
Technische Universität München

Lehrstuhl für Fluidmechanik und Prozessautomation

Investigation of

Intraoral Mechanical Effects on

Sensory Sensations and their

Contribution to Mouthfeel

Katrin Mathmann
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there is

no conception in man’s mind

which hath not at first,

totally or by parts,

been begotten upon

the organs of sense

Thomas Hobbes

Leviathan, 1651





Abstract

The rheology of food capable of flowing has a major impact on human texture perception.

To understand intraoral fluid flow greater, a series of tongue-palate models designed to study

deglutition from the fluid-mechanical point of view have been presented. Via the theory of

lubrication three new analytical models have been introduced. In particular, the model of a

sphere in a hemisphere has given superior results compared to the established, but simpler,

model of Stefan. A more complex geometry, treated numerically, confirmed these findings.

The fluid-mechanical quantities obtained from the models employed for the first time give

new insights into mechanoreception in the human oral cavity.

Die Rheologie eines fließfähigen Lebensmittels besitzt einen großen Einfluss auf die humane

Texturwahrnehmung. Zum besseren Verständnis des intraoralen Fließverhaltens erfolgte die

Gegenüberstellung unterschiedlicher Zunge-Gaumen-Modelle, die den Schluckvorgang aus

strömungsmechanischer Sicht nachstellen. Die Schmierfilmtheorie ermöglichte die analytis-

che Berechnung drei neuer Modelle. Insbesondere das Modell einer Kugel in einer Halbkugel

lieferte Ergebnisse, die dem etablierten, aber einfacheren Modell nach Stefan überlegen sind.

Numerische Berechnungen in einer komplexeren Geometrie bestätigten diese Ergebnisse. Die

aus den erstmalig eingesetzten Modellen gewonnenen Strömungsgrößen lassen neue Erken-

ntnisse hinsichtlich der Mechanorezeption in der menschlichen Mundhöhle zu.
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List of Symbols

There are three different coordinate systems, which are used for the derivation of the different

fluid-mechanical models, namely the Cartesian coordinate system (x, y, z), the cylindrical

coordinate system (r, φ, z) and the spherical coordinate system (r, φ, θ). The fluid mechan-

ical quantities that are subscribed with these coordinates stand for the components in those

directions. Tensor index notation is used for the subscripts i and j. These run from 1 to 3

and represent the coordinates of the different systems.

Latin

A area

a semi-major axis of the ellipse

b semi-minor axis of the ellipse

C1, C2 constants of integration

c clearance

ce ratio of the ellipse axes b
a

D shear rate

ez eccentricity

F external force required to drive the different geometries together

fc constant used in the ansatz function for plane elliptic parallel plates

g gravity constant

h film thickness of a fluid film

v
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h0 minimal film thickness (1 mm)

m consistency factor

n flow-behavior index

p pressure

p0 ambient pressure

r coordinate in radial direction

R general plate radius or sphere radius (35 mm), respectively

R1 radius of the key points in the frontal plane

R2 radius of the key points in the sagittal plane

Ra1 minimal averaged radius on the basis of the arc of the circle in the frontal plane

(26 mm)

Ra2 maximal averaged radius on the basis of the arc of the circle in the sagittal

plane (35 mm)

Rp1 minimal averaged radius in the transverse projection plane (18 mm)

Rp2 maximal averaged radius in the transverse projection plane (29 mm)

t time

u velocity

umag magnitude of velocity

ū average velocity

V̇ volume flow rate

vp uniform velocity of the moving geometry part (1 cm/s)

w0 velocity of the lower movable surface used in the derivation of the Reynolds

equation

wh velocity of the upper movable surface used in the derivation of the Reynolds

equation
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Chapter 1

Introduction

Foods are evaluated using four principal parameters. These are appearance, flavor, texture

and nutrition. Of these, only the last parameter, nutrition, cannot be perceived by the

human senses. The other attributes are perceived by the five senses - sight, hearing, smell,

taste, and touch.

Appearance is sensed optically with the eyes. Flavor is a matter of the chemical senses.

They perceive gustatory and olfactory stimuli by means of the tongue and nose. Texture

is a multifaceted parameter mainly sensed by the tactile and kinesthetic senses. Here, the

tactile sense refers to touch, the kinesthetic sense to joint position. Moreover, vision and

hearing are involved in the process of texture perception.

The process of texture perception is a sequence of several impressions. Thinking of an

apple as an example, we first evaluate its texture visually. We look at shape and color and

check if the apple is undamaged. Afterwards, we bite into it while listening to the quality of

the crunching sound. Last but not least, we start to chew the apple and therefore employ

our tactile and kinesthetic senses in order to evaluate the texture from a mechanical point

of view. Our brain combines all these sensations and makes a decision about the quality of

the apple.

This sequence of steps takes place subconsciously. We will only pay attention to them

if the texture of the apple is different from our expectation. Nevertheless, the food will be

1



2 CHAPTER 1. INTRODUCTION

rejected if the expectations are not met. For that reason, the food industry is more and

more interested in designing perfect textures to keep customers. Hence, food texture and

texture perception are worth a closer glance.

1.1 Motivation for Studying Texture

Texture perception and mouthfeel are sensory variables that only came into the focus of

research in the 1960s, whereas flavor has been studied for a much longer time. As a result,

these concepts still need basic understanding and further clarification. The early attempts

of research in this field consisted of work establishing terminology, definitions and concepts

of food texture as well as determining the different factors that affect perception. Soon it

became obvious that texture is a collective term with many facets. One mode of sensing

is not enough to collect a comprehensive impression of all the textural information of food.

Nevertheless, there is a consensus in the literature that texture and mouthfeel are dominated

by mechanical attributes. These attributes cover a wide range from hardness-related to

viscosity-related terms. Although concentrating only on mechanical stimuli, it is obvious

that the description of texture exhibits much more complexity than flavor, which can be

related to individual chemical compounds.

Due to this complexity, a reliable method to describe mouthfeel quantitatively by means

of physical measurements is currently missing. Nevertheless, finding such a method is the

desired and ultimate aim of food-texture research. Peleg (1993) aptly states that “if a

‘perceived texture’ is, indeed, a sensory response to ... objective mechanical attributes, then

the creation of a ‘tailored texture’ is a realistic possibility”. This vision of food that is not

only harmonious in flavor but also blends well with its texture spurs on food scientists all

over the world.

One big challenge is the diversity of foodstuffs. Only taking into account those foods

that are capable of flowing slightly reduces the huge variety of foods. There still remains a

widespread collection of food that can obviously be distinguished by its fluid-flow behavior.
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Every consumer knows from daily-life breakfast experience that the contents of a coffee cup

spill widely over the whole table after tipping the cup over while honey is difficult to spread

properly on toast. These different behaviors also occur in the oral cavity. They are one

aspect by which the consumer judges texture and decides about individual preferences. One

branch of research on food texture aims at expressing these experiences with differently

behaving foods mathematically. The resulting mathematical models should act as a basis

for understanding the food-consumer interaction objectively.

The most important terms describing texture and mouthfeel for foods capable of flowing

are viscosity-related terms. Hence, some studies dealing with sensory evaluations of food

thickness are available as well as some others discussing the shear rates and stresses that

occur in the mouth. So far the fluid mechanical quantities occurring in the mouth have been

quantified by both experimental approaches and calculations. These quantities are said to

be detected by the oral mechanoreceptors and give an idea about the mechanically-induced

mouthfeel sensations. For this reason, one of the aims of food-texture research is to close

the existing gap between instrumental and human sensory measurements.

1.2 Aim of the Current Thesis

The current thesis concentrates on the calculation of fluid flow in several oral model systems.

The models introduced increase in complexity. The simple models are solved analytically

by means of the theory of lubrication. The advanced models, with a geometry that is based

on dentist replicas, require numerical treatment. Evaluating the results of these analytical

fluid-mechanical investigations gives good estimates of the order of magnitude of the different

fluid-mechanical quantities.

The analytical calculations help to estimate the influence of different geometries on fluid

flow. The numerical simulations visualize vector fields of fluid-flow variables in a more

complex geometry. Moreover, a model including a non-Newtonian fluid is introduced. This

is interesting as most foodstuffs capable of flowing are non-Newtonian fluids.
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The current thesis reviews literature concerning the concept of texture, existing models

of the oral cavity, and the fundamentals of mechanoreception. Subsequently, the different

models of the oral cavity are introduced and the results of the calculations are discussed and

compared. The final validation of each flow variable is accomplished by means of comparison

to existing literature values. Hence, the present thesis provides a more detailed insight into

the fluid-mechanical processes in the oral cavity than ever before.

1.3 Approach

The analytical approaches that have been employed so far all relate to a well-known tongue-

palate model system consisting of two plane circular parallel plates. This system can roughly

mimic the squeezing flow that occurs during deglutition (swallowing) and gives an idea of

the expected order of magnitude of fluid-mechanical quantities. Nevertheless, this analytical

approach lacks a geometry that is closer to reality.

The in-mouth models employed in the current thesis enable the investigation of fluid-flow

processes in the oral cavity that accompany consumption. Two approaches are introduced, an

analytical one and a numerical one. Concerning the analytical one, first of all the established

geometry of two plane circular parallel plates is introduced. This geometry is well described

concerning all fluid-mechanical quantities as it is often used as a reference.

The established model is compared to geometries that consider different aspects of the

real oral cavity. The first geometry for comparison consists of two plane elliptical parallel

plates. The pressures and the force required to drive the geometry together have been known

for a long period. Additionally, the current thesis determines velocities, shear rates and shear

stresses. The same is performed for a second geometry consisting of a plane and a curved

circular parallel plate. Finally, the analytically solvable model of a sphere in a hemisphere

is derived from a general approach to lubrication.

The numerical approach employs a geometrical model that is built on average values

of oral cavities. The flow of fluids featuring different viscosities is calculated. Here, three
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different low viscosities are employed to investigate the effect of small viscosity changes on

the distribution of the fluid-mechanical quantities. Additionally, one fluid with a higher

viscosity that represents both vegetable oils and the apparent viscosity of yogurt is used.

Lastly, a non-Newtonian fluid fitted with the Cross law is implemented in the numerical

calculation. This approach of implementing a different flow-curve characteristic is reasonable

as most foodstuffs exhibit non-Newtonian fluid flow behavior. This makes the comparison of

Newtonian and non-Newtonian results essential as the differences are likely to have a great

effect on texture perception.

All the different approaches reveal mechanical stimuli that occur due to the movement

of the tongue during deglutition. These stimuli are detected dynamically by the human

mechanoreceptors in the oral cavity. The tactile sensation is then transmitted to the human

brain. For this reason, this thesis establishes a link to perception. Knowledge of what the

mechanoreceptors detect and magnitudes of different physical quantities of fluids within the

oral cavity means a novel understanding of the food-consumer interaction.





Chapter 2

State of the Art

This chapter begins with a short introduction to the idea of rheology. This is necessary as the

term is frequently used when dealing with texture and mouthfeel. Thereafter, the sensory,

physical and physiological fundamentals of texture perception are presented. Starting with

the concept of texture, definitions, influences on perception and terminology of mouthfeel

attributes are outlined. In this context, it will be shown that viscosity is the most dominant

mouthfeel attribute for food capable of flowing. Therefore, it becomes obvious why the

current investigation concentrates on models that mimic the squeezing flow in the oral cavity.

Furthermore, the shear stresses and rates occurring in the mouth that result from ex-

perimental investigations and theoretical considerations are discussed. Previous numerical

simulations of deglutition have focused on the pharynx and the esophagus as these organs in

particular have attracted the attention of medical scientists so far. Their primary aim was

the understanding of dysphagia in order to develop a cure for this condition. Nevertheless,

numerical models of the oral cavity are rare.

The chapter ends with a short introduction to the physiology of perception. Mechanore-

ceptors are referred to in many papers dealing with texture perception. Hence, their mor-

phology and functionality are illustrated. An improved knowledge of mechanoreceptors is

the basis for understanding the signal transmission from the food through the oral tissues

to the brain, which evaluates the sensations.

7
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2.1 Selected Aspects of Rheology

Rheology deals with the deformation and flow of matter in response to an applied stress or

strain. The reaction of matter caused by the applied stress or strain is used to characterize

rheological behavior (Steffe, 1996). In principle, rheological characteristics can be classified

into Newtonian and non-Newtonian behavior. Newtonian fluids feature a constant viscosity,

while the viscosity of non-Newtonian fluids depends on the applied shear rate. Typical

examples of Newtonian fluid-flow behavior are water, vegetable oils and honey. In contrast,

most foods show non-Newtonian behavior (Steffe, 1996, Bourne, 2002).

Rheologists distinguish between some major material behaviors. Figure 2.1 introduces

the time-independent characteristics by plotting shear stress σ versus shear rate γ̇ (Steffe,

1996). Time-dependent models are not considered in the current study due to their com-

plexity. Newtonian fluids exhibit a direct proportionality between shear stress σ and shear

rate γ̇. The slope of the flow curve is the dynamic viscosity η.

Non-Newtonian materials do not feature this direct linear proportionality. However, the

local quotient σ
γ̇
is often used to define an apparent viscosity η. If the apparent viscosity η

decreases with an increasing shear rate γ̇, the material is said to exhibit shear-thinning

behavior. An example of this kind of fluid-flow behavior is orange-juice concentrate. The

opposite case, where the apparent viscosity η increases with an increasing shear rate γ̇, is

known as shear-thickening behavior. This behavior can be observed in the case of starch

solutions (Steffe, 1996).

Both, the Bingham and the Herschel-Bulkley fluids are said to require a minimum

applied stress to make them deform and flow. This stress is called the yield stress σ0. Below

this yield stress, the material behaves like a solid. Its value can be read off the y-axis

intercept. Above this yield stress, when the matter flows, the curves can show a linear

proportionality between shear stress σ and shear rate γ̇ once again (Bingham) or a shear-

thinning characteristic (Herschel-Bulkley). Tomato paste is said to comply with the

Bingham model, ketchup with the Herschel-Bulkley model (Steffe, 1996). However,

the yield-stress concept has been criticized as being an idealization, which has arisen due to
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Figure 2.1: A survey of different flow behaviors of time-independent fluids (Steffe, 1996).

a lack of accurate measurements. Barnes & Walters (1985) have stated that the yield

stress does not exist.

There are numerous approaches to approximate real fluid-flow behavior by analytical

functions. These flow equations are usually based on empirical investigations. A theoretical

background is seldom. The free parameters of the models are determined from experimental

data (Böhme, 2000).

2.2 Fundamentals and Physics of Sensing

The second part of this literature review deals with texture and mouthfeel. Several definitions

developed over the last decades are introduced. Possible influences on texture and mouthfeel

are outlined, followed by presenting the terminology in general and the adapted terminology

for food capable of flowing. Afterwards, strategies to quantify oral shear stresses and shear
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rates are outlined. The section closes with a summary of numerical studies that have been

employed previously in order to visualize the process of swallowing.

2.2.1 Definition of Food Texture and Mouthfeel

Scientists have long been aware of the importance of flavor for consumer acceptance. How-

ever, the multi-parameter attribute texture has only attracted attention since the 1960s

(Szczesniak, 2002). There are several definitions of food texture presented in the litera-

ture. Some of them take only one kind of foodstuff into consideration whereas others are

more general.

In one of her early publications Szczesniak (1963) defined that texture can be “consid-

ered as the composite of the structural elements of food and the manner in which it registers

with physiological senses”. A few years later, Muller (1969) regarded the concept of texture

as confusing because it relates to both a physical and a perceived property. He suggested a

separation in the terms “rheology” and “hapaesthesis” instead. According to this concept,

rheology is measured objectively in SI units, while hapaesthesis is recorded by means of

statistical investigations.

Although Szczesniak tried to define texture in 1963, she admitted in the same paper

that a clearer appreciation of the concept must be worked out. She recognized that “a

rigorous definition of texture will have to await a better understanding of the basic princi-

ples involved, especially those concerned with rheological or mechanical properties of food”.

Following her, these early definitions have been updated continuously.

Texture was much debated in the 1970s. Sherman (1970) refined the definition of

Szczesniak (1963) saying that texture is “the composite of those properties (attributes)

which arise from the structural elements of food and the manner in which it registers with

physiological senses”. With this definition he wanted to emphasize that single aspects of tex-

ture are measurable instrumentally and are thereby quantifiable. By comparison, Jowitt

(1974) suggested that texture is “the attribute of a substance resulting from a combination

of physical properties and perceived by the senses of touch (including kinesthesis and mouth-
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feel), sight and hearing. Physical properties may include size, shape, number, nature and

conformation of constituent structural elements”. Discussions on this topic continued in the

1980s and 1990s.

In 2002, Bourne confirmed that one fundamental property of texture is that it has

various single attributes, which yield a multifaceted collective term. One of the most recent

definitions was published by Szczesniak (2002) after she had spent her whole professional

career investigating texture. She concluded that “texture is the sensory and functional man-

ifestation of the structural, mechanical and surface properties of foods detected through the

senses of vision, hearing, touch and kinesthetics”. She emphasized the four aspects that

texture

• is a sensory property,

• is a multi-parameter attribute,

• derives from the structure and

• is detected by several senses.

Texture evaluation requires at least three of the five available human senses. Most infor-

mation is obtained by touch. Sight and hearing deliver additional details. Smell and taste

sense flavor-active molecules. In the case of creaminess, both texture scientists (Kokini &

Cussler, 1983) and flavor scientists (Schlutt, Moran, Schieberle & Hofmann, 2007)

claim the right to define the characteristics of the attribute. Hence, it is even questionable

as to whether a clear differentiation between flavor and texture is ultimately practicable.

de Wijk, Terpstra, Janssen & Prinz (2006) explain that the properties of food are

perceived at distinct points in time. Flavor is always the first property that is analyzed,

followed by textural properties. Thickness is the first textural attribute that is rated. Its

immediate perception means that it is not influenced significantly by the mixture with and

dilution effects of saliva (van Aken, Vingerhoeds & de Hoog, 2007). Some sensations

like creaminess need intensive movement and processing by the tongue to be evaluated.
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The importance of texture is pointed out by Szczesniak & Kahn (1971). They state

that food texture will scarcely be noticed as long as it complies with the expectation of the

consumer. But if it differs from this expectation the food will be criticized and rejected.

For this reason, the authors are of the opinion that the importance of texture should not

be underestimated and that it is necessary to bring “texture awareness ... to the conscious

level”. Most people are only able to deal with the concept after they have been made familiar

with its terms and vocabularies.

Mouthfeel is related closely to texture. Jowitt (1974) establishes the connection that

mouthfeel arises from “those textural attributes of a food responsible for producing character-

istic tactile sensation on the surfaces of the oral cavity”. This means that texture perception

and therefore mouthfeel can be related to the mechanical behavior of the investigated food

sample.

2.2.2 Impacts on Perceived Texture

According to Engelen & van der Bilt (2008), there is a missing link between physical

measurements and texture perception, which can possibly be found in physiology. While

measurements only evaluate strictly physical properties of materials, human subjects judge

food by manipulating it during oral processing. All the changes that occur due to the

processing can hardly be mimicked by technical instruments. Figure 2.2 provides an overview

of possible direct and indirect influences on texture perception, which may be interwoven.

The physiological aspects of oral sensitivity, tongue movements, temperature and saliva

composition are especially emphasized by the authors. They conclude that oral physiology

can presumably explain some of the inter-individual variation. The current study focuses on

tongue movement and the resulting fluid flow in the oral cavity. The importance of the other

effects is beyond doubt, but neglected here due to the restrictions of the employed models.

In order to give an idea about these aspects, example studies are introduced below.
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Figure 2.2: The possible direct and indirect influences on texture perception [adapted from
Engelen & van der Bilt (2008)].

Oral Sensitivity

In general, oral sensitivity is difficult to define precisely. Many different influences and their

interactions play a decisive role. For particles in suspensions, these influences are size, shape

and hardness of the particles. Tyle (1993) investigated the phenomena of grittiness. He

found that particles up to about 80 µm in size are not perceived as gritty if they are soft

and round or hard and flat. However, hard and angular particles of 11 to 22 µm size evoked

the sensation of grittiness.

Peleg (2006) states that there is no constant sensitivity in humans. People can judge

very soft and very hard food with a maximum sensitivity at intermediate stiffnesses. At
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both ends of the scale, however, they have difficulties to discriminate.

Strassburg, Burbidge, Delgado & Hartmann (2007) found similar results. The

authors investigated the oral evaluation of the thickness of flexible circular disks. These

disks had a constant diameter of 3 mm and a constant elastic modulus of 480 MPa. Their

thicknesses ranged from 12.5 µm to 350 µm. A range from 125 µm to 190 µm thickness

could be found in which the disk geometries could not be discerned by the tactile senses in

the mouth although the difference between two consecutively evaluated disks lies above the

known threshold of 25 µm.

Temperature

Temperature has a crucial influence on food thickness. Food has an initial temperature when

consumption starts. This temperature changes during consumption due to the thermal

diffusivity of the food and the oral temperature. This change in temperature is followed

by a viscosity change (Stanley & Taylor, 1993). The thickness of semi-solid foodstuff

decreases significantly with an increasing product temperature.

According to Rao (1977), the change of viscosity in foods due to temperature can be

calculated by

η = Be
E
RT , (2.1)

which is known as the Arrhenius equation. Here, η stands for the viscosity, B for a

constant, E for the activation energy, R for the gas constant and T for the temperature.

The equation is valid for both Newtonian and non-Newtonian fluids. The constant B is

dependent on the weight fraction of total solids.

Engelen, de Wijk, Prinz, Janssen, Weenen & Bosman (2003) also investigated

the influence of the oral temperature on thickness perception. For that purpose, they asked

their subjects to rinse their mouths with water of different temperatures immediately before

tasting. The oral tissues slightly changed their temperature due to this procedure. The same
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tempered product was evaluated to have different subjective thicknesses due to the different

temperatures in the oral cavity. This effect is small, but present.

Saliva

Saliva is a viscoelastic fluid with a varying viscosity between 2 mPas and 13 mPas at high

and low shear rates (Roberts, 1977). It alters the properties of food during consumption

by warming and diluting the solution in the mouth, resulting in an inhomogeneous mixture

(Christensen & Casper, 1987). Stanley & Taylor (1993) claimed that the dilution

effect is too small to be significant, but it was observed to decrease the tendency for turbulent

flow in thin solutions (Christensen, 1984). Less turbulent flow will, in turn, lead to

decreased perceived viscosity (Parkinson & Sherman, 1971). The effects of saliva are not

taken into consideration in the current study as the duration of the process of deglutition is

short compared to the time of possible interactions of saliva with the samples.

2.2.3 Oral Food Texture Evaluation and Terminology

Christensen (1984) states that texture perception is a very complex process. Texture per-

ception requires an active manipulation and deformation of the food, which in turn modifies

the physical properties. van Aken et al. (2007) emphasized that it is necessary to apply

a little oral processing before swallowing and perceive the attributes at or shortly after food

intake for this reason.

Szczesniak (1963) defined three main classes of textural characteristics:

• mechanical characteristics - reactions according to stress,

• geometrical characteristics - arrangement of the constituents/appearance and

• other characteristics that refer mainly to moisture and fat content.

The mechanical characteristics can be classified in the five primary groups
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• hardness,

• cohesiveness,

• viscosity,

• elasticity and

• adhesiveness.

Every attribute is evaluated on a reference scale. Each rating on the specific scale is stan-

dardized with a specific product of a specific brand and manufacturer. Hence, the sensory

results are reproducible. This approach is called sensory texture profiling.

In the early 1970s, a sub-committee on Sensory Analysis of the British Standards Insti-

tution worked on food texture terminology. Jowitt, a member of this committee, proposed

the first list of food texture terminology in 1974 in order to achieve a general international

agreement. His list included

• the definition of general terms (structure, texture, consistency),

• an itemization of material behavior under applied stress or strain including definitions,

• terms describing material structure (particle size or shape, shape and arrangement of

structural elements) and

• an itemization and definitions of mouthfeel characteristics.

Additionally, Jowitt suggested a term be defined for those sensations that cannot be related

to textural properties but also influence mouthfeel, like astringency and temperature. The

general terminology includes all texture attributes for both solid and fluid food. This is

not appropriate for food capable of flowing. For this reason, special terminologies were

developed.

