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Abstract

Understanding and reduction of turbulent or anomalous transport in magnetized plasmas
is of a primary concern for confinement fusion. In certain regimes the turbulence self-
organizes itself and forms large scale poloidal flows, Zonal Flows (ZF). Due to their shearing
effect on turbulent eddies they represent an intrinsic key-mechanism towards the reduction
of radial transport. It is therefore imperative to account for ZF activity in any description
of turbulence more advanced than overall scaling laws in dimensionless parameters or
anomalous diffusion coefficients.

Current ZF theories do not self-consistently describe the nearly stationary ZF-turbulence
equilibrium and mostly focus on the ZF excitation only. First-principles-plasma-turbulence
two-fluid studies are used to examine the excitation and evolution of ZFs and their influence
on ion-temperature-gradient turbulence to gain an insight on the ZF-turbulence interac-
tion and the properties of ZFs. The characteristic features observed in the ZF-turbulence
equilibria define the requirements upon a functional describing the significant deterministic
parts of the perpendicular and parallel Reynolds stresses that govern the ZFs.

Artificial flows are then used in extensive turbulence studies with a slight offset from the
self-consistent ZF-turbulence equilibrium to identify the correlations between the perpen-
dicular and parallel stresses, the ZF and the turbulence - all in order to construct a Reynolds
stress response functional. It is validated that the functional reproduces all stress features
observed in self-consistent ZF studies and that numerical solutions of the ZF momentum
equation induced by the functional show the proper ZF characteristics. The constructed
stress functional allows, for the first time, a self-consistent prediction of the time-evolution
of ZFs and permits a reliable mapping of ZF-turbulence equilibria.
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Chapter 1

Introduction

It is one of the most intriguing facts in toroidally confined fusion plasma physics that the
confinement of macroscopically stable equilibria is nonetheless determined by the behavior
of micro-instabilities. The transport of particles and heat perpendicular to the magnetic
field is governed by small scale turbulence [1, 2, 3, 4| as the other transport processes,
classical and neo-classical diffusion [5, 6], are too small to account for the experimentally
observed transport values. Understanding of instabilities, turbulence excitation and possi-
ble reduction mechanisms for turbulent or anomalous transport is therefore important to
improve plasma confinement.

Zonal Flows (ZF) |7, 8, 9|, radially varying flux-surface averaged potential perturbations,
self-excited by the turbulence represent an intrinsic key-mechanism towards the reduction
of radial transport due to their shearing effect on the turbulent eddies [10]. Any tur-
bulence description more advanced than overall scaling laws in dimensionless parameters
or anomalous diffusion coefficients is therefore inseparably linked to the comprehension
of the excitation and time-evolution of ZFs. As discussed in the following section, cur-
rent ZF theories up until now either aimed towards an understanding of the initial ZF
excitation phase only or were unable to self-consistently predict the time-evolution of the
ZF-turbulence equilibrium adequately.

This motivates the detailed examination of the behavior of ZFs and their interaction with
the turbulence in first-principles-plasma-turbulence studies within this thesis. From these
observations a Reynolds stress response functional that governs the evolution of the ZFs is
derived without any of the presuppositions that constrict previous theories. The functional
reproduces the major ZF features and allows, for the first time, a self-consistent prediction
of the time-evolution of ZFs. This greatly improves the research in plasma confinement as
it permits a reliable mapping of ZF-turbulence equilibrium states.

1.1 Overview
Numerous instabilities in confinement equilibria, of which many are reviewed in [1, 2, 3, 4,

6, 11, 12, 13], have been found since they became a focus of interest in the late 1940’s. Some
instabilities, mostly large scale magnetohydrodynamic, can be suppressed by customized
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Figure 1.1: Schematics of Zonal Flows with a
characteristic radial wave-number k, in an axisym-
metric magnetic confinement plasma.

confinement field configurations [14, 15, 16| or adaptive feedback methods [17|. But, the
temperature and density gradients inherent to a confined fusion plasma always constitute
an energy source for gradient-driven micro-instabilities, e.g. drift-waves (DW) [18, 19|
or ion-temperature-gradient (ITG) [20] modes (both shortly revisited in Chap. 3), that
generally saturate in a turbulent state.

Many early studies of turbulent transport restricted themselves to describing the plasma
with scaling-laws or anomalous-diffusion coefficients [1, 2, 3, 4, 21, 22|, often employ-
ing weak turbulence approximations. This approach is already questionable when several
microscale instabilities coexist, which is usually the case, and the different diffusivity con-
tributions cannot be identified anymore due to strong nonlinear interaction. Moreover, the
method is entirely inadequate to describe the experimentally observed turbulence bifurca-
tions, e.g. the transition to an improved confinement mode (H-mode) [23] with very steep
gradients on the edge of the confinement region or the formation of an internal transport
barrier |24, 25].

To gain a deeper insight into the turbulence interaction the focus of interest shifted towards
the analysis of the entire turbulence spectrum both theoretically [26, 27, 28] and experi-
mentally [29] in the 1970’s as opposed to the previous restriction to a spectrum integrated
diffusion coefficient or scaling law. As the plasma motion in a strong magnetic field is
highly anisotropic, because gyration restricts perpendicular motion, the turbulence scales
along the field are large whereas perpendicular they are short, which suggested that a con-
fined plasma may have some properties of two-dimensional turbulence, e.g. inverse cascades
from small scales to large scales [30]. And indeed an inverse cascade of energy towards
large scales was revealed in a three-wave cascade model [7]. It was found that the en-
ergy condensates in a flow with a poloidal wave-number k9 = 0 and a characteristic radial
wave-number k, = k., forming nested layers of clockwise and counterclockwise poloidal
flows (Fig. 1.1). In analogy to the same phenomenon observed in atmospheric Rossby
waves [31] these flows were named Zonal Flows (ZF). A later study of DW turbulence in a
cylindrically confined plasma demonstrated the ZF self-formation process directly [8].
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The question of a ZF generation mechanism is instructively answered in a fluid framework:
An average (...) (discussed in detail in chap. 4) of the fluid momentum equation yields a
Reynolds stress contribution (9,7y) to the ZF momentum equation

9 (vg) ~ =0 (0rTp) , (1.1)

where (vg) is the ZF velocity and ¢, and 0y are the turbulent radial and poloidal velocity
fluctuations. Thus, the divergence of a Reynolds stress generated by anisotropic turbulence
can excite ZFs [32].

Assuming a spatiotemporal scale separation between the ZFs and the ambient turbulence
an effort was made to separate the dynamics into two coupled equations [33] and explain
the ZF-turbulence interaction with a wave-kinetic scattering process of turbulence quanta
on shear flows [34]. The growth of ZFs as a “self-organized instability” was observed but
no description for the time-evolution was derived [33].

With the increase of available supercomputer power in the 1990’s turbulence computations
including temperature fluctuations and toroidal geometry became possible: A local gyro-
fluid I'TG-turbulence study in toroidal geometry revealed that ZFs are excited by ITG-
turbulence in the plasma core region and that they are essential for the saturation of radial
heat transport [10]. It was further pointed out that the ZF-turbulence equilibrium wave-
number spectrum is down-shifted from the fastest growing linear mode of the primary
instability. A global gyro-kinetic ITG-turbulence study in toroidal geometry [35] validated
that a key mechanism for the reduction of transport is the breaking apart of eddies by the
ZF and thus a reduction of the radial decorrelation length, as suggested in [36, 37]. It was
also shown that the radial profile of the ZFs in local and global simulations is qualitatively
similar.

An analytic analysis of potential saturation mechanisms yielded that stationary poloidal
flows are not damped by linear collisionless processes [38], e.g. Landau damping, but are
subject to ion-collisional damping [39], implying larger poloidal flows at high temperatures
since the collision frequency vj; ~ T73/2 scales inversely with the temperature. This
was supported by collisional gyro-kinetic studies [40, 41| of marginal ZFs where a linear
dependence between ion diffusivity and collision frequency and further a proportionality
between the anomalous transport and the mean square of the turbulence fluctuations was
observed. Another study revealed that ZFs are not prone to Kelvin-Helmholtz (KH) like
instabilities even though their profile varies radially with neighboring ranges of different
poloidal velocities [42]. This rules out KH instabilities as a saturation mechanism for
poloidal flows.

To describe the ZF-turbulence bidirectional feedback mechanism it was suggested that
the turbulence and ZF intensities follow a “predator-prey” behavior since the ZFs reduce
the turbulence intensity by shear suppression on one hand and the drift waves appear
to be modulationally unstable to shear flow perturbations on the other [43, 44]. Within
this framework it was shown that in the transitional regime, between weakly and strongly
collisionally damped ZFs, bifurcations in the turbulence intensity can occur [45, 46, 47].
However, observation of an offset (Dimits shift) to the linear ITG instability threshold,
i.e. a total quench of turbulence, due to a stable residual ZF [48] already indicates that
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Figure 1.2: (a) Schematic of the poloidal cross-section of a toroidal confinement configu-
ration. A fluid element with the cross-section d¥; is moving poloidally to the high field side
B, and magnetic flux conservation results in a perpendicular compression. (b) Top view of
a section of a toroidal confinement configuration. A fluid element moving poloidally from
radius R; to Ry, is additionally compressed in the parallel direction due to the arclength
difference. Therefore the volume dV of the poloidally moving fluid element is proportional
to dV ~ R2.

magnetic axis

parallel return flow

Figure 1.3: Half section of a toroidal confinement configuration. Schematic of the parallel
return flow connecting perpendicular compression (red) with expansion regions (blue).
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the “predator-prey” model oversimplifies the complex ZF-turbulence interaction as the
“predator”, the ZF, can survive without any “prey’-turbulence.

All the aforementioned ZF observations and theories restricted themselves to purely
poloidal flows. However, stationary flows of this kind are only possible in a geometry
without a geodesic curvature [49]. In a toroidal, highly conductive configuration with
a magnetic field pressure significantly stronger than the thermal pressure the poloidal
magnetic flux is conserved such that a fluid volume moving purely poloidally from the
low field side By to the high field side By, is compressed, since [B;-d¥; = [ By, - dX,,
(Fig. 1.2a), where d¥ is an area element of the poloidal cross section of the fluid element.
The magnetic field is mostly toroidal |B| ~ 1/R and the arclength of the field lines is
proportional to the radius R (Fig. 1.2b), hence the change in density of a poloidally
moving fluid volume is ny/n; = Rl2 /R%L Assuming an adiabatic process, the change in
pressure is pp/p; = (nh/nl)5/3 = (Rl/Rh)10/3. For typical values R; = 2m and Ry = 1m,
the change in pressure is py/p; = 10, which is well beyond what the available energy in the
fluctuations could sustain. A parallel flow component is therefore essential for stationary
ZFs to cancel the divergence of the poloidal flow [49], otherwise the accumulating pressure
perturbation will result in an oscillating motion called Geodesic-Acoustic-Mode (GAM)
[50, 51, 9]. Thus stationary ZFs are primarily expected in the core of a toroidal plasma
where the parallel flow is strong, due to the small safety factor, whereas the edge is
dominated by the GAMs.

Figure 1.3 shows how a fluid element moving poloidally from the low to the high-field side
is perpendicularly compressed on the top side of the torus and decompressed on the bottom
when moving from the high to low-field side. The return flow along the field lines connects
regions of opposite pressure fluctuations on the top and bottom side thus canceling the
divergence of the poloidal flow [49]. It can further be shown that the parallel flow represents
the major part of the ZF energy [49] and its inclusion into a theory for ZFs is therefore
imperative.

The most recent analytic ZF theories [52, 53, 54| refined and extended the wave-kinetic
DW approach of [33] to derive a description for the steady state of ZFs. The theory states
that the ZF-turbulence equilibrium can be categorized in three regimes for collisionally
damped ZFs. The first regime is characterized by unstable DWs but absent ZFs for small
turbulence-energy growth rates 7. The second regime is defined by an increasing ZF
amplitude while the DW fluctuation level remains constant for increasing ~r. In this
case the transport coefficient appears to be highly dependent on the collisional damping
of the ZFs, which reproduces previous results [40, 45, 55|. In the third regime both the
level of DW fluctuations and of ZFs are most unstable and increase with 7, whereas the
transport is only weakly dependent on collisionality [56]. The collisionless case on the
other hand shows a total quench of turbulence by a residual saturated ZF for small vy,
and a behavior similar to regime three of the collisional case for a +7 above the critical
threshold for the onset of DW turbulence with ambient shear flows [54]. In both cases,
collisional and collisionless, of highly unstable ZFs, the level of turbulence remained finite
which explains the weak dependence of the transport coefficients on collisionality observed
in high temperature plasmas [56]. The wave-kinetic effect of concentration of fluctuation
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Figure 1.4: Poloidal ZF velocity from a large-aspect-ratio tur-
bulence study, using the two-fluid code NLET [64], mapped to a
torus.

energy, observable as local peaks in the radial heat-flux, favoring one poloidal flow direction
(electron diamagnetic drift direction) over the other has been directly observed in numerical
studies [57]|. For a summary of the state of progress in ZF theory the reader is referred to

[9]-

Experimental measurements of stationary ZFs in the core remain difficult due to the high
temperatures, but, employing heavy-ion-beam-probes (HIBP) 58, 59, 60| or beam-emission
spectroscopy [61], the existence of stationary ZF with a characteristic radial scale was
verified. For an extensive review of ZF measurements the reader is referred to [62].

Although all the previously mentioned ZF theories describe at least one detail in the ZF-
turbulence behavior qualitatively adequate they should not be taken too literally. Neither
can the turbulence in confined plasmas always be considered weak [63], confounding the
weak turbulence based theories, nor is there a strict spatial scale separation between ZFs
and turbulence, necessary for a wave-kinetic approach (details discussed in chap. 4). Addi-
tionally, the inverse cascade occurs in one major step as opposed to an incremental cascade
from small over intermediate to large scales [63]. Moreover, theories that do include the
parallel flow component [53, 54] still treat the corresponding parallel stress contribution
simplified to a viscous modification of the ZF growth rate only. Even more importantly,
none of the theories can reproduce the robust characteristic radial scale observed in nu-
merical studies [49, 63| and thus cannot predict the ZF time-evolution, which will be
demonstrated in chap. 5.
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1.2 Outline

Figure 1.4 shows a ZF pattern in a tokamak confinement configuration obtained using the
two-fluid code NLET [64]. The pattern changes only slowly over a time much larger than
the turbulence time scale or even the time scale of one toroidal sound wave transit and
it possesses a characteristic radial scale length which suggests a dominant deterministic
mechanism governing its evolution.

The intent of this thesis is to find a self-consistent functional for the Reynolds stress
governing the ZF evolution using extensive first-principles plasma-turbulence-computations
only. The requirement upon the functional is that it reproduces all observed deterministic
ZF features with the smallest number of degrees of freedom necessary. As both ZFs and
turbulence are inseparably linked, a good understanding of the ZF-turbulence interaction
is imperative to make predictions of the turbulence level and thus confinement capabilities
in fusion devices. The derived stress approximation greatly simplifies further studies of
the turbulence behavior as it describes the ZF excitation and evolution in a compact and
comprehensible form. It is the first indispensable ingredient towards a plasma turbulence
description that remains valid even in the vicinity of transport bifurcations as it allows
a much more detailed insight into the turbulence evolution than overall scaling laws or
anomalous diffusion coefficients provide.

For the analysis a two-fluid framework, NLET [64], will be used rather than a gyro-kinetic
one because both qualitatively reproduce the evolution of ZFs in the regime of interest but
the fluid description comes at a lower computational expense. The outline of the thesis is
the following:

Chapter 2 concisely recapitulates some basics of plasma physics, toroidal confinement and
the derivation of the fluid equations used in the following chapters and is mostly intended
as a guideline for a reader unfamiliar with plasma physics.

Chapter 3 gives a summary of the DW and ITG instability mechanisms and the dispersion
relations and illustrates a mechanism how small scale turbulence self-organizes itself into
larger scales through an inverse cascade process |65]. The differences between the linear
and turbulent ITG states with artificially suppressed ZFs are discussed using turbulence
studies to elucidate the changes in the fluctuation spectra before the onset of ZF activity.
Chapter 4 is dedicated to the observation of characteristic features of ZFs and turbulence
and their influence on each other in turbulence studies. First the E x B- and diamagnetic-
velocity contributions to the perpendicular stress are compared. The initial excitation
phase of ZFs is examined to identify the turbulent behavior necessary to trigger the transi-
tion into a ZF-turbulence equilibrium state. The differences between the scale lengths and
amplitudes of the initial and equilibrium states of self-consistently excited ZFs is exempli-
fied. It is shown on what time scale the ZF pattern changes and examined how turbulent
states, artificially modified by arbitrary flows, evolve. Further, the time-evolution of the
stresses is studied to determine the level of determinism in the stresses and to demonstrate
the influence of the different contributions in the ZF momentum equation. The ZF evolu-
tion in the two-fluid framework is compared with one obtained from the gyro-kinetic code
GYRO [66] to justify the use of the two-fluid approach.

