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ABSTRACT 

High-throughput genomic and proteomic techniques are widely used to increase our 

understanding of cellular processes. These technologies have generated large 

numbers of available data. Recent efforts are increasingly focusing on more integrated 

approaches to understand complex biological systems by reverse engineering gene 

regulatory networks. Many studies have demonstrated that large-scale networks are 

capable of predicting complex system behavior. Predicting complex biological systems, 

at system level, may help to understand how diseases like cancer develop and can 

lead us to better diagnosis and to detect cancer earlier. 

While e.g. microarrays and mass spectrometers generate such data, there are crucial 

problems to be addressed before developing a predictive quantitative biology. The 

asymmetry of the datasets (more genes than samples) poses a problem for reverse 

engineering gene regulatory networks. My approach to this problem has been one of 

integration, bringing together a vast wealth of information from multiple datasets. 

Alleviating the asymmetry of the datasets considerably increases their use for systems 

biology. Furthermore, the ability to integrate expression experiments across species 

may help to identify pathways that are activated in a similar way in humans and other 

organisms. 

Integrating data from multiple species is challenging. Automated methods are needed 

to extract maximum value from the mass of available data. Several meta-analysis 

approaches exist. Recent microarray based cross-species meta-analyses require prior 

affiliation of genes based on orthology information that often relies on sequence 

similarity. However, sequence similarity based orthology does not account for 

evolutionary phenomena such as sub- and neo-functionalization, thus not necessarily 

representing functional orthology in every case. 

The computational time complexity of gene/sample affiliations is exponential in the 

number of genes or samples. Consequently, scoring all possible affiliations is feasible 
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for datasets of rather small size only. An iterative procedure is needed to approximate 

the global optimum in reasonable time. Prerequisite for scoring above gene affiliation 

solutions is to adjust different scales of the datasets. In order to gain experience by 

which scores (fold-changes, P-values, etc) as well as by which means of preprocessing 

such datasets can be best compared, I studied two single species microarray datasets. 

The first resembles sulfur reductase activity in Arabidopsis Thaliana that was 

recorded on the common two-channel fluorescence-tag cDNA glass platform. The 

second represents pooled RNAi screens on customized barcode tiling arrays. 

I developed an algorithm merging microarray datasets on the basis of co-expression 

alone, without any requirement for orthology information. While such information 

can be easily incorporated to assist the process, the algorithm also performs well 

without being provided with any affiliations, purely driven by coherences among the 

data. Combining existing methods such as co-inertia analysis, back-transformation, 

Hungarian matching, and majority voting in an iterative non-greedy hill-climbing 

approach, the algorithm affiliates genes and experiments at the same time, 

maximizing the co-structure between the datasets. 

The performance of the algorithm is demonstrated by merging datasets stemming 

from identical, closely related and more distantly related species. Moreover, the 

datasets represent different experimental contexts and had been produced on 

different platforms. The resulting cross-species dynamic Bayesian gene networks 

improve on the networks inferred from each dataset alone by yielding more 

significant network motifs, as well as more of the interactions already recorded in 

KEGG and other databases. Also, it is shown that the algorithm converges on the 

optimal number of nodes for network inference. 

Being readily extendable to more than two datasets, it provides the opportunity to 

combine arbitrary numbers of e.g. microarray datasets. Furthermore, the application 

of the algorithm is not limited to microarray data. It could serve to integrate e.g. 

proteomic, transcriptomic and high-throughput methylation data recorded for the 

same samples.   
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ZUSAMMENFASSUNG 

Hochdurchsatzverfahren in Genomik und Proteomik tragen grundlegend zum 

besseren Verständnis zellulärer Prozesse bei. Sie erzeugen große Datenmengen. Um 

komplexe biologische  Zusammenhänge besser zu verstehen,  werden aus solchen 

Daten zunehmend durch sogenanntes  Reverse Engineering regulatorische Netzwerke 

rekonstruiert. Viele Studien haben gezeigt, daß umfangreiche regulatorische 

Netzwerke geeignet sind, Verhalten biologischer Systeme zu prognostizieren. Solche 

Vorhersagen dienen letztendlich dem besseren Verständnis von Krankheitsabläufen. 

Sie könnten so einen Beitrag leisten zu sichereren Diagnosen oder der früheren 

Erkennung z. B. von Krebs. 

Bis zu einer berechenbaren Biologie ist es allerdings noch ein weiter Weg. Der 

Verfügbarkeit geeigneter,  z. B.  mittels Microarrays oder Massenspektrometer 

erhobener Daten stehen grundlegende Probleme bei der Datenanalyse gegenüber. 

Die Asymmetrie der Datensätze (sehr viel mehr Gene als Experimente) steht einer 

zuverlässigen Schätzung regulatorischer Netze im Weg. Mein Ansatz zur Lösung dieses 

Problems zielt auf die Integration mehrerer Datensätze ab. Das Akkumulieren ähnlich 

gearteter Experimente (Beobachtungen) steigert die Signifikanz der Daten, die 

Robustheit der gewonnenen Netze und damit den Nutzen für systembiologische 

Fragestellungen. Weiterhin könnte die integrierte Analyse von Datensätzen über 

Artgrenzen hinweg aufdecken, welche Signalwege in Mensch und Modellorganismen 

gleichartig reagieren.  

Eine solche Integration (Meta-Analyse) von Datensätzen erfordert komplexe 

automatisierte Verfahren, um größtmöglichen Nutzen aus den vorhandenen Daten zu 

ziehen . Mehrere solcher Methoden zur artübergreifenden Meta-Analyse von 

Mikroarray Datensätzen existieren bereits. Alle benötigen a priori eine Zuordnung der 

Gene zwischen den jeweiligen Spezies. Diese Zuordnung der orthologen Gene beruht 
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meist auf Sequenzhomologie. Letztere erfaßt allerdings Phänomene wie z. B. Sub- 

oder Neofunktionalisation nicht. Eine hierauf basierende Zuordnung repräsentiert 

somit nicht in jedem Fall Funktionsäquivalenz im Sinne der zu studierenden 

Netzwerke. 

Eine Wertabschätzung aller möglichen Zuordnungen von Genen (und Proben) hat 

expontielle Laufzeit und wäre daher nur für sehr kleine Datensätze möglich. Ein 

iteratives Verfahren muß sich dem globalen Optimum in tragbarer Zeit nähern. 

Voraussetzung für die Wertabschätzung einer auf dem Weg vorkommenden 

Zuordnungslösung ist die Anpassung der unterschiedlichen Skalen der Datensätze. 

Welche Werte (Verhältnis, p-Wert, etc.) zum direkten Vergleich solcher Datensätze am 

besten geeignet sind und wie diese hierfür optimal aufbereitet werden können wurde 

anhand von zwei in meiner Gruppe  erhobenen Einzeldatensätzen studiert. Der 

Schwefelmetabolismus von Arabidopsis thaliana war für den ersten Datensatz mit der 

verbreiteten fluoreszenz- und glasbasierten cDNA Plattform vermessen worden 

während der zweite Datensatz RNAi Analysen mit Pools von je fünf kuzen 

Haarnadelstruktur-RNS umfaßt und mithilfe sogenannter Barcode Tiling Arrays 

erhoben wurde.                         

Die von mir entwickelte Methode fusioniert Datensätze allein auf der Basis 

gemeinsamer Expressionsmuster, auch völlig ohne Zuhilfenahme weiterer 

Information. Vorabwissen über z. B. Orthologie kann zwar auf einfache Art 

miteinbezogen werden, der Algorithmus arbeitet aber auch bereits allein auf Basis 

von Koexpression erfolgreich. Er wurde durch Zusammenführen geeigneter bereits 

existierender Methoden als Module wie z. B. Koinertia-Analyse, Rücktransformation 

der Projektionskoordinaten, ungarischer Methode und Mehrheitswahl erarbeitet. 

Ausgehend von Datensätzen beliebiger Größen, Experiment-Reihung als auch 

zufälliger Anordnung der Gene in den Datentabellen wird über ein nicht-gieriges 

bergsteigendes Verfahren gleichzeitig sowohl die Zuordnung der Gene als auch die der 

Experimente hinsichtlich der Übereinstimmung (Ko-Struktur) der Datensätze 
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optimiert.  

Erfolgreiche Integration wird beispielhaft demonstriert für Datensätze aus 

identischen, nahe verwandten sowie aus nur entfernt verwandten Spezies. 

Hinsichtlich einer breiten Anwendbarkeit wurden diese Studien aus unterschiedlichen 

thematischen Zusammenhängen sowie beispielhaft für verschiedene Mikroarray 

Plattformen ausgewählt. Die resultierenden speziesübergreifenden sogenannten 

Dynamischen Bayes´schen Netze sind ihren aus den Einzeldatensätzen berechneten 

Pendants sowohl hinsichtlich des Vorkommens signifikanter Netzwerkmotive als auch 

beim Auffinden bereits in KEGG und anderen Datenbanken aufgeführter Interaktionen 

überlegen. Auch wird anhand von Beispielen gezeigt, daß das Verfahren auf einer für 

die  Netzwerk-Inferenz optimalen Anzahl Knoten konvergiert.  

Es ist weiterhin einfach auf die Zusammenführung von mehr als zwei Wertetabellen 

ausweitbar und eröffnet damit  die Möglichkeit zur Integration beliebig vieler 

Datensätze. Darüber hinaus besteht keine Beschränkung auf Mikroarray Daten. In 

Fortführung meiner Arbeit ist selbst eine Anwendung zum integrativen Vergleich 

unterschiedlicher Regulationsebenen, z. B. mit aus gleichem Biomaterial gewonnenen 

Protein-, Transkript-, und Methylierungsdaten vorstellbar. 
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1 INTRODUCTION 

The microarray technique, albeit barely older than a decade, is now both mature and 

widely available, accumulating an unprecedented amount of quantitative genome 

wide information [1]. Large scale microarray projects have revealed a comprehensive 

view of the transcriptome in different organisms at various stages of development, 

under diverse environmental conditions [2]. Efficient comparison of these data in 

related biological systems enables researchers to address complex biological 

questions [3]. While the reductionist approach to biology has proven considerably 

effective, recent efforts are increasingly focusing on more integrated approaches to 

understand complex biological systems. All of these developments point to the need 

for understanding the complex regulatory networks, responsible for controlling gene 

expression within cells. 

The work presented in this dissertation addresses this need. An algorithm was 

developed for inferring cross-species common regulatory networks from gene 

expression data. The dissertation details the steps necessary for successful 

computational inference of cross-species genetic regulatory networks. In this 

introductory chapter, the necessary background is provided. 

1.1 Systems biology 

To fully understand the functioning of cellular processes, whole cells, organs, and 

even organisms, it is not enough to simply assign functions to individual genes, 

proteins, and other cellular components. We need to analyze the organization and 

control of the system in an integrated way by looking at the dynamic networks of 

genes and proteins, i.e. their interactions with each other. These interacting pathways 

are complex dynamic systems, and often behave in a nonlinear and adaptive way. 
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Nonlinearity means, for example, that doubling a stimulus does not necessarily 

double the response, and may even cause a qualitatively different response. Adaptive 

systems can modify themselves to response in a more appropriate way in the light of 

previous stimuli. The general goal of the theoretical systems biology is to develop 

computer models that predict the properties of the large, adaptive interconnected 

networks that are found in living cells.  

Genomics, transcriptomics and proteomics have provided large datasets that can be 

used to describe the parts of a biological process at the gene and protein level. In 

systems biology descriptions of the processes under study are used to obtain a 

detailed description of the parts and their interactions, and then resemble them into 

an interconnected whole. In other words, descriptive models are applied to biological 

processes to identify rules about molecular or cellular associations or dependencies.  

There are good reasons for the systems biology approach. First, biological systems 

tend to be so complex that it is difficult, without modeling, to know how they behave 

and to understand the actions of their control mechanisms. Second, such systems can 

have higher-order properties that are their main biological function, but are not 

apparent from properties of the separate components. Although very useful 

information can be obtained from the analysis of individual parts of a complex 

system, the ultimate aim is to understand how parts act together in real time and 

how the functioning of the systems is controlled (See Figure 1). This in turn will shed 

light on how each individual component contributes to the whole system. A system is 

more than the sum of its parts. It has a specific structure (the way the parts relate to 

each other) and dynamics (the ways in which it changes over time). A description of a 

fully functional system must take into account the spatial organization of elements, 

their interactions, and their response to external stimuli, including those processes 

that control and stabilize the system. 
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1.2 Functional genomics  

Functional genomics aims to discover the biological function of particular genes and 

to uncover how their products work together in living organisms. What do all these 

genes, and by extension, what do all these proteins do? Elucidating the functions of 

the diverse collections of proteins within cells is the basis of functional genomics and 

will be a fundamental question of biology. 

Several biological systems operate in similar ways in diverse species and many of the 

genes that play essential roles in these systems are conserved across these organisms 

[4]. Sequence similarity is one of the major sources of data for identifying the function 

of new genes, for instance, by BLAST [5]. Cross-species conservation has previously 

been used to delineate putative gene functions [6]. Regulatory elements have also 

 
Figure 1. Schema of the reductionist and the integrative approach to biological research.   
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been identified in small genomic regions by conservation analysis [7]. Comparative 

genomics, a term used to describe large-scale comparisons of complete genomes, has 

aided in the correct identification of genes and control regions in each of the 

sequences being compared [8] and sequence conservation analysis led to the 

identification of hundreds of new miRNAs [9]. Other efforts elucidate interaction data 

by means of network analysis, identifying core interaction modules as well as 

differences between regulatory programs in closely related species [10]. 

However, sequence conservation analyses and network comparisons can only tell part 

of the story. Sequence data do not change during the lifetime of a biological system. 

While interactions may change between conditions and over time, almost all current 

interaction data are static focusing on one time point and one condition [11]. Thus, 

using only these datasets it is often difficult to specify which genes participate in 

various biological processes. In addition, in some cases large changes in sequence and 

interactions may only have a minor effect on function, whereas in other cases, small 

changes in sequence between two genes may result in large changes in structure, 

leading to different function for the genes [12]. 

To address these issues researchers use microarrays to measure the dynamic, 

condition-specific response of complex biological systems. Examples include the cell 

cycle [13, 14], immune and other stress responses [15], circadian rhythm [16] and 

developmental processes [17]. These processes are shared between multiple, and in 

some cases distant species. By combining and comparing these experiments across 

species, essential ‘core’ genes can be identified. These genes are conserved both in 

sequence and transcription between multiple species and are thus expected to play 

crucial roles for the biological response of the system under study. 

Although these sets of core elements play different roles within cells, one of the most 

challenging such roles is that of genetic regulation. Gene Regulatory Networks (GRN) 

control a cell at the genomic level, coordinate which genes are expressed and which 

remain unexpressed at any given time in the cell.  Genes, RNAs and proteins interact 
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with each other and form complex regulatory networks. RNAs are the direct products 

of genes. MicroRNAs (miRNAs) are small non-coding RNAs which are involved in post-

transcriptional control of gene expression. MicroRNAs and small interfering RNAs 

(siRNA) can bind to specific other RNAs and either increase or decrease their activity, 

for example by preventing a messenger RNA from producing a protein. Proteins which 

function as transcription factors can positively or negatively influence the expression 

of another gene, and thus the production of other proteins. Some proteins act 

independently, others only become active in a complex. Gene regulatory networks 

describe these regulatory processes, and thus the molecular reaction of a cell to 

various stimuli. 

Deciphering the complex structure of e.g. the transcriptional regulation of gene 

expression by means of computational methods is called Reverse Engineering Gene 

Regulatory Networks (REGRN). Advances in high-throughput biological techniques 

provide the basis for large scale analysis. REGRN is a quickly evolving field, with new 

developments and algorithms being published almost daily. It requires techniques 

particularly tailored to the task.  

Analysis of regulatory processes within the cell will enhance our understanding of 

cellular dynamics. It will shed light on normal and abnormal, diseased, cellular events 

and may provide information on pathways that are malfunctioning in diseases such as 

cancer. These pathways can provide information on how the disease develops, and 

what processes are involved in progression. Ultimately, we can hope that this will 

provide us with new therapeutic approaches and targets for drug design. 

1.3 Cross-species meta-analysis  

Microarray technology measures the mRNA levels of tens of thousands of genes in 

tissue samples simultaneously in a high-throughput and cost effective manner. It has 

found widespread use in the fields of molecular genetics and functional genomics 

[18]. It has been applied in order to understand underlying biological mechanisms 
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[19], to discover novel subgroups of diseases [20, 21], to examine drug response [22, 

23], to classify patients into disease groups [20], and to predict disease outcomes 

[24]. Despite their great promise, microarray-based studies may report findings that 

are not robust to data perturbations [25]. Common causes include improper analysis 

or validation, insufficient control of false positives, and inadequate reporting of 

methods [26]. The situation is provoked by the small sample size relative to large 

numbers of potential predictors; typically tens of thousands of probes are investigated 

in only tens or hundreds of biological samples. 

Combining information from multiple existing studies is called ‘meta-analysis’. It can 

increase the reliability of results. The term meta-analysis is also widely used to 

describe the whole study process, not just the statistical techniques. Through meta-

analysis, we can increase the statistical power to obtain more precise estimates of 

differential genes, and assess the overall estimate. Meta-analysis is relatively 

inexpensive, since it makes comprehensive use of already available data. The 

advantages of meta-analysis of gene expression microarray datasets have not gone 

unnoticed by researchers in various fields, however, most meta-analysis studies have 

been performed on cancer [27, 28]. 

Many studies combine data from multiple microarray experiments [13, 29] for one 

single species. Such meta-analyses have also been performed on data from multiple 

species. Cross-species meta-analysis can be used to utilize annotation and co-

regulation information of one species to improve expression analyses of a less-studied 

species [14]. Further, it can serve to find common expression patterns in multiple 

species to reveal core gene functions [30] and to elucidate the evolution of gene 

expression and co-regulation [31]. 

Many of the successful applications of cross-species analysis to sequence and 

interaction data were performed using powerful computational techniques. Graph-

based algorithms served to carry out whole genome alignments [32]. More recently, 

computational methods for cross-species comparisons of interaction networks were 
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developed [33]. 

1.4 Machine learning in molecular biology 

The term “Machine learning” refers to a set of topics dealing with the creation and 

evaluation of algorithms that facilitate pattern recognition, prediction and 

classification based on observed data. There are two main paradigms in the field of 

machine learning; supervised and unsupervised learning. Both are being applied to 

biological questions. 

In supervised learning, objects in a given collection are classified using a set of 

attributes, or features. In the context of gene expression, objects are often tissue 

samples and features are expression levels of individual genes (probes). The result of 

the classification process is a set of rules (classifier) that prescribe assignments of 

objects to classes based on values of features. In biological context, an example is to 

assign a tissue expression profile to disease group. The goal is to design a system that 

is able to accurately predict the class membership of new tissue expression profiles 

based on available features. 

In contrast to supervised learning, in unsupervised approach no predefined class 

labels (categories) are available for the objects. The aim is to discover 

similarities/dissimilarities between objects. These are then used to define groups of 

objects, referred to as ‘clusters’. In supervised learning, data come with class labels, 

and we learn how to associate labeled data with classes, whereas in unsupervised 

learning, data are label free, and the learning procedure consists of both defining 

labels and associating objects to them.  

The choice between supervised and unsupervised approach is tightly connected to 

the availability of prior knowledge. In supervised learning, the algorithm is tied to the 

specific areas of known data (training data). Therefore, careful selection of training 

data is vital. Furthermore training data may not represent special or unique categories 

that fit the classes. In contrast, in unsupervised approaches, no extensive prior 
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knowledge is required. 

Recently, different machine learning methods have been implemented to reconstruct 

gene regulatory networks from gene expression data. In biological context, clustering 

although not properly a network inference algorithm, is a method of choice to explore 

gene expression data. The rationale behind clustering is that coexpressed genes (i.e. 

genes in the same cluster) have a good probability of being functionally related [34]. 

However, this does not necessarily imply that there is a direct interaction between 

coexpressed genes, as genes separated by one or more mediators (indirect 

relationships) may be highly coexpressed. It is therefore important to understand 

what can be achieved by gene network inference algorithms, whose aim is to infer 

direct interactions among genes. Clustering can be used to reveal the modular 

structure of a network. 

Inferring a gene network is defined as the process of identifying gene interactions 

from experimental data through computational analysis. There are two major classes 

of inference algorithms: those based on the ‘physical interaction' approach that aim at 

e.g. identifying interactions among transcription factors and their target genes and 

those based on ‘influence interaction' methods that try to relate the expression of a 

gene to the expression of the other genes in the cell. The interaction between two 

genes in a gene network does not necessarily imply a physical interaction, but can 

also refer to an indirect regulation via other proteins or metabolites that have not 

been measured directly. Influence interactions include physical interactions, for 

instance if the two interacting partners are transcription factor and its target, or two 

proteins in the same complex. Generally the definition of influence interactions in 

gene networks depends on the mathematical formalism used to model the network. 

Gene networks have major practical utilities. First, to identify functional modules, that 

is, identifying the subset of genes that regulate each other with multiple indirect 

interactions, but have few interactions outside the subset. Second, to predict the 

behavior of the system following perturbations, where one needs to detect the genes 
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that are directly interacting with a compound of interest. Third, to identify physical 

interactions by integrating the gene networks with additional information from other 

experimental data. 

Large varieties of machine learning algorithms for gene regulatory network inference 

have been proposed in literature and are available as working tools. Section ‎2.4 

presents several different approaches, discusses their strengths and weaknesses, and 

provides guidelines on which models are appropriate under what circumstances. 

1.5 Computational challenges 

When comparing microarray datasets across species, researchers face many of the 

same challenges that arise when comparing other high throughput datasets including 

the search issues related to the large datasets and the need to handle homology 

assignments between species. In addition, a good experimental design that takes into 

account the fact that experiments are to be compared across species is crucial for the 

success of such studies. 

However, microarrays also raise several new challenges. Microarray data are often 

noisy. The agreement between experiments measuring similar processes in different 

labs, even within the same species is sometimes very small [35]. Another challenge 

results from the differences in conditions and dynamics. Unlike sequence or 

interaction data which are often denoted by a small number of letters (DNA) or binary 

edges (interactions), microarrays measure continuous values. Dynamic environments 

and different scales make it difficult to compare results across diverged species. For 

instance, while there are several similarities between human and yeast cell cycle, the 

duration is different (90 min for yeast vs. 24 h in human cells). Similarly, the wide 

range of conditions makes it difficult to use the data for direct comparisons across 

species. Another problem arises when comparing results from different expression 

analysis methods. For instance, the scoring methods in Spellman and coworkers [13] 

and Lelandais and coworkers [36] for cell cycle genes in budding and fission yeast are 
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different, making direct comparison problematic. Any combination of the above may 

bias the analysis. 

A typical feature of microarray datasets is high dimensionality of data. That is, very 

high number of genes simultaneously measured under few number of samples  

(genes >> samples). This is a problem for many machine learning techniques. For 

instance, in supervised learning, when the number of genes is too high, reliable 

estimation of the classifier’s internal parameters with a limited number of samples 

becomes problematic. In such situations, dimensionality reduction may be useful. One 

major approach is to obtain a reduced number of new features by combining the 

existing ones, e.g., by computing a linear combination. Principal Component Analysis 

(PCA) is one particular method, in which new features (principal directions) are 

identified and may be used instead of the original features.  

In the context of network inference, high dimensionality of data particularly raises a 

problem when inferring the structure of dynamic graphs. Several methods have been 

proposed to address this problem [37-40]. In order to cope with the dimensionality 

problem accounted for in one GRN reverse engineering step, it seems preferable for 

any method to first combine the data instead of combining the resulting networks 

later on. Several approaches can be applied to this end [40-42]. However, all of these 

methods take as input the affiliation of genes between the datasets. When combining 

data stemming from different species, sequence homology can be used to affiliate 

orthologs. However, due to the ambiguity of orthology relations, mapping across 

species is challenging. Lineage-specific gene duplications can give rise to a different 

number of paralogs in one species compared to another species. One cannot tell 

which paralog (or in-paralog) retains the function of the ancestral gene or has been 

co-opted into a new function.  
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1.6 Aims  

The goal of this work was to develop an integrative approach to inferring cross-species 

gene regulatory networks. The specific aims of my approach can be summarized as:  

Reverse engineering microarray datasets. High-throughput genomic and proteomic 

techniques are widely used to increase our understanding of cellular processes. These 

technologies have generated large numbers of available data. Progress has been 

made on integrated approaches to understand complex biological systems by reverse 

engineering gene regulatory networks. My aim was to contribute to the methods for 

reconstructing regulatory networks based on these data. 

Asymmetry of datasets. Over the past ten years, large numbers of gene expression 

studies have been carried out. The asymmetry of microarray datasets (genes >> 

samples) poses a problem for reverse engineering gene regulatory networks. My goal 

was to alleviate the asymmetry of the data by combining datasets. 

Cross-species comparison. Thematically related datasets to combine are often few 

when searching for a single species, only. Furthermore, combining data from multiple 

species can lead to important findings which cannot be achieved by focusing on a 

single species. Combining expression experiments from multiple species may help to 

identify genes that are not only conserved in sequence, but also operate in a similar 

way in the different species. Similarly, it may help to identify pathways that are 

activated in the same manner in humans and other organisms. My aim was to 

reconstruct common gene regulatory networks by combining datasets across species.  

Gene/sample affiliations. Recent microarray based cross-species meta-analyses 

require prior affiliation of genes based on orthology information that often relies on 

sequence similarity. The need for orthology assignments is a major drawback of the 

existing methods for two main reasons. First, sequence similarity based orthology 

does not account for evolutionary phenomena such as sub- and neo-functionalization, 

thus not necessarily representing functional orthology in every case. Second, when 
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comparing cross-species datasets using one-to-one orthology information, a large 

amount of the probes will have to be masked, severely limiting the number of genes 

that can be measured in the study. My aim was to develop a systematic way for 

merging microarray datasets without any requirement for orthology information. 

Complexity. The computational time complexity of gene/sample affiliations is 

exponential in the number of genes or samples. For instance, given an expression 

matrix of only 20 genes, 2.43E+18 iterations would be needed to score all possible 

affiliations. Therefore, an iterative hill-climbing procedure is needed to solve the 

problem in a reasonable time. However, hill-climbing approaches may obtain the local 

optimal solution and it is not guaranteed that it will obtain the global optimum. In 

order to overcome this problem, my aim was to use a non-greedy approach to affiliate 

genes and samples between datasets. 

Adjusting different scales. Prerequisite for scoring above gene affiliation solutions (to 

find the optimum affiliation) is to adjust different scales of the datasets. Therefore, my 

aim was to gain experience by which scores (signal intensities, fold-changes, P-values, 

etc) as well as by which means of preprocessing (normalization, filtering, scale 

adjustments) such datasets can be best compared.   

1.7 Dissertation overview 

Chapter ‎2 presents perquisites for the analysis of single species microarray 

experiments followed by related biological concepts, techniques, computational 

models and methods to extract meaningful biological results. In the context of 

unsupervised analysis, chapter ‎2  reviews existing alternatives for distance measures 

in clustering approaches and concludes that the measures based on “variance 

standardization” perform better when it comes to variance analysis. This section also 

shows how dimensions of expression datasets can be reduced to minimize the loss of 

information regarding the relationships between genes and samples.  

