = q at first sight. However, if p and q have a greatest common

divisor, GCD(p, q) 6= 1, i.e. if p and q are not coprime, the symmetry of the theory

will certainly be reduced to n′ = q
GCD(p,q)

with discrete charge p′ = p
GCD(p,q)

. Such

cases of reduced or redundant discrete symmetries will be discussed extensively in

the next chapter. Note that so far the maximal value of n is limited by the charge

of the VEV, i.e. if one wants to have a remnant Zq symmetry one should give a

charge q field a VEV; this is a well known statement about cyclic discrete gauge

symmetries.

In principle, we can make the same ansatz for a general Abelian gauge symmetry,

however, we will see that the discrete symmetry group then is not that easy to read

off.

3.3 General Abelian discrete gauge symmetries

We will now extend this idea and seek for remnant discrete subgroups of general

Abelian U(1)k theories. First, let us specify a generic field content. Fields attaining

non-zero VEVs will be called φ(i), i = 1, . . . , a, whereas remaining ‘matter’ fields will

be named ψ(l), l = 1, . . . , b. Now that we have k U(1)’s the fields transform by a

linear combination of all the U(1) factors

φ(i) 7→ eiqj(φ
(i))α(j)

φ(i) , j = 1, . . . , k (3.10)

ψ(l) 7→ eiqj(ψ
(l))α(j)

ψ(l) , j = 1, . . . , k (3.11)

with continuous generators α(j) and associated charges qj(φ
(i)) = qij. Thus, invari-

ance of the VEVs in this setup reads

eiqj(φ
(i))α(j)

v(i) = v(i) , (3.12)
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which tells us

qijα
(j) = 2πmi , mi ∈ Z . (3.13)

We can write this set of linear equations in matrix formq11 · · · q1k

...
...

qa1 · · · qak


α1

...

αk

 = 2π

m1

...

ma

 . (3.14)

Note that the matrix Qφ = (qij), composed of the U(1) charges belonging to the φ(i)

fields, is quadratic, i.e. k = a, if there are as many linearly independent VEVs as

U(1) factors. Let us consider this special case for now, at a later stage (section 3.7)

it will be easy to include the deviant situations where k 6= a. Rewriting equation

(3.14) in terms of Qφ, to which we will simply refer as the ‘charge matrix’ in the

following, we obtain the compact form

Qφα = 2πm , (3.15)

where we have grouped the U(1) generators α(j) as well as the integers mi in cor-

responding vectors α and m. Benefiting from the restriction of a quadratic charge

matrix, due to k = a, we can solve for α by means of the inverse2 charge matrix Q−1
φ .

In this context, remember the classical adjoint from linear algebra, which fulfills

Q adj(Q) = det(Q) 1 . (3.16)

It is of importance once matrices are defined over a ring (e.g. Z) rather than a field.

In that case, it serves as an almost inverse for matrices with det(Q) 6= 1. Yet, a non

integer inverse of Qφ is unproblematic here. In fact, rational values for the α entries

are desirable, in order to obtain non-trivial discrete symmetries. Thus, we can use

(3.16) to write

α = 2π
adj(Qφ)

det(Qφ)︸ ︷︷ ︸
Q−1
φ

m . (3.17)

Note that at this point, the α(j) take discrete values, just as in (3.8), which makes

them “discrete generators”, i.e. generators of remnant discrete symmetries. In other

words, the former U(1) generators become fixed by the invariance claim of the VEVs.

But the actual discrete symmetry of the theory will be determined by the transfor-

2 Since the U(1)’s are supposed to be independent and the rows of the charge matrix are linearly
independent by assumption, Qφ has full rank and thus the inverse of Qφ exists.
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mation of the remaining field content

ψ(l) 7→ e
2πi qT (ψ(l))

adj(Qφ)

det(Qφ)
m
ψ(l) . (3.18)

Let us examine this condition more closely for l fixed. One observes k = a cyclic

discrete symmetry groups Zni , which are distinguished by the mi, where the ni are

given by the denominators of each summand in the exponential of (3.18). Those

cyclic factors span the overall Abelian discrete symmetry group Zn1 × · · · × Znk .
If some ni happen to be one, the corresponding trivial3 symmetry groups Z1 is

to be discarded. Since the entries of the matrix adj(Qφ) are in Z again, Zdet(Qφ)

constitutes a (naive, as will become clear later) upper limit for each of the cyclic

groups. However, a smaller symmetry pattern can (and will) be encountered in the

following cases:

• qi(ψ(l)) cancels against det(Qφ)

• the columns of adj(Qφ) contain common factors, which cancel down det(Qφ) .

Although the first point appears to be rather intelligible (we will discuss it thor-

oughly in section 4), the latter one is cumbersome to explore in general. Further-

more, we do not know how to identify remnant discrete symmetries for k 6= a within

this framework.

3.4 Geometrical perspective

Due to the issues encountered above, let us change our point of view slightly and

focus on a geometrical approach. Apart from gaining an intuitive visualization of

the problem via a lattice description, the geometrical interpretation will draw the

bridge to an algebraic formulation, provided by the theorem of finitely generated

Abelian groups.

The idea of approaching arithmetic, algebraic or number theoretical problems by

geometrical means goes back to Minkowski [62], founding the “Geometry of Num-

bers”. The following states a very basic but illustrative example, how to solve an

arithmetical problem via a geometrical interpretation. Which integers n can be

written as the sum of two integer squares? That is, for n ∈ Z fixed and p, q ∈ Z,

solve the equation

n = p2 + q2 . (3.19)

3 Since it only consists of the identity.
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From a geometrical point of view, the equation n = x2 + y2 with x, y ∈ R corre-

sponds to the circle of radius
√
n and center (0, 0) in the R2 plane. By charting

all integer coordinate points in R2, which gives a lattice pattern, the solutions of

equation (3.19) can be read off immediately. The (p, q) are just the coordinates of

the lattice points lying on the circle (see figure 3.1).

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Figure 3.1: Solving (3.19) geometrically: for n = 5, eight different integer solutions can
be read off.

Here, the fundamental concept [63] of the “Geometry of Numbers” has been used

intuitively: the concept of a lattice. Instead of dealing with the somewhat cumber-

some ring of integers by itself, we rather considered the integers as a subset of an

appropriate embedding (here R2), which is equipped with vector space properties.

Definition 1 Let λ(1), . . . ,λ(k) be linearly independent vectors in k-dimensional real

Euclidean space, then the set of points

{m1λ
(1) + · · ·+mkλ

(k) : mi ∈ Z} (3.20)

is called a lattice with basis λ(1), . . . ,λ(k).

3.4.1 The charge lattice

Following this concept, we may consider Rk with the set of charge vectors {q(φ(i))}
defining a k-dimensional4 lattice. So far, we studied the case k = a of a square

4 Or lower dimensional in case of linear dependencies among the charge vectors.
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charge matrix Qφ with full rank. In this case the charge vectors {q(φ(i))} span a

basis {λ(i)} of the lattice, i.e. the charge lattice is given by

{miλ
(i) : mi ∈ Z} = {miq(φ(i)) : mi ∈ Z} . (3.21)

Hence, the basis vectors λ(i)T of the charge lattice equal the rows of the charge

matrix Qφ. Therefore, the columns of the inverse Q−1
φ define the dual (also called

reciprocal or polar) lattice basis {λ∗i }, such that

λ(i)Tλ∗j = δ
(i)
j . (3.22)

With the dual lattice at hand, the transformation of the remaining fields ψ(l) can

be recast in terms of the charge lattice. The exponent of (3.18) then reads

iqT (ψ(l))α = 2πi
(
qT (ψ(l))λ∗1m1 + · · ·+ qT (ψ(l))λ∗ama

)
. (3.23)

Thus, in order to have a discrete symmetry factor Zni , one is seeking for situa-

tions where some charge lattice coordinate of a remaining field q(ψ(l))λ∗i is rational,

i.e. the charge vector qT (ψ(l)) does not lie on the charge lattice. However, any cou-

pling (ψ(1))x1 · · · (ψ(b))xb of the broken phase, with field powers xl ∈ {0, 1, 2, · · · },
has to lie on a lattice node – this is the translation of gauge invariance in the un-

broken theory. Comparing the fraction structure of (3.23) for all l yields a direct

product of cyclic groups
∏k

i=1 Zn′i as discrete symmetry group. In this process the

GCD(qi(ψ
(1)), . . . , qi(ψ

b), ni) is to be canceled for each i, resulting in a common de-

nominator n′i for all values of l. This corresponds to evaluating (3.18) “by hand”

and in principle results in a valid discrete symmetry group of the broken theory. It

is free of uncontrollable cancellations worrying us at the end of section 3.3, since

the structure of Q−1
φ , and thus adj(Qφ), now is encoded in the dual basis. However,

this manual method still is incompatible with the general case k 6= a of non square

charge matrices. This is because for linearly dependent VEV setups, the charge

vectors do not form a basis of the charge lattice. A proper basis can be found by

lattice reduction methods [64], which perform a change of the lattice basis.

Do we actually have the freedom to change the lattice basis? Recapitulating the

procedure above, we expect to obtain a different product of cyclic groups for a differ-

ent (dual) basis of the charge lattice, since the denominator structure of (3.23) may

change. Yet, this is not an immediate contradiction, since discrete Abelian groups

have various isomorphic descriptions, which will become clear shortly.
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3.4.2 Lattice bases and their unimodular transformations

Such a lattice basis change, as pictured in figure 3.2, is well known [65] to be per-

formed by unimodular transformations

λ′(i) = Mijλ
(j) . (3.24)

Such a transformation is defined as follows:

Definition 2 (Unimodular matrix) A k×k matrix M with integer entries, which

is invertible over the ring of integers Z, is called a unimodular matrix. We write

(Mij) ∈ GLk(Z). Unimodular matrices have det(M) = ±1.

Due to the unit determinant those unimodular transformations preserve the volume

of the fundamental region of the charge lattice, which is given by the determinant

of the charge matrix.

Vol=detQ
Vol=detQ

-10 -5 5 10 15

-10

-5

5

10

15

Figure 3.2: Basis change of the charge lattice. Each fundamental region is pigmented.

Indeed, it is true that a change of lattice basis for the charge lattice does not affect

the breaking structure as will be shown now. Forget about the unimodular transfor-

mations for short and consider an arbitrary integer matrix M acting on the charge

lattice basis. This corresponds to a transformation of the charge vectors

q′j(φ
(i)) = q′ij = Mimqmj , i.e. Q′φ = MQφ , (3.25)
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which entails a redefinition of the VEVs

v(i) → v′(i) =
k=a∏
j=1

(v(j))Mij . (3.26)

Therefore, the breaking condition (3.12), which determines the remnant discrete

symmetries, is shifted as well

eiqj(φ
(i))α(j)

v(i) = v(i) → eiq′j(φ
(i))α(j)

v′(i) = v′(i) . (3.27)

Of course a product of VEVs, as in (3.26), can again be a valid VEV, but how do

we need to restrict M so that the new VEV and charge setup does not alter the

breaking pattern?

First of all, M has to be integer in order for Q′φ to be a proper charge matrix.

Moreover, on the one hand, the original breaking condition forces the generators to

be

α = 2πQ−1m ,mi ∈ Z , (3.28)

as was elaborated in (3.17). On the other hand, the shifted breaking condition yields

α = 2πQ′ −1
φ m = 2πQ−1

φ M−1m︸ ︷︷ ︸
m′

. (3.29)

Thus, in order to recover the original breaking equation (3.28), the m′i necessarily

need to be integer, which means M−1 has to be integer. But it is well known that

the set of integer and integer invertible matrices are exactly the unimodular ones

(i.e. we have a complimentary unit determinant).

Let us study (3.29) more closely. It certainly is necessary that the m′i = M−1
ij mj

are integer, which is the case if M−1 is an integer matrix. But is that sufficient for

equivalence with (3.28)? Actually not, if M−1 only was integer, it could happen

that m′i = c ·m′′i , where m′′i still is integer. Then m′i does not take values in whole

Z, but only in the ideal cZ. Hence, c would be subject to cancel the denominator

structure of Q−1
φ , which determines the discrete symmetry. However, therefore the

rows of M−1 need to have the greatest common divisor c. But this is impossible for

unimodular M , since det(M) = ±1 ensures that the row entries are relative prime,

i.e. the greatest common divisor of each row is one (the same holds for columns).

Since this perception is of great importance for this work, and will reappear fre-

quently, let us put it on a solid mathematical footing. The objects m, which we

want to map, are elements in Zk, an additive group, and we are provided with a

compatible scalar multiplication Z× Zk → Zk. This defines almost a vector space,
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however, since scalar multiplication is defined over the ring Z instead of a field we

only have a module, in fact – more precisely a Z-module.

The map

M : Zk → Zk (3.30)

mi 7→Mijmj , where (Mij) ∈ GLk(Z) , (3.31)

is a Z-module isomorphism, since it is bijective (invertible over Z) and respects the

Z-module structure, i.e.

M(m+ n) = M(m) +M(n) , m,n ∈ Zk (3.32)

M(cm) = cM(m) , c ∈ Z . (3.33)

It has to be avoided that M maps Zk → c1Z × · · · × ckZ with at least one ci 6=
1. Abstract algebra tells us that for X

f→ Y , X covers Y , if f is a surjective

homomorphism of the underlying structure. But the map M is even an isomorphism

of the Z-module, thus the target and the domain are identical, as desired.

Remark 1 For M ∈ GLk(Z) and mi ∈ Z

m′i = Mijmj covers Z . (3.34)

Having established this, let us resume the key message of the above elaboration.

It has been shown that a basis change of the charge lattice does not modify the

breaking pattern, i.e. one has the freedom to shift the charge matrix Qφ → MQφ.

It is of crucial importance that M is a unimodular transformation. Finally, this

freedom allows to generalize the breaking condition (3.28) to

MQφα = 2πm . (3.35)

However, the charges of the remaining fields ψ(l) are not affected in the process of

a charge lattice basis change. Since we can also consider a redefined charge matrix

Q′φ = MQφ instead of absorbing M into m′, it is clear that we will potentially

experience another discrete symmetry setup for each unimodular transformation M ,

because the denominator structure ofQ′−1
φ is different (yet, not canceled). As already

mentioned above, from an algebraic point of view, different equivalent products of

cyclic groups describing the very same discrete Abelian group are not surprising

because of isomorphisms among these.

Yet, the urgency of an unambiguous description of the remnant discrete symmetry

group becomes manifest.
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3.5 Smith normal form

A very important tool, which will guide us in direction of a distinct description

of discrete Abelian symmetries, is given by the Smith normal form technique. It

is algebraic knowledge that an integer matrix can be diagonalized by means of

unimodular matrices. The proof [66] of the following theorem, specifying this kind

of diagonalization, is connected5 to the fundamental theorem of finitely generated

Abelian groups, with which we will become acquainted shortly.

Theorem 1 (Smith normal form) Let A be any integer m × n matrix. There

exist unimodular matrices M ∈ GLm(Z) and N ∈ GLn(Z) such that

MAN = D = diag(d1, . . . , dr, 0, . . . , 0) , (3.36)

is a unique diagonal integer matrix with di 6= 0 for i = 1, . . . , r and di|dj for i ≤ j.

A diagonal m× n matrix is defined to have (i, i) entries di and zeros elsewhere.

D is called Smith normal form of A.

We have seen that the generalized breaking condition (3.35) is already endowed with

a left hand side unimodular matrix M , thus we can bring Qφ into Smith normal form

by insertion of the identity in terms of 1 = NN−1, where N is unimodular

MQφN N−1α = 2πm . (3.37)

Since N−1 is unimodular as well, and hence integer, it is clear that N−1α = α′ is

just another linear combination of generators. Thus we have the distinct expression

Dφα
′ = 2πm . (3.38)

That is, we have brought the charge matrix into Smith normal form, i.e. diagonal

shape, by exploiting the freedom to perform unimodular transformations onto the

breaking condition, which was stated in (3.35).

