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Abstract—The problem of stochastically robust minimum
mean square error (MMSE) transceiver design is addressed for
multiple-input multiple-output (MIMO) point-to-point channels
with different imperfect channel state information (CSI) at the
receiver and the transmitter. While the receiver has distribution
knowledge of the doubly correlated Gaussian channel that is
conditioned on pilot-based training observations (partial CSIRx),
the transmitter has either conditional distribution knowledge
about the receiver’s observations based on feedback (partial
CSITx), or only unconditioned distribution knowledge (statistical
CSITx). In case of partial CSITx, the design is based on an
alternating optimization of the transmit and receive filter. For
statistical CSITx, a novel closed-form expression for the expected
MMSE is calculated and the structure of the optimal precoder
is determined. This enables us to employ an efficient gradient
projection method for the robust precoder design.

Index Terms—MIMO point-to-point channel, MSE minimiza-
tion, statistical transmitter CSI, partial receiver CSI

I. INTRODUCTION

We examine the stochastically robust linear MMSE

transceiver design problem in the MIMO point-to-point chan-

nel, where one multi-antenna transmitter serves one multi-

antenna receiver. A comprehensive study of this problem in

the case of complete CSI—perfect knowledge of each channel

realization—is presented in [1]. However, the joint design is

still a difficult problem when only imperfect transmitter CSI

(CSITx) and receiver CSI (CSIRx) is available, even though

a tractable cost as the mean square error (MSE) is given.

For imperfect CSI, two scenarios are common in the lit-

erature. The first scenario describes a system with complete

CSIRx, while CSITx is modeled with an estimated channel

mean and covariance (e.g., see [2], [3], and references therein).

In the second scenario, equal CSIRx and CSITx is assumed

that is expressed by the conditional probability density function

(PDF) of the channel (cf., [4], [5]). However, both scenarios

lack in an accurate description of mobile communication

systems. Whereas the first scenario does not take into account

limitations in training and estimation for the receiver, the

second scenario neglects the fact that CSIRx is generally more

accurate than CSITx, e.g., for limited feedback of CSI.

In contrast to above models, we study the scenario, where

both ends—the transmitter and the receiver—have different

imperfect CSI. CSIRx is obtained via pilot aided conditional

channel estimation and CSITx is acquired via perfect feedback

of quantized receiver’s observations. Based on this channel

knowledge model, we differentiate between partial CSITx and

statistical CSITx: partial CSITx denotes the case where we can

model the receiver’s observations via their PDF conditioned on

the transmitter’s observations, whereas statistical CSITx means

that the transmitter’s observations give only knowledge about

the long-term distribution of the receiver’s observations, i.e.,

the unconditioned PDF of the receiver’s observations.

For above model, we formulate a proper average MSE

minimization problem and discuss the joint robust transceiver

design for partial and statistical CSITx. Unfortunately, the case

of partial CSITx (and partial CSIRx) appears to be difficult.

So far, there exists no closed form expression for the expected

MMSE at the transmitter side. An alternating optimization

(AO) strategy, which is common in literature, for determining

the precoder and equalizer will, therefore, be presented.

The focus and the main contributions of this work are for

statistical CSITx. Contrary to partial CSITx, we are able to

derive a novel closed form expression for the ergodic MMSE.

The key point of this derivation is a first order derivative of

an ergodic rate expression w.r.t. the effective signal to noise

ratio (SNR) (similar to those in [6]). The derived expression

provides some structure for the ergodic MMSE minimizing

transmit covariance matrix (and the precoder). This structure,

together with the ergodic MMSE expression, can be exploited

for the transmit covariance matrix design with efficient gradi-

ent methods. To this end, we present closed-form expressions

for the derivative of the ergodic MMSE expression. In this

context, first order derivatives of eigenvalues w.r.t. scalar real-

valued parameters are applied. Note that the presented analyses

and designs for point-to-point MIMO systems are the basis for

those of multi-user MIMO systems in [7].

We present numerical results to show the correctness of the

proposed ergodic MMSE expression. Then, we compare the

achievable average performance for the partial CSITx and the

statistical CSITx scenarios with the performance of the method

in [5], where the receiver uses the same CSI as the transmitter,

and the setup where no CSI is available at the transmitter side.

Notation: We say that a random matrix X ∈ C
p×q has

a matrix variate complex Gaussian distribution with mean

M ∈ Cp×q and covariance matrix ΨT⊗Φ (where Ψ ∈ Cq×q

and Φ ∈ Cp×p are positive definite), denoted as X ∼
NC(M ,Ψ ,Φ), if vec(X) ∼ NC

(

vec(M),ΨT ⊗Φ
)

[8]. For

X ∼ NC(M ,Ψ ,Φ), we have XH∼ NC

(

MH,Φ,Ψ
)

and

EX [XBXH] = MBMH + tr(ΨB)Φ. (1)

II. SYSTEM MODEL AND CHANNEL STATISTICS

We consider the block model of a time-discrete MIMO

point-to-point channel with n transmit andm receive antennas.



The transmitter forms the transmitted signal by spatially filter-

ing the l ≤ min(m,n) zero-mean and mutually uncorrelated

data entries of d ∈ Cl with the linear precoder P ∈ Cn×l,

i.e., x = Pd ∈ C
n. This transmitted signal propagates over

the channel H ∈ Cm×n to the receiver and is perturbed

by the additive circularly symmetric complex Gaussian noise

vector n ∼ NC(0,Cn). The resulting received signal vector

y = HPx + n ∈ Cm is linearly filtered with the equalizer

G ∈ Cl×m to obtain the estimate for the intended data vector

d̂ = GHPd+Gn ∈ C
l, (2)

which is completely described by the statistics of the noise,

the data symbols, and the channel.

