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A structure preserving Sort-Jacobi algorithm for computing eigenvalues or singular val-
ues is presented. It applies to an arbitrary semisimple Lie algebra on its (−1)-eigenspace of
the Cartan involution. Local quadratic convergence for arbitrary cyclic schemes is shown
for the regular case. The proposed method is independent of the representation of the
underlying Lie algebra and generalizes well-known normal form problems such as e.g. the
symmetric, Hermitian, skew-symmetric, symmetric and skew-symmetric R-Hamiltonian
eigenvalue problem and the singular value decomposition.



A Sort-Jacobi Algorithm for Semisimple Lie Algebras
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1. Introduction

Since its introduction in 1846, [24], variants of the Jacobi algorithm have been applied
to many structured eigenvalue problems (EVP), including e.g. the real skew-symmetric
eigenvalue decomposition (EVD), [?, ?, ?], computations of the singular value decomposi-
tion (SVD) [28], non-symmetric EVPs [4,8,34,37], complex symmetric EVPs [9], and the
computation of eigenvalues of normal matrices [13]. For extensions to different types of
generalized EVPs, we refer to [5,38]. For applications of Jacobi–type methods to problems
in systems theory, see [18,?, ?]. We also refer to [3] for an extensive list of structured
eigenvalue problems and relevant literature.

In contrast to earlier work, we extend the classical concept of a Jacobi-algorithm towards
a unified Lie algebraic approach to structured EVDs, where structure of a matrix is defined
by being an element of a Lie algebra (or of a suitably defined sub-structure).

To the best of the author’s knowledge, Wildberger [39] has been the first who pro-
posed a generalization of the non-cyclic classical Jacobi algorithm on arbitrary compact
Lie algebras and succeeded in proving global convergence of the algorithm. The well–
known classification of compact Lie algebras shows that this approach essentially includes
structure preserving Jacobi-type methods for the real skew-symmetric, the complex skew-
Hermitian, the real skew-symmetric Hamiltonian, the complex skew-Hermitian Hamilto-
nian eigenvalue problem, and some exceptional cases.

Wildberger’s work has been subsequently extended by Kleinsteuber et al. [25], where
local quadratic convergence for general cyclic Jacobi schemes is shown to hold for arbitrary
regular elements in a compact Lie algebra.

Explicitly, our setting here is the following. Let G be a semisimple Lie group and
g = k ⊕ p be the Cartan decomposition of its Lie algebra. We propose a Jacobi–type
method that ”diagonalizes” an element S ∈ p by conjugation with some k ∈ K, where
K ⊂ G is the Lie subgroup corresponding to k. To see that the analysis of Jacobi-type
methods on compact Lie algebras k appears as a special case of our result, note that
kC := k⊕ ik is the Cartan decomposition of kC, the complexification of k.

A characteristic feature of all known Jacobi-type methods is that they act to minimize
the distance to diagonality while preserving the eigenvalues. Conventional Jacobi algo-
rithms, like cyclic Jacobi algorithms for symmetric matrices, Kogbetliantz’s method for
the SVD, cf. [28], methods for the skew-symmetric EVD, cf. [15], and for the Hamiltonian
EVD, cf. [29], as well as recent methods for the perplectic EVD, cf. [30], are all based
on reducing the sum of squares of off-diagonal entries (the so-called off-norm). It is well
known to the numerical linear algebra community, cf. [23], [31], that sorting the diagonal
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elements after each step within the algorithm speeds up the convergence, yet the off-norm
does not take this sorting into account. Moreover, the off-norm function that is to be
minimized has a complicated critical point structure and several global minima, what
makes the analysis of such non-sorting Jacobi methods considerably more complicated if
clustered eigenvalues occur.

Both difficulties might be remedied by a better choice of cost function that measures
the distance to diagonality. In fact, Brockett’s trace function turns out to be a more
appropriate distance measure than the off-norm function. In [2], R.W. Brockett showed
that the gradient flow of the trace function can be used to diagonalize a symmetric matrix
and simultaneously sort the eigenvalues. This trace function has also been considered
by e.g. M.T. Chu, [6] associated with gradient methods for matrix factorizations, and
subsequently by many others. For a systematic critical point analysis of the trace function
in a Lie group setting, we refer to [7]. See also [35] for more recent results on this topic
in the framework of reductive Lie groups.

In this paper we propose and analyze the Sort-Jacobi algorithm for a large class of
structured matrices that, besides the compact Lie algebra cases, essentially includes the
normal form problems quoted in Table 1, cf. [27] for the defining representations of the
corresponding Lie algebras. These cases arise from the well-known classification of simple
Lie algebras. Cyclic Jacobi-type methods for some of these cases have been discussed
earlier, e.g. for the symmetric/Hermitian EVD see [11,23], for the skew-symmetric EVD
see [15,23,33], for the real and complex SVD see [23,28], for the real symmetric and
skew-symmetric EVD see [10], for the Hermitian R-Hamiltonian EVD see [4], and for
the perplectic EVD see [30]. Note that the methods proposed in this paper exclusively
use one-parameter transformations and therefore slightly differ from the algorithms in
[4,10,15,23,33], where block Jacobi methods are used, i.e. multiparameter transformations
that annihilate more than one pair of off-diagonal elements at the same time.

The local convergence behavior of the Sort-Jacobi algorithm for the above mentioned
classes is examined and local quadratic convergence is proved for the regular case, in-
dependent of any cyclic scheme. A local convergence analysis for the irregular case, i.e.
where eigenvalues/singular values occur in clusters is more subtle and will be the matter
of a subsequent publication.

This paper is organized as follows. In Section 2 we discuss a Lie algebraic version of the
aforementioned trace function and propose the Sort-Jacobi algorithm in full generality.
Local quadratic convergence is proven in Section 3 for the regular case. The Sort-Jacobi
algorithm is exemplified for the case of the exceptional Lie algebra of derivations of the
complex octonians in Section 4.