Chapter ‎3 discusses various methods for differential gene expression detection of 
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single microarray datasets. This chapter presents the application of empirical Bayesian 

methods to a set of microarray experiments to detect response of sulfur metabolism 

at transcriptional level in Arabidopsis thaliana. The results show the performance of 

linear models by experimentally validating a set of genes that are identified as 

significantly differentially expressed genes. The results support that the 

downregulation of SiR causes severe adaptive reactions of primary and secondary 

metabolism and is essential for growth and development in Arabidopsis thaliana.  

Chapter ‎4 describes high-level analysis of tiling arrays to decode pooled RNAi screens. 

This chapter demonstrates how barcode tiling arrays can be used to predict anti-

proliferative effects of individual shRNAs from pooled negative selection screens.  

Chapter ‎5 begins with a brief literature review on four relevant approaches for meta-

analysis of microarray data. This chapter particularly emphasizes the application of 

Co-inertia analysis (CIA) to cross-platform comparisons of gene expression data. 

Incorporating CIA with existing methods represents an iterative procedure to match 

genes and samples, at the same time. This chapter also demonstrates different ways 

to assess the procedure by means of reverse engineering approaches, followed by the 

application of the algorithm on several microarray datasets. In this chapter the 

performance of the algorithm on two independent but closely related experiments is 

demonstrated. These datasets served as verification datasets since, considerable prior 

knowledge and direct evidence on the reliable genes and samples in both datasets 

were known. In order to show that the algorithm is not limited to a certain level of 

similarity, its application to distantly related datasets is demonstrated.  

Chapter ‎6 closes the dissertation with a summary of the lessons learned. The chapter 

also includes comprehensive itemization of ways in which this work could be 

extended in the future. 
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2 SINGLE SPECIES MICROARRAY ANALYSIS 

 

Many techniques have become available that produce vast amounts of quantitative 

biological data. As microarrays have become more commonplace, the challenges 

associated with collecting, managing, and analyzing the data from each experiment 

have increased substantially. Falling prices for commercial platforms, robust 

laboratory protocols, and more complex experimental designs all lead to the 

generation of large amounts of data. A few years ago, microarray studies typically 

included 10 hybridizations; now, studies tend to have hundreds or more such assays. 

Interpretation of the large datasets produced by microarray experiments can be time 

consuming. Moreover, different methods can yield different conclusions. These 

experiments aim at extracting biological or functional meaning, either by identifying 

critical genes that might be responsible for a biological effect or by finding patterns 

that point to an underlying biological process. This chapter discusses issues associated 

with analyzing such data to extract meaningful biological results. 

2.1 Data collection 

DNA microarrays use gene-specific probes that represent thousands of individual 

genes. The probes are arrayed on an inert substrate, each confined to a separate 

surface area to discriminate their hybridization signals. RNA is extracted from tissues 

of interest, labeled with a detectable marker, typically a fluorescent dye, and allowed 

to hybridize to the array. Messenger RNA (mRNA) molecules hybridize to their 

complementary probes on the array. Images are rendered with the use of laser 

scanning. The relative fluorescence intensity of each gene-specific probe is used as a 

measure of the expression level of that gene. A more intense signal is caused by a 

higher degree of hybridization which in turn, is caused by higher expression levels. 
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There are two basic approaches to generate microarray data. In single-channel arrays, 

such as the GeneChip (Affymetrix), only one sample is hybridized to one array. After 

hybridization sample is removed by washing. The level of expression of each gene is 

summarized into one value. For two-channel (two-color) arrays, two samples of RNA, 

each labeled with a different dye, are simultaneously hybridized to the array. The 

sample of interest (for example, a sample of cancer tissue), is labeled with one dye, 

and a reference sample (normal tissue) is labeled with a different dye. Two samples 

are mixed in an approximate ratio of 1:1 on the basis of dye incorporation. This 

compares paired samples and reports expression as the ratio of RNA in a query 

sample to that in a control sample.  

Expression data are typically represented as “expression matrix” in which each row 

represents a particular gene and each column represents a specific biological sample. 

Each row is a “gene expression vector” where the individual entries are its expression 

levels in different samples. Each column is a “sample expression vector” that records 

the expression of all genes in that sample. Any data which can be placed into this 

“genes by samples” matrix format can be analyzed using the same techniques. 

2.2 Preprocessing  

The hypothesis underlying microarray analysis is that the measured intensities for 

each gene are proportional to its transcriptional level in the cell. Relevant expression 

patterns are typically identified by comparing measured expression levels across 

different samples. But before the levels can be compared appropriately, a number of 

transformations must be carried out on the data to eliminate systematic errors, low-

quality measurements and to adjust the measured intensities to facilitate 

comparisons. Some of these transformations can be highlighted as background 

correction, ratio transformation and normalization.  

Background correction: Image analysis software returns foreground and background 

intensities for each spot. The foreground is an overall measure of the intensity of the 



Single species microarray analysis  

17 

 

spot while the background is a measure of the ambient signal. Background 

fluorescence can arise from many sources. For instance from non-specific binding of 

labeled sample to the array surface, processing effects such as deposits left after the 

wash stage or optical noise from the scanner. Removal of ambient, non-specific signal 

from the total intensity is known as ‘background correction’. 

Most image analysis programs return ‘local’ background intensities, obtained from 

the mean or median of the pixel intensity values surrounding each spot. Local 

background is an estimate of the local non-specific signal, so subtracting it from the 

foreground intensity gives an estimator of the true signal. This approach produces 

negative intensities whenever the background intensity is larger than the foreground 

intensity. Data for such spots are leading to missing log-ratios, sometimes for a 

substantial proportion of probes on an array. 

Ratio transformation: Most microarray experiments investigate relationships 

between related biological samples based on patterns of expression. The simplest 

approach looks for genes that are differentially expressed. Let us assume an array of 

N distinct elements, and compare a query and a reference sample as R and G, 

respectively, then the ratio (T) for the ith gene (where I is an index of all the arrayed 

genes from 1 to N) can be written as 

𝑇𝑖 =
R𝑖

G𝑖
 EQ 1 

The measures Ri and Gi can be made on either a single array or on two separate 

arrays.  

Although ratios provide a natural measure of expression changes, they have the 

disadvantage of treating up- and down regulated genes differently. Genes up 

regulated by a factor of two have an expression ratio of two, whereas those down 

regulated by the same factor have an expression ratio of (–0.5). The most widely used 

transformation of the ratio is the logarithm, which has the advantage of treating up- 

and down regulated genes in a similar fashion.  
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Normalization: Normalization methods are applied to expression data to aid 

comparison between individual hybridizations to compensate differences in labeling, 

hybridization, and detection efficiencies between fluorescent dyes. There are 

different normalization methods. The approaches used depend on platform and the 

assumptions made regarding the biases in the data [43-47].  

Normalization adjusts the fluorescence intensities on each array and can change the 

relative intensity difference observed between samples – the fold change. 

Normalization methods are mainly based on knowledge of the particular 

experimental methodology and potential sources of systematic error (such as using 

different quantities of different samples). Their application often involves taking 

averages, yet can achieve good results. Many of the techniques correct the mean but 

do not pay much attention to the variance. It has often been observed in general 

experimental work that the variance tends to increase as the signal increases. Several 

normalization methods have been proposed that correct this. Systematic errors can in 

the best case be completely removed, whereas it is only possible to approximate the 

form of random noise and not remove it entirely. 

While normalization method is always necessary to compensate for systematic errors 

[43, 46, 48] that are introduced during the experimental process, over-normalizing 

the data can deform the final outcome of the analysis. Similarly, the way in which the 

data are filtered can generate different results [49].  

Filtering: There are different filtering approaches applied to the data using a variety 

of methods to eliminate a) genes that have minimal variance across the collection of 

samples, b) those that fail to provide data in a majority of the experiments and c) 

whose signal lack reproducibility. The value of these filtering methods is that they 

reduce the noise within the dataset by eliminating those genes that are not likely to 

contribute to any high level analysis. The manner in which the data are filtered can 

produce very different results. Therefore, appropriate means of dealing with “high 

dimensional” datasets should be considered. 
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2.3 Exploratory analysis  

2.3.1 Cluster analysis 

Cluster analysis is usually the first step in any genomics experiment as it takes an 

unbiased approach to look for new groups in the data. For instance, one might 

examine a group of cancer patients to see if their expression profiles allow them to be 

placed into distinct groups without using any prior knowledge of their disease 

progression. Clustering is an unsupervised method that does not use any predefined 

class labels for the samples to explore expression patterns. They group samples based 

on some measure of similarity. In other words, unsupervised learning is used to unveil 

natural groupings in the data. After finding new groups based on expression profiles, 

the challenge then becomes to find a link to clinical or biological factors that can 

explain the difference. 

There are many approaches that have been applied to unsupervised analysis, 

including self-organizing maps (SOM) [50-52], self-organizing trees (SOTA) [53], 

relevance networks [54], force-directed layouts [55], principal component analysis 

[56], and others. Each of these algorithms uses some attribute of the data and a set of 

rules for determining relationships between group of genes (or samples) that are 

similar in expression patterns. All of these algorithms are able to separate data into 

some clusters, but the evaluation of the results requires expert input and analysis. 

Two of the most widely used approaches are hierarchical clustering [34, 57, 58] and k-

means clustering [59]. Hierarchical clustering creates a hierarchical, tree-like structure 

of the data. This can be constructed using either a bottom-up or a top-down 

approach. In a bottom-up approach, each data point is initially taken as a cluster. 

Subsequently, the clusters are iteratively merged based on their similarity. In 

contrast, the top-down approach starts with a unique cluster containing all data 

points. This initial unique cluster is iteratively divided into smaller clusters until each 
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cluster contains a single data point. 

A potential problem with many hierarchical clustering methods is, as the size of each 

cluster grows, the expression profile of the cluster representative may no longer 

represent any of the genes within the cluster. This poses a problem when calculating 

distances between clusters. Consequently, as clustering progresses, the actual 

expression patterns of the genes become less relevant. Furthermore, if a bad choice is 

made at an early stage it cannot be corrected. An alternative, which can avoid these 

artifacts, is to use iterative refinement approaches, such as k-means clustering, to 

partition either genes or samples into groups having similar expression patterns. 

2.3.1.1 K-means clustering 

In k-means clustering, objects are partitioned into a fixed number (k) of clusters such 

that objects within each cluster are more similar to one another than those assigned 

to different clusters. K-means clustering can be computationally intensive: 

1. All initial objects are randomly assigned to one of k clusters (where k is specified as 

input). 

2. An average expression vector (centroid) is calculated for each cluster to compute the 

distances between clusters. 

3. Using an iterative method, objects are moved between clusters and intra and inter-

cluster distances are measured with each move. Objects are allowed to remain in the 

new cluster only if they are closer to it than to their previous cluster. 

4. Following each move, the expression vectors for each cluster are recalculated. 

5. The shuffling proceeds until moving any more objects would make the clusters more 

variable, increasing intra-cluster distances and decreasing inter-cluster dissimilarity. 

It is possible to adapt the k-means clustering method to vary the number of clusters 

automatically. Once the set of k clusters has been identified, data can be examined to 

identify any data points that are relatively distant from the centroid (outlier). In such 

cases, an extra cluster centroid can be added at that data point. An alternative would 
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be to ignore outliers, but in the case of expression data analysis such outliers may be 

of great interest and are best left in the analysis. A different initial location of the 

cluster centroids can result in a different final partition, so one can use several 

different starting points, generating several partitions. 

One run of the k-means clustering produces a single partition of the data into k 

clusters. Although there are ways of changing the value of K during a run, in general if 

there is advance knowledge regarding the number of clusters that should be 

represented in the data, k-means clustering is superior to hierarchical methods [59, 

60]. 

Distance measure. All clustering techniques identify clusters according to a distance 

between each pair of data points (genes or samples) and therefore need a definition 

of this distance called distance measure. The distance must be defined as a single 

number, and therefore each gene or sample in the experiment requires a set of 

quantitative parameters. There are several alternative distance measures. Some of 

the widely used distance measures are Euclidean, Pearson correlation coefficient and 

Chi-square. 

Having N different genes measured for each of the M samples so that Ath sample has 

a value Xi,A for the ith gene. The Euclidean distance between samples A and B is 

defined as  

𝑑𝐴𝐵 =   (𝑋𝑖,𝐴 − 𝑋𝑖,𝐵)2

𝑁

𝑖=1

 EQ 2 

The Euclidean distance measure is commonly used because it is easy to evaluate. A 

key feature of the Euclidean distance is that all parameters are treated in an identical 

way without any modification. This is not necessarily appropriate in the case of 

expression measurements. To give an example, why should doubling the expression 

level of a kinase and of a cytochrome contribute equivalently to the distance? In 

Euclidean measure, quantitative changes in expression ratios are treated equally for 
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all genes. Genes whose transcription is correlated will not necessarily produce such 

equivalent responses, and it may be useful to give greater emphasis to the 

observation that the two genes have correlated expression changes. In other words, 

two such genes’ expression levels may not increase to the same degree, but their 

correlation is still an important and useful observation. 

The Pearson correlation coefficient is a commonly used method to measure a 

correlation between two series of numbers. The definition of correlation coefficient 

between two samples A and B is given by 

𝑟𝐴𝐵 =
1

(𝑁 − 1)
  

𝑋𝑖,𝐴 − 𝑋 𝐴
𝑆𝐴

  
𝑋𝑖,𝐵 − 𝑋 𝐵

𝑆𝐵
 

𝑁

𝑖=1

 EQ 3 

Where 𝑋𝐴
    is the average of the values 𝑋𝐴, and SA is the standard deviation of these 

values; similarly for 𝑋𝐵
    . The values range from -1 for a completely negative 

correlation between two sets, through 0 for no correlation to +1 for perfect 

correlation. The Pearson correlation coefficient measures distance in terms of the 

shape of the patterns, and not in absolute values. Therefore it identifies two genes or 

proteins as similar if their expression pattern across samples is similar.  

Figure 2 shows the effect of using different distance measures to interpret an 

experiment comparing gene expression patterns of four genes measured on four 

consecutive days. In this case all the gene expression levels are used to define all pair 

wise gene expression distances. In the dendogram (B) genes labeled with ‘up’ and 

‘down’ are clustered together since their absolute values across all samples are 

similar. In contrast, dendogram (C) clusters genes with similar trends; ‘up’ and 

‘extreme_up’ as opposed to ‘change’ and ‘down’. 

When discussing the Euclidean distance measure a problem was mentioned in that 

the different genes are treated equally even though some may show much greater 

absolute variations than others. The contribution of these genes to Euclidean 

calculation is huge. In other words, the larger expression values have larger inter-
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sample differences, so they will dominate in the calculation of Euclidean distances. 

One way to overcome this problem is to balance out the contributions using weighted 

Euclidean distance. This is called ‘Chi-square’ distance and the definition between two 

samples A an B is given by 

𝐶𝐴𝐵 =  
 (𝑋𝑖,𝐴 − 𝑋𝑖,𝐵)2𝑁

𝑖=1

𝑋.𝑁
 EQ 4 

where 𝑋.𝑁 is the average row profile.  

In chi-square distance, the division of each squared values by the row profiles (relative 

frequency distributions of the genes for each sample) is denoted as “variance 

standardization" and compensates for the larger variance in high frequencies and the 

smaller variance in low frequencies. Without such standardization, the differences 

between larger proportions would tend to be large and thus dominate the distance 

calculation, while the differences between the smaller proportions would tend to be 

filled up. The advantage of using Chi-square distance is that, it satisfies the principle 

of distributional equivalence. If two profiles are identical, they can be combined into 

one without affecting the result for the other profiles. In the case of large microarray 

datasets it may often be expedient to combine variables (e.g. genes) having almost 

identical profiles, thus making it easier to interpret the results. This stability in 

distances is a unique property of the chi-square measure.  

2.3.1.2 Quality assessment 

Many heuristic approaches compare the quality of the clustering results for different 

numbers of clusters [61-65]. Moreover, many solutions to systematically evaluate the 

quality of the clusters have been reported [66-68]. The estimation of the number of 

clusters in a dataset is a major problem in unsupervised learning. The applications of 

several validation techniques such as Silhouette values [69], Dunn’s based index [70] 

and Davies-Bouldin index [71] have been previously studied [63, 66, 67]. It has been 

shown that the Silhouette method [69] is suitable for estimating the best partition. 



Single species microarray analysis 

24 

 

  

It has been successfully used in combination with other validation techniques (Dunn’s 

and Davies-Bouldin indices) for predicting different optimal clustering partitions [66]. 

The silhouette value is a measure of how similar an object (e.g. gene or sample) is to 

other objects in its own cluster compared to objects in other clusters. It is defined as 

A)Expression patterns

 

 

B) Euclidean 
 

C) Pearson 

Figure 2. Clustering with different distance measures.  

Four samples are analyzed from a time series experiment in which microarray were used to 

compare gene expression patterns in four consecutive days. The genes are labeled from 

‘down’ to ‘extreme high’ and marked with colors. Panel A) Shows the expression patterns of 

all genes measured in four days. In (B) Euclidean distance is used, whereas in (C) Pearson 

correlation coefficient.  
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𝑆(𝑖) =
min {𝑏 𝑖, 𝑘 −  𝑎 𝑖 }

max 𝑎 𝑖 , min(𝑏 𝑖, 𝑘 ) 
 EQ 5 

where a(i) is the average distance from the ith object to the other objects in its 

cluster, and b(i) is the average distance from the ith object to objects in another 

cluster K. Silhouette values ranges from -1 to 1. Average silhouette width of all objects 

can be used to score a clustering of n clusters. A score with S(i) close to 1 indicate a 

good clustering result, whereas -1 shows the clustering to be unsuccessful. Comparing 

Silhouette scores of repeatedly performed clustering over various n can reveal the 

optimal number of clusters that can be discriminated on the datasets under study. 

2.3.2 Dimension reduction 

Several measurement techniques such as DNA microarrays and mass spectrometers 

can measure levels of thousands of mRNAs or proteins in hundreds of samples. Such 

high-dimensionality makes visualization of features (genes, proteins or samples) 

difficult and limits simple exploration of the data. Dimension reduction techniques 

can be used to reduce the dimensionality, making it possible to project features into 

low dimensional subspaces. For example, given an original dataset, one can represent 

genes as numerical vectors with the number of elements of each vector being the 

number of samples. Therefore those vectors could be plotted as points in sample 

dimensional space, if only the number of dimensions were small enough to visualize. 

Dimensionality reduction techniques can be used to project these points into a two or 

three dimensional subspace so that they can be plotted.  

Figure 3 shows an example of the above mentioned genes as vectors in sample space. 

Vice versa, the columns of the data table (samples) can be represented in gene space. 

Such a projection plot is an explorative way to visualize the underlying structure of a 

data set and can be used to visually assess classes or groups of objects. It also allows 

visual judgment of the number of clusters.  
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There are two main categories of approaches for dimensionality reduction. The first 

one is to obtain a reduced number of new features by combining the existing ones, 

e.g., by computing a linear combination. Principal component analysis (PCA) is one 

particular method. The second type of dimensionality reduction involves feature 

selection that seeks subsets of the original features that are adequately predictive. 

 

 

Figure 3. Projection of an expression matrix. 

The three columns of an expression matrix of two genes three samples are represented in 3-

dimensional gene space (for simplicity). Typical microarrays dataset consist of a few hundreds 

of samples and several thousands of genes. 
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2.3.2.1 Principal Component Analysis  

Principal component analysis (PCA) is a mathematical algorithm that reduces the 

dimensionality of the data while retaining most of the variation in the data set. It 

accomplishes this reduction by identifying directions, called principal components, 

along which the variation in the data is maximal. By using a few components, each 

sample can be represented by relatively few numbers instead of by values for 

thousands of variables. Samples can then be plotted, making it possible to visually 

assess similarities and differences between samples and determine whether samples 

can be grouped. 

In order to explain PCA with simple geometrical interpretations, let us assume an 

example of microarrays measured the expression levels of 27,648 genes in 105 breast 

tumor samples [72]. The gene expression data set is available through the Gene 

Expression Omnibus database (accession no. GSE5325). This dataset is used to 

demonstrate how PCA can represent samples with a smaller number of genes, 

visualize samples and genes, and detect dominant patterns of gene expression. In 

order to simplify plotting the breast cancer samples according to their expression 

profiles, let us take only two genes ‘GATA3’ and ‘XBP1’ (Figure 4a). Breast cancer 

samples are classified as being either positive or negative for the estrogen receptor. 

These genes have been selected since their expression is known to correlate with 

estrogen receptor status [72]. 

PCA identifies new features, the principal components, which are linear combinations 

of the original features. The two principal components for the two-dimensional gene 

expression profiles are shown in (Figure 4b). The first principal component is the 

direction along which the samples show the largest variation. The second principal 

component is the direction uncorrelated to the first component along which the 

samples show the largest variation. If data are standardized such that each gene is 

centered to zero average expression level, the principal components are normalized 

eigenvectors (See EQ 6) of the covariance matrix of the genes and ordered according 
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to how much of the variation present in the data they contain. Each component can 

then be interpreted as the direction, uncorrelated to previous components, which 

maximizes the variance of the samples when projected onto the component. Here, 

genes were centered in all examples before PCA was applied to the data (Figure 4b). 

The dimensionality of two-dimensional expression profiles can be reduced to a single 

dimension by projecting each sample onto the first principal component (Figure 4c). 

This one-dimensional representation of the data retains the separation of the samples 

according to estrogen receptor status. The projection of the data onto a principal 

component can be viewed as a gene-like pattern of expression across samples, and 

the normalized pattern is sometimes called an eigengene. So for each sample-like 

component, PCA reveals a corresponding gene-like pattern containing the same 

variation in the data as the component. Moreover, provided that data are 

standardized so that samples have zero average expression, the eigengenes are 

eigenvectors to the covariance matrix of the samples.  

The calculation of PCA is the diagonalization of a data matrix, X. If an experiment 

consists of N genes or proteins and M different samples, X will be an N × M matrix. A 

row of this matrix corresponds to a gene and a column represents a sample. A matrix 

 

Figure 4. Principal component analysis of an expression dataset. 

a) Each dot shows a sample plotted against its expression levels for two genes. (Samples are 

colored according to estrogen receptor (ER) status: ER+, red; ER-, black). (b) PCA identifies the two 

principal components (PC1 and PC2) along which the data have the largest divergence. (c) Samples 

plotted in one dimension using their projections onto the first principal component (PC1) for ER+, 

ER-, and all samples separately. 
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element 𝑋𝑖,𝐴  is the expression of gene i under condition A. In the calculation, matrix X 

will be re-expressed as a product of three new matrices:  

𝑋 = 𝑈 𝜀  𝑉T  EQ 6 

The outcome of the calculation is two sets of M principal components, one set for the 

genes (referred as eigengenes) and one set for samples (eigensamples). The 

expression level of every gene in an eigensample is given in matrix U, and expression 

level of every eigengene in each sample is given in matrix 𝑉𝑇 . The first is a matrix, U 

that is also N×M; the second, ε, is a square matrix of dimensions M × M (assuming 

that M<N); and the third, 𝑉𝑇  is of dimensions M×M. The Ath eigengene is only 

expressed in the Ath eigensample, with the eigenexpression level 𝜀𝐴. Each eigenvector 

defines a principal component. The expression data can then be plotted for each 

gene/protein i along the axis defined by pth principal component.  

2.3.2.2 Correspondence Analysis 

Correspondence Analysis (CA) additionally captures the correspondence between 

columns and rows (samples and genes). It is conceptually similar to PCA, but scales 

the data so that rows and columns are treated equivalently, thus visualizing genes and 

samples at the same time (Figure 20). Whilst, as with PCA, similarity among genes as 

well as similarity among samples is depicted as proximity, a gene that is particularly 

up-regulated under a certain condition will be located in the direction of this 

condition. The farther away from the centroid in this direction (towards the outer 

margin of the plot) it is displayed, the stronger the association [73, 74]. 

2.4 Mechanistic analysis 

Biology has undergone a transition from focusing on single components of cells, such 

as single gene, RNAs and proteins, to the analysis of relationships and interactions 

between these parts. The traditional approach of molecular biology breaks up a 

system into its various parts, analyzes each part in turn, to gain knowledge about the 
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system. In contrast, systems biology aims at understanding and modeling the entire 

system quantitatively, proposing that the system is more than the sum of its parts 

and can only be understood as a whole. 

Gene regulatory networks explain which genes are to which extent transcribed to 

RNA, which in turn functions as a template for protein synthesis. High throughput 

experimental techniques to measure RNA and protein concentrations enable new 

approaches to the analysis of such networks. The analysis of these data requires 

techniques particularly designed for the task. Starting with models which allow for 

qualitative statements only, in recent years there are methods to describe the 

dynamic response of a system in more detail.  

These models are often represented as graphs, with nodes corresponding to genes, 

and edges indicating interactions between genes. Expression measurements may 

consist of time-series gene expression data (i.e. gene expression changing dynamically 

with time) or measurements taken at steady-state in different conditions (i.e. gene 

expression levels in homeostasis). Some inference algorithms can work on both kinds 

of data, whereas others have been specifically designed to analyze one or the other. 

Depending on the inference algorithm, the resulting gene network can be either an 

undirected graph, that is, the direction of the interaction is not specified, or a directed 

graph specifying the direction of the interaction. A directed graph can also be labeled 

with a sign and strength for each interaction, where each edge has a positive, zero or 

negative value indicating activation, no interaction and repression, respectively. 

The following sections provide an overview over the field. In particular, several 

different approaches to gene regulatory network inference are presented, discussing 

their strengths and weaknesses, and providing guidelines on which models are 

appropriate under what circumstances. 

2.4.1 Boolean networks 

Boolean networks are probably the simplest models conceivable for regulatory 
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networks. They offer a binary, discrete-time description of a system. They can be seen 

as a generalization of Boolean cellular automata [75], and have been introduced as 

models of genetic regulatory networks by Kauffman [76] in 1969. Boolean networks 

assume that each gene is in one of two states, either active or inactive.  

Interactions between genes are modeled through Boolean logic functions, and 

updates are carried out simultaneously for all genes in discrete time steps. The 

updates are deterministic, and Boolean networks provide only a qualitative 

description of a system. A Boolean network can be graphically represented in several 

ways, emphasizing different aspects of the network. An example is shown in Figure 5 

for a small sample network consisting of three nodes A, B and C. In Figure 5A, pointed 

arrows indicate activation. For example, gene A will be activated if gene B is active. 

Flat arrows indicate an inhibition. For instance, gene B will be deactivated if gene A is 

active. Gene C is activated if either gene A or gene B is active, as denoted by the “or” 

symbol “⋁” in the figure. In Figure 5B, the same relationships are expressed by 

Boolean logical rules; the second line specifying B’ (i.e. the state of B in the next time 

point as a negation of A). Figure 5C shows a tabular representation of all possible 

input states and the resulting next states of the network. Figure 5D visualizes the state 

space in a graphical form, showing how the eight possible states of the network are 

interconnected. For example, if the network is in state (A = 1, B = 0, C = 0), then the 

next state of the network will be (A = 0, B = 0, C = 1). 

