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Abstract—In this paper we analyze the impact of thresholding
and quantization on the approximation of bandlimited signals
and systems by sampling series that only use samples of the
signal taken at the Nyquist rate. We show that there are stable
systems that become unstable if the samples are quantized. For
these systems the approximation error is unbounded irrespective
of how small the quantization step size is chosen. Furthermore, we
completely characterize the systems for which the approximation
is stable under thresholding and quantization. Surprisingly,
this class of systems is the well-known class of bounded-input
bounded-output (BIBO) stable systems. Moreover, we discuss
the special case of finite impulse response (FIR) filters and give
an upper bound for the approximation error that shows the
dependence of the error on the filter length.

Index Terms—Quantization, thresholding, approximation, lin-
ear time-invariant system, Shannon sampling series

I. INTRODUCTION AND NOTATION

The reconstruction of bandlimited signals from their sam-
ples is important not only from a theoretical point of view
[1] but also for many practical applications. The principle
of digital signal processing relies on the fact that certain
bandlimited signals can be perfectly reconstructed from their
samples. However, this is only true if the sample values
are known exactly. In real applications this can never be
realized because the quantization process in analog to digital
conversion only has limited resolution [2], [3].

In this paper, we consider two non-linear distortions of the
samples and analyze their effect on the approximation behavior
of the sampling series. The first non-linear distortion is the
quantization operator and the second is the threshold operator.

One application where the threshold operator is important is
sensor networks. The sensors sample some bandlimited signal
in space and time, and in order to save energy, the sensors
transmit only if the absolute value of the sample exceeds some
threshold. Thus, the receiver has to reconstruct the signal by
using only the samples whose absolute value is larger or equal
to the threshold.

So far we have discussed the approximation of signals
from their disturbed samples. In [4] the more general case,
where some transformation Tf of the signal f has to be
approximated, was analyzed, and the convergence behavior
of the sampling series was studied. However, in [4] and other
publications that study the approximation of such transforms
[5], the convergence analysis was done only for perfectly
known sample values of f . In this paper we consider the more

realistic case where the samples are disturbed by the threshold
operator and quantization operator.

In order to continue, we need some notation and definitions.
Let f̂ denote the Fourier transform of a function f , where f̂ is
to be understood in the distributional sense. Lp(R), 1 ≤ p <
∞, is the space of all pth-power Lebesgue integrable functions
on R, with the usual norm ‖ · ‖p, and L∞(R) is the space of
all functions for which the essential supremum norm ‖ · ‖∞ is
finite. For σ > 0 let Bσ be the set of all entire functions f with
the property that for all ε > 0 there exists a constant C(ε) with
|f(z)| ≤ C(ε) exp((σ + ε)|z|) for all z ∈ C. The Bernstein
space Bpσ consists of all functions in Bσ , whose restriction
to the real line is in Lp(R), 1 ≤ p ≤ ∞. A function in
Bpσ is called bandlimited to σ. By the Paley-Wiener-Schwartz
theorem, the Fourier transform of a function bandlimited to
σ is supported in [−σ, σ]. For σ > 0 and 1 ≤ p ≤ ∞ we
denote by PWp

σ the Paley-Wiener space of signals f with
a representation f(z) = 1/(2π)

∫ σ
−σ g(ω) eizω dω, z ∈ C,

for some g ∈ Lp(−σ, σ). If f ∈ PWp
σ then g(ω) = f̂(ω).

The norm for PWp
σ , 1 ≤ p < ∞, is given by ‖f‖PWp

σ
=

(1/(2π)
∫ σ
−σ|f̂(ω)|p dω)1/p.

II. THRESHOLD AND QUANTIZATION OPERATOR

In this paper we analyze the effect of two non-linear
distortions on the signal approximation behavior of sampling
series. The first distortion is modeled by the threshold operator.
For complex numbers z ∈ C, the threshold operator κδ , δ > 0,
is defined by

κδz =

{
z |z| ≥ δ
0 |z| < δ.