2. The Linear Trace Function and the Cyclic Sort-Jacobi Algorithm

Throughout this paper, g denotes a real semisimple Lie algebra of matrices. In the case
of complex semisimple Lie algebras, we consider their realification. Let g = k⊕ p be the
Cartan decomposition of g into (+1)- and (−1)-eigenspace of the corresponding Cartan
involution θ. Denote by GL(g) the general linear group of g, let End(g) denote the set
of endomorphisms of g and let ad(g) ⊂ End(g) be the adjoint representation of g. Let
Intg(k) be the analytic subgroup of GL(g) with Lie algebra adg(k) ⊂ ad(g).
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g k EVD/SVD
sl(n, R) so(n, R) symmetric EVD
sl(n, C) su(n) Hermitian EVD
so(n, C) so(n, R) skew-symmetric EVD
su∗(2n) sp(n) Hermitian Quaternion EVD, i.e. of[

S Ψ∗

Ψ S

]
, S,Ψ ∈ Cn×n, trS = 0, S = S∗,Ψ = −Ψ>

so(p, q) so(p, R)⊕ so(q, R) real SVD, skew-sym. persymmetric EVD
su(p, q) s(u(p)⊕ u(q)) complex SVD, Hermitian R-Hamiltonian EVD
so∗(2n) u(n) skew-Takagi factorization, i.e.

SVD of B = −B> ∈ Cn×n

sp(n, R) u(n) symmetric Hamiltonian EVD,
Takagi factorization

sp(n, C) sp(n) Hermitian C-Hamiltonian EVD
sp(p, q), p ≥ q sp(p)⊕ sp(q) (p, q)-Hamiltonian SVD, i.e.

SVD of
[
B −F
F B

]
, B, F ∈ Cp×q

g2 su(2)⊕ su(2) cf. Section 4

Table 1
Cartan-decompositions of simple Lie algebras and corresponding matrix factorizations.

Following the idea in [22] and [25], the Jacobi algorithm is formulated as an optimization
task on the Intg(k)-adjoint orbit of an element S ∈ p, i.e.

O(S) = {ϕ(S) | ϕ ∈ Intg(k)}. (2.1)

Note, that O(S) ⊂ p. In a next step, the cost function is concretized to a Lie algebraic
version of the linear trace function considered by Brockett [2]. The resulting algorithm is
the Sort-Jacobi Algorithm.

2.1. Givens Rotations
The aim of this subsection is to find a suitable Lie algebraic generalization of Givens

rotations, cf. [14], 5.1.8. This requires the concept of the restricted root space decompo-
sition of g.

Let a ⊂ p be a maximal Abelian subalgebra. We denote by a∗ the dual space of a. For
λ ∈ a∗, let

gλ := {X ∈ g | adHX = λ(H)X for all H ∈ a}. (2.2)

If λ 6= 0 and gλ 6= 0, the vector space gλ is called restricted-root space and λ is called
restricted root. The set of restricted roots is denoted by Σ. A vector X ∈ gλ is called a
restricted-root vector. The following result will proof to be useful. Note, that

Bθ : g× g → R, (X, Y ) 7→ −κ(X, θY ), (2.3)

where κ is the Killing form on g, admits a scalar product. Moreover, Bθ

∣∣
k×k

= −κ
∣∣
k×k

and

Bθ

∣∣
p×p

= κ
∣∣
p×p

.
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Theorem 2.1 (Restricted-root space decomposition). The real semisimple Lie algebra g

decomposes orthogonally with respect to Bθ into

g = g0 ⊕
∑
λ∈Σ

gλ (2.4)

and g0 = zk(a) ⊕ a, where zk(a) := {X ∈ k | [X,H] = 0 for all H ∈ a} denotes the
centralizer of a in k. Furthermore, for λ, µ ∈ Σ ∪ {0}, we have

(a) [gλ, gµ] ⊆

{
gλ+µ if λ+ µ ∈ Σ ∪ {0}
0 else.

(b) θ(gλ) = g−λ, and hence λ ∈ Σ ⇐⇒ −λ ∈ Σ.

Proof. Cf. [27], Ch. VI, Prop. 6.40. Similar to the above, it is possible to decompose
complex semisimple Lie algebras into a maximal Abelian subalgebra and the so called
root spaces (in contrast to restricted -root spaces), cf. [27], Sec. 1, Ch. II. In this context,
the term Cartan subalgebra arises. Note, that although a Cartan subalgebra is related
to the maximal Abelian subspace a ⊂ p, they do not coincide. A further investigation is
not relevant for our purposes and we refer to the literature. The word restricted roots
is due to the fact, that they are the nonzero restrictions to a of the (ordinary) roots
of the complexification gC. Cf. [27], Ch. VI, Prop. 6.47 and the subsequent remark.
Note that the restricted-root space decomposition can be equivalently computed via the
eigenspaces of a single operator adH for a generic element H ∈ a with pairwise distinct
roots. Such elements are dense in a since they are obtained by omitting from a the finitely
many hyperplanes {H ∈ a | λi(H)− λj(H) = 0}, λi 6= λj.

Let λ be a restricted root and denote by Hλ ∈ a its dual, i.e.

λ(H) = κ(Hλ, H) for all H ∈ a. (2.5)

By [27], Ch. VI, Prop. 6.52, every nonzero Eλ ∈ gλ can be normalized such that

Tλ := [Eλ, θ(Eλ)] = − 2

|λ|2
Hλ. (2.6)

Furthermore, let

Ωλ := Eλ + θ(Eλ) and Ωλ := Eλ − θ(Eλ). (2.7)

Note that Ωλ ∈ k, Ωλ ∈ p, ‖Ωλ‖2 = ‖Ωλ‖2 = 2
|λ|2 and λ(Tλ) = −2. We call exp(tΩλ) a

Givens-rotation. The following example justifies this definition that generalizes (5.1.7) in
[14].

Example 2.2. Consider the case where g := sl(n,R) and the Cartan involution yields the
decomposition into skew symmetric and symmetric matrices with the diagonal matrices
as the maximal Abelian subalgebra. Denote by Xij the (i, j)-entry of the matrix X. Then
the roots are given by

λij(H) = Hii −Hjj, i 6= j.
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Recall that the Killing form κ is given by κ(X, Y ) = 2ntr(XY ). Therefore,

Hλij
=

1

2n
(eie

>
i − eje

>
j )

where ei denotes the i-th standard basis vector and

λij(Hλij
) = |λij|2 =

1

n
.