For the channel, we use a narrow-band flat Rayleigh fading

model with Kronecker product covariance structure. That is,

the channel has a matrix variate complex Gaussian distri-

bution, i.e., H ∼ NC(0,RTx,RRx), where RTx ∈ Cn×n

and RRx ∈ Cm×m comprise the channel correlations at

the transmitter and receiver side, respectively. This model is

sufficiently accurate in many practical scenarios, where the

distance between transmitter and receiver is large compared

to the distance between the elements of the same linear

antenna pattern [9]. We remark that the channel matrix is

equivalently distributed as H ≃ R
1/2
Rx HwR

1/2,H
Tx , where we

obtain R
1/2
Rx and R

1/2
Tx from RRx and RTx via the Cholesky-

factorization [10] andHw ∈ Cm×n consists of i.i.d. zero-mean

and unit-variance complex Gaussian entries.

III. CHANNEL TRAINING AND PARAMETER ESTIMATION

A key issue regarding the stochastic robust transceiver

design methodology for above MIMO point-to-point channel

is the available degree of CSI at the transmitter and the receiver

side, and the way it is acquired. Current approaches try to com-

bine the advantages of pilot-based channel estimation relying

on the channel reciprocity in TDD systems and the use of a

dedicated feedback link with limited capacity [11]. Here, we

simply assume that CSIRx is obtained via the transmission of

a training sequence and MMSE channel estimation according

to the orthogonal training method in [5]. CSITx is acquired

via perfect feedback of the quantized receiver’s observations.

The receiver obtains the observation matrix YRx = HX +
NRx ∈ Cm×n in the training period, where we choose the

deterministic training signal matrix X = αRxR
−1/2,H
Tx T ∈

Cn×n, with unitary T ∈ Cn×n, and NRx ∼ NC(0, In,CnRx
).

The scalar αRx is introduced to meet the power requirements

of the transmitter during training, i.e., αRx = PTx

/√

tr(RTx)
for a maximal total average transmit power PTx. Performing

MMSE estimation of H , we can state the conditional channel

estimate and the distribution of the estimation error in matrix

variate form, i.e., (cf. [5, Section II.B.])

H = Ĥ +ERx. (3)

The conditional channel estimate is given by

Ĥ = ARxYRxX
−1 (4)

and the estimation error is distributed as ERx ∼
NC(0,RTx,BRx), where ARx = α2

RxRRx(α
2
RxRRx +CnRx

)−1

and BRx =
(

R−1
Rx − α2

RxC
−1
nRx

)−1
stem from the estimation

process (cf. [5, Section II.B.]). Note that complete CSIRx is a

special case of this channel knowledge model. For very low

noise during training, CnRx
→ 0, it follows that Ĥ → H .

The transmitter’s observation matrix YTx is obtained via

perfect feedback of quantized receiver observations and mod-

eled as YTx = YRx + Nq, with noise Nq ∼ NC(0, Im,Cq).
Note that Gaussian noise is improper for correctly describing

quantization noise and is merely introduced for remaining

mathematically tractable. Applying MMSE estimation, the

transmitter models the receiver’s observations as

YRx = ŶRx +ETx, (5)

with estimate ŶRx = ATxYTx and estimation error ETx ∼
NC(0, In,BTx). Here, the matrices ATx =

(

α2
RxRRx +

CnRx

) (

α2
RxRRx +CnRx

+Cq

)−1
and BTx =

(

(α2
RxRRx +

CnRx
)−1 + C−1

q

)−1
are defined via the MMSE estimation

process. Note that we assume perfect feedback, that is, we

imply that the receiver is aware of ETx and YTx. The important

statistical CSITx scenario, where the transmitter has only

access to the unconditioned distribution of YRx, can be seen

as the extreme case for very high quantization noise, i.e.,

C−1
q → 0. In this case, YTx becomes statistically independent

of YRx and, therefore, ŶRx → 0 and BTx → α2
RxRRx +CnRx

.

IV. MEAN SQUARE ERROR OPTIMIZATION

The MSE ε(G,P ) , Ed,n[‖d−d̂‖22] of the considered data
transmission model in Section II is given by

ε(G,P )= l+tr
(

G(HQHH+Cn)G
H
)

−2Re {tr(GHP )},
(6)

where Q = PPH is the transmit covariance matrix. For

perfect CSI at both sides of the communication link, common

objectives for the joint design of the precoder P and the

equalizer G are strongly related to the MMSE—the achieved

MSE with MMSE receiver. Popular examples are the through-

put maximization, the BER minimization, and the maximiza-

tion of the individual signal-to-interference-plus-noise ratios

(SINR) [12], [13], [14].

Unfortunately, these objectives are not that closely con-

nected to the MMSE for imperfect CSI. Moreover, as the

influence of partial CSIRx is best understood with the MSE,

we focus on minimizing its average value. In this context,

note that the imperfect CSIRx is considerably more accurate

than the CSITx which is acquired via feedback. Therefore, the

average MSE can be minimized w.r.t. G taking into account

the better CSIRx. Specifically, we focus on

min
P

EYRx|YTx

[

min
G

EH|YRx
[ε(G,P )|YTx]

]

s.t.: ‖P ‖2F ≤ PTx,

(7)

where the constraint reflects limitations in the total average

transmit power. The inner optimization w.r.t. G is based on

the better conditional channel knowledge H |YRx as desired,



and an outer optimization w.r.t. P is based on the less

accurate training/feedback observations YTx. Note that this

optimization order also takes into account the two extreme

cases of complete CSIRx and statistical CSITx. For complete

CSIRx, H is completely attained via YRx and the inner

expectation disappears. In the statistical CSITx scenario, the

observation matrix YTx becomes independent of YRx and the

outer averaging is only based on the unconditioned PDF

fYRx
(YRx). Furthermore, when the receiver neglects YRx and

designs G w.r.t. YTx, we have equal CSI as in [5].