Recent studies show that many biologically relevant phenomena can be explained 

using the Boolean formalism [77]. Focusing on generic principles, Boolean networks 

can capture switch-like behavior, oscillations [78-80], and providing a qualitative 

description of a system [81]. 

Recent modeling results combine data from living cells with experimental techniques 

to validate genetic models, showing that such simple models can indeed predict the 

overall dynamics of a biological genetic circuit [82]. It has been shown that for 

understanding the general dynamics of a regulatory network, usually detailed 
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dynamic parameters are not needed. It is the wiring that is most important [83]. For 

instance, Albert and Othmer [84] have predicted the segment polarity network in 

Drosophila melanogaster solely on the basis of discrete binary models. Similarly, Li 

and coworkers [85] have constructed the genetic regulatory network controlling the 

yeast cell cycle using a binary model. 

A drawback of Boolean networks is that they are deterministic in nature. However, 

true biological networks are known to have stochastic (i.e. non-deterministic) 

components. For instance, proteins produced from an activated promoter in short 

bursts seem to occur at random time intervals [86]. Furthermore, we are often 

dealing with noisy inputs and experimental errors which may lead to data 

inconsistency. 

Boolean networks are attractive due to their simplicity. However, the underlying 

assumptions appear to be very strict. In particular, modeling genes as being in one of 

 
Figure 5. Different representations of Boolean networks.  

(A) Graph representation, (B) Logical Boolean rules, (C) State transition table and (D) State 

transition graph.  
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two states either ‘on’ or ‘off’, certainly is an oversimplification of a true biological 

network. Similarly, true networks are time continuous, whereas Boolean networks 

assume time discrete.  

2.4.2 Relevance networks 

While the assumption of Boolean networks is that genes can only be in one of two 

states, expressed or not expressed, relevance networks [87] look at similarity or 

dissimilarity between pairs of genes on a continuous scale. In the network inference 

context, relevance networks are often known as “correlation networks”. In this 

approach two major steps are involved:  

1. All pairs of genes are compared using some measure of similarity or dissimilarity. For 

example, pair wise correlation coefficients [88-90], or mutual information [91]. 

2. The complete set of pair wise comparisons is filtered to determine the relevant 

connections, corresponding to either positive or negative associations between 

genes. 

The resulting network can then be represented in a graphical form. This section only 

presents one representative example, the ARACNe (Algorithm for the Reconstruction 

of Accurate Cellular NEtworks) by Basso et al. [92, 93] as one of the most successful 

algorithms representing the relevance network approach. It identifies statistically 

significant gene-gene co-regulation by mutual information. Mutual information is 

estimated using Gaussian kernel estimators for discrete and continuous random 

variables [92]. Relevant edges in the network are determined by statistical test. 

Monte Carlo randomization of the data is used for the computation of p-values, and 

edges are filtered based on a p-value threshold. ARACNe simplifies the network by 

eliminating indirect relationships, in which two genes are co-regulated by one or 

more intermediary genes. This is done using the data processing inequality (DPI), 

which essentially states that if three random variables X, Y and Z depend on one 

another in a linear fashion (X → Y → Z), then the mutual information 
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M(X,Z)≤min[M(X, Y ),M(Y,Z)]. This is used to remove indirect edges X → Z from the 

network. ARACNe has been performed on microarray gene expression data from 

human B cells, reconstructing a network with approximately 129,000 interactions 

from 336 expression profiles [92]. 

Similar to Boolean networks, relevance networks are relatively simple models of gene 

regulatory networks. In contrast to Boolean networks, however, they are continuous 

models, i.e., genes can have expression values on a quantitative scale. 

One drawback of Relevance networks is that they do not consider time, and thus 

disregard any dynamic aspects of gene expression. Hence, it is not clear how to carry 

out simulations with an inferred network. Algorithms such as ARACNe are based on 

pair wise similarity only, and it may thus miss interactions between multiple genes. 

Furthermore, the choice of threshold for the inclusion of edges is arbitrary in that 

varying threshold parameters may change the network considerably. Depending on 

the similarity/dissimilarity measure used, relevance network approaches are less 

sensitive to noise.  

2.4.3 Bayesian networks 

While previously described network models assume functional dependence between 

different nodes, conditional models consider statistical correlation between genes. 

Conditional models explain the correlation between two genes by other genes in the 

network. These models are particularly simple in the Gaussian setting, since in this 

case networks can be learned from data using classical statistical tests [94]. The most 

popular conditional model is the Bayesian network, which is widely used to model 

and infer gene regulatory networks [95]. 

Bayesian networks are probabilistic models. They model the conditional dependence 

structure between genes in the network. Edges in a network correspond to 

probabilistic dependence relations between nodes (genes), described by conditional 

probability distributions. Distributions used can be discrete or continuous, and 
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Bayesian networks can be used to compute likely successor states for a given system 

in a known state. 

In a Bayesian network the probability relationship among a set of random variables Xi, 

where I = 1, … , n are encoded in the structure of a directed acyclic graph G, whose 

nodes (genes) are the random variables Xi. The relationships between the variables 

are described by a joint probability distribution P(X1, … , Xn) that is consistent with the 

independence assertions embedded in the graph G and has the form: 

𝑝 𝑋1, 𝑋2, … , 𝑋𝑛 =   𝑝(𝑋𝑖 

𝑛

𝑖=1

| 𝑝𝑎𝑟𝑒𝑛𝑡𝑠 𝑋𝑖  ) EQ 7 

 

Given a simple Bayesian network (Figure 6) with three nodes (A→C, B→A and B→C) 

the joint probability distribution is computed by: 

 

𝑝(𝐴, 𝐵, 𝐶)  =  𝑝(𝐵)𝑝(𝐴|𝐵)𝑝(𝐶|𝐴, 𝐵) EQ 8 

 

Figure 6 shows a simple Bayesian example network with three nodes A, B and C, each 

assumed to be in one of two states, either on or off. The conditional probabilities 

p(A|B), p(C|A,B) and the unconditional probability p(B) in this binary case are easily 

tabulated, as shown in the figure. Note that the probability distributions of the nodes 

in Bayesian networks can be of any type, and need not necessarily be restricted to 

discrete or even binary values as in this example. The joint distribution of a set of 

variables X1, X2, ...,Xn is the product of the local distributions described in EQ 7.  For 

example, the joint probability that all nodes are on is p(A = on, B = on, C = on) = p(B = 

on)p(A = on|B = on)p(C = on|A = on, B = on) = 0.2 × 0.2 × 0.0 = 0.0. It is important 

to mention at this point that the joint probability distribution can only be resolved 

this way if the network does not contain any ‘directed’ cycles.  
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In order to reversely engineer a Bayesian network model of a gene network, the 

directed acyclic graph G (i.e. the regulators of each transcript) must be found that best 

describes the gene expression data D, where D is assumed to be a steady-state data 

set. This is performed by choosing a scoring function that evaluates each graph G with 

respect to the gene expression data D, and then searching for the graph G that 

maximizes the score. 

The score can be defined using the Bayes rule: 𝑃 𝐺   𝐷) =
𝑃 𝐷 𝐺  𝑃(𝐺)

𝑃(𝐷)
, where P(G) is 

‘prior probability’, that does not take into account any information about D, and can 

either contain some apriority knowledge on network structure, if available, or can be 

a constant non-informative prior. P(D|G) is the conditional probability of D, given G. 

That is a function to be chosen by the algorithm that evaluates the probability that 

the data D has been generated by the graph G. The most popular scores for the 

likelihood are Bayesian Information Criteria (BIC) or Bayesian Dirichlet equivalence 

 

Figure 6. Sample Bayesian network with three nodes, two states.  

There are two possible states (ON or OFF). Given next to each node are the conditional 

distributions for the node, conditioned on its parents, as indicated by the arcs. For 

example, the probability that A is off given that B is on, p(A = off|B = on) is 0.8. 
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(BDe).  

BIC performs a search through the space of possible networks and scores each 

structure. The aim is to identify the network with the maximum score. A variety of 

search strategies can be used, the simplest being a greedy hill-climb. The search 

begins with an empty network. At each stage of the search, networks in the current 

neighborhood are found by applying operators such as ‘add edge’, ‘remove edge’ and 

‘reverse edge’ to the current network. This may overfit the data because any edge 

which improves the fit will be added, and so the measure tends to make the graph 

too dense. Therefore a penalty can be introduced to prevent overfitting. BIC function 

is a combination of the model log-likelihood and a penalty term that favors less 

complex models. The BIC is shown in EQ 9. 

𝐵𝐼𝐶 =  −2 𝑙𝑜𝑔 𝑝 𝐺 𝐷 +  𝑘𝑙𝑜𝑔(𝑛) EQ 9 

In the above equation, n is the number of observations (sample size) and k is the 

number of parameters. 𝑙𝑜𝑔 𝐺 𝐷  is the log-likelihood while the term 𝑘𝑙𝑜𝑔(𝑛) is the 

penalty term.  

BDe is a multinomial distribution that describes the conditional probability of each 

node in the network. Because there are so many possible graphs, this usually needs 

to be calculated using a Monte Carlo search method. 

log p 𝐺 𝐷 = log  𝑝 𝐷 𝐺, 𝜃 𝑝 𝜃 𝐺 𝑑𝜃 EQ 10 

In EQ 10, θ denotes the parameter for the conditional probability distribution for 

graph G. Both scores incorporate a penalty for complexity to guard against over-

fitting of data. BDe substantially outperforms the BIC when the training data is 

limited. This is because the BIC over penalizes complexity relative to the BDe. Training 

data for GRN inference is typically very limited. 

In Bayesian networks, several high-scoring networks are found. One can use model 

averaging or bootstrapping to select the most probable regulatory interactions and to 

obtain confidence estimates for the interactions. Alternatively, one can augment an 
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incomplete data set with prior information to help select the most likely model 

structure.  

Bayesian networks can deal with noisy data and stochastic aspects of gene expression 

in a natural way [86, 96], and they are extendable to deal with missing data [97]. 

Furthermore, they provide an intuitive and simple visualization of the conditional 

dependence structure in given data, and are much easier for humans to understand 

than conditional distributions. At the same time, depending on the probability 

distributions used (continuous or discrete), they can model quantitative aspects of 

gene regulatory networks. Bayesian networks have been used to e.g., infer regulatory 

interactions of the yeast cell cycle [13, 98]. 

Since learning Bayesian networks is NP-hard, heuristic search methods have to be 

used, which do not guarantee that the globally optimal solution is found [96]. 

Probably their main disadvantage is that they disregard dynamic aspects, and require 

the network structure to be acyclic, since otherwise the joint distribution cannot be 

decomposed as in equation EQ 7. Moreover, feedback loops are known to play key 

roles in causing certain kinds of dynamic behavior such as oscillations or multi-

stationary [13, 79, 80, 99, 100], which cannot be captured by the Bayesian network 

model.  

2.4.4 Dynamic Bayesian networks 

Efforts have been made to overcome these limitations of Bayesian networks. Bayesian 

networks can be extended to capture the dynamic aspects of regulatory networks by 

assuming that the system evolves over time. Thus, gene expression can be revealed as 

a time series, considering different vectors X(1), ...,X(T ) at T consecutive time points. 

One can assume that a variable Xi(t) of a particular gene i at time t can have parents 

only at time t-1. Thus the cycles in the Bayesian network unroll, the resulting network 

becomes acyclic and the joint probability in EQ 8 becomes tractable again. The 

resulting networks are called Dynamic Bayesian Networks [39, 101]. 
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Dynamic Bayesian Networks can handle noisy data to capture the architecture of 

regulatory networks from microarray data [102, 103]. These models have been 

combined with hidden variables to capture non-transcriptional effects [38]. Similarly, 

aiming at the integration of information from additional data sources into the 

Bayesian network learning process, Bernard and Hartemink [104] include 

transcription factor binding location data through the prior distribution, while 

evidence from gene expression data is considered through the likelihood. 
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3 SINGLE SPECIES EXAMPLE 1: SULFITE 

REDUCTASE ACTIVITY IN ARABIDOPSIS 

THALIANA  

A common goal in DNA microarray experiments is to identify those genes that are 

significantly expressed at different levels in different samples. This involves 

comparing the expression levels of genes for different phenotypic groups (treated, 

disease tissue versus normal) in order to discover the genes that best distinguish the 

groups. For example, the data may represent samples treated with two different 

drugs to investigate different responses to disease and normal tissues. The question 

to be asked is: “Which genes best distinguish the various classes in the data?” The 

goal is to identify those genes that are most informative for distinguishing the 

samples based on classes. 

This section presents a procedure for statistical inference using linear models along 

with an appropriate interpretation of a set of microarray experiments on the sulfur 

metabolism of Arabidopsis Thaliana. Experimental and computational results 

presented in this section have been published in The Plant Cell [105]. 

3.1 Introduction 

3.1.1 Statistical tests 

The simplest technique to identify differentially expressed genes is to look at the 

ratios of expression in different samples. A gene with a ratio exceeding a given 

threshold can be considered as differentially expressed. A threshold is often set to 

two-fold change. The larger the threshold, the more confident the assignment, but 
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also the more differentially expressed genes will be missed. On the other hand, if a 

low threshold is applied more differentially expressed genes will be identified, but 

with greater probability of false-positives. There is a wide variety of statistical tests 

can be applied to this question, including t-tests (for two classes) and analysis of 

variance (ANOVA; for three or more classes) that assign p-values to genes based on 

their ability to distinguish between groups. The benefit of using such tests is that they 

provide a quantitative measure of the significance of the difference.  

A major problem of identifying differentially expressed genes (DEG) across specified 

conditions in microarray experiments is that the classical distribution assumptions do 

not usually hold and in most expression experiments the small numbers of 

measurements prevent the assumption being properly tested. There are tests that do 

not rely on any distribution assumptions. The standard nonparametric statistical test 

that is equivalent of the t-test for parametric data is Mann-Whitney or Wilcoxon test 

and empirical Bayes approach. Another method is the Significance Analysis of 

Microarrays (SAM) [106], which uses the gene expression measures to estimate the 

significance by means of permutation test. A permutation test randomly swaps 

measurements between different groups obtaining the distribution of the test 

statistic from the data observed. Each time, a value for the test statistic (t) is 

calculated. Total number of times, by chance, a value for t occurs that is equal to or 

more than that measured for the real data, allows estimating of the probability that 

the dataset shows a significant separation between the classes.  

Linear statistical models, among other techniques, are often used to overcome 

distribution assumptions by capturing the variation specific to all genes. A linear 

statistical model is an algebraic equation containing the variables whose parameters 

are to be estimated from the mean gene expression values. Once the linear model 

has been fitted to the data, residuals (the part of the intensity values that are not 

explained by the model) can be used globally for the variation of intensity specific for 

each gene. Once the individual gene model has been obtained, two types of statistical 
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hypothesis can be performed. The first hypothesis is, “Is at least one of the treatment 

levels different within this gene data set?” The second relates to testing for changes 

in expression levels of each gene in response to the specific individual treatments. 

The test statistics used to address the first question is the F-statistics that involves an 

analysis of variance (ANOVA), and t-test is often used for the second question. 

ANOVA involves estimating the mean and standard deviation for different groupings 

of data including all of the gene values and different subsets (dyes, treatments slides, 

etc). Mean square values (mean square = sum of squares of deviations of each value 

from mean divided by degrees of freedom) are then calculated for each group. If the 

mean square value for one of the groups is greater than the residual error for the 

gene then the treatment is having a greater overall effect on the intensity. In this case 

the residuals are the deviations of the observations from the sample mean, not the 

population means. The F-test estimates the probability of such a variation within 

treatment effects, observed by chance (given the degree of freedom associated with 

each mean square value). 

One concern with the above statistical approaches is the problem of multiple testing. 

In most biological experiments, one measures a small number of observations across 

a relatively large number of samples. However, in most microarray experiments, 

there are thousands of gene expression levels across a relatively small number of 

samples, and this can lead to the misidentification of genes being differentially 

expressed even when they are not—the problem of false positives. 

This chapter presents the application of empirical Bayesian methods to a set of 

microarray experiments to detect response of sulfur metabolism at transcriptional 

level in Arabidopsis thaliana. The results show the performance of linear models by 

experimentally validating a set of genes that are identified as significantly 

differentially expressed genes. 
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3.1.1 Importance of sulfite reductase 

Plants take up the essential macronutrient sulfur from the soil in the form of sulfate. 

The uptake of sulfate and its subsequent assimilatory reduction into organic sulfur 

compounds proceed through a highly coordinated mechanism. First, uptake of sulfate 

is catalyzed by specific proton cotransporters in root epidermal cells. They belong to 

the group of high affinity sulfate transporters (SULTR group 1) and are inducible by 

external sulfate deprivation [107]. Internal allocation of sulfate is catalyzed by 

members of the low affinity SULTR groups 2 and 3 [108]. Next, assimilatory reduction 

of sulfate is initiated by ATP-dependent activation of sulfate to adenosine 5'-

phosphosulfate (APS) catalyzed by ATP sulfurylase (ATPS). Further activation with ATP 

is catalyzed by APS kinase and yields 3'-phosphoadenosyl-5'- phosphosulfate (PAPS). 

APS kinase is present in plastids and the cytosol to provide PAPS for sulfation 

reactions by sulfotransferases [109]. 

APS reductase (APR) in plastids from Arabidopsis thaliana and other plants strongly 

prefers APS instead of PAPS as a substrate, its expression responds to sulfate and 

nitrate availability, and a number of stress factors result in regulation of its activity 

[110]. In addition, flux analysis using 35S-labeled sulfate hinted that APR, after sulfate 

uptake, exerts the strongest control over flux through the sulfate reduction pathway 

in Arabidopsis [111] and is responsible for genetically determined variation in sulfate 

content in Arabidopsis ecotypes [112]. 

In contrast with APR, the second enzyme of the free reduction pathway, sulfite 

reductase (SiR), has received little attention. Plant SiR is a plastid-localized soluble 

enzyme of two 65-kD subunits, contains a single siroheme and (4Fe-4S) cluster as 

prosthetic groups, and has a high affinity (Km
sulfite ~ 10µM) for sulfite [113]. Ferredoxin 

acts as the physiological donor of the six electrons required for sulfite reduction, 

whereas bacterial SiR uses NADPH [114]. The structure, sequence, and ligands of SiR 

in bacteria, archea, and eukaryotes are similar to those of nitrite reductase, which 



Sulfite reductase activity in Arabidopsis Thaliana  

45 

 

catalyzes an equivalent reduction step in nitrate assimilation (i.e., a six-electron 

reduction of nitrite to ammonia) [115]. In Arabidopsis, SiR shows 19% identity with 

nitrite reductase (NiR) at the amino acid level. Phylogenetic analysis showed that 

both SiR and NiR arose from an ancient gene duplication in eubacteria, before the 

primary endosymbiosis that gave rise to plastids [116]. SiR is able to reduce nitrite as 

well as sulfite, and substrate preferences can be converted by a single amino acid 

mutation [113].  

SiR is encoded by the only single-copy gene in primary sulfur metabolism in 

Arabidopsis, whereas the rice (Oryza sativa) and poplar (Populus spp) genomes each 

contain two copies [117]. It is expressed in nearly all tissue types and shows the least 

transcriptional responses among sulfur-related genes in Arabidopsis in classical 

sulfate starvation experiments or under other stress conditions, according to a survey 

in microarray databases [118]. Expression changes were observed after treatment 

with SO2 [119], but these were not translated into significant changes of SiR enzyme 

activity under similar conditions [120]. Activity of SiR is generally believed to be 

maintained in excess to scavenge potentially toxic sulfite [117], based on flux control 

and APR over-expression experiments in Arabidopsis and maize [121]. However, the 

bulk of sulfite is normally channeled into the assimilatory reduction pathway for 

sulfur amino acid and protein biosynthesis. 

Here, we investigated two Arabidopsis lines with T-DNA insertions in the promoter 

region of SiR. Mutant line sir1-2 is early seedling lethal and unequivocally 

demonstrates that the free sulfate reduction pathway is essential for survival and 

cannot be compensated for by any other enzymatic process. In mature leaves, 

mutant sir1-1 has 28% of SiR activity and 3.6% of flux in the assimilatory reduction 

pathway in vivo compared with the wild type. sir1-1 has a strongly retarded growth 

phenotype, showing that in contrast with general assumptions, SiR can easily become 

limiting for growth. sir1-1 mutant plants are sensitive to cadmium due to lack of GSH 

for phytochelatin synthesis. Carbon, nitrogen, and sulfur composition are severely 
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altered with a shift toward carbon-bound reduced nitrogen, indicating that lowered 

sulfite reduction leads to comprehensive reprogramming of primary metabolism.  

3.2 Methods 

3.2.1 Analysis of transcript levels 

Microarray and qRT-PCR experiments were performed by the group of Professor Dr. 

Rüdiger Hell, Heidelberg Institute for Plant Sciences, University of Heidelberg. The 

microarray datasets have been deposited in the Gene Expression Omnibus under the 

series number GSE20670. 

For qRT-PCR and microarray analyses, RNA was isolated from 200 mg leaf material of 

7-week-old soil-grown homozygous sir1-1 and Col-0 plants with the RNeasy kit 

(Qiagen) according to manufacturer’s protocol. For microarray analyses of transcript 

levels of 1920 selected genes, the RNA was converted to cDNA, hybridized with a 

custom-made microarray, and evaluated as described by [122]. The transcript levels 

of sulfur metabolism related genes in leaves of sir1-1 and wild-type plants (Col-0) 

grown on soil under short-day conditions for 7 weeks were compared using a 

targeted microarray approach. Total mRNA was extracted from three individuals of 

each plant line, labeled independently two times with Cy3 and Cy5, and hybridized 

with the microarray twice (n = 12). Data were normalized and examined for statistical 

significance as described in section ‎3.2.2.  

Abundances of selected transcripts were independently confirmed from the same 

RNA preparation by qRT-PCR after cDNA conversion with the SuperScript VILO cDNA 

synthesis kit (Invitrogen). The qRT-PCR reaction was set up by mixture of 10 ng of 

freshly synthesized cDNA with 1.6 pmol of each specific primer in onefold EXPRESS 

Two-Step SYBR GreenER Universal mixture (Invitrogen). The reaction was performed 

in the LightCycler 480 (Roche Diagnostics) according to the EXPRESS Two-Step SYBR 

GreenER protocol and evaluated with Light-Cycler software 4.0 (Roche Diagnostics) 
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using elongation factor 1a (EF1a) as reference for normalization. Each analysis 

consisted of three biological replicas. Each replica was tested three times, and this 

test was repeated once (i.e., n = 6 per replica). 

3.2.2 Preprocessing and statistical analysis 

The microarray data sets were analyzed with M-CHiPS software [74]. Signal intensities 

were normalized by log-linear regression as described [74]. All hybridizations showed 

correlation coefficients higher than 0.8 between the two channels.  

The normalized data were used to compute p-values. A contrast matrix which defines 

the comparisons of interest between samples in the experiment was set up (as 

described in section ‎3.2.3) to test differential expression across all samples. 

Regression coefficients were estimated using a least squares linear model fitting 

procedure and tested for differential expression with moderated Student's t-statistic 

via the empirical Bayesian statistics described in the limma package [123]. P-values 

computed for the F-statistic were adjusted for multiple testing to control the FDR at 

5% [124]. The adjusted p-values can serve to accept or reject the null hypothesis 

based on a significance level. Genes showing intensity levels of more than 1000 in at 

least one of the conditions and also exhibit p-values smaller than 0.05, were selected 

as differentially expressed genes. 

3.2.3 Statistical computations 

In order to detect which treatment is responsible for the difference in expression 

level between each sample a complete pair wise comparison was performed as 

follows: Let ygj be the expression values for genes g = 1,...,G and arrays j = 1,...,J, pre-

processed, background-corrected and normalized, then systematic effect for each 

gene by a linear model E(yg) = Xβg, where yg = (yg1, ...,ygJ)
T is the vector of expression 

values for gene g, X is a known design matrix and βg = (βg1,...,βgK)T is a gene-specific 

vector of regression coefficients. The design matrix depends on the experimental 
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design and choice of parameterization, and the regression coefficients represent 

comparisons of interest between measurements in the experiment. These coefficients 

were estimated with the least squares linear model fitting procedure of the 

Bioconductor package limma [123] and tested for differential expression (testing any 

particular βgk equal to 0) with moderated Student's t-statistics [123]. I accepted or 

rejected (equal means for all groups) the null hypothesis on the basis of P-values 

computed for the omnibus F-statistic via limma as described above, at a specified 

significance level.  

3.2.4 FDR adjustment 

The adjustment performed here is based on a method developed by Benjamini and 

Hochberg [124] called FDR. The FDR is based on certain statistical considerations. In 

statistical inference, there is often concern for minimizing the risk associated with 

choosing one hypothesis over the other. The risk generally minimized is the type I 

error, known as ‘false positive’. That is, the probability of falsely rejecting the null 

hypothesis when the null hypothesis is actually true. The 0.05 level for p-values has 

historical significance and corresponds to the probability of making a type I error that 

is 5% of all experiments of the same size and type performed by the experimenter. 

The null hypothesis will at least once be falsely rejected when in reality the null 

hypothesis is true. Each time the hypothesis test is applied, there is a risk of making 

the type I error, and the probability of that accumulates the more hypotheses that 

are tested. This means that type I error rate for the overall experiment utilizing all 

genes could be much higher than 5%, even though each test was controlling the type 

I error at the 5% level. These P-values, with appropriate multiple testing adjustment to 

control the False Discovery Rate (FDR) at 5% [124], allow us to identify differentially 

expressed genes. 
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3.3 Results and discussion 

The impact of reduced SiR activity on the transcription of sulfur metabolism-related 

genes in leaves of 7-week-old soil-grown plants was investigated with microarrays 

carrying 1920 genes related to primary metabolism and stress responses as described 

by Haas et al. [122].  

Based on three biological repetitions of the wild type and sir1-1 with four technical 

replicates, each including dye swaps for each set, 67 genes were found to be 

significantly up- or downregulated in the leaves of hydroponically grown sir1-1 plants 

compared with Col-0 according to p-values of <0.05. Most regulated genes were 

related to redox homeostasis (20), while genes of sulfur metabolism (11), pathogen 

resistance (11), glucosinolate synthesis (10), hormone synthesis and signaling (5), GSH 

transfer activity (4), sulfur-induced nonsulfur genes (3), and amino acid synthesis (3) 

were also found to be significantly changed in abundance (Table 1). Figure 7 gives an 

overview of the top 67 differentially expressed genes. It shows the fold changes 

versus a measure of statistical significance of the changes.  

Two independent Arabidopsis T-DNA insertion lines, further annotated as sir1-1 and 

sir1-2, were identified in the GABI-Kat collection center. In both lines, the T-DNA was 

inserted in the promoter region of SiR (Figure 8A). Flanking sequences of the T-DNA 

were PCR amplified and sequenced to characterize the insertion sites [105]. 

