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ABSTRACT

In this paper we analyze band-pass type systems that operate on
bounded bandlimited signals. For a very general class of band-pass
type systems, we prove that there exists no linear realization of the
systems in this class. Since ideal band-pass type systems are in-
cluded in this class, it follows that there exists no linear realization
of ideal band-pass type systems. This result is obtained under very
general assumptions. For example, we do not assume the systems to
be time-invariance. Finally, it is shown that a non-linear realization
of band-pass type systems is possible.

Index Terms— Low-pass, band-pass, system, stable, linear re-
alization

1. INTRODUCTION

Filters are a widely used tool in signal processing and system the-
ory. The filtering of signals is especially descriptive when the sig-
nals are treated in the frequency domain. Loosely speaking, filters
can be used to extract certain frequency portions from the signal,
while other frequencies are suppressed. The passband of a filter is
a certain frequency interval that specifies the behavior of the filter:
All signals that have only frequencies within the passband are not
disturbed by the filter. Filters can be characterized according to their
passband. It is common to distinguish between low-pass type, high-
pass type, and band-pass type filters. In the following we use the
term system instead of filter because filters are often assumed to be
linear and time-invariant, and we do not want to restrict our analysis
a priori to systems with those properties.

Low-pass type, high-pass type, and band-pass type systems are
also frequently used in theoretical analyses. In [1] for example, Lo-
gan develops a theory of modulation systems, in which band-pass
type systems play a central role. Modulation systems are often based
on the Hilbert transform. However, for general bounded bandlim-
ited signals the Hilbert transform does not necessarily exist. Inter-
estingly, for every bounded band-pass signal the Hilbert transform
exists and is bounded [2].

For several reasons band-pass type systems should be efficient
in the sense that

P1) every output signal has only frequencies within the passband,

P2) every input signal that has only frequencies within the pass-
band is not disturbed by the system, and

P3) the system is stable.

Many applications require such an efficient system. For example in
mobile communications the transmitted signal must not have any fre-
quency content outside some predefined band, because otherwise it
could interfere with other services that use these frequencies. Hence

the used band-pass type system needs to fulfill property P1). On
the other hand the desired signal within the passband should not be
disturbed. This is what property P2) expresses. In property P3) we
mean with stability that the norm of the output signal can be con-
trolled.

In an abstract view, an efficient system is an operator that maps
every input signal to an output signal in accordance with the prop-
erties P1)–P3) above. It is important to distinguish between the ab-
stract concept of a system, or more general of an operator, and the
actual realization. An operator can have many possible realizations
with different properties. Take for example the differential operator,
operating on the space of bounded bandlimited signals that vanish at
infinity. One realization is given by

f ′(t) = π
∞∑

k=−∞
f(k)

(
cos(π(t− k))

π(t− k)
− sin(π(t− k))

(π(t− k))2

)
. (1)

This series is formally obtained from the Shannon sampling series

f(t) =
∞∑

k=−∞
f(k)

sin(π(t− k))

π(t− k)

by differentiating termwise. Another possible realization, which is
obtained by differentiating the Valiron interpolation series [3, p. 12]

f(t) = f(0) + f ′(0)
sin(πt)

π

+ t
∞∑

k=−∞
k �=0

f(k)− f(0)

k

sin
(
π(t− k)

)
π(t− k)

,

is given by

f ′(t) =
∞∑

k=−∞
k �=0

f(k)

π(t− k)k

[
sin(π(t− k))

+
t cos(π(t− k))π(t− k)− sin(π(t− k))

t− k

]

+ f(0)
cos(πt)πt− sin(πt)

πt2
+ f ′(0) cos(πt), (2)

The two realization have different properties. The sum in the second
realization (2), for example, is absolutely convergent, while the sum
in the first realization (1) is not absolutely convergent. Thus, from
the fact that one representation does not have a specific property we
cannot conclude that there exist no representation with this property.

It is reasonable to call a band-pass type system ideal if, in addi-
tion to P1)–P3) it has the property that

P4) the system output is the zero signal for every signal that has
no frequencies within the passband.
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This definitions corresponds to accepted definition of an ideal filter.
Obviously, the class of ideal band-pass type systems is a subclass of
the efficient band-pass type systems. Further properties which are
often assumed are time-invariance and linearity. Both are important
for practical implementations as well as theoretical considerations.