A. Equalizer Design

As the receiver is aware of YTx (output of quantizer at the

receiver), it can perfectly determine P by doing the same

computations as the transmitter. Hence, the expected MSE at

the receiver side EH|YRx
[ε(P ,G)|YTx] is given by

ε̄Rx(G,P )= l+tr
(

G(ĤQĤH+Cest)G
H
)

−2Re
{

tr
(

GĤP
)}

,
(8)

where the effective noise covariance matrix is [cf. (1)]

Cest,EERx

[

ERxQEH
Rx

]

+Cn=tr(QRTx)BRx+Cn (9)

and Ĥ is given by (4).1 With (8), the inner optimization of (7)

is readily solved via the MMSE filter function

G(P ) = PHĤH
(

ĤQĤH +Cest

)−1
. (10)

Inserting (10) into (8), the minimum expected MSE

EH|YRx
[ε(G(P ),P )|YTx] results in

ε̄Rx(G(P ),P ) = l − tr
(

PHĤH(Cest + ĤQĤH)−1ĤP
)

= tr
(

(Il + PHĤHC−1
est ĤP )−1

)

, (11)

where the second line follows via the matrix-inversion-lemma.

B. Precoder Design

With (11), the outer optimization, that has to be performed

at the transmitter and the receiver, is equivalent to [cf. (7)]

min
P

EYRx|YTx
[ε̄Rx(G(P ),P )] s.t.: ‖P ‖2F ≤ PTx. (12)

Although having a simple cost function as the MSE, the

resulting expected minimization problem for the precoder

design in (12) is difficult to solve, especially, when partial

CSITx is available. The reason is, that we are not aware of an

analytic representation of the objective in this case.

To overcome this difficulty, one might think of a precoder

design based on an approximation of EYRx|YTx
[ε̄Rx(G(P ),P )].

A lower bound of the objective, that has a simple analytic

expression, is obtained via Jensen’s inequality [4]:

EYRx|YTx
[ε̄Rx] ≥ tr

(

(Il + PHΨHP )−1
)

, (13)

where the effective channel covariance matrix is [cf. (1)]

ΨH , H̄HC−1
est H̄ + tr

(

AH
RxC

−1
est ARxBTx

)

X−HX−1, (14)

1For complete CSIRx, Ĥ and Cest can be replaced with H and Cn,
respectively.

with H̄ = ARxŶRxX
−1. In the extreme case of complete

CSIRx, where Cest = Cn, above approximation is known

to have a bounded asymptotic error and its minimizer has

a closed form expression [4]. However, these results cannot

easily be extended to the case of partial CSIRx, where the

effective noise Cest is linear in tr(QRTx) [cf. (9)].
Moreover, minimizing the lower bound is of minor interest

as its optimal value gives no accurate information about

the actual achievable minimum average MMSE. In the next

section, we devise a second approach, which is based on

AO, and use Monte-Carlo simulations for the expectation

evaluations.

The focus and the main contributions of this work, however,

are on the extreme case of statistical CSITx, which is detailed

in Section VI. For this case, we are able to derive novel

closed form expressions of the expected MMSE and the basic

structure of the ergodic MMSE minimizing precoders. This

structure and the ergodic MMSE expression can be exploited

for approaching the average MMSE minimization via an

efficient gradient projection method.

V. ROBUST PRECODER DESIGN FOR PARTIAL CSITX

The original precoder design in (12) is difficult due to the

lack of a closed form expressions for the average MSE. In-

stead, we employ an AO procedure which iteratively switches

between updating the precoder and the equalizer function

G(P ) to arrive at an MSE minimizing transceiver pair. In

every step of the algorithm, the equalizer function is first found

for the better partial CSIRx. Second, the precoder is optimized

for the worse partial CSITx and for above equalizer function.

In the i-th iteration, given an initial P (i−1), we update

G(i) = G(P (i−1)) according to (10)—as minimizer to the

inner optimization of problem (7). Then, we insert this fixed

filter function into the MSE (8). The precoder P (i) is found

as a minimizer to the resulting outer optimization:

P (i)=argmin
P

EYRx|YTx

[

ε̄Rx(G
(i),P )

]

s.t.: ‖P ‖2F≤PTx. (15)

Calculating the Karush-Kuhn-Tucker (KKT) conditions

of (15), the (i)-th precoder update is readily found to be

P (i)=
(

EYRx|YTx

[

ĤHD(i)Ĥ
]

+EYRx|YTx

[

tr
(

BRxD
(i)
)]

RTx

+̺(i)In
)−1

EYRx|YTx

[

ĤHG(i),H
]

, (16)

where D(i) = G(i),HG(i). The non-negative Lagrangian

multiplier is ̺(i) = max{0, ¯̺(i)} and ¯̺(i) is the largest (real-

valued) solution of

n
∑

k=1

∥

∥EYRx|YTx
[G(i)Ĥ ]v

(i)
k

∥

∥

2

2

(δ
(i)
k + ¯̺(i))2

= PTx. (17)

The real-valued scalars δ
(i)
k and the vectors v

(i)
k ∈ Cn, k ∈

{1, . . . , n}, are the decreasingly ordered eigenvalues and the

corresponding eigenvectors of the positive definite matrix

EYRx|YTx

[

ĤHD(i)Ĥ
]

+ EYRx|YTx

[

tr
(

BRxD
(i)
)]

RTx. (18)



SinceD(i) andG(i) are functions of P (i−1), we essentially ar-

rived at a fixed point algorithm for the precoder. Unfortunately,

no closed form expressions of the expectations in (16)–(18)

are available. Therefore, we apply Monte-Carlo simulations

for the numerical results.