Furthermore, for continuous signals f : R → C, we define
the threshold operator Θδ pointwise, i.e., (Θδf)(t) = κδf(t),
t ∈ R. In this paper, the threshold operator κδ is applied
on the samples {f(k)}k∈Z of signals f ∈ PW1

π , which
gives the disturbed samples {κδf(k)}k∈Z. This is, of course,
equivalent to applying the threshold operator Θδ on the signal
f itself and then taking the samples, i.e., {(Θδf)(k)}k∈Z.
Then, the resulting samples {(Θδf)(k)}k∈Z are used to build
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an approximation

(Aδf)(t) :=
∞∑

k=−∞

(Θδf)(k)
sin(π(t− k))

π(t− k)

=
∞∑

k=−∞
|f(k)|≥δ

f(k)
sin(π(t− k))

π(t− k)
(1)

of the original signal f . By Aδ we denote the operator that
maps f ∈ PW1

π to Aδf according to (1).
The second non-linear operator that we consider in this

paper is the simple but frequently used uniform mid-tread
quantization, where each complex number z ∈ C is quantized
to qδz, depending on the quantization step size 2δ > 0,
according to the rule

qδz =

⌊
Re z

2δ
+

1

2

⌋
2δ +

⌊
Im z

2δ
+

1

2

⌋
2δi, (2)

where bxc denotes the largest integer smaller than or equal
than x. As can be seen in (2), the quantization is done sepa-
rately for the real and the imaginary part of z. Furthermore,
for continuous signals f : R→ C, we define the quantization
operator Υδ , δ > 0, pointwise, i.e., (Υδf)(t) = qδf(t),
t ∈ R. For example, if the sample f(k) is a real number
and f(k) ∈ [(2l − 1)δ, (2l + 1)δ) for some l ∈ Z then
(Υδf)(k) = 2lδ. As in the case of the threshold operator,
the resulting samples {(Υδf)(k)}k∈Z are used to build an
approximation

(Bδf)(t) :=

∞∑
k=−∞

(Υδf)(k)
sin(π(t− k))

π(t− k)
(3)

of the original signal f .
The convergence of the series in (1) and (3) is unprob-

lematic. Since f ∈ PW1
π we have limt→∞ f(t) = 0 by the

Riemann-Lebesgue lemma, and it follows that the series in (1)
and (3) have only finitely many summands. This implies that
Aδf ∈ PW2

π ⊂ PW
1
π and Bδf ∈ PW2

π ⊂ PW
1
π . In general,

Aδf and Bδf are only approximations of f , and we want the
approximation to be close to f if δ is sufficiently small.

Both approximation processes (1) and (3) are difficult to
analyze, because the threshold operator Θδ and the quantiza-
tion operator Υδ are non-linear. As a consequence, for δ > 0,
Aδ : PW1

π → PW
1
π and Bδ : PW1

π → PW
1
π are non-linear

operators. We do the analysis for the space PW1
π because this

space is larger than the commonly used PW2
π-space of signals

with finite energy and because the convergence behavior of
sampling series for signals in PW1

π is closely related to the
convergence behavior of sampling series for bandlimited wide-
sense stationary stochastic processes [6].

III. STABLE LTI SYSTEMS

Up to now we have only discussed the signal approximation
problem for f . However, in many signal processing applica-
tions the task is to approximate some processed version Tf
of f ∈ PW1

π and not f itself. One frequently used type
of processing is the filtering of a signal by a stable linear

time-invariant (LTI) system T . So, even more interesting than
the mere signal reconstruction problem is the approximation
problem where Tf has to be approximated by a sampling
series, which uses only the samples of f .