Hence Tλij
= −eie

>
i + eje

>
j and Eλij

= ±eie
>
j . Depending on the choice of Eλij

, either
Ωλij

= eie
>
j − eje

>
i or Ωλij

= eje
>
i − eie

>
j .

2.2. Cyclic Jacobi on O(S)
We introduce a notion of positivity on a∗\{0}. A subset P of a∗\{0} consists of positive

elements if for any l ∈ a∗\{0} exactly one of l and −l is in P and the sum and any positive
multiple of elements in P is again in P . We denote the set of positive restricted roots by
Σ+. Theorem 2.1 assures that λ ∈ Σ if and only if −λ ∈ Σ and, moreover, that Σ is finite.
Thus a set of positive roots is obtained by a hyperplane through the origin in a∗ that does
not contain any root and defining all roots on one side to be positive. Hence partitioning
Σ into Σ+ ∪ Σ−, where Σ− := Σ \ Σ+ is the set of negative roots, is not unique. Now let

kλ := {X + θ(X) | X ∈ gλ} (2.8)

denote the orthogonal projection of gλ onto k. If {E(1), . . . , E(l)} is a basis of gλ with all
E(i) normalized as in (2.6), then

Bλ := {E(i) + θ(E(i)) | i = 1, . . . , l}

is an orthogonal basis of kλ, normalized in terms of Eq. (2.7). The union of these basis
over all λ ∈ Σ+ yields an orthogonal basis of∑

λ∈Σ+

kλ = g⊥0 ∩ k (2.9)

and will further be denoted by

B := {Ω1, . . . ,Ωm} :=
⋃

λ∈Σ+

Bλ. (2.10)

For Y ∈ g, we denote the adjoint action of exp(Y ) by Adexp Y . Note, that

Adexp Y (X) = exp(adY )(X) = exp(Y )X exp(−Y ) for all X ∈ g. (2.11)

We are now ready to explain a Jacobi Sweep for maximizing a function f on the Intg(k)
orbit of S ∈ p. Note, that a minimization task is analogously defined.

Cyclic Jacobi Sweep. Let f be some real valued function on O(S). Define for
Ω ∈ B the search directions

rΩ : R×O(S) −→ O(S), (t,X) 7−→ Adexp tΩX, (2.12)

and let the step-size t
(i)
∗ (X) be defined as the local maximum of f ◦rΩi

(X, t) with smallest

absolute value. To achieve uniqueness, we choose t
(i)
∗ (X) to be nonnegative if t

(i)
∗ (X) as

well as −t(i)∗ (X) fulfill this condition. Note, that t
(i)
∗ (X) is well defined since f ◦ rΩ(X, t)

is periodic. This follows directly from the following Lemma.
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Lemma 2.3. The one–parameter subgroups ϕλ : R → Intg(k), t 7→ Adexp tΩλ
are isomor-

phic to the circle S1 := {eit | t ∈ R}.

Proof. Let u = k⊕ ip be the compact real form of the complexification of g and denote
U := Int(u) the inner automorphims of u. Correspondingly,

s := 〈Ωλ, iΩλ, iTλ〉LA ⊂ u

is the compact real form of the complexification of the Lie algebra 〈Ωλ,Ωλ, Tλ〉LA. Consider
now the closure of ϕλ(R) in Int(g). Since Intg(k) is compact, ϕλ(R) ⊂ Intg(k). Moreover,
Intg(k) is a closed subset of U and hence ϕλ(R) is closed in Intg(k) if and only if it is
closed in U . It is easily seen, that the Lie algebra s is isomorphic to su(2) and hence so
is ad(s). The analytic subgroup S ⊂ U with Lie algebra ad(s) is closed in U , because U
is compact and ad(s) is semisimple, cf. [32], Corollary 2. Therefore the closure ϕλ(R) is
contained in S. Since every compact Abelian analytic Lie group is a torus, cf. [27], Ch.
I.12, Corollary 1.103,

ϕλ(R) = S1 × · · · × S1.

On the other hand, for dimensional reasons, the only torus contained in S is S1, so
ϕλ(R) = S1. Therefore

ϕλ(R) = ϕλ(R),

since both Lie groups are connected and have the same Lie algebra and are therefore
identical, cf. [17], Ch. II, Thm. 2.1. Thus ϕλ(R) = S1. �

A sweep on O(S) is the map

s : O(S) −→ O(S), (2.13)

explicitly given as follows. Set X
(0)
k := X ∈ O(S).

X
(1)
k := rΩ1

(
t(1)
∗

(
X

(0)
k

)
, X

(0)
k

)
X

(2)
k := rΩ2

(
t(2)
∗

(
X

(1)
k

)
, X

(1)
k

)
X

(3)
k := rΩ3

(
t(3)
∗

(
X

(2)
k

)
, X

(2)
k

)
...

X
(m)
k := rΩm

(
t(m)
∗

(
X

(m−1)
k

)
, X

(m−1)
k

)
,

and set s(X) := X
(m)
k . The Jacobi algorithm consists of iterating sweeps:

1. Assume that we already have X0, X1, . . . , Xk ∈ O(S) for some k ∈ N.
2. Put Xk+1 := s(Xk) and continue with the next sweep.

Note, that by construction, a Jacobi sweep does not work in directions Ω ∈ zk(a).
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Although the cost function has not been specified yet, some remarks for the comparison
with the Jacobi algorithm for diagonalizing symmetric matrices are in order. If the above
algorithm is intended for minimizing the off-norm function

off(X) = ‖X −X0‖2, (2.14)

where X0 denotes the orthogonal projection of X onto a, then, following example 2.2,
it generalizes the well known cyclic Jacobi algorithm for symmetric EVP. In that case,
t
(i)
∗ (X) is the smallest angle such that the corresponding Givens rotation diagonalizes the

corresponding (2× 2)-subproblem.
If the above algorithm is intended for maximizing the trace function, which is defined

below, it generalizes the cyclic Sort-Jacobi method for the symmetric EVP, cf. [23] and
[31].

2.3. The trace function
Let N ∈ a with λ(N) < 0 for all λ ∈ Σ+. Our goal now is to minimize the distance

function

O(S) −→ R, X −→ Bθ(X −N,X −N). (2.15)

This simplifies to

Bθ(X −N,X −N) = κ(X −N,X −N) = κ(X,X) + κ(N,N)− 2κ(X,N)

= κ(S, S) + κ(N,N)− 2κ(X,N)

because of Bθ|p = κ|p and the Ad-invariance of κ. Minimizing the function defined in Eq.
(2.15) is therefore equivalent to maximizing the following function.