Note that this iteration scheme converges, i.e., in each

iteration the MSE is reduced and, therefore, smaller (or equal)

than in previous iterations. Moreover, as the KKT conditions

of (7) are satisfied in the convergence point, this procedure

ensures local optimality of the solution. As initialization P (0),

we choose the l dominant eigenvectors of RTx.

VI. ROBUST PRECODER DESIGN FOR STATISTICAL CSITX

Now, we focus on the statistical CSITx case, where the

conditional PDF is given by fYRx|YTx
(YRx|YTx) = fYRx

(YRx)
with YRx ∼ NC(0, In,CRx) and CRx = α2

RxRRx + CnRx

(see Section III). Statistical CSITx is beneficial in the sense

that we are able to: A.) propose a closed-form expression for

the ergodic MMSE and B.) determine the basic structure of

the MMSE minimizing precoder. The basis is a very close

connection between the MMSE and a virtual average rate

expression. In C.), the results are exploited to employ an

efficient gradient projection method of [15].

A. Ergodic Minimum Mean Square Error Derivation

A direct derivation of the ergodic MMSE, given by [cf. (11)]

ε̄(γ,Q) , l−EYRx

[

tr
(

(Cest+γĤQĤH)−1γĤQĤH)
]

, (19)

appears to be difficult. However, similar to [6, Theorem 2],

we devise to calculate the expected MMSE through a simple

derivation of the ergodic rate

R̄(γ,Q) , EYRx

[

log
∣

∣Im + γC−1
est ĤQĤH

∣

∣

]

(20)

w.r.t. the slack variable γ, that can be seen as the normalized

SNR. For γ = 1, (19) meets exactly the ergodic value of (11).

Lemma 1. Let the ergodic MMSE and the ergodic rate be

defined by (19) and (20), respectively. Then,

ε̄(γ,Q) = l − γ ∂
∂γ R̄(γ,Q).

A verification of Lemma 1 is straightforward using deriva-

tives of matrix valued functions and Leibniz’s rule for differ-

entiation under the integral [16]. Fortunately, we can state a

closed form expression for the ergodic rate expression in (20).

Theorem 1 ([17, Theorem 3.6]). The ergodic value

of R(γ,Σ,Ω) = log
∣

∣Iµ + γΣWΩWH
∣

∣ w.r.t. W ∼
NC(0µ×ν , Iν , Iµ), µ ≤ ν is given by

R̄(γ,Σ,Ω) = cχ(γ,Σ,Ω)

µ
∑

p=1

|Ξp(γ,Σ,Ω)|,

with the constant c and the substitute χ(γ,Σ,Ω) given as

c =
Γ(ν)

∏ν
i=µ+1[1− ν]i−µ−1
∏ν−1
i=1 i

i
(21)

χ(γ,Σ,Ω) =
γ

(ν−µ)(ν−µ−1)−ν(ν−1)
2

|Σ|ν−µ vµ(Σ) vν(Ω)
, (22)

respectively, and the ν × ν matrix Ξp(γ,Σ,Ω) of elements

[Ξp]i,j =











(zi,j)
νf

(

1
zi,j

)

p = i ≤ µ
∑ν−1
k=ν−µ(zi,j)

k[ν − k]k p 6= i ≤ µ

ωi−µ−1
j i > µ

, (23)

where zi,j , γσiωj , i, j ∈ {1, . . . , ν} and the scalars σi and
ωj are the distinct and decreasingly ordered eigenvalues of Σ

and Ω, respectively. The expression Γ(k) denotes the Gamma-
function, f (x) = x ex E1 (x), where E1 (x) is the exponential
integral function, [x]k is the Pochhammer symbol, i.e., [x]k =
∏k−1
i=1 (x + i) and [x]0 = 1, and vk(X) is the Vandermonde

determinant of the decreasingly ordered eigenvalues {xi}ki=1

of X ∈ Ck×k , i.e., vk(X) =
∏k
i<j(xi − xj).

To arrive at the unifying mutual information expression in

this theorem, we show that

R , log
∣

∣Im + γC−1
est ĤQĤH

∣

∣ ≃ R(γ,Σ,Ω) (24)

for some suitable choice of eigenvalue matrices Σ and Ω.

To this end, we remark that the receiver’s channel estimate

Ĥ is linear in YRx ∼ NC(0, In,CRx) (for statistical CSITx),

which is equivalently distributed as YRx ≃ C
1/2
Rx Yw, where Yw

consists of i.i.d. complex Gaussian elements, i.e., [Yw]i,j ∼
NC(0, 1), and is of the same size as YRx. Inserting YRx

into (20), we find

R = log
∣

∣Im + γSYwT
HOTY H

w

∣

∣, (25)

where we introduced the substitutes

O , 1
α2

Rx

R
1/2,H
Tx QR

1/2
Tx , rO = rank{O} (26a)

S , C
1/2,H
Rx AH

RxC
−1
est ARxC

1/2
Rx , rS = rank{S}. (26b)