Szczesniak (1979) introduced a list of mouthfeel attributes, which arise due to the

consumption of beverages. Table 2.1 gives an overview of the occurring attributes, which
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are grouped into distinct categories. The second column declares the relative frequency

attributes of a specific category were mentioned. Obviously, the viscosity-related terms are

dominant when describing the mouthfeel of beverages but are not the only terms.

Table 2.1: The classification of mouthfeel terms for beverages (Szczesniak, 1979).

Category [%] Typical words

viscosity-related terms 30.7 thin, thick, viscous

feel on soft tissue surfaces 17.6 smooth, pulpy, creamy

carbonation-related terms 11.2 bubbly, tingly, foamy

body-related terms 11.2 heavy, watery, light

chemical effect 7.3 astringent, burning, sharp

coating of oral cavity 4.5 mouthcoating, clinging, fatty, oily

resistance to tongue movement 3.6 slimy, syrupy, pasty, sticky

afterfeel - mouth 2.2 clean, drying, lingering, cleansing

afterfeel - physiological 3.7 refreshing, warming, thirst quenching, filling

temperature-related 4.4 cold, hot

wetness-related 1.3 wet, dry

Pollen, Daubert, Prabhasankar, Drake & Gumpertz (2004) investigated the

quantifying of liquid food texture using a reduced set of characteristics, which can be un-

derstood by means of rheological measurements. The study is built up on the example of

six commercial products featuring different properties: tomato ketchup, condensed milk,

caramel topping, chocolate syrup, salad dressing and pancake syrup. Concerning the oral

properties, the authors only distinguished between the viscosity-related properties consis-

tency (force required to slurp the sample off a spoon) and thickness (thickness of the sample

after 3 s of tongue manipulation), and the yield-stress related property slurp (force required

to initiate flow on a spoon by gently slurping).
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2.2.4 Oral Shear Stresses and Shear Rates

Janssen, Terpstra, de Wijk & Prinz (2007) state that the exact range of shear rates

in the mouth is not known, although several attempts employing different strategies have

been undertaken in order to find a remedy. Some scientists came from an experimental

background, others from a mathematical one. These approaches are presented separately in

the following sections.

Experimental Approaches

First approaches, for example the approach from Stevens & Guirao (1964), established

empirical relationships in terms of a power function between subjective and objective at-

tributes of viscosity emanating from perception and rheology. A pioneer in this field of

research was Wood (1968) who characterized different foodstuffs and a Newtonian solution

rheologically. Equivalent shear stresses and shear rates occur at the intersection points of

the Newtonian curve with the non-Newtonian curves in a diagram of shear stress vs shear

rate.

Panelists were asked to evaluate the viscosities of the non-Newtonian foods compared to

the Newtonian solution. The non-Newtonian foods that came closest in perceived consistency

defined the shear-rate range employed for the oral evaluation. Wood concluded that the

shear rate that is relevant for the perception of thickness is about 50 s−1. He hypothesized

that the corresponding shear stress is the perceived stimulus.

Years later, Cook, Hollowood, Linforth & Taylor (2003) confirmed this hypothe-

sis by stating that shear stress is the stimulus that is used for the oral evaluation of viscosity.

Thus, it has a special meaning for the somatosensory sense (see chapter 2.3). Apart from the

detection of flow by means of the mechanoreceptors located in the surfaces of the oral tissues,

the solution’s resistance to flow is detected by the intramuscular receptors of the kinesthetic

sense (Christensen & Casper, 1987). They measure the force or effort applied to move

the solution.



2.2. FUNDAMENTALS AND PHYSICS OF SENSING 19

Employing the same strategy as Wood, Shama & Sherman (1973) investigated oral

shear rates and shear stresses over a wider range of food viscosities. Similar foods were

grouped together with a Newtonian solution of a comparable viscosity. The area where

rheological and sensory measurements agreed was marked by a broken line rectangle in their

graph of shear stress vs shear rate.

The upper diagram in figure 2.3 shows the resulting rectangles. The two continuous

curves represent the approximate limits of shear rates and shear stresses in which foods were

evaluated in the oral cavity. It was concluded that oral shear rates lie between 10 s−1 and

1000 s−1, and the resulting oral shear stresses between 10 Pa and 1000 Pa. Furthermore, the

results suggest that stimuli of liquid foods can be traced back to shear rates evaluated at

approximately constant shear stresses of about 10 Pa. In viscous foods, shear stresses at an

approximately constant shear rate of 10 s−1 are responsible for the stimuli.

The lower diagram in figure 2.3 delivers information about the evaluated foods. Their

rheological characteristics are superimposed upon the continuous curves in the upper dia-

gram. Hence, it is possible to estimate the shear rate and shear stress that occur in the oral

cavity for each single foodstuff.

The correlation between shear rates and stresses, and foodstuffs is quite good. Neverthe-

less, Christensen (1979) makes the alternative assumption that a certain range of shear

rates is always generated in the oral cavity. Panelists evaluate the viscosity of the solution

along the whole shear rate range and come up with an averaged viscosity. This would explain

why solutions of carboxymethylcellulose of different polymer length but identical viscosity

are evaluated to be thinner the more distinct their non-Newtonian behavior is. Cutler,

Morris & Taylor (1983) came to a similar conclusion, but added that objective viscosity

measurements at 10 s−1 correlate well with the perceived thickness of most fluids.

Houska, Valentova, Novotna, Strohalm, Sestak & Pokorny (1998) employed

five different sensory methods (mixing with a spoon, pouring from a spoon, slurping from

a spoon, compressing between tongue and palate, and swallowing effort) in order to evalu-

ate rheologically-measured samples. The authors established power-law functions between
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Figure 2.3: The shear rates and shear stresses occurring in the mouth during food evaluation
(Shama & Sherman, 1973).
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the sensory evaluations and the rheological measurements. They found shear rates up to

questionable 15307470 s−1 for the slurping of low viscosity strawberry-yogurt drinks.

Other approaches have employed dynamic-viscosity measurements combined with smaller

deformations than the steady-shear approaches used before (Stanley & Taylor, 1993).

Bistany & Kokini (1983) were the first who showed that the dynamic viscosities are much

larger than the steady viscosities. Richardson, Morris, Ross-Murphy, Taylor &

Dea (1989) found that the measurements under oscillatory shear at the single frequency of

50 rad/s correlate directly with panel scores for the perceived thickness of solutions with and

without yield stress.

Analytical Approaches

Starting in the 1970s, the groups of the researchers Cussler and Kokini developed a math-

ematical model for the prediction of subjective attributes. In a first attempt, DeMartine

& Cussler (1975) developed a set of equations in order to predict the subjective spreadabil-

ity, viscosity and stickiness evaluated by using one’s fingers. The mathematical model was

developed in three steps. At first, the fingers were approximated by two parallel plates and

the fluid rheology by the power law. Then the film thickness of the fluid was expressed by

means of the Stefan equation, which can be derived from the theory of lubrication. This

theory is introduced in detail in chapter 3.3. DeMartine & Cussler implemented the

power law in the friction term of an equation of squeezing flow and solved the equation for

the fluid film. The height of the film is dependent on time, plate radius and fluid rheology.

The final step, the prediction, was based on the developed equation. The authors assume

proportionalities between spreadability and reciprocal shear rate, viscosity and shear rate,

and stickiness and the quotient of the initial height and plate velocity.

The subjects evaluated the samples by using their fingers. Spreadability was evaluated

by spreading the sample along a plate with the index finger, viscosity by rubbing the fluid

between the fingers and stickiness by removing the finger after touching the fluid on the
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plate. These measurements were compared to the results of the equations. The successful

fits exhibit correlation coefficients of at least 0.90.

Kokini, Kadane & Cussler (1977) applied the preceding ideas to the tongue-palate

system in the mouth. Again, they approximated the tongue and palate by a system of two

parallel plates. Ten original attributes were reduced to three, which were related to physical

quantities. Thickness was related with viscous forces, smoothness with frictional forces, and

slipperiness with a combination of both. The rest of the procedure remains the same as

described above.

On the basis of this mathematical model, Dickie & Kokini (1983) calculated the shear

rates that are supposed to occur in the mouth. They came out with a range between 5.09 s−1

for thicker foods like marshmallows and 36.50 s−1 for thinner foods such as ketchup assuming

the fluids follow the power law.

Elejalde & Kokini (1992) stated that shear stress in the mouth is the sensory mech-

anism used for the oral evaluation of viscosity. For this reason, they used the model intro-

duced above in order to calculate shear rates and shear stresses. They performed their own

study using syrups. Their rheological characterizations yielded shear rates in the range from

11.78 s−1 to 99.78 s−1 and shear stresses in the range from 4.4 Pa to 131 Pa. In order to

verify the model, they employed further data published by Cutler et al. (1983). These

data led to a minimum shear rate of 10.03 s−1 for lemon curd and a maximum shear rate of

415.99 s−1 for fresh milk. The calculated shear stresses ranged between 1.0 Pa for fresh milk

and 683 Pa for chocolate spread.

Other authors enhanced the findings introduced above. Campanella & Peleg (1987)

deduced an advanced mathematical model consisting of one rigid and one elastic plate. The

elastic plate represents the deformable tissue of the tongue. The authors quantified the effect

on the force-time curve dimensionlessly. Nicosia & Robbins (2001) used the rigid set-up

in order to investigate the fluid mechanics of bolus ejection from the oral cavity, with close

attention regarding the bolus-ejection time.
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2.2.5 Numerical Simulations

Numerical simulations in structural and fluid mechanics are a powerful and efficient tool to

calculate shear and normal stresses in solid and liquid materials. The method is employed

when analytical solutions fail due to the complexity of the geometry. The application of

numerical simulations provides the required insight into those complex systems (Datta,

1998).

The area of application is widespread in all disciplines of engineering, ranging from auto-

motive engineering to medical technology. This section gives a concise overview of numerical

simulations relating to different aspects of oral biomechanics. The motivation of previous

investigations was dominated by medical questions like implant dentistry, rehabilitation after

tongue surgeries and dysphagia. Additionally, there is a bionics-motivated study about ram

feeding fish.

Nowadays, finite element analysis is a very common method in implant dentistry. Wein-

stein, Klawitter, Anand & Schuessler (1976) published the first paper in this area of

research. They performed a two-dimensional stress analysis in porous rooted dental implants,

after which the method gained ground.

At the beginning of the last decade, Geng, Tan & Liu (2001) composed a review paper

about the advances in biomechanics of dental implants. Emphasis was put on the prediction

of stress on implants and their surrounding bones due to mastication. In this context, the

three aspects of bone-implant interface, implant-prosthesis connection and multiple-implant

prosthesis are of importance.

Only recently, Wakabayashi, Ona, Suzuki & Igarashi (2008) published another re-

view article about nonlinear finite element analyses for dental applications. The authors state

that nonlinear stress-strain relationships mirror the intraoral environment more realistically.

The aspects of displacement of periodontal ligament, plastic and viscoelastic behaviors in

restoration materials, tooth-to-tooth contact, mechanical contacts of implant prostheses and

tooth-restoration complexes were discussed in detail.
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Tongue movement is another branch analyzed by means of structural-mechanics ap-

proaches. The deformable nature of the tongue turns out to be a great challenge to simulate.

Nevertheless, modern computer hardware enables the highly complicated realization of this

ambitious objective.

Vogt, Lloyd, Buchaillard, Perrier, Chabanas, Payan & Fels (2006) devel-

oped an innovative three-dimensional biomedical finite-element-based simulation of a muscle-

activated human tongue with a simulation time ten times larger than real-time. Their inten-

tion was to contribute to the clarification of physiological activities like speech production,

breathing and swallowing, surgical and dental training, and outcome prediction for clinical

procedures.

In a next step, Buchaillard, Brix, Perrier & Payan (2007) extended the model

including jaw, palate and pharyngeal walls, as can be seen in figure 2.4. By means of this

model, the effect of tissue loss and reconstruction on the tongue movement was studied.

In particular, the study deals with two common tongue surgeries used to remove tongue

tumors, namely hemiglossectomy, which is the surgical removal of one half of the tongue,

and mouth-floor resection. Subsequent reconstruction is modeled implementing flaps of

different stiffness. These simulations clarify the potential impact on speech articulation.

The long-term perspective is to adapt the simulation individually. The method can thereby

contribute to help cancer patients in regaining quality of life.

Oral fluid mechanics has been analyzed only rarely using numerical simulations. Excep-

tions are some studies of oropharyngeal mechanics for a greater understanding of dysphagia.

Chang, Rosendall & Finlayson (1998) and Meng, Rao & Datta (2005) simulate the

pharyngeal bolus transport of isothermal, homogeneous and incompressible Newtonian and

non-Newtonian fluids. The Newtonian fluid flow was represented using the dynamic viscos-

ity η = 1 mPas and the density ρ = 1000 kg/m3 as well as the parameters η = 150 mPas

and ρ = 1800 kg/m3. Non-Newtonian behavior was reflected by the power law σ = Kγ̇n.

The consistency index was set to K = 2.0Pasn, the flow behavior index n = 0.7. As the

exponent n is < 1, the fluid-flow behavior is shear-thinning. The pharyngeal bolus transport
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Figure 2.4: An X-ray and finite element model of the tongue in its natural environment of
jaw, palate and pharyngeal walls (Buchaillard et al., 2007).

is observed in the 5 cm long segment of the human throat from the glossopalatal junction

to the upper esophageal sphincter. This segment is mimicked by an axisymmetric pipe

with movable walls. The pipe is closed and widened with a wavelike movement resulting in

squeezing of the food.

The intention of the study was to find out which food meets the demands of dysphagia

patients best. The swallowing process is safer the longer it lasts as it reduces the risk of

aspiration (i.e. the process of food entering the trachea and lungs) in consequence of not

shutting off the airways. For this reason, the impact of the fluid-flow behavior on swallowing

time is studied. The authors discovered that shear-thinning fluid-flow behavior seems to

slow down the swallowing process, concluding that non-Newtonian products are safer for

dysphagia patients.

Studies of the esophageal bolus transport can be seen as a continuity of the previous

study. Li, Brasseur & Dodds (1994) introduced a numerical model of the esophagus.

The numerical code was based on the lubrication theory for Newtonian materials, which

was adapted appropriately to the description of peristaltic waves traveling along a tube of

finite length (Li & Brasseur, 1993). The simulation helped to analyze the relationship

between the muscle-induced wall deformation of the esophageal tube and the intraluminal

pressure. Yang, Fung, Chian & Chong (2007) utilized the finite element method to
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illustrate the interaction of tissue, Newtonian food bolus and the peristaltic wave due to

muscle contraction for the first time.

Nicosia (2007) introduces the only model of the oral cavity that deals with fluid me-

chanics. This model is two dimensional. The palate is represented by a stiff line. The

contour of the tongue moves dynamically based on trigonometric functions. Hence, the cen-

tral gap between tongue and palate decreases and increases again. The junction between the

palate and the base of the tongue opens and closes. The Newtonian bolus has the dynamic

viscosities 10 mPas, 100 mPas and 1000 mPas. Figure 2.5 illustrates the geometrical config-

uration for different time steps and shows the behavior of the bolus for a dynamic viscosity

of 1000 mPas.

The purpose of the study was to analyze premature bolus spillage into the pharynx as

this causes problems for dysphagia patients. It can be concluded that boluses of higher

viscosities remain in the oral cavity longer. Additionally, a decreased magnitude of tongue

movement is important. Therefore, the use of thickened liquids for dysphagia patients is

suggested in order to prevent premature spillage into the pharynx.

Besides the medically-motivated considerations of human swallowing behavior, there is

a study with a bionic focus. Cheer, Ogami & Sanderson (2001) investigated the fluid

mechanics in the oral cavity of suspension-feeding fish. These fish capture water that contains

food by swimming forward continuously with a completely open mouth. The streamed oral

cavity of the fish was imitated by simplified cylindrical and conical geometries. Some vertical

or slanted branchial slits were included near the outflows. The analysis of the numerical

simulations concentrated on the transport of food particles and the velocity profiles of the

streaming water. The authors hope to understand the functionality of the gill rakers that

Figure 2.5: The two-dimensional model of bolus containment in the oral cavity according to
Nicosia (2007) considering a viscosity of 1000 mPas.
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retain food organisms at the gill arch filaments. The ultimate aim of their work is to design

industrial hydrosol filtration methods modeled on these effective ram suspension feeders.

2.3 Physiology of Texture Perception

Food texture is perceived by both tactile and kinesthetic senses (Kilcast & Eves, 1991,

Christensen, 1984, Verhagen & Engelen, 2006). The tactile sense perceives touch on

the surface of the skin. Therefore, this sense transmits stimuli from the environment. The

surfaces of the oral cavity that receive this kind of stimuli by means of mechanoreceptors

are the tongue, the palate and the pharyngeal regions.

In contrast, the kinesthetic sense is an internal body sense. It delivers information

concerning the static position of specific parts of the body and the relative position of several

parts to each other. Additionally, it measures the effort required for motion. In the case of

the oral cavity this sense is important for the movement of the jaw and tongue. Occurring

stimuli are transmitted by proprioceptors. The most relevant receptors in kinesthesis are

muscle spindles. They send signals due to changes in their length.

The stimulation of a receptor is followed by a signal transduction pathway via nerve

cells, the so-called axons. Mechanoreceptors are stimulated by deformations of their cell

membrane. These deformations result in an opening of ion channels. In consequence of the

ion exchange the cells are depolarized. If a certain threshold of depolarization is achieved an

action potential will be sent. This is a temporary change of voltage, which is transmitted from

axon to axon to the brain. Long-lasting depolarizations trigger series of action potentials.

The frequency of the action potentials decreases with time until the resting potential of

the cell is recovered. Hence, a constant stimulation leads to an adaptation of the receptor.

Finally, the signal patterns that are sent are decoded and analyzed in the brain (Mörike,

Betz & Mergenthaler, 1997, Schmidt, 1998).
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2.3.1 Classification of the Mechanoreceptors

As the tactile sense is supposed to be the most relevant one for texture perception, it is

presented here. In general, there are four different types of mechanoreceptors. Each of them

has different perceptual functions. The single transmitted stimuli responses correspond to a

specific tactile sensation (Johnson, 2001).

Jacobs, Wu, Goossens, van Loven, van Hees & van Steenberghe (2002) state

that the mechanoreceptors can be distinguished by several properties. The primary clas-

sification is based on their velocity of adaptation and on the properties of their receptive

field. The slowly-adapting mechanoreceptors are abbreviated SA, the rapidly-adapting ones

RA. Furthermore, type-I receptors feature small and distinct receptive fields, while type-II

receptors exhibit large and diffuse ones. Table 2.2 illustrates the classification.

A receptive field is the circular- or oval-shaped area, which covers the mechanoreceptive

end organs connected with one single afferent nerve (Schmidt, Lang & Thews, 2005).

A high sensitivity of mechanoreception is partially associated with a high overlap of the

receptive fields (Trulsson & Essick, 1997). The receptive fields of type-I receptors in the

glabrous skin of the human hand, which is highly sensitive, overlap by about 20% to 30%

(Vallbo & Johansson, 1984).

The microstructure of the receptive fields is characteristic for each kind of mechanore-

ceptor. Figure 2.6 shows an example of the isosensitivity lines of the receptive fields in the

glabrous skin of the human hand. A defined stimulus spreads out from the point of contact

Table 2.2: The classification of mechanoreceptors according to their velocity of adaptation
and the properties of their receptive field.

Characteristic of receptive field
Small Large

Distinct Diffuse

Velocity of adaption
Slowly adapting SA I SA II
Rapidly adapting RA I RA II
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to a line representing a certain sensitivity. Hence, the size of the receptive field increases

with the power of the stimulus.

The type-I receptors exhibit a dense occurrence of isosensitivity lines including four

to seven sensitivity peaks in case of SA receptors and 12 to 17 in case of RA receptors.

These sensitivity peaks can presumably be ascribed to the exact number of end organs or

the number of end-organ clusters connected to one parent axon. In contrast, the type-II

receptors exhibit sparse isosensitivity lines and only one single sensitivity peak.

Figure 2.7 depicts the detection thresholds along the lines plotted in figure 2.6. The

figure represents the smallest detectable level of mechanoreception possible. The abscissa

represents the distance in mm. The left ordinate displays the detection threshold as a

multiple of the lowest threshold T , the right ordinate the absolute indentation threshold in

µm.

The threshold is very low over a wide range in the case of the type-I receptors. It increases

to a twentyfold value at the borders of the receptive field. Therewith, the receptive fields

of type-I receptors are distinct. These borders are missing in the case of type-II receptors.

Here, the sensitivity falls off gently over the complete distance. Furthermore, the threshold

only achieves fivefold values comparing the center and border of the receptive field.

The absolute indentation thresholds differ strongly. While the maximum occurring

threshold is 50 µm for RA receptors, SA receptors have a threshold of 600 µm and 1000 µm,

respectively.

2.3.2 Impulse-Discharge Patterns

The different types of mechanoreceptors respond to different modes of skin deformation

(Schmidt et al., 2005). The SA-I mechanoreceptors react to the intensity of skin im-

pression, which is a stress causing deformation from the mechanical point of view. The

SA-II mechanoreceptors are sensitive to the intensity of skin stretch, which is equivalent

with strain. The RA-I mechanoreceptors respond to the velocity of the skin deformation,
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1mm
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SA I SA II

RA I RA II

Figure 2.6: The isosensitivity lines in the microstructure of receptive fields of the cutaneous
mechanoreceptors of the human hand (Vallbo & Johansson, 1984).
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Figure 2.7: The detection thresholds measured relatively in multiples of the lowest thresh-
old T and absolutely in indentation [µm] of receptive fields of the cutaneous mechanoreceptors
of the human hand (Vallbo & Johansson, 1984).
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while the RA-II mechanoreceptors respond to the acceleration. The temporal gap that oc-

curs between the discharged action potentials is dependent on the intensity of the stimulus

in each case.

Figure 2.8 shows the characteristic impulse discharges arising due to a perpendicularly

applied stimulus. The skin is deformed with a constant velocity in a first phase. The resulting

indentation is retained in a second phase. Finally, the stimulus is removed during a third

phase.

The slowly-adapting mechanoreceptors react to both static and dynamic stimuli. In

contrast, the rapidly-adapting ones respond only to dynamic impulses (Jacobs et al.,

2002). Although the response of mechanoreceptors to stimuli is well known, there is little

knowledge about the exact modes of encoding mechanoreceptive signals in the human brain

and the formation of sensory assessments in terms of textural attributes (Peleg, 1993,

2006).

2.3.3 Occurrence of Mechanoreceptors

The occurrence of the different kinds of mechanoreceptors depends on the character of the

skin. All four types can be found in glabrous skin, while hairy skin lacks the RA-I mechanore-

ceptors and the oral mucosa the RA-II mechanoreceptors, respectively. Table 2.3 gives an

overview of the occurrences of the mechanoreceptors in different kinds of tissue.

Table 2.3: The occurrences of the different mechanoreceptors in the different kinds of tissues
[adapted from Jacobs et al. (2002)].

Receptor Glabrous skin Hairy skin Oral mucosa

SA I + + +

SA II + + +

RA I + – +

RA II + + –
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SA I SA II

RA I RA II

Figure 2.8: The characteristic impulse discharges of the four different kinds of mechanore-
ceptors arising due to a stimulus in terms of a perpendicularly applied skin deformation
(Vallbo & Johansson, 1984).

2.3.4 Comparison between Hand and Tongue

Very little is known about the mechanoreceptors in the tongue. In contrast, the mechanore-

ceptors of the glabrous skin of the human hand are well investigated. As the structure of

both tissues is quite comparable, the knowledge about mechanoreception in the hand is use-

ful for an understanding of the mechanisms in the oral cavity (Trulsson & Essick, 1997).

Additionally, the skills of the hand can act as a useful frame of reference. Therefore, table 2.4

compares numbers about the mechanoreceptors in the glabrous skin of the hand (Vallbo

& Johansson, 1984) and the mechanoreceptors in the tip of the tongue (Trulsson &

Essick, 1997). The numbers are based on 17000 mechanoreceptors for the hand and on 22

for the tongue.

Though the RA II receptors are missing on the tongue the percentile distribution of SA

and RA units does not vary significantly between tongue and the glabrous skin of the hand. In

both cases the RA units represent about two thirds of the total number of mechanoreceptors.

