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ABSTRACT

Realizable DFEs are DFEs with stable and causal IIR filters and fi-
nite decision delay. Computational complexity of current algorithms
to compute them usually grows cubically with the decision delay. In
this paper, we show how complexity can be reduced to quadratic.
We compare two approaches, the so-called polynomial approach
and a novel state-space approach using inner-outer factorization. In
both cases finite linear equation systems with structure lie at the
heart of the realizable DFE. Displacement structure theory allows
to solve them efficiently.

Index Terms— MIMO systems, Decision feedback equalizers,
IIR digital filters, Computation time

I. INTRODUCTION

In the literature, numerous approaches to compute decision feed-
back equalizers (DFEs) for multiple-input multiple-output (MIMO)
channels can be found. Among those, the most popular probably are
the fast algorithms for the finite impulse response (FIR) DFE, which
has a special problem structure that can be exploited in various
ways (see e.g. [1], [2]). Here, feed-forward and feed-backward
filters (and channel) are constrained to FIR filters. FIR filters are
inherently stable, which turns computation of optimal filters into
a simple finite linear equation system with structure. Structured
linear equation systems can be solved quite efficiently, which is
why quadratic complexity in the decision delay can be achieved
for the FIR DFE. However, the FIR DFE usually is suboptimal. In
fact, it is known that the feed-forward and feed-backward filters
of the optimal DFE are simultaneously FIR if and only if the
channel is FIR and the noise is white [3, p. 125]. Optimal DFEs
employ infinite impulse response (IIR) filters, in general. In order
to be physically realizable, the filters must be stable and causal.
Various approaches exist to compute optimal realizable DFEs. The
polynomial approach has been established in [3]. Other approaches
work with state-space models and utilize the Wiener-Kalman filter
[4], [5] or optimal control [6]. The authors of [3, p. 127] claim that
the complexity of their approach grows cubically with the decision
delay. In the other approaches, a virtual MIMO channel is created
by modeling the feedback path of the DFE as additional (noise-
free) part of the channel. Then, the filters are obtained from the
optimal linear equalizer for the virtual channel. However, since the
degree of the virtual channel grows linearly with the decision delay,
complexity of this operation grows cubically.

In this paper, we make two contributions.

1) We show that the polynomial approach can be solved with
quadratic complexity in the decision delay if the channel is
square, and

2) we derive a novel state-space approach based on inner-outer
factorization which achieves a similar complexity (also in
non-square channels).
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In turns out that both approaches require some form of coprime fac-
torization (with complexity not depending on the decision delay),
and solution of a finite linear equation system with structure. The
difference between the inner-outer and the polynomial approach
is that the linear equation system in the inner-outer approach is
simpler. Therefore, the inner-outer approach can be more efficient.
Furthermore, we can carry it out efficiently also for non-square
channels. Another difference is that the assumptions on the channel
realizations are less restrictive in the inner-outer approach.

Remark 1 (Decision Delay). The decision delay is a major influence
on the performance of DFEs (see e.g. [7], [1], [8]). Optimal choice
of the decision delay for a FIR DFE is a complicated problem
which can only be solved by numerical search, in general [7].!
In contrast, it is simple to see that for IIR DFEs an increased
decision delay always increases performance.? This is an advantage
of the IIR DFE. Also note that depending on channel and noise
characteristics the first decision delay that achieves any close-to-
optimal performance may become arbitrary large. Hence, a low
complexity in the decision delay is important.

Remark 2 (IIR Channels). The FIR channel model is undoubtedly
the predominant model in communications. Nevertheless, recent
investigations have shown that IIR channel models may provide
much better approximations of a real channel (compared to FIR
models) if low-dimensional channel approximations are sought [9].
Most FIR DFE algorithms are designed for FIR channels and
cannot cope with IIR channels. (Although this disadvantage can
be circumvented using the approach in [9, IIL.B].) In contrast, the
algorithms in this paper naturally support IIR channels.

Remark 3 (Spatial Feedback). Although in MIMO systems decision
feedback is also possible in the spatial domain (see e.g. [1]), we
only consider feedback in the temporal domain in this paper.

Notation: The Frobenius norm of a complex matrix = is
J=._ — ..pg= =p, where - g-p denotes trace and ., is

conjugate transpose. We denote the space of causal and stable

rational matrices by _ (or - when the dimensions are
not obvious), and write = .., :— =,2" , for the para-hermitian
of a rational matrix = = . The norm of = is =,

. The outer-coinner factorization of a

Jo agm = yme g

rational matrix = = — s a factorization = — ~ = where
T = Z T,ms_ ~ z — E_ for all
|~| — E. Finally, we write ;‘; = m g<E—m = for

state-space realizations of a rational matrix.

LA special case is given in [8], where is is shown that if the feed-backward
filter is as long as the channel and the feed-forward filter is “long enough”,
the optimal decision delay is the length of the forward filter minus one.
Unfortunately, “long enough” in not quantified in [8].

