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Abstract—We consider the oversampled noise-shaping sub-
band quantizer (ONSQ) with the quantization noise being
modeled as white noise. The problem at hand is to design an
optimal feedback filter. Optimal feedback filters with regard
to the current standard model of the ONSQ inhabit several
shortcomings: the stability of the feedback loop is not ensured
and the noise is considered independent of both the input and
the feedback filter. Another previously unknown disadvantage,
which we prove in our paper, is that optimal feedback filters in
the standard model are never unique. The goal of this paper is
to show how these shortcomings can be overcome. The stability
issue is addressed by showing that every feedback filter can be
“stabilized” in the sense that we can find another feedback filter
which stabilizes the feedback loop and achieves a performance
equal (or arbitrarily close) to the original filter. However, the
other issues are inherent properties of the standard model.
Therefore, we also consider a so-called extended model of the
ONSQ, which includes the influence of the feedback filter on
the noise power and indirectly also the influence of the inputs
statistical properties. We show that the optimal feedback filter
for this extended model is unique and automatically achieves a
stable feedback loop. We also give an algorithm to compute it.

I. INTRODUCTION

The concept of an oversampled noise-shaping subband

quantizer (ONSQ) was introduced by Bölcskei and Hlawatsch

in [1]. The system model of a ONSQ is depicted in Fig. 2, and

can be described as follows. The input signal of the ONSQ,

which is modeled by a sequence of complex numbers, is first

passed though the analysis filter bank E1(z), . . . , Eq(z). The

q outputs of the analysis filter bank are downsampled1 by a

factor p, then jointly quantized by a noise-shaping quantizer,

and finally upsampled2 again by the factor p. The output of

the ONSQ is obtained after the results of these operations are

passed through the synthesis filter bank R1(z), . . . , Rq(z).
The “oversampled” in the term ONSQ refers to the assump-

tion that the size q of the filter banks is larger than the sam-

pling factor p. The “perfect reconstruction” means that the

output of the ONSQ should equal the input if the quantization

error is zero (probably subject to a finite delay). It remains

to have a closer look at the noise shaping quantizer in Fig. 2.

The system model of a noise shaping quantizer is depicted in

Fig. 1a. The input signal, which we describe with a vector-

valued sequence, is first reduced by a feedback signal. The
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1Downsampling by p means {ak}
∞

k=0
7→ {akp}

∞

k=0
.

2Upsampling by p means {ak}
∞

k=0
7→ {bk}

∞

k=0
where bk = ak/p if k

is a integer multiple of p and bk = 0 otherwise.
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(a) Real model: η is the qnt. error
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(b) Linearized model: η is white noise

Figure 1: Noise-Shaping Quantizer
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Figure 2: Oversampled Noise-Shaping Subband Quantizer

output is obtained when this difference is quantized by some

memoryless quantizer with finitely many quantization levels.

The aforementioned feedback signal is generated by passing

the difference between the quantizers output and its input,

i.e., the quantization error, into the feedback filter z−1F (z).
The design problem treated in this paper consists in design-

ing the feedback filter F (z) of the noise-shaping quantizer

such that the quantization noise is maximally damped by the

synthesis filter bank R1(z), . . . , Rp(z). The first approach

to this problem was given in [1]. There, the model of the

noise-shaping quantizer was linearized by the assumption that

the quantization noise η is white with constant variance (cf.

Fig. 1b). We call this the standard model. The optimal finite

impulse response (FIR) feedback filter for the standard model

was derived in [1]. The standard model has three well-known

disadvantages (also cf. [2]), viz.:

1) stability of the feedback loop is not taken into account,

2) the noise is considered independent of the input, and

3) the noise is considered independent of the feedback.

In order to address these problems, Quevedo et. al. proposed

the so-called moving horizon subband quantizer (MHSQ)

which uses the quantized symbol that minimizes the predic-

tion of the quantization error over a finite time horizon [2].

