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Abstract—The rate balancing problem is considered in the
multiple-input single-output (MIMO) broadcast channel with
linear transceivers. After introducing relative per-stream rate
targets as auxiliary variables, the optimization is performed by
a gradient projection algorithm. In addition, the transmit and
receive filters are updated and the mean square error matrices
are diagonalized in each iteration. Although the algorithm can
only find local optima of the considered non-convex optimization
problem, numerical simulations show that it achieves good
performance while it has a lower complexity than a comparable
existing algorithm.

Index Terms—MIMO systems, broadcast channels, linear
transceivers, quality of service, gradient methods.

I. INTRODUCTION

Many publications on multiple-input multiple-output
(MIMO) broadcast channels study the problem of maximizing
the (possibly weighted) sum of the rates of the individual
users in the system (e.g., [1], [2], [3], [4], [5], [6]). The
drawback of this optimization criterion is that some users
might be served at very low rates, and there is even no
guarantee that they are served at all.

Thus, we consider the problem of maximizing the through-
put in a MIMO broadcast channel subject to a power constraint
and to the constraint that the rates of the different users need to
have certain fixed ratios. In the literature, this problem is called
rate balancing (e.g., [7]). Interpreted in a graphical manner,
the solution is the intersection of the Pareto boundary of the
rate region with a straight line whose direction is determined
by the relative rate constraints (e.g. [8]).

For MIMO broadcast channels with nonlinear dirty paper
coding (DPC), optimal and close-to-optimum solutions to the
rate balancing problem were proposed, e.g., in [7], [8], but
these solutions cannot be applied to systems with linear pre-
coding as they rely on the special properties of the interference
pre-compensation achieved by DPC.

For the special case of single receive antennas, the rate
balancing problem with linear precoding can be solved in
a globally optimal manner, e.g., with a slightly modified
version of the balancing algorithm from [9] or, in case of
equal rates, using the signal-to-inferference-and-noise ratio
(SINR) balancing algorithm from [10]. However, in the general
case where users might have multiple receive antennas and
multiple data streams, the globally optimal solution for the
linear precoding case is unknown since the non-concave rate
equations make the optimization problem non-convex.

A suboptimal solution was proposed in [11], [12]. However,
this method has a high complexity as it is based on a geometric
programming (GP) formulation. The mean-square-error-based
(MSE) balancing method from [9] can be adapted such that
it can be applied to the rate balancing problem in MIMO
broadcast channels, but it will not be further considered in
this paper since it does not achieve a satisfying performance.

In [13], the rate balancing problem was considered in
a MIMO OFDM system with the restriction of exclusive
assignment of subcarriers to users. Due to this restriction,
the problem is not comparable to rate balancing in a MIMO
broadcast channel where several users are sharing a single
carrier. Another related approach that cannot be applied in
our setup is the SINR balancing algorithm from [2], which
balances the per-stream SINRs instead of the per-user rates.

In order to provide a good solution with reasonable com-
plexity for the rate balancing problem in a general MIMO
broadcast channel with linear precoding, we propose a method
based on a gradient projection update of additionally intro-
duced relative per-stream rate targets and on alternating filter
updates in the uplink and in the downlink. After introducing
the system model and stating the mathematical problem formu-
lation in Section II, we will present the various ingredients of
the algorithm in the Sections III through VI. In the derivation
of the algorithm, it will become clear that certain parts are
similar to the respective steps of the power minimization algo-
rithm proposed in our companion work [14] due to the close
relationship between the two considered problems. Though,
other parts have to be redeveloped for the rate balancing
problem considered here. Finally, the algorithm is summarized
in Section VII along with some comments on the convergence
and the initialization, and the paper is rounded off with some
numerical results, comments on computational complexity, and
concluding remarks in the Sections VIII and IX.

Notation

Vectors are typeset in boldface lowercase letters and matri-
ces in boldface uppercase letters. We write ∙T for the transpose
of a vector or matrix, ∙H for the conjugate transpose, 0 for the
zero matrix or vector, and I∙ for the identity matrix of size ∙.
The vector 1 is the all-ones vector, and the vector 𝒆𝑖 is the 𝑖-th
canonical unit vector, which has a one as the 𝑖-th entry and
zeros elsewhere. [𝑨]𝑖,𝑗 is used to denote the element in the
𝑖-th row and 𝑗-th column of the matrix 𝑨. ∣ ∙ ∣ is used for the
cardinality of a set, and 𝛿𝑖,𝑗 is the Kronecker delta, which is 1
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whenever 𝑖 = 𝑗 and 0 otherwise. The order relation 𝒙 ≥ 𝒚 has
to be understood element-wise, and ℝ