3.6 The discrete symmetry of the vacuum

Let us for now still consider the simple case k = a, such that the rank of Dφ is

r = k. Thus the inverse of the charge matrix in Smith normal form Dφ is given by

D−1
φ = diag(1/d1, . . . , 1/dr), i.e. we can read off the discrete symmetries from the

5 Another nice proof for theorem 1 can be found in [67], however, disregarding the connection to
finitely generated Abelian groups.
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solution

α′ = 2π diag(1/d1, . . . , 1/dk)m (3.39)

directly. This is because now, in the redefined generator basis α′, the discrete

symmetries disentangle, i.e. each α′i is assigned to a proper denominator di. Thus,

G = Zd1 × · · · × Zdk (3.40)

is an elegant way to describe the discrete symmetry group, which leaves the VEV

setup invariant. The symmetry group decomposes into cyclic groups whose orders

are given by the di, which divide each other.

A remarkable point about this description, apart from its uniqueness via the Smith

normal form, is its simplicity due to the diagonal form of (3.39). The discrete

generators α′i are obviously orthogonal, at the expense of the former U(1) generators

orthogonality. This can be visualized nicely in terms of the geometrically affected

charge lattice picture. We will present an explicit example in section 3.8.

In this distinct notation, we see that the permissible set of cyclic groups Zni allowed

by the VEV structure fulfills
∏a

i=1 ni =
∏k

i=1 di = det(Qφ). But this is the order

|G| (see section 3.10) of the entire discrete symmetry group (3.40). Thus, at this

point, it becomes clear that the highest achievable symmetry is one single Zdet(Qφ),

any cyclic subgroup of G will be of smaller order. This statement is a first merit

of the geometrical and algebraic perspective; at the end of section 3.3 we found a

much less specific bound.

To resume, we elaborated a convenient description of the remnant discrete Abelian

symmetry group G, which is respected by the VEV setup of a spontaneously broken

general Abelian gauge symmetry U(1)k.

Again, the actual discrete symmetry of the broken theory might be reduced by

redundancies. In the process of identifying the remnant discrete Abelian symmetry

group G, we had to redefine the discrete generators as α′. Therefore, the discrete

charges of the remaining fields ψ(l) have to be expressed in the same basis, which

can be achieved easily

q(ψ(l))N N−1α = q′(ψ(l))α′ . (3.41)

The discrete charges q′j(ψ
(l)) form the elements transforming under the discrete

group (3.40). The transformation law

ψ(l) 7→ exp
(
iq′(ψ(l))α′

)
ψ(l) = exp

(
2πi q′(ψ(l)) diag(1/d1, . . . , 1/dk)m

)
ψ(l) (3.42)
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manifests the possibility of redundancies, e.g. if q′i(ψ
(l))|di ∀ l the permissible sym-

metry G will be reduced. We will discuss redundancies and the resulting discrete

symmetry group of the theory thoroughly in chapter 4.

3.7 Rectangular charge matrices

The key point about the Smith normal form approach is its universality – it is

capable to deal with charge matrices of any shape. In case of linear dependencies

among the VEVs, Qφ is rank deficient and Dφ will only have r < a diagonal entries,

thus Dφ will contain negligible zero rows yielding no restrictions. If r becomes even

smaller than k, or if we started with a setup where a < k, there will remain k − r
unbroken U(1)’s, since Dφ will show k−r zero columns, which clearly do not restrict

the α′r+1, . . . , α
′
k corresponding to the unbroken k − r U(1) generators.

Summarily, the presented method resolves the problem of rectangular shaped charge

matrices, where k 6= a, automatically – one can drop zero rows respective columns,

since these are redundant concerning the quest for the invariant discrete subgroups.

Only the quadratic r × r submatrix is of importance, which ensures invertibility.

This immediately manifests an interesting result: a single U(1) theory can only

generate a charge matrix of maximal rank r = 1. It is thus clear that the remnant

discrete symmetry group in this case is cyclic6, since it can be expressed as a single

Zd.

3.8 Intermediate example

Let us picture the geometrical interpretation of the presented construction by means

of some concrete charge setup. It is purpose-built to improve the understanding of

the results achieved so far. Further issues, yet undiscussed, are disguised intention-

ally.

The most interesting situation clearly is given by a linearly dependent VEV setup,

as is the case for k < a. The easiest nontrivial example is to consider a U(1)2 theory.

Take three fields, which gain non-zero VEVs, inducing the charge matrix

Qφ =

5 14

9 1

8 7

 . (3.43)

6 Of course the cyclic nature of the discrete Abelian group can be disguised by isomorphisms,
e.g. Z6

∼= Z2 × Z3. However, this does not change the fact that it is generated by only one
element – more complex discrete Abelian groups cannot arise out of a single U(1). This is
somewhat mistakable expressed in [68] and does not agree with [69].
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These fields span a nontrivial charge lattice, but they do not form a basis (see figure

3.3). This is because of the additional VEV, which of course is linearly dependent,

though not a linear combination of the other two VEVs 7. The volume of the

Vol = 11
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-10

-5

5

10

15

Figure 3.3: Charge setup of the three VEV acquiring fields and the corresponding charge
lattice. The fundamental region is pigmented.

fundamental region, which is given by det(Qφ), takes the value Vol = 11, so the

maximal discrete symmetry respected by the VEVs is Z11. Since this is prime we

immediately know that the Smith normal form of the charge matrix Dφ will look

like 1 0

0 11

0 0

 , (3.44)

because the diagonal entries need to divide each other. Nevertheless, let us perform

the procedure step by step in order to shed light on the mechanism regarding the

lattice point of view. Hence, we are to bring the charge matrix into diagonal form

by means of two unimodular matrices M and N . The action of M on Qφ eliminates

7 Since the set of lattice points itself has Z-module structure (as we already noted above remark 1),
this becomes possible. Linear dependence in context of modules is defined just as in vector
spaces, i.e. a family of Z-module elements {qi} is linearly dependent, if ciqi = 0 with ci 6= 0 ∀i
and ci ∈ Z. But in contrast to vector spaces one element of a linearly dependent family is not
necessary linearly dependent on the others [70].
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the additional row, i.e. the linearly dependent VEV,

MQφ =

1 −6

0 11

0 0

 , with M =

 0 1 −1

−1 −3 4

5 7 −11

 , (3.45)

therefore choosing a particular basis of the charge lattice (figure 3.4). The right

Vol = 11
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Figure 3.4: The action of the left unimodular matrix M on the charge matrix picks a
lattice basis.

action of N on MQφ, which entails a change of generators α′ = N−1α, finally

diagonalizes Qφ

Dφα
′ = MQφNα

′ =

1 0

0 11

0 0

α′ , where N =

(
1 6

0 1

)
. (3.46)

The change of generator basis from α to α′ reshapes the charge lattice to an or-

thogonal form (see figure 3.5). Now we can drop the redundant zero row of Dφ and

solve for α′ by the inverse D−1
φ

α′ =

(
1 0

0 1
11

)
2πm . (3.47)

Finally, the denominator structure of (3.47) tells us that the permissible discrete

symmetry is G = Z11, which can not be reduced any further by the charge alignment
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Vol = 11
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Figure 3.5: In terms of the transformed generators α′ = N−1α the charge lattice has an
orthogonal basis.

of any remaining fields, since it is prime.

3.9 Couplings

In fact, the modifications we performed to achieve the description of the permissible

discrete Abelian symmetry group G via the Smith normal form was twice a basis

change, one for the lattice basis and one for the generator basis, both represented

by unimodular matrices M and N . We will show now that these transformations

have no effect on the coupling conditions; that is, couplings again have to lie on the

orthogonalized lattice. Remember that gauge invariance ensures that a coupling,

which was part of the Lagrangian prior to giving the φ(i) fields VEVs, now lies on

the charge lattice. Thus, a general coupling of the broken phase (ψ(1))x1 · · · (ψ(b))xb

implies

x1q(ψ(1)) + x2q(ψ(2)) + · · ·+ xbq(ψ(b)) = miλ
(i) , (3.48)

where the lattice basis is generally elected by a particular unimodular matrix M

acting on the charge vectors q(φ(i)), as was illustrated in section 3.8,

λ(i) = Mq(φ(i)) . (3.49)

Note that even in case of a square charge matrix of full rank, i.e. even if the charge

vectors already describe a charge lattice basis, M is nontrivial in general, since the
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Smith normal form is achieved only by the combination of left and right hand side

unimodular transformation. Thus we can write (3.48) more compactly as

xT Qψ = mT MQφ , (3.50)

where (Qψ)ij = qj(ψ
(i)) is the charge matrix of the remaining ‘matter’ fields. Mul-

tiplication from the right by N yields

xT Q′ψ = mT Dφ , (3.51)

with proper discrete charges (Q′ψ)ij = q′j(ψ
(i)) of the ‘matter’ fields, as defined

in (3.41), with respect to the generator basis α′. Equation (3.51) manifests that

couplings again do lie on the orthogonal lattice.

3.10 Algebraic viewpoint

What we have achieved in the preceding sections is in fact the description of the

underlying discrete Abelian group in terms of the invariant factor decomposition,

a well known concept in algebra [71]. A discrete Abelian group does not have

a unique description due to various isomorphisms. Yet, two representations are

outstanding, namely the invariant factor decomposition and the elementary divisor

decomposition. Both are of course isomorphic and thus equivalent. They arise as two

equivalent possibilities to state the key concept of basic algebra: the fundamental

theorem of finitely generated Abelian groups. This, in turn, is a special case of

the more abstract algebraic structure theorem for finitely generated modules over a

principal ideal domain.

Since both decompositions will be important in the remainder of this work, e.g. for

addressing phenomenological questions like the identification of matter parity, we

will present both of them and discuss their relation among each other.

3.10.1 Invariant factors

Let us first state the theorem in terms of the invariant factor decomposition.

Theorem 2 (Fundamental theorem of finitely generated Abelian groups)

Let G be a finitely generated Abelian group. Then

G ∼= Zr × Zn1 × · · · × Zns , (3.52)

with integers r ≥ 0 and ni ≥ 2 such that ni|ni+1 for 1 ≤ i ≤ s− 1.
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Note that the free rank or Betti number r is zero throughout this work, since we

only consider finite groups. Finitely generated but infinite groups have non-zero

Betti number. The integers n1, . . . , ns are known as the invariant factors of G and

the invariant factor decomposition is unique. Since the order of a single cyclic group

Zni is ni, the order of G is given by the product of the invariant factors.

3.10.2 Elementary divisors

Next, we state the same theorem in terms of the elementary divisor decomposition,

also known as primary decomposition.

Theorem 3 Let G be a finite Abelian group of order n > 1 with (unique) factoriza-

tion into powers of distinct primes8 n = pα1
1 . . . pαkk . Then

(1) G ∼= H1 × · · · ×Hk with |Hi| = pαii

(2) Hi
∼= Z

p
βi1
i
×· · ·×Z

p
βit
i

with 1 ≤ βi1 ≤ · · · ≤ βit and βi1 + · · ·+βit = αi (where

t depends on i).

The integers p
βij
i are called the elementary divisors of G, and the Hi are the Sylow

pi subgroups of G (see appendix A.4). Since p
βij
i |p

βij+1

i if and only if βij+1 ≥ βij, (2)

tells us that the elementary divisors of G are the invariant factors of the Sylow pi
subgroups as we run over all i ∈ 1, . . . , k.

Yet, theorem 3 (2) does not state an isomorphism to all possible αi = βi1 + · · ·+ βit
decompositions. Quite the contrary, the βij are fixed for some concrete Hi, since

different lists of elementary divisors belong to non isomorphic groups, due to their

uniqueness. Hence, one can find all different discrete Abelian groups of given order

by listing all possible partitions of the αi.

For instance, take the groups of order p3. We find three different, non isomorphic

discrete Abelian groups due to the integer decompositions of the power 3.

Prime power partition Distinct Abelian groups

3 Zp3
2, 1 Zp2 × Zp

1, 1, 1 Zp × Zp × Zp

Generalizing from groups of prime power order to arbitrary ones is easy, let again

n = pα1
1 . . . pαkk with ci the number of partitions of αi. Then the count of distinct

discrete Abelian groups of order n adds to
∏k

i=1 ci.

8 Due to the fundamental theorem of arithmetic (see appendix A.1).
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3.10.3 Obtaining elementary divisors from invariant factors

Let us outline the connection between the two equivalent theorems from above.

Therefore, we need the following

Proposition 1 Let m,n be positive integers.

(1) Zm × Zn ∼= Zmn if and only if GCD(m,n) = 1.

(2) Let n = pα1
1 . . . pαkk . Then Zn ∼= Zpα1

1
× · · · × Zpαkk .

Assume we have given the invariant factor decomposition of G by

G ∼= Zn1 × · · · × Zns (3.53)

where G is of order n = pα1
1 . . . pαkk = n1 . . . ns. We can factor each ni = pβi11 . . . pβikk ,

thus

Zni ∼= Z
p
βi1
1
× · · · × Z

p
βik
k

, (3.54)

where all βij = 0 can be neglected because they only contribute a trivial factor

Z1 = 1 to the product expansion of G. Hence, the elementary divisors of G are

p
βij
j , with 1 ≤ j ≤ k, 1 ≤ i ≤ s and βij 6= 0 . (3.55)

From the charge lattice picture point of view, the invariant factor decomposition is

most natural, since the discrete symmetries are orthogonal in that basis. However,

elementary divisors will be important at a later stage, too. The automorphism

group of finitely generated Abelian groups will most conveniently be studied in

terms of Sylow Hi groups. Furthermore, phenomenological problems may require the

elementary divisor decomposition; for instance, the identification of matter parity

can be restricted on H2, as we will see in section 5.3.
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Chapter 4

Redundancies & equivalences

So far, we successfully elaborated the breaking of a general Abelian gauge group

down to remnant discrete symmetries. We were able to describe the remaining

Abelian discrete group, which respects the VEV configuration responsible for the

breakdown of the continuous symmetries, by means of its invariant factors. However,

we already encountered various hints that this symmetry might be larger than the

actual symmetry of the Lagrangian, which depends on the remaining field content

of the theory. In this chapter, we will analyze such redundant field configurations

and show how to eliminate redundancies.

By agreeing upon the invariant factor or elementary divisor account, we already

suppressed some amount of equivalent descriptions given by isomorphisms. Yet,

there are further equivalent alignments among these decompositions themselves, be-

cause of automorphisms. From the physical point of view, an automorphism of a

given discrete Abelian group corresponds to an equivalent discrete charge assign-

ment. We will review the description of the automorphism group of finite Abelian

groups and discuss their connection to the elimination of redundancies. Finally, we

study hypercharge shifts, another kind of equivalent charge assignment, which arises

if an unbroken continuous Abelian group coexists with a discrete Abelian group, and

illustrate the presented methods by means of a concrete example.

4.1 Redundant field configurations

Let us first face the problem of redundancies; that is, the reduction of the permissible

discrete symmetry group G (3.40) by the remaining ‘matter’ field charge configura-

tion. As an intelligible access, suppose we have only one ‘matter’ field ψ transform-

ing under a cyclic discrete group G = Zd. Then the discrete symmetry reduces, if

the discrete charge q′(ψ) divides d, since one can cancel out the GCD(q′(ψ), d) in
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the transformation law (3.42). Hence, the cyclic group Zd is reduced to Zd′ with

d′ = d
GCD(q′(ψ),d)

, because the field content is able to generate the subgroup Zd′ of

Zd, only [72]. Thus, the order of G becomes reduced.

Let us picture this for the concrete case d = 4, i.e. consider a Z4 with one field of

charge two. The order of Z4 is four, which means there are four elements in this

group. Yet, the charge two field can only reach two of those elements, namely {2, 0},
because of the mod 4 constraint.