While this approach often performs very good, there is the

disadvantage of exponential complexity in both the prediction

horizon and the number of quantizer outputs. Clearly, a lower

computational burden is desirable in practical scenarios.
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Therefore, we revisit the white quantization noise assump-

tion in this paper and show how the disadvantages given

before can be addressed. First, we extend the results on the

standard model from [1] (i.e., the optimal FIR feedback filter

which ignores closed-loop stability) to the infinite impulse

response (IIR) case. Second, we show how an optimal IIR

feedback filter for the standard model can be converted into

a filter which ensures stability of the feedback loop and

at the same time achieves a performance equal or at least

arbitrarily close to the initial filter (which did not necessarily

achieve closed-loop stability). Thus, we show how the first

disadvantage of the standard model can be removed without

sacrificing any performance. However, the other two disad-

vantages are still around. Even worse, we show that compu-

tation of optimal feedback filters for the standard model is

an ill-posed problem in the sense of Hadamard because its

solutions are never unique. In order to address these issues,

we pick up an idea proposed by Derpich et. al. in the context

of scalar quantization [3]. They assumed a fixed signal-to-

noise ratio (SNR) in the quantizer, and used this assumption

to get an approximation of the quantization noise variance

which incorporates the feedback filter. Obviously, the SNR

of the quantizer depends on the statistics of the inputs. Thus,

this extended model addresses the other two disadvantages

of the standard model. We show that the optimal IIR filter

regarding the extended model (ignoring closed-loop stability)

always exists and is unique, and give a simple algorithm to

compute it. Moreover, we prove that this filter automatically

achieves closed-loop stability as soon as an optimal filter with

closed-loop stability exists at all. For the rare cases where

this is not the case, we derive suboptimal feedback filters

with performance arbitrarily close-to-optimal and closed-loop

stability. Thus, closed-loop stability can again be achieved

without sacrificing any performance.

Notation: We denote the space of stable and causal rational

m × l matrices by RHm×l
∞ , i.e., all poles are contained in

the open unit disc |z| < 1. The para-hermitian of any A ∈
RHm×l

∞ is defined as A∼(z) := A(z̄−1)∗, the infinity norm

as ‖A‖∞ := sup|z|=1 σmax[A(z)] where σmax[·] denotes the

largest singular value. The Frobenius norm of a complex

matrix B ∈ C
m×l is defined via ‖B‖2F := trace{BB∗}.

Finally, we introduce the two norm of a rational matrix C,

‖C‖22 :=
´ 2π

θ=0
‖C(eiθ)‖2F

dθ
2π . The normal rank of C is given

by maxz∈C rank[C(z)].

II. PROBLEM STATEMENT

The system model of an ONSQ has already been discussed

in the introduction. However, direct use of the system model

is intricate during computations. Hence, we use the equivalent

polyphase representation of the ONSQ which is depicted

in Fig. 3 (please see [1] for details). We assume that the

polyphase matrices E ∈ RHq×p
∞ and R ∈ RHp×q

∞ of the

synthesis and analysis filter banks are given and achieve

perfect reconstruction, i.e., R(z)E(z) = z−LI for some

decision delay L > 0. We want to design an “optimal”

feedback filter F ∈ RHq×q
∞ .
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Figure 3: Polyphase representation of the ONSQ

In order to get a tractable formulation of “optimal” we

model the quantization noise as temporally and spatially

white noise with variance σ2
η > 0 (cf. Fig. 1b). The input-

output relation in Figure 3 becomes

xq = R[Ex+ (I − z−1F )η] = z−Lx+R(I − z−1F )η.

Hence, we aim to minimize the variance of the expected re-

construction error σ2
e := σ2

η‖R(I−z−1F )‖22 of the linearized

model. Two different approaches to the minimization of σ2
e

can be found in the literature.

1) In [1], the variance σ2
η of the quantization error is

considered independent of the feedback filter F . Then,

one has to minimize ‖R(I−z−1F )‖22. We call this the

standard model.

2) In [3], the variance σ2
η of the quantization error is

approximated by ‖E‖22/(γ − ‖F‖22), where γ is the

signal to noise ratio (SNR) of the quantizer. Then,

minimization of σ2
e is equivalent to minimization of

‖R(I − z−1F )‖22/(γ − ‖F‖22) subject to ‖F‖22 < γ.

We call this the extended model.