Quantitative real-time PCR (qRT-PCR) detected successful transcription initiation 

corresponding to 14% of mature SiR transcript in the early seedling stage that may 

account for embryo development and germination of sir1-2 (Figure 8C). For genetic 

complementation, the heterozygous sir1-2 plants were transformed with a construct 

that expressed the SiR cDNA along with its plastid transit peptide under control of the 

constitutive 35S cauliflower mosaic virus promoter. The phenotype of sir1-2 was 

completely restored (Figure 8B), demonstrating that the loss of function of SiR was 

the cause of the early seedling lethality observed in the homozygous sir1-2 plants.  
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Table 1. Significantly regulated transcripts in leaves of 7 week old sir1-1plants.  

MIPS NCBI ID Description MF* col-0 MF  sir change Change  
in % 

p-value 
AT5G04590 GeneID:830336 SiRSulfur‐metabolism 16134 5008 -3.22 31.1 0 
At5g24770 GeneID:832546 VEGETATIVE STORAGE PROTEIN 2Sulfur‐induced 2675 30425 11.37 1137.0 0.001 
At5g24780 GeneID:832547 VEGETATIVE STORAGE PROTEIN 1Sulfur‐induced 2104 18883 8.98 898.0 0.001 
AT1G19670 GeneID:838554 Chlorophyllasepathogens‐related 6112 13274 2.17 217 0.002 
At5g43780 GeneID:834400 APS4Sulfur‐metabolism 3554 1932 -1.84 54.3 0.003 
At3g19710 GeneID:821508 branched‐chain amino transferaseGlucosinolat‐synthesis 5594 9639 1.72 172.0 0.004 
At5g26000 GeneID:832669 myrosinaseGlucosinolat‐synthesis 5726 9084 1.59 159.0 0.004 
At5g06290 GeneID:830517 2‐Cys Prx BREDOX 42866 31255 -1.37 73.0 0.004 
At3g57260 GeneID:824893 PR2REDOX 18484 10710 -1.73 57.8 0.004 
At2g44290 GeneID:819037 Lipid transfer proteinREDOX 6112 3441 -1.78 56.2 0.004 
At4g03060 GeneID:828102 AOP2Glucosinolat‐synthesis 1948 2476 1.27 127.0 0.006 
AT1G75040 GeneID:843842 PR5pathogens‐related 6586 4134 -1.59 62.9 0.006 
AT3G44300 GeneID:823555 nitrilaseAuxin‐Biosynthese 6014 9007 1.5 150.0 0.006 
AT3G20770 GeneID:821625 ETHYLENE‐INSENSITIVE3pathogens‐related 9919 6722 -1.48 67.6 0.007 
At4g02520 GeneID:827931 ATGST F2GSH‐Transfer 33328 15340 -2.17 46.1 0.009 
AT4G16860 GeneID:827395 RPP4pathogens‐related  7455 4951 -1.51 66.2 0.009 
AT5G15230 GeneID:831375 gibberellin‐regulated (GASA4)Hormon induced/related 2778 3778 1.36 136.0 0.01 
AT2G06050 GeneID:815160  OPR3pathogens‐related  2692 3296 1.22 122 0.011 
At2g05380 GeneID:815086 glycine‐rich proteinREDOX 19826 16057 -1.23 81.3 0.012 
AT4G16950 GeneID:827403 RPP5pathogens‐related  16675 10827 -1.54 64.9 0.012 
AT4G12470 GeneID:826859 lipid transfer protein family proteinSulfur‐induced 3877 3121 -1.24 80.6 0.014 
At1g24100 GeneID:839022 glucosyl transferaseGlucosinolat‐synthesis 3025 3591 1.19 119.0 0.016 
At4g31870 GeneID:829316 AtGpx7REDOX 9410 7139 -1.32 75.8 0.017 
At5g10180 GeneID:830882 Sultr2;1 Sulfur‐metabolism 3738 2728 -1.37 73.0 0.018 
At2g29580 GeneID:817507 zinc finger family protein REDOX 4009 3118 -1.29 77.5 0.018 
At2g25080 GeneID:817046 putative glutathione peroxidase AtGpxGSH‐Transfer 13950 9001 -1.55 64.5 0.021 
At4g13770 GeneID:827011 cytochrom P450Glucosinolat‐synthesis 7864 12020 1.53 153.0 0.022 
At1g16400 GeneID:838210 cytochrom P450. CYP79F2Glucosinolat‐synthesis 2083 2957 1.42 142.0 0.022 
At4g03520 GeneID:825653 ThioredoxinREDOX 19556 13243 -1.48 67.6 0.022 
AT3G25250 GeneID:822119 OXI1REDOX 2742 1716 -1.6 62.5 0.022 
At2g14610 GeneID:815949 PR1 REDOX 2742 1716 -1.6 62.5 0.022 
At5g18170 GeneID:831935 glutamate dehydrogenaseamino acid synthesis 3356 2820 -1.19 84.0 0.022 
AT3G44310 GeneID:823556 NIT1Auxin‐Biosynthese 7552 9348 1.24 124.0 0.022 
AT4G24620 GeneID:828564 Phosphoglucose isomerase Asc‐biosynthesis 5388 4293 -1.26 79.4 0.022 
At2g02930 GeneID:814822 putative glutathione S‐transferaseGSH‐Transfer 3718 2873 -1.29 77.5 0.024 
AT1G59870 GeneID:842281 ATP binding cassette transporterpathogens‐related  21777 15576 -1.4 71.4 0.024 
At2g43570 GeneID:818959 chitinaseREDOX 3112 2681 -1.16 86.2 0.025 
AT3G44480 GeneID:823573 RPP10pathogens‐related 6297 4170 -1.51 66.2 0.025 
At3g11630 GeneID:820335 2‐Cys Prx AREDOX 33458 23286 -1.44 69.4 0.027 
At5g25980 GeneID:832667 myrosinaseGlucosinolat‐synthesis 35276 56689 1.61 161.0 0.03 
At1g54040 GeneID:841842 epithiospecifier protein.Glucosinolat‐synthesis 2408 2751 1.14 114.0 0.03 
AT3G22740 GeneID:821845 AtHMT‐3Sulfur‐metabolism 1580 1937 1.23 123.0 0.03 
AT1G13420 GeneID:837902 Sulfotransferase family proteinSulfur‐metabolism 12743 8940 -1.43 69.9 0.03 
At2g32880 GeneID:817849 MATH domain‐containing proteinREDOX 2032 2324 1.14 114.0 0.03 
At5g63030 GeneID:836423 GlutaredoxinREDOX 3430 2900 -1.18 84.7 0.03 
AT2G41680 GeneID:818766 dihydrolipoyl dehydrogenase REDOX 12743 8940 -1.43 69.9 0.03 
At1g72260 GeneID:843558 THI2.1pathogens‐related  1486 1767 1.19 119 0.031 
At5g44070 GeneID:834430 Phytochelatin synthaseSulfur‐metabolism 4958 4081 -1.21 82.6 0.032 
At2g47880 GeneID:819400 GlutaredoxinREDOX 2618 4220 1.61 161.0 0.032 
AT4G01850 GeneID:826987 SAM2 Sulfur‐metabolism 5572 6779 1.22 122.0 0.033 
At5g05730 GeneID:830457 ASA1amino acid synthesis.  4182 3420 -1.22 82 0.033 
At4g39540 GeneID:830108 shikimate kinase ‐ like proteinamino acid synthesis 3686 2922 -1.26 79.4 0.033 
AT4G14560 GeneID:827103 auxin induced gene (IAA1)Hormon induced/related 3725 2836 -1.31 76.3 0.033 
At3g56060 GeneID:824772 mandelonitrile lyase‐like proteinGlucosinolat‐synthesis 3126 2400 -1.3 54.3 0.034 
At1g62180 GeneID:842514 APR2Sulfur‐metabolism 6278 5390 -1.16 86.2 0.034 
At2g03980 GeneID:814924 hydrolase family proteinREDOX 2887 3421 1.18 118.0 0.034 
At2g29450 GeneID:817494 ATGST U5GSH‐Transfer 4869 7458 1.53 153.0 0.035 
AT2G25450 GeneID:817083 similar to ACC oxidase Sulfur‐induced 6902 11797 1.71 171.0 0.036 
At1g03680 GeneID:839436 ThioredoxinREDOX 21720 18502 -1.17 85.5 0.038 
At1g66100 GeneID:842924 THI1.1pathogens‐related 3790 5138 1.36 136 0.038 
AT5G13160 GeneID:831155 AVRPPHB SUSCEPTIBLE 1pathogens‐related 2697 2342 -1.15 87 0.038 
At3g54660 GeneID:824631 Glutathione Reductase IREDOX 7168 6124 -1.17 85.5 0.039 
At2g22330 GeneID:816765 cytochrome P450 CYP79B3Glucosinolat‐synthesis 1627 1829 1.12 112.0 0.04 
ATCG01270 GeneID:668617 chloroplast encoded hypothetical proteSulfur‐induced 15336 9567 -1.66 2.5 0.042 
At5g65720 GeneID:836701 cysteine desulfhydrylaseSulfur‐metabolism 3258 2731 -1.19 84.0 0.043 
At4g23150 GeneID:828414 pad2 regulatededREDOX 1753 1587 -1.1 90.9 0.047 
AT3G56300 GeneID:824797 Cysteinyl‐tRNA synthetaseSulfur‐metabolism 37265 29949 -1.24 80.6 0.048 

The table represents significantly up-(white) and down-regulated (red) transcript levels in leaves of sir1-1in 

comparison to the wild type (Col-0). MIPS code (unique identifier of genes in Arabidopsis thaliana), NCBI 

GeneID (unique identifier of cDNAs), description (common name or function of gene product),Category 

(classification in metabolic network), MF ( Median fitted raw data sets), Change (difference in transcript level 

in x-fold of wild type), Change in % of wild type (difference in transcript level in percent of wild type), p-value 

(statistical significance). 
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Transcript levels of SiR in mature leaves of 7-week-old soil-grown homozygous sir1-1 

plants were decreased to 17% compared with the wild type (Figure 9). Accordingly, the 

amount of SiR protein was significantly reduced, and SiR activity also was lowered to 

28% of the wild-type level (Figure 9A). This provides an explanation for the slower 

vegetative growth in comparison to the wild type that became more pronounced  with 

time (Figure 9B). 

  

 
Figure 7. Volcano plot of fold changes versus differential expression. 

The log2 fold changes in leaves of sir1-1 in comparison to the wild type (Col-0) were plotted 

against their significance. The red dashed line represents a p-value of 0.05 which was used as cut 

off.  
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The microarray analysis confirmed independently the downregulation of SiR 

transcript in mature leaves of sir1-1. Besides SiR, three genes of the primary sulfur 

assimilation pathway were significantly downregulated: ATPS4, APS REDUCTASE2 

(APR2), and SULFATE TRANSPORTER 2.1 (SULTR2.1; Figure 10). SULTR2.1 is known to 

be specific for the vasculature and downregulated in leaves upon sulfur deficiency 

[107]. ATPS4 catalyzes the activation of sulfate in plastids, which leads to formation of 

 

 
Figure 8. Molecular Identification of sir Mutants and Phenotype of sir1-2. 

(A) Structure of the SiR locus with the T-DNA insertion sites in sir1-1 and sir1-2. The putative 

promoter is marked by a white arrow, exons are indicated as white boxes, and untranslated 

regions by black boxes. (B) Growth phenotype and genetic complementation of sir1-2. For genetic 

complementation, the cDNA of SiR was fused with the 35S promoter and introduced in sir1-1 

plants by Agrobacterium tumefaciensmediated transformation. (C) Transcript levels of SiR in the 

wild type, sir1-1, and sir1-2 determined by qRT-PCR at the developmental stage of five to six 

leaves of the wild type. The homozygous sir1-2 plants arrested at the two cotyledon stage. Bars 

represent the mean of pooled individuals (n = 6), while error bars show standard errors of 

technical replicates (n = 3). Asterisks indicate statistically significant (P < 0.05) differences from 

wild-type values. Figure from [105] by permission of American Society of Plant Biologists. 
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APS. APR2 is the key APR isoform in leaves for reduction of activated sulfate in APS to 

sulfite that is further reduced by SiR. Downregulation of APR2 was independently 

confirmed by real-time PCR and revealed 58% mRNA content in sir1-1 compared with 

wild-type plants (Figure 11A). Most likely ATPS4 and APR2 are downregulated to 

avoid extensive accumulation of toxic sulfite, which cannot be incorporated into Cys 

as a result of reduced SiR activity in sir1-1. The stable total SAT and OAS-TL enzymatic 

activities and abundances of analyzed SAT and OAS-TL isoforms shown in leaves of 

sir1-1 (Figure 11D) were further supported by unchanged SAT and OAS-TL transcript 

levels in sir1-1 (Figure 10). 

In accordance with unchanged SO protein contents, SO was not upregulated at the 

transcriptional level despite clearly increased enzymatic activity, leaving the 

possibility of posttranslational activation of SO in peroxisomes of sir1-1. Multiple 

 

 
Figure 9. Abundance and activity of SiR in the T-DNA Insertion Line sir1-1.  

(A) Determination of SiR activity (n = 5, mean 6 ± SE) and relative SiR transcript levels by qRT-PCR 

(n = 3, mean 6 ± SE) in leaves of 7-week-old plants. Amplification of Ef1a from the same cDNA 

preparations was used as a control for qRT-PCR. (B) Growth curve of wild-type (black circles) and 

sir1-1 plants (white circles). Growth retardation of sir1-1 was statistically significant from week 2 

on, as detailed in the inset. All plants were grown on soil in a growth chamber under short-day 

conditions (n = 5). Means 6 ± SE are shown. Asterisks indicate statistically significant (P < 0.05) 

differences from wild-type values. Figure from [105] by permission of American Society of Plant 

Biologists. 



Sulfite reductase activity in Arabidopsis Thaliana 

54 

 

genes involved in pathogen defense, such as PATHOGENESIS-RELATED1 (PR1), PR2, 

PR5, RECOGNITION OF PERONOSPORA PARASITICA1 (RPP1), RPP4, RPP5 as well as 

ETHYLENE INSENSITIVE3 (EIN3), and PENETRATION3 (PEN3) were significantly 

downregulated along with the sulfur assimilation pathway, indicating a coregulation 

of both processes, as predicted by the sulfur-enhanced defense hypothesis [125]. 

 

  

 

Figure 10. Transcript Levels of Sulfur Metabolism-Related Genes in Leaves of sir1-1 Plants 

From bottom to top: The transcript levels of genes encoding sulfate transporters (light-gray bars), ATPS 

(white bars), sulfate-reducing enzymes (striped bars), SATs (black bars), OAS-TLs (inclined dashed bars), 

proteins participating in GSH synthesis (dark gray bars), and sulfolipid biosynthesis enzymes (declined 

dashed bars) in sir1-1 plants are shown as percentage of wild-type levels. Asterisks indicate statistically 

significant (P < 0.05) differences from wild-type expression levels of the same gene. 
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The genes encoding two vegetative storage proteins (VSP1 and VSP2) that are 

supposed to serve as transient reservoirs for surplus of amino acids in vegetative 

 

 
Figure 11. Transcriptional levels by qRT-PCR.  

(A)Transcript levels of APR2 in sir1-1 determined by qRT-PCR. Total mRNA was extracted from 

leaves of sir1-1 and wild type plants grown on soil under short day conditions for 7 weeks (n = 3) 

and analyzed for transcript levels of APR2 by qRT-PCR as described in the Methods. Ef1a served as 

reference. Means ± SE are shown. (B) Abundance and Activity of SO in Leaves of sir1-1 plants. 

Specific activity of SO in protein extracts of 7-week-old wild-type (black) and sir1-1 (white) plants 

that were grown on soil under short-day conditions. (C) Transcript levels of VSP1 and VSP2 in 

leaves of wild-type (black) and sir1-1 (white) plants were determined by microarray hybridization 

(VSP1 and VSP2, n = 12) and qRT-PCR (VSP2 qRT-PCR, n = 3). Material was harvested from wild-

type and sir1-1 plants that were grown for 7 to 8 weeks on soil under short-day conditions. (D) 

Abundance and activity of SAT and OAS-TL in Leaves of sir1-1 plants from the same extracts as in 

(B). The specific activities of SO, SAT, and OAS-TL were determined for each extract in triplicates 

with varying amounts of proteins to prove time and protein linearity of measurement (n = 5 to 7). 

Means 6 ± SE are shown. The asterisk indicates a statistically significant (P < 0.05) difference from 

the wild-type value. Figure from [105] by permission of American Society of Plant Biologists. 
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tissues were upregulated in expression in sir1-1 leaves. VSP2 upregulation was also 

confirmed by real-time PCR (Figure 11C). In agreement with the lower contents of 

total glucosinolates in the mutant, genes encoding thioglucoside glucohydrolase 

(TGG1 and TGG2; myrosinases), enzymes that are potentially involved in breakdown 

of glucosinolates upon sulfur and the usage of respective breakdown products 

(NITRILASE1 [NIT1] and NIT2), were significantly upregulated (Table 1). The significant 

upregulation of the gene for the chlorophyll degrading enzyme CHLOROPHYLLASE1 in 

sir1-1 (Table 1) could be a hint toward the pale phenotype.  

3.4 Conclusion 

The data presented here demonstrate the performance of linear models for analyzing 

designed experiments and the assessment of differential expression. Linear models of 

empirical eBayes approach applies equally well to both single channel and two color 

microarray experiments and it is more stable when the number of arrays is small 

[123]. Identification and analysis of differentially gene expression revealed the 

importance of the sulfite reductase activity for growth and development in 

Arabidopsis thaliana. The results support that optimal activity of SiR is essential for 

normal growth, and its downregulation causes severe adaptive reactions of primary 

and secondary metabolism [105]. 
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4 SINGLE SPECIES EXAMPLE 2: TILING 

ARRAY ANALYSIS 

While conventional microarrays can provide insights into cellular regulatory networks, 

other valuable sources of data are increasingly becoming available to aid the learning 

process. Tiling arrays are a subtype of microarrays. Similar to conventional 

microarrays, labeled target molecules are hybridized to unlabeled probes immobilized 

on a solid surface. However, tiling arrays differ in the nature of the probes. Short 

fragments are designed to cover the entire genome or contiguous regions of the 

genome. Depending on the probe lengths and spacing different degrees of resolution 

can be achieved. Tiling arrays are also used for gene expression. DNA microarrays 

designed to look at gene expression use a few probes for each known or predicted 

gene. In contrast, tiling arrays can provide an unbiased view at gene expression 

because previously unidentified genes can still be incorporated. On top of individual 

gene expression analysis, other uses of tiling arrays are in transcriptome mapping, 

ChIP-chip and array CGH among others. Tiling arrays are quickly becoming one of the 

most powerful tools in genome-wide investigations.  

Tiling arrays have much wider applications, and researchers might use them for 

different experiments and informatically select a subset of the probes for analysis. 

RNAi screens via pooled short hairpin RNAs (shRNAs) have recently become a 

powerful tool for the identification of essential genes in mammalian cells. In the past 

years, several pooled large-scale shRNA screens have identified a variety of genes 

involved in cancer cell proliferation. All of those studies employed microarray 

analysis.  

This section describes high-level analysis of tilling arrays to decode pooled RNAi 

screens. Experimental and computational results presented in this section have been 
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published [126].  

4.1 Introduction 

In the past two decades, extensive efforts have been undertaken to characterize 

genes involved in breast cancer development. Gene expression signatures associated 

with breast cancer and chemotherapy response have been identified [127]. One way 

to identify such essential genes is the inhibition of their expression via RNA 

interference (RNAi) followed by the analysis of the resulting ‘loss-of-function’ 

phenotype. RNAi screens are commonly used to analyze gene function in a variety of 

model organisms, the most popular ones being C. elegans and Drosophila. More 

recently, shRNA libraries targeting the human and mouse genome have become 

available. These libraries allow RNAi mediated ‘loss-of-function’ screens in 

mammalian cell lines. Pooled RNAi screens have been performed by several groups 

and revealed a number of cancer cell essential genes [128]. The decoding of such 

pooled RNAi screens by means of microarray analysis has been described previously 

[129]. While some groups employed probe sequences complementary to each 

shRNAs’ specific 21 nt half-hairpin stem sequence others used unique barcode 

sequences to analyze pooled shRNA screens [126]. These 60 nt barcode sequences 

were cloned adjacent to each shRNA template, allowing the determination of the 

abundance of individual shRNA templates from a complex pool. Up until now analysis 

of pooled RNAi screens via barcode sequences was performed by probes 

complementary to the full length barcode. Here, in order to analyze pooled shRNA 

screens the concept of barcode tiling is introduced. 

To assess the performance of the barcode tiling approach for the detection of 

essential genes in the breast carcinoma cell line MDA-MB-231, a negative selection 

screening system was established. A-apoptotic genes which were previously shown to 

be expressed in either breast carcinoma tissues or normal human breast were 

targeted. From a pooled RNAi screen, 28 different shRNA sequences were identified 
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which were depleted from a pool of lentiviral infected cells over a period of four 

weeks. Potentially inhibitory as well as non-inhibitory shRNAs were selected for 

individual analysis of their effects on the proliferation of the cell line MDA-MB-231. 

Validation assays revealed the genes BIRC5, BRCA1, HSPA8 and NUP62 to be essential 

for the viability of the cell line. 

4.2 Methods 

4.2.1 Microarray design and hybridization 

The microarray experiments, viability assays and validation of the candidate genes 

were performed in the group of Dr. Joerg Hoheisel, German Cancer Research Center. 

The Geniom One microarray [130] is divided into eight individually accessible 

subarrays allowing the analysis of eight samples in parallel. Half hairpin probes were 

synthesized in quadruplicates as 21 nt sequence as well as 25 nt sequences containing 

additional 4 nt from the common mir-30 sequence at their 3’ end. As for the barcode 

sequences, probes the length of 25 nt were synthesized complementary to each 60 nt 

barcode. Every barcode was covered by six probes in seven nucleotide jumps (Figure 

12). Three replicates of each probe were synthesized in each subarray, resulting in 18 

probes representing one barcode. In total 5490 probes were synthesized to detect 

barcodes associated with 305 different shRNA expressing constructs. Additionally 

eleven half hairpin and 66 tiling probes that did not match any barcode sequence 

 
Figure 12. shRNA expression construct.  

Each shRNA template is associated with a unique 60 nt barcode sequence. For analysis of pooled 

RNAi screens, six overlapping tiling probe sequences (25 nt) complementary to each barcode were 

synthesized on a Geniom One microarray. 
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were synthesized in triplicates as negative controls. 

4.2.2 Negative selection screen 

A negative screening system was established to detect essential genes in the breast 

carcinoma cell line MDA-MB-231. For that purpose, lentiviruses carrying each of the 

305 different shRNA expression constructs, targeting 121 individual antiapoptotic 

genes were pooled. This lentiviral mix was used to infect MDA-MB-231 breast 

carcinoma cells at a low multiplicity of infection (MOI) of 0.3.  After five days, total 

high molecular weight (HMW) DNA was extracted and served as a reference pool 

(tzero). Another cell fraction was cultured for an additional four weeks and then 

subjected to HMW DNA extraction, representing the test pool (tend). The barcode 

sequences from tzero and tend of the pooled screen were labeled and hybridized to two 

individual barcode tiling arrays. All probe signal intensities from the test pool (tend) 

were normalized to the reference pool from time point zero (tzero) by calculating the 

(tend/tzero) ratio.  

4.2.3 Data analysis 

Median background signal intensities were determined from half hairpin or barcode 

tiling probe sequences complementary to shRNA expression constructs that were 

absent in the analyzed pools. Signal intensities from each probe after local 

background subtraction were normalized to the median signal intensity of each 

subarray, and the mean ratio from all tiling probes representing one barcode was 

determined. The analysis of the negative selection screen was performed in three 

independent replicates. 

Candidates with significant signals were identified using linear models in the limma 

package [123]. Coefficients, moderated t-statistics and corresponding p-values for 

testing all possible contrasts were calculated using Empirical Bayesian methods. 

Appropriate design matrices were constructed for the linear model fitting. Complete 
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pair-wise comparisons between time points were performed by means of a contrast 

matrix. The p-values for the coefficients of interest were adjusted for multiple testing 

by means of Benjamini and Hochberg’s algorithm [124], which controls the expected 

false discovery rate (FDR) below the specified value. 

4.2.4 Viability assay 

MDA-MB-231 cells were seeded in 96 well microplates at 300 cells per well. After 24 

h, 15 μl of lentiviral supernatant (approx. 1000 units) in culture medium containing 8 

μg/ml polybrene was added to the cells to achieve a MOI > 1. Twenty four hours later 

the viral medium was aspirated and replaced by culture medium containing 0.5 μg/ml 

puromycin or culture medium without puromycin, respectively. 72 h post-infection 

puromycin selected and non-selected cells were assayed by resazurine assay in 

triplicate measurements (tzero). The fluorescence intensity ratio from puromycin 

selected cells divided by the intensity from unselected cells was used as quality 

control for efficacy of lentiviral infection. Another triplicate was allowed to proliferate 

in fresh puromycin culturing medium for another five days before resazurine 

measurement (tend). The fluorescence intensity ratio [tend/tzero] served as a relative 

measure for the anti-proliferative effect of tested shRNA constructs. All values were 

normalized to a non-silencing control (NSC) as well as an empty-pGIPZ vector control. 

For the viability assays at sixteen days post infection total cells were transferred from 

a well of a 96 well plate to that of a six well plate at six days post infection. 

4.3 Results and discussion 

Associations between tiling probes and barcode sequences were analyzed by means 

of Correspondence Analysis. Correspondence analysis aims to separate dissimilar 

objects, in this case tiling probe sequences as well as barcode sequences, from one 

another [74]. Thus, similar objects are clustered together resulting in small distances, 

whereas dissimilar objects are located further apart. A projection of this analysis is 
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shown in Figure 13 where signal intensities from all 305 barcodes were used to 

determine the association between each of the six different tiling probes representing 

every barcode, marked as colored squares. 

As expected, contiguous tiling probes, sharing the highest similarity with one another, 

are located closer to each other than tiling probes sharing no sequence similarity. All 

barcodes, represented as black dots, are located in the projection plot according to 

their association with each of their six tiling probes.  Strongest signal intensity from 

one particular tiling probe as compared to the remaining five, means strongest 

association of the barcode with this tiling probe. In case of a positive association of a 

barcode with a particular tiling probe, both objects are located in the same direction 

from the centroid. The larger the distance from the centroid, the stronger the 

association between the barcode and the given tiling probe. For negative associations, 

the two objects are located on opposite sides of the centroid.  

An example of strong association is given by the barcode sequences from constructs 

BIRC5-A and HSPA8-B, highlighted in the projection. Both barcodes show a positive 

association with tiling probe two and, at the same time, a negative association with 

tiling probes four, five and six. In other words, signal intensities detected from tiling 

probe two were much stronger for both barcodes than signal intensities detected 

from tiling probes four, five and six. Interestingly, no general preference for any of the 

tiling probes was detected, as represented by the equal distribution of all vector 

profiles in the projection.  