Definition 2.4. Let S ∈ p and let κ denote the Killing form. The trace function is given
by

f : O(S) −→ R, X 7−→ κ(X,N). (2.16)

Proposition 2.5. (a) X is a critical point of the trace function (2.16) if and only if
X ∈ a. In particular, there are only finitely many critical points.

(b) The trace function (2.16) has exactly one maximum, say Z, and one minimum, say

Z̃, and λ(Z) ≤ 0, λ(Z̃) ≥ 0 for all λ ∈ Σ+.

Proof. (a) To compute the critical points, let Ω ∈ k and denote by ξ = adΩX an
arbitrary tangent vector in TXO(S). The ad-invariance of κ yields

Df(X)ξ = κ(ξ,N) = κ(adΩX,N) = κ(Ω, adXN).

The Killing form is negative definite on k and hence

Df(X) = 0 ⇐⇒ [X,N ] = 0.
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Since N is a regular element, it follows X ∈ a, cf. [27], Sec. VI., Lemma 6.50. Now
|O(S) ∩ a| is finite, cf. [17], Ch. VII, Thm. 2.12, and hence f has only finitely many
critical points.

(b) We compute the Hessian Hf at the critical points X. Again, let ξ = adΩX be
tangent to O(S) at X. Decompose Ω ∈ k according to Eq. (2.10) into

Ω = Ω0 +
m∑

i=1

diΩi,

where Ωi ∈ B, Ω0 ∈ zk(a) and denote by λi the positive restricted root with Ωi ∈ kλi
.

Then

Hf (X)(ξ, ξ) = d2

dt2
|t=0κ(Adexp(tΩ)X,N)

= κ(ad2
ΩX,N) = −κ(adΩX, adΩN)

= −
m∑

i=1

λi(X) λi(N) κ(diΩi, diΩi)

= −
m∑

i=1

λi(X) λi(N)
2d2

i

|λi|2
.

(2.17)

By assumption, λ(N) < 0 for all λ ∈ Σ+, so a necessary condition for a local maximum
Z is that λ(Z) ≤ 0 for all λ ∈ Σ+. The orbit O(S) intersects the closure of the Weyl
chamber

C− := {H ∈ a | λ(H) < 0 for all λ ∈ Σ+}

exactly once, cf. [17], Ch. VII, Thm. 2.12 and [26]. Hence Z is the only local maximum
of the function and by compactness of O(S) it is the unique global maximum. A similar
argument proves the existence of a unique minimum, having all positive roots greater or
equal to zero. �

2.4. Explicit step-size selection
We restrict the trace function (2.16) to the orbits of one-parameter subgroups in order

to explicitly compute the step size t∗. Let Ωλ, Ωλ and Tλ as in Eq. (2.7), X ∈ p. Let

p: g −→ g0, p(X) = X0 (2.18)

denote the orthogonal projection with respect to Bθ. Similar to Eq. (2.8), define

pλ := {X − θ(X) | X ∈ gλ} (2.19)

as the orthogonal projection of gλ onto p.

Theorem 2.6. Let

cλ :=
κ(X,Ωλ)

κ(Ωλ,Ωλ)
(2.20)
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be the Ωλ-coefficient of X. Then

p (Adexp tΩλ
X) = X0 + g(t)Tλ,

where X0 := p(X) and g is given by

g : R −→ R, t 7−→ 1
2
λ(X0)

(
1− cos(2t)

)
− cλ sin(2t). (2.21)

The proof of Theorem 2.6 is based on the following two lemmas.

Lemma 2.7. The following identities hold for n ∈ N0.

(a) ad2n+1
Ωλ

Ωλ = (−1)n22n+1(−Tλ),

(b) ad2n
Ωλ
Tλ = (−1)n22nTλ.

Proof. (a) The first formula is shown by induction. For n = 0, we compute

[Ωλ,Ωλ] = [Eλ, θ(Eλ)]− [θ(Eλ), Eλ] = 2[Eλ, θ(Eλ)] = 2Tλ.

Assume now that it is true for n ≥ 0. Then

ad2n+3
Ωλ

Ωλ = −2ad2n+2
Ωλ

Tλ = −4ad2n+1
Ωλ

Ωλ = (−1)n+122n+3(−Tλ),

and the formula is shown for n+ 1.
(b) The second identity follows from (a) by a straightforward calculation. It is clearly

true for n = 0. Now let n ≥ 1. Then

ad2n
Ωλ
Tλ = 2ad2n−1

Ωλ
Ωλ = 2(−1)n−122n−1(−Tλ) = (−1)n22nTλ. �

Lemma 2.8. Let λ, µ be positive restricted roots with λ 6= µ. Then p(adk
Ωµ

Ωλ) = 0 for all
k ∈ N.

Proof. The proof is done by induction, separately for the even and the odd case. The
assumption is clearly true for n = 0 and n = 1 by Theorem 2.1. Now let H ∈ a be
arbitrary. Then, by the induction hypothesis,

κ(adk
Ωµ

Ωλ, H) = µ(H)κ(adk−1
Ωµ

Ωλ,Ωµ) = µ(H)κ(adk−2
Ωµ

Ωλ, [Ωµ,Ωµ])

= µ(H)κ(adk−2
Ωµ

Ωλ, 2Tµ) = 0,

since Tµ ∈ a. This completes the proof. �
Proof of Theorem 2.6. For all t ∈ R we have the identity

Adexp tΩλ
X = exp(adtΩλ

)X =
∞∑

k=0

tk

k!
adk

Ωλ
X. (2.22)

It is shown that, if we decompose X ∈ p into its pλ-components then the only summands
in Eq. (2.22) that affect the projection onto a are X0 and cλΩλ. First, assume that

Ω
′
λ,Ωλ ∈ pλ and κ(Ωλ,Ω

′
λ) = 0. Then we have for all H ∈ a that

0 = λ(H)κ(Ωλ,Ω
′
λ) = κ(Ωλ, [H,Ω

′
λ]) = κ([Ω′

λ,Ωλ], H)
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and hence [Ω′
λ,Ωλ] ∈ a⊥. Therefore, Theorem 2.1 implies that [Ω′