By noticing that the i.i.d. complex Gaussian distributed m×n
matrix Yw is invariant to left and right multiplications with

unitary matrices U and V , i.e., Yw ≃ UYwV (e.g., see [8]),

it can easily be deduced that the expected value of R only

depends on the non-zero eigenvalues of O and S. We combine

these positive decreasingly ordered eigenvalues {σi}
µ
i=1 and

{ωj}
ν
j=1, with {ui}

µ
i=1 and {vj}

ν
j=1 being the corresponding

eigenvectors, in the diagonal matrices Σ = diag {σ1, . . . , σµ}
and Ω = diag {ω1, . . . , ων}, respectively. As Theorem 1 only

considers the case where ν ≥ µ, the mapping between (O,S)
and (Σ,Ω) is given as follows: if we define µ , min(rS , rO)
and ν , max(rS , rO), then

ŨΣŨH =

{

S for µ = rS ≤ rO

O for µ = rO < rS
Ũ = [u1, . . . ,uµ]

Ṽ ΩṼ H =

{

O for ν = rO ≥ rS

S for ν = rS > rO
Ṽ = [v1, . . . ,vν ].

(27)

Note that both eigenvalue matrices, Σ and Ω, are matrix

valued functions of Q as Cest is affine in tr(QRTx). Fur-
thermore, we remark that Theorem 1 is only valid for pair-

wise distinct eigenvalues {σi}
µ
i=1 and {ωj}νj=1. Cases with

equal eigenvalues can be deduced either with suitable limiting



processes [17], or from [18]. Here, we restrict to the case of

distinct eigenvalues and µ = rS ≤ rO = ν for simplicity.

According to Lemma 1, we differentiate R̄ w.r.t. γ as

∂

∂γ
R̄ = c

(

∂χ

∂γ

µ
∑

p=1

|Ξp|+ χ

µ
∑

p=1

∂|Ξp|

∂γ

)

, (28)

where the derivative of χ w.r.t. γ is simply

∂
∂γχ = d

γχ, d = 1
2 [(ν − µ)(ν − µ− 1)− ν(ν − 1)]. (29)

The derivative of |Ξp| is found to be

∂
∂γ |Ξp| =

∑µ

o=1

∣

∣Ξ̃p,o

∣

∣, (30)

where Ξ̃p,o is equal to Ξp, except for its o-th row (or

alternatively column) which is differentiated w.r.t. γ, i.e.,

[

Ξ̃p,o

]

i,j
=



















[Ξp]i,j i 6=o

gν−1(zo,j)
∂zo,j
∂γ i=o=p≤µ

ν−1
∑

k=ν−µ

kzk−1
o,j [ν−k]k

∂zo,j
∂γ p 6= i=o≤µ.

(31)

Here, we defined gy(x) for x ∈ R+ and y ∈ N+ as

gy(x) ,
∂
∂xx

y+1f
(

1
x

)

= xy
[(

y− 1
x

)

f
(

1
x

)

+ 1
x

]

(32)

and
∂zi,j
∂γ = σiωj . With (28)–(32) and Lemma 1, we can

directly state the following proposition.

Proposition 1. The ergodic MMSE ε̄(γ,Q) is calculated as

ε̄(γ,Q) = l − cχ

(

d

µ
∑

p=1

|Ξp|+ γ

µ
∑

p,o=1

∣

∣Ξ̃p,o

∣

∣

)

,

where c, χ, d, Ξp, and Ξ̃p,o, p, o ∈ {1, . . . , µ}, are defined

by (21), (22), (29), (23), and (31), respectively.

B. Ergodic MMSE Minimizing Precoder Structure

With above ergodic MMSE expression, we can derive the

basic structure of the optimal (MMSE minimizing) transmit

covariance matrix. To this end, we recast problem (12) as

min
Q

ε̄(γ,Q)

s.t.: Q�0, tr(Q)≤PTx, rank{Q}≤ l,
(33)

i.e., in terms of the transmit covariance matrix Q = PPH.

The trace constraint in (33) is due to ‖P ‖2F = tr(PPH) =
tr(Q) and the positive semidefiniteness constraint as well as

the rank constraint follow from the definition of Q as the

Gramian product of the precoder P with dimension n × l,
l ≤ min(m,n) (see Section II). Introducing the EVD Q =
FΦFH, with (sub-)unitary matrix F and diagonal matrix Φ,

we can equivalently reformulate the optimization as

min
F ,Φ

ε̄(γ,FΦFH)

s.t.: Φ � 0, tr(Φ) ≤ PTx, rank{Φ} ≤ l,
(34)

because the positive semidefiniteness constraint, the trace

operator, and the rank operator are independent w.r.t. the

transform with F . That is, we can interpret the ergodic

MMSE minimization as two problems: first, find the optimal

eigendirections F of Q and then, compute the optimal power

allocation matrix Φ. Now, we focus on the first problem.

From the ergodic MMSE expression in Proposition 1, we

can infer that ε̄(γ,Q) only depends on the positive and

decreasingly-ordered eigenvalues of α2
RxO = R

1/2,H
Tx QR

1/2
Tx ,

that are given by {α2
Rxωj}

ν
j=1 if ν = rO ≥ rS [cf. (26)].

The eigenvalues of S, {σi}
µ
i=1, are functions of tr(RTxQ) =

α2
Rx

∑ν
j=1 ωj as Cest is given by (9).2 Moreover, we remark

that the objective is monotonically decreasing in the used

transmit power tr
(

Q
)

. Following a similar argumentation

as in [19, Proof of Theorem 1], we are able to prove that

the ergodic MMSE minimizing transmit covariance matrices

satisfy the following proposition.