Z
4

0=4

1

2

3

Z
2

Z

Z

Figure 4.1: A charge two field embedded into a Z4. The field can only reach the subgroup
Z2, thus the description is redundant.

The order of the field content thus is two and, hence, smaller than the order of

the discrete group, manifesting the redundancy (see figure 4.1). Once the common

factor two of the field’s charge and the group order is canceled, we arrive at a neat

description, namely a charge one field transforming under a Z2.

4.1.1 Eliminating redundancies

For non cyclic Abelian discrete symmetry groups, seeking for redundancies is some-

what more involved. We will present a procedure, which is capable to eliminate

redundancies for any given charge setup under some arbitrary Abelian discrete sym-

metry group G. It may be given in invariant factor decomposition, but does not

have to. For our purpose, we will demonstrate the mechanism by continuing with

the resulting situation of equations (3.42) and (3.40); that is, ‘matter’ fields

ψ(l) 7→ eiq′(ψ(l))α′ψ(l) = e
2πi q′i(ψ

(l))
mi
di ψ(l) (4.1)
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transforming under the permissible discrete symmetry G = d1×· · ·×dr with di|di+1.

For the case of an arbitrary Abelian discrete symmetry group, one can think of the

di as uncorrelated.

Now, according to the transformation law (4.1), the quantity

Q′ψ


m1

d1
...
mr
dr

 , where (Q′ψ)li = q′i(ψ
(l)) (4.2)

flocks the permissible Zdi symmetries and the corresponding discrete charges of the

ψ(l) fields together. If Q′ψ was diagonal, one could cancel common factors immedi-

ately. Thus, the idea is to diagonalize Q′ψ by means of the Smith normal form. The

emerging unimodular matrices have no common factor in their rows or columns, as

we noted in section 3.4.2, hence the redundancy remains in the diagonal part, so to

speak. One could try to put Q′ψ into Smith normal form directly, but then the right

unimodular matrix would mix the di, which is rather cumbersome in order to read

off the discrete symmetries. A much more convenient method is to introduce a unit

in terms of

Q′ψ


d
d1

. . .
d
dr


︸ ︷︷ ︸

U−1


d1
d

. . .
dr
d


︸ ︷︷ ︸

U


m1

d1
...
mr
dr

 , (4.3)

where d is the least common multiple (LCM) of the di. Since here di|di+1, we have

LCM(d1, . . . , dr) = dr, of course, but that is not the case for an Abelian discrete

group G, which is not given in invariant factor decomposition. Now, since di|d, the

matrix U−1 is integer and thus Q′ψU
−1 can be brought into Smith normal form

M−1
ψ DψN

−1
ψ


m1

d
...
mr
d

 . (4.4)

But due to det(N−1
ψ ) = ±1 the row entries of N−1

ψ are relative prime and therefore

m′i = (N−1
ψ )ijmj covers Z again, as discussed in section 3.4.2 remark 1. Thus we

obtain

M−1
ψ

s1

. . .

sr




m′1
d
...
m′r
d

 , (4.5)

45



Redundant field configurations

with si|si+1. Now common factors can be canceled deliberately: let us write si =

ai ·GCD(si, d) and d = d′i ·GCD(si, d), such that we have

M−1
ψ

a1

. . .

ar


︸ ︷︷ ︸

QFψ


m′1
d′1
...
m′r
d′r

 . (4.6)

Comparing with (4.2) one can read off the final discrete symmetry group1

GF = Zd′1 × · · · × Zd′r now with d′i+1|d′i , (4.7)

and the final matter charge matrix QF
ψ . Note that we could equally well drop the

matrix diag(a1, . . . , ar), since ai and d′i are relative prime. Best, exemplify this in

one dimension: consider one charge 1 field transforming under Z3. Multiplying the

elements of Z3 with the coprime a = 2, and keeping in mind the mod 3 constraint,

the element ‘charge 1’ of order three is mapped onto the element ‘charge 2’ and vice

versa, while the order one element ‘charge 0’ is left invariant, see table 4.1.

Z3 ×2 mod 3 Z3 Order

0 → 0 1
1 → 2 3
2 → 1 3

Table 4.1: Two equivalent charge assignments of Z3

In fact, this is an automorphism of Z3, so both charge setups are equivalent. Same

holds for the choice of charges QF
ψ or M−1

ψ in (4.6). We will postpone the proof that

such transformations leave the coupling structure invariant to section 4.3, until we

have discussed automorphisms thoroughly. But first, let us note on some details of

the presented redundancy elimination method.

4.1.2 Remarks on the elimination procedure

For the sake of completeness, note that the above approach always renders a –

possibly rectangular – diagonal matrix Dψ with at most r diagonal entries. If there

happen to be less than r diagonal entries, i.e. some si = ai = 0, all remaining ‘matter’

fields are uncharged under the corresponding cyclic factors Zd′i , which consequently

1 If some d′
i = 1, the corresponding trivial factors Z1 again drop out of GF .
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drop out of GF . Note that we have skipped potential zero rows and columns, beyond

the block diagonal structure diag(s1, . . . , sr) of Dψ in the above derivation, since

those do not yield any information with respect to GF .

We are now able to state some interesting consequences of redundancy eliminations:

• There will be at most as many cyclic Zd′i factors in GF as ‘matter’ fields ψ(l).

• As necessary condition for a reduction of G to GF < G, the volume of the

charge lattice detQφ and the volume of the remaining ‘matter’ fields charge

lattice2 detQ′ψ = detQψ must not be coprime.

• This condition is not sufficient.

The first point is pretty intuitive, as we are familiar with it from the continuous

case. One can not define more, say, U(1)’s than transforming, i.e. charged, fields.

The second point can be seen as follows. If Zdi is redundant, the i-th column of Q′ψ
has to possess a common factor c such that c|di. Therefore, on the one hand, the

volume of the ‘matter’ fields charge lattice can be written as detQ′ψ = c ·detQ̃ψ. On

the other hand, the volume of the ordinary charge lattice decomposes as detQφ =∏r
i=1 di = c · detQ̃φ, i.e. c can be factored out of both lattice volumes. Thus their

greatest common divisor can not be one.

Yet, discrete symmetry reduction does not follow automatically once the lattice

volumes show a GCD. Compare the determinants of the matrices preceding m and

m′ in (4.2) and (4.6). This is valid, since m and m′ vary only by a determinant

one transformation. One obtains the ratio

detQ′ψ
detQφ

=

∏
i ai∏
i d
′
i

. (4.8)

Although ai and d′i are coprime for each i separately, the two products on the

right hand side can have a common factor. Hence, we find that after the reduction

mechanism both lattice volumes can still have a GCD; thus this cannot yield a

sufficient criterion for the appearance of a redundancy.

Finally, note that Qψ will not be a square matrix in general. Thus, in order to

compute the lattice volume, a lattice reduction is necessary, i.e. a change of lattice

basis, as described in section 3.4. One can as well compute the Smith normal form

of Qψ and take the product of its invariant factors.

2 Defined analogously to the VEV fields charge lattice from section 3.4.1.
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4.2 Automorphisms

What we concealed in the discussion so far is that the unimodular matrices, which

render the Smith normal form, are not unique. That means, once the (unique) Smith

normal form of some charge matrix is found

Dφ = MQφN , (4.9)

the same result could be obtained by

Dφ = M ′QφN
′ , (4.10)

with M 6= M ′ and N 6= N ′. Since the discrete charges Q′ψ of the remaining ‘matter’

fields, transforming under G, are obtained by multiplying N onto the original ‘mat-

ter’ field charges Qψ, as stated in (3.41), one will encounter differing but equivalent

sets of discrete charges for different choices of N . A mapping among such unequal

charge setups has to be an automorphism, in order to ensure equivalence. Therefore,

the question is how many different, automorphic charge assignments are there, and

how to identify them?

In order to investigate this question, it is notable that the multiplicative group of

unimodular matrices GLn×n(Z) is generated by two elements [73]

Ua =


1 0 0 . . . 0

1 1 0 . . . 0

0 0 1 . . . 0

. . .

0 0 0 . . . 1

 and Ub =


0 1 0 . . . 0

0 0 1 . . . 0

. . .

0 0 0 . . . 1

(−1)n 0 0 . . . 0

 . (4.11)

As a consequence, one can always find some particular unimodular matrix U , which

connects two different unimodular matrices like

M = UM ′ . (4.12)

Thus, seeking for all unimodular matrices U , V , which leave the Smith normal form

D invariant

UDV = D , (4.13)

renders all possible M ′, N ′, since

M−1DN−1 = M ′−1UDV N ′−1 , (4.14)
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with U−1M ′ = M and N ′V −1 = N . Exploiting (4.13) is possible analytically for

U, V ∈ GL2×2(Z), however, rather cumbersome in the case of higher n × n matri-

ces.

Moreover, in table 4.1 we already encountered one automorphic mapping among

discrete charges for the cyclic group Z3, which was certainly not achieved by a uni-

modular transformation, since it had determinant two. Thus the set of automorphic

charges will be even larger than those ascribed to the different possibilities of obtain-

ing the Smith normal form. Luckily, the complete description of the automorphism

group of finite Abelian groups is already known.

4.2.1 Description of the automorphism group

For any group G, an automorphism of G is an isomorphism from G onto itself.

The set of all automorphisms Aut(G) forms a group under composition of automor-

phisms. For G a finite Abelian group, an explicit construction of Aut(G) is available

due to [74]. We will review the definitions and theorems needed to adopt this con-

struction, for proofs refer to the original work.

The first step is to realize that it is sufficient to have a description of Aut(Hi), the

automorphisms of the Sylow pi subgroups of G.

Lemma 1 For finite Abelian groups H and K of relative prime order

Aut(H ×K) ∼= Aut(H)× Aut(K) . (4.15)

Since Hi is of order pαii and G decomposes into a direct product over all distinct

Sylow pi subgroups, with i ∈ 1, . . . , k, due to theorem 3, the above lemma tells us

that the automorphism group of G decomposes in the very same way

Aut(G) ∼= Aut(H1)× · · · × Aut(Hk) . (4.16)

Thus, we can constrict the investigation of automorphisms of finite Abelian groups

to Aut(Hi).

A proper element of Hi is a row vector (q̄1, . . . , q̄t) with q̄i ∈ Zpβi ∼= Z/pβiZ and

1 ≤ β1 ≤ · · · ≤ βt. Here, the bar denotes the standard quotient map, which assigns

each vector entry to the corresponding residue class.

Definition 3 The standard quotient mapping πi : Z → Zpβi is given by πi(q) = q̄

and let π : Zn → Hi be π(q1, . . . , qt) = (π1(q1), . . . , πt(qt)).

We would call such an element of Hi a discrete ‘matter’ field charge under the Sylow

pi subgroup Zpβ1 × · · · × Zpβt of the discrete Abelian symmetry group G, but let us
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ignore the physical interpretation for now, in order to simplify the notation. Next,

we define the set of matrices

Definition 4

Rp = {A ∈ Zt×t : pβi−βj |aij ∀ 1 ≤ j ≤ i ≤ t} , (4.17)

which exhibits ring structure. Now, the endomorphisms of Hi are constructed as a

quotient mapping of an element of Hi multiplied by a matrix A ∈ Rp.

Theorem 4 The endomorphisms of Hi are given by the mapping

(q̄1, . . . , q̄t) 7→ π
(
(q1, . . . , qt)A

T
)
, (4.18)

where A ∈ Rp.

Finally, the elements of Aut(Hi) are identified as the following subgroup of End(Hi).

Theorem 5 An endomorphisms of Hi is an automorphism if and only if A mod p

(entry-wise) ∈ GLt(Zp).

Note that the invertible t×t matrices over Zp are not restricted to have determinant

one, but rather may take any value, which is not a multiple of p, since p is identified

with zero.

Now, in order to come to terms with so much formal development, an easy example

will be helpful.

4.2.2 Automorphisms of Z2 × Z4

Therefore, let us consider the discrete symmetry group G = Z2 × Z4. This is the

simplest nontrivial example. It allows us to write down explicitly all automorphic

transformations, yet, their number increases3 dramatically for multiple and/or larger

prime powers. But this choice of example has another convenient advantage. It is

given in invariant factor decomposition as we would obtain it due to the lattice

approach, however, it is in primary decomposition as well, since both are the same

here. Thus, for the moment we do not need to address the problem of obtaining the

charges Q
(p)
ψ , which transform under Hi, out of the charge setup Qψ with respect

to G. Furthermore, we have only one distinct prime p = 2, so that we only need to

study H2 and do not have to repeat the same steps for other Hi according to (4.16).

3 An explicit formula which counts the number of automorphisms of Hi is presented in [74].
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Now, let us pick an arbitrary non redundant charge setup. The simplest choice is

the 2× 2 unit, since it clearly generates the group. Thus we have

Qψ =

(
1 0

0 1

)
, which means

Z2 Z22

ψ1 1 0

ψ2 0 1

. (4.19)

Next, for β1 = 1 and β2 = 2 the matrix ring (4.17) consists of the set R2 of 2 × 2

matrices

R2 =

{(
a b

2c d

)
: a, b, c, d ∈ Z

}
, (4.20)

which allow us to write the endomorphisms of Z2 × Z4 as((
1 0

0 1

)
RT

2

) ∣∣∣∣
π

= RT
2

∣∣
π

=

(
a 2c

b d

) ∣∣∣∣
π

, (4.21)

due to theorem 4. Here, π projects onto the (least) residue of the corresponding

congruence class. That is, the first column can take values of (least) residues mod

2, and the second column mod 4. Thus the endomorphisms are{(
a 2c

b d

)
: a, b, c ∈ {0, 1} and d ∈ {0, 1, 2, 3}

}
. (4.22)

Finally, theorem 5 tells us that those matrices above, which are entry-wise mod 2

still invertible, form the group Aut(Z2 × Z4), given by{(
1 0

0 1

)
,

(
1 0

1 1

)
,

(
1 2

0 1

)
,

(
1 2

1 1

)
,

(
1 0

0 3

)
,

(
1 0

1 3

)
,

(
1 2

0 3

)
,

(
1 2

1 3

)}
.

(4.23)

Hence, any (least residue) charge setup Qψ of Z2 × Z4 multiplied by one of these

matrices from the right results in another equivalent charge assignment.

4.3 Coupling equations

One should keep in mind that the discrete symmetries studied here are determined

by the coupling structure of the original theory, which was subject to spontaneous

symmetry breaking. In the broken phase, the ‘matter’ field couplings are just what

remains when all other fields acquired VEVs. Therefore, those couplings lie on

the charge lattice. Viewed the other way round, the discrete symmetry group,

parametrized by the charge lattice, determines, which matter couplings are realiz-
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able. In order to read off whether some desirable or unwanted ‘matter’ coupling

exists in the given discrete symmetry setup, it is useful to examine “coupling equa-

tions”; that is, solve the coupling conditions from (3.51)

xT Q′ψ = mT Dφ , (4.24)

with xT taken to be unknown. From a model building perspective, one might have

some parametric freedom allowing to assign charges deliberately. In those cases, full

control over the coupling equations enables to “forbid” dangerous couplings, e.g. for

proton decay, by choosing charges such that dangerous operators have overall charge

under the remnant discrete symmetry. On the other hand, dangerous couplings

forbidden only at the level of the original continuous gauge symmetry can appear

effectively in the broken phase, if not protected by discrete symmetries.

Before thinking about solutions to coupling equations, we would like to express those

conditions in terms of the redundancy free language. By following the same steps

as in section 4.1.1 we see that (3.51) takes the form

xT QF
ψ = m′T D′φ , with D′φ =

d
′
1

. . .

d′r

 (4.25)

after reduction of redundancies, while all performed transformations preserve the

set of solutions.