The response of self-consistent ZFs to strong local fluctuations of the radial heat-flux @ is
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examined. Fixed artificial flow profiles slightly away from the ZF-turbulence equilibrium
state are used to elucidate the corrugating influence the shear-flows exert upon the heat-
flux, and to investigate the different turbulence responses with respect to flows in ion- and
electron-diamagnetic drift direction. Furthermore, the relation between the radial heat-
flux gradient d, In @ and the ZF shearing rate is studied and extensive turbulence studies
with artificial flows of varying radial scales and amplitudes divulge the dependence of the
radial average heat-flux level on both amplitude and scale of the ZFs. Additional studies
with flow patterns alternating over time give an insight into the "memory" the turbulence
possesses of the flows it was previously subjected to.

Chapter 5 is dedicated to the construction of the Reynolds stress functional and contains
the most essential results of this thesis. It is shown that two degrees of freedom out of
the large amount available for the turbulence are already sufficient to construct a func-
tional describing the observed ZF evolution. Extensive turbulence studies with various
artificial flow patterns and turbulence levels close to the self-consistent ones are used to
identify the major deterministic features in the stress responses. The structures of the
perpendicular and parallel stress contributions are thereby treated as equally important,
in contrast to the approaches in previous ZF models, where only a viscous modification of
the linear ZF growth rate accounted for a parallel contribution. It is demonstrated in what
way the stresses relate to the turbulence level as well as its corrugations. The nonlinear,
wavelength dependent stress functional constructed from these observations is used to re-
construct the stress patterns of self-consistent ZFs and it is verified that it reproduces all
occurring prominent features observable in the stresses for a supplied shearing rate and tur-
bulence pattern. However, numerical solutions of the ZF momentum equation, induced by
the stress functional constructed from the aforementioned observations, do not reproduce
the time-evolution of ZFs from arbitrary initial states adequately. To identify the term
missing for a satisfactory reproduction of the ZF evolution, the evolution of ZFs observed
in turbulence studies is compared to the evolution predicted by a growth rate derived from
the nonlinear stress functional extended by a candidate term within a mean-field theory
framework. Common approximation techniques, e.g. a least-squares approximation, failed
to adequately verify the missing term for the stress functional as they yield sets of approx-
imation coefficients qualitatively indistinguishable but quantitatively different depending
on the level of random fluctuation remnants, interfering artificial artifacts (e.g. boundary
effects) or locally different turbulence behavior. To, nevertheless, affirm the extended func-
tional under these difficult conditions a minimal variance estimator method is developed.
The estimator is used to measure the stress response behavior to a perturbatory flow for
an ensemble of turbulence studies with artificial flows. Comparison of this measured stress
contribution with the growth behavior described by the extended functional finally yields
the desired verification which is further corroborated by numerical solutions of the ZF
momentum equation, induced by the extended functional, now reproducing the evolution
of ZFs from arbitrary initial states.

Chapter 6 discusses the wave-kinetic approach used in e.g. [53, 54, 32, 52, 67, 68| and
derives a stress approximation analytically. The dispersion relation and observed turbu-
lence behavior of the ITG-instability discussed in chapter 3 are used to make qualitative
estimates about the analytic coefficients and compare them to the results of chapter 5.
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Furthermore, it is elucidated why current wave-kinetic theories describe the ZF-turbulence

equilibrium evolution inadequately so far.
The result of this thesis, a Reynolds stress response functional for ZFs, is summarily dis-

cussed in chapter 7.



10

CHAPTER 1: INTRODUCTION




Chapter 2

The Two-fluid Description of a
Magnetically Confined Plasma

This chapter summarizes the basic properties of plasma confinement physics and explains
the two-fluid description. It is primarily intended as a concise guideline for a reader
unfamiliar with the intricacies of plasma physics. The set of turbulence equations used
throughout the following chapters is shown at the end of section 2.3.

2.1 Confined Plasma Equilibrium

A plasma is a quasi-neutral gas of electrons and ions. Near the thermodynamical equi-
librium the densities for the species s € {i,e} are distributed according to the Maxwell-
Boltzmann equation ny = nge~¢?/T with e, the charge, T' the equilibrium temperature
and the electrostatic potential ¢g. For small deviations from the equilibrium the densities
are ns ~ ngo (1 —esp/T) and the total charge density of a plasma with singly charged
species is p, = e (n; — n.) = —2e?no¢/T. The potential perturbation, caused by a small
localized charge density p; = qod° (r) with the Dirac §-function, can be derived from the
Poisson-equation

A¢p = —4m (pp+ pt) /c
= —4mr (qod® (r) — 2¢*n09/T) /e, (2.1)

which has the solution ¢(r) = goe™"/*P /er where A\p = \/cT /4mwe?ng is the Debye-length.
For scales L that are significantly larger than L > Ap the potential is ¢(L) =~ 0 and hence
one can assume in this case that the plasma is quasi-neutral n = n; = n. [69].

The interaction of the plasma with electromagnetic fields is described by Maxwell’s equa-
tions. However, since the time scales of electromagnetic waves and the plasma phenomena

11



12 CHAPTER 2: THE TWO-FLUID DESCRIPTION

of interest differ in several magnitudes the displacement current 0, E is neglected. Therefore
the Maxwell equations in CGS units for the plasma are

V-E=0 (2.2)
V-B=0 (2.3)
V x B =47j/c (2.4)
VxE=-0B/c, (2.5)

with B=V XA E=-V¢—-9A/cand V-j=0.

The idea behind magnetic confinement is to use the Lorentz force to balance the pressure
gradient, Vp = j x B/¢, in the plasma. It is useful to note that this equilibrium relation
can be rewritten as

k =4nVp/cB*+V B/B, (2.6)

where k = b - Vb is the curvature and V, = V — b -V with b = B/B. In a cylindrical
coordinate system (ég,&,,&,) an axisymmetric configuration (¢ = 0 and d, = 0) for the
magnetic field B and current j is defined by

B =ér0.A, + &, (0rA. — 0.AR) — €,0r (RA,) /R (2.7)
Anj/c = 0. B, + &, (OpB. — 8.Br) — 8,0r (RB,) /R (2.8)
U = RA, (2.9)
F=RB,. (2.10)

Using the definitions for ¥ and F' and the relation &, - V¥ = 0 in the equations (2.7) and
(2.8) results in

RB =VV¥ x &, + Fé, (2.11)
4nRj/c =VF x &,+4nRj,é,/c. (2.12)

This infers that V¥ - B = 0 and, using &, - Vp = 0,
0=jxB-B/c=Vp-B=(V¥xé&,) - Vp=(VpxVVU)-é&,, (2.13)

showing that W = const is a magnetic surface and an isobar with Vp || V¥. In a local
coordinate system (&y,é¢,&,) (Fig. 2.1) with &, = VU¥/|V¥| and é = &, x &, the
components B and j¢ defined by Eqgs. (2.11) and (2.12) are
Be = —é;-VU/R (2.14)
jg = —Céw . VF/47TR (2.15)
showing that W is the poloidal flux. Using these results in the &, component of the
equilibrium condition Vp = j x B/c gives
&y - Vp==8-(jxB)/c
= (JeBy — JoBe) /c
= —&y - VFB,/ATR + j,éy - V¥ /cR (2.16)
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flux surface

Figure 2.1: Cylindrical (ér,&,, &) and local coordinates (&;,8&¢, &,).

which defines the ¢ component of the current
Jo = cROyp + cFOy F/4TR . (2.17)

Since equation (2.8) simultaneously requires 4mj,R/c = —ROg (OrV/R) + 02¥, the Grad-
Shafranov equation [70] for an axisymmetric toroidal equilibrium in cylindrical coordinates
is

ROR (0rV/R) + 0°¥ = —4nR*dyp + FOyF . (2.18)
An alternative, more convenient form of the Grad-Shafranov operator A*, the left hand
side of (2.18), in general coordinates is
A* =R’V % : (2.19)
In a toroidal coordinate system (&, &g, &,) defined by
x = (rg+ rcosf)cosy (2.20)
y = (ro +rcosf)sing
z = —rsinf
the Grad-Shafranov operator takes the form of

U +5sinf0¥ 1
ro0r ¥ + sin 00 + V. (2.21)
T

A* = 02V
i r(ro + 7 cosf)
To find an equilibrium solution of (2.18) for the asymptotic small inverse aspect ratio limit,
e =r/rg — 0, it is assumed that the lowest order of U(r, 0, ¢) in € is ¥o(r) dependent only
on r [70, 71, 72|. Using By = &p - V x A = —0,V /rp, the Grad-Shafranov equation in the
limit € — 0 reduces to
_—TOGT (rBy) = 4mro,pOy,r — FO,FOg,r (2.22)
r

47["/“0 TQB
= —0 —20,.B
Ba D+ By rDyp



14 CHAPTER 2: THE TWO-FLUID DESCRIPTION

with A* — 0, (r0,¥¢) /r. Thus, after rearranging the terms, the equilibrium condition is

25

Or B2+ Bj + 87p| = — .

(2.23)
In case of a vanishing pressure gradient 0,p = 0, e.g. at the plasma surface, the equation
has a solution of the form f(r) = B?D + B? with f(r) a generating function that satisfies

Orf < 0 and f + r0.f/2 > 0. The magnetic field is given by By = /—r0,f/2 and
B, =+/f + 710, f/2. For the solution f(r) = B3/ (1+ r?/rd)) the magnetic field is

B() T B()

N

=1 272 Toe6 5 272 é,. (2.24)
This describes a concentric helical field configuration around (cos¢,sing,0)rg. with a
pitch between the toroidal and poloidal fields B, /Bg = ro/r. The solutions of (2.23) for
an arbitrary pressure gradient are nested concentric flux surfaces with a radially changing
field line pitch [70, 72, 71]. This simple equilibrium allows studies of the basic plasma
turbulence behavior [73, 74] in a curved toroidal field without the higher order effects
caused by a more complex geometry and will be used for the turbulence studies in the
following chapters. In experimental devices, the toroidal field is generated by poloidal
field coils whereas the poloidal field is generated by a toroidal plasma current induced by
a central field coil along the symmetry axis. This confinement configuration is called a
tokamak and a more detailed introduction is given in [6] (for non axisymmetric magnetic
configurations, e.g. stellarators see [75]).

A measure for the field line pitch on a flux surface is the safety factor

1 B
=— pdl—=
=5, f{ RB,
where B, is the poloidal field and dl is a poloidal path element. For a high aspect-ratio
configuration with circular flux-surfaces this formula gives
rB,

— 2.26
9 roBp’ ( )

(2.25)

which can be interpreted as the number of toroidal circuits following a field line necessary
to execute one poloidal rotation. The magnetohydrodynamic (large scale) stability of a
tokamak depends highly on the radial ¢-profile [14, 15, 16, 6] but it also defines the regions
of stationary ZF activity [63]. The global shear —radial change of ¢— is defined as

S

Q|3

drq. (2.27)

The radially changing local field line pitch can be measured by a local shear length which
is defined as follows. A path element of length dl along the magnetic field from a point
Pi(r1) to Pa(r1) on a flux surface at ry is dv; = dl”f). The connection vector from
Pi(r1) to a field line on a neighboring flux-surface at ro = 1 + dr is dvy, = dré, with
Pi(r2) = Pi(r1) + dva,. The path element of length di; along the magnetic field from
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Figure 2.2: Pitched field lines from different flux
surfaces. Shown are the parallel path elements that
contribute to the measurement of the local shear dl,.

Py(r2) to Pa(r2) = Pi(re)+dvy is dvy; = di) (b+drd,b) due to the radially changing field
line direction. The radial connection vector from Ps(rg) to Pj(r1) on the flux surface 7 is
dvy _, =dr(é, + dl”@Hér) with 9 = b - V due to the radial direction changing along the
magnetic field. The measure for the local shear is given by the difference vector between
the points Ps(r1) and Py(rq) (Fig. 2.2):

dly = dvy — (dV27r + dV27[ + dVQ’_,«)
— drdy (98 — 0,b) . (2.28)

The local shear length is thus defined as

1/Ls = & x b-dl,/drd]
—& xb- (96— 0,b) , (2.29)

which corresponds to a radial displacement necessary to have a field line pitch of 7 /4.
The particle motion in the magnetic field of tokamaks is given by the equation of motion

msi—::FqLesva/c, (2.30)
where F are any forces acting on the particle other than the Lorenz-force. In strong
magnetic fields (1 — 10T in tokamaks) the gyration frequency is very large, we; = eB/m; ~
108/s for protons. Hence, for time scales much larger than 1/w.; and spatial scales much
larger than the gyro radius the lowest order approximation for the particle motion is a
gyro ring with a guiding center velocity described by (2.30) [69]. The motion parallel to B
is defined by the parallel component of the equation, mdv”/ dt = F|. The perpendicular
motion is derived by taking the vector product of B and Eq. (2.30)

cF x B cmyg dvp
B x
es B2 + es B2 dt

vp = (2.31)

The second term is the polarization drift v, which is usually small (~ 1/w.) and can
be approximated by iterating (2.31). The forces that contribute to F originate from the
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magnetic axis »

®B vp

(a) (b)

Figure 2.3: (a) Minor cross section of an axisymmetric large
aspect ratio confinement device. Due to the charge-dependence
of vyp and v, the electrons e, and ions e; drift in opposite di-
rections. (b) Schematic of the generation of v4; due to a pressure
gradient.

electric field Fg = e;E, the magnetic moment u = —TB/B of the gyrating particle
F, =V (u-B) [76], the parallel inertia F; = —m dv /dt = —msv”(@tf) +v, -Vb+ v|K)
and gravitation Fy = m,g, which is usually negligible. The resulting drifts of the guiding
center are

cExB dBxVB dBxk cmg dvp

= B 2.32
=VE =VVB =Vk =Vp

where vy is the E x B-drift, vy p the gradient-B drift and v, the curvature drift, see Fig.
2.3a (the other parallel inertial terms are usually negligible) [69]. The current induced by
the drifts is jp = esn(vp — vg) and the magnetic moments are accompanied by a plasma
magnetization current jnr = ¢V X np. The sum of these currents is

B x Vp 47pj|  cnmsg dvp
— B

B? B2 T P q

N——— —

=jd =j D

o +ijm = (2.33)

where the relation (2.6) and the equilibrium condition Vp = j x B were used to eliminate
the VB x B and j,-terms. The diamagnetic current j,; is associated with a velocity
vgs = cB x VB/e,nB?. This velocity does not describe a physical drift of guiding centers
but originates from the different sizes and/or densities of gyro orbits along Vp causing a
net fluid velocity perpendicular to both pressure gradient and magnetic field (Fig. 2.3b).
It is instructive to calculate the divergence of jgs

Vjas = V- esn(vup + vi) + 47V - (pjy /cB?) (2.34)

since this relates how V - nvgs, which appears in the fluid description of the following
section, is connected to physical drifts.
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2.2 The Two-fluid Equations

In the case of a strong, almost rigid magnetic confinement the field experienced by a particle
changes only little over one gyro period such that p|VB| < B and ;B < w.B with a
gyro radius p = /27 /m/eB and a gyro frequency w. = eB/m [77]. Hence, the lowest
order approximation for a particle trajectory is the drift motion of its gyro center, as the
gyro motion itself averages out, where the field particle interaction is evaluated at the gyro
center. This removes the fast time scales proportional to w; ! from the following plasma
description.

The behavior of the confined plasma is described by a reduced set of equations derived from
Braginskii’s plasma fluid description [78|. The densities ns, velocities vs and temperatures
Ts of the two species s € {i,e}, electrons and ions, evolve according to the following
equations

dins +nsV-vg =0, (2.35)
msnsdivs = —Vps — V- Ps+esns [E+ vy x B/c] + Ry, (2.36)
3

§nsdfTS +psV-ve=-V-qs — P;Vvs+ Qs, (2.37)

where eg, ps, Ps, Rs, qs, Qs are the respective charges, pressures, stresses, friction forces,
heat fluxes and heat sources and df = 0; + v - V the convective time derivative. The fo-
cus of the following chapters is on the behavior of ion-temperature-gradient (ITG) driven
turbulence where electron temperature fluctuations are neglected. Therefore, explanation
of the electron temperature equation and source terms depending on the electron temper-
ature, e.g. Q¢, will be omitted and all terms of the order of 1/w.s7s neglected.