𝑛
0,+ is the closed positive

orthant of the ℝ
𝑛, i.e., ℝ𝑛

0,+ = {𝒙 ∈ ℝ
𝑛: 𝒙 ≥ 0}. We use the

shorthand notation (∙𝑘)𝐾𝑘=1 for [∙T1 , . . . , ∙T𝐾 ]T.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a downlink system with an 𝑀 -antenna base
station, 𝐾 receivers with 𝑁𝑘 receive antennas at the 𝑘-th
receiver, and frequency flat channels 𝑯H

𝑘 ∈ ℂ
𝑁𝑘×𝑀 , which

are assumed to be perfectly known. The aim of rate balancing
is to maximize the throughput of a multi-user communication
system while keeping certain fixed ratios between the data
rates of the individual users. Moreover, a certain transmit
power limitation 𝑃 has to be respected. Introducing an auxil-
iary variable 𝑅0, this optimization problem can be written in
an abstract form as

max 𝑅0 s.t.: 𝑟𝑘 ≥ 𝑅0𝜚𝑘 ∀𝑘 and 𝒓 ∈ ℛ(𝑃 ), (1)

where the elements of 𝒓 = [𝑟1, . . . , 𝑟𝐾 ]T are the per-user
rates, and ℛ(𝑃 ) is the rate region for sum power 𝑃 , i.e., the
set of all rate vectors 𝒓 that can be achieved in the considered
communication system with a sum power not exceeding 𝑃 .
Although the rate balancing problem has a nice graphical
interpretation as the intersection of the line defined by the
coefficients 𝜚𝑘 and the Pareto boundary of ℛ(𝑃 ), the actual
solution cannot be found in such an abstract manner because
the rate region cannot be easily parametrized. Instead, we will
perform the optimization with respect to transmit and receive
filters and transmit powers.

Partitioning the information for user 𝑘 into 𝑆𝑘 ≤
min{𝑀,𝑁𝑘} separately coded data streams, we can describe
the system by

�̂�𝑘 = 𝑽 H
𝑘 𝑯H

𝑘

𝐾∑
𝑘′=1

𝑩𝑘′ diag {𝒑𝑘′} 1
2 𝒙𝑘′ + 𝑽 H

𝑘 𝜼𝑘, (2)

where 𝒙𝑘 ∈ ℂ
𝑆𝑘 contains the unit-power data symbols of user

𝑘, 𝒑𝑘 ∈ ℝ
𝑆𝑘 is the vector of the corresponding powers, the

columns 𝒃
(𝑠)
𝑘 ∈ ℂ

𝑀 of the matrix 𝑩𝑘 ∈ ℂ
𝑀×𝑆𝑘 are the unit

norm beamforming vectors, and the matrices 𝑽 H
𝑘 ∈ ℂ

𝑆𝑘×𝑁𝑘

are the receive filters. Note that adding receive filters is
not a necessity, but rather a vehicle that is used to allow
a stream-wise formulation. The same is true for the fact
that we describe the transmission by beamforming vectors
and transmit powers instead of using the covariance matrices
𝑪𝑘 = 𝑩𝑘 diag {𝒑𝑘}𝑩H

𝑘 of the transmitted signals. As long as
the receive filters provide a sufficient statistic for the received
data, the formulation in (2) is without loss of generality.

The additive circularly symmetric Gaussian noise 𝜼𝑘 ∈ ℂ
𝑁𝑘

in (2) is assumed to be white with unit variance, i.e., 𝜼𝑘 ∼
𝒞𝒩 (0, I𝑁𝑘

). This assumption is without loss of generality
since in case of correlated noise 𝜼𝑘, a pre-whitening filter
𝑽 H
𝑘 = 𝑪

− 1
2

𝜼𝑘
could be applied at the 𝑘-th receiver, where 𝑪

1
2
𝜼𝑘

is a square matrix that fulfills 𝑪
1
2
𝜼𝑘
𝑪

1
2 ,H
𝜼𝑘

= 𝑪𝜼𝑘
. Considering

this filter as a part of the channel, we get an equivalent system
with white noise that can be described by (2) with 𝑯H

𝑘 being

the composition of the actual channel and the pre-whitening
filter in this case.