4.3.1 Systems of linear congruences

Now, let us study such systems of linear equations in general. The most generic

type is of the form

xiBij − gj = mj · dj (no sum over j) (4.26)

or equivalently

xiBij = gj (mod dj) , (4.27)

known as systems of linear congruences. Let i ∈ {1, . . . , b} and j ∈ {1, . . . , r}. Note

that (4.25) actually takes a simpler form, namely gj = 0. However, let us analyze

general systems of linear congruences, since discrete R-symmetries, which will be

studied at a later stage, induce a non-trivial gj.

Defining LCM(d1, . . . , dr) = d and d = dj ·rj ∀ j (no sum), the system of congruences

can be recast as

xiAij − kj = mj · d , (4.28)
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with Aij = Bij ·rj (no sum) and kj = gj ·rj (no sum), now having a common modulus

d. Note that from the coupling equation point of view, the least common multiple

description we used in (4.3) for the elimination of redundancies was nothing else

than switching to the common modulus.

Now, up to the modulus d the system of congruences is a system of Diophantine

equations

xiAij = kj . (4.29)

In fact, the solution procedure is identical and known for a long time [75, 76], see

[77] for a modern treatment and [78] for a computational approach. The main

idea is to diagonalize A by means of the Smith normal form, then solutions are

rather obvious. Let us become acquainted with that idea by examining systems of

Diophantine equations first. We can bring A in (4.29) into Smith normal form(
xTM−1

)
(M A N) = kTN , (4.30)

with unimodular matrices M and N . For the primed objects x′T = xTM−1 and

k′T = kTN the system of equations takes the simple form

x′TC = k′T , (4.31)

where C has diagonal entries c1, . . . , cs (its invariant factors) and zeros elsewhere.

Thus, one can conclude immediately that this system is solvable only if ci divides k′i
and k′i = 0 for i > s. Of course, the solution then can be retranslated back to the

unprimed objects.

The additional modulus of (4.28) can be handled with the very same approach.

Again, A is to be brought into Smith normal form by means of unimodular matrices

M and N (
xTM−1

)
(M A N)− kTN = mTN︸ ︷︷ ︸

m′

·d , (4.32)

where each m′j = miNij again covers Z, as discussed in section 3.4.2 remark 1.

Therefore, one obtains the congruence equations

x′ici = k′i mod d ∀ i = {1, . . . , s} (no sum) (4.33)

k′i = 0 mod d ∀ i > s . (4.34)

According to the congruence theorem (see theorem 8 in appendix A.2), equation

(4.33) has a solution if and only if GCD(ci, d)|k′i. Hence, a system of congruences of

the type

xiBij = 0 (mod d) (4.35)
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always has solutions, since everything divides zero. Thus, the coupling equations

(4.25) are always solvable.

4.3.2 Invariance under automorphisms

We have seen in section 4.2 that the redundancy reduction method picks one ar-

bitrary out of all automorphic charge setups under the redundancy free symmetry

group GF . As a consistency check, let us show that this is indeed a valid operation

by proving the invariance of the coupling structure under automorphic transforma-

tions. As a first step, let us show that the multiplication of a congruence equation

by numbers, which are relative prime to the modulus results in an equivalent con-

gruence equation. In fact, this is what we postponed to prove in section 4.1.1 where

we encountered a first automorphism in table 4.1.

The assertion for congruence equations is

ca = cb mod d ⇔ a = b mod
d

GCD(c, d)
. (4.36)

Let us assume the left hand side. We can rewrite it as

ca− cb = e · d where e ∈ Z . (4.37)

Dividing by g = GCD(c, d) gives

c

g
(a− b) = e · d

g
, (4.38)

where all fractions are still integer numbers, since g = GCD(c, d). This just tells us

that d
g
| c
g
(a− b). But, since GCD(d

g
, c
g
) = 1, i.e. d

g
- c
g
, we know that d

g
|(a− b), which

can be written as

a = b mod
d

g
. (4.39)

In order to prove the other direction just follow the same steps backwards.

Hence, if c and d are coprime, then

ca = cb mod d ⇔ a = b mod d , (4.40)

i.e. it is valid to ‘cancel’ coprimes of the modulus, or to multiply the congruence

equation with them. This will not change the modulus.

Next, assume that we have the coupling equations given in terms of the primary

decomposition. We do not know how to transform the charge matrix Q′ψ to its equiv-
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alents Q
(p)
ψ transforming under the Hi, yet. This will be elaborated in section 5.3.

But we do know that the coupling equations will have the form

xTQ
(p)
ψ =

(
m1p

β1 . . . mtp
βt
)

(4.41)

for each Hi. Given a solution xT , can we substitute Q
(p)
ψ by another automorphic

charge matrix? Indeed, we can. In order to see it, let us first switch to the common

modulus, just as we did for the redundancy elimination method. Therefore, we have

to multiply (4.41) by diag(pβt−β1 , pβk−β2 , . . . , 1) from the right.

An automorphism is composed by the matrix ring Rp. The matrices A ∈ Rp have

the property pβi−βj |aij for i ≥ j, which can be recast as aij = pβia′ijp
−βj (no sum)

with a′ij ∈ Z. Hence, it is always possible to find an A′ ∈ Zt×t such that

A = PA′P−1 , (4.42)

where P = diag(pβ1 , . . . , pβt) and, of course, det(A) = det(A′). Thus, we can equip

(4.41) with a common modulus in terms of

xTQ
(p)
ψ pβtP−1 =

(
m1 . . . mt

)
pβt . (4.43)

Next, we multiply from the right by A′T . This is an admissible operation: since A

shall be related to an automorphism, theorem 5 tells us that p - det(A), because

else A mod p would not be invertible over Zp. Thus, GCD(det(A′), pβt) = 1 and

therefore there exists a number s, such that s · det(A′) = 1 mod pβk , i.e. an inverse

A′−1
∣∣
π

= s· adj(A′) under the canonical projection π.

On our intuitive way facing the problem of discrete Abelian gauge symmetries,

we already defined discrete charges to be (least) representatives of residue classes

in section 3.2. Hence, the coupling equations always involve an application of π

implicitly.

Thus, we can write

xTQ
(p)
ψ pβtP−1A′TP =

(
m1 . . . mt

)
A′TpβtP , (4.44)

where we multiplied by P as well. Now, there are two crucial steps in order to

see that an automorphism of the charge matrix leaves the coupling equation (4.41)

unchanged. First, remember what we have shown above: a congruence equation can

be multiplied by any coprime of the modulus without changing the modulus. That

is, equation (4.36) tells that a congruence equation can equivalently be written as

ca− cb = ed , e ∈ Z or ca− cb = e′d , with e′ = c · e ∈ cZ , (4.45)
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as long as GCD(c, d) = 1. For a congruence equation with prime power modulus

any ideal nZ is acceptable as long as it does not equal pZ. In that sense, we can

group
(
m1 . . . mt

)
A′T =

(
m′1 . . . m′t

)
, because p - det(A′) and thus m′i 6∈ pZ.

Second, we may combine P−1A′TP in (4.44) to an element A ∈ Rp, which is related

to an automorphism due to (4.42). Note that so far, the object pβtP−1 was an entity

because P−1 itself is not of integer entries and thus not a well defined operation

within the congruence equations. However, now that we grouped AT = P−1A′TP ,

which is integer itself, pβt on the left hand side of (4.44) will cancel against the same

factor on the right hand side, again due to (4.36). Consequently, we are left with

xTQ
(p)
ψ AT =

(
m1p

β1 . . . mtp
βt
)
, (4.46)

which is what we wanted to show, since (Q
(p)
ψ AT )

∣∣
π
∈ Aut(Hi).

4.4 Hypercharge shifts

Theories with remaining unbroken U(1) factors exhibit yet another freedom concern-

ing the discrete charge assignment. We have seen in section 3.7 that such unbro-

ken U(1) symmetries detach themselves from the formation of discrete symmetries.

However, once we have figured out the actual discrete symmetry group of such a

theory, which still possesses U(1) invariance, the corresponding discrete charges of

the transforming fields can be shifted by multiples of their U(1) charges. This pro-

vides additional freedom, unavailable in theories invariant under discrete symmetries

exclusively. The effect is easy to understand. As explained in sections 3.3 – 3.7, the

case arises by breaking a U(1)k theory to the discrete group Zd1 × · · · × Zdr by a

rank r < k charge matrix of VEV fields, so that we are left with k − r remaining

U(1) generators αr+1, . . . , αk.

For simplicity, let us assume a redundancy free setup and only one remaining U(1)

gauge group. The continuous and discrete phases of the transforming fields are given

by

ψ(l) 7→ exp

(
2πi

(
q′1(ψ(l))

m1

d1

+ · · ·+ q′r(ψ
(l))

mr

dr

))
exp

(
iq(ψ(l))α(x)

)
ψ(l) (4.47)

with discrete Zdi charges q′i and continuous U(1) charge q. Since all couplings are still

invariant under the remaining U(1), a redefinition of the corresponding generator

α(x) 7→ α̃(x) + 2πc (4.48)
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for arbitrary c will, of course, not change the theory due to U(1) invariance. We can

split c = n1

d1
+ · · · + nr

dr
and plug (4.48) into the transformation (4.47). But we are

free to group the constant part exp(2πi c) with the discrete charges, combining to

ψ(l) 7→ exp

(
2πi

r∑
i=1

q′i(ψ
(l))mi + niq(ψ

(l))

di
+ i α̃(x)

)
ψ(l) . (4.49)

Remember that the mi ∈ Z just reflect the equivalence relation modulo di of the

discrete charges, hence, as long as niq(ψ
(l)) is integer for all i, (4.49) allows us to

shift the discrete charges of a field by multiples of the fields (integer normalized)

U(1) charges.

For more than one remaining U(1) the weighting of the shift can be any linear

combination of the available U(1) charges, therefore allowing for various shifting

possibilities.

The case of one remaining U(1) is of particular phenomenological interest, since

every low energy model of particle physics has to exhibit U(1)Y , i.e. hypercharge,

invariance. Hypercharge shifts are commonly practiced in the discrete gauge sym-

metry literature [43, 45, 69, 31, 32, 51]. As discussed earlier, the most prominent

target for discrete gauge symmetries is given by the MSSM, which requires discrete

symmetries manifestly in order to suppress phenomenologically excluded couplings

mediating rapid proton decay. For later convenience, let us give the MSSM hyper-

charge assignment according to table 2.1 in integer normalization at this point.

Superfield Q Ū D̄ L Ē Hd Hu

Hypercharge 3Y 1 −4 2 −3 6 −3 3

Table 4.2: Integer normalized hypercharges of the MSSM superfields.

4.5 Final example

Let us close this chapter by an example, which illustrates the key points we worked

out herein. Since we want to draw the bridge to phenomenological model building

in the next chapters, let us construct an example with the field content of the

MSSM. Because we are missing important tools of model building, yet – like anomaly

considerations – we will not be able to judge the viability of the exemplary model

and, hence, should consider it as a toy model.
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Let us take the matter (and Higgs) field content from table 4.2, charged under the

Standard Model gauge group and assume a further U(1)2 gauge symmetry, which

will be broken by the Standard Model singlet fields φ1, φ2 acquiring VEVs at some

high scale. Under the extra U(1)’s, call them U(1)A and U(1)X , these shall have

the following charges

U(1)A U(1)X
φ1 4 6

φ2 2 6

, which gives Qφ =

(
4 6

2 6

)
. (4.50)

This leads to the Smith normal form

Dφ = M QφN =

(
2 0

0 6

)
, (4.51)

where the unimodular matrices M,N are not unique according to section 4.2; we

can pick them, for instance, to be

M =

(
1 0

1 1

)
and N =

(
2 −3

−1 2

)
. (4.52)

From (3.39) we know that the permissible discrete symmetry, respected by the VEVs,

is G = Z2 × Z6. Now, the question is whether this is indeed the discrete symmetry

of this toy model, or whether it might be redundant. In order to check this, we need

to specify the U(1)A × U(1)X charges of the remaining ‘matter’ fields, which give

rise to their discrete charges. Let us take the following setup

U(1)A U(1)X
Q 0 6

Ū 3 2

D̄ −1 4

L 0 2

Ē 1 2

Hd −1 2

Hu 1 4

(4.53)

stating the matrix structure of Qψ, analogously to (4.50). First, we have to multiply

this matrix by N from the right in order to obtain the discrete charges Q′ψ trans-

forming under Z2 × Z6. Then, we multiply the first column of Q′ψ by a factor 3,

which gives us a common modulus in return, such that the discrete symmetry group
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now is given by Z6 × Z6. Next, we compute the Smith normal form resulting in

M−1
ψ


1 0

0 6

0 0
...

...

0 0


(
m1

6
m2

6

)
with m1,m2 ∈ Z , (4.54)

according to (4.5). Thus, that factor of 6 can be canceled, which turns the second Z6

into a trivial Z1 manifesting a redundancy. The unimodular transformation matrix

M−1
ψ , now the final discrete charge matrix, is a rather huge 7× 7 matrix, however,

we are only interested in the first row, which states the discrete charges under the

remaining Z6. Modulo 6 the charges read

QF
ψ =

(
0 5 1 2 5 5 1

)T
. (4.55)

Let us contemplate a bit about this result. We have seen that the permissible dis-

crete symmetry G = Z2×Z6, which we obtained by breaking U(1)A×U(1)X , is not

fully realized by the transforming field content. We rather found the reduced discrete

symmetry GF = Z6. On our way, we made use of the Smith normal form and rede-

fined the discrete ‘matter’ charges by means of the unimodular matrix M−1
ψ , which

we know not to be unique. Another choice, however, would lead to an automorphic

charge. We have learned to calculate the automorphism group in section 4.2, so let

us try it for this example.

From section 4.3.2 we gained the notion that we should be allowed to multiply all

charges of (4.55) by a coprime of 6; that is, 5. Taking then the least residue we

should obtain another equivalent charge setup. However, the proper description of

the automorphism group from section 4.2.1 is based on the primary decomposition

of discrete Abelian groups. Thus, in order to explore the automorphisms of (4.55)

systematically, we need to find a suitable isomorphism from Z6 to Z2 × Z3 first.

Therefore, we have to map a generator (see apendix A.4) of Z6, e.g. 1, onto a gen-

erator of Z2×Z3, e.g. (1, 1). The mapping of all other elements is then fixed one by

one.

Now we are able to examine the automorphisms of H2 and H3 separately, according

to (4.16). Since both consist of one primary factor only, H2 = Z2 and H3 = Z3, the

structure of the Rp matrices from (4.17) is fairly simple. Those are just integer num-

bers. Finally, theorem 5 tells us that the automorphisms are those numbers, which

are mod p invertible over Zp. Hence, for Z2 we only find 1 – the trivial automor-

phism – and for Z3 we have 1 and 2. Thus, there is one non-trivial automorphism,
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Z6
∼= Z2 × Z3 Order

1 → (1, 1) 6
2 → (0, 2) 3
3 → (1, 0) 2
4 → (0, 1) 3
5 → (1, 2) 6
0 → (0, 0) 1

Table 4.3: Isomorphism mapping the invariant factor decomposition onto the primary
decomposition

which consists of multiplying the Z3 charges by two, resulting in the exchange of

charges

(1, 1)↔ (1, 2) and (0, 2)↔ (0, 1) (4.56)

in table 4.3. On the one hand, this corresponds to the second possible isomorphism,

mapping the Z6 generator 1 onto (1, 2), which states another suitable generator of

Z2 × Z3, since it also has order six. On the other hand, keeping the isomorphism

fixed, it obviously corresponds to multiplying the Z6 charges by 5, which agrees with

our notion what the automorphisms of Z6 should be. In fact, this is a well know

result in the algebraic literature [71], the automorphism structure of cyclic groups

is much simpler than for general Abelian finite groups. In particular, Aut(Z6) ∼=
(Z/6Z)× = {1̄, 5̄}, as explained in appendix A.4.