Assuming ideal gas behavior for the plasma, its pressures are given by ps = nsTs. The only
retained term of the divergence of the stress is a finite Lamor radius correction V - Py =
—mgngVys - Vvs ~ O(w'Vvy) where v, = ¢B x Vps/esnsB? is the diamagnetic drift
velocity [79, 80, 81, 82|. The friction forces are R, = —R,; = enej”B/UH with a parallel
conductivity o). The diffusive contribution to the ion heat flux is q;; = —mlA)V”Tl- with
an ion heat conductivity ;. Due to the gyro motion of the particles in the magnetic
field there is also a diamagnetic contribution to the heat flux. Figure 2.4 shows the gyro
orbits of two ions in a magnetic field with different gyro radii 712 due to the gradient
in temperature. The heat flux through the area d¥ by particles gyrating around xy — 71
is I'1 = —nTivs whereas ions gyrating around xg + ro cause a heat flux of I's = nThvs.
With the velocities vy 2 ~ /11 2/m the total diamagnetic heat flux through d¥ is q;q =
I'+TIy = —5pif) x VT;/2m;w.; which is derived by a Taylor expansion of T'(x) around xg.
The concrete numerical coefficients for all source terms are derived in a kinetic framework
[78].

The cross product of the momentum equation (2.36) with B yields an equation for the
perpendicular drift velocities

Vel = cE x B/B* 4 ¢cB x Vp,/esnB* + div,/wesB +B x V- Py/B?, (2.38)

=VE =Vds EvaNO(w;gl) O(w{sl)
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Figure 2.4: Explanation of the diamagnetic heat flux: Particles
gyrating around xog — 1 and xg + ro are subject to a gradient in
temperature which results in a net heat flux through the surface
element dX.

where v is the E x B velocity, vgs the diamagnetic velocity and vy, the polarization drift
which is of higher order in w_' than the first two velocities. Tteration of Eq. (2.38) results
in an expression for vy,

Vpi = b x d! [cE x B/B? + ¢B x Vpi/emiB2] Jwei — b X Vg -V [vE 4 v Jwei, (2.39)

where the last term, originating in V - P;, cancels the diamagnetic convection in di. Ob-
viously, the main contribution to v,; comes from the constant part of the magnetic field
and Eq. (2.39) can be simplified to

vpi = cDy[EL — Vipi/eimn] JweiB?, (2.40)

where D; = 0; + vg -V is the reduced convective derivative because the vy - V-terms
cancel in Eq. (2.39) and parallel gradients are neglected. Since we;/wee ~ me/m; is small
the electron polarization drift is negligible and the total velocities for the electrons and
ions are

V; =VE + Vg + Vpi + U”if) (2.41)
Ve =VE + Vge + UHeB (2.42)

Assuming quasi-neutrality of the plasma, n = n; = n,, the difference of the ion and electron
continuity equations (2.35) yields

Venvy + V- jyb/oje+ V- n(va — vae) =0, (2.43)

where jj = en (v”i — v”e). In the case where magnetic field fluctuations are neglected, the
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perpendicular electric field is E; = —V | ¢ and inserting (2.40) into equation (2.43) results
in the vorticity equation

V -neDy [Vi¢+ Vipi/ein] /Bwe — V -jHB/a”e
~V-cBxV(p;+pe)/eB*=0. (2.44)

An equation for the current j; can be derived from the component of the electron mo-

mentum equation (2.36) parallel to b, dropping the small electron inertial term in this
case,

/o ==V (¢ —pe/en) . (2.45)

The sum of the components of the ion and electron momentum equations parallel to b on
the other hand give an expression for the parallel velocity v

minDyvy = =V (pi + pe) , (2.46)

again neglecting the small electron inertia. The convection contribution by the diamagnetic
velocity cancels with the finite Lamor radius stress component just as in equation (2.39).
The evolution of the density n is given by the electron density equation

on+vg-Vn+nV - (VE + Vge + U”f)> -V j”E)/O'H =0 (2.47)

Inserting the identities V - cpif) x VT;/eB = —nvy; - VT; + cp; (V X B/B) - VT;/e and

piV - v; = —Tidin and the ion continuity equation (2.35) in (2.37) for the ions results in
the ion temperature equation

8DIT /2 = T; [~nV - (Vi + Vae + v b) + V- jyb/oe]

+5p; (V x b/B) - VT;/2¢ = V- bV T; = 0 (2.48)

Thus the complete plasma evolution is described by the set of equations (2.44), (2.45),
(2.46), (2.47), (2.48) and ps = nTs.

2.3 The Two-fluid Equations in Toroidal Geometry

The fluid description of the previous section is a subset of the more general two-fluid
equations from which the the nonlocal electromagnetic turbulence code (NLET) [64] is
derived. This section gives a short overview of the derivation of the dimensionless code
equations.

The magnetic geometry is described in a local coordinate system (&, éy,&,) with & =
VU/|VY|, & = —&, and &, = b on a reference flux surface. Since the field lines curl
helically around the flux surface, a displacement along b corresponds to a poloidal one
and thus the coordinate in &, is the poloidal angle 6. To study the plasma turbulence in a
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Figure 2.5: (a) Position of the éx X &y-planes around the reference flux surface ¥,. (b)
Layout of field lines connecting & x &,-planes at different poloidal positions 6. (c) Projection
of a perpendicular structure along the field lines onto a &x x &y-plane which displays the
similarity relation yLo/L, = By/B.

region around a reference flux surface the domain is represented by multiple planes defined
by &x x &, at different angles 6 (Fig. 2.5) evenly covering one full poloidal rotation. Due to
axisymmetry the system is periodic in the &y-direction. Thus the plasma behavior near the
reference flux surface for the entire device is described even though the domain covers only
a pie slice of it. The radial coordinate is x = (¥ — V¥,.) / |[VV,| Ly with a flux label ¥, for
the reference surface and a characteristic scale length Lo perpendicular to b. The plasma
turbulence phenomena of interest have a large parallel scale length, so it is assumed that
a fluctuation on a &4 x &y-plane is the projection of a perpendicular fluctuation along the
field lines (Fig. 2.5). A fluctuation of scale Ly corresponds to one of scale L, = LoB/By
in the toroidal direction and the coordinate is defined by y = ByL,, /BLy = Byp/BLg. In
these coordinates the average of a quantity W over a flux-surface is simply

(W), = / / dyd= (2.49)

In this circular geometry the &y x &y-planes are rectangular and the corresponding gradient
is V| = 0, + 0y. The magnetic field and &, are parallel only on the reference flux surface.
For other radial coordinates the field is B = B (&, — z& /L) for a local shear length L,
hence b-V = 9, — x0y/Ls. The divergences of the drift velocities is always of the form
V.-vp =V (B xVf/B? where f € {¢,p,T;}. Using the relation (2.6), (2.4) and the

identities

jL =cB x Vp/B? (2.50)
Vp = B>V /41 + BBV B/4m (2.51)
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the operator transforms to

V- (Bxvf/BY) %

%O Vs [arjy/cB? — 4nj, JeB? — 2k x B/B]

P2V V) [anjy/eB? — 47B x Vp/B* ~ 2% x B/B?]

V- [4nj/cB* —2VB x B/B?]

(2.51) VS [47rj||/cB2 —B x (V3/2+ VInB —2k) /BQ}

~Cf with C=2B/B*xk -V (2.52)

in the limit of 8,V — 0 and negligible parallel gradient. The curvature in the large
aspect-ratio limit is just the curvature of the toroidal field

Kk = —€r/R = (cos (2mz) éx —sin (27z) &) /R. (2.53)

Assuming that xymax/Ls < 1, the curvature operator [83] takes the form

~

C= RQ—B (cos (2mz) Oy + sin (272) Oy) . (2.54)

To obtain local dimensionless equations the following renormalization of the fluctuation
quantities n, ¢, T;, v is made [64, 74]

n=nP/ne T, =T\ Ty ¢ = ¢Pcty/BLE
v = Uﬁ)\/cs J= jﬁ’LGHcto/BLg Vde = Teo/eBLg
pi=n+T, pe=n p=(pet+1pi)/(1+7), (2.55)

where the superscript p denotes a quantity in physical units and the subscript 0 the back-
ground value at the reference flux surface. The time, space and velocity scales are given
by

to = \/RL—R/Z/CS Ly = 27rq\/neoe277HpsR/miwcﬁ/m L, =2mqR

cs =V (Teo + Tio) /mi ps = Cs/wei (2.56)
with the dimensionless parameters

vgeto/Lo=a €, =2L,/R e, =csto/L, T=Ty/Teo A=Ly/Lo. (2.57)

To illustrate how the individual terms of the fluid description transform into the dimension-
less ones for the fluctuations, the following equations consist of one original fluid equation
in physical units above and the dimensionless equation below where the corresponding
terms are indicated by arrows. The dimensionless form of the current equation (2.45) is

=V (¢ = pe/en) = j /o
I d
-V (¢ —ape) =J. (2.58)
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The vorticity equation (2.44) transforms into

Vl . nth [VLQﬁ + VLpi/em] /me' -V (Vdi + Vde) -V ]”f)/dne =0
\J \J \J
Vi -diV,(¢p+ Tap:) + ép — VHJ =0, (2.59)

and the dimensionless density equation derived from (2.47) is

on+vg-Vn +nV - (VE—I-Vde) +nV-v||f) —VJ||E)/O'H =0
\: \: \: \:
din + 0y —enC (¢ — ape) +e&, V) —ae, (1+7)VJ =0. (2.60)

The origin of the term 9y ¢ is the convection of the linear background gradient with the drift
velocity fluctuations retained during the partial linearization. For better readability the
transformation of the temperature equation (2.48) is separated into two equations where
C' is just a variable coupling the equation set. The curvature part of the temperature
equation is

TinV - (Vg + Vvge)+ 5epi (VXB/B) -VT;/2e — C =0
\ 3
—e,C (¢ — ape)— 5a7€,CT;/2 — C =0, (2.61)

and the time-evolution is described by

3nDT;/2+ TmV-vyb— T,V -jb/oje— V-wk;bV|T;+C =0

{ \ + i
3 (diT; + ni0yo) 2+ GUVHUH— e, (14 7) VHJ— /‘GiAHTi +C=0. (2.62)

Therefore, the set of equations describing the I'TG-turbulence is:

=V (¢p—ap)=J (2.63)
VJ_'dtvl((b—i—TOépi)—l-ép—V”J:O (2.64)
din+ 9y6 — [eaC (6 — ape) — &,V + aey (14 7) V) J| =0 (265)
2 N
T 4 1;0y ¢ — 3 {6710 (¢ — ape + 5atT;/2) — €,V v + aen (1 +7) V”J}
dtv” + GUV”p =0 (2.67)

with the adiabaticity relation

an = ¢ —(P)y, (2.68)
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where (...), . is the flux surface average. It is easily verified that these equations are
invariant under the transformation A:

z, Y,z —X,Y,—=z
Y } A { Y (2.69)

n, ¢7ﬂav” - n7_¢7 —E,'U”
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Chapter 3

Instabilities

This chapter gives an overview of the ion-temperature-gradient (ITG) driven instability,
which generates the turbulence necessary for the ZF formation. To point out the differences
of the ITG-ZF system to the often used drift-wave (DW) driven ZF description the DW
instability, which can be considered a base-type model for gradient-driven turbulence, is
additionally discussed. The dimensionless units used in the NLET-code are used for all
figures (Sec. 2.3).

3.1 Drift-Wave Instability

To illustrate the mechanism of the DW instability the behavior of the electric potential and
the plasma density in a simple homogenous magnetic field configuration with negligible ion
temperature and parallel velocity (7 = 0,€¢, = 0) is examined (a more extensive review
is given by [84, 13]). In the case of an infinite parallel conductivity a local fluctuation of
the electric potential would immediately be balanced by a parallel current, thus inhibiting
the growth of such fluctuations entirely. A finite conductivity, on the other hand, allows
for temporary local potential perturbations which are linked to density fluctuations. The
accompanying electric field then results in an E x B-drift around the local fluctuation (Fig.
3.1). The flow-vortex taps into the density gradient and extends the original fluctuation
on the side where the E x B-drift is anti-parallel to Vn whereas on the other side the
fluctuation is reduced. This leads to a density pattern traveling perpendicular to Vn and
B, a resistive drift-wave. The growth and damping of a DW is determined by the phase
relation of the density and potential perturbations.

The equation system describing the DWs consists of the linearized vorticity and density
equations (2.64) and (2.65) where the current is eliminated by (2.63) and o is a dimen-
sionless parallel conductivity

HA L+ A (p—an)o =0
on + Oyp + aey Ay (¢ —an)o = 0. (3.2)

25
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Figure 3.1: Local charge density fluctuation in a homogeneous
magnetic field. The induced E x B-drift vortex results in an ac-
cumulation of density in vg.-direction and a reduction in the op-
posite direction resulting in a motion of the fluctuation in the
vge-direction .

Hence, the dispersion relation for the DWs is

W [—zkﬁ (1 + a2enk‘i) o+ \/4zakﬁkyk‘f_a — k202 (1 + a2enk‘i)J (3.3)

1
= [

and an expansion in the limit 1/0 — 0 for the growing branch yields
ok, B2 1

= +1 —.
1+ 042€nk’§_ kﬁ (1 + a2€nk‘i)3 o

This reflects that a finite conductivity is necessary for an instability. The corresponding
group and phase velocities of the DW are

wy (3.4)

Q 2a36nk§
Vgy = l 22 SRy (3.5)
+ afen k| (1-1—04 En]ﬁ_)
oKy (3.6)
Upy = 1+ azenki kﬁ_ '
203¢, k k
T L L 5.7
(1+ a2e,k?)
k k
Upp = ol T (3.8)

1 + a2€nki E

and (3.6) shows that DWs propagate in the electron diamagnetic drift direction (since
vgeto/Lo = ), hence the name DW.

Analysis of DWs in a curved magnetic field with shear yielded that resistive DWs are stabi-
lized by the shear [85] and that a finite conductivity even enhances the shear-stabilization
[86]. This somewhat confounds ZF theories for toroidal geometries that are based on this
instability alone to generate the turbulence. General linear instability with magnetic shear
requires at least a coupling of the DWs to another mode e.g. Shear—Alfvén waves |87, 88|,
in other words non-adiabaticity.
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Figure 3.2: (a) E x B-vortex around initial density perturbation convects plasma from
high temperature regions down the temperature gradient which subsequently drifts towards
the initial fluctuation resulting in an instability. (b) Scenario similar to previous case but
with opposite magnetic inhomogeneity drifts leading away from the initial perturbation thus
yielding to instability. (c) Phase shift between initial density and potential fluctuation leads
to a growing instability which is enhanced by the magnetic inhomogeneity drift of convected
high temperature plasma.

3.2 Jon-Temperature-Gradient Instability

As discussed in the previous section, a potential perturbation in a magnetized plasma
excites an E x B-drift vortex around itself. This vortex convects temperature if the per-
turbation is localized on a temperature gradient (Fig. 3.2a) similar to the density convection
in the DW case. In a magnetic field with a field gradient or curvature the corresponding
magnetic inhomogeneity drifts (2.31) of the hot plasma, convected to a region of lower
temperature by the E x B-vortex, are slightly higher than the drifts of the background
due to the temperature dependence of vyg and v,. Thus the hot particles drift towards
the density perturbation associated with the initial potential fluctuation if the magnetic
inhomogeneity drift is in the ion-diamagnetic drift direction, which leads to an instability,
the ITG-instability [20].

For a magnetic inhomogeneity drift in the electron-diamagnetic drift direction the hot
plasma would be convected away from the initial fluctuation. In case of an initial periodic
fluctuation, the hot plasma would be convected up along the temperature gradient again
by the E x B-vortex of the "neighboring” fluctuation or cooled by plasma convected from
a region of lower temperature (Fig. 3.2b). Thus the convection of temperature does not
lead to an instability when the temperature gradient is anti-parallel to the magnetic field
gradient and curvature.

If there is also a density gradient besides the temperature gradient the resulting drift-wave
type propagation of the fluctuation is slowed by the hot plasma convected by the magnetic-
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inhomogeneity drift in the opposite direction for small temperature gradients. For a critical
gradient an equilibrium negating the propagation can be reached. But a sufficiently large
temperature gradient leads again to a propagating instability.

A phase difference between the density and potential fluctuations (caused by e.g. finite
parallel conductivity, landau damping) enhances the instability further (Fig. 3.2c¢). This
curvature driven mode is called the ITG-mode (extensively discussed in [89, 90, 91, 74]).
In the following paragraph the dispersion relation for the I'TG-instability is derived from the
linearized version of the equations (2.63)-(2.67). Inserting (2.64) into the density equation
(2.65) yields

On + Oy — [ené’ (¢ +Tapi) — &V v+ aen (1+7) AL (¢ + T()épi)] =0. (3.9)
Subtracting the density equation times 2/3 from the temperature equation (2.66) leads to
/T + m:0,T; — 2 [5menC*Ti /24 O + ay¢] ~0. (3.10)

With the ansatz n,T;, ¢, v ~ e(ka+hyy=wl) one obtains, after elimination of v|| using Eq.