Finally, let us point out an important difference between the

real model and the linearized model of the noise-shaping

quantizer: In contrast to the real model (Fig. 1a) there is no

feedback in the linearized model (Fig. 1b). Thus, we should

explicitly take stability of the feedback loop into account

when we design our filters. Following Derpich et. al. [3,

§II-A3], we say that the quantizer is stable if a bounded

input implies that all internal signals are bounded. Since the

quantized signal vq in Figure 1a is always bounded and v =
(I− z−1F )−1(w− z−1Fvq), u = z−1F (vq − v), this means

that we should additionally require (I−z−1F )−1 ∈ RHq×q
∞ .

III. PRELIMINARIES

Let us shortly recall some basics from linear systems

theory that will be used repeatedly in this paper.

A. Outer-Coinner Factorization

Let 0 6= M ∈ RHm×l
∞ have no unit circle zeros. Then, we

can introduce the so-called outer-coinner factorization M =
MoMi, where Mo ∈ RHm×k

∞ , Mi ∈ RHk×l
∞ , M+

o Mo = I
for some M+

o ∈ RHk×m
∞ and MiM

∼
i = I [4]. Note that Mo

is square if and only if M has normal rank m. Finally, let us

repeat the well-known observation that multiplication from

the right with a coinner function preserves the two norm.

Lemma 1. Suppose A ∈ RHm×l
∞ and B ∈ RHl×k

∞ with B
coinner, i.e., BB∼ = I . Then, ‖AB‖22 = ‖A‖22.

Proof: This follows immediately from B∼(eiθ) =
B(eiθ)∗ and the definitions of ‖ · ‖2 and ‖ · ‖F .
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B. Model-Matching

The (one-sided, inexact) model-matching problem, which

often also is considered a H2 filtering problem, has been

treated extensively in the literature (see, e.g., [5]). The next

lemma provides solvability conditions.

Lemma 2. Suppose A ∈ RHm×l1
∞ and B ∈ RHm×l2

∞ , where

B has no unit circle zeros. Then, there exists K ∈ RHl2×l1
∞

such that ‖A+BK‖22 = inf
K̃∈RH

l2×l1
∞

‖A+BK̃‖22. This K
is unique if and only if B has normal rank l2 > 0.

Proof: See, e.g., Cor. 10.51 and Th. 10.54 in [5].

IV. OPTIMAL FEEDBACK FILTER: STANDARD MODEL

In this section, we derive optimal IIR feedback filters for

the standard model. These can be seen as the limiting case

of the FIR filters given in [1]. We also show how instable

feedback loops, which can occur in the standard model, can

be removed without loosing performance, and analyze the

solution sets.

A. Unstable Feedback Loop

We start with with the optimal feedback filter with respect

to the standard model, where we do not care for stability of

the feedback loop.

Problem 3. Find F ∈ RHq×q
∞ such that ‖R(I− z−1F )‖22 is

minimized.

The FIR version of this problem, i.e., F (z) = F0 +
F1z

−1 + · · · + FNz−N , has been solved in [1]. We point

out that the general case considered here is a simple model-

matching problem (cf. Section III-B). However, the simplicity

comes at a price. The next proposition shows that Problem

3 is an ill-posed problem (in the sense of Hadamard).

Proposition 4. Problem 3 has infinitely many solutions.

Proof: Lemma 2 implies existence of a solution because

the perfect reconstruction property R(z)E(z) = z−LI and

R ∈ RHq×p
∞ ensure that R has no unit circle zeros. Now,

suppose Fopt is any solution to Problem 3. Let E⊥ ∈
RHq×(q−p)

∞ denote a basis of the kernel of R, i.e., E⊥ has

full column normal rank, and RE⊥ = 0. Then, for any

Q ∈ RH(q−p)×q
∞ , also Fopt+E⊥Q is a solution to Problem 3

because ‖R(I−z−1(Fopt+E⊥Q))‖22 = ‖R(I−z−1Fopt)−
z−1RE⊥Q‖22 and RE⊥ = 0. Since E⊥ has full column

normal rank, this amounts to infinitely many solutions.

B. Stable Feedback Loop

Next, we consider the optimal feedback filter with respect

to the standard model that stabilizes the feedback loop. The

problem can be formulated as follows.

Problem 5. Find F ∈ RHq×q
∞ such that (I − z−1F )−1 ∈

RHq×q
∞ and ‖R(I − z−1F )‖22 is minimized.