4.3.1 Identification of candidate genes 

The depletion of a certain barcode over the time of the screen is expected to result in 

a decreased (tend/tzero) ratio and thus indicate that the associated shRNA targeted a 

gene which was essential for the proliferation of the cell line MDA-MB-231. Therefore, 

log2 signal intensity ratios (tend/tzero) were calculated from all signals for each tiling 

probe sequence individually. In total, three independent replicate microarray 
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experiments were carried out, resulting in a maximum of nine signal intensity ratios 

for each tiling probe. 

Tiling probes represented by less than four out of the possible nine replicate signal 

ratios were discarded. A summary of all determined log2 ratios and microarray data is 

accessible through ArrayExpress [131]. Expression constructs represented by at least 

two barcode tiling probes were considered for further analysis. Altogether, out of 305 

shRNA expression constructs included in the pool, 278 (91%) could be analyzed.  

A heat map of all log2 ratios is shown in Figure 14. Lines represent the 278 shRNAs 

sorted by the mean value of their corresponding log2 ratios from tiling probes 

retained after filtering.  

A ranking of the mean log2 ratios, representing the abundance of each shRNA in the 

pool after four weeks of screening, is shown in Figure 15 (top). Those log2 ratios were 

then plotted against their significance. The volcano plot in Figure 15 (bottom) gives an 

overview of the results from the pooled screen. It shows the distribution of log2 ratios 

determined for each shRNA, relative to their calculated p-values. 28 candidate 

 

Figure 13. Correspondence analysis projection.  

Colored squares represent the six tiling probes complementary to each barcode sequence. 

Black dots represent signal intensity profiles at time point zero from each of the barcode 

sequences included in the pooled screen. 
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constructs showed negative log2 ratios together with a p-value < 0.05, indicating their 

depletion from the pool. 

Individual validation of a subset of eleven shRNA expression constructs (Figure 15) 

with potential inhibitory, as well as non-inhibitory effects on the cell line proliferation 

provides further evidence for the accuracy of the barcode tiling approach. 

4.3.2 Validation of candidate genes 

Validation assays were performed in the group of Dr. Joerg Hoheisel, German Cancer 

Research Center. To verify the potential anti-proliferative effects of candidates 

identified through the analysis of the pooled RNAi screen, eleven shRNA expression 

constructs were selected for closer analysis in an arrayed 96-well format. First of all, 

two shRNA expression constructs, termed BRCA1-A and BRCA1-B, both encoding 

identical shRNA sequences targeting the expression of BRCA1, but associated with 

 

Figure 14. Cross-comparison of tiling probe performance. 

 A heat map was generated of log2 ratios obtained from each tiling probe (TP) that passed the 

filter criteria. Columns represent the six different tiling probes and lines the 278 barcode 

sequences retained after filtering sorted by their TP mean values. White cells represent TPs which 

did not pass filter criteria.  
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two different 60 nt barcode sequences were selected for validation. The log2 ratios 

from both constructs indicated a significant anti-proliferative effect [(BRCA1-A (-

1.706, p = 1.3e-4)/BRCA1-B (-1.145, p = 1e-5)]. The constructs were transducted 

individually into the host cell line to reduce target mRNA abundance, inhibit cell 

viability and induce apoptosis. For BRCA1-A as well as for BRCA1-B we detected close 

to equal reduction of BRCA1 expression [126].  

In much the same way as for BRCA1, further constructs targeting expression of the 

genes BIRC5 (BIRC5-A-D), NUP62 (NUP62-A-B) and HSPA8 (HSPA8-A-C) were analyzed. 

For each of the three genes we identified at least one construct with a significant log2 

ratio below -0.5 and one construct showing a ratio greater than -0.5. Expression levels 

were reduced below 0.4-fold that of the non-silencing control (NSC) by at least one 

construct targeting each of the three mentioned genes. Cells with efficient reduction 

of BIRC5 and NUP62 expression were strongly impaired in their viability when assayed 

eight days post-infection (BIRC5-A-C/NUP62-A-B). In the case of HSPA8, a reduction of 

mRNA expression to 0.1-fold that of the NSC caused only a mild reduction in cell 

viability (HSPA8-A).  

4.4 Conclusion 

 The work presented here demonstrates analysis of pooled RNAi screens by means of 

barcode tiling arrays. We demonstrate how pooled RNAi screens can be quantitatively 

and reproducibly analyzed by this method. Barcode tiling arrays have been used to 

predict anti-proliferative effects of individual shRNAs from pooled negative selection 

screens. The presented experimental approach, coupled with commercially available 

lentiviral vector shRNA libraries, has the potential to greatly facilitate the discovery of 

putative targets for cancer therapy. 
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Figure 15. Overview of tilling array results.  

Top - The log2 (tend/tzero) signal intensity ratios were calculated from all probes that passed the 

described filter criteria and averaged for each shRNA expression construct. Negative log2 ratios 

indicate the depletion of cells expressing a particular shRNA from the pool of cells, following the 

four weeks of the screen. Bottom - The log2 ratios determined for each shRNA expression 

construct were plotted against their significance. The red dashed line represents a p-value of 0.05 

which was used as cut off. Highlighted in red are significant candidate shRNAs (numbers) and 

validated candidate constructs. The indicated numbers correspond to the numbers given in the 

Appendix 3. 
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5 CROSS-SPECIES MICROARRAY META-

ANALYSIS 

Combining expression data from multiple species often leads to important findings 

which cannot be achieved by focusing on a single species. The first chapter of this 

section discusses meta-analysis methods and their applications to cross-species 

analysis of microarray data. The following chapter summarizes studies that are carried 

out on individual species and then combined in a post-processing approach. A short 

review will be given to applications that use the same microarray to study different 

species. Finally, methods will be presented that use a separate microarray for each 

species but unlike the first set of methods the analysis of data from all species is 

carried out concurrently. Each of these methods has its advantages and 

disadvantages. 

One of the major contributions of this thesis is an algorithm to estimate the common 

regulatory network. This chapter represents an iterative procedure combining existing 

methods to integrate information from different species. The efficiency of the 

algorithm is demonstrated by analyses of pairs of example datasets. The common 

regulatory network was obtained by reverse engineering the combined set. Reverse 

engineering a common network provides the opportunity to determine statistical 

significance of network motifs. Comparing reversely engineered gene regulatory 

networks from each individual and combined dataset with known interactions 

supplied by KEGG and other repositories provided an additional means to evaluate 

the performance of the algorithm. The algorithm and results presented in this chapter 

has been published [132]. 
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5.1 Background 

Cross-species meta-analysis can be divided into two types: co-expression meta-

analysis and expression meta-analysis. These two approaches address different 

questions. Co-expression meta-analysis asks whether genes co-expressed in one 

species are also co-expressed in another species. Expression meta-analysis directly 

analyzes the similarity between expression profiles of homologous genes in different 

species. While expression analysis identifies homologous genes that respond in the 

same way to specific stimuli in multiple species, co-expression analysis can result in 

genes with very different response patterns in each of the species. Co-expression 

analysis allows the use of different conditions for the different species whereas 

expression analysis requires the use of the same conditions in all species. The next 

section discusses both of these methods in turn. 

5.1.1 Co-expression meta-analysis 

The first method that has been applied to study cross-species microarray experiments 

is co-expression meta-analysis (Figure 16). Rather than comparing expression data 

directly between species, evidence for gene co-expression is derived separately in 

each individual species, and then combined to infer gene modules. The advantage of 

co-expression meta-analysis is that the experiments can be combined even under 

different experimental conditions for different species. Stuart and coworkers [30] 

were among the first authors to introduce the concept of metagenes. A metagene is a 

set of strictly orthologous genes among multiple species. Two metagenes are defined 

to be co-expressed if their constituent genes are significantly co-expressed in each 

species. In Bergmann et al. [31] a ‘signature algorithm’ is presented in a way that 

maps an annotated gene module in one species to its set of homologous genes in 

other species, and then co-expressed genes are extended to a gene module that is co-

expressed. Both methods identified significant co-expression sets of genes but also 
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Figure 16. Overview for meta-analysis of microarray data.  

Left: Expression meta-analysis, Samples from each species are hybridized to different arrays and 

each array is independently analyzed. Lists of differentially expressed genes are later compared to 

identify the overlap. Middle: using the same array for all species. Samples from all species are 

hybridized to the same array and all arrays are analyzed using the same method. The list of 

differentially expressed probes can then be compared. Note that this method can only be used to 

compare closely related species. Right: Samples from each species are hybridized to separate 

arrays but are analyzed together so that extra information can be used to improve the assignment 

of genes. 

revealed modules of divergent co-expression between species.  

Choi and coworkers [88] used a direct approach of co-expression network inference to 

search for differences in expression between cancer and normal tissues by comparing 

co-expression networks extracted from multiple studies containing expression data 

from the respective tissues. Co-expression networks have also been used to refine 
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gene annotation by investigating the condition dependencies of a particular 

interaction in the co-expression network [89]. 

5.1.2 Expression meta-analysis 

Expression meta-analysis compares the expression of orthologous genes under similar 

conditions. It should be noted that directly comparing the data tables is impossible 

due to their different scales. In contrast to what is frequently assumed, not even the 

ratios are comparable. Therefore, efforts have been made to compare multiple 

datasets on the basis of statistical significance [133]. However, these p-values cannot 

be taken at face value, either. Comparing lists of ‘significant’ genes (when using the 

same P-value cutoff for all studies) often results in high disagreement between 

studies. Because the genes identified as significant in one study might not be 

significant in other studies. This is especially true if the different studies use different 

methods to determine a P-value, which is often the case. 

Most expression meta-analyses focus on comparing lists of differentially expressed 

genes (DEGs) reported from published papers [134, 135]. For instance, DEGs from 22 

studies in different organisms were investigated by Han and Hickey [135]. They found 

no agreement in DEGs for different species, and very little agreement even within 

species. 

Expression meta-analysis can so far be categorized into three approaches: effect size 

models, rank-based and P-value based. These methods can be adapted to cross-

species data, if a “one-to-one orthology relationship” is known. Effect size methods 

combine the expression data for a gene from each microarray study, and then 

estimate the significance of the combined expression data. Error variables can be 

included to identify global systematic differences between different experiments. Choi 

and coworkers [136] developed such a method, termed t-based, and applied it to 

various cancer datasets. They demonstrated that consistent expression changes can 

be identified for some genes, which neither of the individual microarray studies alone 
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could identify as significant. Rank-based methods sort the genes in each study 

according to the significance of differential expression and then aggregate the 

rankings of each gene across studies, which allow overcoming differences in P-value 

comparisons. This allows comparing the P-values. Permutation tests can then be used 

to identify genes whose combined rankings are significant. Finally, P-value aggregation 

methods combine the P-values for each gene's expression obtained from different 

microarray experiments, to obtain an aggregate P-value. P-values for a gene can be 

aggregated by various methods, e.g. by taking the minimum or the product of the P-

values. 

Recent studies have shown that utilizing differentially expressed genes and strict 

cutoff methods may lead to underestimating expression conservation. Analysis of a 

comparison of gene expression in more than 50 mouse and human tissues [137] 

identified only a small intersection between the expression of orthologous genes. 

However, later analysis of these data focusing on expression correlation found a 

considerable intersection between orthologs [138]. 

5.1.3 Indirect expression meta-analysis 

Direct cross-species comparison is more difficult in distant species. Instead, 

Subramanian and coworkers [139] proposed gene set enrichment analysis (GSEA). In 

GSEA, a set of genes in a microarray are first sorted according to a differential 

expression score. Then, for a predefined subset of genes of interest (e.g. a GO 

category or pathway data), an enrichment score is calculated which essentially 

measures how high the scores of the top-ranked genes in the subset are among the 

top-ranked genes. In GSEA the sets of genes can be defined in different ways, e.g. by 

GO categories, results of previous microarray studies, or pathway data. This allowed 

comparing a list of DEGs to predefined sets of genes, to identify significantly enriched 

annotations. Enriched annotations can then be compared across species. Identifying 

enriched pathways from lists of DEGs has been shown to improve reproducibility and 
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comparability of microarray studies of prostate cancer [140] and may also help 

facilitate comparisons of microarray studies across species.  

Liu and coworkers [141] extended GSEA to gene network enrichment analysis (GNEA). 

In GNEA, a highly scoring sub-network is found within a given protein–protein 

interaction network. Then predefined gene sets (e.g. GO categories) are tested for 

enrichment within these sub-networks. Applying GNEA to type 2 diabetes datasets 

from human and mouse, Liu and coworkers implicated gene sets involved in insulin 

signaling and nuclear receptors as differentially expressed in diabetes.  

5.1.4 Same array analysis 

A problem with the above methods arises from the different probe sets used on each 

array which may have different hybridization properties. These probe-dependent 

expressions bias the estimation of gene expression peaks [142] which adds to the 

disagreement between species. For more efficient comparison of gene expression 

across species, it is beneficial to control for platform-related variations. One way to 

circumvent this issue is to use the same microarray to study different species.  

There are two approaches for using a single array type when studying multiple 

species: using an array constructed for a single species [143] and constructing a 

customized array containing probes for every species studied [144] . The following 

two sections detail the technical and computational issues involved.  

5.1.4.1 Single species array 

Microarrays constructed for one species can be used to measure gene expression in 

another species because orthologous genes are likely to share high sequence 

similarity. Thus, probes designed for a gene in one species are able to hybridize with 

its ortholog.  

There are several advantages, especially if genomic data are available only for closely 

related species. For instance, Nuzhdin and coworkers used microarrays designed for 
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Drosophila melanogaster to study gene expression in D. simulans [145]. Another 

application is in preclinical cancer drug screening, where animal models with 

transplanted tumors are often used to study the progression of tumors, identify 

therapeutic targets and test treatment response. Single species microarrays can be 

used to validate animal model by comparing gene expression in both the animal 

model and the primary tumor in human tissues [146]. 

There are several issues to consider when using single species arrays to study multiple 

species. The first is to decide which species the microarrays should be based on. 

Because the probes are designed for one species and used to detect genes in another 

species, in some cases the sequence of a probe does not match that of the target 

gene, which may result in weaker hybridization. This sequence mismatch effect 

complicates the estimation of gene expression levels [147]. To alleviate this effect, it is 

desirable to select a species that is as close as possible to the target species [148]. 

Sequence mismatch effect varies for each species due to different evolutionary 

distances between them. Gilad and coworkers compare the sequence mismatch effect 

on four species (human, chimpanzee, orangutan and rhesus macaque), and show that 

sequence mismatch effect becomes more severe as sequence divergence increases. 

This variations make it more difficult to directly compare gene expressions [149].  

A possible way to avoid this problem has been reported by masking probes with a 

sequence mismatch between orthologous genes [150]. The drawback is that when 

comparing more than two species, a large amount of the probes will have to be 

masked, limiting the number of genes that can be measured in the study [144]. 

5.1.4.2 Multi species array 

In multi-species arrays, samples from two species are competitively hybridized to the 

probes. The expression level of a gene is then estimated by averaging the log-ratios of 

probes from every species. Oshlack and coworkers show that multi-species 

microarrays can alleviate the problem of sequence mismatch effects, when compared 
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with single species arrays [144]. They have shown that using the average log-ratio will 

eliminate the bias caused by cross-species hybridizations. These arrays have also been 

used to study expression of evolutionarily conserved genes [151].  

Multi-species arrays are only suitable for genes with an ortholog in every species 

under study. Consequently, the genes become limited in distant species. Liao and 

Zhang determined that only less than half ortholog pairs (10,670 pairs) between 

human and mouse are suitable for a multi-species array study, which covers less than 

40% of the known mouse genes.  

5.1.5 Combined multiple species  

Recent methods combine ideas from both single and multi species approaches. 

Similar to the first set of methods they use a species-specific array for each species. 

Similar to the second set of methods the gene expression levels are estimated by 

averaging the log-ratio of probes from every species. These methods have initially 

been applied to study the cell cycle. Early applications of microarrays to study the cell 

cycle focused on the identification of cycling genes in different species including 

budding yeast [13], human [152], plants [153] and bacteria [154]. These studies differ 

in the approach to determine cyclic genes but they all used similar expression meta-

analysis techniques. 

Alter and coworkers [155] were among the first authors to analyze cell cycle 

expression data from multiple species. Generalized Singular Value Decomposition 

(GSVD) has been used to compare human and budding yeast cell cycle experiments. 

The authors were able to identify more accurate cyclic expression profiles for some of 

the genes based on the information from the other species. Recently, Lu and 

coworkers [156] used Markov random fields (MRF), which is an undirected graphical 

model, to concurrently analyze cell cycle data from human and budding yeast. In 

these models both sequence and expression data are used to construct a graph in 

which gene expression is represented by nodes and edges represent homology. The 
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set of edges can be derived from a curated database or from sequence analysis 

methods including BLAST. 

Combining multiple species microarray datasets into simultaneous analysis is 

challenging. It is crucial to capture the associations between variables from different 

high-throughput multidimensional datasets. Another challenge is the need to define a 

one-to-one orthology relationship to carry out such an analysis. The binary 

assignment (ortholog or not) in databases cannot account for more complex similarity 

measures which are often represented using a more continuous value (e.g. Blast e-

value). 

My algorithm solves this problem by not requiring any orthology relations as 

perquisite. The next chapter discusses the multivariate analysis methods that 

represent the ‘building blocks’ of the algorithm.   

5.2 Methods 

5.2.1 Co-inertia analysis 

Co-inertia Analysis (CIA) is a multivariate approach that can identify co-relationships 

within multiple datasets by finding successive principal axes of maximum co-variance. 

It was first introduced applying to ecological data [157]. Co-inertia is a score as a 

measuring co-structure between two data matrices. When the matrices are centered, 

co-inertia is a sum of square covariances. A formal definition is given in the next 

section.  

Culhane and co-workers demonstrated the efficiency of CIA on cross-platform 

comparisons of gene expression data [73]. CIA is often used in combination with 

Principal  Component Analysis (PCA) or Correspondence Analysis (CA), the latter being 

capable of visualizing genes and hybridizations at the same time [74]. Whilst, as with 

PCA, similarity among genes as well as similarity among hybridizations is depicted as 
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proximity, a gene that is particularly up-regulated under a certain condition will be 

located in the direction of this condition. The farther away from the centroid in this 

direction (towards the outer margin of the plot) it is displayed, the stronger the 

association [73, 74]. If used together with CIA, genes and hybridizations are shown 

simultaneously for both datasets, projecting their common variance or co-inertia 

(Figure 21). Here, proximity among objects and directions can be interpreted as 

aforementioned, now highlighting common trends and patterns. Overall similarity of 

the datasets is captured by the RV-coefficient (RV) which is a commonly used matrix 

correlation [158]. In CIA, the RV is calculated as the co-inertia (sum of eigenvalues of a 

co-inertia analysis) divided by the square root of the product of the square inertias 

(sum of the eigenvalues) from the individual Correspondence Analyses [73]. Much like 

a correlation coefficient, the stronger the joint trends between two datasets agree, 

the closer to 1 the RV score becomes. A zero RV score indicates no similarity. 

Prerequisite for CIA is that either the genes or the hybridizations are affiliated 

between the two datasets. Therefore, either the columns or the rows of the tables 

must match (and have equal weights). In the following text, ‘connecting variables’ are 

used to refer to the variables (genes or samples) needed to be affiliated beforehand 

and ‘projected distance’ refers to the distances between objects in a CIA output 

(projection). Hungarian algorithm is used to affiliate connecting variables in CIA as 

detailed in next section. 

5.2.1.1 Co-inertia calculation 

The mathematical basis of CIA, following the notation of Dolédec and coworkers [73, 

157, 159] is summarized below.  

Let X and Y be the original data tables, with n rows, and respectively p and q columns. 

The two statistical triplets produced by the ordination methods performed on the 

datasets are denoted (X, Dn, Dp) and (Y, Dn, Dq), with Dn and Dp being diagonal matrices 

containing row and column weights for X, and Dn and Dq diagonal matrices containing 
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row and column weights for Y. After diagonalization let u and v be a pair of 

eigenvectors for (X, Dn, Dp) and (Y, Dn, Dq), respectively. The projection of the 

multidimensional space associated with X onto vector u generates n coordinates in a 

column matrix: 

𝛼 = 𝑋𝐷𝑝𝑢 EQ 11 

The projection of the multidimensional space associated with table Y on to vector v 

generates n coordinates in a column matrix: 

𝜓 =  𝑌𝐷𝑞  𝑣 EQ 12 

Co-inertia associated with the pair of vectors u and v can be written as 

H u, v =  αtDψ EQ 13 

If the initial data tables are centered, then the co-inertia is the covariance between 

the two new scores: 

𝐶𝑜𝑣 𝛼, 𝜓 = 𝐶𝑜𝑟𝑟(𝛼, 𝜓)  𝜂1 𝑢 𝜂2(𝑣) EQ 14 

with η1(u) denoting the projected inertia on to vector u (i.e. the variance of the new 

scores on u), η2(v) the projected inertia on to vector v (i.e. the variance of the new 

scores on v), and Corr(α,ψ) the correlation between the two coordinate systems. A 

CIA axis associated with a pair of eigenvectors u and v will maximize Cov(α,ψ). 

5.2.1.2 Co-inertia affiliations 

As aforementioned, measuring the associations between samples by CIA requires 

affiliation of each gene from one dataset to one gene of the other dataset as a 

prerequisite. Or, projecting common variance between the genes of both datasets 

requires prior matching between the samples of the two datasets. Either the columns 

or the rows of the tables (connecting variables) must be matchable and have to be 

weighted similarly. As a basis for a successful co-inertia analysis, this matching needs 

to be both complete and reliable. Hungarian algorithm can be used to affiliate 

connecting variables in CIA.  
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5.2.2 Hungarian algorithm matching  

Two sets of objects (here genes or samples of the two datasets to be combined) can 

be matched by the Hungarian algorithm, also called Kuhn–Munkres algorithm [160]. It 

takes as input a penalty weight matrix of all possible pairwise projected distances and 

computes the pairs summing up to minimal penalty (Figure 17). The original 

publication refers to a quadratic penalty matrix. However, the Hungarian algorithm 
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Figure 17. Affiliation of the connecting variables using Hungarian algorithm.  

Samples from datasets R and B are represented as red and blue squares, respectively. Only samples are 

projected into 3-dimensional space for simplicity (top left). In the bipartite graph (top right) edges 

correspond to all pair-wise projected distances (weights) from every element of R to all elements of B. 

Each edge corresponds to one element in the weight matrix ω recording these distances. The 

Hungarian algorithm computes a matching of minimal distances (lower bipartite graph and lower 3d 

plot). Figure from [132] by permission of Oxford University Press. 
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can also be applied to sets of different cardinalities by adding virtual objects of 

highest penalty to the smaller set until its cardinality matches the larger one [161]. 

Here, virtual genes (or samples) have been added to the penalty matrix showing the 

maximum of all occurring pairwise projected distances to all other genes (or samples). 

Distance matrix. Given two microarray datasets, let us assume r samples {r1, r2, …, rj} 

of dataset R and b samples {b1, b2, …, bj} of dataset B. Projection of CIA sample 

distances on j-1 dimensions can be plotted (Figure 17, top left). ω could be an (i   j) 

distance matrix derived from CIA recording the distance ω(ribj) between each pair of 

elements of R and B.  

  

𝜔 =  

𝑟1𝑏1 ⋯ 𝑟1𝑏𝑗
⋮ ⋱ ⋮

𝑟𝑖𝑏1 ⋯ 𝑟𝑖𝑏𝑗

  EQ 15 

 

Weighted bipartite graph. The above distance matrix can be seen as a bipartite 

graph where each vertex belongs to dataset R or B, and each edge corresponds to one 

element of the distance matrix (ω) representing all inter-set distances of the CIA 

coordinates. 

Here, the affiliation problem could be stated as given an ω, find j independent 

elements of permutation π of {1, …, j} such that the sum of edge weights (EQ 16) is 

minimal for the selected edges.  

Given a weighted bipartite graph where edge r->b has weight ω(rb), the optimal 

assignment minimizes the overall weights. Figure 17 shows a graphical representation 

of the above. 

 

 𝜔(𝑟𝑖𝑏𝜋(𝑖))

𝑗

𝑖=1

 
EQ 16 
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5.2.3 K-means clustering  

Data can be subdivided into pre-defined numbers of homogenous gene or sample 

(array) clusters by the k-means algorithm. K-means can be performed on the 

 χ2 (Chi-square) distance, the same distance measure that governs CIA (see section 

‎2.3.1.1. 

5.2.4 Majority voting  

The optimal assignment produced by Hungarian algorithm allows connecting each 

element of one dataset to one element of the other dataset minimizing the overall 

weights. While Hungarian algorithm can be used to address the affiliation problem, 

there is still need to compute the cluster affiliations of these datasets from those of 

the individual cluster members. Given two datasets with k number of clusters each, 

any two clusters (across datasets) with the highest number of connections between 

their components become paired. Here, the pairing problem can again be solved by 

Hungarian algorithm, negating the number of pairings to yield a penalty matrix as 

input (Figure 18). 

5.2.5 Back-transformation 

CIA projection reduces the dimensionality of the original data tables to a few principal 

axes of maximum co-variance. While an, e.g. two-dimensional projection is ideal for 

visual inspection, the corresponding data table of only two rows (or columns) would 

be too small for any reverse engineering GRN method. However, CIA results can be 

back-transformed to yield tables of the original format whose content is solely based 

on the selected eigenvectors [162]. Mathematical basis of the back-transformation 

method following the notation of [162] is described below. Given a data table of X 

with n rows, p columns and nf kept axes, the approximated data table can be obtained 

from the following equations:  
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𝐾 𝛬
[𝑟]

1
2 𝐴𝑡  = 𝐾𝐾𝑡𝐷𝑋 EQ 17 

And with the left multiplication of 𝐾𝑡𝐷 we will have: 

𝐾𝑡𝐷𝐾𝛬
[𝑟]

1
2 𝐴𝑡 = 𝐾𝑡𝐷𝑋 EQ 18 

𝐾𝛬
[𝑟]

1
2 𝐴𝑡 = 𝑋 EQ 19 

where D is a vector of row weights with length n . Λ is a diagonal matrix of eigenvalues 

with length r. r is called the rank of the diagram where the nonzero eigenvalues 

λ1 > λ2 > ··· > λr > 0 are stored in the diagonal matrix Λ[r]. K is a data matrix of n rows 

and nf columns and A is a matrix with the principal axes of p rows and nf columns. The 

details for reconstitution of these data are described by [162]. The derivation of the 

duality diagram concept is also described by [157, 163].  

 

 
Figure 18. Graphical representation of Majority voting.  