(2.67),
w?n — wky¢ + wwy (¢ + Tap;) + egA”p + e, (1 +7)w?k? (¢ + Tap;) =0 (3.11)
and
WTi — ky (ni —2/3) ¢ + batwT;/3 —2wn/3 =0, (3.12)
where w,, = €, (cos(2m2)ky + sin(272)k;) is the curvature frequency. The potential can
be eliminated with the adiabaticity relation ¢ = an (assuming the flux-surface-average

(¢)y,- =0) and (3.11) transforms into

w(w — aky)n + wwea (n+ 7p;) + egA” (n+7pi)/ (1+71)
+ o6, (1 +7)w?k? (n+71pi) =0 (3.13)

Expanding the first term by
(w+ batwe/3) / (2w/3 + aky (n; —2/3)) + 7 (3.14)
and eliminating the new w (w — ak,) Tn-term with (3.12) yields the relation [92]

w (w4 5aTwe/3) (w — aky)
w(l1457/3)+batw, (1+7)/3+ arky, (n; —2/3)
&
1+7

+ ww o

+ e, (1+7)wW?k? +

A” (n+71p;)) =0, (3.15)
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Figure 3.3: Contour plot of the radicand b? — 4ac < 0 for parameter values
a=0.5¢, =1,7 =1, = 2.4. Color code white denotes no growth whereas
the regions of growth are shaded in blue.

where the A-term describes the coupling of the I'TG-mode with the sound-wave. If this
coupling is neglected different locations along the magnetic field do not interact and the
eigenmodes are localized with a dispersion relation for w # 0

w? [1 + e, (14 7) (1 + §T> kﬂ -

=a

w [akzy — QW (1 + ?T) —ale, (14+7) k2 (Zan% (1+7)+ ark, (m — §>)l+
=—b
QW ETaw,1 1+ 7]+ Tak, (m — g)} =0, (3.16)

-

=c

which has the obvious solutions wy = (—b + v/b? — 4ac)/2a. The condition for growth is
a negative radicand b> — 4ac < 0. In cases of a negligible polarization-drift contribution
a?¢, (14 7)k* — 0 on obtains a condition for n; for ITG growth on the outside of the
torus, where wy = €,ky,

2 -1 10
77i>*+(6n )+ €nT

1
3 de,T 9 (3.17)

For the parameter set a = 0.5,¢, = 1,7 = 1,1; = 2.4, which will be mostly used for the ZF
studies in the following chapters, the region of growth is shown in figure (3.3). The mode
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Figure 3.4: Contour plot of the perpendicular wave-number dependence of the radial
group velocity vg, for the ITG instability at the inside w, = —€,ky (@), top side w, = €,kz
(b), top-outside w,, = €, (k; + ky) /V/2 (c), outside w,, = €.k, (d), bottom-outside w,, =
en (—kz + ky) /v/2 (e) and bottom side wy = —enk, (F).
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Figure 3.5: Snapshots of the temperature fluctuations (top row) and k,-spectra (bottom row)
of a growing ITG instability with artificially suppressed ZFs at (a) high-field side, (b) top side,
(c) low-field side and bottom side (d).

with the maximal growth rate is k; = 0, ky = 1—19 (% (35 + v 39130))1/2 ~ 0.656. However,
due to the here neglected coupling along the field lines small deviations may be observed
in the simulations.

Due to the dependence on the curvature frequency wy of the dispersion relation (3.16) the
radial group velocity vy, changes with the poloidal coordinate z. Figure 3.4 shows the
changes in symmetry for different poloidal positions of the group velocity with respect to
the perpendicular wave-numbers. This is pointed out here as the symmetry of vy, plays a
major role in analytical estimates of ZFs discussed in chapter 5.

Figure 3.5 shows snapshots of a growing ITG instability during the linear phase in a
turbulence study with the parameters

L,=100 L,=400 a=05 =1 7=1 s=1 g¢g=15 mn=24. (3.18)

The dominant mode numbers on the outboard-midplane (low-field side, Fig. 3.5¢) are
within range of the analytical expectations (Fig. 3.3). The relative slant of the modes on
the top and bottom side (Figs. 3.5b, 3.5d) compared the the structure on the outboard-
midplane illustrates how the magnetic shear influences parallel extended modes.



32 CHAPTER 3: INSTABILITIES

(a) (b) (c) (d)

Figure 3.6: Snapshots of the temperature fluctuations (top row) and ky-spectra (bottom row)
of a fully developed ITG-turbulence with artificially suppressed ZFs at the (a) high-field side, (b)
top side, (c) low-field side and bottom side (d).

Figure 3.7: (a) Radial heat-flux averaged over y of the ITG-
turbulence shown in figure 3.6. (b) Flux-surface-averaged radial
heat-flux Q.
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The I'TG-instability is prone to a secondary instability that leads to a nonlinear saturation
in a state of radial streamers with k, ~ 0 and k, ~ 0.4 (Fig. 3.6) [42, 93, 94|. Even
though this turbulent pattern may, at first glance, appear to be similar to a k, = 0 linear
mode, just with a different wave-number k,, it is a state of strong turbulence [63] and
the linear dispersion relation is therefore no applicable. As will be shown in Chap. 4, the
nonlinear state with streamers (Fig. 3.6¢) is the initial state from which the ZFs grow
[95, 40]. The streamers appear to have Kelvin-Helmholtz like corrugations due to small
velocity fluctuations in the y-direction. Together with the radial velocity fluctuations the
turbulence anisotropy amounts to a perpendicular Reynolds stress which drives ZFs (see
Chap. 4).

Figure 3.7 shows the distribution of the radial heat-flux caused by the streamers which
indicates that the turbulence is located primarily on the low-field side around z = 0. The
radial distribution of the flux-surface averaged heat-flux Q = (v,7T;)y,» is almost constant
but at a rather high level compared to self-consistent cases where ZFs are not suppressed
(the steep drops in @ at the domain edges are artificial due to fixed gradients at the edges
and the drop inside is due to an unstable large scale ky-mode caused by the boundaries in
this case).

3.3 Small-scale Large-scale Interaction

Since the scale length along the magnetic field is rather long compared to the perpendic-
ular scale, it is instructive to compare the behavior of the plasma turbulence with results
from 2D Navier-Stokes (NS) turbulence theories to gain an insight into the inverse energy
transfer mechanism. The following excerpt of [65] describes the excitation of large scale
structures from small scale turbulence.

The 2D-NS equation for the vorticity w is

Ow + v - Vw = vAw (3.19)

with a kinematic viscosity v. This equation also describes the propagation of DWs if one
interprets (1 — A )¢, or in case of ZFs —A | ¢, as a vorticity. Thus, the results obtained
in the following are also relevant for ZFs. Assuming the large scales K are separated from
the small scales k by a large spectral gap K, ks], hence K < K| < ks < k, the respective
contributions to vorticity and velocity are

Ky, %)

w= / dK%wr, (K, t) e 4 / dk?w, (k, t) e (3.20)
e i
Ky, 00

v = / dK?vy (K, t) e 4 / dk?v, (k, t) ek (3.21)
e i

vy = 1K x &uwr /K> (3.22)

- 5 2
S S N .
v =1k X é,ws/k (3.23)
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After linearization in ws the time-evolution for small scale fluctuations is defined by

Ohws = —vk’ws — /dQ2 [ L

k-Q? Q@

where capital letters (K, Q) are wave vectors of the large scales and lower cases (k, q) those

of small scales. The magnitude relation between the first term on the right-hand-side (RHS)

of the equation and the other ones is 1 : 1/kKv suggesting a perturbative treatment of

the convective terms. Assuming, for simplicity, a generation of initial turbulence from

a white noise source fs(k,t) with a vanishing average (fs(k,t)) = 0 and a correlation

(fs(ky, t1) fs(ko, t2)) = (| fs(k1)|?)6(ky +Ko)8(t1 —t2), the lowest order in ws = w” +w!” +
.of (3.24) is

} k-Qxéuwr, (Qus(k—Q),  (3.24)

(0 + vk?) wl = £, (k,t) (3.25)
which has the solution
t
Gt = [ dnf e n)e e, (3.26)

With the assumption that the large scales evolve slowly in time the first order solution of
(3.24) is

t
X / dtlwéo) (k — Q, tl) E_Vk2(t_t1) . (327)

The averages over nonlinearities in ws can now be calculated. The average over two zero
order terms is

(w(o) (kl t) w® (k t )) <|fs (k1)|2> 5( + kz) efukf(t—t’) (3 28)

s ) s (k2 + k2) U .
using (3.26) and the § relation of the time for (fs(f1)fs(t2)) to integrate the first occurring
time integral, whereas the second integral over the exponential is explicitly integrated for
t > t'. Analogously the average over the product of a zero order with a first order vorticity
term is

k2 k2 X ez 1 1

w® ki, w(l) ko, t _

(wy” (k1,1) ( )> (k2+k2) (k1+k2)2 k%
x wr, (ki + ko) (|w® (ky)|*)e Rt (3.29)

with ’wm) kl)}2> = (|fs (k1)|*)/2k3v. The equation governing the evolution of the large
scales is given by averaging (3.19) over the small scales ywy, + v - Vwp = —(vs - Vwg) =
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vyrwr. The excitation of the large scales by small scales is defined by the source term
remaining after the average

The averages over two zero order terms of wy do not contribute due to the occurring ¢ (K).
The contribution from the mixed order terms is

<ws (K - q) Ws (q)> . (3'30)

W (@, 1w (K = q,t) + w (q,t) 0 (K — q,t))
i [<K il 2] . () (2 ) ) (3:31)

v ((K —q)’ + q2)

yielding a growth rate for the large scale flows of

N 2
_ [ g Exa &) (1 1 (|los” (@] 339
K-q)® @ (K-aq) y((K—q) +q2)
In polar coordinates with K - q/¢qK = cos the equation transforms into
" 2 2 2 2 ©) ()|
_ /dqq d&K sin® §(K* — 2K qcos ) <|ws (q)| ) (3.33)
L (K2+q%2 —2Kqcos0)? K2+ 2¢? —2qK cosf '

ks
Due to the scale separation K/q < 1 and an expansion yields the two lowest order terms

0o 21

0) __ K3 -2 (0) 2
v, =— [ dg [ d0— sin 0 cos 0(|w (a)|") (3.34)
ks 0 1
00 2 K4 . 2(9
v = —/dq/dﬁs(;? [10cos? 6 — 1] (Jw® (q)}2> (3.35)
ks 0

: 2, . .
The first order term 'yg” always vanishes as ( ’wfgo) (q)! ) is symmetric with respect to

q — —q. The second order term ’y(Ll> vanishes for an isotropic spectrum (‘wéw (q)‘2> but
can be positive depending on the #-dependence of the small scale spectrum and hence can
lead to a growth of large scales.

This illustrates an inverse energy transfer mechanism from the small scale turbulence to the
large scale flows. The I'TG-turbulence is certainly anisotropic but any initial spectral gaps
in a turbulent system are quickly closed [65] by the bidirectional feedback of the large and
small scales. Similar methods of a direct calculation of the self-organization process appear
therefore unsuited for a description of the time-evolution of ZFs since the prerequisites for
their application do not persist after the initial phase of excitation.



36 CHAPTER 3: INSTABILITIES

Figure 3.8: Wavefronts of a plane wave with the initial wave-
length Ao after being subjected to a shear flow v, for a time dt.
The angles «, 8 indicate the similarities of the depicted triangles.

The effect of large scale flows on the turbulence is most intuitively understood when ex-
amining the shear action on a plane wave front (Fig. 3.8). A wave front that is ini-
tially perpendicular to the flow and parallel to the flow gradient is sheared after a time
dt. The displacement of one of two points on the wavefront, initially apart by a length
dx, in the flow direction is & = J,vyxdt. This changes the initial wavelength Ao to
A= z/y/22+& = 1/\/1+ (0pvy)?dt? as the triangle similarity in the figure shows.
The wave vector thus changes to k = kyo/1 + (amvy)2dt2 where ko is the wave vector
of the initial wavefront. The change of the wave vector components (triangle similarity) is

ky/k = —&/\/2? 4+ &2 and ky/k = x/+/x? + &2 from which follows

dk,
E = —kyﬁxvy (336)
dk,
— =0 3.37
P (3.37)

if the background flow v, is constant over time. This shows how the shear flow changes the
spectrum of the turbulence by slicing the eddies apart. One has to keep in mind though
that this is a rather crude explanation as the ZFs and the turbulence vary on the same
radial scales — see Chap. 4 — and the displacement £ can no longer be estimated this crudely
by an expansion of the shear flow velocity nor do well defined wave fronts exist.



Chapter 4

Zonal Flow Evolution

ZFs are radially nested layers of flux-surface averaged radial electric fields causing poloidal
E x B-flows with zero poloidal and toroidal mode numbers. Section 4.1 describes the
derivation of the ZF momentum equation from the turbulence equations (2.63)-(2.67). The
observations of the ZF behavior in the turbulence studies using the NLET code [64] are
discussed in section 4.2. The interaction of the ZFs with the turbulence and the observed
influence on the heat transport is addressed in section 4.3. All figures use the dimensionless
units of NLET (discussed in Chap. 2). The conversion from the perpendicular length unit

Ly into the ion-gyro radius is p; /Lo = o (e,(1 + ’7'))1/2.

4.1 Derivation of the ZF Equations

Stationary ZFs require a parallel return flow along the field lines to cancel the com-
pression due to the poloidal motion and the conserved magnetic flux. The divergence
€n sin (272) 0,¢ of the flux-surface-averaged poloidal E x B-flow must, therefore, equal the
divergence €,V v of the parallel flow which defines the return-flow

v = —2:;} cos (2m2) Uy, (4.1)

where the overbar denotes the flux surface average (...), . and v, = 0,¢. The flux-surface-
average of this equation multiplied by cos (27z) yields the balance of the flow-averages

4e,

Uy = (cos (27m2) v))y,» + (cos (472) vy)y (4.2)

€n
Taking the flux-surface average of the vorticity equation (2.64) and integrating over z yields
the equation for the ZF time-evolution

(D¢0y (¢ + Tap;) +sin (272) p)y,. = 0. (4.3)

A simple algebraic transformation, using the identity dyv, = —0,v,, v. = —0y¢, and the
fact that all quantities are periodic in y, z, transforms the average (D;0,¢), . into

(DtO0y®)y.» = (Opvy + 03050y + VyOyty)y »
= (Orvy + Ox (v20y))y,2 (4.4)

37
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whereas the average (D;0,p;)y . leads to

<Dta:ppi>y,z = <8t63: pi + Uxagpi + Uyayampi>y,z
= <8t0xpi + 0y (Uwaxpi»y,z . (4-5)

The sum of the equations (4.4) and Ta times (4.5) yields

(0020 + TA00zp; + Op (VaVy + TOWL02P;))y,
:<8th + Toz@t@xpi + ax (('U;r + Ud:c) Uy) + ’7’0[635 (Uyaypi + Uxaxpi»y,z

=(04vy)y,z + Ou((Vz + Vdz) Vy)y,z + Ou(Dipi)y, (4.6)
with vg, = —Tadyp;. Subtracting this equation from (4.3) results in
(Opvy + O (Vg + Vag) vy) + TaO0, Dyp; + sin (272) p)y. = 0. (4.7)

The last term can be eliminated using the flux-surface-average of the parallel velocity
equation (2.67) times cos (27z) and partial integration of the RHS

(cos (2mz) Dtv”)%z = (cos (272) 6tv||>y,2 + Oy (cos (27z) vwv||>y,z
= —€,(sin (272) p)y. - (4.8)

The third term of (4.7), Dyp; = Dyn+ D;T; can be eliminated with the flux surface average
of the density and temperature equations (2.65), (2.66)

(Din)y,» = {(€nsin (272) O (¢ — an))y,. — (€ V)v) )y, + aen (1 +7) (V) J)y

—(en $in(272)05$)y..=0 =0 -0

=0 (4.9)
(DiT)y.» = §<§Taen sin (272) 0, T; + Din)y -

- Zmen@m (272) 0x T}y (4.10)

=
(Depi)y.s = ZTaen(sin (272) 0uT)y. (4.11)

which leads to
(Or(vy — Zre, CO8 (2m2) v)))y,e = — O2{(Va + V) vy — Zre, 08 (272) vV )y,
- T2a26n§8§<sin (2m2) Ti)y,» - (4.12)

Eliminating the parallel flow with the return flow relation (4.1) for the stationary branch
of ZFs results in the momentum equation for the ZFs

(14

= cos (271'2)2)8tvy>y,z = — 02((vz + vaz) vy —

(47ey) 2mey

- 72a26n28§<sin (272) Ti)y.» - (4.13)

cos (272) VpV||)y,2



4.2 ZO0NAL FLOW EVOLUTION 39

0.05

(v va>y,z
>

.
S
S
S

Figure 4.1: Perpendicular E x B stress (vyvy)y,. (black) and
temperature component —7a(9,T;vy),.» of the diamagnetic con-
tribution (red) for the self-consistent ZF study shown in figure
4.3a at t = 1800.