To conclude, we have found that the Z6 charge assignment of the MSSM superfields

(4.55) of this toy model is automorphic to

Superfield Q Ū D̄ L Ē Hd Hu

Z6 0 1 5 4 1 1 5
, (4.57)

which is exactly the charge setup under the discrete symmetry “proton-hexality”,

introduced by [45]. Yet, remember that this is a toy model constructed to exemplify

redundancies and automorphisms. We will see in section 5.1 that it is phenomeno-

logically not viable because of anomaly constraints.
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Chapter 5

Discrete symmetries and

phenomenological model building

In the last chapters, Abelian discrete gauge symmetries were studied on a rather

abstract footing, partitioning the field content of the underlying theory into VEV

attaining and non VEV attaining fields. Challenging the described systematics

through some concrete physical model, it is clear that the coupling structure will

not be governed solely by the discrete Abelian symmetries, but by further constraints

like e.g. unbroken internal gauge symmetries. Since these are model dependent, they

have to be implemented as cases arise.

However, some phenomenological constraints with respect to the discrete symmetries

are shared among all, or at least most models, such that a separate discussion deems

appropriate. For instance, the question of (discrete) anomaly freedom needs to be

addressed for every consistent quantum theory. Another problem, which we will

discuss below, is to what extent R-symmetries fit into the described systematics.

At least for the large class of MSSM related models, the identification of matter

parity is of great importance. Finally, in supersymmetric theories VEVs have to be

carefully aligned in order not to break supersymmetry.

5.1 (Discrete) anomalies

An anomaly – in a nutshell – is a violation of a symmetry of the classical Lagrangian

by quantum effects. Although first encountered by badly divergent triangle diagrams

[79], pictured in figure 5.1, anomalies are manifest only in the path integral approach,

as a deviant transformation of the path integral measure. This was first noted by

Fujikawa [80, 81] for Yang-Mills gauge theories including chiral fermions. Under a
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chiral transformation treating left and right handed fields differently

ψ → eiα(x)γ5ψ , (5.1)

where α(x) = αa(x)ta comprises the generators ta of the gauge group, the path

integral measure transforms non-trivially

DψDψ̄ → J −2DψDψ̄ . (5.2)

The Jacobian can be recast in terms of A, the anomaly function,

J = e−i
∫
d4xA(x;α) . (5.3)

For J to be trivial, A(x;α) has to vanish or
∫
d4xA(x;α) needs to be an integer

multiple of 2π. The anomaly function evaluates to

A(x;α) =
g2

32π2
tr (α(x)εµνρσFµνFρσ) , (5.4)

where Fµν denotes the field strength corresponding to the Abelian or non-Abelian

gauge group to which the axial current couples and the trace runs over all internal

indices. The anomaly function in four dimensions is (non-trivially) related to the

triangle loop diagram, coupling the axial current to two gauge group vertices (see

figure 5.1).

tc

tb

ta

Figure 5.1: Triangle diagram coupling an axial current to gauge currents.

Apart from gauge anomalies, also gravitational anomalies are known [82]. For a

theory containing gauged chiral currents to be consistent, it is of great importance

that the gauge as well as the gravitational anomalies vanish, else gauge invariance

or general covariance, respectively, will be broken [83]. If the anomaly belongs to a

global chiral current, the consequence is only the violation of this symmetry. Such

global anomalies are known to be relevant for physical effects, a prominent example
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being the global chiral anomaly of QCD. It corresponds to the triangle diagram,

which couples the global chiral current to two electromagnetic currents, resulting in

a measurable contribution to the decay rate Γ(π0 → γγ) [84, 79].

5.1.1 Continuous anomaly constraints

With the help of the index theorem [85]∫
d4x

1

32π2
εµνρσF (a)

µν F
(b)
ρσ tr(TaTb) ∈ Z , (5.5)

certain anomaly constraints can be derived. Here, the generators Ta belong to the

fundamental representation, for which we use the common normalization tr(TaTb) =
1
2
δab.

Consider, for instance, a chiral U(1) coupling to two gauge currents, i.e. the U(1)−
G−G anomaly. The Jacobian

J = exp

{
−i

∫
d4xα(x)

1

32π2
εµνρσF (a)

µν F
(b)
ρσ tr(tatb)

}
(5.6)

needs to be trivial for anomaly freedom. One has to consider all possible fermions

running in the loop of figure 5.1, which do not necessarily live in the fundamental

representation. In order to use the index theorem for all fermion representations rf ,

we write

tr (ta(rf )tb(rf )) = 2l(rf ) · 1
2
δab . (5.7)

Then, the index theorem together with the mean value theorem tells that in general∑
rf

qf l(rf ) = 0 , (5.8)

for (5.6) to yield one. Of course, all fermions combined in some representation rf
under G contribute only one times their U(1) charge, which is pointed up by the

sum over rf .

Such an anomaly constraint can be derived for the gravitational anomaly U(1) −
grav− grav as well, ∑

f

qf = 0 , (5.9)

where the charge of every fermion is counted, independent of their gauge group rep-

resentation structure.

Yet, there is another way to cancel non vanishing anomalies for string derived mod-
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els, known as the Green-Schwarz mechanism [86]. At the level of the ten dimensional

superstring, non-vanishing anomalies cancel against an anomalous variation of the

antisymmetric second rank tensor field B. After compactification, the theory re-

mains anomaly free. However, anomalous looking U(1) gauge groups may appear

in the compactified four dimensional theory [87], e.g. orbifold compactifications of

heterotic string theory typically provide exactly one such “anomalous” U(1) factor

[88] (more precisely, a basis can always be found, in which at most one U(1) appears

anomalous). The “anomaly” at four dimensional level cancels against the remnants

of the B field, once again. This entails the breakdown of the “anomalous” sym-

metry, though, since the corresponding gauge boson acquires mass [87, 88, 89]. In

particular, the “anomalous” symmetry will be violated by non-perturbative effects

[90].

5.1.2 Discrete anomaly constraints

By the same token, discrete symmetries can be anomalous or non-anomalous [91].

For a discrete symmetry taken to be global, an anomaly means that the global dis-

crete symmetry will be violated by certain operators and thus is broken.

The situation is much more serious for a discrete gauge symmetry. Since such dis-

crete symmetries typically possess a gauged origin, and anomaly freedom is heredi-

tary [92, 93], one is required to keep the low energy theory free of discrete anomalies,

for the sake of the high energy theory’s consistency. This aspect of discrete gauge

symmetries has been discussed early in the literature [43, 44], however, a path in-

tegral approach leading to rigorous statements like (5.8) has been elaborated only

more recently [91]. For instance, one can evaluate the Zn − G − G anomaly con-

straint similar to the U(1) case. Once again, the Jacobian is given by (5.6), yet,

for a Zn it is always possible to express α(x) as 2πm
n
q′, with m ∈ Z and q′ denoting

discrete charge. This is because representations of finite Abelian groups are com-

pletely reducible and the irreducible representations are one dimensional. Then, for

the Jacobian to be trivial, it is sufficient to have∑
rf

q′f 2l(rf ) = k · n , (5.10)

with k ∈ Z and q′f the discrete Zn charges of the fermions in each representation of

G. This can be rewritten as a congruence equation∑
rf

q′f l(rf ) = 0 mod
n

2
. (5.11)
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Analogously, one can deduce the constraint∑
f

q′f = 0 mod
n

2
(5.12)

for the Zn − grav − grav anomaly. Note that one can omit the denominator of the

modulus in (5.11, 5.12) if n is odd, since 2 is coprime to any odd number, as has

been shown in section 4.3.2. On the other hand, if n is even, the modulus is integer

in any case. Thus the congruence equations (5.11, 5.12) are well defined.

But, pretty much like anomalies of continuous symmetries, discrete anomalies can be

canceled by the Green-Schwarz mechanism [15, 94]. For instance, one can consider

a remnant Zn symmetry of a broken “anomalous” U(1). This remnant discrete

symmetry can be non-anomalous, i.e. fulfill the discrete anomaly constraints (5.11,

5.12), or it can appear anomalous [94]. Then, by the same token as in the continuous

case, this remnant “anomalous” discrete symmetry is expected to be broken by

non-perturbative terms. However, even though this “anomalous” Zn constitutes a

discrete gauge symmetry, its violation of the discrete anomaly constraints (5.11,

5.12) does not signal an inconsistency of the high energy theory, because of the

Green-Schwarz mechanism, which cancels the anomaly of its gauged origin.

Yet, “anomalous” discrete symmetries from string theory do not necessarily possess

an “anomalous” gauge embedding, e.g. in orbifold compactifications they can arise

as remnants of the higher dimensional Lorentz group [52].

5.1.3 Example: proton-hexality

Let us revisit the example from section 4.5. We are now able to check the anomalies

of this setup. Concerning the potential gauge embedding U(1)A×U(1)X , we imme-

diately detect from the charge assignment (4.53) that this cannot be anomaly free.

All the U(1)X charges are positive and thus incapable to solve the constraints (5.8,

5.9). But, U(1)A is anomalous as well; let us check the gauge anomalies exemplarily.

All fields in (4.53), which are charged under SU(2) or SU(3) live in fundamental

representations, thus we can skip the overall Dynkin index 1
2
. We will write the

anomaly contribution of each field as a product a · b · c, where a states the multiplic-

ity due to generation independence, b denotes the multiplicity from not considered

gauge group representations1 and c the fields U(1)A charge. Given this notation, we

1 For instance, there are 2 fermions in the Q doublet contributing to the U(1)− SU(3)− SU(3)
anomaly, or a color factor 3 of Q for U(1)− SU(2)− SU(2).
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can table the anomaly contributions as

Q Ū D̄ L Ē Hd Hu Σ

U(1)A − [SU(3)]2 3·2·0 3·1·3 3·1·(−1) 6

U(1)A − [SU(2)]2 3·3·0 3·1·0 1·1·(−1) 1·1·1 0

,

(5.13)

which shows a U(1)A − SU(3) − SU(3) anomaly. Since the gauge anomalies are

not universal, i.e. not the same, there is no hope for a Green-Schwarz cancellation.

Hence, this toy model is phenomenologically not viable.

However, the resulting discrete symmetry, proton-hexality P6, is a candidate for

phenomenological model building, since it is free of discrete anomalies. Indeed, tak-

ing the charge assignment (4.57) we find the following contributions to the discrete

gauge and gravitational anomalies.

Q Ū D̄ L Ē Hd Hu Σ

Z6 − [SU(3)]2 3·2·0 3·1·1 3·1·5 18

Z6 − [SU(2)]2 3·3·0 3·1·4 1·1·1 1·1·5 18

Z6 − [grav]2 3·6·0 3·3·1 3·3·5 3·2·4 3·1·1 1·2·1 1·2·5 93

(5.14)

Again, since all fermions live in the corresponding fundamental representation, the

factor 2l(rf ) in (5.10) drops out and thus the discrete gauge anomalies need to van-

ish modulo 6, while the discrete gravitational anomaly (5.12) has to be 0 mod 6
2
,

which (5.14) obviously meets.

Note that the discrete anomaly freedom of proton-hexality does not contradict the

unsuccessful gauge embedding of the toy model from section 4.5. In fact, it is im-

possible to embed proton-hexality into one U(1) gauge group without introducing

new massless fermions (which then become massive by breaking the gauge embed-

ding). This can be seen as follows. Assuming the breaking U(1)P6 → Z6, the

continuous charges of the matter fields are given by the discrete charges (4.57) of

proton-hexality modulo six. This is because independently of how many VEVs break

the single U(1)P6 , the right unimodular “matrix” N , which defines the Z6 charges

via (3.42) is constricted to be the integer ±1. Repeating the anomaly calculation

for the U(1)P6 charges results in

Σ

U(1)P6 − [SU(3)]2 18 + 6l1
U(1)P6 − [SU(2)]2 18 + 6l2
U(1)P6 − [grav]2 93 + 6l3

, with li ∈ Z . (5.15)
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According to the continuous anomaly constraint (5.8, 5.9) each Σ value has to vanish.

This is not problematic for the gauge anomalies, but not possible for the gravitational

anomaly. Including hypercharge shifts does not alter this result.

The discrete anomaly freedom only tells us that there is a gauge embedding – it

does not have to be an Abelian one. In other words, for embedding a discrete gauge

symmetry into an Abelian gauge symmetry, the conditions (5.11, 5.12) are necessary

but not sufficient criteria.

5.2 Remnant discrete R-symmetries

Supersymmetric theories allow for so called R-symmetries; that is, symmetries of the

supersymmetry algebra whose generators do not commute with the supersymmetry

generators. To be more specific, let us consider the case of minimal amount of

supersymmetry, i.e. N = 1. In this case, the maximal continuous R-symmetry

consists of a single U(1)R, such that the U(1) generator R yields the commutation

relations

[QA, R] = QA (5.16)

[Q̄Ȧ, R] = −Q̄Ȧ , (5.17)

with the supersymmetry generator QA, Q̄
Ȧ written in Weyl notation, i.e. A = 1, 2

(we use the conventions of [95]). The commutation relations fix the R-charges of

the supersymmetry generators

QA → eiαRQAe
−iαR = e−iαQA (5.18)

Q̄Ȧ → eiαRQ̄Ȧe−iαR = eiαQ̄Ȧ (5.19)

to be −1 for the pairing Q, θ̄ and +1 for Q̄, θ, which means the Grassmann variables,

extending spacetime to superspace, transform non-trivially under U(1)R

θA → eiαθA (5.20)

θ̄(Ȧ) → e−iαθ̄(Ȧ) . (5.21)

Thus, fermionic component fields transform differently than bosonic components

of the very same superfield. Similarly, a discrete symmetry is of R type if the

Grassmann variables transform non-trivially under the discrete rotations.

In principle, we can break a continuous R-symmetry down to discrete subgroups

by assigning VEVs to scalar fields with non-vanishing R charge, in full analogy to

section 3.3. Depending on the transformation behavior of the θ’s, we obtain discrete
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symmetries of R or of ordinary non-R type. However, having more Abelian non-R

symmetries to come along, such that we want to know the discrete subgroup of

U(1)k ×U(1)R, we need to rely on Smith normal form techniques, which essentially

mix the R and non-R generators by means of unimodular mixing matrices. Thus,

the question arises, which of the cyclic factors of the remnant discrete symmetry

group G = Zd1 × · · · × Zdr are of R-type? This is easily answered by promoting

the Grassmann variables to dynamical fields and grouping them with the other

remaining ψ fields. Then, (3.41) reveals which Zdi obtained an R fraction, since

the θ’s are charged under those discrete symmetries. Of course, this also holds for

the redundancy techniques of chapter 4, such that we are able to control discrete

R-symmetries during their algebraic transitions.

Analogously, the charge of the Grassmann variables under R-symmetries demands

a modification of the charge lattice picture when it comes to couplings contained in

the superpotential W . This is because we need to compensate the R charge of the

measure d2θ = −1
4
dθA dθ

(A), such that

L ⊃
∫
d2θW + h.c. (5.22)

is uncharged, which implies that W needs to carry opposite R-charge than the Grass-

mann measure. The effect of integration and differentiation is equal for Grassmann

variables, as indicated by the Berenzin integral∫
dθ θ = 1 . (5.23)

But the identity, of course, does not transform under any symmetry. Thus, we can

conclude that the R-transformation of the measure has to be opposite in sign than

the θ transformation [96]∫
dθ → e−iα

∫
dθ and thus

∫
d2θ → e−2iα

∫
d2θ . (5.24)

Hence, with the definitions of (5.20, 5.21), U(1)R invariance would require net R

charge 2 for each superpotential coupling due to (5.24). Consequently, an allowed

coupling of a remnant ZRq symmetry, after U(1)R breaking, would not have to lie

on a conventional charge lattice dot as required by gauge invariance in the ordinary

case (see section 3.4.1), but rather on a sort of “translated lattice” (see figure 5.2),

which is not even a proper lattice, since it does not comprise the zero.