To deal with the 𝑆𝑘 data streams of each user 𝑘, we
introduce the relative per-stream rate targets 𝜌

(𝑠)
𝑘 as auxiliary

variables, and we write the problem as

max 𝑅0 s.t.: 𝒓𝑘 ≥ 𝑅0𝝆𝑘 ∀𝑘 and (𝒓𝑘)
𝐾
𝑘=1 ∈ ℛ′(𝑃 ) (3)

and
∑𝑆𝑘

𝑠=1
𝜌
(𝑠)
𝑘 = 𝜚𝑘 ∀𝑘,

where 𝒓𝑘 = [𝑟
(1)
𝑘 , . . . , 𝑟

(𝑆𝑘)
𝑘 ]T is the vector of per-stream rates

of user 𝑘, and 𝝆𝑘 = [𝜌
(1)
𝑘 , . . . , 𝜌

(𝑆𝑘)
𝑘 ]T contains the per-stream

rate targets. The achievable rate of each stream is given by

𝑟
(𝑠)
𝑘 = log2

(
1 + 𝛾

(𝑠)
𝑘

)
with (4)

𝛾
(𝑠)
𝑘 =

𝑝
(𝑠)
𝑘

∣∣∣𝒗(𝑠),H
𝑘 𝑯H

𝑘 𝒃
(𝑠)
𝑘

∣∣∣2
𝒗
(𝑠),H
𝑘 𝒗

(𝑠)
𝑘 +

∑𝐾
𝑘′=1

∑𝑆𝑘′
𝑠′=1

(𝑘′,𝑠′) ∕=(𝑘,𝑠)

𝑝
(𝑠′)
𝑘′

∣∣∣𝒗(𝑠),H
𝑘 𝑯H

𝑘 𝒃
(𝑠′)
𝑘′

∣∣∣2 .

These per-stream rates can be considered as the rates of the
𝑆tot =

∑𝐾
𝑘=1 𝑆𝑘 virtual users of an effective multiple-input

single-output (MISO) broadcast channel with channel vectors
�̃�
(𝑠),H
𝑘 = 𝒗

(𝑠),H
𝑘 𝑯H

𝑘 . The rate region of this effective MISO
system is denoted by ℛ′(𝑃 ). The concept of optimizing over
newly introduced relative per-stream rate targets is similar to
the use of absolute per-stream rate targets in our companion
work [14], where the power minimization problem was inves-
tigated.

The optimization variables in problem (3) are the receive
filters 𝒗

(𝑠)
𝑘 , the unit norm beamforming vectors 𝒃

(𝑠)
𝑘 , the

transmit powers 𝑝
(𝑠)
𝑘 , the per-stream rate targets 𝜌

(𝑠)
𝑘 , and

the auxiliary variable 𝑅0. The main challenge is to optimize
the filters as well as the relative per-stream rate targets 𝜌

(𝑠)
𝑘

while the optimal power allocation can be found efficiently
for given receive filters and rate targets. To perform the opti-
mization of the filters, we apply an alternating optimization.
Parts of this procedure will be performed in the dual uplink
with uplink channel matrices 𝑯𝑘 ∈ ℂ

𝑀×𝑁𝑘 , uplink noise
𝜼 ∼ 𝒞𝒩 (0, I𝑀 ), uplink beamformers 𝑻𝑘 ∈ ℂ

𝑁𝑘×𝑆𝑘 , and
uplink receive filters 𝑼H

𝑘 ∈ ℂ
𝑆𝑘×𝑀 . If the columns 𝒕

(𝑠)
𝑘 of

the beamforming matrix 𝑻𝑘 are equal to the scaled columns
of 𝑽𝑘 and the rows 𝒖

(𝑠),H
𝑘 of the uplink receive filter 𝑼H

𝑘 are
equal to the scaled rows of 𝑩H

𝑘 , the same per-stream rates can
be achieved in the uplink and in the downlink with the same
sum transmit power provided that minimum mean square error
(MMSE) equalization is employed and the downlink mean
square error (MSE) matrix

𝑬DL
𝑘 = E

[
(𝒙𝑘 − �̂�𝑘)(𝒙𝑘 − �̂�𝑘)

H
]
, (5)

(or the uplink MSE matrix) is diagonal [15]. Fulfilling the
requirement of a diagonal MSE matrix also ensures that
encoding and decoding the data streams of a user separately
is optimal [15]. Therefore, we can stick to a stream-wise view
throughout most of the steps, and we will only switch to a
user-wise perspective when absolutely necessary.



III. SOLUTION TO THE POWER ALLOCATION PROBLEM

As the first ingredient of the algorithm, we will derive how
the optimal 𝑅0 for given relative per-stream rate targets 𝜌

(𝑠)
𝑘

and given downlink receive filters 𝑽 H
𝑘 can be computed. For

fixed filters 𝑽 H
𝑘 , we can define the effective MISO channels

�̃�
(𝑠),H
𝑘 =

𝒗
(𝑠),H
𝑘

∥𝒗(𝑠)
𝑘 ∥2

𝑯H
𝑘 , (6)

and we can solve the optimization for fixed targets 𝜌
(𝑠)
𝑘 with

respect to the transmit powers 𝑞
(𝑠)
𝑘 of the dual uplink of this

effective setting:

max
𝑅0,(𝒒𝑘)𝐾𝑘=1

𝑅0 s.t.: 𝑅
(𝑠)
𝑘 ≥ 𝑅0𝜌

(𝑠)
𝑘 ∀ 𝑘, 𝑠 (7)

and 𝑞
(𝑠)
𝑘 ≥ 0 ∀ 𝑘, 𝑠 and

𝐾∑
𝑘=1

𝑆𝑘∑
𝑠=1

𝑞
(𝑠)
𝑘 ≤ 𝑃

with 𝒒𝑘 = [𝑞
(1)
𝑘 , . . . , 𝑞

(𝑆𝑘)
𝑘 ]T. Here, 𝑅(𝑠)