Before we continue the discussion, we briefly review some
definitions and facts about stable LTI systems. A linear system
T : PW1

π → PW1
π is called stable if the operator T

is bounded, i.e., if ‖T‖ = sup‖f‖PW1
π
≤1‖Tf‖PW1

π
< ∞,

and time-invariant if (Tf( · − a))(t) = (Tf)(t − a) for all
f ∈ PW1

π and t, a ∈ R. Note that this kind of stability is with
respect to the PW1

π-norm and thus is different from the com-
monly used bounded-input bounded-output (BIBO) stability.
All BIBO stable systems are stable in our sense. Furthermore,
our PW1

π-stability is equivalent to energy stability, i.e., L2-
stability, and important LTI systems like the Hilbert transform
and the ideal low-pass filter belong to this class.

For every stable LTI system T : PW1
π → PW

1
π there exists

exactly one function ĥT ∈ L∞[−π, π] such that

(Tf)(t) =
1

2π

∫ π

−π
f̂(ω)ĥT (ω) eiωt dω (4)

for all f ∈ PW1
π . Note that ĥT ∈ L∞[−π, π] ⊂ L2[−π, π],

and consequently hT ∈ PW2
π . Conversely, every function

ĥT ∈ L∞[−π, π] defines a stable LTI system T : PW1
π →

PW1
π . The operator norm of a stable LTI system T is given

by ‖T‖ = ‖ĥ‖∞.

IV. SYSTEM APPROXIMATION AND THRESHOLDING

If the samples {f(k)}k∈Z are known perfectly we can use

N∑
k=−N

f(k)T (sinc( · − k))(t) =
N∑

k=−N

f(k)hT (t− k) (5)

to obtain an approximation of Tf . The conditions under which
(5) converges to Tf as N goes to infinity were analyzed
in [4]. In this paper we analyze the signal approximation
problem, where the samples are disturbed either by the non-
linear threshold operator or by the non-linear quantization
operator. More concretely, we want to approximate Tf either
by

(TAδf)(t) =
∞∑

k=−∞

(Θδf)(k)hT (t− k)

or by

(TBδf)(t) =
∞∑

k=−∞

(Υδf)(k)hT (t− k).

As an example, we focus in the following on the threshold
operator and will use the abbreviation Tδ := TAδ . Neverthe-
less, the results are also true for the quantization operator. The
approximation error can be upper bounded by

|(Tδf)(t)− (Tf)(t)| ≤ |(Tδf)(t)|+ |(Tf)(t)|
≤ |(Tδf)(t)|+ ‖Tf‖PW1

π

≤ |(Tδf)(t)|+ ‖T‖ ‖f‖PW1
π
. (6)
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Furthermore, if

sup
‖f‖PW1

π
≤1
|(Tδf)(t)| <∞

we can conclude from (6) that

sup
‖f‖PW1

π
≤1
|(Tδf)(t)− (Tf)(t)| <∞,

i.e., that the approximation error is bounded for all signals
f ∈ PW1

π with ‖f‖PW1
π
≤ 1.

The following theorem gives a necessary and sufficient con-
dition for sup‖f‖PW1

π
≤1|(Tδf)(t)| to be finite. In Corollary 2

we will see that the same condition is sufficient for a good
approximation behavior of (Tδf)(t).

Theorem 1. Let T be a stable LTI system, 0 < δ < 1/3, and
t ∈ R. Then we have

sup
‖f‖PW1

π
≤1
|(Tδf)(t)| <∞

if and only if
∞∑

k=−∞

|hT (t− k)| <∞. (7)

Remark 1. The requirement δ < 1/3 has the following reason.
Since ‖f‖∞ ≤ ‖f‖PW1

π
≤ 1, we only consider signals whose

peak value is bounded by 1. Thus, it only makes sense to
consider thresholds δ that are smaller than or equal to 1. The
specific value of 1/3 is due to technical issues in the proof.