Solution of Problem 5 is more complicated than solu-

tion of Problem 3 because additionally the stability of the

feedback loop has to be taken into account. To the best

of our knowledge, no solution technique for Problem 5 is

known in the literature. Therefore, we propose the following

new approach, where we modify a solution to Problem 3

(which is simple to obtain) in order to compute an (probably

approximate) solution to the more complicated Problem 5.

We point out that Gerzon and Craven already observed in

the scalar case that minimum-phaseness of the feedback filter

can be enforced without loss of performance [6, p. 9]. They

proposed to recursively reflect the non-minimum-phase zeros

of (I − z−1F ) with respect to the unit circle. Note that

this is simple in the scalar case, but not in the matrix case

considered here. Therefore, we do not try to reflect the zeros,

but instead dislocate them using an inner factor.

Theorem 6. Let F⋆ denote a solution to Problem 3. Then,

the following holds.

1) Suppose I − z−1F⋆ has no unit circle zeros, and

introduce an outer-coinner factorization I − z−1F⋆ =
F⋆oF⋆i. Then, Fopt := I − F⋆oF

−1
⋆o (∞) is strictly

proper, and zFopt ∈ RHq×q
∞ solves Problem 5.

2) Suppose I − z−1F⋆ has unit circle zeros, and in-

troduce a family of outer-coinner factorizations [I −

z−1F⋆, ǫI] = F
(ǫ)
⋆o F

(ǫ)
⋆i and a family of feedback

filters F
(ǫ)
opt(z) := I − F

(ǫ)
⋆o (z)[F

(ǫ)
⋆o (∞)]−1. Then,

zF
(ǫ)
opt, (I − z−1zF

(ǫ)
opt)

−1 ∈ RHq×q
∞ for all ǫ > 0, and

lim
ǫց0

‖R(I − z−1zF
(ǫ)
opt)‖

2
2 = ‖R(I − z−1F⋆)‖

2
2.

Proof: “1)”: The factorization is well-defined

because I − z−1F⋆ has no unit circle zeros

(and full normal rank). By construction, we have

Fopt ∈ RHq×q
∞ . Fopt is strictly proper because Fopt(∞) =

I − F⋆o(∞)F−1
⋆o (∞) = 0. Since the matrix F−1

⋆o (∞)
is invertible, we further see that (I − z−1zFopt)

−1 =
(I − (I − F⋆oF

−1
⋆o (∞)))−1 = (F⋆oF

−1
⋆o (∞))−1 =

F⋆o(∞)F−1
⋆o

(F⋆o outer)
∈ RHq×q

∞ . Finally, we also have

‖R(I − z−1zFopt)‖
2
2

(Def. Fopt)
= ‖RF⋆oF

−1
⋆o (∞)‖22 =

´ 2π

θ=0
‖R(eiθ)F⋆o(e

iθ)F−1
⋆o (∞)‖2F

dθ
2π

(Lem. 18+19/Appdx.)

≤
´ 2π

θ=0
‖R(eiθ)F⋆o(e

iθ)‖2F
dθ
2π = ‖RF⋆o‖

2
2

(Lem. 1)
=

‖RF⋆oF⋆i‖
2
2 = ‖R(I − z−1F⋆)‖

2
2. Since the optimal

performance in Problem 5 is lower bounded by the optimal

performance in Problem 3, i.e., ‖R(I − z−1F⋆)‖
2
2, and

zFopt achieves this lower bound, we see that zFopt solves

Problem 5. We skip the second part of the proof because of

space limitations.

Finally, we point out that although the requirements in

Problem 5 are stronger than in Problem 3 because we addi-

tionally require stability of the feedback loop, there still can

be no unique solution. The problem is still ill-conditioned.

Proposition 7. Problem 5 has either no or infinitely many

solutions.