𝑘 are the rates in the
dual single-input multiple-output (SIMO) uplink given by

𝑅
(𝑠)
𝑘 = log2

(
1 + 𝑞

(𝑠)
𝑘 �̃�

(𝑠),H
𝑘 𝑿

(𝑠),−1
𝑘 �̃�

(𝑠)
𝑘

)
(8)

with

𝑿
(𝑠)
𝑘 = I𝑀 +

∑𝐾

𝑘′=1

∑𝑆𝑘′

𝑠′=1
(𝑘′,𝑠′) ∕=(𝑘,𝑠)

𝑞
(𝑠′)
𝑘′ �̃�

(𝑠′)
𝑘′ �̃�

(𝑠′),H
𝑘′ , (9)

and 𝑞
(𝑠)
𝑘 are the uplink transmit powers. It is known

that with appropriately chosen uplink powers fulfilling∑𝐾
𝑘=1

∑𝑆𝑘

𝑠=1 𝑞
(𝑠)
𝑘 =

∑𝐾
𝑘=1

∑𝑆𝑘

𝑠=1 𝑝
(𝑠)
𝑘 , the same rates as in the

original downlink channel can be achieved, i.e., 𝑅(𝑠)
𝑘 = 𝑟

(𝑠)
𝑘

[16]. Therefore, the optimization (7) is equivalent to an op-
timization in the downlink where 𝑞

(𝑠)
𝑘 and 𝑅

(𝑠)
𝑘 are replaced

by 𝑝
(𝑠)
𝑘 and 𝑟

(𝑠)
𝑘 , respectively. Since (7) is formulated inde-

pendently of the filters so that the only optimization variables
are the uplink powers, the optimization in the uplink is much
easier than in the downlink, and it can be solved efficiently
as described below. Nevertheless, the downlink beamformers
𝒃
(𝑠)
𝑘 are implicitly optimized together with the powers since

the resulting rates 𝑅(𝑠)
𝑘 from (8) are achievable in the downlink

only if the downlink beamformers 𝒃
(𝑠)
𝑘 are chosen to be the

conjugate transpose of the optimal uplink receive filters 𝒖(𝑠),H
𝑘 ,

which will be computed in (29).
Assume that (𝑅∗

0, (𝒒
∗
𝑘)

𝐾
𝑘=1) is the optimizer of (7). Then,

the optimizer of the problem

min
(𝒒𝑘)𝐾𝑘=1

𝐾∑
𝑘=1

𝑆𝑘∑
𝑠=1

𝑞
(𝑠)
𝑘 (10)

s.t.: 𝑅
(𝑠)
𝑘 ≥ 𝜌

(𝑠)
𝑘 ∀ 𝑘, 𝑠 and 𝑞

(𝑠)
𝑘 ≥ 0 ∀ 𝑘, 𝑠.

with 𝜌
(𝑠)
𝑘 = 𝑅∗

0𝜌
(𝑠)
𝑘 is equal to (𝒒∗

𝑘)
𝐾
𝑘=1, and the optimum is

𝑃min = 𝑃 . Therefore, solving (7) is equivalent to finding the
value of 𝑅0, for which the optimizer of (10) fulfills the sum
power constraint with equality. This can be done by slightly
extending the power minimization algorithm from [9]. In fact,

a similar extension was proposed in [9] to apply the algorithm
to the SINR balancing problem.

According to [9], the fixed point iteration

𝑞
(𝑠)
𝑘 ← 2𝜌

(𝑠)
𝑘 − 1

�̃�
(𝑠),H
𝑘 𝑿

(𝑠),−1
𝑘 �̃�

(𝑠)
𝑘

(11)

converges to the globally optimal solution of (10). If we choose
𝜌
(𝑠)
𝑘 = 𝑅0𝜌

(𝑠)
𝑘 and adapt 𝑅0 in each iteration of the fixed

point algorithm such that
∑𝐾

𝑘=1

∑𝑆𝑘

𝑠=1 𝑞
(𝑠)
𝑘 = 𝑃 is fulfilled,

the power constraint will be fulfilled after convergence and
the final value of 𝑅0 will be the globally optimal one. The
update of 𝑅0 is equivalent to finding the positive real root of
the nonlinear function

𝑓(𝑅0) =

𝐾∑
𝑘=1

𝑆𝑘∑
𝑠=1

2𝑅0𝜌
(𝑠)
𝑘 − 1

�̃�
(𝑠),H
𝑘 𝑿

(𝑠),−1
𝑘 �̃�

(𝑠)
𝑘

− 𝑃, (12)

which can be efficiently done using the Newton-Raphson
method (e.g., [17]).