λ,Ωλ] ∈ p2λ if 2λ ∈ Σ
and is zero otherwise. We can apply Lemmas 2.7 and 2.8 and compute

p (Adexp tΩλ
X) = p

(
∞∑

k=0

tk

k!
adk

Ωλ
X

)
= p

(
∞∑

k=0

tk

k!
adk

Ωλ
(X0 + cλΩλ)

)
=

= X0 + p

(
∞∑

k=1

tk

k!
adk−1

Ωλ
[Ωλ, X0]

)
+ cλp

(
∞∑

k=1

tk

k!
adk

Ωλ
Ωλ

)
=

= X0 − λ(X0)p

(
∞∑

k=1

tk

k!
adk−1

Ωλ
Ωλ

)
+ cλp

(
∞∑

k=1

tk

k!
adk

Ωλ
Ωλ

)
=

= X0 − λ(X0)
∞∑

k=0

t2k+2

(2k + 2)!
ad2k+1

Ωλ
Ωλ + cλ

∞∑
k=0

t2k+1

(2k + 1)!
ad2k+1

Ωλ
Ωλ.

Again by Lemma 2.7, the last sum simplifies to

∞∑
k=0

t2k+1

(2k + 1)!
ad2k+1

Ωλ
Ωλ = −

∞∑
k=0

t2k+1

(2k + 1)!
(−1)k22k+1Tλ

= −
∞∑

k=0

(−1)k (2t)2k+1

(2k + 1)!
Tλ = − sin(2t)Tλ.

Furthermore,

∞∑
k=0

t2k+2

(2k + 2)!
ad2k+1

Ωλ
Ωλ = −

∞∑
k=0

t2k+2

(2k + 2)!
(−1)k22k+1Tλ.

Now we have

d

dt

∞∑
k=0

t2k+2

(2k + 2)!
(−1)k22k+1 =

∞∑
k=0

(−1)k (2t)2k+1

(2k + 1)!
= sin(2t),

and
∞∑

k=0

t2k+2

(2k + 2)!
(−1)k22k+1 = 1

2
(1− cos(2t)),

and therefore

p (Adexp tΩλ
X) = X0 + 1

2
λ(X0)(1− cos(2t))Tλ − cλ sin(2t)Tλ. �

In the next lemma we analyze the variation of the a-component of Adexp tΩλ
in more

precise terms by discussing the function (2.21).
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Lemma 2.9. The function g(t) = 1
2
λ(X0)(1 − cos(2t)) − cλ sin(2t) is π-periodic and is

either constant or possesses on (−π
2
, π

2
] exactly one minimum tmin and one maximum tmax.

In this case

sin 2tmin =
2cλ√

4c2λ + λ(X0)2
, cos 2tmin =

λ(X0)√
4c2λ + λ(X0)2

,

sin 2tmax = − sin 2tmin, cos 2tmax = − cos 2tmin,

(2.23)

and g(tmin) = 1
2
λ(X0)− 1

2

√
4c2λ + λ(X0)2 and g(tmax) = 1

2
λ(X0) + 1

2

√
4c2λ + λ(X0)2.

Proof. The first assertion is trivial and we only need to prove Eqs. (2.23). Substituting

v := sin 2t and u := cos 2t into the function g(t) = 1
2
λ(X0)

(
1− cos(2t)

)
− cλ sin(2t), leads

to the following optimization task.

Minimize/Maximize 1
2
λ(X0)(1− u)− cλv

subject to u2 + v2 = 1.
(2.24)

We use the Lagrangian multiplier method to find the solutions. Let

Lm(u, v) := 1
2
λ(X0)(1− u)− cλv +m(u2 + v2 − 1)

be the Lagrangian function with multiplier m. By assumption, g(t) is not constant and
therefore the system of equations

DuLm(u, v) = −1
2
λ(X0) + 2mu = 0

DvLm(u, v) = −cλ + 2mv = 0

u2 + v2 = 1

has exactly the two solutions

(u1, v1,m1) =

(
λ(X0)√

4c2λ + λ(X0)2
,

2cλ√
4c2λ + λ(X0)2

, 1
2

√
4c2λ + λ(X0)2

)
and

(u2, v2,m2) =

(
− λ(X0)√

4c2λ + λ(X0)2
,− 2cλ√

4c2λ + λ(X0)2
,−1

2

√
4c2λ + λ(X0)2

)
.

(2.25)

An inspection of the Hessian of Lmi
(ui, vi) for i = 1, 2 and noting that (u1, v1) = −(u2, v2)

completes the proof of the first assumption. The last assertion is proven by a straightfor-
ward computation. �

The next theorem provides explicit formulas for the sine and cosine of the step-size
selections. It allows the direct implementation of the sorting Givens-rotations and gener-
alizes Prop. 6.1.1 in [23]. Note, that in contrast to the restrictions on the rotation angles
used for conventional (non-sorting) Jacobi-methods, cf. [11] for details, the whole interval
(−π

2
, π

2
] is considered for rotation angles and the resulting rotation sorts the entries on

the diagonal.
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Theorem 2.10. Let f be the trace function (2.16) and let g(t) as in Eq. (2.21). Then
the following holds.

(a) f (Adexp tΩλ
X) = κ(X0, N)− 2λ(N)

|λ|2
g(t).

(b) Let t∗ ∈ (−π
2
, π

2
] be the (local) maximum of f (Adexp tΩλ

X). Then

cos 2t∗ = − λ(X0)√
4c2λ + λ(X0)2

, sin 2t∗ = − 2cλ√
4c2λ + λ(X0)2

and hence

cos t∗ =

√
1 + cos 2t∗

2
, sin t∗ =


√

1−cos 2t∗
2

if sin 2t∗ ≥ 0

−
√

1−cos 2t∗
2

if sin 2t∗ < 0.

(c) λ (p (Adexp t∗Ωλ
X)) = −1

2

√
4c2 + λ(X0)2 ≤ 0.

Proof. (a) The orthogonality of p yields

f(X) = κ(X,N) = κ(p(X), N).