Corollary 1. Let T be a stable LTI system, 0 < δ < 1/3, and
t ∈ R. If (7) is not fulfilled then

sup
‖f‖PW1

π
≤1
|(Tδf)(t)| =∞. (8)

Corollary 1 shows that

sup
‖f‖PW1

π
≤1
|(Tf)(t)− (Tδf)(t)| =∞

if the system T does not fulfill (7). Thus, the pointwise
approximation error cannot be controlled, regardless of how
small the threshold δ is chosen. Clearly, for every f ∈ PW1

π ,
|(Tδf)(t)| is bounded. However, according to (8), for any level
L > 0 we can find a signal f1 ∈ PW1

π with ‖f1‖PW1
π
≤ 1

such that |(Tδf)(t)| > L.
Note that (7) is nothing else than the BIBO stability

condition for discrete-time systems.
On the other hand, if (7) is fulfilled, then we have a good

pointwise approximation behavior because the approximation
error converges to zero as the threshold δ goes to zero.

Corollary 2. Let T be a stable LTI system and t ∈ R. If (7)
is fulfilled then we have

lim
δ→0

sup
f∈PW1

π

|(Tf)(t)− (Tδf)(t)| = 0.

Proof: Taking the supremum on both sides of

|(Tf)(t)− (Tδf)(t)|

=

∣∣∣∣∣
∞∑

k=−∞

f(k)hT (t− k)−
∞∑

k=−∞

(Θδf)(k)hT (t− k)

∣∣∣∣∣
=

∣∣∣∣∣
∞∑

k=−∞

(f(k)− (Θδf)(k))hT (t− k)

∣∣∣∣∣
≤ δ

∞∑
k=−∞

|hT (t− k)| (9)

proves the statement.
Remark 2. With (9) we have a universal bound for the
approximation error, which is independent of f .

In order to prove Theorem 1 we need Lemma 1.

Lemma 1. For all stable LTI systems T , 0 < δ < 1/3, and
t ∈ R we have

δ

2

∞∑
k=−∞

|hT (t−k)| ≤ sup
‖f‖PW1

π
≤1
|(Tδf)(t)| ≤

∞∑
k=−∞

|hT (t−k)|

(10)

Proof: The right inequality in (10) follows directly from

|(Tδf)(t)| =

∣∣∣∣∣
∞∑

k=−∞
|f(k)|≥δ

f(k)hT (t− k)

∣∣∣∣∣
≤

∞∑
k=−∞
|f(k)|≥δ

|f(k)||hT (t− k)|

≤ ‖f‖PW1
π

∞∑
k=−∞

|hT (t− k)|.

The left inequality in (10) needs some more reasoning. Let
0 < δ < 1/3 and t ∈ R be arbitrary but fixed. Furthermore,
let Z+ = {k ∈ Z : hT (t − k) ≥ 0} and Z− = {k ∈ Z :
hT (t − k) < 0}. For 0 < η < 1 and N ∈ N, consider the
function

h+(t, η,N) :=
2N−1∑

k=−2N+1

h+(k, η,N)
sin(π(t− k))

π(t− k)
,

where

h+(k, η,N) =


1 + η, k ∈ Z+ ∩ [−N,N ],

1− η, k ∈ Z− ∩ [−N,N ],

2− |k|N , N < |k| < 2N.

We have

h+(t, η,N) = h+(t, 0, N)

+ η
N∑

k=−N
k∈Z+

sin(π(t− k))

π(t− k)

︸ ︷︷ ︸
=:u+

N (t)

−η
N∑

k=−N
k∈Z−

sin(π(t− k))

π(t− k)

︸ ︷︷ ︸
=:u−N (t)

,
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and it follows that

‖h+( · , η,N)‖PW1
π
≤ ‖h+( · , 0, N)‖PW1

π
+ η‖u+N‖PW1

π

+ η‖u−N‖PW1
π
.

Since ‖h+( · , 0, N)‖PW1
π
< 3, which is proven in the ap-

pendix, and ‖u+N‖PW1
π
<∞ as well as ‖u−N‖PW1

π
<∞ for all

N ∈ N, there exists an η0 = η0(N) with 0 < η0 < 1 such that
‖h+( · , η0, N)‖PW1

π
< 3. Now, let g+(t) := δh+(t, η0, N).