Therefore, the response to dynamic stimuli is predominant. This is different in other parts

of the body, where SA receptors are more prevalent (Trulsson & Essick, 1997), such as

the hairy skin of the hands and face, the lips and the oral mucosa. It must be assumed that

there is a commonness between the different regions: the glabrous skin of the hand and the

tongue fulfill explorative and manipulative tasks, while the SA receptors are more attuned
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Table 2.4: The values of the mechanoreceptors in the glabrous skin of the human hand (H)
(Vallbo & Johansson, 1984) and the mechanoreceptors in the tip of the tongue (T)
(Trulsson & Essick, 1997).

SA I SA II RA I RA II

H T H T H T H T

Occurrence [%] 25 9 19 27 43 64 13 –

Median size of receptive field
[mm2] 11.0 1.0 59 5.3 12.6 2.0 101 –

Diameter assuming circular re-
ceptive fields [mm] 3.7 0.36 8.7 2.6 4.0 0.5 11.3 –

Innervation density per cm2 70 – 10 – 140 – 20 –

Detection threshold [mN] – 0.19 – 0.31 – 0.11 – –

to proprioception.

The median size of the receptive fields is generally smaller at the tip of the tongue than

at the hand. This confirms that the tactile acuity of the tongue is by far bigger than in

any other part of the body. The innervation density, along with the overlap of the receptive

fields, is an index for the sensitivity of mechanoreception (Trulsson & Essick, 1997).

These densities are not known for the tip of the tongue. Due to the comparability of hand

and tongue, the innervation densities of the hand act as an indication for the tongue. The

innervation density of the RA units is twice as high as that of the SA units. Analogous to

their occurrence, the RA mechanoreceptors play the predominant role. Figure 2.9 presents

the relative size and distribution of the 22 mechanoreceptive units identified on the tip of

the tongue.

2.3.5 Histological Classification of the End Organs

The end organs of the different kinds of mechanoreceptors are identified histologically in

glabrous and hairy skin. Here, the SA-I receptor is represented by the Merkel cells, the
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Figure 2.9: The relative size and location of the 22 identified receptive fields belonging to
superficial units on the dorsum of the human tongue (Trulsson & Essick, 1997).

SA-II receptor by the Ruffini corpuscles, the RA-I receptor by the Meissner corpuscles, and

the RA-II receptor by the Pacinian corpuscles (Schmidt et al., 2005). These end organs

cannot be found in the human tongue. Instead, free nerve endings, semiorganized coiled

endings and organized endings are identified histologically. However, none of these three end

organs could be associated to the different kinds of receptive fields (Trulsson & Essick,

1997).

2.3.6 Sensitivity

There is scarce information about the sensitivity of humans, especially in the mouth region.

Sensitivity can be divided into the threshold of detection and the ability to discriminate above

the threshold level (Peleg, 1993). Medical literature provides little information concerning

the first type of sensitivity in the oral cavity and nothing is known about the second type.

According to Jacobs et al. (2002), light touch sensation is commonly measured by

Semmes-Weinstein monofilaments. Von-Frey hairs and esthesiometer are synonyms for

this method. The monofilaments consist of nylon and vary in their stiffness, diameter, length

and mass. They are applied vertically on the tissue until the point of bending. The stimulus
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is retained for 1 s. The monofilaments are applied in ascending order of intensity until the

subject perceives the stimulus. Special mini kits enable their application to the oral cavity.

Zur, Genden & Urken (2004) developed a topographic sensory map of the oral cavity.

They measured pressure thresholds of the central part of the tongue, the lateral part of the

tongue, the lower lip and the buccal mucosa. For this, they used the established Semmes-

Weinstein method and compared their results with those measured by means of a novel

computerized pressure specified sensory device. The advantage of the latter method is its

easier application in the oral cavity and its continuous measurement.

Figure 2.10 shows the averaged threshold values for pressure recognition for both measur-

ing methods. According to these measurements it can be stated that the pressure threshold

varies around 2 kPa. It is clear from the figure that the pressure specified sensory device

records lower values. Trulsson & Essick (1997) measured the lowest value of 120 Pa for

SA-I mechanoreceptors at the tip of the tongue by means of Semmes-Weinstein monofil-

aments.

Boliek, Rieger, Li, Mohamed, Kickham & Amundsen (2007) report on a better

detection of cotton wisps compared with Semmes-Weinstein monofilaments. However, the

pressure of the cotton wisps was not standardized and the contact area with the tongue was

greater, indicating the stimulation of more sensory afferents.

Komiyama & de Laat (2005) also use the Semmes-Weinstein monofilaments for in-

vestigations at the tip of the tongue of males and females. They do not find any differences

between the genders. The same group investigated ethnic differences exemplified by Bel-

gium and Japanese subjects (Komiyama, Kawara & de Laat, 2007), with no significant

differences found either.
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Figure 2.10: The intraoral sensory map representing pressure thresholds for central tongue,
lateral tongue, lower lip and buccal mucosa in kPa resulting from measurements by means of
Semmes-Weinstein monofilaments on the left-hand side and a pressure specified sensory
device (PSSD) on the right-hand side (Zur et al., 2004).



Chapter 3

Analytical Models and Numerical

Methods

In this chapter, the analytical and numerical approaches used to model the squeezing flow

in the oral cavity are presented. These approaches are based on the geometries of dentist

replicas of the oral cavity, from which the averaged dimensions being used for the model

geometries are devised.

The basic equations of Newtonian and non-Newtonian fluid flow are outlined. Using

these basic equations, the concept of the theory of lubrication is introduced. By means of

this theory, flows are described that feature a geometry in which one dimension is significantly

smaller than the others. This is important for modeling the squeezing flow in the oral cavity,

as the thickness of the fluid film between the tongue and palate is significantly smaller than

the oral cavity itself.

The starting point of the analytical investigation of squeezing flows in the oral cavity

is the well-known model of Stefan, consisting of two plane circular parallel plates, that

is derived from the theory of lubrication. Beginning from this, three other models that

have not previously been used to model squeezing flow in the oral cavity are introduced.

The derivation of the elliptic plane parallel plate model includes for the first time (as far

as is known) the velocities and shear rates and stresses of the flow field. Similarly, new

37
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quantities are derived for a plane and curved circular parallel plate model. A completely

new squeezing-flow model, a sphere in a hemisphere, has been deduced on the basis of the

Reynolds equation in spherical coordinates. These four squeezing-flow models allow for the

first time the analytical investigation of the effects of different three-dimensional geometries

on the flow behavior in the oral cavity. The last model is of particular importance as it

mimics the real oral-cavity geometry the best.

The final part of the chapter gives details of the numerical simulations. The method and

the software employed are explained and the geometrical model used for the simulations is

introduced.

3.1 Geometrical Model of the Oral Cavity

The geometry of the oral cavity varies from individual to individual. Moreover, the tongue

can assume different shapes and is not static during eating and drinking (Stanley & Tay-

lor, 1993). Deglutition starts with pushing the tongue against the front teeth. Afterwards,

it is elevated against the palate in a wavelike backward movement. This movement ensures

the squeezing out of the bolus from the oral cavity (Nicosia, 2007).

For the current numerical study it is necessary to assume static states of both the palate

and tongue. The simplified model of the oral cavity consists of two ellipsoids without any

surface structure (figure 3.1). The geometry of the ellipsoids is based on dentist replicas of

the palate. These replicas were taken from four adults; two males and two females.

The maximum dimensions along the different axes of each of the replicas were measured;

table 3.1 gives an overview. The averaged values for height, width and length of the measured

palates are 16 mm, 36 mm and 58 mm, respectively. For the numerical simulations, the

ellipsoidal model of the computational domain was constructed using ANSYS ICEM CFD

(ANSYS, 2008). This software allows the construction and the mesh generation of the

ellipsoids based on the given key data.
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height

length

width

Figure 3.1: The simplified three-dimensional model of the oral cavity consisting of two
ellipsoids.

Table 3.1: The maximum dimensions of the dentist replicas of the palates in mm.

Height Width Length

Male

Subject 1 13 30 61

Subject 2 20 30 48

Female

Subject 3 15 42 66

Subject 4 15 41 59

Averaged 16 36 58

The analytical calculations of squeezing flows by means of the theory of lubrication are

also based on the key points given in table 3.1. However, the analytical models exhibit even

more simplified geometries and therefore do not allow an exact replication of the results

obtained by the numerical simulations employing the geometry shown in figure 3.1. Never-

theless, the approximations are reasonable as they consider the main influencing variables

of the squeezing flow and allow a quick estimation of the fluid-mechanical quantities. Thus,

a decision for the key points in the geometry to consider is necessary. Here, two different

concepts are used.
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The first concept deals with the dimensions of the tongue-palate model system, which

can be measured in the projection screen in the transverse plane (figure 3.2). This results in

the radius or rather semi-minor axis Rp1 = 18 mm for the width and the radius or semi-major

axis Rp2 = 29 mm for its length.

The second concept takes into consideration that the fluid streams in an arc. Hence,

circles are constructed through the key points of both the frontal and the sagittal planes.

Their radii are approximately R1 = 18 mm and R2 = 34 mm, respectively. The lengths of

the arcs between the key points of the two circles are calculated. This approach results in

the radius or semi-major axis Ra2 = 35 mm for the sagittal plane and Ra1 = 26 mm for the

frontal plane (for further details see appendix B). In order to get a better overview, table

3.2 compares the dimensions of the radii and axes.

Table 3.2: The dimensions of the radii and axes employed in the analytical models.

Frontal Sagittal

Projection
Rp1 = 18 mm Rp2 = 29 mm

Arc
Ra1 = 26 mm Ra2 = 35 mm

3.2 Basic Equations of Fluid Flow

The basic equations of fluid flow have been known since the beginning of the 19th century

(Durst, 2006). The conservation of mass for an incompressible fluid is represented by the

equation of continuity
∂ui
∂xi

= 0, (3.1)

where ui represents the velocity vector, xi the position vector and Cartesian tensor index no-

tation is used. The conservation of momentum equation in Cartesian tensor index notation,
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Sagittal plane

Frontal plane

Longitudinal axis

Sagittal axis
Transverse axis

Transverse plane

Figure 3.2: The cardinal planes and axes in the human body (Schuenke et al., 2006).

ρ

(
∂uj
∂t

+ ui
∂uj
∂xi

)
= − ∂p

∂xj
− ∂τij
∂xi

+ ρgj, (3.2)

describes the forces affecting the fluid, namely inertia, pressure, friction and gravity. Here,

ρ stands for density, t for time, p for pressure, τij for the viscous stress tensor and gj for the

body acceleration, which includes acceleration due to gravity. These two basic equations are

valid for nonpolar, isothermal and inert fluids.

The viscous stress tensor τij governs the behavior of the fluid. In the incompressible

Newtonian case, it takes the form −η
(

∂uj

∂xi
+ ∂ui

∂xj

)
yielding the equation

ρ

(
∂uj
∂t

+ ui
∂uj
∂xi

)
= − ∂p

∂xj
+ η

∂2uj
∂x2i

+ ρgj, (3.3)
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which is called the Navier-Stokes equation. From the non-Newtonian point of view,

several material laws representing distinct characteristics of fluid flow can be modeled using

different forms of τij. The decision of which one is to be used is based on the experimental

data and on which model fits best.

Yogurt was chosen to be the example food for the current study. It features a complex

internal microstructure consisting of a gel structure of milk proteins and fat molecules. This

structure is irreversibly damaged by increasing temperature and applying shear. Addition-

ally, the rheological behavior of yogurt is time dependent. Many different models have been

employed to describe its response to shear and stress (Mullineux & Simmons, 2008).

The three most common models that are used to describe the rheology of food in general

are the power law with an occurence of 47%, the Herschel-Bulkley model (20%) and, with a

frequency of 15%, the Casson model (Holdsworth, 1993). One drawback of these models

is that they are not suitable over a wide ranges of shear rates as they all give large values for

the viscosity η at low shear rates. Although not commonly used, the Crossmodel eliminates

this disadvantage and can successfully be applied over a wide range of shear rates (Cross,

1965, Geraghty & Butler, 1999, Mullineux & Simmons, 2008).

The appropriateness of the Crossmodel for stirred commercial yogurt has been reported

by Krulis & Rohm (2004). Their measurements were carried out by using a four-bladed

vane tool and a stress-controlled rheometer. Figure 3.3 shows the very low shear stresses

that occur at very low shear rates. The authors successfully applied the Cross model to

these measurements. This observation substantiates the assumption of Barnes &Walters

(1985) that materials only appear to exhibit yield stress because it is so difficult to measure

flows with low shear rates. For this reason, the Cross law is employed in the non-Newtonian

numerical simulation of the current study.

The Cross model was developed on the basis of molecular considerations. The model

follows the assumption that the average group size of flocculated interlinked particles is

dependent on the magnitude of the applied shear. The higher the shear rate, the lower the

rate of linkage becomes resulting in a limiting viscosity η∞ at the point of no linkage. The



3.2. BASIC EQUATIONS OF FLUID FLOW 43

Figure 3.3: The flow curves and viscosity curves for plain yogurt (open symbols) and yogurt
with dried cranberries (closed symbols), as measured with a vane tool (Krulis & Rohm,
2004).

highest viscosity η0 can be assigned to the zero rate of shear.

With this background, Cross develops the equation

η =
η0 − η∞
1 + αD2/3

+ η∞ (3.4)

where D stands for the shear rate and α is a constant associated with the rupture of linkages.

The slightly adapted form

ν =
ν0 − ν∞

1 + (mγ̇)n
+ ν∞ (3.5)

is implemented in the module CrossPowerLaw of the open-source software OpenFOAM,

which is employed in the current study for the numerical simulations of fluid flow (OpenCFD

Ltd., 2008). In this representation, m is an arbitrary consistency factor and n the flow

behavior index. The advantage of employing this model in numerical codes lies in the fact

that no division by zero can occur, which would cause problems.
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3.3 Theory of Lubrication

The theory of lubrication is based on Reynolds’ classic paper from 1886. It deals with

the behavior of thin Newtonian fluid films between two movable close surfaces. In various

technical applications, this approach helps to prevent damage occurring to surfaces due to

their sliding against each other (Cameron, 1966). On the occasion of the centennial of

Reynolds’s paper, Pinkus (1987) published an overview of the historical developments in

the theory of lubrication.

Due to the technical relevance of non-Newtonian fluid flow behavior the theory has been

expanded over the years. There have been several attempts to derive generalized Reynolds

equations for any kind of fluid-flow behavior, see for example Bourgin, Francois & Gay

(1985), Najji, Bousaid & Berthe (1989), Peiran & Shizhu (1990), Wolff & Kubo

(1996). In contrast to the approaches for Newtonian fluids derived by Reynolds, these

equations can no longer be solved analytically.

In bioengineering, the theory of lubrication obtained importance in respect of squeezing

films. Numerous research papers deal with the lubrication phenomena in human or animal

joints, for example Unsworth, Dowson & Wright (1975). Only recently, Tanaka, De-

tamore, Tanimoto & Kawai (2008) published a review article concerning the lubrication

of the temporomandibular joint. These investigations make it possible to reconstruct joints

or implant artificial joints after accidents.

In the context of the present thesis, the theory of lubrication is used in another aspect of

bioengineering. Four different geometrical models that mimic the squeezing flow in the oral

cavity in a greatly simplified way are derived. The simplest geometrical model consisting of

two plane circular parallel plates is well accepted in literature as a tongue-palate model. The

further models are used for the first time to model squeezing flow in the oral cavity and are

meant to discover the influence of different geometries, which are closer to the real geometry

in the human mouth. Therefore, the basic Reynolds equations for Newtonian fluid flow

behavior adapted to different coordinate systems are reduced according to the consideration

of a pure squeezing flow. These equations facilitate the calculation of the distributions of
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different physical quantities in different geometrical configurations.

The theory of lubrication is based on some major assumptions (Cameron, 1966,Meyer,

2003). These are

• Newtonian fluid

• neglect of fluid inertia and body forces

• constant viscosity and pressure throughout the fluid film

• negligible velocity gradients apart from those in the cross-film direction

• no slip at the boundaries and

• laminar flow.

3.3.1 Reynolds Equation

Reynolds (1886) developed his equation on the basis of a streamed control cuboid in

a Cartesian coordinate system (figure 3.4). The thin Newtonian fluid film of height h is

located between two movable surfaces in the xy-plane. Their motion with velocities w0 and

wh in z-direction is followed by volume changes of the control cuboid. Additionally, these

surfaces are movable in parallel to the xy-plane with velocities u0 and uh in x-direction

and with velocities v0 and vh in y-direction. These movements are not followed by volume

changes of the control cuboid. For clarity, these velocities are not plotted in figure 3.4.

The fluid flow with the velocities u and v takes place in the yz- and the xz-planes,

respectively. The fluid exits through the same planes displaced by dx and dy with velocities

differing by du
dx
dx and dv

dy
dy.

Fluid Flow Velocities u and v

When dealing with lubrication, it is assumed that fluid inertia can be neglected, as the inertia

force is small compared to the viscous force, and also that body forces can be neglected. As a
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u+     dx
du
dx

v+     dy
dv
dy

u

v

wh

w0

h

z

xy

Figure 3.4: The continuity of fluid flow in a streamed control cuboid representing an element
of the thin fluid film of the height h between two movable surfaces in the xy-plane.

result, only the second and third terms of the Navier-Stokes equation (3.3) remain. This

simplified equation allows the flow velocities u and v to be determined. As the derivation

for each direction takes place in an analogous manner, it is shown for the x-component only.

The final simplified equation
dp

dx
= η

d2u

dz2
(3.6)

needs to be integrated twice with respect to z. The resulting equation

u =
1

2η

dp

dx
z2 + C1z + C2 (3.7)

contains the two constants of integration C1 and C2. These constants are determined by

employing boundary conditions. Remembering that the lower and upper surface of the

cuboid are movable in the x-direction, the boundary conditions are u(z = 0) = u0 and

u(z = h) = uh. Therefore, constant C2 is u0 and constant C1 is equal to uh−u0

h
− 1

2µ
dp
dx
h.

Hence, the velocity u is described by the equation

u =
1

2η

dp

dx
(z2 − hz) +

uh − u0
h

z + u0. (3.8)
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The equation for the velocity v,

v =
1

2η

dp

dy
(z2 − hz) +

vh − v0
h

z + v0, (3.9)

arises from an analogous derivation.

Volume Flows

The velocity of fluid flow changes with dependence on the variable z. However, it is constant

along the width of the control cuboid. Thus, the volume flow V̇x is obtained by

V̇x =

∫ h

0

udzdy, (3.10)

where dy stands for the width of the control cuboid perpendicular to the flow direction x.

Considering equation (3.8) gives

V̇x =

(
1

2η

dp

dx

[
1

3
z3 − 1

2
hz2
]h
0

+
uh − u0

h

[
1

2
z2
]h
0

+ u0 [z]
h
0

)
dy (3.11)

and with further analysis

V̇x =

(
1

2
(uh + u0)h− 1

12η

dp

dx
h3
)
dy (3.12)

for the volume flow V̇x in the x-direction. The analogous derivation yields

V̇y =

(
1

2
(vh + v0)h− 1

12η

dp

dy
h3
)
dx (3.13)

for the volume flow V̇y in the y-direction.



48 CHAPTER 3. ANALYTICAL MODELS AND NUMERICAL METHODS

Equation of Continuity

For the streamed volume element, without sources and sinks, considered here, the equation

of continuity must be valid. Assuming a fluid of constant density ρ, the rate of volume flow

must be constant. This brings

V̇x + V̇y + w0dxdy =

(
V̇x +

dV̇x
dx

dx

)
+

(
V̇y +

dV̇y
dy

dy

)
+ whdxdy (3.14)

by employing the velocities w0 and wh for the velocities of the upper and lower surfaces in

the z-direction. Equivalent transformation gives

dV̇x
dxdy

+
dV̇y
dxdy

+ (wh − w0) = 0, (3.15)

taking into account a division by the area dxdy.

Reynolds Equation

The equation

d

dx

(
1

2
(uh + u0)h− 1

12η

dp

dx
h3
)
+

d

dy

(
1

2
(vh + v0)h− 1

12η

dp

dy
h3
)
+ (wh − w0) = 0 (3.16)

arises from substituting the volume flows V̇x and V̇y in equation (3.15) by the relationships

deduced in equations 3.12 and 3.13. Factorizing gives

d

dx

(
h3
dp

dx

)
+

d

dy

(
h3
dp

dy

)
= 6η

(
d

dx
((uh + u0)h) +

d

dy
((vh + v0)h) + 2(wh − w0)

)
, (3.17)

which is named the Reynolds equation. As only one plate is moved in most cases, the

variable names of the velocities in the x- and y-direction, which are not zero, are replaced

by u and v. Thus, the simplified Reynolds equation,

d

dx

(
h3
dp

dx

)
+

d

dy

(
h3
dp

dy

)
= 6η

(
d

dx
(uh) +

d

dy
(vh) + 2(wh − w0)

)
, (3.18)
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is the starting point for analyzing the fluid flow in lubricating films.

Reynolds Equation in Cylindrical Coordinates

The Reynolds equation in cylindrical coordinates can be developed from the Reynolds

equation (3.18) in Cartesian coordinates. The relations

x = r cosφ, y = r sinφ and r2 = x2 + y2 (3.19)

are used for this transformation. This gives

1

r

d

dr

(
rh3

dp

dr

)
+

1

r2
d

dφ

(
h3
dp

dφ

)
=

6η

(
(u cosφ+ v sinφ)

dh

dr
+ (−u sinφ+ v cosφ)

1

r

dh

dφ
+

d

dφ
(hω) + 2(wh − w0)

)
,

(3.20)

where ω is the angular velocity of the surface in the xy-plane (Cameron, 1966).

Reynolds Equation in Spherical Coordinates

Meyer (2003) derived the Reynolds equation in spherical coordinates. For this purpose,

a sphere of radius Ri lies in a hemispherical shell of the radius R and can be tilted by the

angle ψ with respect to the xy-plane. She obtained the equation

1

sin θ

d

dθ

(
h3 sin θ

dp

dθ

)
+

1

sin2 θ

d

dϕ

(
h3
dp

dϕ

)
=

6R2η

(
ω cosψ sinϕ

dh

dθ
+

(
ω sinψ + ω cosψ

cos θ

sin θ
cosϕ

)
dh

dϕ
+ 2

dh

dt

)
,

(3.21)

where θ is the zenith angle from the positive z-axis, ϕ is the azimuth angle from the positive

x-axis in the xy-plane and ω is the angular velocity vector of the inner sphere. As there is

no need for an inclination angle ψ in the present study, the equation

h = c− ex cosϕ sin θ − ey sin θ sinϕ− ez cos θ (3.22)
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derived by Goenka & Booker (1980) is adequate for the expression of the film thickness h.

Here, c stands for the radial clearance R − Ri, while ex, ey and ez are the eccentricities in

the different coordinate directions.

3.3.2 Squeezing Flow

Pure squeezing flows are characterized by exclusive motions of the surfaces in the z-direction.

There are neither relative motions in the x- and y-direction, nor rotational motions with the

angles φ, ϕ and θ. Simplifying the Reynolds equation (3.18) in Cartesian coordinates

according to these requirements gives

d

dx

(
h3
dp

dx

)
+

d

dy

(
h3
dp

dy

)
= 12η(wh − w0) (3.23)

for the description of a squeezing flow between two surfaces.

In the following derivations the lower surface is assumed to be fixed. In contrast, the

upper surface moves down with a uniform velocity. That means that the film thickness h

diminishes with the time t. The equation

d

dx

(
h3
dp

dx

)
+

d

dy

(
h3
dp

dy

)
= −12η

dh

dt
(3.24)

depicts the resulting squeezing flow.

Analogously, the equations for the squeezing flow are

1

r

d

dr

(
rh3

dp

dr

)
= −12η

dh

dt
(3.25)

in cylindrical coordinates and

d

dθ

(
h3 sin θ

dp

dθ

)
= 12R2η

dh

dt
sin θ (3.26)

in spherical ones. The change in the algebraic sign arises from the fact that in the present
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consideration the sphere is the movable component shifting against the upper hemisphere.