The first term on the RHS of the equation is the divergence of the perpendicular Reynolds
stress, the second term the divergence of the corresponding parallel stress component

R, = <('Um + Ud:z:) Uy)y,z (4.14)
1 2
= 2 z E2— 2 T z 4.1
R e, (cos (2m2) v U||>y, ﬁ(cos( TZ) U v”>y’ (4.15)

and the third term is a finite Larmor radius contribution ~ a?e,k2 = p2k2/(1 + 7)2.
This elucidates that ZFs are primarily Reynolds stress driven [32, 49, 63| and a good
understanding of the stresses is imperative to predict the ZF evolution. In addition the
dependence of the parallel stress contribution on the safety factor ¢ reveals that dominant
stationary ZFs are a core phenomenon and it was found that ZFs are completely suppressed
for safety factors above 3 [49].

The diamagnetic part of the perpendicular stress consists of contributions by both den-
sity and temperature. The density contribution is equal to the E x B-flow induced
stress (vyUy)y,» in the adiabatic case. The stress caused by the temperature fluctuations
—70(0yTivy)y,~ is similar in structure to the E x B generated one but of opposite phase in
the parameter regime examined within this thesis (Fig. 4.1). Here, the perpendicular stress
is therefore proportional to its E x B-flow induced part. This is not necessarily the general
case but is pointed out here since it allows a direct comparison of the stress descriptions
for (vyvy)y,. discussed in chap. 6 with those obtained for R in chap. 5.

4.2 Zonal Flow Evolution

To illustrate the different stages in ZF evolution the transition from a state showing a linear
ITG-instability to a ZF-turbulence equilibrium is examined in a self-consistent study with
the following parameters

L,=200 L,=800 a=05 =1 7=1 s=1 g¢g=15 mn=24. (4.16)
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Figure 4.2: (a) Initial period of the time-evolution of the mean radial heat-flux (Q),
(black) and the poloidal RMS E x B-flow ¥ ;s (red). (b) Long time-evolution of (@), and
Uy, rms- Lemperature fluctuations on the outboard midplane with the overlayed ZF velocities
(rescaled by a factor fs and shifted to y = 300) at ¢t = 120, fs = 1000 (c), ¢t = 180, fs = 50
(d) and t = 1800, f, = 50 (e).

Figure 4.2a shows the radial average of the time-evolution of the radial heat flux @ =
(v2T3)y,» and the corresponding flux-surface-averaged root-mean-square (RMS) E x B-flow
Uy,rms- After a short phase of linear ITG-instability growth, the radial heat flux increases at
t = 50 with the onset of weak turbulence and a marginal ZF is excited, which is followed by
a delayed reduction of the heat flux. The temperature fluctuations during this stage (Fig.
4.2c) exhibit a structure similar to the linear ITG behavior with a subdominant turbulent
contribution (Fig. 3.5c¢). When the system crosses over into a state of radial streamers at
t = 180 (Fig. 4.2d) the corresponding radial heat transport increases significantly but the
turbulence simultaneously excites a strong ZF (Fig. 4.2a) that tears the streamers apart
and acts as a reduction mechanism for the transport [36, 37, 35]. Both, ZF and heat flux,
saturate into a stable equilibrium state that is nearly stationary over long time scales (Figs.
4.2b,4.2e).
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Figure 4.3: (a) Time-evolution of the poloidal ZF-profile v,. (b) Initial section of (a)
from t = 0 to ¢ = 150 showing marginal ZFs . (c) Section from ¢ = 100 to ¢t = 250 showing
the transition to strong ZFs in the streamer regime.

Comparison of the instantaneous ZF velocities overlayed in the figures 4.2c¢-4.2e shows that
the radial wave-number changes with the turbulence regime. In the early state of marginal
ZF activity flows of small scale lengths are excited with wave-numbers that are higher
in comparison to the equilibrium and the time-evolution (Fig. 4.3b) reveals that the ZFs
are also non-stationary in this case. The state of radial streamers, on the other hand,
excites a characteristic ZF mode (Fig. 4.2d) that appears to be stationary but only for
the short time period between ¢ = 180 and ¢ = 200 during which the turbulence intensity
adjusts to the ZF (Fig. 4.2a). Afterwards, the ZF scale increases and then appears to be
almost completely stationary for long time periods (often over time scales several orders
of magnitude larger than the sound transit time, Figs. 4.3a,4.2¢).

This elucidates that a simple analysis of ZF growth rates, e.g. using the inverse energy
transfer model summarized in Chapter 3.3, is unsuitable to describe the turbulence level
and ZF-evolution of the equilibrium state since both turbulence and ZFs change after the
initial growth phase.
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Figure 4.4: Top: Spectrum of the poloidal velocity fluctuations
|vy | on the out-board-midplane at ¢ = 1800. Bottom: Spectrum
of the ZF.

During the initial growth phase of non-marginal ZFs the spectrum of the turbulence is
dominated by k; = 0 of the streamers whereas the initial radial wave-number of strong
ZFs is much higher, k;, > 0.5. In this phase a separation of scales is satisfied as the
wave-numbers in the y-direction are always disparate. Comparison of the spectrum of
the turbulent poloidal velocity fluctuations with the ZF spectrum of the equilibrium state
reveals though that in this case the radial wave-numbers are quite similar (Fig. 4.4). This
somewhat confounds theories that assume a scale separation.

A turbulence study with a domain L, x L, = 100 x 800 where the background gradients
near the simulation boundaries are not flattened and otherwise parameters equal to (4.16)
allows the ZFs to “drift” radially out of the simulation domain (Fig. 4.5a). This drift
changes the radial scale length of the ZFs. But, whenever an intrinsic lower threshold for
the radial scale length is reached a new flow grows to maintain the characteristic scale
length. Modification of a turbulent state at ¢ = 5500 by stretching the poloidal- and
corresponding return-flow and continuing the turbulence study from this state shows (Fig.
4.5b) that an intrinsic mechanism quickly restores the radial scale length. A further study,
initialized with a flow having a hat-structure that was artificially maintained for a time
long enough for the turbulence to adjust itself to the flow, revealed (Fig. 4.5¢) that, self-
consistently, such a flow also decays into the same pattern as produced by self-consistently
excited ZFs. This illustrates the robustness of the ZF scale length which is entirely intrinsic
and indifferent to the initial conditions. The conclusion is, arbitrary flows always decay
into a pattern with the same radial scale length for one set of parameters.

Comparison of the flow with the corresponding stress pattern (Fig. 4.6a) reveals that the
stress has a dominant deterministic part, which means a significant portion of the stress
response can be clearly attributed to the flow structure and amplitude. Similar features
observable in stress and flow appear to be closely correlated, the most obvious being the
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Figure 4.5: (a) ZF time-evolution where boundary conditions allow the flows to “drift”
outside the domain. (b) Self-consistent evolution of an artificially stretched flow profile
taken from (a) at ¢ = 5500. (c) Decay of a hat flow-profile into the self-consistent ZF
pattern.
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Figure 4.6: Time-evolution of: poloidal flow (top), perpendicular stress (middle plot) and
parallel stress component (bottom). The domain sizes in the y-direction are (a) L, = 400,
(b) L, =800, (c) L, = 1600, (d) L, = 3200

radial scale length. An increase of the domain in the y-direction leads to a flux-surface
average over a larger number of turbulent eddies and, therefore, the stress patterns become
more deterministic the larger the computational domain is (Figs. 4.6a-4.6d).

The relatively persistent characteristic structure of the ZFs and the dominant determin-
istic part of the stress patterns suggests that a functional describing the stress can be
constructed. This would greatly simplify the study of ZF-turbulence interaction as ZFs
are primarily governed by the stresses, recall Eq. (4.13). Furthermore, a prediction of the
ZF evolution will then be possible which is a requirement for a prognosis of the turbulence
level.

A comparison of the instantaneous flow and return-flow profiles (Fig. 4.7a) in the equi-
librium state with the aforementioned parameters (4.16) (at ¢ = 1000 of Fig. 4.3a) shows
that the balance (4.2) of the poloidal and parallel return-flow is well satisfied by v, =
—4me,(cos (2m2) v)|)y,z/€n [49, 63]. The higher harmonic contributions of the return-flow
proportional to cos (47z) are negligibly small. The parallel flow contains the major part of
the ZF energy in fact [49], such that it is imperative to treat the parallel stress component
with the same thoroughness as the perpendicular one. A point which all contemporary
ZF theories do not take into account adequately. They either neglected the parallel stress
component entirely or just attributed a viscous damping effect to it.

A time-average of the corresponding stresses over a short time interval around ¢ = 1000
yields the mostly deterministic stress profiles (Fig. 4.7b) with a structure similar to the
flow. This suggests that the instantaneous flow profile is one degree of freedom for a
stress approximation. Both stresses nearly balance out and the total stress R} — R is
one magnitude smaller than its individual constituents. Examination of its time-evolution
(Fig. 4.7c top) reveals that the total stress consists mostly of random fluctuations. That is
not surprising since a significant deterministic part would change the flow pattern which
is stationary in this case though. The time-evolution and profile of the last contributor
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Figure 4.7: (a) Equilibrium flow-balance of poloidal flow v, (black) and return flow
(cos (2mz) v)|)y,> (red) with the higher order contribution (cos (47z) vy), . (blue) at ¢t = 1000
of Fig. 4.3a. (b) Time-averaged stress profiles of R (top), R (middle) and R, — R,
(bottom) over ¢ = 900 to ¢ = 1100. (c) Time-evolution of the total stress profile (top),
time-evolution (middle) and profile (bottom) of vsgsy = (sin (2m2) 0, T5)y, -
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Figure 4.8: Time-evolution of the ZF profile obtained using the GYRO code [66] with
parameters equivalent to 4.16 and NLET scales.
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(sin (272) 0,T3)y,» on the RHS of (4.13) is shown in middle and bottom figures 4.7c. Al-
though some persistent structures appear in the time-evolution, they are of the order of
the random fluctuations as comparison with the total stress profile (Fig. 4.7b bottom)
indicates. This contribution caused by the ion-diamagnetic heat flux will not be further
considered in the following but cases in other parameter regions may exist where it becomes
important.

A gyro-kinetic study using the GYRO code [66], with parameters equivalent to the ones
used for the discussed fluid studies, is shown in figure 4.8. Compared to the figures 4.3a or
4.6a-4.6d the ZFs of the two-fluid and the gyro-kinetic studies show a qualitatively equal
behavior. The ZF in the gyro-kinetic case also appears to be nearly stationary with a
distinct radial scale. This verifies that the fluid framework describes the ZF evolution
sufficiently such that the construction of a stress functional derived in the fluid framework
is justified. Moreover, the lower computational expenses of fluid studies over gyro-kinetic
ones are in this case essential since a large number of simulations are required to stake out
the requirements for the stress functional.

4.3 Zonal Flow Turbulence Interaction

The heat-flux pattern of the self-consistent ZF-equilibrium corresponding to the parameters
(4.16) shows instantaneous random fluctuations (Fig. 4.9a), which can locally have the
same order of magnitude as the time-average of the mean radial heat-flux. These strong
fluctuations are countered by a slight, temporary increase in ZF activity (Fig. 4.9b), as
the deviation of the instantaneous flow profile from its time-average indicates. This shows
that the ZFs, self-consistently, respond to larger fluctuations in the heat-flux and that
a feedback mechanism exists which maintains the ZF-turbulence equilibrium. This self-
consistent equilibrium state is characterized by an average heat flux (Q),, = 0.2, a root-

Y2 — 0.28 and a RMS shearing-rate /(u?),, = 0.16

xt

mean-square (RMS) flow-level of <17§>
for the examined parameter set.

There are cases, though, where the heat-flux shows pronounced deterministic features
caused by a shear-flow. A turbulence study with an artificial flow pattern of wave-number
ky; = 0.19, RMS shearing-rate of \/(u?),, = 0.1 and a turbulence level close to the self-
consistent equilibrium state reveals corrugations in the heat-flux near the extrema of the
flow (Fig. 4.10a). The flow direction appears to be relevant for the shape of the corrugation
peaks. The peaks around flows in the electron-diamagnetic-drift direction (positive flows)
appear broad with a flat top almost a double peak. The peaks around flows in the opposite,
ion-diamagnetic, direction (negative flows) have a thinner shape and a higher amplitude
than the other peaks. An analysis of the ZF-turbulence interaction in [57] indicated that
a heat-flux amplification at flow maxima is due to a transient wave-kinetic concentration
of fluctuation energy and not caused by an increased drive of turbulence as suggested by
[96]. But this does not explain the peaks in the negative flow direction. Efforts to explain
the heat-flux modulations with a trapping of turbulent wave-packets [97] do not describe
the observations of peaks at both the positive and negative flow extrema. The idea of
wave trapping is that the radial wave-number of a small wave packet in a large scale shear
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Figure 4.9: (a) Radial heat-flux time-evolution (top) and radial profiles (bottom) with
instantaneous profile at ¢ = 1100 (black), time-averaged profile (red) and mean profile
(dashed). (b) Corresponding poloidal flow pattern (top) and radial profile (bottom) with
instantaneous profile at ¢ = 1100 (black), time-averaged profile (red) and RMS flow (dashed).
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Figure 4.10: (a) Time-evolution of the radial heat-flux for an artificial flow with k, = 0.19
(top) and heat-flux profile (black), 0.250, + 0.325 profile (red) and shearing-rate profile
u+0.325 (blue) (bottom). (b) Instantaneous parallel heat-flux distribution (v,1;), (top)
and corresponding radial profile (bottom).
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Figure 4.11: (a) Time-evolution of an artificial shearing-rate v = 0.45sin (1272/L,)
(top) in a turbulence study and the corresponding radial heat-flux @ (bottom). (b) Time-
evolution of the corresponding heat-flux gradient 9, In @ (top) and radial profile of its time-
average (black) with a least-squares fit by d,u? (red) and 0.1u (blue) (bottom).

flow is influenced by the local shearing-rate, dk,/dt = —|k,|u. The radial propagation
velocity of the wave packet then becomes space time dependent dz/dt = vgy(ky(2,1), ky)
[Vge = —203€nkzky/ (1 + a®enk?) for DWs analyzed in [97]]. This describes an oscillation
of the wave packet around the positive flow but not around the negative one. Any excited
wave-packet propagates towards the nearest positive flow and oscillates if the initial radial
velocity is large enough to cross the flow maximum. For an insufficient initial velocity
the radial propagation is stopped after a time, vy, — 0, and the flow shear eventually
annihilates the wave-packet, |k;| — oo.

Comparison of the instantaneous heat-flux profile at ¢ = 0 and the parallel heat flux
distribution (v, 1), shows (Fig. 4.10b) that the heat-flux modulations are localized around
the outboard-midplane at z = 0 but extend anti-symmetrically along the field lines for the
positive flows and symmetrically for the negative flows. This illustrates why the peaks
around the positive flows are broad, featuring a double peak. The descriptions for the
influence of shear flows on the turbulence do not incorporate this three-dimensional effect
and do not fully explain the observed turbulence repose.

A turbulence study with the parameters

L,=200 L,=400 a=05 e=1 7=1 s=1 ¢=15 n =34 (4.17)

and an artificial shearing-rate u = 0.45sin (1272 /L, ) with a large amplitude shows a highly
corrugated heat-flux pattern (Fig. 4.11a). In this case, the heat-flux corrugations do not
show such a pronouncedly different behavior for positive and negative flows which is due
to a higher shearing-rate amplitude, as studies with lower amplitudes have confirmed. The
only difference that can still be observed is the width of the corrugations which are slightly
broader for positive flows. The higher the shearing-rate amplitude is the more pronounced
the corrugations become.
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Figure 4.12: (a) Contour plot of the time and space averaged heat-flux (@), , observed
in artificial flow studies with different wave-numbers k, and amplitudes t,,,s = <v2 L 2
The average heat-flux level appears to be dependent on both quantities. (b) Instantaneoub

temperature fluctuation pattern on the outboard-midplane in a study with artificial flows of

k, = 0.63,/(u?),, = 0.137 (top) and k, = 0.63,/(u2),, = 0.142 (bottom). Overlayed are
the ZF shearing-rates (white) rescaled by a factor 50 and the zero mean shearing-rate line
(dashed). Comparison indicates a threshold for the turbulence reduction mechanism.

Since the heat-flux appears to be nearly stationary a time-average can be used to separate
the random remnants from the deterministic response to shear flow. Examination of the
time-averaged heat-flux gradient profile 9, In Q reveals that it is proportional to d,u? (Fig.
4.11b).