For later reference, we define the function 𝒬: ℂ
𝑀𝑆tot ×

ℝ
𝑆tot
0,+ �→ ℝ

1+𝑆tot
0,+ as

𝒬
((

�̃�
(1)
𝑘 , . . . , �̃�

(𝑆𝑘)
𝑘 ,𝝆𝑘

)𝐾

𝑘=1

)
= (𝑅∗

0, (𝒒
∗
𝑘)

𝐾
𝑘=1) (13)

where (𝑅∗
0, (𝒒

∗
𝑘)

𝐾
𝑘=1) is the optimizer of problem (7).

IV. UPDATE OF THE PER-STREAM RATE TARGETS

Making use of the dual SIMO uplink introduced in Sec-
tion III, we will now derive the gradient projection step, which
can be considered as the principal step of the algorithm. We
start by stating the calculation rule for the gradient in the
following theorem.

Theorem 1: The partial derivatives of 𝑅0 with respect to
the relative per-stream rate targets 𝜌

(𝑠)
𝑘 are given by

∂𝑅0

∂𝜌
(𝑠)
𝑘

=
−𝑅0

1T𝑱−1
𝑅 𝝆all

1T𝑱−1
𝑅 𝒆

(𝑠)
𝑘 , (14)

where 𝝆all = (𝝆𝑘)
𝐾
𝑘=1, 𝒆

(𝑠)
𝑘 = 𝒆𝑠+

∑𝑘−1
𝑗=1 𝑆𝑗

, and 𝑱𝑅 is the

Jacobian matrix of the uplink rates 𝑅
(𝜎)
𝜅 with respect to the

uplink powers 𝑞
(𝑠′)
𝑘′ , which is defined as

[𝑱𝑅]𝜎+
∑𝜅−1

𝑗=1 𝑆𝑗 , 𝑠′+
∑𝑘′−1

𝑗=1 𝑆𝑗
=

∂𝑅
(𝜎)
𝜅

∂𝑞
(𝑠′)
𝑘′

. (15)

Proof of Theorem 1: From [18], it follows that the
minimum rate constraints and the sum power constraint are
fulfilled with equality in the optimal solution of (7), i.e.,
𝑅

(𝜎)
𝜅 = 𝑅0𝜌

(𝜎)
𝜅 ∀𝜅, 𝜎 and

∑𝐾
𝑘′=1

∑𝑆𝑘

𝑠′=1 𝑞
(𝑠′)
𝑘′ = 𝑃 . Taking

the derivatives of these two equations, we get

∂𝑅
(𝜎)
𝜅

∂𝜌
(𝑠)
𝑘

=
∂𝑅0

∂𝜌
(𝑠)
𝑘

𝜌(𝜎)𝜅 +𝑅0𝛿𝜅,𝑘𝛿𝜎,𝑠 ∀𝑘, 𝑠, 𝜅, 𝜎 (16)

𝐾∑
𝑘′=1

𝑆𝑘∑
𝑠′=1

∂𝑞
(𝑠′)
𝑘′

∂𝜌
(𝑠)
𝑘

= 0 ∀𝑘, 𝑠. (17)



On the other hand, ∂𝑅(𝜎)
𝜅

∂𝜌
(𝑠)
𝑘

can be extended to

∂𝑅
(𝜎)
𝜅

∂𝜌
(𝑠)
𝑘

=

𝐾∑
𝑘′=1

𝑆𝑘′∑
𝑠′=1

∂𝑅
(𝜎)
𝜅

∂𝑞
(𝑠′)
𝑘′

∂𝑞
(𝑠′)
𝑘′

∂𝜌
(𝑠)
𝑘

∀𝑘, 𝑠, 𝜅, 𝜎 (18)

using the chain rule. Written in matrix notation, this leads to
the system of equations[

0 1T

−𝝆all 𝑱𝑅

] [∇𝑅0

𝑱𝑞

]
=

[
0T

𝑅0I𝑆tot

]
, (19)

where 𝑱𝑞 is the Jacobian matrix of the powers 𝑞
(𝑠′)
𝑘′ with

respect to the rate targets 𝜌
(𝑠)
𝑘 , i.e.,

[𝑱𝑞]𝑠′+
∑𝑘′−1

𝑗=1 𝑆𝑗 , 𝑠+
∑𝑘−1

𝑗=1 𝑆𝑗
=

∂𝑞
(𝑠′)
𝑘′

∂𝜌
(𝑠)
𝑘

, (20)

and the row vector ∇𝑅0 is the gradient of the variable 𝑅0

with respect to the rate targets 𝜌
(𝑠)
𝑘 , i.e.,

∂𝑅0

∂𝜌
(𝑠)
𝑘

= ∇𝑅0 𝒆
(𝑠)
𝑘 . (21)