Note that ‖g+‖PW1
π
< 1. We have

(Tδg
+)(t) =

∞∑
k=−∞
|g+(k)|≥δ

g+(k)hT (t− k)

= (1 + η0)δ
N∑

k=−N
k∈Z+

hT (t− k)

> δ
N∑

k=−N
k∈Z+

hT (t− k)

and consequently

sup
‖f‖PW1

π
≤1

(Tδf)(t) ≥ δ
∞∑

k=−∞
k∈Z+

hT (t− k). (11)

Analogously to h+(t, η,N) we define

h−(t, η,N) :=
2N−1∑

k=−2N+1

h−(k, η,N)
sin(π(t− k))

π(t− k)
,

where

h−(k, η,N) =


−(1 + η), k ∈ Z− ∩ [−N,N ],

−(1− η), k ∈ Z+ ∩ [−N,N ],

−(2− |k|N ), N < |k| < 2N,

and the function g−(t) := δh−(t, η1, N), where η1 = η1(N),
0 < η1 < 1, is chosen such that ‖h−( · , η1, N)‖PW1

π
< 3,

which implies that ‖g−‖PW1
π
< 1. Moreover, we have

(Tδg
−)(t) =

∞∑
k=−∞
|g−(k)|≥δ

g−(k)hT (t− k)

= −(1 + η1)δ

N∑
k=−N
k∈Z−

hT (t− k)

= (1 + η1)δ
N∑

k=−N
k∈Z−

|hT (t− k)|

> δ
N∑

k=−N
k∈Z−

|hT (t− k)|,

and consequently

sup
‖f‖PW1

π
≤1

(Tδf)(t) ≥ δ
∞∑

k=−∞
k∈Z−

|hT (t− k)|. (12)

Combining (11) and (12) finally gives

2 sup
‖f‖PW1

π
≤1

(Tδf)(t) ≥ δ
N∑

k=−N
k∈Z+

hT (t− k) + δ
N∑

k=−N
k∈Z−

|hT (t− k)|

= δ
∞∑

k=−∞

|hT (t− k)|,

which completes the second part of the proof.
Proof of Theorem 1: Theorem 1 follows directly from

Lemma 1.
The following example illustrates Theorem 1 and shows that

even for common stable LTI systems like the ideal low-pass
filter there are problems because (7) is not fulfilled.

Example 1. If TL is the ideal low-pass filter with hTL(t) =
sin(πt)/(πt) then we have

∞∑
k=−∞

|hTL(t− k)| =∞

for all t ∈ (0, 1). It follows from Theorem 1 that, for t ∈ (0, 1)
and 0 < δ < 1/3,

sup
‖f‖PW1

π
≤1
|(TL,δf)(t)|

= sup
‖f‖PW1

π
≤1

∣∣∣∣∣
∞∑

k=−∞
|f(k)|≥δ

f(k)
sin(π(t− k))

π(t− k)

∣∣∣∣∣ =∞.

This shows that, for t ∈ (0, 1) and any δ with 0 < δ < 1/3, the
approximation error |(TLf)(t)− (TL,δf)(t)| can be arbitrarily
large depending on the signal f ∈ PW1

π .

Similar to Theorem 1, which characterizes the pointwise
boundedness of sup‖f‖PW1

π
≤1|(Tδf)(t)|, we can also give a

necessary and sufficient condition for the uniform boundedness
on the whole real axis.

Theorem 2. Let T be a stable LTI system and 0 < δ < 1/3.
We have

sup
‖f‖PW1

π
≤1
‖Tδf‖∞ <∞ (13)

if and only if

sup
0≤t≤1

∞∑
k=−∞

|hT (t− k)| <∞. (14)

Proof: Theorem 2 follows directly from Lemma 1 by
taking the supremum supt∈R of all parts of (10) and the fact
that

∑∞
k=−∞|hT (t− k)| is periodic with period 1.
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Corollary 3. Let T be a stable LTI system and 0 < δ < 1/3.
We have (13) if and only if hT ∈ B1π , i.e., if and only if∫ ∞

−∞
|hT (τ)| dτ <∞. (15)

Proof: According to Nikol’skiı̆’s inequality [7, p. 49], (14)
is true if and only if

∫∞
−∞|hT (τ)| dτ <∞.