Let Tλ = [Eλ, θ(Eλ)] be defined as in Eq. (2.6). By Theorem 2.6,

f (Adexp tΩλ
X) = κ(X0 + g(t)Tλ, N)

= κ(X0, N)− 2λ(N)

|λ|2
g(t),

(2.26)

where g(t) = 1
2
λ(X0)(1−cos(2t))−cλ sin(2t) and the last identity holds since by definition

Tλ = − 2
|λ|2Hλ.

(b) Since by assumption λ(N) < 0, the second statement now follows immediately by
Lemma 2.9 and a standard trigonometric argument.

(c) is an immediate consequence of Lemma 2.9. �
We present a Matlab-like pseudo code of the algorithm. Let B = {Ω1, . . . ,Ωm} be as

in Eq. (2.10) and let λi denote the restricted root with Ωi ∈ kλi
.

Partial Step of Sort-Jacobi Sweep. For a given X ∈ p, the following algorithm
computes (sin t∗, cos t∗, sin 2t∗, cos 2t∗), such that

X̃ := Adexp(t∗Ωi)X

has no Ωi-component and such that λi(X̃0) ≤ 0.

function: (cos t∗, sin t∗, cos 2t∗, sin 2t∗) = givens(X,Ωi)
Set cλ := Ωi-coefficient of X.
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Set X0 := p(X).

Set dis :=
√
λi(X0)2 + 4c2λ.

if dis 6= 0

Set (cos 2t∗, sin 2t∗) := − 1

dis
(λi(X0), 2cλ).

else
Set (cos 2t∗, sin 2t∗) := (1, 0).

endif

Set cos t∗ :=
√

1+cos 2t∗
2

.

if sin 2t∗ ≥ 0

Set sin t∗ =
√

1−cos 2t∗
2

.

else

Set sin t∗ = −
√

1−cos 2t∗
2

.

endif
end givens

The algorithm is designed to compute (cos t∗, sin t∗, cos 2t∗, sin 2t∗) of the step size t∗
since this is natural by the chosen normalization of the sweep directions Ωi, cf. Eq. (2.7).
Nevertheless, depending on the underlying matrix representation, we can not exclude that
the Givens rotations exp tΩi have entries of the type (cos rt, sin rt) with r 6= 1, 2. In this
case it is advisable to use standard trigonometric arguments to compute cos rt∗, sin rt∗
respectively, by means of cos t∗, sin t∗, cos 2t∗, sin 2t∗.

Sort-Jacobi Algorithm. Denote by d(X) := ||X−X0||2 the squared distance from X
to the maximal Abelian subalgebra a. Let B = {Ω1, . . . ,Ωm} be as in Eq. (2.10). Given
a Lie algebra element S ∈ p and a tolerance tol > 0, the following algorithm overwrites S
by ϕ(S) where ϕ ∈ Intg(k) and d(ϕ(S)) ≤ tol.

Set ϕ := identity.
while d(S) > tol

for i = 1 : m
(cos t∗, sin t∗, cos 2t∗, sin 2t∗) := givens(S,Ωi).
ϕ := Adexp t∗Ωi

◦ ϕ.
S := Adexp t∗Ωi

S.
endfor

endwhile

3. Local Quadratic Convergence for the Regular Case

As already mentioned in the introduction, the local convergence analysis of the Jacobi
algorithm that includes the irregular case proves to be tricky and will be treated separately
in a forthcoming paper. For the symmetric EVP, the local convergence proof for special
cyclic sweeps in the irregular case of van Kempen, [36], has been supplemented in [16].
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The local convergence analysis for the regular case that is discussed here is based on the
investigation of a more general setting for Jacobi-type methods on manifolds, cf. [22,26].
We particularize these results to the situation at hand and prove in a first step that,
for regular elements, the step-size selections t

(i)
∗ (X) are smooth in a neighborhood of a

maximum of the trace function.

Lemma 3.1. Let Z ∈ O(S) ∩ a be a critical point of the trace function f with λ(Z) < 0.

Denote by Hf (Z) the Hessian of f at Z. Then the step-size selection t
(i)
∗ (X) is smooth in

a neighborhood of Z if Ωi ∈ kλ. In this case, the derivative is given by

Dt(i)∗ (Z)(ξ) = − Hf (Z)(ξi, ξ)

Hf (Z)(ξi, ξi)
= −di,

where ξ = [Z,Ω] and di = κ(Ω,Ωi)
κ(Ωi,Ωi)

is the Ωi-coefficient of Ω.

Proof. The main argument is the Implicit Function Theorem, cf. [1], Theorem 2.5.7.
Recall rΩi

(2.12) and define the C∞-function

ψ : R×O(S) −→ R, ψ(t,X) :=
d

dt
(f ◦ rΩi

(t,X)) .

By the chain rule we have

ψ(t,X) = Df (rΩi
(t,X)) r′Ωi

(t,X). (3.1)

Since Z is a local maximum of f (rΩi
(t,X)) it follows that

ψ(0, Z) = 0.

Differentiating ψ with respect to the first variable yields

d

dt
ψ(t,X)

∣∣∣
(0,Z)

=
d2

dt2
f ◦ rΩi

(t,X)
∣∣∣
(0,Z)

= Hf (Z)(ξi, ξi), (3.2)

where ξi := [Z,Ωi] = r′Ωi
(0, Z) ∈ TZO(S). By Eq. (2.17),

Hf (Z)(ξi, ξi) = −λ(Z) λ(N)
2

|λ|2
< 0.

Now the Implicit Function Theorem yields that there exists a neighborhood U ′ of Z
and a unique smooth function l : U ′ −→ R such that ψ(l(X), X) = 0 for all X ∈ U ′.

Since ψ(t
(i)
∗ (Z), Z) = 0, it follows from the uniqueness of l that there exists a suitable

neighborhood U ⊂ U ′ of X such that l(X) = t
(i)
∗ (X) for all X ∈ U. Differentiating ψ with

respect to the second variable yields together with Eq. (3.1)

DXψ(t,X)
∣∣∣
t=0,X=Z

ξ = DX(
d

dt
f ◦ rΩi

(t,X))
∣∣∣
t=0,X=Z

ξ

= DX(Df(X)r′Ωi
(0, X))

∣∣∣
X=Z

ξ

= Hf (Z)(ξi, ξ).
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By symmetrizing Eq. (2.17) it is easy to check that

Hf (Z)(ξi, ξ) = −λ(Z)λ(N)
2di

|λ|2
.