Proposition 2. Ergodic MMSE minimizing transmit covari-

ance matrices must be constructed as Q = FΦFH, where

F = [f1, . . . ,frTx ] ∈ Cn×rTx is (sub-)unitary and comprises

the eigenvectors to the rTx = rank{RTx} strictly positive

eigenvalues of RTx, i.e., RTx = FΨFH with diagonal

Ψ = diag {ψ1, . . . , ψrTx} and ψ1 ≥ . . . ≥ ψrTx > 0 for

convenience. The diagonal power allocation matrix Φ =
diag {φ1, . . . , φrTx} satisfies ‖Φ‖2F =

∑rTx
i=1 φi = PTx.

In the considered case where Q is defined as the Gramian

product of P ∈ Cn×l and l ≤ min(m,n), Φ is additionally

constrained to have at most rl = min(l, rTx) strictly positive

entries. Precisely, only those rl eigenvalues in Φ are of interest

which correspond to the dominant eigendirections of RTx, i.e.,

{φk}
rl
k=1 for non-increasingly ordered eigenvalues {ψk}

rTx
k=1 of

RTx. This claim is based on the observation that the dominant

eigenvalues of O correspond to the dominant eigenvalues of

RTx, i.e., α
2
Rxωj = ψjφj with ω1 ≥ . . . ≥ ων and ψ1 ≥ . . . ≥

ψν (cf. [19, Proof of Theorem 1]).

Using above claim (for rTx ≥ l), we recast the structure of

the minimizer for problem (33) as

Q̃ = F̃ Φ̃F̃H, (35)

where F̃ = [f1, . . . ,fl] ∈ Cn×l comprises the l dominant

eigenvectors of RTx and Φ̃ = diag {φ1, . . . , φl}. Finally, note
that the transmit covariance matrix Q̃ defines the precoder P

up to a unitary transform from the right. That is,

P = F̃ Φ̃1/2JH, (36)

where F̃ is defined in (35), Φ̃1/2 = diag{φ
1/2
1 , . . . , φ

1/2
l },

and J ∈ Crl×rl is an arbitrary unitary matrix.

C. Gradient Projection Based Precoder Design

The structure of Q̃ in (35) can be exploited for efficient

(gradient based) MMSE minimization approaches which work

directly on the eigenvalues {φk}lk=1. Precisely, inserting (35)

into (33), we consider the following problem [cf. (34)]:

min
Φ̃

ε̄(γ, F̃ Φ̃F̃H) s.t.: Φ̃ � 0, tr
(

Φ̃
)

≤ PTx. (37)

2In the special case of complete CSITx, S is independent of Q.



Contrarily to (33), the rank constraint rank{Q̃} ≤ l is always
satisfied in this formulation and is, therefore, superfluous.

Here, we suggest to customize the covariance based pro-

jected gradient method in [15] for problem (37).3 The al-

gorithm performs a preconditioned gradient descent step in

each iteration, followed by an orthogonal projection onto the

constraint set. The gradient descent step for the eigenvalue

matrix Φ̃ can be expressed as

Φ̄ = Φ̃− θ · β · ∂
∂Φ̃
ε̄(γ, F̃ Φ̃F̃H), (38)

where β ∈ R+ denotes the (iteration-dependent) step size. The

iteration-dependent preconditioning scalar θ can be chosen to

normalize the Frobenius norm of the gradient to the transmit

power PTx for increasing the convergence speed. Then, an

orthogonal projection onto the constraint set in (37) is applied.

The projection can be formulated as

Φ̃′ = argmin
Λ

∥

∥Φ̄−Λ
∥

∥

2

F
s.t.: tr(Λ) ≤ PTx,Λ � 0, (39)

which is a convex optimization problem and can be solved

in closed form. The iteration-dependent step-size β can be

determined iteratively in order to ensure that the objective

decreases. For details, we refer to [15].

In order to apply gradient based optimization procedures,

like above projected gradient method for example, it is crucial

to derive the gradient of the ergodic MMSE, i.e.,

∂
∂Φ̃
ε̄(γ, F̃ Φ̃F̃H) = diag

{

∂ε̄
∂φ1

, . . . , ∂ε̄∂φl

}

. (40)

The problem is, that the ergodic MMSE is a function of

the eigenvalues {σi}
µ
i=1 and {ωj}νj=1 which are continuous

functions in the power allocations {φk}lk=1. Hence, we have to

employ derivatives of eigenvalues w.r.t. real scalar parameters.

A short review is given in Appendix A.

With (47), we can explicitly calculate the necessary eigen-

value derivatives for evaluating (40) as we assume pair-

wise distinct parameters {σi}
µ
i=1 and {ωj}νj=1. To simplify

expositions, we restrict here to the case where ν = rO ≥
rS = µ, such that Σ comprises the eigenvalues of S while

Ω comprises the eigenvalues of O. The other case, where

µ = rO ≤ rS = ν is analogously obtained.