In this paper we analyze band-pass type systems operating on
bounded bandlimited signals. These signals are important in all ap-
plications where the peak value of the signal has to be controlled.
For example, in mobile communication systems the peak value of
the transmission signals has to be bounded by some constant in or-
der that the power amplifier does not overload and the signal is not
clipped.

For bounded bandlimited signals the Fourier transform does not
need to exist. Hence, we have to be careful when we use terms like
“frequencies of a signal”. However, it will turn out that—with the
proper definitions—we can mathematically rigorously formulate the
properties of an efficient band-pass type system, which were listed
above in an intuitive way, for systems operating on bounded ban-
dlimited signals.

The paper is organized as follows. In Section 2 we introduce
some definitions. In Section 3 we prove that there exists no lin-
ear (not even a time-variant) realization of efficient band-pass type
systems for the signal space of bounded bandlimited signals. As a
consequence two operations, which are often used and whose ex-
istence is generally taken for granted, the extraction of frequency
components and the splitting of a signal into two parts with disjoint
spectrum, cannot be performed in a stable manner with a linear sys-
tem. Moreover, in Section 4 we show that a non-linear system with
the properties P1)–P3) can be realized. Since the results are coun-
terintuitive, we give the full proofs of the theorems, except for a few
elementary computations.

2. NOTATION AND DEFINITIONS

In order to continue, we need some notation and definitions. Let f̂
denote the Fourier transform of a function f . Lp(R), 1 ≤ p <∞, is
the space of all pth-power Lebesgue integrable functions on R, with
the usual norm ‖ · ‖p, and L∞(R) is the space of all functions for
which the essential supremum norm ‖ · ‖∞ is finite.

For σ > 0 let Bσ be the set of all entire functions f with the
property that for all ε > 0 there exists a constant C(ε) with |f(z)| ≤
C(ε) exp((σ+ε)|z|) for all z ∈ C. The Bernstein spaceB∞σ consists
of all functions in Bσ , whose restriction to the real line is in L∞(R).
A signal in B∞σ is called bandlimited to σ. For those signals, we
have the following lemma, which is a consequence of the Phragmén-
Lindelöf principle [4, Lecture 6].

Lemma 1. Let f ∈ B∞σ , σ > 0. Then we have

|f(z)| ≤ ‖f‖∞ eσ|Im(z)|

for all z ∈ C.

For signals in B∞σ the Fourier transform does not necessarily ex-
ist. This is the reason why we use the following definition to define
bounded band-pass signals. For ω1 < ω2 let K+(ω1, ω2) denote
the space of all functions f ∈ L1(R), whose Fourier transform ful-

fills f̂(ω) = 1 for ω ∈ [ω1, ω2]. The space B∞+[ω1,ω2]
consists of

all signals f ∈ L∞(R) that fulfill f(t) =
∫∞
−∞ f(τ)K(t − τ) dτ

for all t ∈ R and all K ∈ K+(ω1, ω2). For 0 ≤ ω1 < ω2 < ∞
let K(ω1, ω2) denote the space of all functions f ∈ L1(R), whose

Fourier transform fulfills f̂(ω) = 1 for |ω| ∈ [ω1, ω2]. The space

B∞[ω1,ω2]
consists of all signals f ∈ L∞(R) that fulfill f(t) =∫∞

−∞ f(τ)K(t − τ) dτ for all t ∈ R and all K ∈ K(ω1, ω2).

Note that we have B∞ω2
= B∞[0,ω2]

= B∞+[−ω2.ω2]
, according to this

definition.

3. LINEAR REALIZATION OF EFFICIENT BAND-PASS
TYPE SYSTEMS

In this section we analyze whether a linear realization of efficient
band-pass type systems exists for B∞π , i.e., the space of bounded
bandlimited signals.

Theorem 1. Let 0 ≤ ω1 < ω2 ≤ π with w2−w1 < π. There exists
no linear operator T defined on B∞π with the properties

i) range(T ) ⊆ B∞[ω1,ω2]
and

ii) Tf = f for all f ∈ B∞[ω1,ω2]
.

iii) T : B∞π → B∞[ω1,ω2]
is bounded.

The properties i)–iii) are the mathematical formulation of the
properties P1)– P3), which determine an efficient system. Property
i) means that the system output has only frequencies in the range
[−ω2,−ω1] ∪ [ω1, ω2]. Property ii) says that every signal with fre-
quencies concentrated in the passband is not disturbed by the system,
and property iii) expresses the stability of the system. The additional
condition w2 − w1 < π in Theorem 1 was only included to prevent
the case where ω1 = 0 and ω2 = π. In this case the identity operator
would trivially fulfill the properties i), ii), and iii).