Since ψ(t
(i)
∗ (X), X) = 0 for all X ∈ U ,

0 = Dψ(t(i)∗ (X), X)
∣∣∣
X=Z

ξ =
d

dt
ψ(t(i)∗ (Z), Z) ·Dt(i)∗ (Z)ξ +DXψ(t(i)∗ (Z), Z)ξ

and the assertion follows. �
The Sort-Jacobi algorithm converges locally quadratically fast to the maximum Z in

the regular case. It is hence a generalization of the well-known result of Henrici, cf. [21],
who proved local quadratic convergence for one particular type of cyclic sweep for the
Hermitian EVP.

We call S ∈ p regular, if there is no restricted root that annihilates the maximum of
the trace function (2.16).

Theorem 3.2. Denote by f : O(S) −→ R the trace function and let Z be a maximum of
f . If S is a regular element, then the Sort-Jacobi Algorithm is locally quadratic convergent
to Z.

Proof. The proof consists essentially of two parts. In the first part we show that the
Hessian of f in Z is nondegenerate and that for the sweep directions Ωi, the set {[Z,Ωi]}
forms a basis of TZO(S) that is orthogonal with respect to the Hessian of f . In the second
part it is shown that this orthogonality is sufficient for local quadratic convergence. We
only sketch how a Taylor series argument applies and refer to [26] for details.

The Hessian is given by

Hf (Z)(ξ, ξ) = κ(ad2
ΩZ,N) = −κ(adZΩ, adNΩ),

cf. Eq. (2.17). We have [Z,Ωi] = λ(Z)Ωi and since by assumption Z is regular, [Z,Ωi] 6= 0
for all Ωi. Orthogonality with respect to the Hessian is shown straightforwardly, since for
Ωi = Eλ + θ(Eλ) and Ωj = Eµ + θ(Eµ) the orthogonality of the Ωi implies for i 6= j

Hf (Z)(adZΩi, adZΩj) = 1
2

(
λ(Z) µ(N) + λ(N)µ(Z)

)
κ(Ωi,Ωj) = 0.

Now let ξ ∈ TZO(S) denote an arbitrary tangent space element. The derivative of one

Givens-rotation rΩi
(t

(i)
∗ (X), X) in Z is given by

D
(
rΩi

(t(i)∗ (X), X)
∣∣∣
X=Z

)
ξ = DrΩi

(t,X)|
(t,X)=(t

(i)
∗ (Z),Z)

◦D(t(i)∗ (X), id)|X=Zξ

= Dt(i)∗ (Z)(ξ)ξi + ξ

since t
(i)
∗ (Z) = 0. Therefore, by Lemma 3.1,

DrΩi
(Z)ξ = ξ − Hf (Z)(ξi, ξ)

Hf (Z)(ξi, ξi)
ξi.



sl1-column format camera-ready paper in LATEX 17

Thus DrΩi
(Z) is a projection operator that – by orthogonality of the ξi’s with respect

to Hf – maps ξ into (Rξi)⊥. The composition of these projection operators is the zero
map. Since Z is a fixed point, i.e. ri(Z) = Z for all i = 1, . . . , N , we conclude

Ds(Z) = D(rm ◦ · · · ◦ r1)(Z) = 0.

Consequently, a sweep defines a smooth map on a neighborhood of Z with vanishing
derivative. Now reformulating everything in local coordinates, Taylor’s Theorem yields

s(X) = s(Z) +Ds(Z)(X − Z) + 1
2
D2f(ξ)(X − Z,X − Z),

where ξ ∈ U , a suitable compact neighborhood of Z. Using that s(Z) = Z, it follows

||s(X)− Z|| ≤ sup
ξ∈U

||D2s(ξ)|| · ||X − Z||2.

Thus the algorithm induced by s converges locally quadratically fast to Z. �
Although the order in which the different elementary rotations Ωi are worked off is

irrelevant for the proof as long as regular elements are considered, and although regular
elements form a dense subset in p, it is worth to point out that in practice, the ordering
does matter for convergence speed. In fact, the relevance of the ordering is the bigger,
the more the eigenvalues/singular values of S are clustered.

4. Example - The Exceptional Case g2

To illustrate the previous results, consider the Lie algebra of derivations of the complex
octonians, cf. [12]. We deduce a Sort-Jacobi algorithm arising from one of its real forms.
Note, that this example is not isomorphic to any of the other cases listed in Table 1.
Consider the 14-dimensional real Lie algebra

g2 :=


 0

√
2b>

√
2c>

−
√

2c M B

−
√

2b C −M>

 ∣∣∣ b =

b1b2
b3

 , B =

 0 −b3 b2
b3 0 −b1
−b2 b1 0

 ,
c =

c1c2
c3

 , C =

 0 −c3 c2
c3 0 −c1
−c2 c1 0

 , bi, ci ∈ R,M ∈ R3×3, trM = 0

 .

(4.1)

We work with the following basis of g2. Let Eij denote the (7×7)-matrix with (i, j)-entry
1 and 0 elsewhere.

X1 :=
√

2(E16 − E31) + E54 − E72; X2 := E23 − E65;

X3 :=
√

2(E15 − E21) + E73 − E64; X4 :=
√

2(E14 − E71) + E35 − E26;

X5 := E34 − E76; X6 := E24 − E75;

Yi := −X>
i , i = 1, . . . , 6;

H1 := E22 − E44 − E55 + E77; H2 := E33 − E44 − E66 + E77.