An ensemble of turbulence studies with artificial flows, held constant over time, of differ-
ent radial wave-numbers and shearing-rates reveals that the amount of radial heat-flux is
dependent on both quantities (Fig. 4.12a). As the flows are constant, an average of the
heat-flux over radius and time eliminates most of the random fluctuations. Large scale
shear flows appear to have an immediate effect on the turbulence even for small shearing-
rates. On the contrary, the turbulence appears to be unaffected by small scale flows at low
shearing-rates. This suggests that for small scale flows with small amplitudes the radial
velocity of the turbulent eddies is large enough such that the flow cannot change the radial
wave-number significantly before a transition to a region with a shearing-rate of oppo-
site sign occurs. This is supported by comparison of the temperature fluctuations on the
outboard-midplanes for a flow with k, = 0.63, y/(u?),, = 0.137 and (Q), = 2.6 against a
flow with k, = 0.63, \/(u?),, = 0.142 and (Q), = 0.57 (Fig. 4.12b). The shearing-rate of
the former flow is not yet high enough to tear the radial streamers apart entirely and only
minor corrugations of the streamers due to the flow are already visible. In the latter case
the shearing-rate is only slightly higher but strong enough to distort the eddies significantly
such that the streamers disappear, accompanied by a large reduction of the heat-flux.

Figure 4.13a shows the time-averaged mean radial heat-flux dependence on the shearing-
rate for three different radial scales k, = 0, k, = 0.13 and k, = 0.38 (note that the maximal
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Figure 4.13: (a) Dependence of the time-averaged mean heat-flux of figure 4.12a for three radial
wave-numbers k, = 0 (black), k, = 0.13 (red) and k, = 0.38 (blue) on the shearing-rate amplitude
Urms. (b)-(d) Heat-flux time-evolution profiles (top) and frequency spectra (bottom) in studies
with a shearing-rate k, = 0,u = 0.15 for magnetic shears s = 1, s = 1.5 and s = 0.5 respectively.
The frequency of the prominent heat-flux oscillation depends on shearing-rate u = swy,.

heat-flux without ZFs is @ = 8 for the parameter set used here). When the shearing-rate
reaches the critical threshold where the streamers are torn apart the heat-flux decreases
rapidly to a range slightly above the self-consistent value. For any further increase of the
shearing-rate one would expect a decrease of the heat-flux until the flows become strong
enough to quench the turbulence entirely. However, the increase of the mean heat-flux with
the shearing-rate for the wave-number k, = 0 after the initial large decrease is unexpected.
Since averages over larger time scales, different initial states or different domain resolutions
did not impact the heat-flux increase with the shearing-rate, this cannot be attributed to
statistics. Examination of the time-evolution of the heat-flux for the k, = 0 case with a
shearing-rate of u = 0.15 reveals deterministic oscillations (Fig. 4.13b) with a frequency
w = 0.15.

The explanation for the oscillation is a wave moving along the magnetic field with a velocity
vg-. The parallel propagation generally results in a change of the the radial wave-number
due to the magnetic shear. Analog to the change of the wave-number due to a shear flow
(recall Fig. 3.8), the poloidal shift after a time interval dt of two points initially separated
by a distance J, in the radial direction is { = 2wszdx = 2mwsvg.dtdz. This leads to an
effective shearing-rate due to magnetic shear of 0,vs = 2mwsv,.. The total rate of change
for the radial wave-number is

dk

d—tx = —ky0y (vy + vs) . (4.18)
In case of 0,vy = —0,vs the radial wave-number stays constant over time as the shear flow

negates the shear effect of the magnetic field. This way a propagating mode with k, ~ 0
on the outboard-midplane can survive the destructive influence of the magnetic shear that
otherwise results in a decay on the high field side. The frequency of one complete poloidal
propagation is wy, = 2mvy, /L. and thus

OpUy = S (4.19)
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Figure 4.14: (a) Time-evolution of a sharing rate pattern u alternating between u; =
0.05sin (67/L,) and us = 0.1sin (207/L,) (top) and corresponding heat-flux pattern @ (bottom).
(b) Instantaneous heat-flux profiles at times ¢ = 420, t = 600, t = 610 and ¢ = 710 from top to
bottom. Comparison reveals that () does not adjust instantaneously to wu.

since L, = 1. The heat-flux increases whenever the dominant wave-number on the low-
field side reaches k, = 0 resulting in the observed oscillations with the frequency wp,.
Turbulence studies with different magnetic shears (Figs. (4.13¢),(4.13d)) corroborate this
finding, as the occurring heat-flux oscillations have exactly the frequencies predicted by
(4.19) and higher harmonics thereof.

The intensity of the heat-flux oscillations decreases with the radial scale length of the flows
since a strong local gradient of the shearing-rate inhibits the compensation of the magnetic
shear effect. Additionally, self-consistent flows also react to the changes in heat-flux such
that the effect becomes a subdominant feature but can nevertheless sometimes be observed
(e.g. Fig. 4.5¢ at x = —35 between ¢t = 5000 ant t = 6000). One should note that this
feature is also highly influenced by the magnetic field configuration such that it may turn
out to be unobservable in a shaped geometry.

A turbulence study with the parameters

L,=100 L,=400 a=05 e =1 7=1 s=1 ¢=15 n=24. (4.20)

and a shearing-rate pattern alternating in time between w; = 0.05sin (67/L;) and ug =
0.1sin (207/L,) shows how the heat-flux reacts to sudden changes of the ZFs (Fig. 4.14a).
The shearing-rates are disparate enough such that their equilibrium heat-fluxes are quite
different. This leads to a significant change of the heat-flux level whenever the shear flow
pattern alternates. The time-frame after a flow pattern transition in which the heat-flux
adjusts to the changed flow depends on the effectiveness of the shearing action on the
turbulence. In this case, the large scale shearing-rate takes a time At = 75 to readjust the
turbulence to its associated equilibrium level. The small scale shearing-rate appears to be
more effective such that the equilibrium level appears to be reached at a time ¢ = 20 after
the transition. Comparison of the instantaneous heat-fluxes at times ¢t = 420, ¢ = 600,
t = 610 and t = 710 reveals (Fig. 4.14b) that not only the mean radial heat-flux level
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but also the corrugations require some time to adjust to the changed shearing-rate. The
conclusion is, that the turbulence has a memory of both scale and amplitude of the shearing-
rates it was recently influenced by.

Overall, the discussed observations indicate that the instantaneous heat-flux depends not
only on the properties of the primary instability that generates it but also depends non-
trivially on the history of the ZF-turbulence interaction. The radial scale as well as the
amplitude of the shearing-rate effect both, the radial mean heat-flux and the corrugations.
Any description of the turbulence must therefore be accompanied by a description of the
ZF evolution as both are inseparable and interacting strongly in this regime.



Chapter 5

Derivation of the Reynolds Stress
Functional

Due to the complexity of the plasma turbulence equations (2.63)-(2.67) and the fact that
ZFs are a result of nonlinear interactions, the behavior of ZFs does not become obvious
when examining the equations, opposite to the more easily calculated behavior of linear
instabilities. As was discussed in Chapter 4, ZFs are a crucial ingredient to limit the
radial transport, which should preferably be as low as possible in a fusion device. As the
perpendicular and parallel Reynolds stresses have a dominant deterministic contribution
(recall Fig. 4.6) that changes only slowly over time (usually over many parallel sound transit
times), the construction of a response functional seems possible. This functional will allow
the prediction of ZFs and permit a reliable mapping of ZF-turbulence equilibrium states.
All figures use the dimensionless units of NLET (discussed in Chap. 2). The conversion
from the perpendicular length unit Lg into the ion-gyro radius is p; /Lo = « (en(1 + Y2,

5.1 Stress Response Behavior

The initial observations in Chapter 4 point towards the flow as one degree of freedom
for the stress functional. All terms in the functional must comply with the turbulence
equations symmetries (2.69) though, such that the shearing-rate and not the flow itself
is the adequate quantity to use in the functional. The intent is to identify the major
contributions in turbulence studies and construct a functional that describes the most
important ZF features, in particular growth, radial scale length and finite saturation.
Comparison of the shearing-rate u (Fig. 5.1a) and the stress pattern (Fig. 5.1b) for the
self-consistent flow pattern shown in Figure 4.3a and the parameters

L,=200 L,=800 a=05 =1 7=1 s=1 g¢g=15 mn=24 (51)
indicates that both stresses, perpendicular as well as parallel, are correlated with the

shearing-rate. As all three patterns are nearly constant over time one can take their time-
average to remove random fluctuations (Fig. 5.2).

93
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Figure 5.1: (a) Time-evolution of the shearing-rate u (top) and the radial heat-flux @
(bottom). (b) Corresponding perpendicular R, (top) and parallel R (bottom) stresses.
Comparison shows that R, R and u are correlated.
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Figure 5.2: (top) Radial profile of the time-average of the perpendicular
stress R (black) of Fig. 5.1b and corresponding rescaled shearing-rate u (red).
(bottom) Radial profile of the time-average of the parallel stress R (black) of
Fig. 5.1b and corresponding rescaled shearing-rate u (red). Comparison reveals
that R, R” ~ U.
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Both stresses are proportional to the shearing-rate. The most dominant contributor to the
stresses is accordingly the shearing-rate. To identify the other stress contributions it is
necessary to examine the ZF stress relation slightly away from the equilibrium employing
artificial flows. The first challenge is to define adequate flows that lead to a deterministic
stress response uniquely assignable to a specific term in the functional, while also yielding
a turbulence level close to the equilibrium. This required a large amount of turbulence
studies to identify adequate parameter sets. A simple least-squares fit of the stresses by
several terms obeying the turbulence equations symmetries (2.69) in general cases is simply
inadequate to distinguish different sets of terms.

A turbulence study with the parameters

L,=2000 L,=4000 a=1158 ¢ =1 7=1 s=08 ¢g=14 n;=3.114 (5.2)

and an artificial shearing-rate v = 0.2sin (27x/L,) sin (27t/1200), which slowly changes
over time, reveals (Fig. 5.3a) that the heat-flux stays constant as long as the shearing-
rate is not close to zero. The stress patterns (Fig. 5.3b) reflect the alternating pattern
of the shearing-rate. At times where the local shearing-rate changes its sign the mean
radial heat-flux () increases by orders of magnitude, accompanied by stress fluctuations
not proportional to the shearing-rate, as a time trace at x = —500 of the heat-flux and
stresses (Fig. 5.4a) reveals. Rescaling the stresses with @) , however, restores the inten-
sity of the stress fluctuations to a level constant over the entire oscillation such that the
rescaled stresses are proportional to the shearing-rate everywhere. This suggests that @ (or
another turbulence intensity measure) is a second degree of freedom required to construct
an adequate stress response functional.

A time-average over several flow oscillations yields stress profiles where the contributions
caused by u are removed (Fig. 5.4b). The residual of the perpendicular stress average is
proportional to the gradient of the heat-flux 9, In (). This indicates that the ZFs not only
respond to changes of the radial mean turbulence level but also to local radial heat-flux
corrugations. The residual of the parallel stress average also exhibits a feature where the
heat-flux gradient is located but the proportionality to 0, In @ is not nearly as good as for
the perpendicular stress. One reason is that the parallel stress is much more dominated by
random fluctuations in regions of small shearing-rates, which is here the case in the region
where the heat-flux gradient is located.

For the purpose of rescaling one can also use other turbulence intensity measures like the
square of the density fluctuations because it also increases in regions of small shearing-rates.
But to approximate the stress residual of the time-average this quantity proved inadequate
and therefore the heat-flux is the better choice for the second degree of freedom (Fig. 5.4b).
These two degrees of freedom, the shearing-rate and the heat-flux, proved to be sufficient
to construct a stress response functional describing all observed deterministic ZF features.
This is a huge improvement because it makes the ZF evolution much more comprehensible
than a description with a large number of degrees of freedom, e.g. the full turbulence
equations.
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Figure 5.3: (a) Time-evolution of the artificial shearing-rate u = 0.2sin (2wx/L,) sin (27¢/1200)
(top) and the radial heat-flux @ (bottom). (b) Corresponding perpendicular R, (top) and parallel
Ry (bottom) stress. Comparison shows that Q,R1,R) increase where u becomes small.
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Figure 5.4: (a) Time traces at x = —500 of the perpendicular stress R, (black) and the heat-
flux (blue) (top), rescaled perpendicular stress R /@ (black) and shearing-rate oo, u (red) (upper
middle), parallel stress R) (black) and the heat-flux (blue) (lower middle) and rescaled parallel
stress R /Q (black) and shearing-rate o ju (red) (bottom). Comparison of the stresses rescaled by
the heat-flux with the shearing-rate reveals that the rescaling is necessary to restore proportionality
to the shearing-rate with coefficients ap, 1 , || constant over time. (b) Radial profile of the average
of R, /Q over two oscillations of u (black) and corresponding profile of —ay, 1 9, In @ (red) (top).
Radial profile of the average of R)/Q over two oscillations of u (black) and corresponding profile of
—ayy, |0, InQ (red) (top) with coefficients oy 1,y > 0. In blue an approximation by the density
fluctuation square gradient 9,n2.
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Figure 5.5: (a) Time-evolution of the artificial shearing-rate u = 0.125sin (27(5 + 15(z + L, /2)
/L:)x/L;) (top) and the radial heat-flux @ (bottom). (b) Corresponding perpendicular R, /Q
(top) and parallel R|/Q (bottom) stress.

RI/Q
S
S
T I T
—
——
[ —
—
szi
RyQ
> ~
—
——
[ —
E—
—
 I—

—_—
Sl
|
< |
—
—
I
1

TJ-T

P

>
=S
—
——

[ —
—
—
>

>

>

=
[—=
[—"T=

Figure 5.6: (a) Perpendicular stress response R, /@ (black) and approximation by the shearing-
rate u (red) (top), difference R — ap, i u (black) and approximation by as | 8%u (red) (bottom).
(b) Parallel stress response R)/Q (black) and approximation by the shearing-rate u (red) (top),
difference R — aq,ju (black) and approximation by as j92u (red) (bottom).
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The robust characteristic radial scale length of the ZFs (recall Fig. 4.3a) suggests a radial
wave-length dependence for the stress functional. A turbulence study with the parameters

L,=100 L,=400 a=05 =1 7=1 s=1 q¢g=15 mn=24 (53)

and a radially changing artificial shearing-rate v = 0.125sin (27(5 + 15(x + L, /2)/L,)x/L;)
shows the wave-length dependence of the heat-flux (Fig. 5.5a). In the region of high wave-
numbers between x = 20 and x = 40 the heat-flux is much higher and seems less affected
by the shear-flow, whereas for x < 20 the heat-flux is highly corrugated by the local
shearing-rate although the amplitude does not change significantly. This illustrates again
the dependence of the heat-flux on both shearing-rate amplitude and radial scale as
discussed in chap. 4.

The pattern of the stresses (Fig. 5.5b) is still similar to the shearing-rate but the time-
averaged radial profiles show (Figs. 5.6a and 5.6b) that the linear stress responses to u
decrease with the wave-length. The profiles of the differences R} — ap 1u and R — ag ju
clearly point towards a wave-number dependent coefficient for the shearing-rate. And it is
identified that these differences are proportional to &?u, which is the lowest order derivative
of the shearing-rate allowed by the symmetries of the turbulence equations (2.69).

The finite amplitude of ZFs observed in the self-consistent studies indicate a nonlinear
saturation term for the stress functional. A turbulence study with the parameters

L,=200 L,=400 a=05 e¢=1 7=1 s=1 ¢=15 n =24 (54)

and an artificial shearing-rate u = 0.5sin (127x/L,) shows pronounced patterns in the
stresses (Figs. 5.7a and 5.7b) that are very similar to the shearing-rate but have indentions
near the extrema. The high amplitude of u also leads to strong corrugations in the heat-
flux. For high enough amplitudes of u the shearing effect can even be strong enough to
quench the turbulence locally such that only the peaks of the heat-flux corrugations remain.
In the standard, self-consistent cases, however, it was observed that the ZFs saturate long
before this effect can occur.