Theorem 1 shows that there exists no linear operator defined on
B∞π with the properties i)–iii). Consequently, a linear realization
of efficient band-pass type systems for the signal space B∞π cannot
exist. Since the class of ideal band-pass type systems is a subclass
of the efficient band-pass type systems, this implies that there exists
no linear realization of ideal band-pass type systems.

Remark 1. Since every low-pass type system can be seen as a band-
pass type system with a passband that starts from zero, Theorem 1
also implies that there exists no linear realization of efficient low-
pass type systems for the signal space B∞π .

Note that the result of Theorem 1 is very general, because there
are many conceivable realizations. For example we do not restrict
the systems to be time-invariant.

Proof of Theorem 1. The proof is divided into two parts. In the fist
part we proof the assertion for 0 ≤ ω1 < ω2 < π and in the second
part for 0 < ω1 < ω2 = π.

First part: Let ω1, ω2 ∈ R with 0 ≤ ω1 < ω2 < π be arbitrary
but fixed. The non-existence is proved indirectly. We assume that
there exists a bounded linear operator T defined on B∞π with the
properties i) and ii) and construct a contradiction.

For the proof we need the functions

fN (t) =
eiω2t

2i

�Nγ�∑
k=1

1

k

(
eiπ

k
N

t− e−iπ k
N

t
)
, N ∈ N,

where

γ = min
(ω2 − ω1

π
, 1− ω2

π

)
.

Thus, fN ∈ B∞π for all N ∈ N. Moreover, let fN,τ (t) = fN (t+τ).
Then we have

‖fN,τ‖∞ = ‖fN‖∞ =

∥∥∥∥∥
�Nγ�∑
k=1

sin(π · k/N)

k

∥∥∥∥∥
∞
≤ C1 <∞
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for all N ∈ N and all τ ∈ R, where the constant C1 is independent
of N [5, p. 183]. For the moment, let N ∈ N and t ∈ R be arbitrary
but fixed. We have

(TfN,τ )(t− τ)

=
1

2i

�Nγ�∑
k=1

1

k
eiτ(ω2+

k
N

π) T
[
ei · (ω2+

k
N

π)
]
(t− τ)︸ ︷︷ ︸

=u(k,τ)

− 1

2i

�Nγ�∑
k=1

1

k
eiτ(ω2− k

N
π) T

[
ei · (ω2− k

N
π)
]
(t− τ).

Since ω2 − k
N
π ≥ ω1 for all 1 ≤ k ≤ 
Nγ�, the function

ei · (ω2− k
N

π) is in B∞[ω1,ω2]
and it follows that

T
[
ei · (ω2− k

N
π)
]
(t− τ) = ei(t−τ)(ω2− k

N
π)

for all 1 ≤ k ≤ 
Nγ�, according to property ii), which is assumed
to be true. Further, we know from i) that u(k, · ) ∈ B∞ω2

for 1 ≤
k ≤ 
Nγ�. Consequently, we obtain

(TfN,τ )(t− τ) =
1

2i

�Nγ�∑
k=1

1

k
eiτ(ω2+

k
N

π) u(k, τ)

− 1

2i

�Nγ�∑
k=1

1

k
eiτ(ω2− k

N
π) ei(t−τ)(ω2− k

N
π)

=
1

2i

�Nγ�∑
k=1

1

k
eiτ(ω2+

k
N

π) u(k, τ)

− 1

2i

�Nγ�∑
k=1

1

k
eit(ω2− k

N
π)

and

1

2M

∫ M

−M

(TfN,τ )(t− τ) dτ

=
1

2i

�Nγ�∑
k=1

1

k

1

2M

∫ M

−M

eiτ(ω2+
k
N

π) u(k, τ) dτ

− 1

2i

�Nγ�∑
k=1

1

k
eit(ω2− k

N
π) . (3)

Next, we treat the integral on the right-hand side of (3) for 1 ≤ k ≤

Nγ�. According to Cauchy’s integral theorem, we have∮

P
(1)
M
∪P (2)

M

eiz(ω2+
k
N

π) u(k, z) dz = 0.