Proof: Suppose Fopt is a solution to Problem 5. Then,

there exists some δ > 0 such that (I − z−1Fopt + X)−1 ∈
RHq×q

∞ for all X ∈ RHq×q
∞ with ‖X‖∞ < δ, because the

invertible stable proper rational matrices form an open set in

the topology induced by the infinity norm. (This follows from
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the fact that the invertible elements in any Banach algebra

with unit form an open set, where we choose RHq×q
∞ as the

algebra.) Now, consider X = E⊥Q ∈ RHq×q
∞ for any Q ∈

RH(q−p)×q
∞ with ‖Q‖∞ < δ‖E⊥‖

−1
∞ , where again E⊥ ∈

RHq×(q−p)
∞ denotes a basis of the kernel of R. (cf. the proof

of Proposition 4). Then, ‖X‖∞ ≤ δ‖E⊥‖
−1
∞ ‖E⊥‖∞ = δ,

and thus (I − z−1(Fopt + X))−1 ∈ RHq×q
∞ . We also have

‖R(I − z−1(Fopt + X))‖22 = ‖R(I − z−1Fopt)‖
2
2 because

RE⊥ = 0. Hence, Fopt +X is another solution to Problem

5. Since E⊥ has full column normal rank, we can obtain

infinitely many optimal solutions in this way.

V. OPTIMAL FEEDBACK FILTER: EXTENDED MODEL

The previous section has shown that the standard noise

model leads to ill-posed optimization problems with non-

unique solutions. In this section, we consider an extended

model proposed by Derpich et. al. in the context of non-

oversampled noise shaping subband quantization with only

one analysis/synthesis filter [3]. We derive the optimal feed-

back filter for our system model with respect to the extended

model. We also show that the extended model does not suffer

from non-unique solutions, or unstable feedback loops.

A. Unstable Feedback Loop

Like for the standard model, we initially do not require a

stable feedback loop.

Problem 8. Find F ∈ RHq×q
∞ such that ‖F‖22 < γ, and

‖R(I − z−1F )‖22/(γ − ‖F‖22) is minimized.

In contrast to Problem 3, this is no longer a simple model

matching problem. However, the next lemma will allow us to

establish a relation to a family of model matching problems.

Lemma 9. Let F ∈ RHq×q
∞ , C > 0. Then,

‖R(I − z−1F )‖22
γ − ‖F‖22

= C and ‖F‖22 < γ (1)

⇔

∥

∥

∥

∥

[

C−1R
0

]

−

[

z−1C−1R
I

]

F

∥

∥

∥

∥

2

2

= γ. (2)

Proof: First, note that (1) implies C−1‖R(I−z−1F )‖22+
‖F‖22 = γ, which in turn is equivalent to (2). Thus, the

“⇒” part of the Lemma is shown. For the “⇐” part it

remains to show that ‖F‖22 < γ, but this follows imme-

diately from C−1‖R(I − z−1F )‖22 + ‖F‖22 = γ because

C−1‖R(I − z−1F )‖22 ≥ C−1CR > 0. Here, CR > 0 is

given in Lemma 16 in the appendix.

The interesting aspect of this lemma is that the reformula-

tion (2) of (1) automatically implies the constraint ‖F‖22 < γ.

Let us introduce the following two auxiliary functions, which

will allow us to further exploit this property.

Lemma 10. The functions Ψ,Ψγ : (0,∞) → (0,∞),

Ψ(C) := inf
F∈RHq×q

∞

∥

∥

∥

∥

[

C−1R
0

]

−

[

z−1C−1R
I

]

F

∥

∥

∥

∥

2

2

,

Ψγ(C) := inf
F∈RH

q×q
∞

‖F‖2
2
<γ

∥

∥

∥

∥

[

C−1R
0

]

−

[

z−1C−1R
I

]

F

∥

∥

∥

∥

2

2

,

satisfy Ψ(C) ≤ Ψγ(C) and, if Ψ(C) ≤ γ, Ψ(C) = Ψγ(C).

Proof: The fact that Ψ(C) ≤ Ψγ(C) for all C > 0
follows trivially from the definitions of Ψ and Ψγ . Now,

suppose that Ψ(C) ≤ γ for some C > 0. Lemma 2 shows

that the infimum in the definition of Ψ is achieved by some

F . The same arguments as in the proof of Lemma 9 show that

this F automatically satisfies ‖F‖22 < γ. But then Ψγ(C) ≤
Ψ(C).

The next lemma constitutes the last technical preliminary

before the main result of this subsection. It establishes several

useful properties of the function Ψγ .

Lemma 11. The function Ψγ is strictly monotonously de-

creasing, continuous, and has the limits limCց0 Ψγ(C) = ∞
and limCր∞ Ψγ(C) = 0.

We skip the proof of this Lemma. We can now establish

existence and uniqueness of the solution to Problem 8.