The solution of (19) is given by

∇𝑅0 = −𝑐−11T𝑱−1
𝑅 𝑅0I𝑆tot =

−𝑅0

1T𝑱−1
𝑅 𝝆all

1T𝑱−1
𝑅 , (22)

where 𝑐 = 1T𝑱−1
𝑅 𝝆all is the Schur complement of the first

matrix in (19) relative to 𝑱𝑅 [19]. The existence of the inverse
𝑱−1
𝑅 is proven in [14].
The entries of 𝑱𝑅 can be explicitly calculated from (8) by

means of standard methods of matrix calculus as

∂𝑅
(𝜎)
𝜅

∂𝑞
(𝜎)
𝜅

=
�̃�
(𝜎),H
𝜅 𝑿

(𝜎),−1
𝜅 �̃�

(𝜎)
𝜅

ln 2 ⋅
(
1 + 𝑞

(𝜎)
𝜅 �̃�

(𝜎),H
𝜅 𝑿

(𝜎),−1
𝜅 �̃�

(𝜎)
𝜅

) (23)

and

∂𝑅
(𝜎)
𝜅

∂𝑞
(𝑠′)
𝑘′

=
−𝑞(𝜎)𝜅

∣∣∣�̃�(𝜎),H
𝜅 𝑿

(𝜎),−1
𝜅 �̃�

(𝑠′)
𝑘′

∣∣∣2
ln 2 ⋅

(
1 + 𝑞

(𝜎)
𝜅 �̃�

(𝜎),H
𝜅 𝑿

(𝜎),−1
𝜅 �̃�

(𝜎)
𝜅

) (24)

for (𝑘′, 𝑠′) ∕= (𝜅, 𝜎). In [14], it was shown that 𝑱−1
𝑅 has only

non-negative entries so that all partial derivatives ∂𝑅0

∂𝜌
(𝑠)
𝑘

are

non-positive. Thus, after a gradient step

𝜌
(𝑠)
𝑘 ← 𝜌

(𝑠)
𝑘 + 𝑑

∂𝑅0

∂𝜌
(𝑠)
𝑘

∀𝑘, ∀𝑠 (25)

with positive step size 𝑑, the relative per-stream rate targets
are decreased, and the new targets 𝜌

(𝑠)
𝑘 no longer satisfy the

constraint
∑𝑆𝑘

𝑠=1 𝜌
(𝑠)
𝑘 = 𝜚𝑘 ∀𝑘. Thus, a projection to the set

of valid relative per-stream rate targets has to be performed
by solving the optimization problem

min
𝝆𝑘

𝑆𝑘∑
𝑠=1

(
𝜌
(𝑠)
𝑘 − 𝜌

(𝑠)
𝑘

)2

(26)

s.t.: 𝝆𝑘 ≥ 0 and
𝑆𝑘∑
𝑠=1

𝜌
(𝑠)
𝑘 = 𝜚𝑘

for all users 𝑘. As was derived in [14], the solution to this
problem is given by the waterfilling equation

𝜌
(𝑠)
𝑘 = max

{
𝜌
(𝑠)
𝑘 + 𝜇𝑘, 0

}
, (27)

where the optimal water level 𝜇𝑘 ∈ ℝ is

𝜇𝑘 =
1

∣𝒮𝑘,a∣

⎛
⎝𝜚𝑘 −

∑
𝑠∈𝒮𝑘,a

𝜌
(𝑠)
𝑘

⎞
⎠ (28)

with 𝒮𝑘,a being the set of active streams of user 𝑘.
After the rate target update and the projection step, the

new optimal value of 𝑅0 can be calculated by means of the
function 𝒬 defined in (13). In case that the performance after
the projection step is worse than it was before the gradient
step, i.e., a too large step size 𝑑 has been used, the gradient-
projection step has to be repeated with a reduced step size.
If no increase in performance is achieved even with a very
small step size (smaller than a given limit 𝑑min), the old rate
targets are kept and the algorithm proceeds to the filter update
without having changed the rate targets.

V. UPDATE OF THE FILTERS

Apart from the special treatment of inactive streams dis-
cussed in Section VI, which has to be rederived for the rate
balancing problem, the filter update works like the one used
in our power minimization algorithm presented in [14]. This
section is devoted to describing the various steps of the update
procedure, which is an alternating optimization in the uplink
and downlink and includes a diagonalization of the MSE
matrices.