The first order derivatives in (40) can be recast as

∂ε̄

∂φk
=
∂χ

∂φk

ε̄− l

χ
− cχ

[

d

µ
∑

p=1

∂|Ξp|

∂φk
+γ

µ
∑

p,o=1

∂
∣

∣Ξ̃p,o

∣

∣

∂φk

]

, (41)

as a function of the parameter γ, the (distinct) eigenvalues

{σi}
µk

i=1 and {ωj}
νk
j=1, and its derivatives w.r.t. φk. The details

of the derivation are presented in Appendix B and the first

order eigenvalue derivatives are given by [cf. (47)]

∂σi

∂φk
= uH

i
∂S
∂φk

ui i ∈ {1, . . . , µ} (42a)

∂ωj

∂φk
= vH

j
∂O
∂φk

vj j ∈ {1, . . . ν}, (42b)

3Alternatively, we could exploit (36) for a precoder based gradient projec-
tion method (e.g., see [20])
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Figure 1. Average achievable ergodic MMSE (statistical CSITx) over
PTx/σ2

n
for n = 4, m = l = 2, and values for ρTx ∈ {0.5, 0.8, 0.95}.

where the unit-norm eigenvectors ui and vi are defined via the

eigenvalue decompositions of S andO, respectively. With (26)

and Proposition 2, above matrix derivatives are

∂S
∂φk

= −ψkC
1/2,H
Rx AH

RxC
−1
est BRxC

−1
est ARxC

1/2
Rx (43a)

∂O
∂φk

= ψk

α2
Rx

Ũeke
T
k Ũ

H, (43b)

respectively, where ek denotes the canonical unit norm vector

with a one at the k-th position and zeros elsewhere.

VII. NUMERICAL RESULTS

In this section, we first depict the dependence of the

proposed ergodic MMSE expression in Proposition 1 w.r.t.

the correlations at the transmitter side. Then, we compare the

achieved minimum average MMSE for partial and statistical

CSITx with the obtained performance for no CSITx and the

performance for designing both filters based on equal CSI [5].

We consider a system setup with n = 4 transmit antennas,

m = 2 receive antennas, and a maximum of l = 2 data

streams. The correlation matrices of the channel are con-

structed with the exponential correlation matrix model, i.e.,

[RTx]i,j = ρ
|i−j|
Tx and [RRx]i,j = ρ

|i−j|
Rx , with ρTx, ρRx ∈ [0, 1].

The noise covariance matrices of the data link and the training

models are Cn = σ2
nIm, Cq = σ2

q Im, and CnRx
= σ2

nRx
Im,

respectively. For the plots in this section, we used σq, σnRx
=

0.1 and calculated the precoder and the equalizer for 1000

channel realizations and averaged over the resulting MSEs.

In Fig. 1, we depict the achievable minimum average

MMSE over the SNR PTx/σ
2
n for statistical CSITx, partial

CSIRx, weak correlation at the receiver, i.e., ρRx = 0.5,
and three different values for the channel correlations at

the transmitter’s side, ρTx ∈ {0.5, 0.8, 0.95}. Besides the

proposed average MMSE minimization method using gradient

projections (GP), we used a Monte-Carlo (MC) approach

to illustrate correctness of the resulting curves. We see that

the ‘theoretical’ results and the curves of the Monte-Carlo

approach intersect. All three minimum average MMSE curves
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Figure 2. Average MSE versus PTx/σ2
n

for a MIMO point-to-point system
with n = 4 Tx antennas, m = 2 Rx antennas, l = 2, and partial CSIRx.

saturate in the high SNR regime. Due to partial CSIRx,

the receiver can only partially compensate for the imperfect

precoding strategy. Interestingly, we can observe that the

minimum average MMSE for statistical CSITx increases with

the correlation coefficient ρTx in the depicted SNR interval.

From these results we draw the conclusion that the statistical

CSITx performance strongly depends on the receiver’s CSI and

the experienced channel correlations at the transmitter side.

Now, we compare the minimum average MMSE for sta-

tistical CSITx and partial CSITx with the results for random

precoding and the filter design based on equal partial CSITx

and CSIRx, respectively. In Fig. 2, the obtained curves are

plotted over the SNR for ρTx = 0.8 and ρRx = 0.5, i.e., weak
receiver and medium transmitter correlation. In this context,

no CSITx means that the transmitter has no information about

the channel PDF fH(H) and the precoder is a randomly

created scaled sub-unitary n×l matrix. Already in this medium

correlation model, we achieve a remarkable gain if we exploit

statistical CSITx instead of randomly creating the precoder.

Statistical CSITx provides knowledge about the on average

dominant right eigendirections of the channel. We expect that

this gain increases with the correlation coefficient ρTx. When

ρTx → 1, the transmitter obtains almost full knowledge about

the single dominant eigendirection of the channel, as RTx

becomes a rank one matrix, whereas ρTx → 0 means that the

transmitter has no CSITx as RTx → In—all eigendirections

of the channel become equally probable.

Regarding partial CSITx, Fig. 2 shows one curve for the

AO approach in Section IV and one curve for the case when

the better receiver’s channel knowledge is neglected and both

ends of the data transmission link use the worse partial CSITx

for the joint filter design [5]. Comparing these two curves, we

see that exploiting the better CSIRx can be highly beneficial,

depending on the imposed variance of the quantization noise

and the correlations at the transmitter’s side.4

4In symmetric system setups with l = m = n, similar conclusions can be
drawn. However, simulations have shown that the obtained gains are smaller.
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APPENDIX A

DERIVATIVES OF EIGENVALUES

The authors in [21] give a comparison of the methods for

calculating first (and second) order derivatives of eigenvalues

with algebraic multiplicity one. Calculating derivatives for

eigenvalues with algebraic multiplicity larger than one is

slightly more challenging (cf. [22], [23]). Next, we show

that the first order derivatives of eigenvalues from Hermitian

matrices can always be determined.

To this end, let the algebraic multiplicity of the l-th eigen-

value of the Hermitian matrix Z(t) ∈ C
M×M , with parameter

t ∈ R, be ml, where 1 ≤ ml ≤ M . Furthermore, let

the diagonal matrix Λl ∈ Rml×ml comprise these ml equal

eigenvalues, i.e., Λl , λlIml
, and Ul ∈ CM×ml denotes the

corresponding (sub-)unitary eigenbasis. Then,

ZUl = UlΛl. (44)

Note that Ul , U ′
lB is also a (sub-)unitary basis for any

unitary B ∈ Cml×ml , where U ′
l is numerically determined.