Applying these equations, the geometrical arrangements of both surfaces and the fluid

film between the two surfaces are variable in their shape. The oldest paper from Stefan

(1874) deals with a fluid film thickness h, which is constant along the radial coordinate r of

the circular plane plates. This approach is often used as a reference in food science, as has

been shown in the analytical approaches of section 2.2.4.

Reynolds (1886) derived a solution for the pressure distribution between two plane

elliptic plates. This approach is introduced here, as the projection plane of the numerical

model is elliptic.

Later attempts also investigated the fluid flow behavior due to a varying film thickness h

along the radius r of circular plates. In order to mimic the increasing fluid-film thickness,

which can be found in the numerical model, a double exponential function is employed. This

approach was first published by Murti in 1975.

Based on the previously introduced Reynolds equation in spherical coordinates it is

possible to derive equations describing the fluid flow along θ between a sphere and a hemi-

sphere. This approach reflects the three-dimensional nature of the human oral cavity simu-

lated in the numerical calculations.

All of the approaches introduced above belong to the few exceptions that are solvable

analytically. There are some cases in which a semi-analytical solution is appropriate. One

example is the squeezing flow in a journal bearing (Khonsari & Booser, 2001). Here, a

function for the fluid-film thickness h can be obtained. However, substituting the fluid-film

thickness h in the Reynolds equation by this function requires further numerical treatment

of the equation.

3.3.3 Plane Circular Parallel Plates - Stefan Equation

Figure 3.5 shows the geometrical arrangement of the two plane circular parallel plates em-

ployed by Stefan (1874). As the fluid film thickness h is constant along the radius r, it is
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renamed h0. Introducing this in the squeezing-flow equation (3.25) in cylindrical coordinates,

multiplying by r and integrating once leads to

rh30
dp

dr
= −12ηvp

r2

2
+ C1, (3.27)

where the uniform plate velocity vp substitutes the term dh0

dt
for reasons of convenience.

According to the boundary condition dp
dr

= 0 at r = 0, the constant of integration C1

becomes zero. The resulting equation is

dp

dr
= −6ηvp

h30
r (3.28)

after dividing through by rh30. Integrating again gives

p = −6ηvp
h30

r2

2
+ C2 (3.29)

and considering the boundary condition p = p0 at r = R

p− p0 = 3
ηvp
h30

(R2 − r2), (3.30)

which is called the Stefan equation.

According to this equation, the pressure will go to infinity as the film thickness goes to

zero. This would mean that we could never achieve the force required to press our tongue

against our palate. As this is possible in reality, tiny film thicknesses need to be compensated

z

r

R

h0

vp

Figure 3.5: The squeezing flow between two plane parallel plates whereby the upper plate is
moved down with the uniform plate velocity vp.
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by moving the tongue with smaller velocities the closer it comes to the palate. Hence, the

tongue velocity cannot be kept constant during the whole process of deglutition.

Knowing the pressure profile it is possible to derive the corresponding velocity distri-

bution. As the squeezing flow is axisymmetric, the equations are derived in cylindrical

coordinates yielding velocity components in the z- and r-directions.

Starting from the equation of continuity,

1

r

∂

∂r
(rur) +

1

r

∂uφ
∂φ

+
∂uz
∂z

= 0, (3.31)

the expression for ur can be derived first (Middleman, 1998, Engmann, Servais & Bur-

bidge, 2005). This equation reduces to

1

r

∂

∂r
(rur) +

∂uz
∂z

= 0 (3.32)

as the fluid flow is axisymmetric. At the surface of the plates, there can only be a velocity

component uz in the z-direction due to the no-slip condition. This assumption is valid along

the radial coordinate r. For that reason, the equation can be rearranged to

1

r

∂

∂r
(rur) = −∂uz

∂z
= f(z, t), (3.33)

where the partial differentiation ∂uz

∂z
is only a function f of the direction z and the time t.

In the next step, this result is substituted in the conservation of momentum equation. This

equation reads

∂p

∂r
= η

(
∂

∂r

(
1

r

∂

∂r
(rur)

)
+

1

r2
∂2ur
∂φ2

− 2

r2
∂uφ
∂φ

+
∂2ur
∂z2

)
(3.34)

in the r-direction considering only the dominant terms in lubrication theory, representing

pressure and friction, and can be reduced to

∂p

∂r
= η

(
∂

∂r

(
1

r

∂

∂r
(rur)

)
+
∂2ur
∂z2

)
(3.35)
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as a result of the axisymmetry. Inserting equation (3.33) yields

∂p

∂r
= η

(
∂

∂r
(f(z, t)) +

∂2ur
∂z2

)
(3.36)

and
∂p

∂r
= η

∂2ur
∂z2

(3.37)

respectively, as the function f(z, t) is independent of the r-direction. Integrating twice with

respect to z results in

ur =
1

2η

∂p

∂r
z2 + C1z + C2 (3.38)

for the velocity component ur. Taking the no-slip condition into consideration, the boundary

conditions are ur(0) = 0 and ur(h0) = 0. From these values, the integration constants C1

and C2 can be determined with the results being

C2 = 0 (3.39)

and

C1 = − 1

2η

∂p

∂r
h0. (3.40)

These values lead to the equation

ur =
1

2η

∂p

∂r
h0z

(
z

h0
− 1

)
(3.41)

and after inserting equation (3.30) to

ur = 3
vp
h20
rz

(
1− z

h0

)
(3.42)

for the velocity component ur.

The second velocity component uz can be derived by means of the continuity equation
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in cylindrical coordinates (3.32). The result is

1

r

∂

∂r

(
3
vp
h20
r2z

(
1− z

h0

))
+
∂uz
∂z

= 0 (3.43)

substituting the relationship for the velocity component ur. This equation is simplified and

rearranged yielding
∂uz
∂z

= 6
vp
h30
z2 − 6

vp
h20
z (3.44)

and integrating with respect to z

uz = 3
vp
h20
z2
(
2

3

z

h0
− 1

)
+ C1 (3.45)

for the velocity component uz. The boundary condition is uz(0) = 0. This condition yields

the result

C1 = 0 (3.46)

for the integration constant C1. Therefore, the final equation is

uz = 3
vp
h20
z2
(
2

3

z

h0
− 1

)
(3.47)

for the velocity component in z-direction. In contrast to the pressure distribution, the

velocity components are independent from both viscosity η and the geometrical dimension,

R, of the plates. Differentiation of the function shows that the maximum and minimum

velocity values are found at the surfaces of the plates and that the inflection point is in the

middle of the fluid film.

Starting from the equation (3.42) for the velocity component in main fluid-flow direc-

tion, ur, the shear rate can be derived by differentiating with respect to the coordinate z.

This yields the equation
dur
dz

= 3
vp
h20
r

(
1− 2

z

h0

)
, (3.48)

which is only dependent on the constants vp and h0. The result is most interesting at the
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surfaces of the models as the mechanoreceptors receive the stimuli here. The results are

dur
dz

= 3
vp
h20
r (3.49)

for z = 0 and
dur
dz

= −3
vp
h20
r (3.50)

for z = h0. This means that the same absolute values of shear rate occur at the different

surfaces. The absolute value of the shear stress,

τzr = 3
ηvp
h20

r

(
1− 2

z

h0

)
, (3.51)

results from the multiplication of the absolute value of the shear rate with the viscosity η.

The external force F that is required to drive the plates together can be obtained by

integrating the normal stress τzz over the radial coordinate of the plates (Middleman, 1998).

The result reads

F = 2π

∫ R

0

τzzrdr (3.52)

and can be further simplified assuming a Newtonian fluid. The equation

τzz = p− 2η
∂uz
∂z

(3.53)

shows the components of the normal stress τzz. The viscous part of the total normal stress τzz

can be neglected as there cannot be a velocity in the z-direction at the resting surface. Hence,

the force can be described by the equation

F = 2π

∫ R

0

p(r)rdr (3.54)

in which p(r) can be replaced by equation (3.30). Therefore, the equation

F =
3

2
π
ηvp
h30

R4 (3.55)
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describes the force F that is necessary to drive the plates together.

3.3.4 Plane Elliptic Parallel Plates

The equation
x2

a2
+
y2

b2
= 1 (3.56)

describes the shape of an ellipse in Cartesian coordinates (figure 3.6). In order to calculate

the pressure distribution between two plane elliptic parallel plates, equation (3.56) is com-

bined with equation (3.24). Unlike the previous derivation of an equation for the pressure

distribution, the ansatz function

p− p0 = fc

(
x2

a2
+
y2

b2
− 1

)
(3.57)

is postulated here (Reynolds, 1886, Khonsari & Booser, 2001).

The objective is to determine the constant fc in such a way that the pressure becomes

p0 at the boundaries of the elliptic plates. For this purpose, equation (3.24) adopts the form

d2(p− p0)

dx2
+
d2(p− p0)

dy2
= −12

ηvp
h30

(3.58)

considering the constant fluid-film thickness h0, which is independent from the x- and y-

coordinates, and the uniform plate velocity dh0

dt
= vp. Substituting the pressure difference

a

b

y

x

Figure 3.6: The geometry of an ellipse with the semi-major axis a and the semi-minor axis b.
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p− p0 by the ansatz function (3.57) yields

d2
(

f
a2
x2
)

dx2
+
d2
(

f
b2
y2
)

dy2
= −12

ηvp
h30

(3.59)

and equivalent rearrangement

fc = −6
ηvp
h30

a2b2

a2 + b2
(3.60)

for the constant fc.

Therewith, the equation

p− p0 = −6
ηvp
h30

a2b2

a2 + b2

(
x2

a2
+
y2

b2
− 1

)
(3.61)

allows the calculation of the pressure distribution between two plane parallel elliptic plates.

In the next step, it is shown that the equation for the pressure distribution between two

parallel elliptic plates can be reduced to the one for plane circular parallel plates. This is the

case when both axes of the elliptic plates a and b are assumed to be equal to the radius R of

a circular plate. Furthermore, the Cartesian coordinates need to be rewritten in cylindrical

ones using x = r cosφ and y = r sinφ. Inserting these relationships in equation (3.61), the

result reads

p− p0 = −6
ηvp
h30

R4

R2 +R2

(
(r cosφ)2

R2
+

(r sinφ)2

R2
− 1

)
. (3.62)

When simplified, this yields

p− p0 = −3
ηvp
h30

R2

(
r2(cos2 φ+ sin2 φ)−R2

R2

)
(3.63)

and

p− p0 = 3
ηvp
h30

(
R2 − r2

)
, (3.64)

taking into account that cos2 φ+sin2 φ = 1. As this equation is the same as the equation for

a circular system, this shows that the two models [equations (3.30) and (3.61)] are consistent.

The starting point for the derivation of the equation representing the velocity compo-
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nent ux is equation (3.6). The pressure gradient dp
dx

can also be expressed by differentiating

equation (3.61) with respect to x. The equation

∂2ux
∂z2

= −12
vp
h30

b2

a2 + b2
x (3.65)

arises from both relations. Integrating twice with respect to z yields

ux = −6
vp
h30

b2

a2 + b2
xz2 + C1z + C2 (3.66)

for the velocity component ux. The boundary conditions of the system are ux(0) = 0 and

ux(h0) = 0 yielding

C2 = 0 (3.67)

and

C1 = 6
vp
h30

b2

a2 + b2
xh0 (3.68)

for the integration constants C1 and C2. Inserting these constants leads to the final equation

ux = 6
vp
h20

b2

a2 + b2
xz

(
1− z

h0

)
(3.69)

for the velocity component ux. The equation

uy = 6
vp
h20

a2

a2 + b2
yz

(
1− z

h0

)
(3.70)

for the velocity component uy can be derived in an analogous manner.

The velocity component uz can be derived from the equation of continuity in Cartesian

coordinates [equation (3.1)]. Inserting the velocity components ux and uy yields the equation

∂uz
∂z

= −6
vp
h20
z

(
1− z

h0

)
, (3.71)

which was determined in the previous section. Therefore, the final expression for the velocity

component uz is the same as equation (3.47). This result is not surprising as the equation
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is independent of the coordinates of the main fluid-flow direction and only dependent on z.

Both geometrical configurations are similar in the z-direction due to the constant height of

the gap between the plane plates.

The shear rate can be calculated by differentiating the equations of velocity (3.69) and

(3.70) with respect to z. The equations

dux
dz

= 6
vp
h20

b2

a2 + b2
x

(
1− 2

z

h0

)
(3.72)

and
duy
dz

= 6
vp
h20

a2

a2 + b2
y

(
1− 2

z

h0

)
(3.73)

show the result. The most interesting shear rates are those at the surfaces of the geometry,

where z = 0 and z = h0, which are the wall shear stresses. These are

dux
dz

= 6
vp
h20

b2

a2 + b2
x (3.74)

and
duy
dz

= 6
vp
h20

a2

a2 + b2
y (3.75)

considering only their absolute values. Multiplying those equations with the viscosity η gives

the shear stress. The resulting equations read

τzx = 6
ηvp
h20

b2

a2 + b2
x

(
1− 2

z

h0

)
(3.76)

for the x-component and

τzy = 6
ηvp
h20

a2

a2 + b2
y

(
1− 2

z

h0

)
(3.77)

for the y-component.

The force F that is necessary to drive the plates together can be calculated by integrating

over the ellipse (Lorentz & Schmidt, 1922). The y-values at the outflow for certain x-
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values can be derived from the equation of the ellipse (3.56). The equation

y =

∣∣∣∣ ba√a2 − x2
∣∣∣∣ (3.78)

shows the absolute values. The outermost values of x are a and −a. Therefore, the integral

F = −6
ηvp
h30

a2b2

a2 + b2

∫ a

−a

∫ b
a

√
a2−x2

− b
a

√
a2−x2

(
x2

a2
+
y2

b2
− 1

)
dxdy (3.79)

leads to the final expression

F = 3π
ηvp
h30

a3b3

a2 + b2
. (3.80)

This equation can directly be transformed into equation (3.55) considering a = b = R.

3.3.5 Plane and Curved Circular Parallel Plates

Figure 3.7 depicts the geometrical configuration employed by Murti (1975). The fluid film

thickness h is expressed by the double exponential function

h = h0e
−βr2 , (3.81)

which obviously changes along the radius r. The distance h0 stands for the closest distance

between the two plates. The thickness h of the lubrication film increases to hmax at the outer

radius R of the circular plates. The variable β stands for the curvature parameter. If β is

zero, the upper plate will be planar. In this case, the derivation in section 3.3.3 is valid.

Equation (3.25) adopts the form

1

r

d

dr

(
rh30e

−3βr2 dp

dr

)
= −12η

d

dt

(
h0e

−βr2
)

(3.82)

after insertion of the function representing the film thickness h. The curvature parameter β

and the radial coordinate r are not dependent on the time t. This leaves the derivative dh0

dt

on the right hand side, which is substituted by the uniform plate velocity vp. Multiplying
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hmaxz

r

R

h0

vp

Figure 3.7: The squeezing flow between a plane and a curved plate in parallel whereby the
upper plate is moved down with the uniform plate velocity vp.

by r and integrating once gives

rh30e
−3βr2 dp

dr
= −12ηvp

r2

2
+ C1 (3.83)

where the constant C1 becomes zero. Division by rh30e
−3βr2 gives

dp

dr
= −6

ηvp
h30

e3βr
2

r (3.84)

and integrating with respect to r

p = −ηvp
h30

e3βr
2

β
+ C2 (3.85)

according to Wolfram (2008). The final equation

p− p0 =
1

β

ηvp
h30

(
e3βR

2 − e3βr
2
)

(3.86)

is obtained by introducing the boundary condition dp
dr

= 0 at r = 0.

Knowing the pressure distribution along the radial coordinate r, the velocity compo-

nent ur in the main fluid-flow direction can be derived. Equation (3.35) shows the conser-

vation of momentum equation in an axisymmetric form. Starting from this equation, the

equation
∂p

∂r
= η

∂2ur
∂z2

(3.87)
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can be deduced from the assumption of lubrication theory that the gradient of the velocity

component ur in the r-direction is negligible. In the next step, the equation representing the

pressure distribution (3.86) needs to be obtained. The resulting equation

∂2ur
∂z2

= −6
vp
h30
re3βr

2

(3.88)

is integrated twice with respect to z yielding

ur = −3
vp
h30
re3βr

2

z2 + C1z + C2 (3.89)

for the velocity component ur. Due to the no-slip condition the boundary conditions are

ur(z = 0) = 0 and ur(z = h0e
−βr2) = 0. These give values of

C2 = 0 (3.90)

and

C1 = 3
vp
h20
re2βr

2

(3.91)

for the integration constants. Insertion of these values leads to the final equation

ur = 3
vp
h20
rze2βr

2

(
1− z

h0
eβr

2

)
(3.92)

for the velocity component ur in the main fluid-flow direction.

The shear rate
dur
dz

= 3
vp
h20
re2βr

2

(
1− 2

z

h0
eβr

2

)
(3.93)

can be derived by differentiating the velocity ur with respect to z. The absolute value of the

shear rate at the surfaces is
dur
dz

= 3
vp
h20
re2βr

2

(3.94)
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taking into account z = 0 and z = h0e
−βr2 . The shear stress,

τzr = 3
ηvp
h20

re2βr
2

(
1− 2

z

h0
eβr

2

)
, (3.95)

is obtained by multiplying the shear rate with the viscosity η.

The force F that is required to move the plates together can be calculated by integration

again. The equation reads

F = 2π

∫ R

0

rp(r)dr (3.96)

and can be transformed into

F =
1

3
π
ηvp
β2h30

(
e3βR

2

(e3βR
2 − 1) + 1

)
(3.97)

taking into account equation (3.86).

3.3.6 Sphere in a Hemisphere

On the basis of the given Reynolds equation (3.21) in spherical coordinates (Meyer, 2003)

an equation for a pure squeezing flow between a sphere and a hemisphere can be deduced.

This novel equation reflects the situation in the oral cavity best and is solvable analytically

with several simplifications. It is assumed that the inner sphere lies centric in the outer

hemisphere with regard to the x- and y-direction. Consequently, the resulting fluid flow

must be axially symmetric with respect to the z-axis (figure 3.8).

The Reynolds equation in spherical coordinates (3.21) can be simplified, resulting in

d

dθ

(
h3 sin θ

dp

dθ

)
= 12R2η

dh

dt
sin θ (3.98)

considering the above defined restrictions for a pure squeezing flow. The equation (3.22) for

the film thickness h reduces to

h = c− ez cos θ (3.99)



3.3. THEORY OF LUBRICATION 65

x

z

c

R

ez

f

q

y

Figure 3.8: A sphere in a hemisphere whereby the geometrical configuration is characterized
by an axial symmetry to the z-axis, the radial clearance c and the eccentricity ez in the
z-direction.

due to the rotational symmetry along the z-axis. Strictly speaking, this equation is only

valid in the θ-range from 0 to arctan
(

R−c
ez

)
. If the angle θ is larger, the gradient of the

tangent to the inner sphere is positive. This means that the film thickness h increases more

than equation 3.99 suggests. The difference is small as long as the clearance c is small. The

equation

E =

(
1−

√
(R− c)2 − e2z
R− c

)
· 100% (3.100)

defines the resulting error E in percent. For reasons of mathematical convenience, equa-

tion (3.99) is employed for the further derivations.

Inserting equation (3.99) into equation (3.98) yields

d

dθ

(
h3 sin θ

dp

dθ

)
= −12R2ηvp sin θ cos θ, (3.101)
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taking into account that only the eccentricity ez depends on the time and that the uniform

velocity dez
dt

can be replaced by vp in analogy to the previous sections.

Integrating this equation results in

h3 sin θ
dp

dθ
= −6R2ηvp sin

2 θ + C1 (3.102)

with C1 = 0 due to the boundary condition dp
dθ

= 0 at θ = 0. Dividing through by h3 sin θ

and substituting h by equation (3.99) gives the equation

dp

dθ
= − 6R2ηvp sin θ

(c− ez cos θ)3
, (3.103)

which needs to be integrated again (Gradshteyn & Ryzhik, 1980). The result

p =
3R2ηvp

ez(c− ez cos θ)2
+ C2 (3.104)

contains the second constant of integration C2. This constant can be determined to be

C2 = p0 −
3R2ηvp
ezc2

(3.105)

as the pressure becomes p0 at the angle θ = 90◦. The final equation is

p− p0 =
3R2ηvp
ez

(
1

(c− ez cos θ)2
− 1

c2

)
= 3R2ηvp

2c cos θ − ez cos
2 θ

c2 (c− ez cos θ)
2 , (3.106)

with the restrictions that both the radial clearance c and the film thickness h [see equa-

tion (3.99)] may be small but not zero.

In the next step, the velocity is derived. The conservation of momentum equation in
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spherical coordinates reads

1

r

∂p

∂θ
=

η

(
1

r2
∂

∂r

(
r2
∂uθ
∂r

)
+

1

r2
∂

∂θ

(
1

sin θ

∂

∂θ
(uθ sin θ)

)
+

1

r2 sin2 θ

∂2uθ
∂ϕ2

+
2

r2
∂ur
∂θ

− 2 cos θ

r2 sin2 θ

∂uϕ
∂ϕ

)
(3.107)

in its complete form in the θ-direction. This equation reduces to

1

r

∂p

∂θ
= η

(
1

r2
∂

∂r

(
r2
∂uθ
∂r

)
+

1

r2
∂

∂θ

(
1

sin θ

∂

∂θ
(uθ sin θ)

)
+

2

r2
∂ur
∂θ

)
(3.108)

due to axisymmetry. The main fluid-flow direction is the θ-direction. Again, the assumption

that the velocity gradient in this direction is negligible, is valid. This leads to the greatly

simplified equation
∂p

∂θ
= η

1

r

∂

∂r

(
r2
∂uθ
∂r

)
, (3.109)

which features a comparable structure to the initial equations in the former sections. The

equation
∂

∂r

(
r2
∂uθ
∂r

)
= −6vp

R2 sin θ

(c− ez cos θ)3
r (3.110)

arises from inserting the pressure distribution given by equation (3.106). The following steps

are integration with respect to r, dividing by r2 and integration with respect to r again. This

leads to the equation

uθ = −3vp
R2 sin θ

(c− ez cos θ)3
r − C1

r
+ C2 (3.111)

for the velocity component uθ in the main fluid-flow direction. The boundary conditions are

uθ(r = R) = 0 and uθ(r = R− c+ez cos θ) = 0. From these values, the integration constants

C1 = −3vp
R3 sin θ

(c− ez cos θ)3
((c− ez cos θ)−R) (3.112)

and

C2 = −3vp
R2 sin θ

(c− ez cos θ)3
((c− ez cos θ)− 2R) (3.113)
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are obtained. Inserting them yields the final equation

uθ = 3vp
R2(R− r)

r

(c− ez cos θ + r −R) sin θ

(c− ez cos θ)3
(3.114)

for the velocity component uθ.

Starting from the velocity component uθ, the shear rate,

duθ
dr

= 3vp
R2

r2
(R(R− c+ ez cos θ)− r2) sin θ

(c− ez cos θ)3
, (3.115)

can be derived. The resulting shear rates at the surfaces are

duθ
dr

= −3vp
R sin θ

(c− ez cos θ)2
(3.116)

for r = R at the hemisphere and

duθ
dr

= 3vp
R2 sin θ

(c− ez cos θ)2(R− c+ ez cos θ)
(3.117)

for r = R− (c− ez cos θ) at the sphere. The shear stress

τrθ = 3vpη
R2

r2
(R(R− c+ ez cos θ)− r2) sin θ

(c− ez cos θ)3
(3.118)

is obtained by multiplying equation (3.115) with the viscosity η.

The external force F that is required to drive the sphere into the hemisphere can be

calculated by integrating the pressure in the fluid film. The resulting integral

F =
3R2ηvp
ez

∫ R

0

∫ 2π

0

∫ π
2

0

(
1

(c− ez cos θ)2
− 1

c2

)
rdrdφdθ (3.119)
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can be evaluated to equal

F = 3π
R4ηvp
ez

[
1

c2 − e2z

(
ez sin θ

c− ez cos θ
+

2c√
c2 − e2z

arctan

(√
c2 − e2z tan

θ
2

c− ez

))
− θ

c2

]π
2

0

= 3π
R4ηvp
ez

(
1

c2 − e2z

(
ez
c
+ c

(
2√

c2 − e2z
arctan

(√
c2 − e2z
c− ez

)))
− π

2c2

)
(3.120)

for c2 > e2z according to Gradshteyn & Ryzhik (1980).