Note that this modification of the lattice picture only arises because we are consid-

ering superpotential couplings instead of ordinary couplings at the Lagrangian level.
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q+2

0 2q

2q+2

q

2

Figure 5.2: Charge lattice (black) versus “translated lattice” (orange) for a cyclic ZRq .

Since the Grassmann measure in (5.22) now carries discrete R charge, the lattice

points shift by an constant amount. For the general case of an arbitrary discrete

symmetry G = Zd1×· · ·×Zdr containing non-R as well as R-type cyclic factors, the

charge lattice becomes translated only in the R directions. This can just as well be

compensated by adding a “dummy” field χ to each coupling having twice the charge

of the Grassmann variable θ, which was promoted to a transforming field. Hence, it

automatically adds the required amount of discrete R charge of the measure in each

lattice direction.

Let us illustrate these points by means of a brief example. Consider a U(1)2 theory,

which shall be broken by the charge matrix

U(1)R × U(1)X

Qφ

(
6 3

3 6

)
θ

(
1 0

) , (5.25)

where the charge assignment of θ (no matter which θ(A), both transform identically)

indicates that the first U(1)R is of R-type. The Smith normal form of this charge

matrix is given by

M QφN =

(
3 0

0 9

)
, with e.g. M =

(
1 0

2 −1

)
, N =

(
1 −2

0 1

)
, (5.26)

such that the remnant discrete symmetry results in Z3×Z9. Now, are those discrete

symmetries of R or non-R type? In order to answer this question, we have to figure

out the discrete charges of the ‘matter’ field charge matrix Qψ, which we extended by

the θ charges, as explained above. Remember from (3.41) that we have to multiply

by N from the right to obtain the discrete charges

Qψ(
1 0

) N−→ Q′ψ(
1 7

) . (5.27)

The discrete charge of θ, aligned under the else unspecified Q′ψ, seems to be non-

trivial for both cyclic factors of the discrete symmetry group, suggesting that the
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whole discrete group is of R-type. Yet, from section 3.7 we know that a single

U(1) can only be liable for a cyclic group. However, Z3 × Z9 has two invariant

factors and thus is not cyclic. Hence, our notion tells us to be suspicious about both

cyclic factors to be of R-type, since we started out with one U(1)R only. Indeed,

in (5.27) we are misled by the usual algebraic hide-and-seek: it is possible to find

an automorphism, which renders only one R-type cyclic factor. Relying on the

automorphism techniques studied in section 4.2.1, we know that the automorphisms

of Z3 × Z9 can be represented by the matrices AT =

(
a 3c

b d

)
, with a, b, c, d ∈ Z

and A (entry wise mod 3) invertible over Z3. Thus,

q′T (θ) 7→ q′T (θ′) = q′T (θ)AT =
(
1 7

)(1 0

2 4

)
=
(
0 1

)
(5.28)

rotates θ completely in the Z9 direction. Note that a mere ZR3 cannot be achieved,

since then 3c+ 7d
!

= 0 mod 9, with three inequivalent possible values for c = 0, 1, 2.

We know from Bézout (see appendix A.2) that each case has one incongruent solu-

tion for d, which turns out to be a multiple of 3 each time and thus cannot account

for an automorphism, because A (entry wise mod 3) is not even unimodular in these

cases.

Having applied the above automorphism to Q′ψ and q′(θ), we now want to figure out

the couplings of the superpotential allowed by the discrete symmetry. Therefore, we

can either translate the charge lattice by 2 · 1 in ZR9 direction and identify those x

for which ψx1
1 . . . ψxbb lies on the ‘translated lattice’. Or, more conveniently, we can

look for modified couplings χψx1
1 . . . ψxbb , which lie on the ordinary charge lattice,

where the “dummy” field χ imitates the charge of the measure d2θ. Algebraically,

allowed values for the coupling exponents xl can be calculated via systems of linear

congruence equations, now with gj = 2, as discussed in section 4.3.1. Yet, not every

lattice point accounts for an allowed coupling, since the exponents x1, . . . , xb need

to be positive due to the holomorphy of W .

Note that one does not have to speculate about the coupling structure of the su-

perpotential in case of a “ZR2 ”, since the measure transforms trivially under this

symmetry. Hence, it is indistinguishable from an ordinary Z2. Therefore, Z2 sym-

metries (like R-parity) are always considered as ordinary non-R discrete symmetries

[97].
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5.3 Seeking for matter parity

The question whether matter parity (or equivalently R-parity) is a symmetry of a

given model is of exceeding importance for MSSM related model building. Tracking

a suitable Z2 symmetry with the correct transformation behavior for all fields has

been an involved issue in the literature so far, see e.g. the discussion in [57]. One of

the main achievements of our elaborations is that this task can be solved systemat-

ically now. Although we do need the whole machinery we developed to implement

the search for matter parity, we will benefit from already having worked out most

of the important steps.

The outline of seeking for Mp is very simple. Given a valid discrete Abelian sym-

metry group, we have to check whether there is a Z2 subgroup with charge 1 for all

matterlike chiral superfields and charge 0 for all vector or Higgs superfields, so that

the matter fields are odd and the rest even under Mp.

Of course, tracking such a particular charge assignment predominantly accounts for

automorphisms, and we know from section 4.2.1 lemma 1 that we can conveniently

restrict ourselves to the subgroup H2 of the discrete Abelian group. Note that it

is not sufficient to look at the Z2 subgroups only! Take for instance Z2 × Z4, we

know all its automorphisms from section 4.2.2, which act non-trivially on the Z2

subgroup. In contrast, considering the Z2 subgroup alone, there are no non-trivial

automorphisms. One might have the (wrong) idea to split the Z4 into Z2 factors,

but Z2 × Z4 � Z2 × Z2 × Z2, the latter states a completely different group, which

we learned in section 3.10.

Hence, we need to know the structure of H2, which means we need the primary de-

composition of the discrete Abelian group. However, an arbitrary discrete Abelian

group, which might have arisen by breaking U(1)k, but can as well have further con-

tributions, e.g. from orbifolding or remnants of spontaneously broken non-Abelian

groups, is generally neither in elementary divisor decomposition nor in invariant

factors decomposition. In section 3.10.2 we found that one cannot read off the ele-

mentary divisor decomposition as long as the invariant factors are unknown. Yet,

the redundancy elimination procedure from section 4.1.1 renders the invariant fac-

tors, even for an arbitrary discrete Abelian group, and keeping clear of redundant

symmetries is obligatory anyway.

Having at hand the invariant factors, section 3.10.3 tells how to calculate the corre-

sponding elementary divisors. Each invariant factor has to be factorized into powers

of distinct primes. The direct product of all, in such a manner split, invariant factors

can be rearranged by the distinct primes pi, now appearing with various exponents

βij such that we obtain the Sylow subgroups Hi = Z
p
βi1
i
× · · · × Z

p
βit
i

, with charac-
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teristic elementary divisors p
βij
i .

Now that we have figured out the structure of H2, we can build the matrices A cor-

responding to automorphisms of H2, as explained in section 4.2.1. Letting those act

on the ‘matter’ field charges under H2 reveals whether there is the desired matter

parity charge structure contained in one of the Z2 subgroups of H2, or not.

However, we do not know what the charges of the ‘matter’ fields are under H2,

yet. Let us fill this gap now. We have already studied how charges map among

isomorphisms of cyclic groups in section 4.5 table 4.3. One just has to map a gen-

erator of the cyclic group in invariant factor decomposition onto a generator of its

primary decomposition. Taking succeeding powers of each generator builds up the

whole group in each decomposition and yields a one-to-one mapping of all the group

elements between both decompositions.

In case of multiple invariant factors, we have more than one generator. Yet, this

does not complicate the issue much, since one can construct a canonical basis of

generators, disentangling the cyclic factors. The general Abelian discrete group

Zd1 × · · · ×Zdr is generated by the r elements (1, 0, . . . , 0), . . . , (0, . . . , 0, 1). Each of

these generators with the 1 at position i gives rise to the cyclic subgroup Zdi , and

any possible combination of multiple generators creates the remainder of the general

Abelian discrete group Zd1 × · · · × Zdr .
Now, since these generators are orthogonal by definition, we can use the isomor-

phism mapping of a cyclic group (e.g. table 4.3) for each invariant factor separately,

which yields the generators of the primary decomposition. Again, constructing the

entire group by means of the generators in each decomposition side by side gives us

a one-to-one mapping of group elements.

Let us illustrate this procedure by means of a simple example. The easiest non-

trivial case is Z2×Z6, which is already of order 12. We want to obtain the complete

map of group elements from the invariant factor decomposition Z2 × Z6 to the pri-

mary decomposition, which is Z2×Z2×Z3, according to section 3.10.3. As explained

above, we take the canonical orthogonal generators and decompose each cyclic factor

separately. We know the mapping of Z6
∼= Z2 × Z3 from table 4.3, so we can map

the orthogonal canonical generators from invariant factor to primary decomposition

Z2 × Z6
∼= Z2 × Z2 × Z3

(1, 0) → (1, 0, 0)

(0, 1) → (0, 1, 1)

. (5.29)
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That was already the main effort, the rest of the group elements are mapped one-

to-one by taking powers of these generators

Z2 × Z6
∼= Z2 × Z2 × Z3

(0, 0) → (0, 0, 0)

(0, 2) → (0, 0, 2)

(0, 3) → (0, 1, 0)

(0, 4) → (0, 0, 1)

(0, 5) → (0, 1, 2)

(1, 1) → (1, 1, 1)

(1, 2) → (1, 0, 2)

(1, 3) → (1, 1, 0)

(1, 4) → (1, 0, 1)

(1, 5) → (1, 1, 2)

, (5.30)

where the first block accounts to powers of each generator alone, and the second block

is due to their combinations. Taken together, (5.29) and (5.30) states a complete

map of all 12 elements.

Not all group elements need to be part of a given concrete ‘matter’ field charge

matrix, but we now know how to translate those, which are present, into primary

decomposition. Let us continue this example by assuming three fields ψM , ψH , ψV ,

which shall represent a matter, Higgs and vector superfield. These shall have the

following discrete charges under Z2 × Z6

Z2 × Z6

ψM
ψH
ψV

0 3

1 1

1 5

 , (5.31)

which states the charge matrix Q′ψ. As we have seen, this translates to the primary

decomposition as
Z2 × Z2 × Z3

Q′ψ

0 1 0

1 1 1

1 1 2

 . (5.32)

Yet, the charge assignment of both Z2 factors does not correspond to matter parity;

we would like to have charge one for the matter field and charge zero else. In order

to check whether the desired charge setup is automorphic to the one above, we can

constrict ourselves to H2
∼= Z2 × Z2, i.e we can forget about the third column in
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Q′ψ. This gives us the charge matrix under H2, which we introduced as Q
(2)
ψ in

section 4.3.2. According to section 4.2.1, the automorphisms of Z2 × Z2 are given

by 2×2 matrices, which are (entry wise modulo two) invertible over Z2, acting from

the right onto Q
(2)
ψ . Certainly, the required matrix A, such that

Q
(2)
ψ A =

0 1

1 1

1 1

(1 1

1 0

)
=

1 0

0 1

0 1

 (5.33)

is of this type and manifests the suitability of the first Z2 for Mp. Hence, this

exemplified matter parity search was successful.

However, in case one does not find a Z2 subgroup with the desired charge setup

by considering automorphisms, it does not mean that there is no matter parity,

yet. Remember that we still have the freedom of U(1)Y shifts within the context of

MSSM models, which we have discussed in section 4.4.

For instance, consider the setup of proton-hexality, introduced in section 4.5. From

(4.57) and table 4.3 we can read off the H2 charges of the MSSM matter and Higgs

fields immediately

Q Ū D̄ L Ē Hd Hu

H2
∼= Z2 0 1 1 0 1 1 1

. (5.34)

This is not the required charge setup for matter parity and the automorphisms are

trivial in this case. Yet, shifting by one times the integer normalized hypercharge

assignment from table 4.2 gives

Q Ū D̄ L Ē Hd Hu

Mp 1 1 1 1 1 0 0
, (5.35)

which shows that indeed, P6
∼=Mp × Z3.

For large discrete Abelian groups, the described steps are tedious to perform, but

they can easily be automatized. An implementation as a Mathematica-package can

be found in [98].

Yet, if the search for matter parity is unsuccessful on this footing, its appearance

is not fully excluded. A loophole is given by discrete Abelian groups, which are

further broken to a matter parity subgroup. We will present an example for such

a scenario in chapter 6, where an “anomalous” discrete symmetry is broken by

non-perturbative terms leaving a non-anomalous subgroup serving as matter parity.

However, if the full discrete symmetry group is known and H2 is trivial, then matter
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parity is impossible to achieve.

5.4 Supersymmetric vacua

The construction of manifestly supersymmetric actions is constricted to D-terms of

general superfields and F -terms of chiral superfields, since these map into a total

spacetime derivative under infinitesimal supersymmetry transformations. Thus, a

general renormalizable supersymmetric Lagrangian, written in terms of chiral su-

perfields, is given by the D-term of ΦiΦ
†
i and the F -term of an analytic function

containing left chiral superfields Φi only, known as the superpotential W (Φi), and

the Hermitian conjugate thereof. In component field notation one can read off the

scalar potential V (φi, φ
†
i ), which takes the (off-shell) form

V =
1

2
D(a)D(a) + FiF

†
i (5.36)

for a supersymmetric gauge theory, where the index a belongs to the gauge group

generators t(a). The “equations of motion” for the auxiliary fields read

D(a) = −g φ†i t
(a)
ij φj , (5.37)

Fi = −∂W
†

∂Φ†i

∣∣∣ . (5.38)

In presence of an “anomalous” U(1)A originating from string theory, as discussed

above, the corresponding D-term becomes extended [99, 100] by the so called Fayet-

Iliopoulos term ξ

D(A) = q
(A)
i |φi|2 + ξ , (5.39)

where ξ =
g2M2

P

192π2 Tr q(A).

Now, for a supersymmetric vacuum configuration, the D- and F -terms must vanish,

else supersymmetry will be broken, i.e.

〈D(a)〉 = 0 , (5.40)

〈Fi〉 = 0 . (5.41)

In particular, once we want to give VEVs to Standard Model singlet fields (e.g. in

order to obtain discrete symmetries) at high scales, where supersymmetry should

not be broken, we have to assign the VEVs in such a way that (5.40, 5.41) holds.

Note that the constraints (5.40) and (5.41) are not independet in general. For a

non-Abelian supersymmetric gauge theory a solution to the F -terms always induces
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a solution for the D-terms [101].

It is well known, that gauge invariant holomorphic monomials correspond to D-flat

directions [102, 103]. Let us exemplify this by means of a (non-anomalous) U(1)k

gauge theory. The D-constraints (5.40) read

q
(a)
i |〈φi〉|2 = 0 ∀ a = 1, . . . , k , (5.42)

whereas the gauge invariance of a holomorphic monomial∏
i

Φni
i , with ni ≥ 0 , (5.43)

actually requires

niq
(a)
i = 0 ∀ a and ni ≥ 0 . (5.44)

Consequently, 〈φi〉 =
√
ni v, with v a constant, implies 〈D(a)〉 = 0. Thus, every

gauge invariant holomorphic monomial corresponds to a D-flat direction, and it can

be shown that the converse also holds [103]. Hence, seeking all D-flat directions

reduces to solving (5.44), which can be recast in matrix formq
(1)
1 · · · q

(1)
m

...
...

q
(k)
1 · · · q

(k)
m


n1

...

nm

 = 0 , ni ∈ N , (5.45)

where we have assumed that there are m different fields Φi. That is, we are back

at solving linear Diophantine equations, however, over strictly positive integers this

time. This is a non-trivial task, which can be accomplished by means of Hilbert

basis methods, as presented in [3].