Two datasets (R and B) are subdivided into same number of clusters. Cluster components from R 

and B are represented as red and blue dots, respectively. In the bipartite graph (left) edges 

correspond to a connection between elements of R and B. The Hungarian algorithm computes an 

inter-cluster matching of maximal number of connections.  
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5.2.6 Dynamic Bayesian network 

Banjo (Bayesian Network Inference with Java Objects) was used for the inference of 

Dynamic Bayesian Networks. It is freely available, easy to use and has only a few prior 

parameters to adjust. It focuses on score-based structure inference. For each network 

structure explored, the parameters of the conditional probability density distribution 

are inferred and an overall network's score is computed using the Bayesian Dirichlet 

scoring metric (BDe). In Banjo, heuristic approaches, such as greedy with random 

restart or simulated annealing, are used to search for the highest scoring graph 

among a set of networks. The output network will be either the top graph (highest 

score) or consensus network. The consensus network is computed based on the N 

top-scoring networks by assigning exponentially weighted probabilities to the 

individual edges in each of the high-scoring networks, based on the ranking of each 

network in the set. The probability of edges being present in the consensus network is 

computed using the weighted average approximation among N highest scoring 

models. The background for the concept of the consensus graphs is described by 

[164].  

Banjo was run using default parameters (Appendix section ‎8.1). To identify robust 

interactions among a set of top-scoring networks, the consensus network was used. 

The output was rendered with dot, a graph layout visualization tool by AT&T1. Since it 

is possible to run java from within MATLAB, BANJO release 2.0 was run in MATLAB 

version 6.0.4 (R12). DBN algorithm performance was compared when each model 

dataset was discretized into three, four and five bins. Regulatory networks close to a 

“true” network compiled from KEGG and other databases were obtained when three 

categories were selected. 

                                                      

1 http://www.graphviz.org/ 
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5.2.7 Evaluation 

To assess sensitivity, specificity and accuracy of the approach, the resulting gene 

networks were compared to a gold-standard of known interactions. A true positive 

(TP) was counted as interaction that is present both in an observed and an expected 

network, a false positive (FP) for any edge that was predicted in the learnt network 

but does not exist in the expected network, a false negative (FN) as an edge that is 

present in the expected network but not in the learnt network, and a true negative 

(TN) when an interaction does not exist in either learnt or expected networks. To 

construct an expected network, we merged all pathways involved in our gene lists into 

a new graph containing all nodes and edges. Therefore, the expected network 

represents comprehensive regulatory paths and physical interactions, accounting for 

the fact that many KEGG [165] pathways embed other pathways. Ingenuity Pathway 

Analysis (IPA)2 was used to account for experimental findings reported in a variety of 

data resources, such as BioGRID, IntAct, MINT, KEGG and others as detailed in 

Appendix ‎8.2. In the expected network, all edges were supported by at least one 

published reference or from canonical information stored in the protein interaction 

databases. 

5.2.7.1 Significance analysis of network motifs 

To uncover the structural design principles of the reversely engineered GRN, the 

comprised network motifs were assessed. Network motifs are patterns occurring 

significantly more frequently than at random [166] in complex biological networks. A 

large number of comprised motifs indicate authenticity and robustness. Motif 

detection was carried out using a so-called rand-esu algorithm [167], generating the 

random networks from the reversely engineered consensus network by a series of 

edge switching operations as the default randomization model. Ten million random 

                                                      

2 http://www.ingenuity.com/products/pathways_analysis.html 
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networks were searched to obtain a comparison to the consensus network. The 

higher the number of randomized networks, the more accurate the results. 

Significance analysis of the motifs was carried out by comparing the occurrence of a 

motif in the consensus network to the occurrence of the same motif in the 

randomized network. Z-scores were calculated as the occurrence of a motif in the 

consensus network minus its random frequency divided by the standard deviation in 

random networks. The higher the Z-score, the more significant is a motif. P-values 

correspond to the number of random networks in which the motif occurred more 

often than in the original network, divided by the total number of random networks. 

5.3 Algorithm and results 

5.3.1 Algorithm  

An overview is given in Figure 19. Starting on a pair of preprocessed datasets A and B 

of no particular numbers of genes and also differing in the numbers of samples 

(arrays), methods described in the previous section (CIA, Hungarian matching and k-

means clustering) are iteratively applied in the following manner (Algorithm 1).  

Initialization: As an initial step, A and B are (separately) divided into n gene clusters, 

each. For the results presented, I initialized with n=3.  

Each cluster is represented by its centroid (weighted average) as if it were only one 

gene representing a typical transcription profile for this cluster. Each cluster centroid 

of A is paired with one cluster centroid of B. There are n! possible ways to combine A 

and B, each of which is subjected to CIA to determine the one of highest co-inertia. 

This affiliation, albeit of low granularity (only three connections), is used as a starting 

point for iteration. 

Iteration: The remaining procedure consists of two consecutive parts that are iterated 

with increasing n (until n reaches the number of samples). Both parts are identical in 

that they take as input an existing CIA, using its projected distances as weight matrix 
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for Hungarian matching and let the resulting matches vote for cluster affiliations that 

are in turn basis for the next CIA. However, the two parts differ in that the first part 

starts on an affiliation of sample clusters in order to improve affiliation of gene 

clusters and vice versa. This is implemented by calling ‘doMatching’ subroutine. 

The first part uses the previously performed CIA, collecting the projected distances 

between the samples of A and B into a sample(A) × sample(B) matrix which is then 

subjected to the Hungarian algorithm as a penalty matrix. The resulting matching 

preferentially pairs samples of low distance (resembling co-ordination). Subsequently, 

samples of A and B are separately clustered into n sample clusters. Each sample 

 

Figure 19. Overview.  

Figure from [132] by permission of Oxford University Press. 
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cluster is represented by its cluster centroid (typical sample) and each cluster centroid 

of A is paired to a cluster centroid of B. The pairs are determined by majority voting of 

above matches, i.e. any two clusters with the highest number of connections between 

the comprised samples (arrays) become paired. The paired sample cluster centroids 

Algorithm 1. Pseudocode 

Input: Preprocessed tables A and B of microarray data, differing in numbers of 
genes  (rows)  and samples (columns) 
Initialization: 
 Cluster each table  (A and B) into same small no. of gene clusters n (e.g. 3) 

 Represent each cluster by its centroid 

 
Affiliate each cluster centroid of A to a cluster centroid of B yielding a 
pairing 

 for each possible pairing do 

  
Use these gene cluster pairs as connecting variables for a CIA of 
samples 

  to identify the pairing with highest co-inertia 

 end for 
Iteration: 
 while number of clusters <= no. of samples do 

  while RV increases or remains constant do 

   Call doMatching ( samples, connecting variables ) 

   Call doMatching ( genes, connecting variables ) 

  end while 

  increase number of clusters n by 1 

 end while 
doMatching: Compute weight matrix (objects   objects) containing 

penalties for high distances 

 
Use Hungarian algorithm to compute optimal matching 
between objects 

 Cluster each data set into n clusters 

 Affiliate cluster centroids by majority voting of object matches 

 Use these pairs as connecting variables for the next CIA 

 Return : RV, connecting variables 
Refinement: Decider: define the number of clusters to be matched based 

on silhouette values 

 
Rearrangement: Recall doMatching for m gene clusters out of 
decider module, obtaining m paired gene cluster centroids 

 
 back-transformation  reverse engineering GRN 
 verification of common model 
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serve as connecting variables for a CIA projecting the genes.  

The second part uses these projected distances between the genes of A and B, 

collecting them into a gene(A) × gene(B) matrix which is then subjected to the 

Hungarian algorithm as penalty matrix. All operations of the second part resemble 

those in the first part, but the roles of genes and samples are switched. In practice, 

the second part can be performed after transposing both A and B. Please note that 

the two parts are consecutively iterated until the co-inertia stops increasing (inner 

loop) before increasing n. The algorithm terminates as n approaches the number of 

samples (arrays) of the smaller data set.  

Refinement: The motivation for this step is to allow a larger n (exceeding the number 

of samples) for the genes. ‘Refinement’ consists of two modules, ‘Decider’ and 

‘Rearrangement’. The ‘Decider’ determines whether the number of clusters proposed 

by the iteration part is accepted as the optimum or if there is room for improvement 

by further increasing n for the genes. The choice of the decider is tightly connected to 

the Silhouette values [69] of gene clusters. If a larger n (maybe even larger than the 

number of samples) improves clustering, ‘Decider’ will proceed to determine the 

optimum number of clusters. Subsequently, ‘Rearrangement’ generates m pairs of 

gene cluster centroids by calling the ‘doMatching’ subroutine. 

Reverse Engineering gene regulatory networks: For the resulting gene cluster 

centroids, the CIA coordinates are back-transformed into a data table. Its format and 

scale resemble that of a conventional microarray data table but it comprises only the 

variance that is common to both input data tables (of gene cluster centroids). It is 

subjected to DBN inference resulting in a graph each node of which represents a 

(cross-species) pair of gene clusters, while its edges stand for inter-dependencies 

detected for both species. 

Back-transformation, DBN, as well as motif analysis were not used as parts of the 

algorithm. Apart from that revealing the underlying common gene regulatory network 

can be rewarding in and of itself, the resulting networks served as a means to validate 
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my algorithm. 

5.3.1 Single species application 

To demonstrate applicability of the algorithm, its performance on two independent 

but closely related experiments on the same species is presented. These datasets 

provide more prior knowledge and direct evidence for correct matching of genes and 

samples of both datasets. The matching algorithm performed on two S. pombe cell 

cycle experiments described by [35] and [14]. Both samples and genes were 

permuted for one of the two S. pombe cell cycle experiments. The algorithm was 

performed after estimating the periodic genes in the cell cycle.  

5.3.1.1 Preprocessing 

Two different laboratories used DNA microarrays to study periodic gene expression of 

the fission yeast cell cycle. The normalized datasets named “elutriation 1” [14] and 

“elutriation A” [35], each relating to individual experiments were used. In the 

following text these data sets will be referred to as ‘ds1’ and ‘ds2’, respectively. For 

perfect synchronization, the first cell cycle period (10 time points) was selected from 

both datasets. The total number of genes found to oscillate with a FDR of 0.1 in the 

first study was 1060, whereas in the second study 360 genes were identified. Of 

those, 337 were found in both. These genes, as well as the samples, were permuted 

(anonymized) and used as an input to the algorithm.  

5.3.1.2 Running the algorithm 

The algorithm terminated after 12 iterations, with maximal two inner loops, resulting 

in an RV coefficient of 0.9356. In theory, the optimal pairing could be determined by 

evaluating all possible pairings as in the initialization step. However, n×n! evaluation 

steps are not feasible for larger n. This would require 3.6×107 instead of the 35 CIA 

executed until convergence.  
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The result was visualized by CIA (Figure 20). The first two (x and y) axes of ‘ds1’ 

explain 72% and 25% of the total inertia, respectively. The first two axes of ‘ds2’ 

represent 71% and 22% of the total variance within ‘ds2’. Thus more than 90% of the 

variance of the CIA was accounted for by the first two co-inertia axes and thus 

presents a good summary of the co-structure between the two datasets. 

5.3.1.3 Refinement 

A maximum of 10 well separated gene clusters were obtained in the refinement step 

with overall silhouette values of 0.42 and 0.44 for ‘ds1’ and ‘ds2’, respectively. 

Increasing the number of gene clusters from 10 to 17, the overall silhouette values 

would almost remain the same (differing by less than 0.01 for each dataset). However, 

the best RV was obtained for n=10. This suggests an optimum similarity when 

 

Figure 20. ‘ds1’ and ‘ds2’ projected by CIA.  

Affiliated samples of both datasets are connected by lines. Each red or blue number represents 

samples (time points), and each dot or ‘+’ depicts a gene of ‘ds1’ or ‘ds2’, respectively. Affiliated gene 

clusters are highlighted in same colors. Histones are encircled in grey. Figure from [132] by permission 

of Oxford University Press. 
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datasets are clustered into 10 gene clusters only. 

5.3.1.4 Co-inertia on cluster affiliations 

In the shown example the algorithm terminated with an RV coefficient of 0.9356 and 

with 10 affiliated clusters. The algorithm was able to reconstruct correct affiliations of 

all samples (Figure 20) as well as for 87% of all genes (Table 2).  

5.3.2 Cross species application 

In order to further demonstrate the performance of the algorithm, it was applied to 

two yeast cell cycle studies [13, 14] comprising nearly identical experimental 

conditions (Saccharomyces cerevisiae, Schizosaccharomyces pombe) and two 

estrogen-regulated gene expression studies of Homo sapiens and Mus musculus [168, 

169]. These datasets were selected to support general applicability of the algorithm to 

different levels of similarity, underlying structure and experimental platform (both 

two-channel cDNA and Affymetrix chips). Each dataset was pre-processed separately.  

5.3.2.1 Preprocessing  

Spellman and coworkers recorded mRNA levels for 6,178 open reading frames (ORFs) 

of Saccharomyces cerevisiae over two cell-cycle periods in a yeast culture 

synchronized initially in the cell-cycle stage M/G1 at 7 minute intervals for 119 

minutes. Rustici and coworkers monitored mRNAs whose levels oscillate during the 

cell-cycle for 6,978 ORFs of Schizosaccharomyces pombe as a function of time in cells 

synchronized through centrifugal elutriation for 285 minutes and temperature-

sensitive cell-cycle mutants for 270 minutes at 15 minute intervals. Both datasets 

were recorded on glass-slides using two-channel fluorescent labeling. 
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      Table 2. Affiliated clusters of S. pombe datasets 

 ‘ds1’ gene clusters ‘ds2’ gene clusters ‘ds1’ %† ‘ds2’  % 

hht1,h4.1,h3.2,h4.3,ams3,htb1 hht1,h4.1,h3.2,h4.3,ams3,htb1 100% 100% 

SPAC11E3.10,arb1SPAC1565.02c,mug99,ssl3,fin1,pkd
2,SPAC24C9.05c,SPAPB21F2.01,SPAC26A3.11,spk1,SP
AC343.13,ppc89,SPAC513.07,cfr1,ndk1,spn2,SPAC823
.13c,SPAC926.06,cdc4,SPBC1271.03c,top1,arg7,SPBC3
1F10.16,cdc13,mto2,apc2,cyp4,emp24,bis1,SPCC553.
07c,SPCC553.12c,sly1,psy1,SPAC343.20,SPAC1002.17c
,SPAC23A1.02c,pom1,SPBC18E5.07,SPBC21B10.07,po
b1 

SPAC11E3.10,arb1SPAC1565.02c,mug99,ssl3,fin1,p
kd2,SPAC24C9.05c,SPAPB21F2.01,SPAC26A3.11,spk
1,SPAC343.13,ppc89,SPAC513.07,cfr1,ndk1,spn2,SP
AC823.13c,SPAC926.06,cdc4,SPBC1271.03c,top1,ar
g7,SPBC31F10.16,cdc13,mto2,apc2,cyp4,emp24,bis
1,SPCC553.07c,SPCC553.12c,sly1,psy1,pho2,SPBC1
773.02c,SPBC1773.03c,mob1,SPBC215.11c,SPCC184
0.04,coq10,SPCC1259.12c,SPCC1223.09,aph1,SPCC1
020.07 

83% 76% 

adg2,eng1,rpc17,cig2,adg1,cfh4,adg3 
adg2,eng1,rpc17,cig2,adg1,cfh4,adg3,SPAC644.05c,
ams2 

100% 78% 

cdc42,pub1,SPAC1486.06,SPAC1639.01c,SPAC17G8.11
c,SPAC18G6.09c,SPAC19B12.06c,nup40,pas1,rer1,SPA
C23D3.07,mug66,tbp,pam2,cam1,ptc4,SPAC4G9.15,S
PAC57A10.09c,acp2,SPAC644.16,pro1,sod2,SPBC119.
10,SPBC119.17,SPBC13E7.08c,myo1,erg6,ksp1,trp4,rs
c9,ape1,SPBC21B10.09,suc22,psm1,php5,dsd1,lac1,m
ts2,SPBC428.19c,SPBC543.02c,SPBC902.04,SPCC1020.
08,alp8,dga1,SPCC1450.02,SPCC1620.08,taf50,caf1,c
wf13,spp27,ins1,SPCC306.08c,cap,SPCC364.07,SPCC4
F11.03c,atg1,prp28,bpb1,SPAC6B12.07c,sfp1,SPBC660
.15,his2,pho2,suc1,cwl1,SPBC1271.09 

cdc42,pub1,SPAC1486.06,SPAC1639.01c,SPAC17G8.
11c,SPAC18G6.09c,SPAC19B12.06c,nup40,pas1,rer
1,SPAC23D3.07,mug66,tbp,pam2,cam1,ptc4,SPAC4
G9.15,SPAC57A10.09c,acp2,SPAC644.16,pro1,sod2,
SPBC119.10,SPBC119.17,SPBC13E7.08c,myo1,erg6,
ksp1,trp4,rsc9,ape1,SPBC21B10.09,suc22,psm1,ph
p5,dsd1,lac1,mts2,SPBC428.19c,SPBC543.02c,SPBC
902.04,SPCC1020.08,alp8,dga1,SPCC1450.02,SPCC1
620.08,taf50,caf1,cwf13,spp27,ins1,SPCC306.08c,c
ap,SPCC364.07,SPCC4F11.03c,atg1,prp28,bpb1,SPA
C607.07c,SPAC23A1.02c,pom1,SPAC977.09c,SPBC18
E5.07,SPBC21B10.07 

88% 89% 

SPAC17H9.18c,cdc22,bet1,SPAP27G11.01,spo12,myo
3,SPAP14E8.02,mid2,exg1,cdc18,chs2,rid1,SPBC27.04
,SPCC1322.10,rad21,etd1,SPAC644.05c,ams2 

SPAC17H9.18c,cdc22,bet1,SPAP27G11.01,spo12,m
yo3,SPAP14E8.02,mid2,exg1,cdc18,chs2,rid1,SPBC
27.04,SPCC1322.10,rad21,lad1 

83% 94% 

SPAP4C9.01c,SPAC1F7.10,alg1,SPAC26H5.02c,uch1,SP
AC29B12.13,SPAC29E6.05c,SPAC2E1P3.01,SPAC2F3.0
5c,SPAC513.06c,SPAC6B12.05c,SPAC7D4.05,SPAC7D4.
13c,SPAC8C9.16c,SPAC922.07c,SPAPYUG7.06,rex2,nta
1,SPBC25B2.08,SPBC409.17c,tas3,apc15,mog1,SPCC2
85.04,SPCC2H8.05c,SPCC320.14,tip41,res1,csn3,fta1,S
PCC1840.04,coq10,SPCC1259.12c,SPCC1223.09,aph1,
SPBC1773.02c,SPBC1773.03c,SPBC215.11c 

SPAP4C9.01c,SPAC1F7.10,alg1,SPAC26H5.02c,uch1,
SPAC29B12.13,SPAC29E6.05c,SPAC2E1P3.01,SPAC2
F3.05c,SPAC513.06c,SPAC6B12.05c,SPAC7D4.05,SP
AC7D4.13c,SPAC8C9.16c,SPAC922.07c,SPAPYUG7.0
6,rex2,nta1,SPBC25B2.08,SPBC409.17c,tas3,apc15,
mog1,SPCC285.04,SPCC2H8.05c,SPCC320.14,tip41,
SPCC584.03c,thp1,fft1,SPAC17A5.09c,SPAC1002.17c
,SPAC4H3.14c,SPBC19G7.07c,mug117 

71% 77% 

mde6,SPAC1705.03c,hri1,pol1,slp1,nrm1,fkh2,klp5,S
PBC31F10.17c,rum1,SPBC32F12.10,msh6,SPCC338.08
,SPCC63.13,SPCC757.12,SPAP27G11.01,SPAC2E1P5.03
,SPBC83.18c,mob1 

mde6,SPAC1705.03c,hri1,pol1,slp1,nrm1,fkh2,klp5,
SPBC31F10.17c,rum1,SPBC32F12.10,msh6,SPCC338
.08,SPCC63.13,SPCC757.12,etd1,SPAC343.20,lad1 

79% 83% 

zpr1,spb1,SPAC16C9.03,ssr1,uap56,sup45,rrn3,SPAC1
9A8.07c,SPAC1B3.13,SPAC1F7.02c,SPAC20G8.09c,SPA
C212.10,lys3,SPAC23C4.05c,sxa1,SPAC26H5.07c,hal4,r
bp28,prh1,SPAC6F12.16c,SPAC6F6.03c,ppa1,SPAC890
.05,SPAC926.08c,SPAPB17E12.14c,pdr1,mae1,SPAPB8
E5.07c,SPBC11G11.03,fkbp39,SPBC13G1.09,SPBC14F
5.06,SPBC16H5.08c,SPBC17D1.05,tif213,edc3,ppp1,ut
p10,grn1,SPBC365.14c,SPBC3D6.12,nuc1,SPBC4F6.13
c,SPBC4F6.14,int6,uvi15,nog1,SPBP8B7.20c,SPBPB10
D8.04c,SPCC1183.07,SPCC11E10.07c,SPCC1442.04c,S
PCC1672.07,SPCC18.05c,tif6,cgs2,SPCC320.08,SPCC33
0.09,cfh2,SPCC550.11,SPCC550.15c,SPCC63.06,SPCC6
63.10,rnc1,SPCC830.08c,SPCP1E11.08,SPCP1E11.11,S
PAC607.07c,sds22 

zpr1,spb1,SPAC16C9.03,ssr1,uap56,sup45,rrn3,SPA
C19A8.07c,SPAC1B3.13,SPAC1F7.02c,SPAC20G8.09c
,SPAC212.10,lys3,SPAC23C4.05c,sxa1,SPAC26H5.07
c,hal4,rbp28,prh1,SPAC6F12.16c,SPAC6F6.03c,ppa1
,SPAC890.05,SPAC926.08c,SPAPB17E12.14c,pdr1,m
ae1,SPAPB8E5.07c,SPBC11G11.03,fkbp39,SPBC13G
1.09,SPBC14F5.06,SPBC16H5.08c,SPBC17D1.05,tif2
13,edc3,ppp1,utp10,grn1,SPBC365.14c,SPBC3D6.1
2,nuc1,SPBC4F6.13c,SPBC4F6.14,int6,uvi15,nog1,S
PBP8B7.20c,SPBPB10D8.04c,SPCC1183.07,SPCC11E
10.07c,SPCC1442.04c,SPCC1672.07,SPCC18.05c,tif6
,cgs2,SPCC320.08,SPCC330.09,cfh2,SPCC550.11,SP
CC550.15c,SPCC63.06,SPCC663.10,rnc1,SPCC830.08
c,SPCP1E11.08,SPCP1E11.11,SPAPB1A10.01c,Tf2-
11,SPAC6B12.07c,Tf2-3,Tf2-4,sfp1, 
SPAC4F10.03c,SPBC660.15,his2,cwl1,suc1 

97% 86% 

SPAC13G6.10c,msa1,alm1,SPAC14C4.12c,grx2,erg3,SP
AC16E8.02,SPAC1786.02,SPAC17A2.08c,cki3,SPAC19A
8.02,SPAC20H4.02,etr1,SPAC29B12.05c,SPAC328.05,e
rg8,met11,SPAC3G9.05,cdr2,pan6,SPAC5H10.09c,gmh
2,SPAC6F12.08c,sen1,SPAP7G5.03,rpb9,zas1,SPBC134
7.09,SPBC13A2.03,SPBC1711.03,SPBC2G2.13c,SPBC4
09.08,mis15,SPCC1672.04c,SPCC1682.09c,SPCC18.15,
nup61,gyp3,swc5,ksg1,myo2,ubc12,alr1,SPCC1020.07
,fft1,SPAC17A5.09c,SPAPB1A10.01c,SPAC4H3.14c,SPAC
4F10.03c,SPBC19G7.07c,mug117,SPCC584.03c,thp1 

SPAC13G6.10c,msa1,alm1,SPAC14C4.12c,grx2,erg3,
SPAC16E8.02,SPAC1786.02,SPAC17A2.08c,cki3,SPA
C19A8.02,SPAC20H4.02,etr1,SPAC29B12.05c,SPAC3
28.05,erg8,met11,SPAC3G9.05,cdr2,pan6,SPAC5H1
0.09c,gmh2,SPAC6F12.08c,sen1,SPAP7G5.03,rpb9,z
as1,SPBC1347.09,SPBC13A2.03,SPBC1711.03,SPBC
2G2.13c,SPBC409.08,mis15,SPCC1672.04c,SPCC168
2.09c,SPCC18.15,nup61,gyp3,swc5,ksg1,myo2,ubc1
2,alr1,fta1,csn3,sds22,res1 

81% 92% 

SPAC11E3.13c,SPAC8C9.05,pht1,SPBC1306.01c,SPBC1
7G9.06c,csx2,SPBC19C7.04c,SPBC28F2.11,SPBPB2B2.
19c,SPBPJ4664.02,sap1,SPCC1795.10c,SPCC18.02,SPC
C338.12,Tf2-3 
Tf2-4,SPAC977.09c,Tf2-11 

SPAC11E3.13c,SPAC8C9.05,pht1,SPBC1306.01c,SPB
C17G9.06c,csx2,SPBC19C7.04c,SPBC28F2.11,SPBPB
2B2.19c,SPBPJ4664.02,sap1,SPCC1795.10c,SPCC18.
02,SPCC338.12, 
SPAC2E1P5.03,SPBC83.18c,SPBC1271.09,pob1 

74% 78% 

†Percentage of correctly affiliated genes in each cluster 
Histones are shown in Italic; matched clusters are represented as rows; orthologs are sorted and represented as bold in each row. 
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Generally, synchronization substantially decreased after two periods. In order to 

maximize similarity, 10 time points of highest synchronization and quality from either 

dataset were selected. I will refer to these data as ‘Sce’ and ‘Spo’ respectively. 

The pair of normalized yeast microarray gene expression datasets (Saccharomyces 

cerevisiae and Schizosaccharomyces pombe) was obtained from the publically 

accessible ArrayExpress data repository [131, 170] as well as from the authors’ web 

resource. After log2-transformation, genes for which more than 50% of the data were 

missing were discarded. The remaining missing values were imputed by k-nearest 

neighbor algorithm [171] and Spline interpolation [172] which are commonly used for 

time-series data. Periodically expressed genes of significance with false discovery rate 

(FDR) of 0.05 were extracted by AR(1)-based background model [173]. 

The second two datasets (human/mouse) were obtained from Gene Expression 

Omnibus [174]. The studies investigated the effect of Estradiol on human [168] and 

murine cells [169]. Stossi et al., examined U2OS osteosarcoma cells after treatment 

with either estrogen receptor (ER) alpha or beta for various periods of time up to 48 

hours (10 time points in total).  They generated U2OS human osteosarcoma cells 

stably expressing ESR1 or ESR2, at levels comparable to those in osteoblasts. The 

characterization of the response to estradiol (E2) over time was measured using 

Affymetrix GeneChip microarrays. Moggs and coworkers recorded the uterus 

response of immature mice subcutaneously injected with 17β-estradiol (E2) or arachis 

oil (AO) at various time points up to 72 hours following treatment. 

Datasets were normalized by variance stabilization [175]. Differentially expressed 

genes were extracted using the eBayes method of the limma package [123]. For 

multiple testing adjustments, the FDR was calculated using the algorithm of Benjamini 

and Hochberg [124]. 

5.3.2.2 Cell cycle data – cerevisiea vs. pombe 

The algorithm succeeded in producing the correct matching of time points after 20 
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iterations. Challenging the ability of the algorithm to reconstruct the correct order of 

time points without any knowledge about affiliation of neither time points nor gene 

orthologs, the sequence of the time points and the genes were randomly permutated. 