Differentiating (44) w.r.t. t, multiplying the result with UH
l

from the left, and reformulating the term, we obtain

∂Λl

∂t = UH
l
∂Z
∂t Ul +UH

l Z ∂Ul

∂t −UH
l
∂Ul

∂t Λl. (45)

Since Λl = λlIml
at the current position t, it commutes

with any other matrix. Moreover, due to (44), the last two

summands in (45) cancel each other out, such that

∂Λl

∂t = UH
l
∂Z
∂t Ul. (46)

Note that the result must be diagonal. That is, given a

numerically determined eigenvector matrix U ′
l , we calculate

Ul = U ′
lBl, where Bl must be a unitary eigenbasis of

U
′,H
l

∂Z
∂t U

′
l . Then, the partial derivatives of the ml equal

eigenvalues are the diagonal elements of (46). When the

algebraic multiplicity of λl is ml = 1, (46) simplifies to

∂λl

∂t = uH
l
∂Z
∂t ul. (47)

APPENDIX B

ERGODIC MMSE DERIVATION

Here, we determine the first order derivative of the ergodic

MMSE in Proposition 1 w.r.t. s ∈ R, where we assume that

{σi}
µ
i=1 and {ωj}

µ
j=1 depend on s. With the product rule for

differentiation, the derivative reads as

∂ε̄

∂s
= ∂χ

∂s
ε̄−l
χ − cχ

[

d

µ
∑

p=1

∂|Ξp|
∂s + γ

µ
∑

p,o=1

∂|Ξ̃p,o|
∂s

]

. (50)



[

Ξ̂p,o,q

]

i,j
=























[Ξ̃p,o]i,j q 6= i

[Ξ̌p,q]i,j o 6=q= i

gν−1(zi,j)
∂2zi,j
∂γ∂s +

∂gν−1(zi,j)
∂zi,j

∂zi,j
∂γ

∂zi,j
∂s q=o=p= i≤µ

∑ν−1
k=ν−µ kz

k−2
i,j [ν−k]k

(

(k−1)
∂zi,j
∂γ

∂zi,j
∂s +zi,j

∂2zi,j
∂γ∂s

)

p 6=o=q= i≤µ

(48)

∂
∂xgy(x) =

y
xgy(x) + xy−2

[(

1−
(

y − 1
x

)

(1 + x)
)

f
(

1
x

)

+
(

y − 1− 1
x

)]

(49)

In order to differentiate χ w.r.t. s, we remark that

∂
∂s |Σ|−(ν−µ)

= − ν−µ
|Σ|ν−µ

∑µ

i=1

∂
∂s
σi

σi
(51a)

∂
∂s vµ(Σ)

−1
= − vµ(Σ)

−1
∑µ

i<j

∂
∂s

(σi−σj)

σi−σj
(51b)

∂
∂s vνk(Ω)

−1
= − vν(Ω)

−1
∑ν

i<j

∂
∂s

(ωi−ωj)

ωi−ωj
, (51c)

respectively, to arrive at ∂
∂sχ = κsχ, where

κs=−(ν−µ)

µ
∑

i=1

∂
∂s
σi

σi
−

µ
∑

i<j

∂
∂s

(σi−σj)

σi−σj
−

ν
∑

i<j

∂
∂s

(ωi−ωj)

ωi−ωj
. (52)

The derivative
∂|Ξp|
∂s is similarly determined as in (30), i.e.,

∂
∂s |Ξp| =

∑ν

q=1

∣

∣Ξ̌p,q

∣

∣, (53)

where the first µ rows in Ξ̌p,q are equal to those of Ξ̃p,o

in (31), except for replacing
∂zi,j
∂γ with

∂zi,j
∂s , i.e.,

[

Ξ̌p,q

]

i,j
=



























[Ξp]i,j i 6=q

gν−1(zi,j)
∂zi,j
∂s i=q=p≤µ

ν−1
∑

k=ν−µ

kzk−1
i,j [ν−k]k

∂zi,j
∂s p 6= i=q≤µ

(i−µ−1)ωi−µ−2
j

∂ωj

∂s q= i>µ.

(54)

The derivation of
∣

∣Ξ̃p,o

∣

∣, i, o ∈ {1, . . . , µ}, w.r.t. s reads as

∂
∂s

∣

∣Ξ̃p,o

∣

∣ =
∑ν

q=1

∣

∣Ξ̂p,o,q

∣

∣ (55)

where Ξ̂p,o,q is equal to Ξ̃p,o, except for its q-th row which

is differentiated w.r.t. s. Ξ̂p,o,q is defined in (48), and the

derivative of gy(x) w.r.t. x is given by (49). Note that zi,j =
γσiωj , for i ∈ {1, . . . , µ} and j ∈ {1, . . . , ν}, such that

∂zi,j
∂s = γ

(

∂σi

∂s ωj + σi
∂ωj

∂s

)

. (56)

The second order derivative of zi,j is calculated as

∂2zi,j
∂s∂γ = ∂σi

∂s ωj + σi
∂ωj

∂s . (57)

Inserting (55)–(51) into (50) yields

∂ε̄

∂s
= κs(ε̄−l)−cχ

ν
∑

q=1

[

d

µ
∑

p=1

∣

∣Ξ̌p,q

∣

∣+γ

µ
∑

p,o=1

∣

∣

∣
Ξ̂p,o,q

∣

∣

∣

]

. (58)
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