3.3.7 Summary of Analytical Equations

In the preceding subsections four different geometries have been introduced to model the

squeezing flow in the human oral cavity. Namely, these are

• plane circular parallel plates (case 1),

• plane elliptic parallel plates (case 2),

• plane and curved circular parallel plates (case 3) as well as

• a sphere in a hemisphere (case 4).

A variety of different physical quantities have been determined analytically for these geome-

tries. Table 3.3 presents the equations for the pressure, velocity, shear rate, shear stress and

the force required to drive the geometries together.

3.4 Numerical Simulations

The analytical calculation of fluid flow where an exact function value for any point of a

flow field can be quantified is possible in few exceptional cases only. Complex flows with

complicated boundary conditions can only be calculated by means of numerical methods
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(Kowalczyk, Hartmann & Delgado, 2004, Hartmann, Mathmann & Delgado,

2006). Just as with analytical solutions, these calculations are always approximations of

reality. Nevertheless, they are helpful in order to visualize processes, which are difficult to

access.

The process of deglutition taking place isolated from any in vivo insight belongs to such

processes. There is no measurement system that can completely deal with the conditions of

the oral cavity, namely the wetness and the difficulty of fixing a system. For this reason,

numerical simulations offer the appropriate feasibility for studying the process.

Furthermore, numerical simulations offer

• more detailed information about the flow field,

• information about flow variables that are not measurable directly,

• the possibility to eliminate disturbance variables,

• a more flexible adaptation of input variables as well as

• the advantage of being less expensive and time consuming compared to experimental

set-ups

according to Böhme (2000). In computational fluid dynamics, the resulting partial differ-

ential equations are subsequently solved using the numerical code.

3.4.1 Procedure of a CFD Analysis

The procedure of a computational fluid dynamics (CFD) analysis starts with the preprocess-

ing. A grid is generated covering the whole geometrical domain of fluid flow. This entails a

division into discrete cells called control volumes. The basic equations of fluid flow are an

essential part of the selected discrete mathematical model, which is applied on the discrete

cells. The application of the model results in solutions for pressure and velocity in every

single discrete cell of the entire domain for every single time step. The solution for the entire
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domain is merged spatio-temporally based on the results for the single cells (Ferziger &

Peric, 2002). In the final step, the fluid flow is visualized by a postprocessor. This enables

analysis and interpretation of the numerical calculation.

3.4.2 Discretization Methods

The discretization step approximates the non-linear partial differential equations of fluid flow

by transferring them into a system of algebraic equations that can be solved iteratively taking

into account initial and boundary conditions. Hence, the function that is the analytical

solution of the partial differential equations is replaced by a finite amount of values at

discrete locations in space and time. This approximation is made for each small discrete

domain, either for each node, volume or element depending on the discretization method.

There are different strategies and algorithms for discretization methods. Ultimately, all

of them lead to the same solution for the entire flow field. Three methods have proved of value

and are the most important ones, namely the methods of finite differences, finite volumes and

finite elements. These methods are introduced concisely in the following. Other methods

like spectral schemes, boundary element methods and cellular automata are employed for

special classes of problems.

The finite difference method dates back to Leonhard Euler in the 18th century. It is

the simplest method for solving partial differential equations and is known to be applied on

structured grids only. The basic equations of fluid flow in their differential form as presented

above are solved at the grid nodes. For that purpose, the partial derivatives are substituted

by difference quotients resulting in a system of difference equations that can be solved by

means of implicit and explicit algorithms. Knorrenschild (2003) gives an overview of

appropriate algorithms.

The finite volume method is the most frequently used method in computational fluid

dynamics currently. The requirements regarding the grid structure are small, leading to the

application of more flexible unstructured grids. The finite volume method is based on the
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basic equations of fluid flow in their integral form. The integrals are solved by approximations

in the centers of each finite volume.

The finite element method is comparable to the finite volume method in many aspects.

The main difference is that the equations are multiplied by a weight function, which is

defined within the elements before they are integrated over the entire domain.

3.4.3 Types of Grids

Discretization methods are applied on the basis of numerical grids. The grids split the entire

geometrical domain into a finite number of discrete locations. They can be structured or

unstructured.

The structured grid is the simplest grid structure. The regular grid is aligned along the

underlying coordinate system. The grid lines intersect only at the nodes. Therewith, each

element has a fixed number of neighbor elements and nodes. Structured grids can only be

employed for geometrically simple solution domains and are most frequently used with the

finite difference method. In some cases, the appropriate distribution of grid points can be

difficult.

On the contrary, unstructured grids are highly flexible for complex geometries. They can

have arbitrary shapes and no restrictions concerning the number of neighbor elements and

nodes. The most common element shapes are triangles and quadrilaterals in two-dimensional

domains and tetrahedra and hexahedra in three-dimensional domains. This grid technique

is best adapted to both the finite volume and element methods. The most important disad-

vantage of this kind of grid is the resulting irregularity of the data structure as the matrices

are no longer regular or diagonal.

3.4.4 Software

The numerical analysis of the current study is based on several softwares. Each step -

preprocessing, solver, postprocessing - needs its own tool. Due to better availability and
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easy access, most components of the current study are open-source pieces of software. In

the case of the solver, there is the advantage of being able to program special problem cases

by hand. The exact tools that were used in the numerical analysis are introduced below.

The geometry and mesh generation was performed with the commercial software ANSYS

ICEM CFD (ANSYS, 2008). The open-source software OpenFOAM (OpenCFD Ltd.,

2008) acted as a powerful solver. The postprocessing was done by means of ParaView

(Kitware Inc., 2008), which is connected closely with the OpenFOAM concept.

Preprocessing

In a first step it is necessary to build up a geometry of the streamed domain independent

from the preprocessor. ANSYS ICEM CFD possesses an integrated CAD engine for this

purpose.

Afterwards, the mesh needs to be generated. Figure 3.9 shows the different types of

elements available. These are lines, triangles and quadrangles for two-dimensional geometries

as well as tetrahedra, hexahedra, prisms and pyramids for three-dimensional geometries.

ANSYS ICEM CFD is able to generate both structured and unstructured grids out of these

elements.

Due to appropriate converters, OpenFOAM is able to handle meshes generated by any

of the major CAD and meshing tools. In the current study, the converter ansysToFoam was

node bar triangle quadrilateral

tetrahedron hexahedron prism pyramid

Figure 3.9: The types of elements that can be generated for use in a CFD simulation.
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applied in order to transform the geometries and meshes into the format of OpenFOAM.

Solver

The principles of the open-source software OpenFOAM (Open Field Operation and Manip-

ulation) were introduced by Weller, Tabor, Jasak & Fureby (1998). OpenFOAM is a

numerical tool for solving partial differential equations of any kind. The solvers are based on

C++ modules. The wide range of solvers that are already implemented can be viewed on the

website. Emphasis is put on continuum mechanics including computational fluid mechan-

ics. The CFD codes are based on the finite volume method. The different problem-specific

solvers are grouped to the topics “basic” CFD codes, incompressible flow, compressible flow,

multiphase flow, direct numerical simulation and large eddy simulation, combustion, heat

transfer, electromagnetics, stress analysis of solids and even finance.

The solvers that belong to the group of incompressible flow are relevant for the current

study. In order to simulate Newtonian fluid flow, the solver icoDyMFoam was employed. This

solver allows the calculation of laminar and transient flows considering dynamic meshes. For

simulating the non-Newtonian fluid flow it was necessary to program a new solver. This

took place on the basis of the nonNewtonianIcoFoam solver, which supports the calculation

of laminar non-Newtonian and transient flow but not dynamic meshes. The new solver was

generated analogously to the icoDyMFoam solver. The developed nonNewtonianIcoDyMFoam

code can be found in appendix C. The solvers access the Newtonian module, which contains

a linear viscous fluid model, as well as CrossPowerLaw and BirdCarreau, which both contain

nonlinear viscous models.

The solvers output data in terms of pressure and velocity, as well as viscosity in the

non-Newtonian case. Additional modules of OpenFOAM are able to transfer these data into

the required gradients. The magU module calculates the scalar magnitude of the velocity

field ui at each time. Another useful module is magGradU, which calculates and writes the

scalar magnitude of the gradient of the velocity field ui for each time.
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Postprocessing

Once the necessary data are generated they are transformed into an appropriate format for

postprocessing. OpenFOAM features several data converters, which allow the subsequent

analysis by means of third party products like Fluent or EnSight. The converter used in the

current study is the foamToVTK converter. It converts data from its native format to the

VTK format. VTK (Visualization Toolkit) is a platform independent open-source graphics

toolkit. It is used by ParaView as a data-processing and rendering engine.

The ParaView open-source visualization application represents data in structured as well

as in unstructured grids. The software quickly builds visualizations of even extremely large

data sets so that they can be analyzed by qualitative and quantitative techniques. Therefore,

ParaView needs a list of the grid points with the associated data that is to be visualized.

These data are recorded in separate text files.

3.4.5 Introduction of the Geometrical Model

The current thesis continues the previous study of a two-dimensional numerical approach

(Mathmann, Kowalczyk, Petermeier, Baars, Eberhard & Delgado, 2007). The

aim of that study was to determine numerically the fluid-mechanical forces occurring in food

suspensions using a simplified tongue-palate model system consisting of two parallel plates.

The calculations by means of the Stefan equation proved the appropriateness of numerical

methods for the investigation of fluid flow in models of the oral cavity. Due to this validation

of the model consisting of two plane circular parallel plates, further comparisons of numeri-

cally and analytically calculated properties of squeezing flows for other geometries have not

been performed as it is very likely they will give identical results leading to redundant data.

Accordingly, the two-dimensional model used in the first numerical study has been extended

to a more complex three-dimensional model directly. However, this model can be considered

as the logical continuation of the geometrical models that are discussed analytically.

Figure 3.10 shows the geometry of the model based on the dentist replicas introduced
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in section 3.1. The duct-like extension was constructed in order to mimic the upper part of

the pharynx. It is 22.5 mm wide and 30 mm long at the outer border.

The geometry is split into 57440 hexahedral elements composing a structured grid. The

initial distance between the two ellipsoids is 10 mm, the deformation at the tip of the tongue

9 mm. Due to the movement, the fluid is forced to squeeze out at the rear part of the model.

The density ρ = 1000 kg/m3 is defined for all simulation runs. As the code requires the

viscosity in terms of the kinematic viscosity ν the density ρ is specified indirectly via the

quotient

ν =
η

ρ
(3.121)

of the dynamic viscosity η and the density ρ.

The initial and boundary conditions also remain constant for all simulation runs. The

pressure is p = 0 at the outflow resulting in an analysis of the dynamic part. The pressure

gradient is set to zero at all other surfaces. The initial pressure in the whole field is p = 0.

The velocity gradient at the outflow is zero. The velocity at the palate and at the sides is

ui = 0. The initial velocity field is ui = 0. The boundary condition at the tongue is defined

by the movingWallVelocity module. The moving velocity of the model tongue increases

linearly from vz = 0 cm/s at the outflow to vz = 1 cm/s at the tip of the model tongue. The

temporal discretization takes place by the first-order Euler method.

The simulations were performed using four different Newtonian fluids exhibiting constant

viscosities. A single simulation of a non-Newtonian fluid was also performed. The rheological

constants used for this simulation were determined by modeling the fluid-flow behavior of

yogurt with the Cross model (see section 4.1).
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Figure 3.10: The geometrical configuration and grid in the initial state of the simulations.



Chapter 4

Results and Discussion

This chapter presents the results obtained from the rheological measurements, the theory

of lubrication and the numerical simulations. The chapter begins with the presentation

of the results from the rheological characterization of four different yogurt samples. The

Cross model is used to fit the data from one of the yogurt flow curves as an example. The

values that were found for the parameters act as input data for the numerical simulation

incorporating a non-Newtonian fluid.

The models derived by means of the theory of lubrication yield pressure, velocity, shear

rate and shear stress distributions for each approach. In addition, the force that is required

to drive the geometries together is investigated. The data are compared and conclusions

are drawn concerning the suitability of the different models to represent the human oral

cavity realistically. The results give a clue concerning the values that can be expected in the

numerical simulations.

The evaluation of the numerical simulation is split into subsections dealing with each

fluid-mechanical quantity. The values resulting from the different numerical models are

discussed and collated. Afterwards, the results are compared with those of the theory of

lubrication and the literature.

The velocity of the moving part of the geometry representing the tongue employed is the

same in all studied cases. According to Lee & Camps (1991), the residence time of fluids

79
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in the oral cavity is dependent on the viscosity but is brief in any case. The values vary

between 1 s for water, 1.5 s for whipped cream and 3 s for honey. Assuming a gap of 1 cm

between the tongue and palate gives a moving velocity of approximately 1 cm/s.

4.1 Rheological Measurements and Fittings

The rheological behavior of yogurt was measured by means of a rotational rheometer. The

rheometer employed for this study was the RC30-CPS from RheoTec Messtechnik GmbH,

Germany, with the C75-2 cone and plate system. This means that the cone diameter is

75 mm and the cone angle is 2◦.

Four different yogurts were characterized. They can be distinguished due to their fat

contents of 0.1%, 1.5%, 3.5% and 3.8%, respectively. These yogurts were produced by two

different German manufacturers A and B. The samples were stored in a refrigerator at 7◦C

and took out immediately before the measurement. After they were put on the plate of the

rheometer they were heated to 25◦C within 30 s.

Afterwards, each sample was characterized rheologically at eight constant shear rates for

30 s. Within this period of time, the gel structure of the samples is irreversibly destroyed. All

shear rates lay in the range between 0.3 s−1 and 100 s−1. The minimum value is the smallest

value that is obtainable with this model of rheometer. The maximum value was chosen

according to Wood (1968) who reported that oral shear rates were in this range. Previous

numerical studies employing two parallel plates have confirmed this range (Mathmann

et al., 2007). Figure 4.1 shows the measurement of the yogurt containing 3.8% fat at a

constant shear rate of γ̇ = 100 s−1. The curve shows that the structural breakdown of yogurt

occurs quickly after applying stress. Starting with a shear stress of σ = 51.60 Pa, the shear

stress decreases to σ = 41.53 Pa. This corresponds to a reduction of 20%.

According to Suwonsichon & Peleg (1999) and Mullineux & Simmons (2008),

the apparent viscosity of yogurt decreases irreversibly as a function of shear rate and time.

Because of the breakdown of the structure it was necessary to renew the samples after each
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Figure 4.1: The flow curve of yogurt containing 3.8% fat measured for 30 s at a constant
shear rate of 100 s−1.

measurement to eliminate this effect in the current study. As yogurt is swallowed quite

quickly during normal consumption only the values of the shear stress measurements before

the structure breaks down are considered to be important. For this reason, the flow curves

were constructed by averaging the first two measurements of the shear stress recorded 1 s

and 2 s after applying a particular shear rate. Figure 4.2 shows the result with both linear

and logarithmic x-axis scales.

Figure 4.2a shows that yogurt exhibits a shear-thinning fluid-flow behavior like most

foodstuffs do. For small shear rates the shear stresses drop down strongly. Figure 4.2b

suggests that this tendency continues for even smaller shear rates. Hence, the measurements

show the behavior that could be expected following the hypothesis of Barnes & Walters

(1985) and the experimental data of Krulis & Rohm (2004). This means that yogurt,

in contrast to the popular opinion, does not exhibit a yield stress and that its rheological

behavior can be described by the Cross model.

The position of the flow curve depends mainly on the fat content. The higher the fat

content, the higher the shear stresses become for each shear rate. The flow behavior of
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Figure 4.2: The flow curves of four different yogurts of the manufacturers A and B varying
in their fat content (0.1%, 1.5%, 3.5% and 3.8%) neglecting their time-dependence by taking
into consideration only the data recorded before the structural breakdown takes place for
(a) linear and (b) logarithmic x-axis scales.

the yogurts of the same manufacturer is qualitatively equal. This can be seen from the

curves, which display the same shape but are shifted along the ordinate. The crossing of

the curves in the range of low shear rates might depend on both the different composition

of the ingredients as well as the different processing parameters used by the two different

manufacturers.

The differences of the diverse yogurts concerning their mouthfeel are evaluated in a

separate paper (Mathmann, Kowalczyk & Delgado, 2009). It is important to keep in

mind that the measured properties of the yogurt samples do not necessarily agree with the

properties of the same samples during consumption. It could be shown that the four different

yogurts, which behaved similar from a rheological point of view, were judged very differently

in sensory terms. Hence, food rheology is an important main pillar for the description of food

but not the only one. Nevertheless, the flow curves were employed exclusively in the current

thesis as they have a sound physical basis. Other descriptions of food-matter properties are
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still vague or even unknown. For that reason, the complexity of foodstuffs cannot be fully

described.

The measured flow curves of yogurt act as input for the numerical simulations. For

this purpose, the flow curves were fitted using the Cross law. The fit function of gnu-

plot (Williams & Kelley, 2008), an open-source software that generates two- and three-

dimensional plots of functions and data, enables the fitting of a user-defined function to a

set of data points via defined variables. The user-defined function in the current case is

equation (3.5).

The data points used in the fitting process were those obtained from the rheological

measurements of the yogurt sample from manufacturer B that contained 1.5% fat. The shear

rate γ̇ and shear stress σ are recorded directly. The apparent kinematic viscosity needed

for the fitting is calculated by ν = σ
ργ̇
. The employed density ρ is defined 1000 kg/m3, the

apparent dynamic viscosity η∞ at the zero-shear rate is approximately set 100 Pas. The

initial values for the fitting parameters were ν∞ = 10−5 m2/s, m = 0.95 s and n = 1. Figure

4.3 shows the result. The dots represent the data measured by the rheometer, while the line

represents the fitted function.

The range of apparent viscosities covers a wide spectrum. In the range of low shear

rates, from 1 s−1 up to 10 s−1, the apparent viscosity lies in the range between 0.015 m2/s

and 0.002 m2/s. This value is between three to four orders of magnitude larger than the

value for water. The apparent viscosity decreases to 0.0004 m2/s at a shear rate of 100 s−1.

This is still a hundred times larger than the value of water.

The final values of the Cross law variables are displayed in a log file, which is gener-

ated while performing the fitting process. The fit of eight data points converged after six

iterations. The final set of parameters is ν∞ = 7.88204 · 10−4 m2/s, m = 3.74197 s and

n = 1.34874. These parameters are inserted into OpenFOAM for access by the module

CrossPowerLaw.

In order to introduce the different rheological constants used in the numerical calcula-

tions, it is most convenient to present the varying key data in a table. Table 4.1 assigns labels
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Figure 4.3: The experimental data of the kinematic viscosity ν of yogurt containing 1.5%
fat versus the shear rate γ̇ fitted by the Cross law.

to the different simulation runs and the applied viscosity model with the related rheological

constants. The first four runs deal with the Newtonian (N) fluid flow behavior. The runs

can be distinguished by the implemented dynamic viscosity ν0.

Case N1 uses the viscosity of water. Cases N2 and N3 employ slightly higher viscosities.

According to Zürcher & Kursawe (1973), those values are the minimum and maximum

viscosities occurring in beer within the drinking temperature range of 10◦C and 20◦C. The

authors state that the beer drinker is able to distinguish between these viscosities. The

associated simulations serve as an estimate of importance of viscosity related mouthfeel

during beer enjoyment. Case N4 uses a hundredfold-higher viscosity than water. Vegetable

oils like olive oil exhibit this viscosity. Furthermore, the apparent viscosities of yogurt

decreases to this level (see figure 4.3). For this reason, this viscosity is the value used in

the analytical approach presented in the following section. The last case CL deals with

non-Newtonian fluid-flow behavior fitted by the Cross law as described above.



4.2. THEORY OF LUBRICATION 85

4.2 Theory of Lubrication

The results of the theory of lubrication are subdivided into the four different approaches of

squeezing flow introduced and derived in sections 3.3.3 to 3.3.6. As the fluid flow takes place

in the sagittal plane of the oral cavity the focus is mainly on the key points in this plane.

4.2.1 Plane Circular Parallel Plates - Stefan Equation

The Stefan equation (3.30) gives a parabolic profile for the pressure distribution p−p0 along

the radial coordinate r. Inserting the dynamic viscosity η = 100 mPas, which lies in the order

of magnitude of vegetable oils like olive oil and the apparent viscosity of yogurt presented in

the previous section, the uniform plate velocity vp = 1 cm/s determined in section 3.4.5, the

minimum film thickness h0 = 1 mm and the plate radius Rp2 = 29 mm yields the pressure

distribution illustrated in figure 4.4. The maximum pressure difference p− p0 in the center

of the plates for this configuration is 2523 Pa.

In order to present the impact of the different radii that can be found in table 3.2,

figure 4.5 depicts the maximum pressures occurring in the center of the plates depending on

their radius. The Stefan equation (3.30) simplifies to

pmax − p0 = 3
ηvp
h30

R2 (4.1)

for this purpose. The values inserted for the dynamic viscosity η, the uniform plate velocity vp

and the minimum film thickness h0 remain the same.

The maximum pressure goes from 972 Pa to 3675 Pa for the plate radius varying between

18 mm and 35 mm. Over this range of realistic dimensions for the oral cavity, a huge pressure

difference of 2703 Pa is encountered.

The velocity components are evaluated together in terms of the magnitude of velocity.
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Table 4.1: The varying rheological key data implemented in the simplified three-dimensional
model of the oral cavity.

Label Viscosity model Rheological constants Example

N1 Newtonian ν0 = 1.0 · 10−6 m2/s water

N2 Newtonian ν0 = 1.6 · 10−6 m2/s beer (20◦C)

N3 Newtonian ν0 = 3.2 · 10−6 m2/s beer (10◦C)

N4 Newtonian ν0 = 1.0 · 10−4 m2/s vegetable oil

CL Cross law ν0 = 1.0 · 10−1 m2/s yogurt

ν∞ = 7.9 · 10−4 m2/s

m = 3.74197 s

n = 1.34874
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Figure 4.4: The pressure distribution p−p0 between plane circular parallel plates according to
the Stefan equation (3.30) with η = 100 mPas, vp = 1 cm/s, h0 = 1 mm and Rp2 = 29 mm.
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Figure 4.5: The maximum pressures pmax−p0 between plane circular parallel plates according
to equation (4.1) in dependence on the outer plate radius R with η = 100 mPas, vp = 1 cm/s
and h0 = 1 mm.

Taking equations (3.42) and (3.47) into account, the equation

umag =
√
u2r + u2z =

√(
3
vp
h20
rz

(
1− z

h0

))2

+

(
3
vp
h20
z2
(
2

3

z

h0
− 1

))2

(4.2)

is achieved. Figure 4.6 shows the magnitude of velocity umag along the radial coordinate r

in the middle of the gap at z = 0.5 mm. The magnitude of velocity in the middle of the gap

increases linearly apart from the small non-linear interval in the middle of the plates, where

the velocity in z-direction dominates. This behavior could be expected as the equation for the

velocity component uz (3.47) is independent from the radial coordinate r and the equation

for the velocity component ur (3.42) is a linear function of the radial coordinate r. The

magnitude of velocity starts with 5 mm/s in the middle of the plates and reaches 218 mm/s

at the outflow.

Figure 4.7 shows the determined velocity profiles along the gap for four different values of

the radial coordinate. In the middle of the plates, only the velocity component uz contributes
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Figure 4.6: The magnitude of the velocity umag in the middle of the gap at z = 0.5 mm
between plane circular parallel plates according to equation (4.2) with η = 100 mPas, vp =
1 cm/s, h0 = 1 mm and Rp2 = 29 mm.

to the result. In all other cases, the velocity components are superposed. Independent from

the radial coordinate, the magnitude of velocity is 0 m/s at z = 0 mm and 1 cm/s at

z = 1 mm due to the no-slip condition. The maximum magnitude of the velocity is reached

in the middle of the gap.

Both, figures 4.6 and 4.7 show that the velocity increases with the radial coordinate, r.

This is understandable considering the volume flow rate. The volume of the fluid that is

squeezed down by the movement of the upper plate must flow out at the radius R of the

plates. The upper plate squeezes a volume flow rate of V̇ = πR2vp dependent on the radius R.