Typically after 16 to 35 iterations the algorithm converged to the very same result. 

In the shown example the algorithm terminated with an RV coefficient of 0.8983. 

While the algorithm’s outer loops improved the matching score with increasing 

granularity, the inner loops optimized overall co-structure for a given n (Figure 26). 

The algorithm gradually increased the matching score in minimum two consecutive 

inner loops and identified the best similarity score by finding the correct affiliations of 

the connecting variables in seven outer loops. The result was verified in terms of 

optimal co-inertia and granularity as detailed in section ‎5.3.3. The result was 

visualized by CIA (Figure 21).  

Here, the two pairs of projection coordinates are highly correlated and the overall 

similarity in the structure of the dataset was very high resulting in a RV coefficient of 

0.8983. Clearly, the algorithm was able to detect and highlight the similarity between 

histones in these datasets, projecting them all in a cluster of histones differentiated 

from other functionally related genes (Figure 21(a), encircled in black).  

In order to characterize the affiliated gene clusters, GO term enrichment analysis 

[176] was performed. Table 3 shows that the other affiliated clusters comprise 

common functionalities and orthologs. It lists significant common terms along with 

the percentage of the involved genes in each cluster.  

Top common functions are represented by significant associations of p-value<0.05. In 

the same manner, Table 3 summarizes the percentages of correctly affiliated 

orthologs. A complete table listing all genes is given in Table 4. Based on the two back-

transformed data tables, each cluster is represented by the gene-wise sum of all 

comprised genes across both tables. Subjecting this combined table to DBN algorithm, 

these cluster representatives became the nodes of a common gene network. 
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 A graphical representation of the resulting common network is shown in Figure 22. To 

illustrate it by example, I follow its edges from the smallest to the largest cluster, 

moving through the cell-cycle from S phase towards mitosis (see Table 3). The 

histones (cluster g8) play an important role in transcriptional regulation. I observe an 

edge from g8 to g9 comprising the cyclin CLN2 comparing favorably with work of 

Santisteban and coworkers [177].  

 

Figure 21. CIA plot of affiliated clusters. 

a) ‘Sce’ and ‘Spo’ projected by CIA. The affiliated samples of both datasets are connected by lines, 

the lengths of which indicate the divergence between the two datasets.  Each end of a line marks 

the position of a sample (time point) in the projection. Each blue or red dot represents a gene of 

‘Sce’ or ‘Spo’, respectively, its position determined by its relative expression across all samples. 

The genes that are projected in the same direction from the centroid are those which are highly 

expressed in that sample. b) ‘Spo’ dataset projected by CA. c) ‘Sce’ dataset projected by CA. 

Eigenvalues are shown in the bottom corner for each dataset, normalized to 100%. The first two 

(x and y) axes of ‘Sce’ explain 49% and 33% of the total inertia within this dataset. The first two 

axes of ‘Spo’ represent 64% and 30% of the total variance within ‘Spo’. Thus more than 80% of the 

variance of the CIA was accounted for by the first two co-inertia axes and thus presents a good 

summary of the co-structure between the two datasets. Figure from [132] by permission of 

Oxford University Press. 
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Table 3. Characterization of the affiliated gene clusters 

Node‡ 

Genes Orth. Counts* Top common over-represented biological functions 

‘Spo’ ‘Sce’ ‘Spo’ ‘Sce’ Category Spo† Sce† Spo % Sce % Spo pvalue Sce pvalue 

g1(7) 64 63 88% 91% organelle organization and biogenesis 23 22 35.94 34.92 2.17E-02 1.59E-02 
     non-membrane-bound organelle 17 21 26.56 33.33 6.31E-03 5.30E-03 

     intracellular non-membrane-bound 17 21 26.56 33.33 6.31E-03 5.30E-03 

     chromosome organization and biogenesis 15 15 23.44 23.81 4.29E-04 8.99E-05 

     cell cycle 12 16 18.75 25.40 8.98E-03 8.98E-03 

     cell cycle process 11 14 17.19 22.22 3.87E-02 1.66E-02 

     meiotic cell cycle 8 15 12.50 23.81 2.46E-03 8.99E-05 

     cell cycle phase 10 12 15.63 19.05 3.48E-02 1.57E-02 

     chromosomal part 8 14 12.50 22.22 1.23E-02 4.29E-04 

     DNA binding 15 16 23.44 25.40 1.81E-03 3.59E-02 

     M phase 9 12 14.06 19.05 1.42E-02 8.80E-03 

     DNA packaging 8 11 12.50 17.46 2.08E-02 4.23E-04 

g2  (9,M/G1) 54 43 85% 97% cellular component organization  23 23 42.59 53.49 5.24E-03 2.72E-03 

     biopolymer metabolic process 22 23 40.74 53.49 9.53E-03 7.77E-03 

     ribonucleotide binding 10 14 18.52 32.56 6.02E-03 9.03E-03 

     cell cycle 11 5 20.37 11.63 7.77E-03 5.45E-03 

     DNA binding 5 10 9.26% 23.26 3.77E-02 3.77E-02 

     mitotic cell cycle 7 6 12.96 13.95 3.69E-02 3.69E-02 

     M phase of mitotic cell cycle 6 8 11.11 18.60 5.45E-03 4.21E-02 

g3  (8) 60 84 68% 84% protein binding 39 19 65.00 22.62 2.47E-02 1.92E-03 

     biological regulation 20 24 33.33 28.57 8.09E-03 1.84E-03 

     G1/S transition of mitotic cell cycle 9 7 15.00 8.33% 3.37E-02 5.87E-03 

     developmental process 8 13 13.33 15.48 3.98E-02 1.26E-02 

     cell cycle 15 5 25.00 5.95% 6.16E-03 3.34E-02 

     cell division 10 10 16.67 11.90 8.30E-03 1.05E-02 

     site of polarized growth 11 7 18.33 8.33% 4.62E-05 4.25E-05 

     regulation of progression through cell cycle 7 8 11.67 9.52% 4.31E-02 1.96E-02 

     cytoskeleton 7 8 11.67 9.52% 1.96E-02 7.65E-03 

     cellular bud 10 5 16.67 5.95% 5.73E-03 2.26E-04 

     negative regulation of biological process 9 6 15.00 7.14% 5.73E-03 3.37E-02 

     regulation of cell cycle 7 8 11.67 9.52% 4.31E-02 1.96E-02 

g4  (10) 36 54 94% 90% regulation of biological process 14 9 38.89 16.67 8.65E-03 7.95E-03 

     regulation of cellular process 14 9 38.89 16.67 7.43E-04 7.12E-03 

     biological regulation 16 5 44.44 9.26 1.89E-03 1.89E-03 

     cell cycle process 9 7 25.00 12.96 9.05E-04 7.31E-03 

     mitotic cell cycle 8 6 22.22 11.11 1.85E-02 1.62E-02 

     regulation of S phase 2 3 5.56% 5.56% 7.26E-04 2.53E-02 

g5  (6, M) 49 32 91% 86% cell division 6 9 12.24 28.13 3.11E-02 1.53E-02 

     mitotic cell cycle 5 7 10.20 21.88 9.78E-04 4.13E-02 

     M phase 8 3 16.33 9.38% 3.11E-02 7.39E-03 

     cytoskeletal part 4 7 8.16% 21.88 9.8E-03 8.68E-03 

     cell cycle control 3 6 6.12% 18.75 1.27E-02 4.88E-03 

g6  (5) 31 41 64% 88% transmembrane protein 14 10 45.16 24.39 5.7E-03 2.62E-02 

     cell division 6 6 19.35 14.63 9.3E-03 4.12E-02 

     cytoskeleton organization  5 5 16.13 12.20 6.E-04 3.49E-02 

g7  (11) 13 10 89% 95% mitotic cell cycle 5 5 38.46 50.00 7.8E-03 1.82E-03 

     cell cycle 4 4 30.77 40.00 1.9E-02 4.55E-03 

     cell division 4 4 30.77 40.00 3.2E-02 2.42E-02 

g8  (1, S) 10 10 100% 100% Histones   
  

 
 

g9  (2) 13 21 75% 83% cellular component organization 9 13 69.23 61.90 8.48E-04 6.75E-03 

     cell cycle 5 6 38.46 28.57 1.02E-02 2.90E-03 

g10  (12, G1) 22 27 90% 89% protein binding 17 8 77.27 29.63 3.95E-02 5.39E-03 

     cell cycle 6 9 27.27 33.33 8.58E-03 6.94E-03 

     DNA damage 3 5 13.64 18.52 4.95E-02 3.40E-02 

     DNA-dependent DNA replication 3 4 13.64 14.81 5.90E-03 1.68E-02 

g11  (3, G2) 17 13 81% 94% cell cycle 3 3 17.65 23.08 6.71E-04 2.60E-02 

     cell wall organization and biogenesis 3 3 17.65 23.08 6.89E-03 2.58E-02 

g12  (4) 24 46 87% 100% cellular component organization 12 26 50.00 56.52 7.08E-05 2.74E-02 

     biological regulation 8 19 33.33 41.30 9.06E-04 4.17E-03 

     phosphoprotein 3 17 12.50 36.96 9.43E-03 5.88E-03 

     developmental process 4 10 16.67 21.74 8.38E-02 1.38E-02 

‡ The sequence of the nodes in the cell cycle is provided in brackets along with their cell cycle affiliations. 

 * This column shows the number of correctly affiliated orthologues as a percentage of all orthologues “available” for this gene cluster. 

 †Number of genes known to be involved in the same functional category (GO-term) in each individual gene cluster. 

 



Cross-species microarray meta-analysis  

96 

 

  

Table 4. Cluster components (genes) of the affiliated gene clusters 

node† ‘Sce’ gene clusters ‘Spo’ gene clusters 

g1 

(7) 

YOR292C,YJL123C,YFL034W,YCL047C,VIP1,TRA1,THG1,TCB3,SRM1

,SPE1,SEC11,RPL30,PUS7,PRO1,PGM2,PDS5,OSH3,MOT1,HOG1,GP

I1,ERJ5,CSE4,CDC20,(BCH1,BUD7),ISR1,HSP150,MCM5,YRF11,YPR2

03W,MCM3,CWP2,SED1,CTI6,SYP1,SOK1,YPL014W,TOS2,SMF3,GPI

13,SPF1,CCR4,ACS2,HOL1,COS8,BIO2,FIN1,CIN8,SCY1,ERG3,YNL176

C,AXL2,TOF2,CSM2,YGR035C,WSC2,PSA1,SEC53,FLC3,YEH1,SVS1,Y

NK1 
 

SPAC3G6.05,SPCC1322.09,SPAC6F6.13c,SPAC694.03,asp1,SPBP16F

5.03c,SPCC63.07,SPAPYUK71.03c,dcd1,spe1,sec11,rpl30,SPBC1A4.

09,SPAC17H9.13c,SPBC32F12.10,pds5,SPAP27G11.01,mot1,phh1,g

pi1,SPAC2E1P5.03,cnp1,slp1,SPBC31F10.16,SPBC19G7.04,atl1,mde

6,SPAP27G11.08c,tim22,ask1,SPAC144.08,SPCC736.02,SPCC63.10c,

mac1,SPCC1682.13,cki3,SPCC338.08,SPAC9.11,SPBP22H7.03,nup13

2,SPBC19C2.10,tas3,SPAC630.12,mrpl28,meu29,mrc1,cfh3,SPBC83.

18c,vps8,phf2,set3,SPBC31F10.02,SPCC63.13,SPBC21C3.04c,bet5,S

PBC27.04,SPBC428.06c 
 

g2 

(9, 

M/G1) 

ALG11,GAS5,HTZ1,KAP114,LEO1,MRM1,RAD54,RBG1,RPT5,SEY1,S

SK2,YLL023C,GRX6,IRC19,SPP381,SNT309,GLO3,PIR3,YRF13,HXT7,G

PA1,YIL177C,YRF12,PIG1,COQ4,SWF1,PCM1,TEL2,OCH1,ECM25,ERP

3,GWT1,CHS6,PMT4,YIR043C,YOX1,ADK2,REB1,YKL069W,ERP2,WHI

5,YHP1,TAO3 
 

alg11,SPAC11E3.13c,mal1,kap114,SPBC13E7.08c,SPBC1347.13c,ra

d54,SPAC9.07c,pam2,SPAC222.14c,SPAPJ730.01,SPBC1539.04,chs

2,klp5,SPCC320.03,SPBC16E9.07,SPBC15D4.01c,SPCC550.11,SPBC5

82.04c,csk1SPBC2F12.12c,urb2,SPBC1105.07c,SPAPB18E9.06c,nnf1,

SPCC1223.04c,spc25,klp8,fkh2,SPAC19B12.08,cfh1,SPAC521.02,SPC

P31B10.09,cdt1,imp2,arp2,mid2,mis17,SPBC8E4.04,SPAC3F10.08c,r

id1,adg2,pht1 
 

g3 

(8) 

BEM1,DID4,DUT1,(EXG1,SPR1),HOF1,MRN1,MSY1,(MYO3,MOY5),

RSP5,SSO1,STU2,VPH1,YPL206C,FAR8,SPH1,TGL2,HEK2,POL12,GCR

1,ALG14,PET112,RAD53,ANP1,HST4,YHR126C,ADE12,GLK1,UBP11,A

AD10,SPT3,RED1,JSN1,YRF1_7,GYP7,PFK1,FAA1,EXO1,RMA1,MDS3,

SWE1,SUB1,YDL027C,YPT11,CSH1,CDC9,PXL1,CDC45,EMP70,MSH2,

ELG1,FRE6,VID22,SPO16,EXG2,SLD2,UBP3,POL30,ASF1,OST2,BNI5,P

DR16,GIC1,PHS1,RRN9,GPI16,SFB3,OPY2,FHL1,SHO1,CKS1,SVL3,ATF

1, FIR1 
 

ral3,did4,SPAC644.05c,exg1,cdc15,msa2,SPCC576.06c,myo1,pub1,

psy1,alp14,vph1,SPAC4D7.02c,etd1,ntf1,pof3,SPBC24C6.10c,cdt2,S

PBC405.02c,SPAC4H3.06,SPAPJ698.04c,set8,SPAC19G12.05,SPAC17

H9.18c,ppk3,fin1,alp1,orc5,SPCC794.08,rpl7,nse5,SPAC30D11.01c,p

sc3,SPAC3G9.05,SPCC320.12,cfh4,SPAC24H6.08,ppc89,par2,SPBC1

306.01c,set2,SPAC9.10,SPBC29A3.03c,SPAC2E1P5.02c,SPAC1F12.05

,SPAC227.05,fep1,lad1,cfh2,SPAC1639.01c,pmp31,ulp1,SPAC977.01

,SPBC14F5.10c,cdm1 
 

g4 

(10) 

AIR2,BMH1,DDP1,ENT1,GAS1,HEM4,MDR1,MOB1,MSE1,RTT106,S

NQ2SSK22,STE11,TFB4,TRP4,SPO12,KIP3,YLR462W,FAT1,HXT10,EM

I2,GEF1,YER071C,MSB1,DDI2,PRI2,SHE3,YMR31,CLB5,SNO3,PHO3,

MSA1,YEL077C,YMR258C,HAA1,PEX7,YJL218W,YLR464W,AVT2,YGL

036W,IST2,BNI4,RTT109,CTF4,HXT2,RCO1,GCN5,PDR5,YMR118C,SN

T1,CLB6,EPT1,LPP1,RAD27 
 

SPBP35G2.08c,rad25,aps1,ent1,SPAC19B12.02c,ups,SPBC215.01,

mob1,SPAPB1A10.11c,SPAC6G9.03c,pdr1,wak1,byr2,tfb4,trp4,apc

15,mog1,SPAC13G6.10c,SPAC821.03c,hrr1,meu34,SPCC613.07,SPA

C1705.03c,SPAPB17E12.10c,SPBC1861.07,SPAC5D6.02c,SPCC16C4.

02c,SPAC11E3.10,SPBC17G9.06c,SPBC15D4.02,SPAC1565.02c,efc25

,hmt1,SPBC3H7.13,SPBP4H10.16c,SPBPB2B2.19c 
 

g5 

(6, M) 

ACF2,ATG8,CLB2,ERG6,HSL1,LSM2,MCD1,MUC1,NOB1,RER1,RFA1,

RNR1,RRP45,RVS161,SEN1,TOP2,UBP6,YCK1,CAF120,HCM1,STB1,L

SP1,ERS1,YRF15,ALD6,STE2,RGA1,CMK1,YPR157W,YCR102C,YDL11

8W,YBR071W  
 

(eng1,eng2),atg8,cdc13,erg6,cdr1,lsm2,rad21,SPBPJ4664.02,SPAC

1486.09,rer1,rad11,ssb1,dc22,SPCC757.08,hob3,(sen1,SPBC29A10.

10c),ptr11,ubp6,SPAC3C7.07c,hcn1,mcp1,pus2,chp2,SPBC947.14c,

SPCC576.12c,SPAP8A3.11c,SPCC794.03,SPAC15A10.09c,SPBC29A10

.08,SPBC14C8.13,bet1,SPAC630.04c,rho4,cdc25,SPBC36.06c,SPAC2

6H5.11,SPAC14C4.05c,SPAC24B11.07c,SPBC16H5.12c,vip1,SPCC594

.04c,SPAP14E8.02,cam2,csx2,ucp10 
 

g6 

(5) 

CDC5,CLB3,ENT3,MYO1,POL31,RKM1,SAC6,SLY41,TFB3,VID27,VRG

4,YDL124W,FMP45,KEL2,VHT1,YFL067W,RLF2,DPH1,CUE4,GET1,KC

C4,REV7,SKG6,SUT1,GYP6,YHL026C,PMA2,IRC4,YPR202W,RAD2,NU

P170,APA2,NRG2,UIP5,WTM2,STV1,ALE1,GGA2,TPK1,TRK2,MSB4 
 

plo1,cig1,SPCC794.11c,myo3,cdc1,SPBC1709.13c,fim1,SPBC83.11,

mcr1,SPBC1685.14c,SPAC144.18,SPAC19G12.09,ace2,SPAC14C4.12

c,SPBC4F6.12,mrpl4,SPAC4G9.19,rpc31,aph1,mrp51,SPAC27D7.11c

,agn1,SPBC1198.07c,SPBC31F10.10c,SPAC688.07c,dga1,SPCC1795.

10c,spTrap240,af1,SPAC637.13c 
 

g7 

(11) 
ADY2,CDC7,COG3,GPI8,SMC4,GTT3,GAS3,GAS4,GAS2,GLE1 

 

SPAC5D6.09c,hsk1,SPBC1539.05,gpi8,cut3,sfc2,clr8,myo52,mbx1,S

PCC1020.12c,rum1,SPCC4F11.03c,SPAC20H4.05c 
 

g8 

(1, S) 
HHT1,HHT2,(HHF1,HHF2),(HTA2,HTA1),(HTB2,HTB1),HDA1,RPD3 

 

(hht1,hht2),(hht1,hht3),(hhf1,hhf2),(hta1,hta2),htb1,clr3,clr6 
 

g9 

(2) 

DBF2,INP53,OAC1,(ODC1,OCD2),RAI1,SEC4,COP1,ECO1,ARV1,RSF2

,LYS1,DPB2,HSD1,CDC11,CLN2,PMT5,PMT1,RFA3,PIN2,SAS3,FKH2 
 

sid2,SPBC2G2.02,oac1,SPAC328.09,din1,ypt2,sec72,sad1,SPCC970.

08,SPCC553.07c,prp28,cam1,spd1 
 

g10 

(12, 

G1) 

EMP24,KAP122,LCB2,MLC1,MSH6,MSW1,POL1,RUP2,SKI3,YMR25

9C,HSL7,HAP2,YDL089W,QDR3,TOS4,UBX7,MCM2,MMS4,GGA1,PH

O8,COS4,SVF1,HIF1,YFL042C,HOS3,AIM34,YLR455W 
 

emp24,kap111,lcb2,cdc4,msh6,msw1,pol1,SPAPJ696.03c,SPCC191

9.05,SPCC1494.07,cdc18,pnk1,SPBC25B2.07c,SPAC8F11.06,dfp1,SP

CC1235.09,pkd2,SPBC660.06,SPCC188.10c,rpc17,SPAC2C4.17c,cut2 
 

g11 

(3, G2) 

MSS51,RPC11,(SIM1,SUN4),SLA2,SMC3,YML096W,YPT52,KAR5,DS

N1,DAM1,FKH1,FIP1,MSA2 
 

SPAC25B8.04c,rpc11,psu1,end4,psm3,SPBC4F6.11c,ypt5,SPBC4C3.

04c,SPAC10F6.07c,SPCC757.12,SPCC1259.08,ams2,pmc2,SPAC27D7

.09c, pdf1 
 

g12 

(4) 

CCC2,CDH1,CHS5,IPL1,MUS81,NUP2,PTM1,RHO1,RPP1,YMR244W,

YOR291W,GFA1,MSB2,CLN3,CYS3,ESC8,ALY2,HXT4,ROD1,MAL33,T

CM62,TPS2,PAN2,HST2,PUF4,CAC2,ORC1,PEX11,HXT5,TUB2,SLN1,R

DS2,SPT21,CTF18,INP2,EUG1,SFG1,MCD4,PRY2,NPP2,GLG2,FCP1,PB

I2,SGS1,CRH1,RHO3 
 

SPBC29A3.01,srw1,cfr1,aim1,mus81,nup61,SPAC26H5.07c,(rho1,r

ho5),SPAC3A12.04c,adg3,SPCC1672.11c,spo12,SPCC126.01c,SPAC3

H8.03,SPAC10F6.14c,ssp1,klp6 

SPAC11H11.02c,zds1,cwf25 
 

† The sequence of the nodes in the cell cycle is provided in brackets along with their cell cycle affiliations.  
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Following the cell-cycle from S to G2, the cohesin complex is required to hold together 

the sister chromatids. This process is mediated by the acetyltransferase ECO1 of 

cluster g9 (S-phase) directly interacting with cohesion complex subunit SMC3 (G2-

phase) of cluster g11 [178-180]. The edge linking g9 and g11 suggests an according 

tight transcriptional regulation of acetylase ECO1 preceding SMC3. 

Following the cell-cycle from G2 to M, the common transcription network shows node 

g11 (G2) to regulate both g12 and g3, whereas g12 itself also regulates g3, forming a 

 

Figure 22. Common 'Sce' and 'Spo' regulatory network.  

Affiliated gene clusters are represented as nodes, their interactions as edges. These interactions 

are color-coded according to their occurrence in KEGG or one of the other pathway databases 

listed in the methods section. True positive (TP) edges are shown in green, missing edges (FN) are 

shown in black, incorrect or previously unknown interactions (FP) are shown in red. Any green or 

black edge is supported by at least one publication. Figure from [132] by permission of Oxford 

University Press. 
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network motif referred to as feedforward loop [181]. It is often found in the context 

of signal amplification. The increase in cellular activity during G2/M transition is also 

reflected by increased glycolysis (GLK1, PFK1) and by g3 being the largest cluster. 

While still transcribing genes important for G2/M transition (SWE1) and DNA repair 

(RAD53, EXO1, MSH2, POL3), the cell already prepares for budding (BEM1, SPH1, 

FAA1, BNI5, GIC1) and cytokinesis (HOF1, MYO3, STU2, YPT11). 

The observed edges can be explained by transcription factor activity. For the direct 

edge from g11 to g3, transcription factors SIM1 and FKH1 of g11 have been shown to 

regulate 2 and 8 genes in g3, respectively (genes and literature are provided in (Table 

5).  

Table 5. Transcription factor regulation references 

Transcr

iption 

Factor 

Regulated by Targets 

gene In node gene In node 

SIM1 † g11 ATF1, SPR1 [182] g3 

FKH1 † g11 

FIR1, FLH1 [183] 

SVL3, JSN1 [183, 184] 

OPY2, RSP5 [183, 185] 

ALG14 [184] 

HOF1 [186] 

g3  

SFP1 
KAR5, SMC3 [170, 187] 

RPC11 [187, 188] 
g11 

IPL1, GFA1, ESC8, ALY2, HXT4, ROD1, PUF4, 

SPT21, CTF18, MCD4, NPP2, FCP1, RHO3 [187] 

RPP1 [187, 189] 

YMR244w, ORC1 [188] 

SFG1 [183] 

g12 

MAL33 † g12 ALG14, OPY2, RAD53 [183] g3 

RDS2 † g12 PDR16 [190] g3 

† The transcription factor itself is cluster member 
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For the path from g11 to g3 via g12, 17 genes of g12 are targets of the transcription 

factor SFP1. While SFP1 itself was filtered out for showing unreliably small signals, it is 

regulated by KAR5, RPC11 and SMC3 of cluster g11 (Table 5). From g12, the comprised 

transcription factors RDS2 and MAL33 are known to regulate PDR16 and ALG14, OPY2, 

and RAD53 of g3, respectively (Table 5).  

While the edge from g11 to g12 can also be obtained from the ‘Sce’ dataset alone 

(Figure 23), the edge from g6 to g12 is not present in either single network (Figure 23 

and Figure 24) but is only detected by combining the datasets (Figure 22). The same is 

true for the above described edge between g9 and g11. The superiority of the 

common network is quantified in section ‎5.3.4. 

 

 

Figure 23. Network inferred from the single ‘Sce’ dataset.  

The layout follows Figure 22. Figure from [132] by permission of Oxford University Press. 

 

 

 



Cross-species microarray meta-analysis  

100 

 

Out of 144 possible directed interactions, 53 true positives, 5 false-positives, 36 false-

negatives and 50 true-negatives were detected. Assuming that any interaction listed 

in any database for these genes would be detectable from these small datasets, 

sensitivity is 60%. Thus, most (more than half) interactions in pathway databases are 

present in these data, common to both datasets, and successfully detected here, with 

72% accuracy and a specificity of 91%. 

Furthermore, the coherence of the interactions found were assessed, i.e. their 

tendency to form sound regulatory modules, by network motif analysis (Table 6). Size-

3 and size-4 sub, graph frequencies were determined by generating ten million 

directed random graphs with same sample probabilities and in which cases the 

 

Figure 24. Network inferred from the single ‘Spo’ dataset.  

Figure from [132] by permission of Oxford University Press. 
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probability that a given edge exists was preserved. For this, all 13 non-isomorphic 

directed size-3 sub graphs as well as 199 non-isomorphic directed size-4 sub graphs 

were calculated. All 21 network motifs listed in Table 6 exhibit p-values smaller than 

0.05 as well as Z-scores greater than two.  

Table 6. Motif significance in the yeast common network. 

Motif Frequency 

observed net. 

Mean-Freq 

random net. 

Standard-Dev 

random net. 