Since u(k, · ) ∈ B∞ω2
, Lemma 1 guarantees the existence of a con-

stant C2(k) such that

|u(k, z)| ≤ C2(k) e
ω2|Im(z)|

for all z ∈ C, and it follows that∣∣∣∣ 1

2M

∫ M

−M

eiτ(ω2+
k
N

π) u(k, τ) dτ

∣∣∣∣
=

∣∣∣∣∣ 1

2M

∫
P

(1)
M

eiz(ω2+
k
N

π) u(k, z) dz

∣∣∣∣∣
≤ 1

2

∫ π

0

∣∣∣eiM eiφ(ω2+
k
N

π)
∣∣∣ |u(k,M eiφ)| dφ

≤ C2(k)

2

∫ π

0

e−M sin(φ)(ω2+
k
N

π) eω2M sin(φ) dφ

=
C2(k)

2

∫ π

0

e−
k
N

M sin(φ) dφ. (4)

Bearing in mind that∫ π/2

0

e−
k
N

M sin(φ) dφ =

∫ π

π/2

e−
k
N

M sin(φ) dφ

and that sin(φ) ≥ 2φ/π for all φ ∈ [0, π/2], we can further evaluate
the integral on the right-hand side of (4):

C2(k)

2

∫ π

0

e−
k
N

M sin(φ) dφ ≤ C2(k)

∫ π/2

0

e−
2kM
Nπ

φ dφ

= C2(k)
Nπ

2kM

(
1− e−

kM
N

)
.

Thus, we obtain∣∣∣∣ 1

2M

∫ M

−M

eiτ(ω2+
k
N

π) u(k, τ) dτ

∣∣∣∣ ≤ C2(k)
Nπ

2kM

(
1− e−

kM
N

)
,

and consequently

lim
M→∞

1

2M

∫ M

−M

eiτ(ω2+
k
N

π) u(k, τ) dτ = 0 (5)

for all 1 ≤ k ≤ 
Nγ�. Using (5), it follows from (3) that

lim
M→∞

∣∣∣∣ 1

2M

∫ M

−M

(TfN,τ )(t− τ) dτ

∣∣∣∣ =
∣∣∣∣∣12

�Nγ�∑
k=1

1

k
eit(ω2− k

N
π)

∣∣∣∣∣ .
(6)

Since T is assumed to be a bounded linear operator, we have ‖T‖ =
sup‖f‖B∞

π
≤1‖Tf‖∞ < ∞ , and ‖Tf‖∞ ≤ ‖T‖ ‖f‖∞ for all

f ∈ B∞π . It follows that∣∣∣∣ 1

2M

∫ M

−M

(TfN,τ )(t− τ) dτ

∣∣∣∣ ≤ 1

2M

∫ M

−M

|(TfN,τ )(t− τ)| dτ

≤ ‖TfN,τ‖∞ ≤ ‖T‖ ‖fN,τ‖∞
≤ ‖T‖C1 <∞. (7)

Thus, from (6) and (7), we obtain∣∣∣∣∣12
�Nγ�∑
k=1

1

k
eit(ω2− k

N
π)

∣∣∣∣∣ ≤ ‖T‖C1 <∞,
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which is valid for all N ∈ N and t ∈ R, because N and t were
arbitrary. On the other hand, for t = 0 we have

lim
N→∞

∣∣∣∣∣12
�Nγ�∑
k=1

1

k
eit(ω2− k

N
π)

∣∣∣∣∣ = lim
N→∞

1

2

�Nγ�∑
k=1

1

k

≥ 1

2
lim

N→∞
log(Nγ)

=∞,

which is a contradiction.
Second part: Let ω1 ∈ R with 0 < ω1 < ω2 = π be arbi-

trary but fixed, and assume that there is a bounded linear operator
T defined on B∞π with the properties i) and ii). Let Mσ , σ ∈ R,
denote the operator (Mσf)(t) = eiσt f(t). Furthermore, let k1 be a

function in L1(R) with k̂1(ω) = 1 for ω1 ≤ ω ≤ π, and define the
operator

(T1f)(t) = (f ∗ k1)(t) =
∫ ∞

−∞
f(τ)k1(t− τ) dτ. (8)

It can be shown that T1f ∈ B∞+[ω1,π]. Moreover, it follows from (8)
that

‖T1f‖∞ ≤ ‖f‖∞‖k1‖L1(R).