Moreover, the next proposition also establishes a numerically

simple to exploit characterization of the optimal solution.

Proposition 12. Problem 8 has a unique solution, i.e.,

Fopt = argmin
F∈RHq×q

∞

∥

∥

∥

∥

[

C−1
optR
0

]

−

[

z−1C−1
optR
I

]

F

∥

∥

∥

∥

2

2

. (3)

Here, Copt is the unique solution to Ψ(Copt) = γ.

Proof: Let us consider D :=
infF∈RHq×q

∞ ,‖F‖2

2
<γ ‖R(I − z−1F )‖22/(γ −‖F‖22). Our first

goal is to show that Copt given in the proposition is unique

and equals D. Lemma 9 shows that D is the infimum over

all C > 0 for which there exists some F ∈ RHq×q
∞ that

satisfies (2). One can show that this condition is equivalent

to Ψ(C) ≤ γ, which, by Lemma 10, is equivalent to

Ψγ(C) ≤ γ. Thus, D = inf{C > 0 : Ψγ(C) ≤ γ}. Lemma

11 now implies that D is the unique solution to Ψγ(D) = γ,

which, again by Lemma 10, also is the unique solution

to Ψ(D) = γ. But this is exactly the Copt given in the

proposition. Next, we want to compute the optimal solution,

i.e., we want to find Fopt ∈ RHq×q
∞ such that F = Fopt

satisfies (1) for C = Copt. Lemma 9 shows this is true

if and only if F = Fopt and C = Copt solve (2). Since

Ψ(Copt) = γ, we see that Fopt must be a solution to the

model matching problem (3). Lemma 2 shows that Fopt is

the only solution.

Proposition 12 shows that computation of the solution to

Problem 8 is simple because it is the solution to the model-

matching problem (3). However, (3) involves the quantity

Copt, which has to be computed in advance. Luckily, compu-

tation of Copt is also simple. The Lemmas 10 and 11 show

that Ψ(C) > γ for all C < Copt and Ψ(C) < γ for all

C > Copt. Thus, a simple bisection algorithm may be used to

compute Copt. Note that each evaluation of Ψ again amounts

to a model-matching problem.

B. Stable Feedback Loop

Finally, we consider the optimal feedback filter with re-

spect to the extended model that stabilizes the feedback loop.

The exact formulation is as follows.
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Problem 13. Find F ∈ RHq×q
∞ such that (I − z−1F )−1 ∈

RHq×q
∞ , ‖F‖22 < γ, and ‖R(I − z−1F )‖22/(γ − ‖F‖22) is

minimized.

The next theorem shows that Problem 13 usually is very

simple to solve because in most cases the solution to Problem

8 already solves Problem 13. In the rare cases where this is

not true, we can get arbitrarily close-to-optimal performance

with an approximation scheme.

Theorem 14. Let F⋆ denote the solution to Problem 8. Then,

the following holds.

1) Suppose I − z−1F⋆ has no unit circle zeros. Then, F⋆

also solves Problem 13.

2) Suppose I − z−1F⋆ has unit circle zeros, and in-

troduce a family of outer-coinner factorizations [I −

z−1F⋆, ǫI] = F
(ǫ)
⋆o F

(ǫ)
⋆i and a family of feedback filters

F
(ǫ)
opt(z) := I−F

(ǫ)
⋆o (z)[F

(ǫ)
⋆o (∞)]−1. Then, zF

(ǫ)
opt, (I−

z−1zF
(ǫ)
opt)

−1 ∈ RHq×q
∞ for all ǫ > 0. Furthermore,

we have ‖zF
(ǫ)
opt‖

2
2 < γ for all ǫ <

√

γ − ‖F⋆‖22, and

lim
ǫց0

‖R(I − z−1zF
(ǫ)
opt)

−1‖22

γ − ‖zF
(ǫ)
opt‖

2
2

=
‖R(I − z−1F⋆)

−1‖22
γ − ‖F⋆‖22

.

Proof: We only sketch the proof of part 1). Similarly to

the proof of Theorem 6, one uses the solution F⋆ to Problem

8 in order to construct a solution Fopt to Problem 13 such that

‖R(I − Fopt)‖
2
2 ≤ ‖R(I − z−1F⋆)‖

2
2 and ‖Fopt‖

2
2 = ‖F⋆‖

2
2.