Z-Score p-Value 

 
40% 13.529% 0.020248 13.074 0 

 
17.714% 6.7986% 0.010763 10.142 0 

 
1.7143% 0.058427% 0.0017218 9.617 0 

 
16% 6.1522% 0.010424 9.4476 0 

 
2.0785% 0.0054736% 0.00034742 59.67 0 

 
7.8522% 0.1405% 0.0020045 38.472 0 

 
10.393% 0.26417% 0.0027108 37.363 0 

 
11.778% 0.41705% 0.0037092 30.63 0 

 
10.162% 0.52822% 0.0037828 25.466 0 

 
1.8476% 0.017144% 0.00075102 24.373 0 

 
4.6189% 0.34613% 0.0029107 14.68 0 

 
5.3118% 0.87444% 0.0042215 10.511 0 

 
5.7737% 0.91135% 0.0047198 10.302 0 

 
9.4688% 1.573% 0.007716 10.233 0 

 
4.6189% 0.89778% 0.0052242 7.1229 0 

 
0.69284% 0.025932% 0.0011094 6.0116 0.003921 

 
3.2333% 0.65543% 0.0045951 5.61 5.8e-005 

 

 

3.0023% 0.73487% 0.0043461 5.2172 2.2e-005 

 
1.8476% 0.52102% 0.0039299 3.3755 0.003337 

 
0.23095% 0.0156% 0.00071087 3.0294 0.014266 

 
1.8476% 0.84962% 0.0044075 2.2642 0.016043 
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5.3.2.3 Esteradiol effect on human – mice 

After combining highly similar datasets, two datasets of lesser, i.e. more natural, 

relatedness were examined. The effect of Estradiol on human [168] and murine cells 

[169] was studied measuring various time points up to 48 hours and 72 hours on HG-

U95A and MG-U74A Affymetrix Gene Chips, respectively. 

The algorithm converged after 18 iterations in a maximum local swap of 6 (inner 

loops) between genes and samples as connecting variables. A dramatic increase of RV 

coefficient (from 0.37 to 0.78) was observed when the algorithm switched from 6 to 7 

connecting variables (both genes and samples) (Figure 27). Proceeding from n=7 to 

10, the algorithm consolidates this co-structure, further improving RV by 0.1025. 

Termination at n=10 clusters was verified as before (Section ‎5.3.3). The result shows 

an RV coefficient of 0.8194 (Figure 27). More than 87% of the co-inertia was 

 

Figure 25. Interaction network in Human-Mouse dataset 
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accounted for by the first two principal axes for Homo sapiens and 74% by the first 

two axes of the Mus musculus dataset (52% and 22% by the first and second axis 

respectively). These eigenvectors were selected for back-transformation. To 

determine the maximal number of well-distinguished clusters, the back-transformed 

data were assessed with respect to silhouette values. 10 clusters were confirmed as 

optimal, showing an overall mean Silhouette value of 0.2645 for Mus musculus and 

0.2115 for Homo sapiens (Figure 28b). Clusters were matched as before, i.e. by 

majority voting of a Hungarian match based on distances from the CIA.  

5.3.3 Granularity evaluation 

5.3.3.1 RV coefficients improvement 

Figure 27 (next page) shows the gradual improvement in matching scores by 

optimizing the overall co-structure of the datasets. While the affiliation of samples 

was considerably enhanced by increasing to 7 clusters, it took a second iteration with 

 

Figure 26. RV coefficients between ‘Sce’ and ‘Spo’ datasets.  

The co-structure (RV coefficient) is plotted versus the number of connecting clusters n in two colors. 

The purple line shows the RV when the samples are the connecting variables. The light blue line refers 

to the genes as the connecting variables.  
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7 clusters for the genes to get affiliated accordingly well. In my experience “leaps” in 

RV increase tend to be initiated by sample affiliations, which could probably be due to 

their generally much smaller numbers. 

Figure 26 shows an exception in that gene and sample affiliations may also be 

considerably improved at the same time. This happened upon increasing to 8 clusters 

without any further delay. However, the largest one-step increase in RV of the same 

example occurred in the transition from the last but three to the last but two 

iterations. Here, a large increase for the genes is made possible by a slight decrease in 

terms of the samples, speaking in favor of my non-greedy approach. It only occurred 

after six rounds maintaining the same number of nine clusters. This emphasizes the 

importance of performing several optimizing steps before further increasing the 

number of clusters. 

Figure 27 shows the algorithm proceeding from low to high RV correlation coefficients 

 

Figure 27. RV coefficients between ‘human’ and ‘mouse’ datasets.  

The co-structure between the two sets considerably increases beyond six clusters. The best matching is 

achieved after 17 iterations (10 clusters). The layout follows Figure 26. 
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while merging the human and murine datasets. Alternating between samples (purple) 

and genes (blue) as connecting variables, it performs several optimizing steps before 

further increasing the number of clusters. 

From this step, the algorithm proceeds to ten clusters, performing two more rounds 

and then stops. How to know that termination is not premature (triggered by a local 

optimum)? In order to demonstrate that the terminal matching is indeed optimal, the 

stop flag in the outer loop of the algorithm was removed. While the number of 

samples limits the number of sample clusters, the number of gene clusters can be 

further increased (up to individual genes, Figure 29). 

The optimal number of gene clusters for the combination depends on how many 

clusters can be discriminated in each dataset (Figure 28). Figure 28a shows silhouette 

values for the yeast datasets. As the number of clusters increases silhouette values 

decrease from 0.3935 (for 2 clusters) down to -0.2154 (140 clusters) in “Sce” and from 

0.4987 to -0.0731 in “Spo”. The overall optima of 0.3504 and 0.3921 were obtained 

for maximally 12 well separated gene clusters. 

  

 

Figure 28. Silhouette values.  

Panel a) plots the quality of the clustering depending on the number of clusters for ‘Sce’ (red line) and 

‘Spo’ (blue). ‘Homo sapiens’ (red) and ‘Mus musculus’ (blue) are shown in panel b. 
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5.3.3.2 Receiver operating characteristics   

In order to study different granularities for both the Saccharomyces/pombe and the 

human/mouse merges, ROC curves were applied (Figure 30). The method is described 

in detail by Swets and Pickett (1982). Here, each point depicts a common network 

compared to known interactions (expected network) derived from various data 

sources (Appendix Table S1). The pathway databases were queried using the Ingenuity 

Pathway Analysis in order not to miss any existing interaction as described in the 

method section. 

The cluster number n is plotted next to each data point. Both curves show similar 

increases in false positive rates when progressing to larger n. 

a)  
 

b)  
Figure 29. Verification of the termination condition.  

Gene cluster numbers have been increased beyond termination for ‘Sce’ and ‘Spo’ 

datasets (panel a) and ‘Homo sapiens’ and ‘Mus musculus’ datasets (panel b). 
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5.3.3.3 Significance analysis of network motifs 

Significance of network motifs for a specific network was studied by Z-Score and p-

value (as described in section ‎5.2.7.1). Significance profiles on the basis of the Z-

scores can be used to compare different networks. Furthermore, the frequency of 

motifs can directly be used for network evaluation.  

In the analysis, motifs of sizes three and four are assessed to compare different 

directed networks. While the number of non-isomorphic motifs grows exponentially 

with the size of the motifs, in practice, only a fraction of all possible motifs is 

implemented by real biological networks. Up to the present time, known network 

motifs are small and usually comprise three to five vertices only.  

 

Figure 30. ROC curves. 

The sensitivity is plotted against the specificity for ‘Sce’ /’Spo’ (blue) and 

mouse/human (green) common networks. Numbers annotate the number of 

clusters n (granularity) used for the common network. The diagonal dashed line is 

the expected ROC curve of a random predictor. 
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For the calculation of the statistical significance of network motifs a commonly used 

method was used that compares the number of the observed network motifs to the 

concentration of the motifs in an ensemble randomized networks. Therefore, 

calculation of the motif statistics requires the consideration of several hundreds to 

thousands of randomized networks. 

The size of the observed network determines the number of motifs. In general it is 

expected for the number of significant motifs to increase with the size of the network. 

Interestingly, highest numbers of significant motifs in the smaller networks was 

obtained, corroborating the authenticity of the common network.  

5.3.4 Superiority of the common network 

In order to assess the advantage of combining datasets using the algorithm, the 

common network was compared to the networks obtained from each single dataset. 

The networks inferred from “Sce” and “Spo” datasets are shown in Figure 23 and 

Figure 24 respectively.  

a) 

 

 

b) 

 

Figure 31. Significance of motifs in the mouse/human consensus network.  

The number of motifs (size-3 and size-4 in panels ‘a’ and ‘b’, respectively) is plotted versus the network 

size. The number of discovered motifs decreases with the number of clusters n used for combining the 

datasets (network size).  
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The specificity and sensitivity of the networks compared to the common network is 

summarized in Table 7. The common network improves upon the single (“Sce” and 

“Spo”) networks in terms of absolute numbers of true positive and false positive 

edges, as well as in sensitivity, specificity, accuracy and the number of network motifs 

(Table 7). 

5.4 Discussion 

This section discusses peculiarities, pitfalls and computational challenges of meta-

analysis in general, with a focus on combining information across organisms to model 

genetic regulatory networks in particular. Building on this discussion, last section 

suggests directions for future research to extend the work presented here.  

5.4.1 Meta analysis comparison 

The exponential growth in microarray datasets over the last decade opens the door 

for large-scale, cross-species comparisons. Analysis of sequence and interaction data 

Table 7. Comparison of each single dataset to the common network in Yeast 

 “Sce” 

network 

“Spo” 

network 
Common network 

True positive edges 17 21 53 

False positive edges 22 25 5 

False negative edges 31 26 36 

True negative edges 74 72 50 

Sensitivity  35% 44% 60% 

Specificity  77% 74% 91% 

Accuracy  63% 64% 72% 

Number of network motifs 13 18 21 
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have led to many important findings, and the algorithms and computational tools 

developed for these comparisons are routinely used.  

Analysis of cross-species microarray data is challenging. Direct comparison of these 

experiments would require them to be carried out in a very similar manner in all 

species and temporal differences between the species would need to be accounted 

for prior to the actual comparisons. Still, many such studies were carried out in closely 

related species. These studies identified common and unique expression patterns in 

specific tissue types. They have uncovered conserved functional categories and 

interaction networks that are commonly activated in the different species. Table 8 

summarizes the methods that have been suggested for analyzing such experiments. 

5.4.2 Multivariate analysis 

Integrating datasets into simultaneous analysis is a major challenge in systems 

biology. It is crucial to capture the associations between variables from different high-

throughput multidimensional datasets. Different techniques exist to investigate the 

associations between large-scale datasets. Canonical Correlation Analysis (CCA; [191]), 

Partial Least Square (PLS; [192]) and Co-inertia Analysis (CIA; [157]) transform high-

Table 8. Comparison of methods developed for cross species expression analysis. 

 

Co-expression  

meta-analysis 

Expression 

meta-analysis 
Indirect 

Single  

species 

 array  

Multi  

species 

 array 

Combined 

analysis 

Single platform (all experiments) No No No Yes Yes Yes 

Customized array No No No No Yes No 

Similar experimental conditions No Yes Yes Yes Yes Yes 

Direct comparison of expression profiles No No No Yes Yes Yes 

Applicable on distant species Yes Yes Yes No No Yes 

Require orthology information Yes Yes Yes No Yes No 

Separate p-value cutoff for each species No Yes Yes No No No 
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dimensional data into few, usually two  or three dimensions for visualization.  

PLS is a correlation based method. It explains relationships between two datasets by 

simultaneously decomposing the data matrices into low-dimensional vectors. CCA is a 

special case of PLS, identifying linear combinations of variables from each set such 

that they have maximum correlation. However CCA and PLS often suffer from the 

asymmetry of microarray datasets where the number of variables exceeds the 

number of samples.  

Penalized CCA adapted with Elastic Net (CCA-EN; [193, 194]) and Sparse CCA (SCCA; 

[195]) are derivatives of the classical CCA. They incorporate variable selection to 

address above limitations of earlier approaches. However, if invoked repeatedly from 

within an unsupervised iterative algorithm, this becomes computationally infeasible 

for large numbers of variables.  

In contrast, CIA can cope with both asymmetry and large numbers of variables 

without becoming computationally infeasible. CIA is a multivariate coupling approach 

measuring the adequacy between datasets. It was first introduced applying ecological 

data [157], and amino acid properties [196]. Culhane and co-workers demonstrated 

the efficiency of CIA on cross-platform comparisons of gene expression data, applying 

it to both cDNA and Affymetrix microarrays [73]. An extension of CIA that links more 

than two tables has been reported [197]. Fagan and co-workers combined 

information from multiple layers (genes, samples and GO terms) by CIA [198].  

Throughout this work, I used CIA because of its visual interpretability, its speed and 

because its applicability to asymmetric microarray data had been demonstrated in 

many studies [73, 159, 198, 199]. 

5.4.3 Retaining information 

Co-expression has been widely used to reveal, amongst others, functional 

relationships [200, 201] or to identify common regulatory motifs [202, 203]. Much like 

conserved sequence motifs, important regulatory patterns can be observed across 
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species borders. In order to account for different scales such datasets may have, co-

expression can be determined on the basis of intermediate results such as vote 

counting [41, 204], probabilities [205] or ranks. However, in order not to lose any 

information beforehand, I perform information reduction in the very process of 

combination. Co-inertia analysis [157] is particularly well–suited for this task, reducing 

dimensions based on the common variance (co-inertia) of two datasets. It can deal 

with datasets whose variables (genes) far exceed the number of observations 

(samples) and its use for microarray data has been demonstrated before [73].  

5.4.4 Neo-functionalization 

Most microarray based cross-species analyses rely on the mapping of orthologous 

genes between different organisms. Bergmann and coworkers [31], for instance, 

developed to this end a two-step approach in which they first, starting from a group 

of coexpressed genes in one organism, identified the corresponding homologs in a 

second organism. In a second step only homologs that also appeared coexpressed in 

the second reference organism are retained as functional homologs.  

Studies which use homogeneous experiments, i.e. datasets that for both organisms 

contain similar conditions, rely on differences of gene expression to compare the 

changes in the transcriptional response between organisms. The correlation between 

the log ratios of all genes is used as a global indication of how much the conditions 

are comparable between the different organisms. Rifkin and coworkers [143] for 

example studied “evolutionary variation” of gene expression in Drosophila at the 

onset of metamorphosis by comparing to what extent orthologous genes exhibiting 

developmental changes during metamorphosis in one species were no longer 

differentially expressed during the same process in other members of the species. 

Lelandais and coworkers [36], compared the sporulation network between budding 

and fission yeasts using for both organisms similarly designed time series 

experiments. The authors proposed a method that superimposes the two species-
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specific coexpression networks by taking into account the structure of each individual 

network and the orthologous relations between the species.   

All of these methods take as input the affiliation of genes (orthology information) 

between the datasets. However, sequence similarity based orthology does not 

account for evolutionary phenomena such as sub- and neo-functionalization, thus not 

necessarily representing functional orthology in every case [206]. In the course of this 

work, an algorithm has been developed that instead of identifying orthologs 

beforehand, affiliates genes on the basis of the expression data (section ‎5.2.2).  

5.4.5 Comparison to KEGG 

In an approach solely based on co-expression, genes that show identical expression 

behavior are indistinguishable, thus becoming one single entity. This entity can be 

viewed as a node in a GRN. Comparing such networks with known interactions 

supplied by KEGG and other repositories can provide an additional means to evaluate 

the performance of the algorithm. To this end, out of many algorithms proposed for 

network inference, I picked DBN as one of the successful algorithms to date for time-

series [102, 207]. Non-time series data can be handled, for example by information-

theoretic approaches [92] or algorithms based on ordinary differential equations 

(ODE) following transcriptional perturbations [208].  

For DBN inference, as for other GRN inference methods, the number of observations 

is critical. The very high number of genes simultaneously measured for only a few 

samples (g >> s) raises a dimensionality problem. Moreover, a large majority of time 

series gene expression data contain no or very few repeated measurements of the 

expression level of the same gene at a given time. Even under the assumption of 

homogeneity, which enables to use the pairs of successive time point gene expression 

as repeated measurements, we still have to deal with the dimensionality problem (g 

>> s), when inferring the structure of dynamic acyclic graphs.  

Several inference methods have been proposed to overcome the dimensionality 
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problem. To name a few, Ong and coworkers [37], reduce the dimension of the 

problem by considering prior knowledge; Zou and Conzen [39] limit potential 

regulators of the genes with either earlier or simultaneous expression changes and 

estimate the transcription time lag; and Opgen-Rhein and Strimmer [40] proposed a 

model selection procedure based on an analytic shrinkage approach. All of these 

approaches either use prior knowledge for the network inference or estimate 

undirected gene networks from microarray gene expression.  

In this thesis, I proposed an algorithm to obtain optimal numbers of clusters (nodes) 

sufficient for the common network inference. In general, due to a lack of samples, 

only few genes can make it as nodes for stable network inference. 

5.4.6 Granularity 

In order to obtain number and composition of nodes optimal for inferring a common 

network, the algorithm increases the granularity step by step (outer loop). For each n, 

the inner loop pairs the n clusters of each dataset, seeking for an inter-datasets 

affiliation of optimal co-inertia. It does so via a combination of CIA, Hungarian 

matching and majority voting, alternating between ‘connecting variable’ affiliations. 

While each of these steps “learns” from the previous one, the approach is non-greedy 

in that each decision on e.g. affiliating two genes (or clusters thereof) may be 

reversed in the next iteration.  

Gene cluster affiliations were evaluated directly (within the same species), by 

counting gene orthologs, and by inferring common GRN. Although the third pair of 

datasets shows less similarity, the common GRN does not appear less accurate than 

that for the first and second. As the terminal granularity (final number of 

distinguishable clusters) is crucial for network inference, I carefully evaluated the 

termination point for the algorithm. The largest (optimal) numbers for RV, for 

Silhouette values, for true positive interactions and for the yield of network motifs all 

coincide for n=12 in the second example as well as for n=10 in the third. In the second 
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example, the iteration part of the algorithm could not come up to the final n because 

the number of clusters cannot exceed the number of samples in the smaller dataset 

(here both 10). Instead, n=12 was determined by the refinement part while for the 

third dataset the decider module determined that further refinement was not 

beneficial. Generally, in my hands a yielding granularity never exceeded the number 

of samples (arrays) by far if at all. However, after back-transformation and RE, the 

inferred network comprises 21 significant network motifs and the delineated edges 

show 72% accuracy, 91% specificity and, remarkably, 60% sensitivity in comparison to 

known interactions. Thus, the chosen granularity, although it is small in comparison to 

the number of genes, resulted in a robust and most informative network.  

Furthermore, this common network shows increased specificity, sensitivity, and 

accuracy, as well as more significant network motifs if compared to the networks 

inferred from the single datasets. This demonstrates that it is possible to successfully 

combine datasets solely on the basis of co-expression, without applying any further 

information. To my knowledge, the algorithm represents a novelty in this respect. 

5.4.7 Future work 

5.4.7.1 Information fusion 

Information fusion of diverse data sources gives the opportunity to reveal insights not 

readily apparent when sources are examined individually. Towards information fusion, 

one would use publicly available RNA-seq data from GEO/SRA to advance the 

algorithm for identifying expression networks that are conserved among a variety of 

species as well as species specific ones. RNA-seq data are particularly useful for such a 

comparative profiling approach. Recent advances in RNA-seq have opened the way for 

comprehensive analysis of any transcriptome [209]. In principle, RNA-seq allows 

analysis of all expressed transcripts, with annotating the structures of all transcribed 

genes, quantifying expression of each transcript and measuring the extent of 
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alternative splicing. To this end, one would first concentrate on the expression data 

alone and then incorporate phylogenetic foot printing information of regulatory 

elements in order to strengthen the prediction with additional evidence. Once a core 

set of conserved expression modules have identified, one can use them to predict 

putative functions for their poorly characterized members or novel regulatory 

pathways. This should greatly reduce the noise and false-positive predictions 

compared to single organism gene expression profiling approaches. For instance, in 

case of treatments of different organisms with the same drug, one could use this 

method to identify drug target sites much more reliably. 

5.4.7.2 Further applications 

The algorithm does not only identify a correspondence between the genes, but also 

between the conditions. It would therefore provide the opportunity to study of more 

poorly characterized cells and relate to another study of better-characterized cells. For 

instance, it can be used relating different cancers to different developmental stages or 

stem cell features to elucidate underlying mechanisms in cancer progression. 

External knowledge can be made available to the method via the penalty matrices. 

These can be weighted according to known similarities between genes and/or 

between samples. Here, however, all external knowledge is used for evaluation 

purposes. 

Requiring no beforehand affiliation, the algorithm can be used for automated large-

scale combination of microarray datasets. Back-transformation results in an artificial 

data table containing only the variance common to the two initial tables while 

retaining the scale of the first table. Thus, it can be handled like any real data table, 

e.g. for subsequent GRN inference or for combining it with yet another real data table 

or a combination of such. Thus, the method can be extended to linking more than two 

datasets, either hierarchically merging back-transformed data tables, or by using 

multiple co-inertia analysis. 
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With increasing numbers of datasets and integrating external knowledge to be 

summarized in one model, the common variance will decrease. Generally speaking, I 

would expect a tendency for such a model to be small, widely applicable, robust, and 

relatively free of noise and systematic errors when multiple experimental platforms 

are mixed.  

When comparing many different datasets, I would expect many genes/samples show 

changes that are not to be matched across all datasets. The more experiments the 

more objects lacking their variant to be matched. If these objects remain in the 

iteration step of the algorithm, they may add considerable amount of noise to the 

model. Therefore a strategy for Garbage Collection would be needed to increase the 

overall RV-coefficient of the common model. 

Extensive cross-species models could be useful in a pharmacological context in order 

to predict if a model organism closely resembles a human regulatory mechanism to 

interfere with. Furthermore, the application of this algorithm is not limited to 

microarray data. It could serve to integrate proteomic, transcriptomic, and high-

throughput methylation data recorded for the same samples. 
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6 CONCLUSION 

In this work an algorithm has been developed that contributes to the meta-analysis of 

high throughput expression data. It advocates the use of data-driven algorithms to 

combine multiple expression data in cross species studies. It is an iterative procedure 

using existing methods to estimate the common regulatory network from data of 

different species. It affiliates arrays and genes at the same time without any 

requirements of gene/sample affiliations or any other prior knowledge. It provides the 

opportunity to systematically combine arbitrary number of microarray datasets. 

Using co-inertia analysis, the algorithm can deal with both asymmetric microarray 

datasets and large number of variables without becoming computationally intensive. 

In particular, it can cope with datasets whose genes far exceed the number of samples 

(arrays).  

In terms of cluster granularity, the algorithm also provides a way to obtain the optimal 

number of nodes for the common network inference. This is an essential step prior to 

any reverse engineering approach. In general, due to the sample size limit, only few 

genes can make it as nodes for stable network inference. 

Successful application of the algorithm is demonstrated on two independent but 

closely related experiments on Schizosaccharomyces pombe. These datasets provide 

more prior knowledge and most reliable gene affiliations since both datasets stem 

from the same species. Extending applicability of the algorithm, its performance on 

two yeast cell cycle studies comprising nearly identical experimental conditions but 

on two different species (Saccharomyces cerevisiae, Schizosaccharomyces pombe) is 

presented. In order to support its application to different levels of similarity, 

underlying structure and experimental platform, it was further applied to Estrogen-

regulated gene expression studies of Homo sapiens and Mus musculus. 

The performance of the algorithm was demonstrated by reversely engineering the 
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combined dataset. In particular, reverse engineering the common network provided 

the opportunity to compare the occurrence of a motif in the reversely engineered 

network to the occurrence of the same motif in the randomized network. The 

resulting network constructed on the combined datasets yielded more significant 

network motifs than for the single dataset. 

Moreover, comparing reversely engineered gene regulatory networks of each 

individual and combined dataset with respect to known interactions supplied by KEGG 

and other repositories provided an additional means to evaluate the performance of 

the algorithm. The resulting cross-species networks improve on the networks inferred 

from each dataset alone by yielding more of the interactions already recorded in 

KEGG and other databases. This success advocates a purely data-driven approach to 

combining multiple datasets across species. Being readily extendable to more than 

two datasets, the algorithm provides the opportunity to infer extensive gene 

regulatory networks. 
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8 APPENDICES 

8.1 Banjo parameters 

###------------------------------------------------- 

###  Search specifications 

###------------------------------------------------- 

searcherChoice =                           SimAnneal 

proposerChoice =                       AllLocalMoves 

evaluatorChoice =            default to EvaluatorBDe 

deciderChoice =       defaulted to DeciderMetropolis 

statisticsChoice =                           default 

###------------------------------------------------- 

###  Pre-processing options 

###------------------------------------------------- 

discretizationPolicy =                            q3 

createDiscretizationReport =        withMappedValues 

###------------------------------------------------- 

### Search "problem domain" constraints 

###------------------------------------------------- 

minMarkovLag =                                     1 

maxMarkovLag =                                     1 

dbnMandatoryIdentityLags =                         1 

equivalentSampleSize =                           1.0 

maxParentCount =                                   5 

### Stopping criteria 

###------------------------------------------------- 

maxTime =                                       10 m 

minNetworksBeforeChecking =                     1000 

###------------------------------------------------- 

### Parameters used by specific methods 

###------------------------------------------------- 

### For simulated annealing: 
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initialTemperature =                            1000 

maxAcceptedNetworksBeforeCooling =              1000 

maxProposedNetworksBeforeCooling =             10000 

minAcceptedNetworksBeforeReannealing =           200 

reannealingTemperature =                         500 
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8.2 Supplementary Table S1 

Table S1. List of pathway data sources used to explore expected network 

Abbr. Name Description 
PubMed 
Articles 

Content 

BIND 
 

Biomolecular 
Interaction Network 
Database 

Full descriptions of interactions, molecular 
complexes and pathways 

[210-212] 

Genes / Proteins:   57,971 

Interactions / Reactions:  198,905 

Experiments / PubMed IDs:  23,010 
 

BioGRID 
General Repository 
for Interaction 
Datasets 

Protein-protein and genetic interaction networks [213, 214] 

 
Proteins:  529,018 

Publications:  21,268 

Organisms:   22 
 

DIP 
Database of 
Interacting Proteins 

Experimentally determined interactions between 
proteins 

[215] 

 
Proteins: 20,728 

Organisms: 274 

Interactions: 57,683 

Experiments describing an 
interaction: 

64,952 

Articles: 3,915 
 

IntAct IntAct 
Protein-protein interactions maintained by the 
European Bioinformatics Institute (EBI). 

[216, 217] 

 
Proteins: 59,971 

Interactions: 201,094 

Experiments: 10,900 
 

KEGG 
Kyoto Encyclopedia 
of Genes and 
Genomes 

Database of metabolic pathways from multiple 
organisms 

[165, 218] 

 
Genes / Proteins: 4,964,241 

Small molecules:  16,000 

Interactions / reactions: 8,022 

Pathways:  96,160 
 

MINT 
Molecular Interaction 
Database 

Database of molecular and protein-protein 
interactions 

[219, 220] 

 
Genes / Proteins:  29,718 

Interactions / Reactions:  83,210 

Experiments / PubMed IDs:   3,141 
 

MIPS CYGD 
MIPS Comprehensive 
Yeast Genome 
Database 

Protein interactions, protein complexes and 
metabolic pathway diagrams for budding yeast. 

[221, 222] not available. 
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