The uplink rates in (8) can only be achieved if the uplink
receive filters provide a sufficient statistic for every data stream
individually, which is the case if they are chosen optimally in
the MMSE sense, i.e.,

�̃�H
𝑘 = diag {𝒒𝑘}

1
2 �̃�H

𝑘 𝑿−1

with �̃�𝑘 =
[
�̃�
(1)
𝑘 , . . . , �̃�

(𝑆𝑘)
𝑘

]
, (29)

where

𝑿 = I𝑀 +
𝐾∑

𝑘=1

𝑆𝑘∑
𝑠=1

𝑞
(𝑠)
𝑘 �̃�

(𝑠)
𝑘 �̃�

(𝑠),H
𝑘 , (30)

and �̃�
(𝑠)
𝑘 is given by (6).

After the update of the uplink receive filters, which is
equivalent to updating the downlink beamformers, the system
has to be transformed back to the downlink in order to update
the downlink receive filters. To do so, we first diagonalize the
uplink MSE matrix

𝑬𝑘 = I𝑆𝑘
+ �̃�H

𝑘 𝑿�̃�𝑘 − �̃�H
𝑘 �̃�𝑘 diag {𝒒𝑘}

1
2

− diag {𝒒𝑘}
1
2 �̃�H

𝑘 �̃�𝑘

= I𝑆𝑘
+ diag {𝒒𝑘}

1
2 �̃�H

𝑘 𝑿−1�̃�𝑘 diag {𝒒𝑘}
1
2 (31)



and perform a stream-wise duality transformation according
to [15] afterwards. The matrix 𝑬𝑘 is diagonal if the filters of
the MIMO uplink are chosen according to

𝑻𝑘 =

[
𝒗
(1)
𝑘

∥𝒗(1)
𝑘 ∥2

, . . . ,
𝒗
(𝑆𝑘)
𝑘

∥𝒗(𝑆𝑘)
𝑘 ∥2

]
diag {𝒒𝑘}

1
2 𝑭𝑘 (32)

𝑼H
𝑘 = 𝑭H

𝑘 �̃�H
𝑘 , (33)

where 𝑭𝑘 is the modal matrix of the eigenvalue decomposition

𝑭𝑘𝑫𝑘𝑭
H
𝑘 = diag {𝒒𝑘}

1
2 �̃�H

𝑘 𝑿−1�̃�𝑘 diag {𝒒𝑘}
1
2 . (34)

Note that the uplink transmit filters 𝑻𝑘 are not normalized,
i.e., they include the uplink transmit powers 𝑞

(𝑠)
𝑘 . Thus, the

total power ist given by
∑

𝑘 tr[𝑻𝑘𝑻
H
𝑘 ]. As 𝑭𝑘 is unitary,

it neither changes the transmit power spent for a user 𝑘,
i.e., tr[𝑻𝑘𝑻

H
𝑘 ] = 1T𝒒𝑘, nor does it influence the streams of

other users. Moreover, it conserves the rate that user 𝑘 could
achieve with joint encoding and decoding of all streams, but
it increases the rate that user 𝑘 can achieve with stream-wise
encoding and decoding so that the rate of the stream-wise case
equals the rate of the joint case. Note that this property is
another reason for diagonalizing the MSE matrices since per-
stream coding is assumed in this paper, i.e., the per-user rate
is assumed to be the sum of the per-stream rates. However, the
mapping between the per-stream rate targets 𝜌(𝑠)𝑘 and the rates
of the actual data streams is lost due to the diagonalization
since the streams might have been resorted or even recombined
by this unitary rotation of the filters. Thus, the relative per-
stream rate targets 𝜌

(𝑠)
𝑘 are no longer related to the actual

per-stream rates and need to be adapted to the new situation.
This will be done at the end of the filter update.

The stream-wise uplink-downlink transformation is per-
formed by choosing

𝒃
(𝑠)
𝑘 ←

𝒖
(𝑠)
𝑘

∥𝒖(𝑠)
𝑘 ∥2

and 𝒗
(𝑠)
𝑘 ← 𝒕

(𝑠)
𝑘 , (35)

and calculating the downlink powers 𝒑𝑘 = [𝑝
(1)
𝑘 , . . . , 𝑝

(𝑆𝑘)
𝑘 ]T

using

𝑴
[
𝒑T
1 , . . . ,𝒑

T
𝐾

]T
= 𝝉 (36)

with [𝝉 ]𝑠+
∑𝑘−1

𝑗=1 𝑆𝑗
= ∥𝒕(𝑠)𝑘 ∥22 and

𝑴 =

⎡
⎢⎣

𝑴1,1 . . . 𝑴1,𝐾

...
. . .