Thus, T1 : B∞[ω1,π] → B∞+[ω1,π] is a bounded operator. Finally,
we need the operator U = M−πT1TMπ . Clearly, U is a bounded
linear operator that maps B∞+[−π,0] onto B∞+[ω1−π,0]. For all f ∈
B∞+[ω1−π,0] we have T1TMπf = Mπf and consequently Uf =
M−πT1TMπf = M−πMπf = f . We can use the same proof
technique as in part 1 to show that such an operator cannot exist.

4. NON-LINEAR REALIZATION OF EFFICIENT
BAND-PASS TYPE SYSTEMS

In this section we drop the condition that the system is linear. The
following theorem shows that a non-linear realization of efficient
band-pass type systems is possible for the space B∞π .

Theorem 2. Let 0 ≤ ω1 < ω2 ≤ π. There exists an operator T
defined on B∞π with the properties

i) range(T ) ⊆ B∞[ω1,ω2]

ii) Tf = f for all f ∈ B∞[ω1,ω2]
, and

iii) ‖Tf‖∞ ≤ 2‖f‖∞ for all f ∈ B∞π .

Although Theorem 2 shows that a non-linear realization of effi-
cient band-pass type systems is possible for the space B∞π , it makes
no statement whether an ideal band-pass type system can be realized.

Proof. Let f ∈ B∞π \ B∞[ω1,ω2]
be arbitrary but fixed, and consider

C(f, ω1, ω2) = inf
h∈B∞

[ω1,ω2]

‖f − h‖∞. (9)

It follows that there exists a sequence {gn}n∈N ⊂ B∞[ω1,ω2]
such that

lim
n→∞

‖f − gn‖∞ = C(f, ω1, ω2). (10)

Moreover, since ‖gn‖∞ ≤ ‖f−gn‖∞+‖f‖∞, there exists a natural
number n0 such that ‖gn‖∞ ≤ (1 + C(f, ω1, ω2)) + ‖f‖∞ for all
n ≥ n0. Thus, we can use Lemma 1 to obtain

|gn(z)| ≤ ‖gn‖∞ eω2|Im(z)|

≤ [(1 + C(f, ω1, ω2)) + ‖f‖∞] eω2|Im(z)|

for all z ∈ C and n ≥ n0. From Montel’s theorem [6, p. 195]
it follows that there exists an entire function g and a subsequence
{nk}k∈N such that limk→∞ gnk (z) = g(z) for all z ∈ C. Fur-
ther, it can be shown that g ∈ B∞[ω1,ω2]

. Since f ∈ B∞π \ B∞[ω1,ω2]

was arbitrary, we can define an operator T1 : B∞π \ B∞[ω1,ω2]
→

B∞[ω1,ω2]
, f �→ g. On the other hand, for f ∈ B∞[ω1,ω2]

we define the
operator T2 : B∞[ω1,ω2]

→ B∞[ω1,ω2]
, f �→ f . Next, we show that the

operator T : B∞π → B∞[ω1,ω2]
given by

Tf =

{
T1f if f ∈ B∞π \ B∞[ω1,ω2]

T2f if f ∈ B∞[ω1,ω2]

is the desired operator with the properties i)–iii). The properties i)
and ii) are obviously fulfilled, due to the construction of the operator
T . Moreover, the inequality in iii) is true for all f ∈ B∞[ω1,ω2]

be-
cause for these functions we have ‖Tf‖∞ = ‖f‖∞. It remains to
prove the inequality in iii) for all f ∈ B∞π \ B∞[ω1,ω2]

. For all t ∈ R

we have |f(t)− gnk (t)| ≤ ‖f − gnk‖∞ and consequently

|f(t)− g(t)| = lim
k→∞

|f(t)− gnk (t)|
≤ lim

k→∞
‖f − gnk‖∞

= C(f, ω1, ω2). (11)

Taking the supremum on both sides of (11), we obtain

‖f − g‖∞ ≤ C(f, ω1, ω2).

This implies that

‖f − g‖∞ = C(f, ω1, ω2), (12)

because C(f, ω1, ω2) = infh∈B∞
[ω1,ω2]

‖f − h‖∞ ≤ ‖f − g‖∞.

Equality (12) together with the fact that C(f, ω1, ω2) ≤ ‖f‖∞ gives

‖g‖∞ ≤ ‖f − g‖∞ + ‖f‖∞
= C(f, ω1, ω2) + ‖f‖∞
≤ 2‖f‖∞,

which completes the proof.
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