(4.2)

By help of the Killing form we compute the Cartan involution and the corresponding
Cartan decomposition of g2.
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Proposition 4.1. The Killing form on g2 is given by

κg2(X, Y ) = 4tr(XY ). (4.3)

Proof. Using the commutator relations of the basis (4.2) one can easily construct matrix
representations of the adjoint operators adXi

, adYi
, adHj

∈ R14×14. It is straightforward to

check that for all Z, Z̃ ∈ {X1, . . . , X6, Y1, . . . , Y6, H1, H2} the relation

κ(Z, Z̃) = tr(adZ ◦ adZ̃) = 4tr(ZZ̃)

holds. Hence for arbitrary X ∈ g2 we have κ(X,X) = 4tr(X2). The claim now follows by
symmetrizing. �

Corollary 4.2. A Cartan involution on g2 is given by θ(X) = −X>. Correspondingly,
the Cartan decomposition is g2 = k⊕ p with

k = g2 ∩ so(7,R), p = {X ∈ g2 | X> = X}. (4.4)

Proof. For θ(X) = −(X)>, the bilinear form

Bθ(X, Y ) = −κ(X, θ(Y )) = 4tr(XY >)

is an inner product of g2. Therefore θ is a Cartan involution. Obviously, for Ω ∈ k and
Ω ∈ p, one has θ(Ω) = Ω and θ(Ω) = −Ω. �

With respect to the maximal Abelian subspace

a := {a1H1 + a2H2 | ai ∈ R} ⊂ p,

we can choose the set of positive restricted roots by

λ1 := a2, λ2 := a1 − a2, λ3 := a1,

λ4 := a1 + a2, λ5 := a1 + 2a2, λ6 := 2a1 + a2.
(4.5)

The corresponding restricted-root spaces are given by

gλi
= RXi, g−λi

= RYi, i = 1, . . . , 6. (4.6)

We now present a Sort-Jacobi algorithm that diagonalizes an element S ∈ p, preserving
the special structure of p. Note, that for i = 1, . . . , 6 we have θ(Xi) = Yi and the Xi ∈ gλi

are normalized such that λi([Xi, θ(Xi)]) = λi([Xi, Yi]) = −2 for all i = 1, . . . , 6. Let
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Ωi := Xi + θ(Xi) = Xi + Yi ∈ k. The Givens rotations are

exp(tΩ1) =



cos 2t 0 sin 2t√
2

0 0 sin 2t√
2

0
0 cos t 0 0 0 0 sin t

− sin 2t√
2

0 1
2 + 1

2 cos 2t 0 0 − 1
2 + 1

2 cos 2t 0
0 0 0 cos t − sin t 0 0
0 0 0 sin t cos t 0 0

− sin 2t√
2

0 − 1
2 + 1

2 cos 2t 0 0 1
2 + 1

2 cos 2t 0
0 − sin t 0 0 0 0 cos t

,

exp(tΩ2) =


1 0 0 0 0 0 0
0 cos t sin t 0 0 0 0
0 − sin t cos t 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 cos t sin t 0
0 0 0 0 − sin t cos t 0
0 0 0 0 0 0 1

,

exp(tΩ3) =



cos 2t sin 2t√
2

0 0 sin 2t√
2

0 0
− sin 2t√

2
1
2 + 1

2 cos 2t 0 0 − 1
2 + 1

2 cos 2t 0 0
0 0 cos t 0 0 0 − sin t
0 0 0 cos t 0 sin t 0

− sin 2t√
2

− 1
2 + 1

2 cos 2t 0 0 1
2 + 1

2 cos 2t 0 0
0 0 0 − sin t 0 cos t 0
0 0 sin t 0 0 0 cos t

,

exp(tΩ4) =



cos 2t 0 0 sin 2t√
2

0 0 sin 2t√
2

0 cos t 0 0 0 − sin t 0
0 0 cos t 0 sin t 0 0

− sin 2t√
2

0 0 1
2 + 1

2 cos 2t 0 0 − 1
2 + 1

2 cos 2t

0 0 − sin t 0 cos t 0 0
0 sin t 0 0 0 cos t 0

− sin 2t√
2

0 0 − 1
2 + 1

2 cos 2t 0 0 1
2 + 1

2 cos 2t

,

exp(tΩ5) =


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 cos t sin t 0 0 0
0 0 − sin t cos t 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 cos t sin t
0 0 0 0 0 − sin t cos t

,

exp(tΩ6) =


1 0 0 0 0 0 0
0 cos t 0 sin t 0 0 0
0 0 1 0 0 0 0
0 − sin t 0 cos t 0 0 0
0 0 0 0 cos t 0 sin t
0 0 0 0 0 1 0
0 0 0 0 − sin t 0 cos t

.

The implementation of the Sort-Jacobi algorithm is now straightforward. As an exam-
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ple, the regular element

Sreg =


0 −3.17415 −3.90421 −4.63169 3.17415 3.90421 4.63169

−3.17415 0.993208 3.14172 2.55770 0 3.27510 −2.76069
−3.90421 3.14172 3.224433 −1.97516 −3.27510 0 2.24446
−4.63169 2.55770 −1.97516 −4.23754 2.76069 −2.24446 0
3.17415 0 −3.27510 2.76069 −0.993208 −3.14172 −2.5577
3.90421 3.27510 0 −2.24446 −3.14172 −3.24433 1.97516
4.63169 −2.76069 2.24446 0 −2.5577 1.97516 4.23754


is almost diagonalized after 3 sweeps (off-norm < 10−10). It converges to the diagonal
matrix

Zreg = diag
[

0,−9.12818,−1.97129, 11.0995, 9.12818, 1.97129,−11.0995
]
.

Irregular elements show the same convergence behavior. In all simulations, at most 3
sweeps were required for quasi diagonalization (off-norm < 10−10).

5. Conclusions and further remarks

Lie theory provides us both with a unified treatment and a coordinate free approach
to Jacobi-type methods. In particular, it allows a formulation of Jacobi methods that is
independent of the underlying matrix representation. Thus we can bring generality to
a subject which has been dominated by case-by-case studies. Given a representation of
a semisimple Lie algebra and a regular element S in the (−1)-eigenspace of the Cartan
involution, the previous results allow to straightforwardly formulate a locally quadratic
convergent Sort-Jacobi algorithm that diagonalizes S. Now although isomorphic repre-
sentations yield isomorphic algorithms in an algebraic sense, this does not mean that
these algorithms are equivalent from a numerical point of view. In particular, backward
stability and relative accuracy might not be preserved under (algebraically) isomorphic
algorithms.
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22. K. Hüper. A Dynamical System Approach to Matrix Eigenvalue Algorithms. In:
Mathematical Systems Theory in Biology, Communications, Computation, and Fi-
nance. Eds: J. Rosenthal and D. S. Gilliam. IMA Vol 134, 257–274, Springer 2003.
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