Finally, in order to cancel the FI D-term, if present, it is obviously necessary to

have at least one holomorphic gauge invariant monomial with anomalous charge of

opposite sign than ξ.
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Chapter 6

Discrete symmetries in string

derived MSSM models

The most promising candidate for the unification of quantum mechanics and gen-

eral relativity is string theory. Apart from a consistent theory of quantum gravity,

it predicts spacetime supersymmetry in order to incorporate fermions, forming a su-

perstring theory. A Yang-Mills gauge group, compatible with the superstring, com-

prises the Standard Model gauge group. Furthermore, string theory automatically

yields extra dimensions, which have to be compactified to obtain four dimensional

low energy physics. Although string theory is not fully formulated yet, an impor-

tant step for its verification is to show the existence of a low energy limit resulting

in the Standard Model. Unfortunately, string theory allows for a huge number

of compactification possibilities, giving rise to the picture of the string landscape.

Quasi-realistic vacua are very rare among all possible vacua, and, not at least due

to the huge energetic gap between the string and the weak scale, a precise string

theoretical description of all Standard Model parameters appears unlikely. However,

the question whether generic properties of low scale physics can be reproduced at

all is of great interest. In this regard, orbifold compactifications of heterotic string

theory are a convenient starting point.

In the following, we will identify the discrete Abelian symmetry structure of an

explicitly string derived low energy model with the exact spectrum of the MSSM.

Studying the phenomenological consequences of the discrete Abelian symmetries,

now traceable due to the methods and techniques we elaborated in the preceding

chapters, we will find appealing results like highly suppressed proton decay and a

solution to the µ-problem.
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6.1 String derived MSSM models

Although a detailed understanding of orbifold models leading to a low energy the-

ory with the exact spectrum of the MSSM is not mandatory for the discussion of

phenomenological consequences of their remnant discrete symmetries, we want to

outline the origin of such string derived MSSM models.

6.1.1 Heterotic string theory

Heterotic string theory is a somewhat peculiar construction of closed strings only,

which treats the left-moving and right-moving sector essentially different [104]. It

is the only known superstring theory, which is able to provide the gauge group

E8 × E8, besides SO(32) also known to be permissible by anomaly cancellation in

10 dimensions. For a successful embedding of the low energy gauge group of the

Standard Model, the unification chain

SU(3)× SU(2)× U(1) ⊂ SU(5) ⊂ SO(10) ⊂ E6 ⊂ E7 ⊂ E8 (6.1)

is favored against SO(32).

The left- and right-moving modes of bosonic string theory, due to conformal anomaly

freedom living in 26 critical dimensions, and superstring theory living in 10 critical

dimensions, are completely decoupled. Therefore, it is possible to construct a hybrid

string theory with a bosonic string structure for the, say, left-movers, and a super-

string structure for the right-movers. The right-moving superstring induces N = 1

spacetime supersymmetry. This setup is called heterotic string theory. The connec-

tion between the dimensions of the left- and right-moving sector can be performed

by the equivalent fermionic or bosonic construction. The first manifests that het-

erotic string theory is 10 dimensional, while the latter demonstrates the appearance

of the gauge group. The explicit constructions can be found in e.g. [105]. From the

point of view of the bosonic construction, 16 dimensions of the left-movers have to

be compactified on a torus in order to match dimensions. The 16 dimensional torus

lattice has to be a Euclidean even self-dual lattice for one loop modular invariance.

There are only two such lattices, giving rise to the gauge groups SO(32) or E8×E8.

Hence, the gauge group in 10 spacetime dimensions is a consequence of the excessive

16 compactified bosonic degrees of freedom.
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6.1.2 Orbifold compactifications

In order to make contact to four dimensional low energy physics we obviously have

to compactify six further dimensions. Yet, simple torus compactifications lead to

unrealistic low energy theories. The geometry of the internal six dimensional space

significantly affects the four dimensional effective theory, such that the require-

ment of four dimensional N = 1 spacetime supersymmetry basically accounts for

Calabi-Yau or orbifold compactifications. Since we are interested in the detailed

phenomenology of the effective low energy theory, orbifold compactifications are

much more suitable. This is because orbifolds are flat except for singular points

and thus the explicit form of the metric is known, in contrast to most Calabi-Yau

manifolds.

An orbifold is the quotient space M/G of a smooth manifold M and its discrete

group G of non freely acting isometries. This means that points of M , which are

connected by a transformation corresponding to an element of G, become identified

on M/G. Since there are fixed points in M with respect to G, i.e. there are points

in M , which are left invariant by the action of some non-trivial element of G, the

quotient space has singularities, which makes it an orbifold instead of a manifold.

Let us focus on toroidal orbifolds in the following, which means we take a six-torus

T 6 and mod out the finite symmetry group of its torus lattice, called the point group

P . The torus itself can be viewed as the quotient of R6 and a lattice Γ, the torus

lattice, such that T 6 ∼= R6/Γ. One defines the space group S to be the semi-direct

product of the point group P and the lattice translations of Γ. Hence, the orbifold

can be written as the quotient space O = R6/S.

Now, considering an orbifold compactification of heterotic string theory [106, 107],

i.e. taking the internal manifold to be an orbifold, allows for new string modes,

which fulfill the boundary condition of closed strings. Besides the usual boundary

condition for closed strings in ten dimensional flat space, which are now called the

untwisted modes, the strings can also close up to a space group transformation.

String modes that close only modulo a non-trivial space group transformation are

called twisted modes. These turn out to be localized at the fixed points of the orb-

ifold.

Modular invariance further requires the action of the orbifold to take effect on the

gauge degrees of freedom, living in the left-moving sector. Therefore, orbifold com-

pactifications are able to break the huge gauge symmetry of the 10 dimensional

heterotic theory, yet, without touching the rank of the gauge group. Hence, the

four dimensional gauge group will generically consist of some amount of U(1) fac-

tors. Several of these U(1)’s can appear to be “anomalous” [99], however, a basis

in which at most one “anomalous” U(1)A remains can always be found [88]. The
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would-be anomaly is canceled by the Green-Schwarz mechanism, of course. Yet,

U(1)A induces an FI D-term, as explained in section 5.4, which is of great impor-

tance for low energy phenomenology. In order to preserve supersymmetry just below

the string scale, this FI D-term has to be canceled, which requires to assign large

VEVs to certain fields. In fact, any Standard Model singlet field may obtain a

VEV as long as F - and D-flatness is ensured. These VEVs can give large masses to

unwanted states of the spectrum as well as spontaneously break the gauge group,

reducing its rank. In particular, the Abelian part of the gauge group after compact-

ification, U(1)k, can be broken.

This is where our mechanism described in the preceding chapters takes effect. The

knowledge of the remaining discrete Abelian group ameliorates the understanding

of the low energy limit significantly.

6.1.3 Towards realistic MSSM limits

Although obtaining the Standard Model gauge group from heterotic orbifold com-

pactifications is straightforward, the appearance of the exact MSSM spectrum is

rather challenging. Such models, equipped with the chiral matter content of the

MSSM, yet, without chiral exotics and all vectorlike exotics decoupling from the

low energy theory, have been presented in [55, 56]. At the orbifold point, one has

differing gauge groups at the fixed points and the bulk, i.e. untwisted sector. The

intersection of these gives the four dimensional gauge group, which contains the

Standard Model gauge group. There are three generations of Standard Model mat-

ter including the right handed neutrino, which arise from the twisted and untwisted

sectors in a way, providing a large top Yukawa coupling. Assigning VEVs to Stan-

dard Model singlet fields along D- and F -flat directions further breaks the gauge

group to GSM times a true hidden sector, needed for low energy supersymmetry

breaking, e.g. via gaugino condensation. In particular, cancellation of the FI term

induces VEVs close to the GUT scale. Such large VEVs account for the decoupling

of the U(1) gauge bosons and the vectorlike exotics, because they induce large mass

terms. Numerous orbifold models with such a potentially realistic structure have

been found [58].

Yet, for a viable model, more detailed issues like the flavor structure, existence of

matter parity, absence of rapid proton decay, and the µ-problem have to be ad-

dressed. Searches for models providing these features have been performed, e.g. in

[57]. In this context, the role of discrete symmetries turned out to be quite helpful.

The remnant discrete symmetries arising by the breaking of the Abelian part of

the gauge group U(1)k are now fully understood due to the methods described in

this work. Therefore, the quest for matter parity has been simplified. Moreover,
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additional discrete symmetries of R or non-R type can take effect on the coupling

structure, enhancing the phenomenology of the string derived model.

In the following, we will present a particularly interesting discrete symmetry, ZR4 ,

which is able to provide matter parity, suppress dimension five proton decay opera-

tors as well as resolve the µ-problem simultaneously.

6.2 Discrete phenomenology in Z2 × Z2 orbifolds

We will now discuss a phenomenologically appealing vacuum configuration of a

Z2 × Z2 orbifold compactification with the exact MSSM spectrum. The orbifold

construction is very similar to the model presented in [108]. Yet, our vacuum dif-

fers significantly. Albeit being equipped with matter parity, found by the methods

described in the preceding chapters, the configuration in [108] describes only a semi

realistic vacuum, since all Higgs candidates attain large masses. In contrast, our

vacuum forbids mass terms for the MSSM Higgs fields at all order in perturbation

theory due to the discrete symmetry ZR4 . Since this symmetry is “anomalous”,

i.e. its anomaly is canceled by a discrete version of the Green-Schwarz mechanism,

a light µ-term is reintroduced at the non-perturbative level. The Z2 subgroup of

ZR4 is non-anomalous, though, and serves as matter parity. Thus, dimension four

proton decay operators are forbidden by the matter parity subgroup and dimension

five proton decay operators are highly suppressed by ZR4 . The model has further

realistic properties such as full rank Yukawa couplings.

6.2.1 Vacuum configuration exhibiting ZR
4

After orbifolding there are discrete R and non-R symmetries as well as continuous

non-R symmetries. The discrete symmetries do not necessarily have an embedding

into an internal gauge group, as they can arise as remnants of the ten dimensional

Lorentz group [109]. However, in order to be discrete gauge symmetries they cer-

tainly have to be anomaly free, or a potential “anomaly” has to be canceled by

the Green-Schwarz mechanism [91]. In particular, the gauge group of the model

considered here is GSM× [SU(3)× SU(2)× SU(2)]hid×U(1)8 at the orbifold point.

Choosing a vacuum, i.e. assigning VEVs to Standard Model singlet fields, further

breaks the gauge group. In order to preserve supersymmetry the VEVs are aligned

in such a way that the F - and D-terms vanish, including the cancellation of the FI

term.

The vacuum considered here is chosen such that the remnant symmetry group is

GSM × [SU(2)]hid × ZR4 , where the remnant discrete symmetry equals the one pre-
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sented in [52]. Thus, ZR4 is “anomalous”, i.e. its anomaly is canceled by a discrete

version of the Green-Schwarz mechanism, yet, it has a non-anomalous subgroup re-

sulting in matter parity. A remnant true hidden sector can be useful for low energy

supersymmetry breaking, e.g. via gaugino condensation [110, 111]. The spectrum of

this configuration is given by table 6.1.

Field Qi Ūi di d̄i `i ¯̀
i Ēi xi x̄i yi zi si

max(i) 3 3 3 6 9 6 3 5 5 6 6 37

SU(3)c 3 3̄ 3 3̄ 1 1 1 1 1 1 1 1
SU(2)L 2 1 1 1 2 2 1 1 1 1 1 1
U(1)Y

1
6
−2

3
1
3
−1

3
−1

2
1
2

0 0 0 0 0 0

SU(3)hid 1 1 1 1 1 1 1 3 3̄ 1 1 1
SU(2)hid 1 1 1 1 1 1 1 1 1 2 1 1
SU(2)hid 1 1 1 1 1 1 1 1 1 1 2 1

Table 6.1: Field labels and their Standard Model and hidden sector quantum numbers.
The di/d̄i decompose into quarks and exotics, while the `i/¯̀

i split into leptons and Higgs
candidates.

The vacuum is determined by giving the following set of fields VEVs

φ(i) ={s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14,

x1, x2, x3, x4, x5, x̄1, x̄3, x̄4, x̄5, (6.2)

y3, y4, y5, y6} .

In particular, all singlet fields si, which are uncharged under ZR4 , obtain a VEV. The

non-Abelian GSM singlet fields xi/x̄i, yi develop VEVs as ZR4 invariant contractions.

Lepton and Higgs fields are indistinguishable by their MSSM quantum numbers only.

Due to the discrete symmetry ZR4 we are able to discriminate between MSSM matter

fields, Higgs fields, and exotics. Since the non-perturbative terms that break the ZR4
have charge two [52], a Z2 symmetry is left unbroken. Former ZR4 even/odd charges

become even/odd elements of Z2. Thus, in order to obtain the matter parity charge

assignment, i.e. all matter fields charge one and the Higgs fields charge zero under

Z2, the ZR4 charges of matter or Higgs fields need to be odd or even, respectively.

This situation allows us to split the potential d-quarks di/d̄i of table 6.1 into quarks

and exotics as well as the `i/¯̀
i into leptons and Higgs candidates (see table 6.2).
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Lepton d-quarks Higgs candidates exotic triplets
doublets

Li D̄i Hi H̄i δi δ̄i

`4, `6, `7 d̄1, d̄3, d̄4 `1, `2, `3, ¯̀
1, ¯̀

2, ¯̀
3, d1, d2, d3 d̄2, d̄5, d̄6

`5, `8, `9
¯̀
4, ¯̀

5, ¯̀
6

Table 6.2: Identification of MSSM matter fields versus Higgs candidates and exotics.

Thus we obtain three generations of MSSM matter fields. Next, the massless Higgs

fields need to be identified.

6.2.2 Mass matrices and Yukawa couplings

The ZR4 charges of the Higgs and exotic fields, given in table 6.3, fix the structure of

the H̄i−Hj and δ̄i−δj mass matrices. Since an allowed coupling of the superpotential

needs to have ZR4 charge two, a mass matrix entryMij only can be non-zero, if the

charges of the corresponding fields sum to two.

(a) ZR4 charges of the Higgs candidates.

H1 H2 H3 H4 H5 H6 H̄1 H̄2 H̄3 H̄4 H̄5 H̄6

ZR4 charge 0 2 0 2 0 0 0 2 0 0 2 2

(b) ZR4 charges of the exotics.

δ1 δ2 δ3 δ̄1 δ̄2 δ̄3

ZR4 charge 0 2 2 2 0 0

Table 6.3: The ZR4 charges of the Higgs candidates and exotic triplets determine the
structure of their mass matrices.

Thus, the Higgs mass matrix shows the following pattern

MH =



0 φ̃1 0 φ̃1 0 0

φ̃1 0 φ̃1 0 φ̃1 φ̃1

0 φ̃1 0 φ̃3 0 0

0 φ̃3 0 φ̃5 0 0

φ̃3 0 φ̃1 0 φ̃1 φ̃3

φ̃3 0 φ̃1 0 φ̃3 φ̃1


. (6.3)
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The non-zero entries φ̃n denote polynomials of order n in the φ(i) fields, which have

been explicitly computed by string selection rules. The rank of the H̄i − Hj mass

matrix MH is five, such that one pair of Higgs fields Hu, Hd remains massless,

Hu = c1 H̄1 + c2 H̄3 + c3 H̄4 ,

Hd = c4H1 + c5H3 + c6H5 + c7H6 , (6.4)

with coefficients ci. In contrast, the δ̄i− δj mass matrix of the exotics has full rank.

It reads

Mδ =

φ̃5 0 0

0 φ̃1 φ̃3

0 φ̃3 φ̃1

 . (6.5)

Thus the exotic particles decouple from the low energy theory. Effective Yukawa

couplings arise by singlet fields, which obtain VEVs, coupling to trilinear terms

containing one of the massless Higgs

WYuk =
∑
i=1,3,4

(Y
(i)
U )mnQmŪnH̄i+

∑
i=1,3,5,6

(Y
(i)
D )mnQmD̄nHi+

∑
i=1,3,5,6

(Y
(i)
E )mn LmĒnHi .