The radial time-averaged stress profiles (Figs. 5.8a and 5.8b), where the contribution from
the heat-flux gradient is already subtracted, reveal a saturation of the stresses for both pos-
itive and negative shearing-rates. This points towards a saturation caused by a nonlinearity
of u which is in phase with the shearing-rate. The term u? is the lowest order nonlinearity
compliant with the turbulence equations symmetries (2.69) and it allows indeed a very good
reconstruction of the differences R | /Q+au, 1 0, In Q—ayp | v and R||/Q+a47||6m InQ—ag u.
The contributions to a total stress functional R; = R — R identified so far yield

R =Q (aou — aqu® + agﬁgu — a0y 1n Q) (5.5)
which leads to a ZF momentum balance of

8ﬂ7y = _8xRt/ (1 + 2(]2)
= -0, [Q (awu — o u? + adu — aud, In Q)] /(1 +24%) . (5.6)
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Figure 5.7: (a) Time-evolution of the artificial shearing-rate u = 0.5sin (1272 /lx) (top) and
the radial heat-flux @ (bottom). (b) Corresponding perpendicular R, /Q (top) and parallel R /Q
(bottom) stress.
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Figure 5.8: (a) Profile of R, /Q + a4,10,In@Q (black) and approximation by the shearing-
rate ap,u (red) (top), R1/Q + a4 10, InQ — ap, 1 u (black) and approximation by a; u® (red)
(bottom). (b) Profile of Rj/Q + ay4,0, InQ (black) and approximation by the shearing-rate o ju
(red) (top), R|/Q + a0 InQ — ag ju (black) and approximation by ay ju® (red) (bottom).
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Figure 5.9: Time-evolution of the rescaled perpendicular stress R, /Q (top) and corresponding
reconstruction RS /@ by Eq. (5.5) (upper middle), and time-evolution of the rescaled parallel stress
R)|/Q (bottom middle) and corresponding reconstruction Rﬁ /Q by Eq. (5.5) that accompany the
flow pattern in Fig. 4.5a.
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Figure 5.10: Top: Rescaled perpendicular stress R, /Q (black)
at t = 5000 of Fig. 5.9 and reconstruction according to Eq. (5.5)
(red). Bottom: Rescaled parallel stress R/Q (black) at t = 5000
of Fig. 5.9 and reconstruction according to Eq. (5.5) (red).

Figure 5.9 shows the perpendicular and parallel stresses, which accompany the flow pattern
of figure 4.5a, and the reconstruction by Eq. (5.5) of the stresses using the corresponding
shearing-rate and heat-flux patterns. Comparison of the patterns yields a very good match
between the stresses and their reconstruction as all major features observable in the stresses
are reproduced. The comparison of the instantaneous stresses at ¢ = 5000 with their re-
construction (Fig. 5.10) exemplifies how well the functional (5.5) approximates the stresses
for an appropriate set of coefficients.

In self-consistent studies with almost completely stationary flows (e.g. Fig. 4.3a) the
heat-flux fluctuates randomly around some mean value but does not exhibit significant
deterministic changes in the ZF-turbulence equilibrium state. A flow that is slightly artifi-
cially changed is restored to the self-consistent pattern much faster than the turbulence can
adjust to changes of the ZF. This suggests that the intrinsic mechanism that restores the
radial ZF scale is contained in the stresses dependence on the shearing-rate. A numerical
solution of (5.6), while assuming a constant ), should therefore yield a ZF pattern with a
characteristic scale length.

Figure 5.11 shows the stable stationary solutions of the ZF momentum (5.6) with an initial
state 0, = @) sin (z) for different values of as and periodic boundary conditions. The
initial state always decays into the largest mode that fits into the domain. Intermediate
states of the time-evolution may appear stationary and stable to perturbations for some
time but eventually decay into the largest mode. The largest mode is stable unless a
perturbation shifts the flow such that it becomes either positive or negative over the entire
domain in which case the final state is a constant. Changing o results in different final
amplitudes, changing the relation between g and as yields different curvatures of the flow
profiles and a change of the domain size just leads to a different scale length for the largest
mode. This indicates that the functional (5.5) is still missing the necessary ingredient to
describe the robust, characteristic ZF scale length.

The reason for the decay can be understood using a mean-field theory approximation of
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the nonlinear term, 9,u® ~ 3 <u2>x, where (...), denotes the radial average over several
full flow oscillations, and assuming a constant heat-flux. This allows an estimate of the
corresponding ZF growth rate

Ty =(Q), K2 (a0 — 301 <u2>$ —anK2) . (5.7)

The region where I', > 01is 0 < K, < K,j with the largest wave-number K, =
Voo —3ai (u?),//az. The schematic 5.12a shows the evolution of I', with respect to
<u2>x. Initially, <u2>$ = 0, all modes between 0 < K, < K, = K;; = \/op/ao grow.
When <u2>x increases K, j decreases, confining the region of growth from the large K,
side until it reaches zero, explaining the eventual ZF decay except for the largest possible
scale length shown in figure 5.11. For values <u2>:E > ap/3aq all modes except K, = 0 are
damped since T,/ K2 < 0 everywhere (Fig. 5.12a).

The self-consistent ZF behavior (Fig. 4.3a) suggests though that small and large K, are
damped while intermediate K, continue to grow until the system saturates at a finite K,
and a finite amplitude. Hence, at least one additional wave-number dependent term is
required for the growth rate:

I'=(Q), K2 (ap — 3 <u2>z + K2 — a3K}) (5.8)

Now, for <u2>$ < 1/30 all modes up to K, j, grow but in contrast to the growth rate (5.7)
this formula confines the region of growth to 0 < K,; < K, < K, for shearing-rates
<u2>z > 1/3aq with

Koy = [<a2 — /o3 + dapas (1 - 3 <u2>x)> /2043} v (5.9)

Kyp = [(O@ + \/ag + dapas (1 — 3aq (u2>x)> /20@} v : (5.10)

Since K, ; increases and K, ; decreases with the shearing-rate, the system saturates at
Kys = Ky = Ky p = /ao/2a3 for <u§>m = (a% +4a0a3) /12cpa1a3. The schematic
5.12b illustrates how the growth rate for large scales "dips" below zero for sufficiently
high shearing-rates while intermediate scales continue to grow until saturation with a
characteristic scale length is achieved. Any further increase of the shearing-rate results in a
damping over all scales until <u2>x is again small enough such that I'(K, ) = 0 is restored.
Hence, this growth rate formula describes a robust scale formation mechanism with a scale
length dependent on the relation of as /s in contrast to 5.12a which accommodated only
the largest possible scale length as a final state. The corresponding ZF momentum equation
is

8tz7y = —ath/ (1 + 2q2)
= -0, [Q (aou — au? — adu — azdsu — as0, In Q)]/(1+ 2q2) . (5.11)
Numerical solutions of (5.11) prove (Fig. 5.13) that the scale length of the final state is

now dependent on the parameter relations which can always be adjusted to describe ZFs
of arbitrary intrinsic radial scale lengths.
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Figure 5.11: Numerical solution of Eq. (5.6) for @ = 1,a9 =1,y = 1,L, =
27 and ag = 0.5 (top left), as = 0.1 (top right), as = 0.01 (bottom left),
ag = 0.001 (bottom right). The initial states (black) decay into the stable final
states (red) while some intermediate states (blue) may appear stable but are
unstable to perturbations.

Kx,() Kx,l Kx,s Kx,h Kx,i

Figure 5.12: (a) Schematic behavior of I', (top) and I',/K?2 (bottom) for different values
of (u?) =0 (black), 0 < (u®) < ag/3ay (red), (u?) = ag/3a; (dark blue) and(u?®) >
ao/Sal (light blue) with region of ', > 0 is [0 K, 1] (b) Schematic behavior of T' (top)
and T'/KZ (bottom) for different values of (u?) = 0 (black), 0 < (u?) < (uZ) (red),
<u2>m = (a2 + 4a0a3) /12apaias (dark blue) and<u2> > <u > (light blue) with region of

S
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Figure 5.13: Numerical solution of Eq. (5.11) for Q@ = 1,00 = 1,1 =
10,L, = 27 and ay = —1,a3 = 0.25 (top left), s = —0.1,a35 = 0.01 (top
right), as = —0.1,a3 = 1073 (bottom left), ap = —0.1,a3 = 10~* (bottom
right). The initial states (black) decay into the stable final states (red).

To validate whether the d4u-term is indeed an adequate one for the stress functional it must
be verified also by the turbulence studies. Constructing a case where the effect is dominant
enough to be measured with a least-squares fit was not feasible since the method cannot
robustly extract all the coefficients for the polynomial K,-dependence of the shearing-rate
coeflicient.

Therefore, turbulence studies with artificial flows are used to verify that the behavior of
I'/K2? (Fig. 5.12b) can be observed for the ZFs. A flow with a shearing-rate u, is used to
set up an initial state with a turbulence level close to the self-consistent equilibrium. This
state is further modified by superimposing flows with shearing-rates u, of different radial
scale lengths, such that the total shearing-rate u = u, + us. The amplitudes are chosen
such that us; < u, because the nonlinear term in I' then evaluates to

(u*), = <(up + us)2>x ~ (up), - (5.12)

To validate the functional the stress response o caused by us, which represents the
growth rate modulo K2 for the small perturbation us, has to be measured and compared
with the growth rate estimate

P(uy) = (Q), K2 (a0 — 3aq (u2), + a2KZ — a3K3) . (5.13)

5.2 Verification of the Extended Stress Response Functional

To robustly extract the deterministic stress contributions of small perturbatory flows a
new analysis procedure is discussed in the following.

Let the stress response in the turbulence studies with n, radial grid points be represented
by a vector Z € R™. In general Z is a linear combination of the n, unit base vectors é;
(é; € R"™ with the value 1 at the index 7 and zero otherwise). The observations in the
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previous chapter show that large deterministic parts of the response are caused by terms
corresponding to a few specific linear combinations P; of the unit vectors, e.g. Py = wu.
This suggests that a decomposition of Z exists

Z:ZaiPi—i—Z,@ij-i-n. (5.14)
? J

where the coeflicients «; correspond to those of the constructed stress functional. The
vectors N represent other deterministic stress contributions (e.g. boundary or resonant
surface effects) and their structure must be determined individually from observations in
turbulence studies. The remaining random fluctuations are represented by the noise vector
n, which is assumed to be white noise in the following. The coefficients oy, 5; € R are the
deterministic contributions one is interested in. Let Py be the contribution of interest, e.g.
ug, then a test vector d satisfying

d-Py=1 (5.15)

and zero otherwise would yield the coefficient d - Z = «g. However, orthogonality of all
contributions is generally not the case and distinguishing two vectors which are almost
collinear is difficult, due to the finite support n, and distortion by random fluctuations.
Hence, a test vector with the aforementioned properties cannot always be constructed.
A solution d that minimizes the variance with respect to Z under the constraint (5.15),
however, is always possible

var(d-Z) =d” - C(Z) - d — min, (5.16)

where C' is the covariance matrix. The solution is (derived by application of the Lagrange
multiplier method)

c-t. Py

d=—— %
PI.C-P,

(5.17)

and the variance is var(d - Z) = 1/(P{ - C - Py). To find the covariance matrix an initial
estimate is made

C = vbg]I + Z ’Uz"p].sif)zr + Z ijNNjN}ﬂ (5.18)
i J

where vy, is the background variance estimated from the random fluctuations observed in
turbulence studies and v; p and v; y are "a priori” variance estimates for the contributions
by P; = P;/|P;| and Nj = N;/|Nj|, estimated from the square amplitudes of stress
responses in a large ensemble of turbulence studies employing artificial flows. The values
of v; p and vj x are then iteratively refined using the variances var(d;-Z) = 1/(PT-C-P;)
and var(d; - Z) = 1/(N? - C - Nj) to obtain a better estimate for C. The iteration is
finished when the difference between the variance estimates and calculated variances in
one iteration step becomes small.
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Figure 5.14: K,-dependence of the stress response contribution ag s by the
perturbatory shearing-rate ug in a turbulence study with an artificial flow shear
of u = u, + us where u, = 0.1 (black), u, = 0.12 (red) and u, = 0.15 (blue)
and us = 0.01sin (K,x). Response is qualitatively equal to the prediction (5.8)
thus verifying the du term.

To limit the number of contributions P;, a shearing-rate u, = const was chosen for the
setup to measure the growth rate of a perturbatory flow, described in the previous section.
Otherwise the nonlinear stress response would also contain linear combinations of the wave-
numbers of u, and u,, complicating the measurements, as one such combination might be
close or equal to the wave-number of Py = u itself, resulting in a large undesired variance.
To measure its linear growth rate using d the shearing-rate us should be small compared
to u, but it must still yield a stress response that is larger than the standard deviation
calculated using d. This confounds measurements for small values of u, as the measured
contribution of w, is then smaller than the deviation. Since very large shearing-rates are
damped over the entire K, range, only a small range of shearing-rate amplitudes remains
where the "dip" of the growth rate for u, is detectable. In addition, the shearing-rate u,
should also be in a regime where the influence of 9, In @ is a minor effect, otherwise the
contribution measurements of us in the scale range where 0, In Q) is dominant will have a
high variance.

Fortunately the parameter set (5.1) has a range of shearing-rates |u,| € [0.1,0.15] where
the K,-dependence of the growth rate of us; can be adequately measured. The measured
K, -dependence of the contributions from u, are shown in figure 5.14 for primary shearing-
rates u, = 0.1, up, = 0.12 and u, = 0.15. In this regime u, itself is already damped as
are the largest scales of us. The value of the wave-number K ; that separates the growing
from the damped scales increases when u,, is increased until all scales are damped. This is
the same behavior as predicted by (5.8) and verifies that

Ry =Q (Oéou — ayu® — 0 d?u — a30tu — 40, In Q) , (5.19)

indeed describes the stress response behavior, including and reproducing the major features
observed in the ZF-turbulence studies, in particular excitation, characteristic radial scale
length and finite saturation.



Chapter 6

Wayve-kinetic Analogies

This chapter is dedicated to the derivation of a Reynolds-stress functional for ITG-
turbulence within a wave-kinetic framework (Sec. 6.1), even though the prerequisite of a
scale separation between ZFs and turbulence is not strictly fulfilled (see chap. 4). This
allows a comparison of the properties of the wave-kinetically derived stress description
with the functional constructed in chapter 5 which points out a crucial ingredient missing
in previous, wave-kinetics based ZF theories (Sec. 6.2).

6.1 A Wave-kinetic Stress Functional Derivation

To describe the interaction of turbulence with large scale shear-flows, the small scale fluctu-
ations are thought of as wave-packets within a wave-kinetic framework with a wave-action
Ni = n (k) |¢x|* which is proportional to the square of the wave amplitude [98, 99, 100],
where n (k) > 0 is a coefficient that is symmetric with respect to k. In terms of quantum
mechanics Ny can be interpreted as the occupation number for an energy state wy. The
wave-packet is localized at x and has a wave-number k, hence the wave-action is a function
of both, Ny (x,k). The frequency of the wave-packet is

w=uwk(k) +k-v(x) (6.1)

where v is the convecting flow, in this case the ZF, and wy is the frequency of the wave in the
convected frame. It is assumed that the convecting flow is changing only very slowly over
time compared to changes in the wave-action such that dw/dt = 0. The wave-action can
change in time either due to convection by the shear-flow V- (V Ny), where V = Vyw, or
due to a change in the wave-number caused by a convection in phase space Vi - (Nxdk/dt)
or by collisions of wave-packets C' (Nx). The time-evolution of the wave-action is |34, 52|

O Nic + Vyx - (VNi) + Vi - (Niedk/dt) = C (N) . (6.2)

The change of the wave-number in a shear-flow according to (3.36) is dk/dt = —Vyw
resulting in the wave-kinetic equation

8tNk + ka . VxNk - wa . Vka =C (Nk) . (6.3)

67
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Let Ny be the ZF-turbulence equilibrium state of the wave-action, then the Krook-type
"collisional"-term C' (Nx) = Aw (Nxo — Nk) (others also readily available e.g. Focker-
Planck) describes the tendency of Ny to evolve into the equilibrium with a decorrelation
rate Aw > 0.

Neglecting, for simplicity, the diamagnetic contribution (which is in the examined param-

eters regime proportional to (vyvy)y. (see Chap. 4)) the perpendicular stress defined by
(4.14) yields

Ry & (vgvy)y,. = —(0y$0:9)y,- - (6.4)

Applying a Fourier transform in the y and z directions to each fluctuation gives
Ri= ([ [ gt o dane %), (6.5)
which results in
Ri= ([ ahok, 0],
S / AR Ni)y 2 (6.6)

[for DWs n (k) = (14 a2e,k2)” [53, 52, 34, 95]; for ITGs n (k) = 472/ (A2 +42) with
= \/k:yaw,J (1 — mic) and A = (10 — 37) wy /6 + Tak, /2 where 7. is the linear ITG-
instability threshold [67, 68|| and 7, = kzk,/n (k). Assuming that the wave-action is
proportional to the turbulence intensity Ny o« @ and 0, Nk o ~ Nk 00,Q/Q, one can apply
a perturbative expansion to Ny = Ny o+ Nﬁ + Nﬁ + ... in terms of powers of the shearing
rate u™ = (9,v)", derivatives of the shearing rate K?u = 9%u (m,n € N), 9, In@Q and
further higher order terms obeying the turbulence equation symmetries to approximate a
solution of (6.3) required for a stress estimation using (6.6). It is further assumed that
0y < Aw and Aw is symmetric with respect to k.