The volume flow rate of the fluid across the radius R is V̇ = 2πRh0ū. For this reason, the

averaged velocity ū is proportional to the radius R.

The absolute values of the shear rate dur

dz
at the surfaces of the plates are calculated

according to equations (3.49) and (3.50). The derivative of the velocity ur with respect to z

is a linear function of the radial coordinate r. The result is shown in figure 4.8. The shear

rate increases to the maximum value of 870 s−1 at the outflow.
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Figure 4.7: The magnitude of velocity umag along the height of the gap h0 at different
points between plane circular parallel plates of radius R, according to equation (4.2) with
η = 100 mPas, vp = 1 cm/s, h0 = 1 mm and Rp2 = 29 mm.
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Figure 4.8: The absolute values of the shear rate dur

dz
at the surfaces of the plane circular

parallel plates according to equations (3.49) and (3.50) with vp = 1 cm/s, h0 = 1 mm and
Rp2 = 29 mm.



90 CHAPTER 4. RESULTS AND DISCUSSION

For Newtonian fluids, the absolute value of the shear stress τzr is a multiple of the shear

rate. This means that the form of the curve in figure 4.8 remains the same and the shear

stress is not plotted for this reason. The maximum absolute value of the shear stress is 87 Pa

for viscosity η = 100 mPas.

Figure 4.9 shows the force that is required to drive the two plates together. The force

increases with the fourth power of the radius R. The force for the smallest plate radius of

18 mm is 0.5 N, while the force for the biggest plate radius of 35 mm is 7.0 N.

4.2.2 Plane Elliptic Parallel Plates

In the case of the plane elliptic parallel plates, two configurations are considered as examples.

In the first configuration quantities are evaluated along the transverse projectional plane.

The dimensions of the oral cavity are Rp1 = 18 mm for the semi-minor axis of the ellipse

and Rp2 = 29 mm for the semi-major axis. The second configuration is based on radii taken

from the arcs of circles in the frontal and the sagittal planes. Hence, the semi-minor axis

has the length Ra1 = 26 mm and the semi-major axis Ra2 = 35 mm. The dynamic viscosity

is η = 100 mPas, the uniform plate velocity vp = 1 cm/s and the minimum film thickness

h0 = 1 mm once again. Figure 4.10 shows the pressure distribution in the cross section along

the semi-major axis of the ellipses resulting from equation (3.61). The pressure distribution

again has a parabolic shape. The maximum value for the pressure that arises for these values

of the semi axes Rp1 and Rp2 is 1403 Pa. The geometrical set-up with the semi axes Ra1 and

Ra2 gives a maximum pressure of 2614 Pa.

Introducing the ratio of axes ce =
b
a
, the equation (3.61) can be simplified yielding

pmax − p0 = 6
ηvp
h30

c2e
1 + c2e

a2 (4.3)

for the maximum pressure at x = y = 0 mm. For the special case ce = 1, the equation

adopts the same form as for the plane circular parallel plates [equation (4.1)]. For any

constant ratio ce, the maximum pressure increases with the square of the semi-major axis a.
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Figure 4.9: The external force F required to drive plane circular parallel plates of different
radii together according to equation (3.55) with η = 100 mPas, vp = 1 cm/s and h0 = 1 mm.
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Figure 4.10: The pressure distributions p − p0 between plane elliptic parallel plates along
the semi-major axis according to equation (3.61) with η = 100 mPas, vp = 1 cm/s and
h0 = 1 mm for the semi axes Rp1 = 18 mm and Rp2 = 29 mm (projection), and Ra1 = 26 mm
and Ra2 = 35 mm (arc), respectively.
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In the present study, the ratio of the axes is not the same for the arc and projection

configurations. It is 0.62 for the projection configuration and 0.74 for the arc configuration.

In order to demonstrate the influence of altering ratios ce, figure 4.11 shows the maximum

pressure distribution for both semi-major axes. Concerning the semi-major axis Rp2, the

pressure increases from 1401 Pa for the ratio ce = 0.62 to 2523 Pa for the ratio ce = 1

representing the system of plane circular parallel plates. The pressures arising according

to the semi-major axis Ra2 are 2041 Pa and 3675 Pa. This means that the maximum

occurring pressure of the elliptic configuration is 44% smaller compared to the circular one

for a minimum ratio ce = 0.62. For this reason, the shape of plates is of vital importance in

the plane configuration.

A comparison between plane circular and elliptic plates using equal plate areas can also

be performed. The corresponding radii of the circles can be calculated by r =
√
ab yielding

23 mm and 30 mm for the configurations discussed above. The corresponding maximum

pressures can be calculated as being 1566 Pa and 2730 Pa (figure 4.5). Considering the same

areas for both shows that the maximum pressures are smaller for ellipses than for circles. In

the case of the projection configuration, the difference is about 10%; in the case of the arc

configuration, it is only 4%. Keeping in mind the ratio of the axes, it can again be stated

that the difference diminishes the more the ratio ce converges to 1. Nevertheless, the elliptic

shape of the oral cavity suggests that the result of the Stefan equation (3.30) should be

corrected by an factor of up to 10%.

Figure 4.12 shows the magnitudes of the velocity in the main fluid-flow direction along

the ellipse axes. In analogy to equation (4.2), the underlying equation equals the square

root of the sum of the squares of the velocity components in the x- and z-directions as well

as the y- and z-directions [equations (3.47), (3.69) and (3.70)]. The resulting magnitudes of

velocity are again linear along the axis apart from the small interval at the middle of the

plates where the velocity component in the z-direction dominates. They are bigger along

the minor axes than along the major axes. This can be expected from equations (3.69) and

(3.70).
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Figure 4.11: The maximum pressures pmax−p0 between plane elliptic parallel plates according
to equation (4.3) in dependence on altering ratios ce with η = 100 mPas, vp = 1 cm/s and
h0 = 1 mm for the semi-major axes Rp2 = 29 mm (projection) and Ra2 = 35 mm (arc),
respectively.

Physically, there must be the same pressure difference between the maximum pressure in

the middle of the plates and the ambient pressure p0 at the outflow at any angle φ. For that

reason, the pressure gradient must be smaller the further the boundary of the geometry is

from the central point. Consequently, the bigger gradient along the semi-minor axis results

in larger velocity magnitudes in this direction. For the same reason, it can be expected that

the gradient of the magnitude of velocity is bigger in the projection configuration than in the

arc configuration, as the ratio ce of the axes is smaller. The maximum occurring velocities

are 121 mm/s at the outer major axis and 192 mm/s at the outer minor axis in the projection

geometry, and 187 mm/s at the outer major axis and 250 mm/s at the outer minor axis in

the arc configuration. These results are in the same order of magnitude as in the case of

plane circular parallel plates.

Figure 4.13 shows the absolute values of the shear rates at the surfaces of the elliptic

plates calculated on the basis of the equations (3.74) and (3.75). The shear rate increases
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Figure 4.12: The magnitude of velocity umag in the middle of the gap at z = 0.5 mm
between plane elliptic parallel plates according to equations (3.47), (3.69) and (3.70) with
η = 100 mPas, vp = 1 cm/s and h0 = 1 mm for the semi axes Rp1 = 18 mm and Rp2 = 29 mm
(projection), and Ra1 = 26 mm and Ra2 = 35 mm (arc), respectively, along both major and
minor axes.

linearly with the semi axis. The final values at the outflow are 484 s−1 at the outer major

axis and 766 s−1 at the outer minor axis in the projection geometry and 747 s−1 at the outer

major axis and 998 s−1 at the outer minor axis in the arc configuration. The form of the

shear-stress distributions is the same as that of the shear rates. The shear stresses at the

surface of the plates vary between 48 Pa and 100 Pa according to the equations (3.76) and

(3.77), assuming a viscosity η = 100 mPas. These values are in the same order of magnitude

as the result for the plane circular parallel plates.

The forces required to drive the plates of the given configurations together are 1.2 N

for the axes Rp1 = 18 mm and Rp2 = 29 mm and 3.7 N for the axes Ra1 = 26 mm and

Ra2 = 35 mm. The values for the corresponding circle radii are 1.3 N for 23 mm and 3.9 N

for 30 mm. Analogously to the maximum pressures pmax − p0 this means that the required

forces F are about 10% and 4% lower in the elliptic configuration than in the circular one.
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Figure 4.13: The absolute values of the shear rates dux

dz
and duy

dz
at the surfaces of the

plane elliptic parallel plates according to equations (3.74) and (3.75) with vp = 1 cm/s and
h0 = 1 mm for the semi axes Rp1 = 18 mm and Rp2 = 29 mm (projection), and Ra1 = 26 mm
and Ra2 = 35 mm (arc), respectively, along both major and minor axes.

Considering the equation

F = 3π
ηvp
h30

c3e
1 + c2e

a4, (4.4)

which is an rearrangement of equation (3.80), it becomes clear that the force F that is

required to drive the disks together is dependent on the ratio ce of the axes assuming a

constant semi-major axis a. Figure 4.14 shows this relationship. The force F increases from

1.2 N to 3.3 N for the projection configuration. In case of the arc configuration the increase

is from 2.5 N to 7.1 N. The graphs reveal a decrease of 64% for the minimum ratio ce = 0.62

compared to the configuration of the plane circular parallel plates.

4.2.3 Plane and Curved Circular Parallel Plates

The analysis of the equations for a squeezing flow between the plane and curved circular

parallel plates follows the example given with the Stefan equation in section 4.2.1. In
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Figure 4.14: The external force F required to drive plane elliptic parallel plates together
according to equation (4.4) in dependence on altering ratios ce with η = 100 mPas, vp =
1 cm/s and h0 = 1 mm for the semi-major axes Rp2 = 29 mm (projection) and Ra2 = 35 mm
(arc), respectively.

order to show the pressure distribution p − p0, the plate radius Rp2 = 29 mm is used. The

dynamic viscosity is η = 100 mPas, the uniform plate velocity vp = 1 cm/s and the minimum

film thickness h0 = 1 mm.

The fluid film h at the boundary of the plate r = R has the height hmax = 1 cm,

which is consistent with the height at the outflow of the numerical model. According to

equation (3.81), the curvature parameter is quantifiable by the equation

β(R) = − ln 10

R2
, (4.5)

where R stands for the plate radius. Inserting Rp2 = 29 mm results in the shape of the

upper plate that is shown in figure 4.15.

Figure 4.16 shows the pressure distribution p − p0. Compared to figure 4.4, which

represents the distribution between plane circular parallel plates, the shape of the curve has
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Figure 4.15: The shape of the upper curved plate based on the radius Rp2 = 29 mm with
the initial heights h0 = 1 mm in the middle of the plates and hmax = 1 cm at the outflow.

changed. Additionally, the maximum pressure decreases from 2523 Pa to 365 Pa.

In order to make a more detailed statement about this decrease, the equation for the

maximum pressure difference pmax − p0, which arises from equation (3.86), is analyzed.

Setting the radial coordinate r to zero, as the highest pressure arises in the middle of the

plates, and simplifying the equation gives approximately

pmax − p0 =
1

ln 10

ηvp
h30

R2 (4.6)

with β(R) following the definition in equation (4.5). Figure 4.17 shows the result in the range

of radii from 18 mm to 35 mm. The maximum pressure varies from 141 Pa for Rp1 = 18 mm

to 532 Pa for Ra2 = 35 mm.

Comparing figure 4.17 with figure 4.5 reveals a constant difference of 86% of the max-

imum pressures along the outer radius R. Hence, increasing the film thickness h along the

radial coordinate r will have an even bigger influence on the maximum pressures than the

elliptic shape of the palate. For this reason, the effect must not be ignored.
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Figure 4.16: The pressure distribution p−p0 between plane and curved circular parallel plates
according to equation (3.86) with η = 100 mPas, vp = 1 cm/s, h0 = 1 mm, hmax = 1 cm and
Rp2 = 29 mm.
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Figure 4.17: The maximum pressures pmax − p0 between plane and curved circular par-
allel plates as a function of the outer plate radius R according to equation (4.6) with
η = 100 mPas, vp = 1 cm/s, h0 = 1 mm and the respective height hmax = 1 cm at the
boundary of the plate.
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Figure 4.18 shows the velocity distribution in the r-direction based on equation (3.92).

The velocity at the outlet is 22 mm/s. In contrast to the previous calculations, the maximum

velocity is not reached at the outlet. The maximum value of 61.5 mm/s can be found at

r = 13.5 mm. From there on the height of the gap increases significantly and the pressure

drops down. As the velocity distribution along the radial coordinate is quite different from

the previous cases, a direct comparison is not possible. It can only be stated that the

maximum occurring velocities drop to about a quarter of that compared with the geometry

of two plane circular parallel plates. Figure 4.19 shows the velocity profiles in the gap for

four different values of the radial coordinate r. The profiles are symmetric. The maximum

values follow the distribution shown in figure 4.18.

Figure 4.20 shows the absolute values of the shear rate at the surfaces of the plates

according to equation (3.94). The shear rate has its highest value du
dz

= 174 s−1 at r = 9.6 mm.

This is only one fifth of the shear rate occurring at the outflow of the plane circular parallel

plates. The maximum value of the occurring shear stress in a Newtonian medium with a

viscosity η = 100 mPas is 17.4 Pa.

Figure 4.21 shows the force that is required to drive the plates together in dependence

on different values of the plate radius R in the range from 18 mm to 35 mm. The forces

range from 21 mN to 296 mN. Compared to the plane circular parallel plates the required

force is 96% smaller.

4.2.4 Sphere in a Hemisphere

The calculation of a sphere in a hemisphere by means of equation (3.106) is based on the

rounded-down radius through the key points in the sagittal plane R2 = 34 mm, which is

employed for the hemisphere. The minimum distance between the sphere and hemisphere

in the z-direction adopts the same value occurring in the model of the numerical simulation,

namely h0 = 1 mm. This distance is normally maintained in the front part of the numerical

model.
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Figure 4.18: The velocity ur in the middle of the gap at z = 0.5 · h0e−βr2 between plane and
curved circular parallel plates according to equation (3.92) with η = 100 mPas, vp = 1 cm/s,
h0 = 1 mm and Rp2 = 29 mm.
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Figure 4.19: The velocity ur along the height of the gap h = h0e
−βr2 at different values

of the radial coordinate r between plane and curved circular parallel plates according to
equation (3.92) with η = 100 mPas, vp = 1 cm/s, h0 = 1 mm and Rp2 = 29 mm.
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curved circular parallel plates according to equation (3.94) with vp = 1 cm/s, h0 = 1 mm
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plates of different radii together according to equation (3.97) with η = 100 mPas, vp =
1 cm/s, h0 = 1 mm and the respective height hmax = 1 cm at the boundary of the plates.
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In the rear part, the distance between the model tongue and the model palate increases.

Strictly speaking, this should be mirrored by the horizontal distance between sphere and

hemisphere starting from the key points P1(0mm|0mm) and P2(58mm|0mm) marked in

figure B.1. For reasons of convenience, the radial clearance c is used instead. The previous

approximations lead to the relation

ez = c− 0.001m (4.7)

for the eccentricity ez.

In a first approach, clearances c in the range between 3.5 mm and 14 mm make sense.

These values arise due to considerations according to the model of the numerical calculation.

The lower boundary is explainable as follows. The film thickness h approaches zero in the

front part of the model and 1 cm at the outflow. The distance of the ellipsoids in the

rear part of the model is about 7 mm. These values can be understood as eccentricities. As

eccentricities in the x- and y-directions are neglected in the model of a squeezing flow between

a sphere and a hemisphere, the film thickness of 7 mm in the rear part of the model is split into

a gap of 3.5 mm, which is maintained axi-symmetrically. The clearance c = 14 mm originates

from the assumption that the film thickness 1 cm between the key points P1(0mm|0mm)

and P2(58mm|0mm) and the sphere is upheld. However, as stated in section 3.3.6 an error E

occurs in the height of the gap. With regard to equation (3.100), this error increases with

an increasing clearance c. Figure 4.22 shows the result in the range of relevant clearances c.

To employ a clearance of c = 1 cm, which is consistent with the previous analyses, requires

accepting an error of 7.3%. In the following results it should be kept in mind that small

discrepancies to reality can be expected due to the error in the modeled gap height. Accepting

errors up to 10% allows to employ the clearance of c = 1 cm, which is consistent with the

previous analyses.

In order to evaluate equation (3.106), the radial clearance adopts the maximum value

c = 1 cm. Therewith, the eccentricity has the value ez = 9 mm. Figure 4.23 shows the

resulting profile of the gap.
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Figure 4.24 shows the pressure distribution determined using these assumptions. The

shape of the resulting pressure distribution is comparable with the one resulting from the

arrangement of plane and curved circular parallel plates, although the peak is thinner. It

reaches its maximum value for the angle θ = 0◦. Here, the pressure is 381 Pa. This is

almost the same value that results from the configuration with the plane and curved circular

parallel plates of radius Rp2 = 29 mm and a film thickness hmax = 1 cm at the boundary of

the plates.

The distribution of the maximum occurring pressures pmax−p0 requires further analysis.

For this purpose, equation (3.106) is adapted. The maximum pressures arise at the angle

θ = 0◦. The additional introduction of equation (4.7) yields

pmax − p0 =
3R2ηvp

c− 0.001m

(
1000000

1

m2
− 1

c2

)
(4.8)

for the maximum pressures.

In the first step, the radius of the hemisphere is kept constant R2 = 34 mm. Figure 4.25

shows the result. The maximum pressure difference pmax − p0 decreases as the clearance c

increases. While the pressure adopts the value 1274 Pa for the clearance c = 3.5 mm, it

decreases to only 265 Pa for the clearance c = 14 mm.

Alternatively, the clearance c = 1 cm can be held constant, while the radius R is varied

in the range between R1 = 18 mm and R2 = 34 mm. These radii belong to the circles, which

pass through the key points in both the sagittal and the frontal plane of the averaged model

of the oral cavity. The result is shown in figure 4.26. The arising pressure is 107 Pa for the

radius R1 = 18 mm. It increases to 381 Pa for the radius R1 = 34 mm.

Compared to the results according to the Stefan equation (3.30), the maximum pres-

sures are smaller by about 90%. The values that come up due to the configuration of plane

and curved circular parallel plates are approximately higher by 25%. Hence, the effect of

the three-dimensional configuration is not negligible.

The velocity distribution according to equation (3.114) is shown in figure 4.27. Again,
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Figure 4.24: The pressure distribution p− p0 between a sphere and a hemisphere according
to equation (3.106) with η = 100 mPas, vp = 1 cm/s, R2 = 34 mm, h0 = 1 mm, c = 1 cm
and e = 9 mm.
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Figure 4.25: The maximum pressure pmax − p0 between a sphere and a hemisphere as a
function of the radial clearance c according to equation (4.8) with η = 100 mPas, vp = 1 cm/s,
h0 = 1 mm and the constant radius R2 = 34 mm of the hemisphere.
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Figure 4.26: The maximum pressure pmax − p0 between a sphere and a hemisphere as a
function of the radius R of the hemisphere according to equation (4.8) with η = 100 mPas,
vp = 1 cm/s, h0 = 1 mm and the constant clearance c = 1 cm.

the maximum velocity cannot be found at the outflow but at the angle θ = 26.4◦. Here,

the velocity is 60 mm/s compared to 30 mm/s at the outflow. At this point, the gap height

increases significantly again. The distribution is comparable to the one that occurs in the

gap between the plane and curved circular parallel plates. The maximum value is reached

after 30% along the arc, in the previous case the maximum value is reached after 40% of the

radial coordinate of the plates. The values at these positions are almost the same. At the

outflows, the velocity in the spherical geometry is slightly higher.

Figure 4.28 shows the absolute values of the velocity distribution in the gap. The dis-

tribution is not symmetric as the velocity of the sphere is not always perpendicular to the

main fluid-flow direction. Hence, the curves show a small declination in the direction of the

inner sphere.

The absolute values of the shear rates are shown in figure 4.29. The distributions reflect

the asymmetry of equations (3.116) and (3.117). However, this asymmetry does not have

a great effect on the results as figure 4.29 proves. The highest value is reached at 15◦ for
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both curves. The shear rate occurring at the sphere is 161 s−1, the one at the hemisphere

is slightly smaller with 155 s−1. The shear rates at the outflow are 10 s−1 and 14 s−1. These

shear rates are comparable to those arising in the configuration of plane and curved circular

parallel plates. Therefore, the occurring shear stresses are also comparable.

The force F that is required to drive the sphere in the hemisphere is evaluated taking

into consideration equation (3.120). Two approaches were employed. In the first one, the

radius R2 = 34 mm was kept constant while the clearance c varied. The result is shown in

figure 4.30. The force F decreases with increasing clearances from 2.8 N to 0.3 N. Figure 4.31

shows the distribution for the constant clearance c = 1 cm for different values of the radius R.

This reveals a range of forces F from 39 mN to 499 mN, which is about twice as big as in

the configuration of a plane and curved circular parallel plate. Considering the bigger area

of contact in the shell geometry it becomes clear why the force F can be bigger than in the

geometry of a plane and curved parallel plate, although the maximum pressure is smaller.

4.2.5 Conclusion

The studies of the different geometrical models and parameters in the previous sections

suggest two basic conclusions. The widely-used approach of Stefan yields a parabolic

pressure distribution as well as linear functions for the velocity ur and the shear rates and

stresses along the radial coordinate. This approach does not model a changing fluid-film

thickness h nor a three-dimensional curvature. In sections 4.2.3 and 4.2.4 these factors are

taken into account, with the results showing significant changes. All of the physical quantities

exhibit different distributions and have maximum values at different points of the geometries

compared to the Stefan geometry. This shows that the three-dimensional nature of the

real oral cavity cannot be neglected.

As well as showing different distributions, the values of the different quantities are smaller

in all configurations than would be obtained following the approach of Stefan. The effect

is quite small for the plane elliptic parallel plates but the other two set-ups exhibit large

decreases in the different quantities. For this reason it is suggested that the geometry
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Figure 4.31: The external force F required to drive the sphere in the hemisphere according to
equation (3.120) with η = 100 mPas, vp = 1 cm/s, h0 = 1 mm and the constant clearance c =
1 cm.

of two plane circular parallel plates should be handled with care when employing it as a

reference method for a squeezing flow in the oral cavity. It is advisable also to employ the

other configurations, especially the one of the sphere driving into a hemisphere, in order

to estimate the values of fluid-mechanical quantities in the mouth. This is significant in

terms the human mechanoreceptors as it suggests that they must be even more sensitive

than would be expected from the Stefan model.

4.3 Numerical Simulations

The numerical simulations generate three-dimensional data of flow fields. Figure 4.32 shows

the calculated pressure distribution for the cases N4 and CL from above. It is clear that the

results are qualitatively similar. The pressure has the highest value at the tip of the model

tongue in each case and decreases in the rear part of the model. Additionally, the isolines

of pressure have a parabolic form in both cases.
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Figure 4.32: The top view of the pressure distributions in the cases N4 and CL.

The similarity of the form of the plots extends to all of the cases and properties consid-

ered. Therefore, only colored plots of one simulation case for each quantity are shown below.

Due to the general nature of the plots, the color legend has been omitted in the color figures

shown below.

Additionally, the models of the oral cavity are evaluated in two slices only. One slice

lies in the sagittal plane, the other one in the frontal one. In both cases, slices that run

perpendicular through the axis of the projected ellipse are chosen. These slices are chosen

as they record the data that can reasonably be compared with the analytical solutions.
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The results in these slices are evaluated on the basis of representative points in which

the vector-field data are read out at the end of the simulation. One set of points lies directly

at the surface of the movable model tongue. The other set is located in the middle of the

bulk. Figure 4.33 shows this configuration exemplarily on the basis of the sagittal plane.

The origin of the x-axis is located at the outflow. The y-axis starts at the major axis of

the projected ellipse. The evaluation in the sagittal plane only starts from x = 0.03 m as

the radical changing of the geometry representing the pharynx causes abrupt changes in the

flow-field data.

4.3.1 Pressures

Figure 4.34 gives a qualitative impression of the pressure distribution in the bulk between

the movable model tongue and the fixed model palate. It is representative for all models

used in the current study and is independent from the implemented rheological model and

the related constants. The detailed evaluation with quantitative values takes place according

to the representative points introduced above.

Figure 4.35 shows the pressure distribution in the middle of the bulk and at the surface

of the model tongue in the sagittal plane using the example of case N4. This case was chosen

for reference as the analytical calculations in section 4.2 are based on the same viscosity.