Note that (15) is nothing else than the BIBO stability
condition for continuous-time systems. Corollary 4 shows the
good global approximation behavior of Tδf if (15) is fulfilled.

Corollary 4. Let T be a stable LTI system. If (15) is fulfilled
then we have

lim
δ→∞

sup
f∈PW1

π

‖(Tf)(t)− (Tδf)(t)‖∞ = 0.

Proof: Analogously to the proof of Corollary 2.

V. QUANTIZATION

The results in Section IV that were obtained for the thresh-
old operator are also true if the non-linear distortion is the
quantization operator.

Theorem 3. Let T be a stable LTI system, 0 < δ < 1/3, and
t ∈ R. Then we have

sup
‖f‖PW1

π
≤1
|(TBδf)(t)| <∞

if and only if
∞∑

k=−∞

|hT (t− k)| <∞.

Proof: Theorem 3 can be proven very similar to Theo-
rem 1.

VI. FIR FILTERS

Since finite impulse response (FIR) systems are an im-
portant special case of stable LTI systems, we discuss some
implications for those systems next.

Definition 1. We call a stable LTI system T finite impulse
response system if ĥT is a polynomial in e−iω , i.e., if ĥT has
the representation

ĥT (ω) =
M∑
k=0

ck e−iωk, −π ≤ ω ≤ π,

for some M ∈ N and ck ∈ C, k = 0, . . . ,M .

A FIR system is called a finite impulse response sys-
tem, because the discrete-time impulse response {hT (k)}k∈Z
has only finitely many non-zero elements. This implies that∑∞
k=−∞|hT (k)| <∞ for every FIR system.
Corollary 3 shows that it is important to know whether hT ∈

B1π or not because the boundedness of ‖Tδf‖∞ is completely
determined by this. For FIR systems T it is possible to classify
when hT ∈ B1π , based on a property of ĥT , which is easy to
check.

Lemma 2. Let T be a FIR system. Then hT ∈ B1π if and only
if lim|ω|→π ĥT (ω) = 0.

Proof: “⇒”: Since hT ∈ B1
π , it follows that ĥT is

continuous [8, p. 153]. Therefore, lim|ω|→π ĥT (ω) = 0.
“⇐”: We have∫ ∞
−∞
|hT (t)| dt =

∫ ∞
−∞
|hT (t)|1 + |t|

1 + |t|
dt

≤
(∫ ∞
−∞
|hT (t)|2(1 + |t|)2 dt

)1/2(∫ ∞
−∞

(1 + |t|)−2 dt

)1/2

.

Since the second integral is finite and hT is bounded, all that
remains to be shown is that(∫ ∞

−∞
|hT (t)|2t2 dt

)1/2

<∞.

Obviously, we have ĥT ∈ L1[−π, π] and (ĥT )′ ∈ L1[−π, π]
as well as (ĥT )′ ∈ L2[−π, π], because ĥT is a polynomial in
e−iω and lim|ω|→π ĥT (ω) = 0. (ĥT )′ denotes the derivative of
ĥT . Let fˇ denote the inverse Fourier transform of a function
f . Then we have

((ĥT )′)̌ (t) = −ithT (t),

and it follows that∫ ∞
−∞

t2|hT (t)|2 dt =
1

2π

∫ π

−π
|(ĥT )′(ω)|2 dω

= ‖(ĥT )′‖L2[−π,π]

<∞,

where we used Parseval’s theorem in the fist equality.
On the integer lattice, i.e., for t = n ∈ Z, we have no

approximation problems, because, according to (9),

|(Tf)(n)− (Tδf)(n)| ≤ δ
∞∑

k=−∞

|hT (n− k)|

<∞

for every fixed δ > 0. The last inequality follows from the
fact that T is a FIR system.