The lowest order (m,n) = (1,0) deviation of Ny from Ny is thus given by

-1
Nll = o [ngamep — k’yuaksz,O]

-1
=~ Ao [Vga Ni,00z In Q — kyudy, Nio] (6.7)

for a group velocity vg, = Oy, w and a flow k- v = k0. Inserted into (6.6) and partially
integrated, the coefficients aBVk and ozX’k for the terms v and d, In @ in the perpendicular
stress are

oaf* = (8, [Trky/Aw]), (6.8)
ok = — (ThVge/ Aw) . (6.9)

where the superscript wk denotes their wave-kinetic origin. The subscripts are chosen such
that they correspond with the numbering in the functional

R = Q (awou — oau? — ad?u — azdiu — au0, In Q) (6.10)
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that was constructed and verified in chapter 5. The average operator for a quantity A is
defined as

(4), = / Ak ANy o)./ Q. (6.11)

The coefficient ab"k describes the linear ZF growth and is generally not vanishing if 0y, 7k,
and Ny are symmetric functions with respect to k. m,vg,; on the other hand may be
asymmetric with respect to k; depending on the wave-number behavior of v, and thus
may vanish. The perpendicular stress in the lowest order is

R! =@ [oagku + ay%9, In Q. (6.12)

Higher order terms of Ny are easily obtained iteratively from the wave-kinetic equation
(6.3)

T o o
N = < 000N = ko, N7 (6.13)

It is important to note though that the coefficients including an NIZ with an even j are
zero [54] which is consistent with the invariance (2.69) of the turbulence equations as terms
like Oyu are prohibited. Iteration up to j = 5 and insertion into (6.6) reproduces, among
others, all the terms observed in chapter 5. The coefficients corresponding to the terms
02u and Jtu are

oYk = (O, [ﬂkk:yvgx/Aw?’] >k (6.14)
ok = (O, [ﬂkkyvéx/Aw‘r’Dk (6.15)

which are generally non-vanishing. The coefficient for the nonlinear term u? is

ay* = — (k30p i/ Aw®), (6.16)

which is finite if k;@gzﬂk is a symmetric function with respect to k,. The coefficient of
u? vanishes due to the turbulence equation symmetries and u? is therefore the lowest
order non-vanishing nonlinearity with m = 0. The signs of ay’* and aj’* concur with the
measurements for the perpendicular stress (Figs. 5.6a and 5.8a) if the (.. .), operation yields
a non negative value, which will be addressed section 6.2. The first generally non-vanishing

term quadratic in u is O,u? with a coefficient
avk = i <akz [Aiw (30%, (K2mivge/ Aw?) + k2140, Vga /Aw2)] >k . (6.17)
Overall this yields a perpendicular stress functional
RV =Q [a‘gku + a¥*u3 + oy 02u + a¥*0tu + ay* 0, In Q + af—j’k(%uz] . (6.18)

The formula contains the three lowest order linear terms and the lowest order quadratic
and cubic terms that do not vanish in general. The other terms obtained by evaluating
(6.13) up to Np either vanish or are of even higher order.
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Figure 6.1: Spectrum of |¢y|® on the outboard
midplane for the dominant fluctuation at k, = 0.33
in a self-consistent ZF-turbulence equilibrium state

shown in figure 4.3a at ¢t = 1800.

6.2 Comparison with the Constructed Functional

The wave-kinetic approach was used frequently in e.g. [52, 53, 54| to discuss the properties
of the DW-driven ZFs with the functional (6.18) for the perpendicular stress without the
terms agk, a};"k and a‘éVk. Even though the parallel flow component carries the major part
of the ZF energy [49], the parallel stress component was not really discussed in detail
and the only retained influence of the parallel stress was a viscous parallel damping term

i (1 + 2q2) u. This lead to a total stress functional of

RI™ = Q [af™u + oy u® + a3*92u — | (1 + 2¢°) u]

=qQ [a(vﬁfu + alkud + oz;"kaiu] (6.19)

where the retained parallel contribution results in a modification of the linear growth rate
a‘(’)‘tlt‘ = oz(V)Vk — (1 + 2q2). The mathematical structure of this functional is equal to that
of (5.5). It was shown previously (Fig. 5.12a) that the only stable state described by this
functional has the largest possible radial scale length. Hence, the functional (6.19) does not
describe the characteristic radial scale length of ZFs. However, the wave-kinetic theory does
provide the additional terms required for a stress description with a characteristic scale
length as comparison of (6.18) and (6.10) shows. This is unsurprising as equation (6.13)
can produce terms of arbitrary order in v™ and K]'. The question remains whether the
wave-kinetic theory predicts the appropriate coeflicient characteristics, most importantly
the proper signs necessary for a saturation with a characteristic scale length.

The sign of af’* (Eq. (6.8)) is positive if the integrand k, 0y, N0 < 0, which is the case for
typical DW action [54]. In the case of ITG-turbulence the spectrum of |¢|? is centered
around k; = 0 (Fig. 6.1) and monotonically decreasing for |k;| # 0, thus k;0k, Nxo < 0
yielding a positive coefficient agk.

The sign of the coefficient affk depends on the symmetries of the group velocity vg,. In
the case of DWs vy, is asymmetric with respect to both perpendicular wave-numbers and
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hence the coefficient is negative as mpvg, > 0. For ITGs the group velocity depends on the
curvature frequency w,, (see chap. 3) which changes the symmetries of the group velocity
depending on the poloidal angle. In the examined case, though, mvg, > 0 where the
turbulence is located (see Fig. 3.4) — on the low-field side — such that a}* < 0 (Eq. (6.9)).
This matches the observations for the perpendicular stress in chapter 6.

The higher order terms in K} linear in v differ from oz(V)Vk only in the even powers of the
radial group velocity vy, (Eq. (3.7)) and odd powers of the decorrelation rate Aw (Egs.
(6.14) and (6.15)). Since Aw is symmetric with respect to k, the coefficients have the
same condition for a positive sign as 048’1‘ namely k0, Nk o < 0. Hence, the wave-kinetic
theory predicts these coefficients to be positive. The positive sign of a‘2”k coincides with
the measurements for the perpendicular stress in the turbulence studies (Fig. 5.6a). The
theory does not, however, yield a proper sign prediction of the coefficient for the total
stress which should be negative to reflect to early damping of large scale observed in the
turbulence studies (see Eq. (5.11)). Furthermore, a positive coefficient a}* for the total
stress would predict a rapid growth of smallest scales also contrary to the observations. The
observations of the stresses made in chapter 5 yielded that the parallel stress contributes
significantly to the coefficients of all terms. This illustrates that a major ingredient missing
in current wave-kinetic ZF descriptions is an adequate treatment of parallel dynamics.
The wave-kinetic coefficient a}* for the third order nonlinear term is negative if
k20p Nico/n (k) < 0. This is similar to the condition for the linear coefficient and is
satisfied for DWs [54]. In the case of the ITG turbulence, however, the sign of a}* is
highly dependent on the structure of n (k) and the poloidal location of the turbulence. A
general statement on the sign is beyond the scope of this thesis. However, a non-negative
sign would lead to indefinitely growing ZFs, which have not been observed.

The wave-kinetic approach for a stress functional also derives the quadratic term 0,u?,
which is not included in the functional (6.10) constructed from observations in turbulence
studies because it could not be satisfyingly verified, since the corrugations of the heat-flux
are proportional to it, 9, In Q ~ d,u? (see Sec. 4.3).

Overall, the discussed wave-kinetic approach, which is the basis for contemporary ZF
theories [52, 53, 54|, can not predict the evolution of ZFs as most contributions of the
parallel stress are not included in the derived functional leading to inadequate coefficients.
Additionally, the derived coefficients should not be taken literally because the prerequisite
of a separation of scales between ZFs and driving turbulence is not fulfilled (see Fig. 4.4).
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Chapter 7

Conclusions

Zonal Flows (ZF) |7, 8, 9] are global structures self-excited by the turbulence in magnetized
plasmas. Since their shearing effect on turbulent eddies [10] leads to a reduction in the
radial transport of particles and heat in toroidally confined fusion plasmas, which can
improve the confinement by several orders of magnitude [35, 36, 37|, it is imperative to
have a good understanding of the evolution of ZF-turbulence equilibrium states. The two-
fluid code NLET [64] (briefly discussed in chapter 2) was used to examine the excitation
and transition of ITG-driven ZFs into ZF-turbulence equilibria and their evolution.

Self-consistent turbulence studies revealed that strong ZFs, which are excited when the tur-
bulence self-organizes itself and starts forming pronounced radial streamers, evolve into a
nearly stationary pattern that tears the radial streamers apart resulting in a ZF-turbulence
equilibrium with a nearly stationary radial heat-transport level which is orders of magni-
tude lower than in cases without ZFs (see Chap. 4). The radial scale length of the equi-
librium ZFs is hereby different from the scale length of marginal flows, as excited by a
turbulence exhibiting no formation of radial streamers, and even different from the scale
length during the initial excitation phase of strong ZFs. ZF theories describing the ex-
citation phase only, which covers only a short phase of the ZF evolution, are therefore
unsuitable to make adequate predictions of the ZF-turbulence equilibrium.

Further turbulence studies revealed that states with arbitrary initial flows evolve self-
consistently into ZF-turbulence equilibria with one robust and characteristic radial scale
length for a given set of plasma parameters. Examination of the perpendicular and parallel
Reynolds stresses corresponding to the flows yielded large deterministic contributions in
the stress patterns which are clearly correlated with the flow. This suggested that the
construction of a deterministic Reynolds stress response functional that describes all the
characteristic ZF features observed in ZF-turbulence studies, namely a nearly stationary
saturated ZF pattern maintaining a characteristic radial scale, is possible. The diamagnetic
contribution to the perpendicular stress is of the same order as the E x B contribution
and therefore can not be neglected. The ZF patterns of the two-fluid description are
qualitatively equal to the patterns obtained with the gyro-kinetic code GYRO. This justifies
the use of the two-fluid approach, which comes at a lower computational expense, and
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made the extensive turbulence studies necessary to map out the requirements upon a
stress functional possible feasible in the first place.

Examination of the stresses in self-consistent turbulence studies reveals that they are pro-
portional to the shearing-rate u (Fig. 5.2). To identify additional contributions, the stress
responses to artificial flow profiles were examined throughout chapter 5. The stress re-
sponses to oscillating large scale flows show large deviations from the proportionality to u
in regions of small shearing-rates, accompanied by large increases of turbulence intensity,
e.g. heat-flux @ or density fluctuation square. This motivated the use of the turbulence
intensity as a second degree of freedom for the functional. Indeed, a rescaling of the stresses
by the turbulence intensity restores the proportionality to the shearing-rate (Fig. 5.4a).
A time-average of the rescaled stresses over several oscillation periods removes all con-
tributions caused by the shearing-rate, and deterministic stress residuals proportional to
the heat-flux gradient 0, In @ are observed (Fig. 5.4b). The heat-flux is therefore the best
choice for the turbulence intensity measure since this way two degrees of freedom will suf-
fice. The identification of further terms was aided by the turbulence equations symmetries
(2.69) that confine the domain of possible candidate terms.

The responses to a flow with a radially changing wave-number reveal a wave-length de-
pendence of the stress responses. It was found that the residuals, after subtracting the
contributions by u, are proportional to the second derivative of the shearing-rate 0%u (Fig.
5.6). The responses to a flow with a large amplitude show a finite saturation of the stresses
identifying their proportionality to the nonlinearity u? (Fig. 5.8).

For appropriate coefficients a functional (Eq. 5.5) can be constructed, using the aforemen-
tioned contributions, that reproduces the stress patterns both qualitatively and quanti-
tatively quite well for supplied self-consistent flow and heat-flux patterns (Figs. 5.9 and
5.10). However, numerical solutions with arbitrary initial states of the ZF momentum
equation (5.6) induced by this functional always produce a flow pattern with the largest
possible scale length (Fig. 5.11), contrary to the characteristic radial scale length observed
in self-consistent studies. Using a mean-field approximation of the nonlinearity, an esti-
mate of the ZF growth rate induced by the functional reveals a region of growth confined
by 0 < K, < K, with a decreasing K j for an an increasing shearing-rate (Fig. 5.12a),
which explains the decay of all but the largest flow scale length. The observations of the
self-consistent ZF evolution are, though, that flows with large and small scale lengths are
damped for a finite flow amplitude while flows of intermediate scale lengths continue to
grow. This growth behavior is described by extending the functional with the term diu
(Fig. 5.12b) resulting in a total stress functional

R =Q (agu —au® — agagu — agaiu — a0z In Q) , (7.1)

with coefficients «; > 0. Numerical solutions of the ZF momentum equation induced by
this extended functional saturate into a profile with a characteristic scale length depending
on the relations of the coefficients (Fig. 5.13).

Verification of the additional term in turbulence studies using standard analysis techniques,
e.g. least-squares approximations, yield unsatisfactory results as the coefficients are highly
susceptible to interfering noise, caused by random fluctuation remnants, and almost in-
distinguishably similar contributions by different terms. Hence, to verify the functional,
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Figure 7.1: K,-dependence of the stress response contribution ag s by the
perturbatory shearing rate u in a turbulence study with an artificial flow shear
of u = u, + us where u, = 0.1 (black), u, = 0.12 (red) and u, = 0.15 (blue)
and us = 0.01sin (K,z). Response is qualitatively equal to the prediction (5.8)
thus verifying the d2u term.

the growth rates of perturbations us to flows with constant shearing-rates were measured
applying a minimal variance estimator. The covariance matrix needed to construct the
estimator was initially obtained from observations of stress responses in a large ensemble
of turbulence studies and subsequently iteratively refined. The measurements show (Fig.
7.1) that the region of growth of uy is confined by K, ; < K, < K, with an increasing
lower bound K, ; for an increasing shearing-rate, thus exhibiting the same properties as
described by (7.1), which verifies the extended functional. This functional describes all the
observed ZF features, namely excitation, finite saturation and characteristic radial scale of
the ZF-turbulence equilibrium, and therefore permits the prediction of the time-evolution
of ZFs, including their radial scale length.

Contemporary ZF equilibrium theories [52, 53, 54| derived a stress response functional
analytically for drift-wave driven ZFs, using a wave-kinetic approach to obtain an expres-
sion for the perpendicular stress and taking the parallel stress contribution into account
as a viscous modification of the linear ZF growth rate only. While this method can also
be used for ITG-driven ZFs (see Chap. 6) and produces the same terms as observed in
the stress responses, it gives coefficients with the wrong characteristics, most importantly
the sign. Thus, it fails to predict the self-consistent ZF evolution, as do all contemporary
wave-kinetic ZF theories. An adequate treatment of the contributions by the parallel stress
to all coefficients is absolutely necessary to obtain a valid total stress functional. However,
even though some wave-kinetic effects have been observed previously [57], coefficients de-
rived using the wave-kinetic approach should not be taken literally, as a strict separation
of scales, which is a requirement for the applicability of wave-kinetic theory, between the
turbulence and the equilibrium ZFs is not fulfilled.

Knowledge about ZF activity is important as it is necessary for transport descriptions to
take into account the amplitude as well as the radial scale length of the ZF shearing-rate,
because the mean radial heat-flux level depends on both quantities, with a scale-length-
dependent threshold for the shearing-rate below which the ZFs do not significantly influence
the turbulence (see Sec. 4.3). The threshold is due to the fact that radially propagating
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turbulent eddies passing quickly through regions with alternating flow directions are dis-
torted but not torn apart. This is unless the shearing-rate amplitude is large enough to
tear an eddy apart to such an extend that the radial streamer pattern collapses before
it propagates to a region with an opposite flow direction. Furthermore, the turbulence
retains some memory of the flow it was previously subjected to during transitions from
one flow state to another and takes a comparatively long time to adjust.

Strong shear-flows can also cause corrugations in the heat-flux near local flow maxima and
minima with 9, In Q ~ 9,u?, which, self-consistently, will cause a response of the ZFs since
their equilibrium state prefers vanishing deterministic heat-flux gradients. Additionally,
in some regimes the corrugations show an asymmetric profile with respect to flows in
ion- or electron-diamagnetic-drift direction which is due to differences in the heat-flux
distributions along the field lines, indicating that a heat-flux description needs to take the
third dimension into account. A transient wave-kinetic concentration of fluctuation energy
[57], wave-trapping [97] or an increased drive of turbulence [95] may offer an explanation
for the corrugations but a verification is left to future studies.

In summary, a Reynolds stress response functional for ZFs was derived that describes the
excitation, evolution and robust characteristic radial scale length of ZFs [101]. Future
studies on the plasma parameter dependencies of the functionals coefficients will yield a
reliable map of ZF activity, which can then be incorporated into an advanced transport
description. This will allow a predication of confinement far more accurate than overall
scaling laws or anomalous diffusion coefficients that neglect ZFs, resulting in confinement
optimization of experiments and giving an insight into the initial conditions for a transition
into an H-mode regime or the formation of an internal transport barrier.
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