The values occurring in the bulk and on the surface of the movable tongue do not alter

significantly. This is consistent with the assumptions made for the analytical derivation in

the theory of lubrication (section 3.3). As expected, the maximum pressures occur at the

tip of the model tongue. The qualitative distribution indeed resembles the distributions that

were found analytically in sections 4.2.3 and 4.2.4, which discuss squeezing flows between

plane and curved circular parallel plates and a sphere in a hemisphere.

The pressure drops rapidly until reaching a plateau in the vicinity of the center of the

projected ellipse. The level of this plateau lies at about half the maximum pressure for the

low viscosity cases N1, N2 and N3. The higher the viscosity, the more abrupt the decline is

before reaching the pressure plateau. In case N4, the pressure falls back to approximately
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Figure 4.33: The slice in the sagittal plane including the representative points in the middle
of the bulk and at the surface of the movable model tongue at the end of the simulations.

Figure 4.34: The qualitative pressure distribution in the bulk between the movable model
tongue and the fixed model palate in the sagittal slice. The red color represents high and
the blue color low pressures. The distribution exhibits the same characteristics for all of the
considered fluids.
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Figure 4.35: The representative pressure distribution in the middle of the bulk and at the
surface of the model tongue in the sagittal plane along the x-axis, exemplarily shown by
employing case N4.

one third of the maximum value. In case CL, the level of the pressure plateau lies only at

about 15% of the maximum pressure. Getting closer to the outflow, the pressure further

decreases until it reaches the value of the ambient pressure p0 at x = 0 m.

The pressure in the frontal plane does not vary significantly for the small viscosities of

cases N1, N2 and N3. For the higher viscosities of cases N4 and CL, the pressure in the

middle of the geometry is lower than at the boundary of the geometry. Figure 4.36 shows

this behavior for case N4 as an example. The qualitative distribution remains the same for

all higher viscosity cases. The pressure difference in the frontal plane of case N4 makes up

about 16% relative to the lower pressure in the middle of the geometry. In case CL it is as

much as 25%.

The maximum pressures at the tip of the model tongue depend on the implemented

rheological model and the related constants. Table 4.2 gives an overview. As expected by

following the findings of the analytical calculations, the maximum pressures increase with

fluid viscosity. The difference of the maximum pressures pmax is quite small when comparing



4.3. NUMERICAL SIMULATIONS 115

 300

 320

 340

 360

 380

 400

0.000 0.005 0.010 0.015 0.020

pr
es

su
re

 [P
a]

y [m]

N4 frontal bulk
N4 frontal surface

Figure 4.36: The representative pressure distribution in the middle of the bulk and at the
surface of the model tongue in the frontal plane along the y-axis, exemplarily shown by
employing case N4.

the model N1, representing water, with the models N2 and N3, in which the minimum and

maximum viscosities appearing in beer are implemented. The differences add up to 16% and

60%, respectively.

The maximum pressures pmax of the models N4 with a hundredfold-higher viscosity than

water and CL representing yogurt reach much higher values. The maximum pressure pmax is

about 25 times higher in model N4 than in model N1. Considering case CL, the maximum

pressure pmax is about 345 times higher than in the case of water.

The maximum occurring pressure pmax in case N4 is confirmed by the analytical calcu-

lation of a sphere in a hemisphere. This model comes closest to the model of the oral cavity,

which is employed in the numerical simulations. The radius R2 = 34 mm, which is employed

for the hemisphere, is taken for granted as this is the radius that the dimension of the model

oral cavity is based on with regard to the sagittal plane. This is the plane that the main

direction of fluid flow takes place in.

The maximum value calculated by means of the numerical simulation is pmax = 1058 Pa
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Table 4.2: The maximum pressures pmax at the tip of the tongue in the model of the oral
cavity.

Label Maximum pressure [Pa]
N1 43
N2 50
N3 69
N4 1058
CL 14790

for η = 100 mPas. This value lies between the analytical calculated values with clearances of

c = 1 cm, yielding pmax = 381 Pa, and c = 3.5 mm, resulting in pmax = 1274 Pa. Therefore,

it is clear that the application of the analytical calculation of a sphere in a hemisphere is

useful in order to estimate the resulting pressures in the model oral cavity.

As already mentioned previously in section 3.4.5, Zürcher & Kursawe (1973) state

that a beer drinker is able to distinguish between the similar viscosities represented by

cases N1 to N3. The question arises which parameter causes this differentiated perception.

The pressure-induced deformation is probably out of the question. The sensitivity of oral

SA-I mechanoreceptors discussed in section 2.2.2 is 120 Pa. The value was determined by

Semmes-Weinstein monofilaments. Hence, a Newtonian fluid would need a viscosity of

approximately 0.01 Pas to be sensed, assuming a linear relationship between viscosity and

maximum pressure. Beer would definitely be below the necessary threshold.

Indeed, Semmes-Weinstein monofilaments cause a point load while food in the mouth

causes a distributed load. Maybe, the simultaneous stimulation of several receptive fields

enable the enhanced sensitivity. Additionally, there is no statement about the sensitivity of

the other two types of mechanoreceptors occurring in the oral cavity. A crucial involvement

of the kinesthetic sense in the evaluation process of food thickness is worth consideration.

The values calculated by employing both analytical methods and computational fluid

dynamics agree with the values of the pharyngeal pressure arising during swallowing that

were reported by Kim, McCulloch & Rim (2000). These authors found values in the

range from 1.3 kPa to 7.3 kPa. In their study, the displacement of the internal lumen of
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the pharynx was determined by means of a finite element simulation of the pharynx. The

arising pressure in the swallowed bolus was equalized with the pressure that is necessary to

counterbalance the external load on the pharyngeal wall.

Only recently, Kieser, Singh, Swain, Ichim, Waddell, Kennedy, Foster & Liv-

ingstone (2008) published pressures measured in vivo in the oral cavity. Five subjects

were asked to swallow 10 ml of water. Eight miniature pressure transducers recorded the

intraoral pressures. Figure 4.37 shows their positions. The data transferred via the channels

4 to 8 are most relevant for comparison with the calculated values due to their location in

the mouth. Table 4.3 gives an overview of the range of recorded pressures in dependence on

the positions of the pressure transducers. The large differences occurring can be ascribed to

the individual swallowing characteristics of the subjects.

These values range from 13.05 kPa to 289.75 kPa and by far exceed the simulated values.

In contrast to the simulations, the pressures increase with a decreasing distance to the phar-

ynx. These results might be traced back to the fact that the simulation in the current study

works with a stiff model tongue. This approach poorly imitates the dynamic movements

of the real muscular hydrostat. Nevertheless, the application of the numerical simulations

is vindicated as it generates additional knowledge about single parameters of the flow field,

which cannot be determined by measuring pressures only.

Table 4.3: The ranges of pressures measured during in vivo water swallows in five subjects.

Channel Name Pressure range [kPa]
4 palatal molar 13.05–26.82
5 palatal canine 24.23–49.29
6 palatal central 22.49–98.30
7 mid palate 24.57–122.03
8 posterior palate 30.93–289.75
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Figure 4.37: The position of the eight miniature pressure transducers used byKieser et al.
(2008).

4.3.2 Velocities

Figures 4.38 and 4.39 show the representative qualitative distributions of the magnitude

of velocity in the sagittal and frontal slice. As expected, the velocities in the bulk are

higher than those at the surfaces of the model oral cavity. Again, the data are evaluated

quantitatively on the basis of the selected points in both slices. Although the multicolored

qualitative distributions suggest that the different fluids behave similarly, closer attention

reveals essential differences.

The qualitative distribution of the magnitude of velocity in the bulk is similar for all

cases in the sagittal plane. Figure 4.40 shows these distributions. The magnitude of velocity

is small at the tip of the model tongue and increases in the direction of the rear part. This

increase takes place quite fast in the beginning, shows a plateau in the middle region of

the model tongue, and further increases until it reaches its maximum value shortly before
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Figure 4.38: The qualitative distribution of the magnitude of velocity in the bulk between
the movable model tongue and the fixed model palate in the sagittal slice. The red color
represents high and the blue color low magnitudes of velocity. The distribution exhibits the
same characteristics for all of the considered fluids.

Figure 4.39: The qualitative distribution of the magnitude of velocity in the bulk between
the movable model tongue and the fixed model palate in the frontal slice. The red color
represents high and the blue color low magnitudes of velocity. The distribution exhibits the
same characteristics for all of the considered fluids.
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the geometry narrows into the model pharynx. The distribution shape of the magnitude of

velocity is thereby mirrored against the shape of the pressure distribution. This behavior

conforms with the well-known Bernoulli equation

u2

2
+ gz +

p

ρ
= constant, (4.9)

which is based on the assumption of an inviscid flow (Spurk & Aksel, 2007).

The distribution is different from the one found in the analytical calculation of velocities

in the gap between a sphere and hemisphere. This observation can be explained by the

different characteristics of the geometries of the models. While the geometry used in the

analytical calculation opens out, the geometry of the numerical model narrows to the model

pharynx. For that reason, the velocity must increase here, while it drops down for the

analytical model. Nevertheless, the order of magnitude is the same.

Table 4.4 gives an overview of the maximum values of the velocity magnitude arising in

the rear part of the model oral cavity. Comparison shows that the magnitude of velocity

increases slightly with an increasing viscosity ν in the Newtonian cases N1 to N4. On the

contrary, the velocity in the non-Newtonian fluid implemented in case CL exhibits the same

value as water.

Another peculiarity in the non-Newtonian case CL attracts attention. Contrary to the

Newtonian cases, the magnitude of velocity at the surface of the model tongue does not

agree with the maximum velocity of the movement at the tip of the model tongue along

Table 4.4: The maximum magnitudes of velocity umag,max occurring in the model of the oral
cavity at the rear part of the tongue.

Label Maximum magnitude of velocity [m/s]
N1 0.15
N2 0.15
N3 0.16
N4 0.22
CL 0.15
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Figure 4.40: The distribution of the magnitude of velocity in the middle of the bulk and at
the surface of the model tongue in the sagittal plane along the x-axis, using case CL as an
example.

the complete x-axis, as can be seen in figure 4.40. Instead, it decreases with the linearly

decreasing velocities of the movable model tongue along the x-axis. This behavior can be

explained by the high viscosities of the implemented flow curve at low shear rates. The fluid

only begins to deform significantly beyond a certain stress level. Obviously, this leads to the

previously described behavior that the fluid responds completely to the imposed deformation.

The observation that the velocities increase with increasing viscosities in Newtonian

media needs further clarification. The flow becomes more sluggish the more viscous the

medium is. This behavior accompanies lower flow velocities. At first glance, this expectation

conflicts with the observation in the numerical simulations of increasing fluid-flow velocities.

In any account, the volume flow rate in each model must be constant independent of the

implemented viscosity, since the volume flow rate is solely determined by the movement of

the model tongue. The equation

V̇ =
dV

dt
= u · A (4.10)
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describing the volume flow rate is based on the assumption that the streaming velocity u is

constant in the cross section. Figure 4.39 shows qualitatively that the velocity field does not

exhibit this constancy. In order to fulfill the required condition, the averaged velocity of the

entire flow field needs to be equal.

The diversification of the fluid-flow velocities within a cross section is not an issue as

long as the averaged velocity is the same. Figure 4.41 reveals that the flow profiles are

very different depending on the viscosity of the system. The low viscosity fluid in case N1

features the maximum velocity in the majority of the flow-field points. On the contrary,

the maximum velocity of fluid flow is achieved only in a very small section of the geometry

considering the high viscosity fluid in case N4. In return, the maximum occurring velocity

is higher compared to the maximum velocity arising in low viscosity fluids. Consequently,

it can be stated more precisely that the maximum velocity increases with an increasing

viscosity of a fluid, while the averaged velocity remains constant.

Getting back to the starting point of a higher viscosity yielding a bigger inertia it can be

stated that the velocity of the movement of the tongue is better transferred by low viscosity

fluids. Here, the viscosity level is more constant over a wider range. Higher viscosity fluids

react inertly to applied movements, as can be seen in the profile of velocities in the frontal

slice. The maximum velocity only forms right in the core of the flow profile.

Dantas, Kern, Massey, Dodds, Kahrilas, Brasseur, Cook & Lang (1990) and

Takahashi, Nitou, Tayama, Kawano & Ogoshi (2002) both investigated the bolus

behavior during deglutition in the pharynx by means of videofluoroscopy and manometry.

They found a delay of the bolus transit with higher viscosities. Their results do not disagree

with the findings of the current study as the bolus transit separate from its active support

by pharyngeal peristaltic waves is more comparable to a pipe flow than to a squeezing flow.

In addition, the pharyngeal peristaltic waves are not normalized to one specific speed of

movement as is the case for the movement of the tongue in the model of the oral cavity.

Hence, the volume flow rate is not necessarily constant.

The literature also permits a quantitative comparison of fluid-flow velocities in the phar-
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Figure 4.41: The distribution of the magnitude of velocity in the middle of the bulk in the
frontal plane along the y-axis in the cases N1 and N4.

ynx. Hasegawa, Otoguro, Kumagai & Nakazawa (2005) measured the velocity spec-

trum in the bolus by means of the ultrasonic pulse Doppler method. The velocity of all

food samples averages out at 0.1 m/s. The maximum velocity of water was 0.5 m/s and

0.2 m/s for yogurt. Miquelin, Braga, Dantas, Oliveira & Baffa (2001) investigated

the pharyngeal bolus flow with regard to the pharyngeal transit time. The samples consisted

of 10 ml yogurt and 5 g manganese ferrite. The authors observed an average value of 0.75 s.

Based on these findings, Chen (2009) calculates a flow speed of about 5 cm/s assuming a

pharyngeal cross-section diameter of 2 cm. These results agree fairly well with the results of

the numerical simulations presented here.

4.3.3 Shear Rates

Figure 4.42 shows the representative qualitative distribution of the magnitude of the velocity

gradient in the sagittal slice. Generally, the shear rates are higher closer to the surface. The

lowest shear rates occur in the middle of the bulk. Furthermore, the shear rates near the
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surface tend to increase from the tip of the model tongue to the rear part.

Figure 4.43 shows the distribution of the shear rates in the bulk and at the surface of the

model tongue for the Newtonian fluid N4. Regarding the shear rates at the surface of the

model tongue, an increase from about 20 s−1 at the tip of the model tongue to approximately

150 s−1 in the rear part of the model can be observed. The lower viscous fluids of cases N1, N2

and N3 have comparable shear rates. Only the distributions along the x-axis change slightly.

The analytical calculations of the shear rates in the sphere-hemisphere configuration exhibit

comparable values. The distribution is necessarily different due to the different velocity

distribution discussed in the previous section.

The shear rate range in the bulk is smaller than at the surface of the model tongue.

Figure 4.43 reveals values between 14 s−1 and 28 s−1, assuming that the higher value at the

tip of the model tongue is an outlier. The values are distributed slightly curved with the

smallest values in the center of the geometry. At the tip of the tongue, the shear rate curves

of bulk and surface converge. The same observation can be made for the cases N1 to N3.

However, the occurring shear rates range from 5 s−1 and 27 s−1. While the upper value is

almost the same for all models, the lower value is only about one third of the value arising

in the higher viscous medium.

The non-Newtonian fluid shows a slightly different behavior. Figure 4.44 reveals these

differences. Concerning the shear rates at the surface, the level is lower by one third in

the rear part of the model oral cavity compared to case N4. The curves intersect at about

x = 0.005 m. For large values of x, the curve representing the Newtonian fluid further

decreases while the curve representing the non-Newtonian fluid slightly increases again. The

shear rate range covers values from 46 s−1 to 103 s−1.

The qualitative distribution of shear rates in the bulk is comparable to case N4. However,

the values are about 60% lower compared to the Newtonian case N4. The values are in the

region of 8 s−1. Unlike the curves of Newtonian behavior, the curves of shear rates at the

surface of the model tongue and in the bulk do not intersect at the tip of the tongue but

scatter.
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Figure 4.42: The qualitative distribution of the gradient of the magnitude of velocity in the
bulk between the movable model tongue and the fixed model palate in the sagittal slice. The
red color represents high and the blue color low gradients of the velocity magnitude. The
distribution exhibits the same characteristics for all of the considered fluids.
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Figure 4.43: The distribution of the magnitude of the gradient of velocity in the middle of
the bulk and at the surface of the model tongue in the sagittal plane along the x-axis, for
Newtonian fluids using case N4 as an example.
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Figure 4.44: The distribution of the magnitude of the gradient of velocity in the middle of
the bulk and at the surface of the model tongue in the sagittal plane along the x-axis for
the non-Newtonian fluid in case CL.

Figure 4.45 shows the representative spacial distribution in the frontal slice. Here, it can

clearly be seen that the layer of highest shear rates is not located directly at the surface of

the model tongue but just above it. Hence, the highest shear rates are not evaluated by the

given representative points at the surface and in the middle of the bulk. As the shear rates

found directly at the surface of the model tongue affect the mechanoreceptors, these values

are more important despite being lower.

Regarding the frontal slice, the behavior of the thin fluids can be compared, as well

as the behavior of the thicker ones, with the comparisons showing that their behavior is

independent of the rheological characterization. In the low-viscosity fluids, the shear rate

values increase slightly with an increasing distance from the center and increase significantly

at the boundary. Figure 4.46 shows the distribution.

The shear-rate differences at the middle of the surface are small. They only increase by

about 2 s−1 each with respect to water, which exhibits a value of 26 s−1. At the boundary

of the geometry, the difference is significant. While a shear rate of 151 s−1 can be found for
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Figure 4.45: The qualitative distribution of the gradient of the magnitude of velocity in the
bulk between the movable model tongue and the fixed model palate in the sagittal slice. The
red color represents high and the blue color low gradients of the magnitude of velocity. The
distribution exhibits the same characteristics for all of the considered fluids.
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Figure 4.46: The distribution of the magnitude of the gradient of velocity in the middle of
the bulk and at the surface of the model tongue in the frontal plane along the y-axis, for
low-viscosity fluids using case N1 as an example.
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case N1, cases N2 and N3 only feature shear rates of 133 s−1 and 108 s−1, respectively. This

makes up a decrease of 12% and 28%. A similar behavior can be observed for the shear rates

in the bulk. In the center of the geometry, the shear rates of each model are smaller than

10 s−1. Case N1 shows a shear rate of 100 s−1 at the boundary of the geometry. The shear

rates of the cases N2 and N3 decrease by 10% and 25%.

In the higher viscosity fluids, the curves increase a bit initially and then slightly drop a

greater distance away from the center. Only at the boundary, do they increase again. Figure

4.47 shows the distribution based on case CL.

The values range from 29 s−1 to 66 s−1 in case N4. The shear rate that occurs in the

center of the geometry is 39 s−1. In case CL, the corresponding values are 34 s−1, 67 s−1

and 47 s−1. Thus, the values at the boundary are nearly the same, while the shear rates in

the middle of the geometry and the lowest shear rates increase with an increasing viscosity.

Hence, the resulting shear-rate range reduces as the viscosity increases.

The shear rates occurring in the bulk are almost constant. They scatter around 15 s−1 in

case N4 and around 7 s−1 in case CL. At the boundary, they increase approximately threefold.

In contrast to the values at the surface, the values of the Newtonian case are higher here.

The shear rates at the surface of the model tongue are supposed to be most important

for mouthfeel sensations. These shear rates have a direct effect on the mechanoreceptors. In

summary, the shear rates occurring on the surface of the tongue range from 20 s−1 to 150 s−1

in the investigated cases. These shear rates agree well with the values stated in literature

and introduced in section 2.2.4.

4.3.4 Viscosities

Naturally, the viscosity is constant in all the Newtonian cases. On the contrary, it changes in

dependence of the present shear rates in the non-Newtonian case CL. This dependency was

already discussed by means of equation (3.5) and figure 4.3. For this reason, the viscosity

also varies in the model of the oral cavity as several different shear rates arise.
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Figure 4.47: The distribution of the magnitude of the gradient of velocity in the middle of
the bulk and at the surface of the model tongue in the frontal plane along the y-axis, for
high-viscosity fluids using case CL as an example.

Figures 4.48 and 4.49 present quantitative data in the sagittal and frontal planes, re-

spectively. Both figures show that the viscosity is almost constant at about 9 · 10−4 m2/s at

the surface of the model tongue. This is an almost thousandfold-higher viscosity than water

exhibits. The viscosity in the bulk is even higher. The highest values of about 5.6·10−3 m2/s,

neglecting outliers, are reached at the tip of the model tongue. Considering the frontal slice,

the values tend to decrease with an increasing distance from the center of the geometry.

It can be concluded that a thin layer develops in which the viscosity is significantly lower

than in the rest of the bolus. This makes the food slide better over the surface. Janssen

et al. (2007) refer to lubricating layers or shear planes due to relative low viscosities and

assume that this effect results in a heterogeneous mouthfeel. However, they ascribe the lower

viscosities to the presence of saliva, not to pure fluid mechanics.

Seizing the suggestion of Christensen (1979) introduced in section 2.2.4 that con-

sumers evaluate an averaged viscosity, the question arises as to how this averaged viscosity

is constituted. Possibly, the kinesthetic sense plays a decisive role in this evaluation as the



130 CHAPTER 4. RESULTS AND DISCUSSION

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.03  0.04  0.05  0.06  0.07  0.08  0.09

ki
ne

m
at

ic
 v

is
co

si
ty

 [m
2 /s

]

x [m]

CL sagittal bulk
CL sagittal surface

Figure 4.48: The distribution of the viscosity in the middle of the bulk and at the surface of
the model tongue in the sagittal plane along the x-axis employing case CL.
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Figure 4.49: The distribution of the viscosity in the middle of the bulk and at the surface of
the model tongue in the frontal plane along the y-axis employing case CL.
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viscosity-related behavior of the bulk can only be evaluated by motion and the force that is

necessary to move the bulk.

4.3.5 Shear Stresses

Shear stresses σ can be calculated by the equation σ = ηγ̇ where η is the dynamic viscosity

and γ̇ the shear rate. As the dynamic viscosity η is constant for Newtonian fluids, the

shear stress is always a specific multiple of the shear rate γ̇. In the non-Newtonian case,

the apparent viscosity changes with the applied shear rate. For this reason, the shear stress

depends on the prevailing shear rate γ̇.

The biggest changes of shear rates and therefore shear stresses take place in the sagittal

slice. For this reason, the shear stresses are evaluated in this plane. Additionally, the shear

stresses that are detected by the oral mechanoreceptors arise at the surface of the model

tongue. Therefore, the evaluation can be further restricted.

Figure 4.50 presents the shear stresses arising at the surface of the model tongue for

the cases N1 to N3. Although the shear rates arising in these cases are comparable, the

shear stresses are different due to the different viscosities. The lowest maximum shear stress

arising in the rear part of the model is 0.15 Pa in case N1. Models N2 and N3 exceed this

value by 53% and 207%.

Figure 4.51 shows the distribution of shear stresses for the Newtonian case N4 and the

non-Newtonian case CL. The level of the shear stresses is higher in the non-Newtonian

case. This observation is not surprising when recalling the fact that the apparent viscosities

occurring at the surface of the model tongue are about a thousandfold higher than that of

water. Assuming comparable shear rates from 20 s−1 to 150 s−1, the shear stresses developing

in a Newtonian fluid exhibiting the viscosity η = 1 Pas would be about 20 Pa to 150 Pa,

which is exactly the range determined by the analytical calculations. These values are larger

than those of the non-Newtonian case by about 70%. Therefore, it can be assumed that

shear-thinning fluid-flow behavior results in lower shear stresses than Newtonian fluids with

comparable apparent viscosities.
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Figure 4.50: The distribution of the magnitude of shear stress at the surface of the model
tongue in the sagittal slice along the x-axis for cases N1, N2 and N3.
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Figure 4.51: The distribution of the magnitude of shear stress at the surface of the model
tongue in the sagittal slice along the x-axis employing cases N4 and CL.
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Apart from this result, non-Newtonian fluids exhibit a different shear-stress distribution

along the x-axis. While the shear stresses increase from the tip of the model tongue to

its rear part in Newtonian cases, the shear-rate distribution in the non-Newtonian case is

U-shaped due to the altering viscosities. The shear rates near the center of the geometry

stay at about 40 Pa, the shear rates at the tip of the model tongue and in the rear part are

more than twice as high.