Since

|(Tf)(n)− (Tδf)(n)| ≤ |(Tδf)(n)|+ ‖T‖ ‖f‖PW1
π

by the same steps as in (6), it is interesting to know how large
sup‖f‖PW1

π
≤1|(Tδf)(n)| can get because we can then upper

bound the approximation error on the integer lattice. Let M
be the smallest natural number such that hT (k) = 0 for all
k > M . We have

M∑
k=0

|hT (k)| ≤

(
M∑
k=0

1

)1/2( M∑
k=0

|hT (k)|2
)1/2

=
√
M + 1

(
1

2π

∫ π

−π
|ĥT (ω)|2 dω

)1/2

≤
√
M + 1 ‖ĥT ‖L∞[−π,π]

=
√
M + 1 ‖T‖,
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which gives an upper bound for

sup
‖f‖PW1

π
≤1
|(Tδf)(n)|.

That
√
M + 1 is indeed the rate of growth can be easily seen

by considering quadratic phase functions or “chirp sequences”
with

hTq(k) =

{
1√
M+1

exp
(
i k

2π
M+1

)
0 ≤ k ≤M

0 otherwise

and

ĥTq(ω) =
M∑
k=0

hTq(k) e−ikω

=
1√

M + 1

M∑
k=0

exp

(
i
k2π

M + 1

)
e−ikω .

It can be shown [9] that there exists a constant C1, which
is independent from M , such that ‖ĥTq‖L∞[−π,π] ≤ C1.
Moreover, it follows that

M∑
k=0

|hTq(k)| = 1√
M + 1

M∑
k=0

1 =
√
M + 1, (16)

which shows that Tq is a worst-case FIR system that achieves
the
√
M + 1 growth.

Thus, on the integer lattice t = n ∈ Z the worst-case
approximation error increases as

√
M + 1, because from (16)

and Lemma 1 we obtain

sup
T∈TM

sup
‖f‖PW1

π
≤1
|(Tδf)(n)| ≥ C2

√
M + 1,

where C2 is a universal constant and TM denotes the set of all
FIR systems T with ‖T‖ ≤ 1 and hT (k) = 0 for all k > M .

VII. DISCUSSION

We have seen that, for f ∈ PW1
π , the class of stable LTI

systems T that can be uniformly approximated by TAδ and
TBδ is given by the set of LTI systems with hT ∈ B1π . This
means that the class of stable LTI systems that are robust under
thresholding and quantization is exactly the class of bounded-
input bounded-output (BIBO) stable LTI systems. Further, we
discussed the consequences for FIR filters and showed that the
worst-case approximation error increases as

√
M + 1, where

M denotes the filter length.

APPENDIX
PROOF OF ‖h+( · , 0, N)‖PW1

π
< 3

The Fourier coefficients FN (k), k ∈ Z, of the Fejér kernel

F̂N (ω) =
1

N + 1

sin2((N + 1)ω2 )

sin2(ω2 )

are given by

FN (k) =

{
1− |k|N |k| < N

0 |k| ≥ N.

Thus, h+(k, 0, N) = 2F2N (k)−FN (k), k ∈ Z and the Fourier
transform of

h+(t, 0, N) =
2N−1∑

k=−2N+1

h+(k, 0, N)
sin(π(t− k))

π(t− k)

is
ĥ+(ω, 0, N) = 2F̂2N (ω)− F̂N (ω), |ω| ≤ π.

As a consequence we obtain

‖h+( · , 0, N)‖PW1
π

=
1

2π

∫ π

−π
|2F̂2N (ω)− F̂N (ω)| dω

<
1

2π

∫ π

−π
2F̂2N (ω) + F̂N (ω) dω = 3,

In the last line we can write “<” instead of “≤” because F̂2N

and F̂N are both non-negative.
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