But then does Fopt also solve Problem 8. The uniqueness

result in Proposition 12 now shows Fopt = F⋆.

We close this section with the observation that as soon

as Problem 13 has a solution, this solution must be F⋆.

The approximation scheme proposed in the second part of

Theorem 14 only becomes necessary if an optimal solution

does not exist. It then allows to obtain arbitrarily close-to-

optimal suboptimal solutions. The proof will be skipped.

Proposition 15. Let F⋆ denote the solution to Problem 8.

Then, F⋆ is the unique solution to Problem 13 if and only if

I − z−1F⋆ has no unit circle zeros. Otherwise, there is no

solution.

VI. NUMERICAL EXAMPLES

In this section, we illustrate possible performance gains of

our new feedback filters derived in Section VI.

First example: We consider an example from [7,

Sec. VI]. The analysis filter bank consists of a low-

pass, a band-pass, and a high-pass Butterworth filter,

E(z) = [ 0.4208+0.4208z
−0.1584+z , −0.2452+0.2452z2

0.5095+z2 , 0.4208−0.4208z
−0.1584−z ]T .

Algorithm 2 in [8] gives us the optimal synthesis filter bank

for the decision delay L = 2, R(z) ≈ [p1(z)
q(z) ,

p2(z)
q(z) ,

p1(−z)
q(z) ],

where p1(z) := −0.005 − 0.006z + 0.189z2 + 0.219z3 +
0.453z4 +0.476z5 +0.096z6, p2(z) := −0.003+0.115z2 +
0.070z4−0.329z6, and q(z) := 0.028z2+0.396z4+z6. The

quantizer used is vq = argminṽq∈{−1,0,1}3×1 ‖ṽq − v‖2F .

We compare the following feedback filter: direct quantiza-

tion, i.e., F (z) = 0, the optimal order 45 FIR feedback filter
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Figure 4: Simulation results (first example)
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Figure 5: Simulation results (second example)

from [1],3 and the solution to Problem 13 for various assumed

quantizer SNRs γ. Furthermore, we compare with the moving

horizon subband quantizer from [2] (with horizon one). Per

simulation, we quantized 1000 Gaussian random variables

[x1, . . . , x1000] with zero mean and unit variance. The data

vector was extended by L zeros in order to comprehend the

decision delay. Our error measure was the mean square error

MSE = 1
1000

∑1000
k=1 |xq,k+L − xk|

2, where the xq,k denote

the outputs of the subband quantizer (cf. Fig. 3 and remember

that p = 1). We averaged our results over 1000 runs.

The simulation results are shown in Fig. 4. Our proposed

feedback filter outperforms both direct quantization and the

FIR filter from [1] (for γ ≈ 5), but not the (more complex)

moving horizon subband quantizer from [2], which still

achieves an about 21% better performance. We have also

plotted the MSEs of the optimal FIR filters from [1] as a

function of the filter order in Fig. 6 because we wanted to

show that the improved performance of our proposed filter is

not a result of an insufficient FIR filter order but is due to the

3We point out that the optimal FIR filter in [1] usually is not unique
because the linear system [1, (21)] often is rank deficient. This is also what
Prop. 4 suggests. We can prove that the least-squares solution to [1, (21)]
always gives the optimal FIR filter (regarding the standard criterion) with the
smallest norm, and that this filter results in a stable feedback loop. Therefore,
we have always used the pseudoinverse to get a least squares solution to
[1, (21)] in our simulations. Unfortunately, this approach turned out to be
numerically delicate. We often observed unstable feedback loops although
in theory they should always be stable. Increasing filter orders seemed to
improve the numerical properties of [1, (21)].
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Figure 6: FIR filter performance. The “x” mark unstable

feedback loops, while the “+” mark stable feedback loops.

extended model. The results are shown in Fig. 6. Note that the

very high FIR filter order of 45 was indeed necessary in order

to obtain satisfying performance. We have also marked the

FIR filters in Fig. 6 which resulted in an unstable feedback

loop. We again point out that the unstable feedback loops

result from numerical inaccuracies (cf. Footnote 3).