(6.6)

At tree level, the Yukawa matrices have the following structure

Y
(1)
U =

φ̃2 φ̃4 φ̃6

φ̃4 φ̃2 φ̃6

φ̃6 φ̃6 1

 , Y
(3)
U =

 1 φ̃6 φ̃4

φ̃6 1 φ̃4

φ̃4 φ̃4 φ̃2


Y

(5)
E = (Y

(5)
D )T =

φ̃6 φ̃6 φ̃6

φ̃6 φ̃6 1

φ̃6 1 φ̃4

 , Y
(6)
E = (Y

(6)
D )T =

φ̃6 φ̃6 1

φ̃6 φ̃6 φ̃6

1 φ̃6 φ̃4

 .

(6.7)

All Yukawas have full rank, yet the tree level SU(5) GUT relations Y
(i)
E = (Y

(i)
D )T

are desirable only for the third generation, but not for the light generations. The

contributions Y
(4)
U and Y

(1,3)
E,D are of high order in φ̃, such that these can be neglected

as we assume the φ̃ VEVs to be small with respect to the string scale. Note that

the block structure in the Yukawa matrices and the δ̄i− δj mass matrix are relics of

a non-Abelian discrete D4 flavor symmetry of the underlying string model.

6.2.3 Non-perturbative violation of ZR
4

The discrete ZR4 symmetry is “anomalous”, in fact. That is, the discrete anomaly

constraints, as introduced in section 5.1.2, are not satisfied. However, they are

universal, such that an anomaly cancellation via the Green-Schwarz mechanism
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is possible. This can be checked easily, e.g. for the gauge anomalies. Since only

massless fermions contribute to the anomaly, the calculation can be restricted to

the MSSM matter fields (see table 6.4) and the massless Higgs fields (see (6.4) and

table 6.3). Yet, because the symmetry in consideration is of R type, the gauginos

Qi Ūi D̄i Li Ēi

ZR4 charge 1 1 1 1 1

Table 6.4: ZR4 charges of the MSSM matter fields.

are also charged and thus contribute to the anomaly [91]. With the convention of

section 5.2, i.e. the θ have ZR4 charge 1, the θ̄ charge −1 and thus the superpotential

charge 2, we know that the gauginos have charge 1 and the fermions of chiral q

charged superfields have charge q − 1 (mod 4). The Dynkin index of the chiral

fields is 1
2
, for the fundamental representation. The gauge fields live in the adjoint

representation of the gauge group G, thus the Dynkin index is given by the quadratic

Casimir c2(G) = N for SU(N). Since all chiral matter superfields have charge one,

the corresponding fermions are uncharged and do not contribute to the anomaly.

Hence, the calculation reduces to

gauginos Hd Hu Σ

ZR4 − [SU(3)]2 c2(SU(3)) ·1 3

ZR4 − [SU(2)]2 c2(SU(2)) ·1 1
2
·3 1

2
·3 5 .

(6.8)

Remembering the discrete anomaly constraints (5.11) from section 5.1.2, the sum Σ

has to vanish modulo 4
2

= 2 for discrete anomaly freedom. This is not the case, but

the gauge anomalies are universal, i.e. identical modulo 2, which is the precondition

for the Green-Schwarz mechanism to cancel the anomaly.

At the non-perturbative level, terms including the factor e−aS, where a is a constant

and S the dilaton superfield, arise in the superpotential. The dilaton (or more pre-

cisely its imaginary part, the axion) transforms non-trivially under the “anomalous”

symmetry ZR4 and plays a crucial role for its anomaly cancellation via the Green-

Schwarz mechanism. Therefore, the non-perturbative terms of the superpotential

are fully gauge invariant, including the “anomalous” symmetry. Once the dilaton

develops a VEV, the non-perturbative terms violate this symmetry and hence break

the ZR4 , yet, because of the exponential by highly suppressed terms. The matter

parity subgroup of ZR4 , though, is non-anomalous and thus also holds at the non-

perturbative level.
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6.2.4 Proton decay

Because of the non-anomalous matter parity, dimension four proton decay operators

are entirely forbidden, at the perturbative as well as at the non-perturbative level.

This is phenomenologically necessary, since the stringent experimental limits on pro-

ton decay [112] require a theoretical explanation for the corresponding tininess of

the dimension four operator coupling constants in (2.2b). Yet, forbidding all renor-

malizable proton decay operators is not sufficient to account for the experimental

limits. Although effective non-renormalizable superpotential couplings [42], such as
1
Λ
QQQL or 1

Λ
Ū ŪD̄Ē, are suppressed by the cut-off scale Λ, they still contribute at

an unacceptable rate.

In the present model, the discrete ZR4 symmetry forbids such dimension five oper-

ators at the perturbative level. They become reintroduced at the non-perturbative

level, yet, exponentially suppressed. For instance, the lowest order occurrence of

QQQL, which appears to be the most dangerous dimension five contribution [113],

is given by

Wnp ⊃ e−aS QQQL φ̃13 . (6.9)

Due to the high suppression of these operators, the leading contribution to proton

decay is given by dimension six operators.

6.2.5 Solution to the µ-problem

The bilinear Higgs coupling µHuHd is a renormalizable gauge invariant term, which

thus may enter the superpotential (see (2.2a)). The natural scale for the parame-

ter µ would be the Planck scale. Yet, for viable spontaneous symmetry breaking

SU(2)W × U(1)Y → U(1)em by the MSSM Higgs mechanism, the µ-term needs to

be around the weak scale. The issue of obtaining such a small µ parameter is known

as the µ-problem. There are many different solutions to this problem [114, 115]; we

will proceed similar to [116]. That is, the µ-term is assumed to be absent in the

superpotential, but appears at the non-renormalizable level

W = W0 + λW0HuHd , (6.10)

where W0 is the superpotential without the µ-term and λ is a parameter of order

one in Planck units. This is a valid ansatz for the string derived MSSM model

considered here, see the discussion in [117, 118]. The µ-term becomes effectively

generated in this scenario, once the superpotential W0 attains an expectation value

µ = λ 〈W0〉 . (6.11)
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Since the requirement of a vanishing cosmological constant implies m3/2 ∼ 〈W0〉,
the µ-term is of the right size, given by the gravitino mass m3/2, which sets the scale

of the soft terms.

In the present model, the µ-term is forbidden by ZR4 in the perturbative super-

potential, yet, it may appear at the non-perturbative level. Due to ZR4 , the per-

turbative part of the superpotential does not develop a VEV, such that only the

non-perturbative part accounts for the µ-term.
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Chapter 7

Conclusions

We have elaborated the breaking of a continuous Abelian gauge group U(1)k down

to a possible remnant discrete group G. Such a ‘general discrete Abelian gauge

symmetry’ was found to be representable in a unique way as G = Zd1 × · · · × Zdr
with di|di+1 and r ≤ k, which is known as the invariant factor decomposition of

finite Abelian groups in abstract algebra. The algebraic formulation was achieved

via the geometrical concept of the ‘charge lattice’, which was used to parametrize

the physical structure of symmetry breaking in a descriptive way. Transformations

of the lattice basis by unimodular matrices motivated an orthogonalization of the

charge lattice by means of the Smith normal form, an algebraic concept.

In a next step, redundant and equivalent structures were studied. A redundancy re-

flects the situation of transforming physical fields, i.e. discrete group elements, which

are not capable of fully realizing the maximal discrete Abelian symmetry allowed by

the vacuum. We presented a method to eliminate such redundancies, which results

in the true discrete Abelian symmetry of the physical theory. Automorphisms of

the discrete Abelian group G correspond to equivalent discrete charge assignments

from a physical point of view. A description of the automorphism group of finite

Abelian groups is known, which we used to resolve the identification of R-parity or

matter parity for MSSM model building.

Finally, we discussed the role of discrete Abelian symmetries in heterotic orbifold

compactifications, which lead to the exact matter spectrum of the MSSM in the

low energy limit. Such string derived MSSM models are a natural candidate for

remnant discrete Abelian gauge symmetries, since orbifolding preserves the rank of

the string gauge group. This entails an unbroken continuous Abelian gauge group

at the orbifold point, which is spontaneously broken by vacuum expectation values

of Standard Model singlet fields, allowing for remnant discrete gauge symmetries.

We demonstrated through a concrete model that particularly discrete Abelian R-
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symmetries are phenomenologically appealing. The model exhibits a simple ZR4
symmetry, which is “anomalous”, i.e. the anomaly is canceled by the Green-Schwarz

mechanism, and thus violated at the non-perturbative level. It is able to forbid

dimension four proton decay due to a non-anomalous matter parity subgroup and

highly suppress dimension five proton decay as well as resolve the µ-problem.

Outlook

We leave the field of non-Abelian discrete gauge symmetries for future work. These

have been studied from a bottom-up perspective, i.e. their anomaly constraints

have been elaborated in [91]. Yet, a generic mechanism to obtain remnant dis-

crete gauge symmetries from spontaneously broken non-Abelian gauge groups has

not been elaborated so far. Generalizing the approach presented here to the non-

Abelian case is not straight forward, since it involves solving equations containing

matrix exponentials. Our mechanism benefited from discrete Abelian groups having

one dimensional irreducible representations, which is not the case for non-Abelian

groups. Discrete non-Abelian symmetries have the advantage of a richer structure,

which might be necessary for involved model building issues. But in turn they loose

the beauty of simplicity, which is inherent to discrete Abelian symmetries. Finally,

we note that the knowledge of remnant discrete symmetries of non-Abelian gauge

symmetries also concerns the discrete Abelian gauge symmetry group, since these

remnants may contain discrete Abelian factors.

With regard to string derived MSSM model building, it is certainly interesting to

further study the impact of discrete Abelian gauge symmetries by means of the

presented methods. A next obvious step is to elaborate the role of the discrete

Abelian symmetry group in different orbifold constructions, which are known to be

phenomenologically promising, as for instance the Z6-II mini-landscape models in

[58, 57].
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Appendix A

Algebraic glossary

In this appendix, definitions, conventions and basic theorems are presented, which

are silently assumed to be known throughout this thesis, but might not lie within

the standard scope of physicists. It shall serve as a glossary, however, without the

claim to be exhaustive, since common knowledge (as the definition of a group and

alike) will be spared out. Consequently, we will not prove the stated theorems, refer

to [71, 66, 67] for this purpose.

A.1 Basic arithmetic

Let us start with the fundamental theorem of arithmetic, which addresses the de-

composition of integer numbers into products of prime powers.

Theorem 6 (Fundamental theorem of arithmetic) Let n be a positive integer

greater one. There exists a decomposition into prime numbers

n = pα1
1 . . . pαss , (A.1)

which is unique up to ordering.

Next, we want to recall the notion of residue classes.

A.2 Congruences

For a positive integer n, define a relation over Z given by

a ∼ b if and only if n|(a− b) . (A.2)
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This is an equivalence relation. If a ∼ b one writes

a = b mod n (A.3)

and says a is congruent to b modulo n. Therefore, Z can be partitioned into n

equivalence classes

0̄, 1̄, . . . n− 1 , (A.4)

where the congruence class or residue class of a modulo n is given by

ā = {a+ cn | c ∈ Z} . (A.5)

The integers modulo n are the set of these equivalence classes, usually symbolized

by the quotient Z/nZ. The smallest non negative integer congruent to a mod n is

called the least residue of a mod n.

Residue classes are closed under addition, subtraction and multiplication, i.e.

Theorem 7 If a1 = b1 mod n and a2 = b2 mod n, then a1 + a2 = b1 + b2 mod n,

a1 − a2 = b1 − b2 mod n and a1a2 = b1b2 mod n.

Note, however, that division is not possible in general. Yet, division by coprimes of

the modulus is permissible, as has been proven in section 4.3.2.

Solvability of linear congruence equations, i.e. the question for which integers x the

equation

a x = b mod n (A.6)

has solutions, is addressed by the following theorem.

Theorem 8 (Linear congruence theorem) If GCD(a, n)|b, then a x = b mod n

has GCD(a, n) incongruent solutions. Otherwise it has no solution.

In fact, this theorem is nothing else than Bézout’s identity from number theory,

since (A.6) is equivalent to

a x− b = n y , with y ∈ Z . (A.7)

After Bézout, such a linear Diophantine equation has solutions if and only if b =

GCD(a, n) or any integer multiple thereof.

A.3 Basic group theory

Since a group is a pair (G, ?) of a set and a binary operation, one has to specify the

operation ? each time in principle. For convenience, we will adopt the usual notation
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and write groups multiplicatively whenever talking about groups in general.

In order to avoid confusion, note that Z/nZ is a group only under addition. However,

it is isomorphic to Zn, the cyclic group (see definition 7) written multiplicatively,

e.g. via the exponential mapping a ∈ Z/nZ 7→ e
2πia
n .

Before focusing on discrete groups, let us define the center of an arbitrary group.

Definition 5 (Center) The center Z(G) of a group G is its subgroup {g ∈ G | gh =

hg ∀h ∈ G}.

That is, the center is the set of elements of G commuting with all elements of G.

A.4 Fundamental terms of discrete groups

One has to distinguish carefully between the order of a group and the order of an

element of a group:

Definition 6 (Order) The order |G| of a group G is the number of group elements.

The order |x| of an element x of a group is the smallest positive integer n, such that

xn = 1.

Most likely, the simplest discrete groups are given by the notion of cyclic groups.

Definition 7 (Cyclic group) A group G is cyclic, if it can be generated by one

element

G = {xn |n ∈ Z} . (A.8)

With these definitions at hand, one can state the following important theorem.

Theorem 9 Any two cyclic groups of the same order are isomorphic.

It is immediately clear that the order of a generator must equal the order of the

group that it generates. Although a cyclic group is generated by one element, there

may be more than one generator. In fact, the number of distinct generators of a

cyclic group is determined by the Euler ϕ function.

Definition 8 (Euler ϕ function) For n ∈ Z+, the number of positive integers a,

which are coprime to n such that a ≤ n, is denoted by ϕ(n).

Since ϕ is linear for coprimes, i.e.

ϕ(nm) = ϕ(n)ϕ(m) , if GCD(m,n) = 1 , (A.9)

93



Fundamental terms of discrete groups

and obviously ϕ(p) = p − 1, one can deduce a formula for any integer due to the

fundamental theorem of arithmetic, theorem 6,

ϕ(n) = ϕ(pα1
1 ) . . . ϕ(pαss ) = pα1−1

1 (p1 − 1) . . . pαs−1
s (ps − 1) . (A.10)

It is well known that the automorphisms of cyclic groups (i.e. a special case of the

results discussed in section 4.2.1) are isomorphic to the group of residue classes

having a multiplicative inverse, which equals the group of residue classes whose

representatives are coprime to n

(Z/nZ)× = {ā ∈ Z/nZ |GCD(a, n) = 1} . (A.11)

That is, Aut(Zn) ∼= (Z/nZ)×. Since obviously (Z/nZ)× is of order ϕ(n), there are

ϕ(n) automorphisms of Zn.

A rather important notion in finite group theory are p-groups (groups of order pα

with α ≥ 1) and their maximal subgroups, called Sylow p subgroups.

Definition 9 (Sylow p subgroup) Let G be a group of order pαm where the prime

p - m. Any subgroup of order pα is called a Sylow p subgroup of G.

All members of the set of Sylow p subgroups of a group G, Sylp(G), are isomorphic

(for fixed p), which follows from the Sylow theorems (see e.g. [71]).

This research was supported by the Deutsche Forschungsgemeinschaft (DFG) Gra-

duiertenkolleg “Particle Physics at the Energy Frontier of New Phenomena”.
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