2Just note that the MSE given in (2) satisfies m== i=™ &2, @
== =2, m=i for arbitrary feed-forward/backward filters == and =2
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Algorithm 1 Optimal Realizable DFE via Polynomial Approach

Input: Left MFDs = A B, - = N M, where &,
B, M and A are polynomial. Furthermore, <7, .4,
A are assumed square and stably invertible, the leading
coefficient of . is assumed invertible, and </ and .#
are assumed monic and diagonal.

Outp.: Optimal filters = e, == S

1) Define ¢ 1= oA M, T 1= NB.

2) Compute a irreducible right MFD 7Y~ =9~ 7.

3) Solve the linear equation system

7. g. -
2 7 b g
— =Y. —wYe T Ta L u
— T Lz
.
: g Ljajr= [ _Fza "
—_ % 1oset glﬁl 1= : _z,_ﬁi-_ B
f D =sl Gma"® ST G

4) Return = S M~ N, =1= 2T .

II. SYSTEM MODEL AND PROBLEM STATEMENT
In the ==-domain, our system model is

slfl = jasjs] = :jsj=:js] = =js]. )]

Here, .., =, =2, and = denote received signals, transmitted signals,
transmitted signals of an interferer, and noise. The signals =,
@z, and = are assumed to be mutually independent, spatially
and temporally white Gaussian random variables. The covariance
matrices are the identity matrix for data and interference, and
@~ = = B for noise. The channels and ; are stable and causal
rational matrices, i.e., E --=and ;= = ~". Our goal
is to design a feed-forward filter = == and a feed-backward
filter = = ==, such that the (delayed) estimate®

isisisl = s =jaj=jsj

sjaj =
minimizes the asymptotic mean square error

Eaf = = == '!ﬂ---*--'!;;

III. POLYNOMIAL APPROACH

The polynomial approach for optimal DFEs is due to [3]. We
point out that the model in [3] is slightly different from (1). They
assume w- = B and that - is square with  |==| invertible.
However, our setting can also be recast in the setting of [3] if
a spectral factor of w™= = - _ is chosen as interferer.

We summarize the polynomial approach in Alg. 1. The authors
themselves claim that the complexity grows cubically with the
decision delay [3, Ch. IV.D]. A quick inspection of Alg. 1 shows

3Note that we make the usual correct past decisions assumption [1], [3],
[4]. The actually implemented estimator is & — =g Bosa=Bj=— "7 &)
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that only the steps 3) and 4) depend on the decision delay. Steps
1) and 2) are independent of the delay. The matrix in step 3) (let
us call it =) is a =1 = Bj|g = | = = = i g = | matrix. Note
that each corner of = is a block-triangular Toeplitz matrix. If the
channel is square (i.e., g = ), and we define the shift matrix

BEIi= -== .-
! i .
the resulting displacement = — = — = == is of the form*
= | | [ | |
= = --__- = --__-_
B Ba-cm: = BNa_ca-

Therefore, the displacement rank of = can be at most Bg, and
efficient displacement structure based algorithms can be used to
solve step 3) with complexity depending quadratically on the
decision delay [10]. Computation of the polynomial matrix products
in Step 3)/4) can also be achieved with quadratic complexity. Thus,
the overall complexity of Alg. 1 grows quadratically with the delay.

Finally, let us point out a drawback of Alg. 1. The numerators
o/ and ./ are required to commute, which is why they are chosen
diagonal. However, this increases the number of coefficients in
the polynomials % and .#". Under certain circumstances this can
make step 2) of the algorithm very expensive (although overall
complexity still scales quadratically with =2).

IV. INNER-OUTER FACTORIZATION APPROACH

In principle, computation of the optimal DFE can be considered
as computation of the optimal linear equalizer for a virtual MIMO
channel where the feedback-path is modeled as additional noise-
free part of the channel [4], [6]. In particular, the inner-outer
factorization approach to linear equalization can be employed [11].
However, if one naively applies linear equalization algorithms to
the virtual channel, complexity grows very fast when the decision
delay increases. This happens because the (McMillan) degree of the
virtual MIMO channel increases with the delay which then rapidly
increases complexity of the inner-outer factorization.

IV-A. Derivation of the Optimal Realizable DFE

In this section we outline how the optimal DFE can be computed
in a way such that the complexity of the inner-outer factorization
is independent of the decision delay. Explicit state-space formulae
for implementation will be presented in the following section. We
start with the observation that the MSE holds [6]

Saj =j=ja m— —a  =jmef ji=f i
@)
Therefore the optimal filters are given by
e e BN H-E L I — =i 3)
where
jsf = |8 § a "= |,
Ju— ‘—‘_ - -
L LI [

We will now determine the optimal  in a way such that the
complexity scales well with the decision delay =:. Suppose that

ei=il=i= § & _. “

40Of course, = is also highly structured if the channel is non-square.
However, we haven’t yet found a suitable replacement for the shift matrix
= in the non-square case such that the displacement is low rank.



is a outer-coinner factorization® (as defined in the notations). Then,

= atg 5)
and (3) is equivalent to [11]
_ - - . (6
‘Write
Then, Parsevals relation shows that
Let us partition
= m = A (7)
We also partition = , where
~ is FIR, and ~ is IIR. We

w111 now successwely bring each of the three sums (I)-(III) to their
individual minimum.
@D Since == is always causal we have = for
Therefore, the sum (I) is independent of the choice of

(I)  Define three matrices
Then, we minimize the sum (II) by choosing
- - ®
where == is the solution to the least-squares problem
= - fm = ) 9)
(III)  Since is inner, we can rewrite (6) as

5The outer-coinner factorization is dual to the inner-outer factorization.
Therefore, we still call our approach “inner-outer approach” instead of
“outer-coinner approach” because the former term is more common.