Second example: Our second example is the random FIR

synthesis filter bank E(z) = [0.513 + 0.694z−1, 0.742 +
0.635z−1]T . The optimal synthesis filter bank for the de-

cision delay L = 4 is R(z) ≈ 1
0.794z3+z4 [0.492 + 0.275z −

0.218z2 + 0.173z3 − 0.430z4, 0.712 + 0.044z − 0.035z2 +
0.028z3 + 0.297z4] [8, Alg. 2]. The other parameters are

chosen as in the previous example.

The simulation results are shown in Fig. 5. Our proposed

filter again outperforms both direct quantization and the

optimal order 15 FIR filter from [1] (for γ ≈ 3). Moreover,

this time our proposed filter even achieves the performance of

the more complex moving horizon subband quantizer (with

horizon one) from [2]. It is interesting to note that the FIR

filter performs even worse than direct quantization. Again,

this is not due to an insufficient FIR filter order, and some

of the FIR filters have stability issues (cf. Fig 6).

VII. CONCLUSION

We have proposed a new design method for feedback filters

in oversampled noise-shaping subband quantizers. Our new

method relies on an extended model of the quantizer, which

allows us to take both the influence of the feedback filter on

the quantization noise and the influence of the input data into

account. We were able to show that in contrast to the standard

model the optimal solutions regarding the extended model do

not suffer from non-uniqueness (Props. 4, 7, 12, 15). A sim-

ple method to compute the optimal feedback filter regarding

the extended model was given in Prop. 12. Furthermore, it

was shown in Prop. 15 that our design method guarantees

stability of the feedback loop. Numerical examples showed

(sometimes significantly) increased performance compared to

the FIR feedback filters for the standard model.

APPENDIX

Lemma 16. There exists CR > 0 such that ‖R(I −
z−1F )‖22 ≥ CR for all F ∈ RHq×q

∞ .

Proof: Let us write R(z) =
∑∞

k=0 Rkz
−k and

(z−1RF )(z) =
∑∞

k=0 Xkz
−k, and denote by κ the smallest

k such that Rk 6= 0. Note that Rk = Xk = 0 for all

k < κ and Xκ = 0. Then, by Parsevals relation, we

have ‖R(I − z−1F )‖22 =
∑∞

k=κ ‖Rκ − Xk‖
2
F = ‖Rκ‖

2
F +

∑∞
k=κ+1 ‖Rκ+k − Xk‖

2
F ≥ ‖Rκ‖

2
F > 0. Since ‖Rκ‖

2
F is

independent of F , the lemma follows.

Lemma 17. Suppose M ∈ RHm×l
∞ . Then, ‖M(∞)−M‖22 =

‖M‖22 − ‖M(∞)‖2F .

Proof: Let us write M(z) =
∑∞

k=0 Mkz
−k. Then,

‖M‖22 =
∑∞

k=0 ‖Mk‖
2
F and the lemma follows from the

observation that M(∞) = limz→∞ M(z) = M0.

Lemma 18. Let M ∈ RHm×l
∞ have full row normal rank,

and no unit circle zeros. Suppose M(∞) = I , and let

M = MoMi denote an outer-coinner factorization. Then,

M−1
o (∞) = UH−1, where H−1 = H−∗ has spectral radius

at most one and U is an unitary matrix.

Proof: The outer factor Mo also is a spectral factor

of MM∼, i.e., MM∼ = MoMiM
∼
i M∼

o = MoM
∼
o and

Mo,M
−1
o ∈ RHm×m

∞ . But these are unique up to multi-

plication with a unitary matrix from the right [9, Th. 2].

Thus, using the special outer factor given in [4, Th. 2]

(subject to transposition because we need a outer-coinner

and not a inner-outer factorization), we can write Mo(z) =
[I − C(zI − A)−1F ∗]H∗U for some unitary U , where

M(z) = D + C(zI − A)−1B denotes a spate-space real-

ization. The lemma now follows from the construction of H .

We have H = (DD∗ + B∗XB)1/2 = (I + CXC∗)1/2 ≥ I
for some X = X∗ ≥ 0.

Lemma 19. Suppose X = X∗ ∈ C
q×q has a spectral radius

at most one, and B ∈ C
q×q . Then, ‖BX‖2F ≤ ‖B‖2F .

Proof: We skip the proof due to space limitations.
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