The findings can be compared with the results from the literature presented in section

2.2.4. The previously reported shear-stress ranges amount to 10 Pa to 1000 Pa in general,

4.4 Pa to 131 Pa for syrups, 1 Pa for fresh milk and 683 Pa for chocolate spread. Although

the results from the numerical simulation exhibit a smaller minimum value, the order of

magnitude agrees well with previous findings.

4.4 Summary of Analytical and Numerical Findings

In the preceding sections novel approaches to investigate the fluid mechanics in the oral

cavity during deglutition and the resulting values for different physical quantities have been

presented. Table 4.5 compares selected findings from the current analytical and numerical

studies as well as the results of previous studies from literature. As the results of the

different analytical models and the numerical simulations in the present work take the form of

distributions, for comparison with the literature results the maximum value of each quantity

for a range of different geometry sizes has been given. The numerical values are taken from

case N4, as its viscosity is the same as the one used in the analytical considerations. The

physical quantities that are presented are the pressure, velocity, shear rate and shear stress.

It can be seen that the analytical and numerical approaches yield similar results, a strong

indication of the merits of the two approaches. Their favorable comparison with the literature

values is also very encouraging. Hence, the discussed analytical and numerical models offer

new possibilities to emulate the fluid flow between the human tongue and palate.
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Table 4.5: An overview of the maximum values of the different physical quantities discussed
in the current thesis. Pressures are given in Pa, velocities in mm/s, shear rates in s−1 and
shear stresses in Pa.

Quantity Analytical Numerical Literature
Case 1 Case 2 Case 3 Case 4 N4

Pressure 972–3675 1401–3675 141–532 107–1274 1058 1300–7300
Velocity 218 121–250 62 60 220 50–500
Shear rate 870 484–998 174 155/161 150 10–1000
Shear stress 87 48–100 17 16 15 10–1000



Chapter 5

Conclusions

Texture is one of the most important factors of food acceptance besides flavor. However,

texture needs to be pointed out to the consumers as it is perceived subliminally as long as it

matches their expectancy. Nevertheless, the food industry is interested in a perfect texture

in order to win subconscious customer loyalty. Thus, food scientists aim at understanding

and objectifying texture perception.

Food texture is a multifaceted attribute. Those attributes have been philosophically

discussed for more than 2000 years. The earliest attempt at description dates back to Aris-

totle who lived in the 4th century BC. He stated in his principle work “Metaphysics” that

“the whole is more than the sum of its parts”. The modern understanding of this hypothesis

is called gestalt psychology. Credited as the founder is Christian von Ehrenfels who

published his essay “Über Gestaltqualitäten” (On the Qualities of Form) in 1890.

Food texture follows this concept of gestalt. Texture is not one single attribute but con-

sists of many different properties, which together account for the overall mouthfeel sensation.

Nevertheless, it is impossible to investigate texture as a whole without analyzing and under-

standing its components individually. For this reason, the literature describes a multitude

of approaches for understanding textural attributes and their contribution to mouthfeel.

These approaches have aimed at analyzing texture by means of measurable quantities to ob-

jectifying the descriptors. This knowledge helps the food industry to control and influence

135
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the texture parameters actively, yielding an improvement of products and customer loyalty.

Complete knowledge about the interaction of food-texture attributes will be a milestone in

food research.

Texture can be understood as a collective term of physics-related terms such as hardness,

cohesiveness, viscosity, elasticity and adhesiveness. Of these terms, viscosity is the dominant

attribute for foods capable of flowing. For this reason, the current thesis has focused on

the enhancement of existing and the development of novel fluid-mechanical models for de-

scribing the squeezing flow in the oral cavity during deglutition. The models considered are

analytically solvable ones, which have been derived on the basis of the theory of lubrication,

as well as numerical models that are based on the geometry of two ellipsoids mimicking the

complex dimensions of the human oral cavity.

5.1 Analytical Models

Simple models of the fluid mechanics of thin Newtonian fluid films can be calculated analyti-

cally by means of the theory of lubrication. In the context of the current thesis, four different

tongue-palate model systems have been introduced and developed on the basis of this theory.

These include systems of plane circular parallel plates, plane elliptic parallel plates, plane

and curved circular parallel plates, and a sphere in a hemisphere. All these systems have

been discussed with regard to squeezing in order to imitate the process of deglutition in a

simplified manner. Only the first model has been used as a reference for the squeezing flow

in the oral cavity so far. The other models are introduced as tongue-palate model systems

for the first time.

The first system of plane circular parallel plates dates back to Stefan’s paper “Versuche

über die scheinbare Adhäsion” (Experiments on the Apparent Adhesion) from 1874 and

was also discussed by Reynolds twelve years later. Until today, the system has been

used as the reference to estimate fluid-mechanical quantities occurring in the oral cavity

during deglutition. These include the distributions of pressure, velocities, shear rates and
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shear stresses as well as the force required to drive the plates together. Obviously, different

approximations have to be accepted when employing the model. The human tongue and

palate are not circular nor is the fluid film of constant height while the bolus is being

squeezed out of the oral cavity. These important factors are taken into account by the

other models and studied separately. Nevertheless, the rigid nature of the geometries is a

fundamental drawback of this analytical approach.

The model of plane elliptic parallel plates reflects the shape of the projected palate. The

derivations of the pressure distribution in the system and the force required to drive the

geometries together also date back to Reynolds (1886). As far as is known, the equations

for the other physical quantities have been derived for the first time.

The model of the plane and curved circular parallel plates is much more recent. Murti

developed it in 1975. The model is characterized by an increasing film thickness along the

radial coordinate. For this reason, it mimics the squeezing flow in the oral cavity better than

the previously introduced models. Again, the derivation was limited to the equations for

pressure and force. The current thesis additionally shows the derivations for the equations

of the radial velocity component as well as the shear rates and shear stresses.

The last model of a sphere in a hemisphere has for the first time been deduced from

the given Reynolds equation in spherical coordinates. A comparable approach cannot be

found in literature of any branch of research. It is the best possibility to imitate the squeezing

conditions in the oral cavity realistically.

The comparison of the different models shows that the changes in geometry have signifi-

cant effect on the shapes of distribution and the orders of magnitude of the fluid mechanical

quantities. Slightly viscous fluids with a hundredfold-higher viscosity than water have been

chosen as a reference. Foods that feature this viscosity include vegetable oils and stirred

yogurt. The previously-used reference model introduced by Stefan leads to a parabolic

pressure distribution with maximum values of about 1000 Pa to 3700 Pa for the reference

viscosity and oral-cavity dimensions. The functions standing for velocity, shear rate and

shear stress exhibit linear behavior. The maximum value of velocity at the outflow of the
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geometry is in the order of magnitude of 20 cm/s. Here, the velocities have been shown to

be independent from the viscosity of the fluid, which does not reflect the true behavior of

the system. However, the shear rate and shear stress are dependent on the fluid viscosity,

as expected. The shear rates at the surface of the geometry show maximum values up to

900 s−1 at the outflow. This results in a shear stress up to 90 Pa. The force required to drive

the upper plate of the geometry against the lower one is strongly dependent on the radius

of the plates. It increases with the fourth power of the plate radius. The required force can

be as high as 7 N.

The small changes in geometry in the other tongue-palate model systems could be shown

to be responsible for significant changes in the different fluid-mechanical quantities. Con-

cerning the pressure, the application of the elliptical configuration results in a decrease of

about 10% of the maximum pressures. The effect of a variable film thickness is even bigger.

Not only does the maximum pressure drop down by more than 80% and 90% compared to

the Stefan model, respectively, but also the shape of the distribution changes.

The velocity does not change much comparing the Stefan model with the elliptical

geometry. This is different considering the two models with varying film thicknesses. Again,

the shape of the distribution changes, in fact more rapidly than for pressure. The function

is no longer linearly increasing with the radial and angular coordinate but exhibits a large

gradient in the first third of the interval followed by the maximum value of the velocity and

a gentle decrease to the outflow of the geometry. The maximum values both decrease to

about 6 cm/s, which is about 70% of the Stefan-model value.

Due to their strong relation with the velocity, the curves for shear rate and shear stress

show a similar behavior concerning their shape. The amount of change is also comparable;

it sums up to more than an 80% decrease compared to the Stefan model. Notable is the

fact that the absolute values are not the same for both surfaces in the configuration of the

sphere and hemisphere. The effect is not big but can be drawn back to the asymmetry of

the geometry at the surfaces.

The force required to drive the geometry together stays nearly the same for the elliptical
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configuration. It drops down significantly to 0.3 N and 0.5 N for the other configurations.

This amounts to values that are about 95% smaller than in the Stefan model.

Hence, the results of the analytical calculations show that the application of the Stefan

model for the estimation of the profiles and values of the fluid-mechanical quantities in the

oral cavity must be called into question. Employing the same geometrical dimensions for each

model reveals significant decreases in the analyzed quantities as well as significant changes

in the distributions the more complex and the more anatomically realistic the geometries

become. For this reason, it is advisable to use the most realistic model of a sphere in a

hemisphere as a reference model exclusively.

5.2 Numerical Models

The calculation of the fluid flow through movable ellipsoidal shells takes place by means

of numerical analysis. Four different Newtonian viscosities representing water, beer as well

as olive oil and the order of magnitude of strongly-sheared yogurt, respectively, and the

non-Newtonian Cross law representing the shear-thinning behavior of yogurt have been

implemented. The Cross law has been chosen for this study as a previously published paper

reports on its suitability for yogurt over a wide range of shear rates and on its particular

appropriateness in low shear-rate ranges. Moreover, the concept of the more frequently used

rheological models featuring yield stress is questionable following an often-cited hypothesis

of Barnes & Walters (1985). These authors state that no material exhibits yield stress

but that only the measurement techniques are too insufficient to record the real material

behaviors.

The results of the numerical studies have been visualized by multicolored plots in repre-

sentative slices of the geometry. Any flow variable can be displayed here. The quantitative

evaluation concentrates on defined points of the flow field. They are located in the slices

of the semi-minor and semi-major axes of the ellipse projected in the xy-plane. One set of

points is located directly at the surface of the model tongue, the other one in the middle of
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the bulk.

The maximum pressure calculated numerically is approximately 1000 Pa for a viscosity

of 100 mPas. Comparison with the analytical model of a sphere in a hemisphere suggests

that quite a small radial clearance of about 4 mm should be chosen to match the analytical

and numerical results. Despite the currently chosen clearance of 1 cm for evaluation of the

analytical model in line with the other models, the smaller clearance does make sense. The

system is rotational symmetrical with regard to the z-axis. This means that there is a gap

height of 1 cm around the whole system. In the ellipsoidal model used for the numerical

simulations, the film thickness only exhibits this value at one side where the fluid streams

out. Consequently, the area of the outflow relative to the volume of the geometry is much

smaller. This effect can obviously been compensated by choosing a smaller clearance in the

analytical model. Apart from the maximum pressure, the model of a sphere in a hemisphere

also shows good agreement with the numerical results of the qualitative pressure distribution.

The pressures that can be expected for yogurt lie in the range from 1 to 15 kPa. Comparable

pressures are reported in the literature.

The magnitude of velocity ranges from 15 cm/s to 22 cm/s in the middle of the bulk in

all cases. This finding is in agreement with the literature. It shows also the same order of

magnitude as the analytical calculations of the plane circular parallel plates and the plane

elliptic parallel plates. The distribution is not linearly though. Also the velocity distribution

determined by the other analytical models does not fit. This observation is not surprising

bearing in mind the above mentioned difference of the ratio from the area of the outflow to

the squeezed volume. Due to the well-known law of Bernoulli the velocity in the numerical

model must increase in comparison to the analytical model of a sphere in a hemisphere. As

mentioned in the previous section, the velocities calculated due to the analytical models are

not dependent on the viscosity of the fluid. This relationship cancels out in the derivation

of the equations. Nevertheless, the effect is present in the numerical investigation leading to

slight velocity increases with increasing viscosities. Only the non-Newtonian case does not

follow this tendency but only develops velocities comparable to those arising in water.
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The higher velocities with higher viscosities in the Newtonian cases are not immediately

acceptable. According to the higher inertia effects in the fluid, one would expect lower

velocities with increasing viscosities. The clue is the necessity of a constant volume flow

in all considered cases. As the streamed areas are constant from case to case, the solution

lies in the velocity profiles. In the case of the lower viscosity fluids, the maximum velocity

is achieved over wide parts of the cross section. The profile becomes more tapered with

increasing viscosities. As the averaged velocity over the cross-section needs to be constant

in continuity with the constant volume-flow rate, the magnitude of velocity is necessarily

higher for higher viscosity fluids due to the observed profile.

The shear rates that were found lie in the range between 20 s−1 and 150 s−1. These results

agree well with the literature. Most authors report ranges between 10 s−1 and 1000 s−1 with

an emphasis on the values up to approximately 100 s−1. Naturally, the values that can

be found at the surface of the model tongue are higher than those that are observed in

the middle of the bulk. The analytical calculations of the geometries featuring increasing

fluid-film thicknesses confirm these findings exactly.

The viscosity in the non-Newtonian case varies between 0.9 Pas at the surface of the

model tongue and 5.6 Pas in the bulk at the tip of the model tongue. The surface of the

tongue is therefore covered by a thin film of constant low viscosity. This finding agrees with

the observed high shear rates at the surface of the model tongue. The higher viscosities in

the middle of the bulk might be detected by the kinesthetic sense during active manipulation

of the food.

The shear stresses are directly proportional to the shear rates in the Newtonian cases.

Due to the altering viscosities in the non-Newtonian case the profile changes considerably.

Additionally, shear-thinning non-Newtonian behavior reduces the developing shear stresses

significantly by about 70% compared to the expected shear stresses in a Newtonian case of

comparable viscosity. The shear stresses of all considered models range from approximately

0.01 Pa to 90 Pa. These lie exactly in the range the literature predicts for liquid foods,

including yogurt and syrups. The analytical calculations arrive at the same result.
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5.3 Mechanoreception

The role of the mechanoreceptors in texture perception needs further clarification. Medical

scientists use a different vocabulary for measured quantities than engineers do. For that

reason, the data given in the literature are not always clear from the engineering point of

view. Moreover, the information about mechanoreception in the mouth is rather small.

Nevertheless, a rough estimation and comparison of detectable and occurring quantities

is achievable by calculating the average values of force per area. Considering the mechanore-

ceptors, the sizes of the receptive fields and the detection thresholds in mN are known (see

table 2.4). The forces that are required to drive the analytical models together have been

calculated. Additionally, the areas of the geometries can be determined.

The resulting averaged thresholds for the pressure perception are 190 N/m2 for the SA I

receptors, 58 N/m2 for the SA II receptors and 55 N/m2 for the RA I receptors. The

averaged pressures for the analytical fluid-mechanical models are 1819 N/m2 for the plane

circular parallel plates, 2484 N/m2 for the plane elliptic parallel plates, 77 N/m2 for the

plane and curved circular parallel plates taking the area of the plane plate, and 69 N/m2 for

the sphere in a hemisphere with respect to the area of the hemisphere.

These estimations show that the detection thresholds of all mechanoreceptors lie under

the averaged pressures in the analytical models. Hence, it seems to be reasonable that

the superficial mechanoreceptors are partly responsible for the texture evaluation of foods

capable of flowing. Additionally, the receptors responsible for the kinesthetic perception will

contribute to the texture perception.

5.4 Outlook

Summarizing, the current thesis confirms a multitude of different findings and aspects. The

most important result is that the established tongue-palate model system according to Ste-

fan has been called into question. The newly developed squeezing model of a sphere driving
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into a hemisphere brings out values for the fluid-mechanical quantities that are closer to re-

ality. Only the velocity cannot be modeled correctly because of the wrong ratio of streamed

outflow area to squeezed volume. Here, the established model yields better values although

the geometrical imitation is even worse and also does not include the right area-volume ratio.

Moreover, the current thesis clarifies the fluid-mechanical relationships by bringing to-

gether all flow variables and their dependencies. In the future, it is conceivable to intensify

the research on non-Newtonian fluid-flow behavior. An extension to the newly found analyt-

ical models is imaginable, possibly along the lines of the analytical approach of calculating

non-Newtonian fluids between two parallel plates. In the same way, further material laws

representing non-Newtonian fluids can be incorporated into the numerical code. The con-

sideration of particle flow would improve considerably the emulation of real food systems.

Both approaches would yield a better understanding of different foodstuffs.

A further challenge is the improved emulation of the human tongue. The rigid model does

not, of course, mimic the nature of the highly flexible muscular hydrostat realistically. Com-

bining existing simulations of muscle-induced tongue movement with the fluid-mechanical

investigations presented in this thesis might be the most powerful simulation technique.

Therewith, the vision of a tailored texture that meets all desires comes closer step by step.
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Appendix A

Peer-reviewed Papers

Hartmann C, Mathmann K, Delgado A, 2006. Mechanical stresses in cellular struc-

tures under high hydrostatic pressure. Innovative Food Science & Emerging Technologies

7 (1-2) 1–12.

Mechanical stresses and deformation of cellular structures due to the application of high

hydrostatic pressure (HHP) is analysed for two cases. In the first case, a liquid-filled spherical

shell with linear elastic material properties is considered as first approximation of a biologi-

cal cell. The theoretical analysis reveals the existence of severe non-hydrostatic mechanical

stresses in the wall of the structure. As second case, a nonlinear model of a yeast cell (Saccha-

romyces cerevisiae) under high hydrostatic pressure is assessed by use of the finite-element

method. It is observed that hydrostatic stress conditions are preserved in the interior part of

the cell, while nonhydrostatic stress is encountered in the cell wall. There, von-Mises stress

reaches its critical value upon failure (70±4 MPa) at a pressure load between 415 MPa and

460 MPa. This confirms observations of cell wall damage at this pressure as reported earlier

by other authors.
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Mathmann K,Kowalczyk W,Petermeier H,Baars A,Eberhard M,Delgado A,

2007. A numerical approach revealing the impact of rheological properties on mouthfeel

caused by food. International Journal of Food Science & Technology 42 (6) 739–745.

In contrast to the static chemoreceptor-related flavour perception, texture of food capa-

ble of flow is detected dynamically with oral mechanoreceptors while the food is manipulated

in the mouth. The resulting sensation called mouthfeel strongly depends on the different

physical properties of food. Aim of the current study is to determine numerically the oc-

curring fluid mechanical forces in food suspensions using a simplified tongue-palate model

system consisting of two parallel plates. For this purpose, the equations of fluid and particle

motion are numerically solved by using structured overlapping grids. In the computational

experiment, a density neutral fluid system between the plates is compressed by moving the

upper plate with constant velocity down to the other one. It has been found that suspended

particles move with the fluid flow but have only minor effect on the global flow field in the

applied concentration.

Mathmann K, Kowalczyk W, Delgado A, 2009. Development of a hybrid model

predicting the mouthfeel of yogurt. Journal of Texture Studies 40 (1) 16–35.

Texture perception and mouthfeel are sensory variables that still need further clarifica-

tion. A reliable method to describe mouthfeel quantitatively by means of physicochemical

measurements is missing so far. The current study focuses on a better understanding of

the texture perception of yogurt. The final aim of the study consists of the development

of a novel hybrid model, which is able to predict mouthfeel sensations objectively. For this

purpose, cognitive methods are used in order to merge underlying data pools with respect to

process parameters and the composition of dry matter content. These employed data pools

result from rheological characterizations as well as sensory analyses of yogurt and from nu-

merical simulations of fluid flow in a simplified anatomical model of the human mouth. This

paper introduces the exact procedure of the study. Furthermore, the methods for generating

the underlying data pools are described, and the results are presented.



Appendix B

Calculation of the Arc of Circle

One of the analytical approaches is based on the consideration that the fluid streams in an

arc. Figure B.1 shows this concept illustrated for the sagittal plane. The arc of the circle

that is relevant for further calculations is marked in red. It is characterized by the three key

points P1(0mm|0mm), P2(58mm|0mm) and P3(29mm|16mm).

The equation of a circle,

(x− xM)2 + (y − yM)2 = r2, (B.1)

allows the calculation of the central point M and the radius R2. The equation is converted

equivalently into

x2 + y2 + 2 (−xM)︸ ︷︷ ︸
a

x+ 2 (−yM)︸ ︷︷ ︸
b

y + x2M + y2M − r2︸ ︷︷ ︸
c

= 0 (B.2)

for that purpose. Then a system of linear equations is built up relying on the key points in

the sagittal plane. Taking P1 directly brings c = 0mm2, taking into consideration P2 yields

a = −29mm and setting P3 into the remaining equation leads to b = 18.28mm. Hence, the

central point is M(29mm| − 18.28mm) and the radius R2 = 34.28mm.

In order to determine the length of the arc of the circle between the key points P1 and
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P1(0|0) P2(58|0)

P3(29|16)

M(29|-18.28)

R2=34.28

18.28 a

Figure B.1: The circle constructed through the key points of the sagittal plane (all values
are given in mm).

P2, the angle α needs to be calculated. The relationship cos α
2
= 18.28mm

34.28mm
gives α = 115.55◦.

Employing the equation

b = 2πr
α

360◦
(B.3)

for the calculation of the length of the arc of the circle results in b = 69.13mm. Therewith,

the radius or semi-major axis adopts the rounded-up dimension Ra2 = 35mm.

Performing the same procedure for the frontal plane results in the radius R1 = 18.13mm.

The angle α is 166.53◦ and the length of the arc of the circle b = 52.68mm. Consequently,

the radius or semi-minor axis has the rounded-down value Ra1 = 26mm.



Appendix C

Code nonNewtonianIcoDyMFoam

#include ”fvCFD .H”

#include ”dynamicFvMesh .H”

#include ” incompre s s i b l e / s inglePhaseTransportModel / s inglePhaseTransportModel .H”

// ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ //

int main ( int argc , char ∗argv [ ] )

{

# include ” setRootCase .H”

# include ” createTime .H”

# include ”createDynamicFvMesh .H”

# include ” i n i tCon t i nu i t yEr r s .H”

# include ” c r e a t eF i e l d s .H”

// ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ //

Info<< ”\ nStar t ing time loop \n” << endl ;

while ( runTime . run ( ) )

{

# include ” readPISOControls .H”

# include ” readTimeControls .H”

# include ”CourantNo .H”

i f (mesh . moving ( ) )

{

phi += fvc : : meshPhi (U) ;

}
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# include ” setDeltaT .H”

runTime++;

Info<< ”Time = ” << runTime . timeName ( ) << nl << endl ;

bool meshChanged = mesh . update ( ) ;

i f (meshChanged )

{

# include ” co r r e c tPh i .H”

}

i f (mesh . moving ( ) )

{

phi −= fvc : : meshPhi (U) ;

}

# include ”UEqn .H”

// −−− PISO loop

for ( int co r r =0; corr<nCorr ; c o r r++)

{

rUA = 1.0/UEqn .A( ) ;

U = rUA∗UEqn .H( ) ;

phi = ( fvc : : i n t e r p o l a t e (U) & mesh . Sf ( ) ) ;

adjustPhi ( phi , U, p ) ;

for ( int nonOrth=0; nonOrth<=nNonOrthCorr ; nonOrth++)

{

f vSca la rMatr ix pEqn

(

fvm : : l a p l a c i a n (rUA, p) == fvc : : d iv ( phi )

) ;

pEqn . s e tRe f e r ence ( pRefCel l , pRefValue ) ;

pEqn . s o l v e ( ) ;

i f ( nonOrth == nNonOrthCorr )

{
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phi −= pEqn . f l u x ( ) ;

}

}

# include ” con t inu i t yEr r s .H”

i f (mesh . moving ( ) )

{

// Make the f l u x e s r e l a t i v e

phi −= fvc : : meshPhi (U) ;

}

U −= rUA∗ f v c : : grad (p ) ;

U. correctBoundaryCondit ions ( ) ;

}

runTime . wr i t e ( ) ;

In fo<< ”ExecutionTime = ” << runTime . elapsedCpuTime ( ) << ” s ”

<< ” ClockTime = ” << runTime . elapsedClockTime ( ) << ” s ”

<< nl << endl ;

}

Info<< ”End\n” << endl ;

return ( 0 ) ;

}
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