Thus, with being the causal part [11], does

set the sum (III) to zero, which certainly is minimal.
Finally, note that is strictly anti-causal, and
thus . The parameter reduces to

(10)
Since we have jointly reduced all three sums to their 1nd1v1dual
minimum, (7) is also minimal. Thus, (6) holds, and =
is an optimal parameter in (3). We summarize our findings.

Theorem 4. Deﬁne = = where
and are given in (8) and (10). Then, and = are optimal
feed-forward and feed-backward filters.

IV-B. State-Space Formulae

Although we have now derived an efficient formula for the
optimal realizable DFE, it is not clear how to actually implement it.
Therefore, we will now derive state-space formulae for the optimal
DFE. State-space realizations have the advantage that they allow
simple evaluation in both time- and frequency-domain. Let us start
with a state-space realization [12]

Explicit formulas for the outer-coinner factorization (4) are well-
known [13]. We repeat them for completeness. Let = - == denote
the stabilizing solution to the discrete-time Riccati equation [14]

Then, with

a state-space realization for the outer-coinner factorization (4) is

11

12)

With these realizations, we obtain the following formulae for the
entries of = and

= e (13)

N J— . (14)
Let us now prove the following Lemma.
Lemma 5. Consider a FIR filter = - = and a

state-space system
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Algorithm 2 Optimal Realizable DFE via Inner-Outer Factorization

Input: = g8 = ,mEHE=§
Outp.: Solution -, 77 to (3).

1) Compute the outer-coinner factorization (11)-(12).
2) Compute " and via (13)-(14).

3) Compute given in (8)-(9).
4) Compute given in (15).
5) Return =, .
Then, with _gm it holds

4‘7 .

Proof: The claim follows from the identities

|
We can use the Lemma to obtain the following state-space
realization of (10),

s B ‘ L] ] m L] ‘ | |
= ‘ Lam | - ‘ -8
B ‘ L e L ‘ L — — |
E ‘ ‘ . L
15)
where =it
We summarize our findings in Alg. 2.
IV-C. Complexity Analysis
The complexity of Alg. 2 is as follows.
1) Step one is independent of the decision delay.
2) The complexity to compute " is linear in = . Since is

block Toeplitz, its computation is linear in = as well.

3) The matrix isa' igmf 7= 0 2" matrix. It
has block upper-triangular Toeplitz structure which implies a
displacement rank of =. Therefore, the least-squares problem
(9) can be solved with complexity quadratically in = [15].

4) The only thing that changes in the realization (15) (except
for the trivial delay) is the matrix . The complexity of
computing it scales linearly with

V. COMPARISON OF POLYNOMIAL AND
INNER-OUTER APPROACH

We compare Alg. 1 and 2. The polynomial approach starts with
the computation of an irreducible right MFD (Step 2, see e.g. [16]
for an algorithm), while the inner-outer factorization approach starts
with an outer-coinner factorization (Step 1). Interestingly, both of
these steps are special cases of the so-called coprime factorization
[12]. The irreducible right MFD is a coprime factorization where
both factors have to be polynomials, while the inner-outer factor-
ization is a coprime factorization where the numerator matrix is
inner. Note that since the numerators in Alg. 1 are required to
be diagonal, the MFDs of channel and noise are not irreducible
and the costs for the polynomial coprime factorization can become
unnecessarily high. This issue does not appear in the outer-coinner
factorization, where minimal realizations are allowed.
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Then, both algorithms have to solve a set of linear equations. In

the polynomial approach, the coefficient matrix is a invertible ="
T8 BY ! block matrix with = = = blocks,® i.e., the solution exists
and is unique. (See [10, Ch. IIT] for an algorithm.) The displacement
rank of the matrix is 7=. In the inner-outer approach, the coefficient
matrix is a right-invertible triangular "= 7" = #2 =: 7F block matrix
with = = Tz blocks, and a least-squares solution is sought [15]. The
displacement rank’ = is smaller than in the polynomial approach.
While the polynomial approach is done at this point, the inner-outer
approach needs one more step (Step 4), which is the computation
of ~ | . However, the complexity of this step is low and
grows only linearly with the delay (cf. Lemma 5).

In summary, we see that in the first two steps (coprime factor-
ization and the least squares problem) the inner-outer approach is
less complex than the polynomial approach. On the other hand, the
inner-outer approach requires an additional third step (computation
of “ ). However, compared to the other steps its
complexity is negligible.
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