...
𝑴𝐾,1 . . . 𝑴𝐾,𝐾

⎤
⎥⎦ ∈ ℝ

𝑆tot×𝑆tot , (37)

where [𝑴𝜅,𝑘]𝑠,𝜎 = −∣𝒖(𝑠),H
𝑘 𝑯𝜅𝒕

(𝜎)
𝜅 ∣2 for 𝜅 ∕= 𝑘, and 𝑴𝑘,𝑘 =

diag𝑆𝑘
𝑠=1

{
∥𝒖(𝑠)

𝑘 ∥22 −
∑

𝜅 ∕=𝑘 1
T𝑴𝜅,𝑘𝒆𝑠

}
[15].

In the downlink, optimal receive filters in the MMSE sense
are given by

𝒗
(𝑠),H
𝑘 ← 𝒃

(𝑠),H
𝑘 𝑯𝑘

⎛
⎝I𝑁𝑘

+𝑯H
𝑘

⎛
⎝ 𝐾∑

𝑗=1

𝑩𝑗𝑩
H
𝑗

⎞
⎠𝑯𝑘

⎞
⎠

−1

, (38)

for (𝑠)
𝑘 : 𝑝

(𝑠)
𝑘 ∕= 0. Inactive streams with 𝑝

(𝑠)
𝑘 = 0 are excluded

from this update as they would be set to zero. Note that
those streams could never again be reactivated in a later step.
Therefore, a different update method for the inactive streams
is proposed in Section VI and Appendix A. Note that we do
not diagonalize the MSE matrices in the downlink since one
diagonalization per iteration suffices to guarantee that all MSE
matrices are diagonal after convergence.

None of the steps performed during the filter update can
decrease the per-user sum rates. Thus, by setting

𝜌
(𝑠)
𝑘 ←

𝑟
(𝑠)
𝑘

𝑅0
∀𝑘, 𝑠, (39)

where 𝑟
(𝑠)
𝑘 are the currently achieved downlink rates, we have∑𝑆𝑘

𝑠=1 𝜌
(𝑠)
𝑘 ≥ 𝜚𝑘. However, to fulfill the constraints of the

optimization problem (3), equality must hold. To get a set
of new relative per-stream rate targets 𝜌

(𝑠)
𝑘 that fulfills the

sum constraint with equality, we can apply the projection (26)
and (27) that has already been used in Section IV. Since
this projection reduces the per-user sum of the relative per-
stream rate targets, 𝑅0 is increased in the next evaluation of
the function 𝒬.

VI. FILTER UPDATE FOR INACTIVE STREAMS

Dealing with inactive streams is a typical problem when
optimizing MIMO systems. For instance, in [12], the authors
do not allow inactive streams in order to be able to apply
the geometric programming framework. They argue that this
is without loss of generality since streams with very small
transmit powers can be treated as inactive in a practical system.
However, this is not satisfying from a theoretical point of view.

In the proposed gradient-based optimization, it is possible
that streams are deactivated in that the relative per-stream rate
targets of certain streams are set to zero during the gradient-
projection step. However, it might happen that a reactivation
of certain streams becomes reasonable after the filters have
been updated. As mentioned above, the filter update step has
to be prevented from setting the downlink receive filters of
inactive streams to zero since the effective MISO channels
in the next iteration are computed using these receive filters
[see (6)]. Thus, the filters should be chosen in way that they
are a good complement to the spatial directions of the active
streams. If this is the case, the gradient-projection step in the
next iteration might activate them as additional streams, finally
yielding a value of the objective function that is higher than
the one that would be possible without the additional streams.

Furthermore, the filters should be chosen such that the
streams do not interfer with other streams of the same user
once they get activated, i.e.,

𝒗
(𝑠),H
𝑘 𝑯H

𝑘 𝒃
(𝑠′)
𝑘 𝑝

(𝑠′), 12
𝑘 = 0 (40)

for 𝑠′ ∕= 𝑠 and for all 𝑠 that correspond to inactive streams.
This condition is the counterpart of the requirement of a diag-
onal MSE matrix, which we imposed for the active streams.



Algorithm 1 Gradient-Based Rate Balancing for MIMO BC

Require: (𝜚𝑘)𝐾𝑘=1, (𝑯𝑘)
𝐾
𝑘=1, (𝑽𝑘)

𝐾
𝑘=1, (𝝆𝑘)

𝐾
𝑘=1, 𝜖Grad, 𝑑0, 𝑑min

(1)
(
𝑅0, (𝒒𝑘)

𝐾
𝑘=1

)← 𝒬((
�̃�
(1)
𝑘 , . . . , �̃�

(𝑆𝑘)
𝑘 ,𝝆𝑘

)
∀𝑘

)
(2) repeat
(3) 𝑅last ← 𝑅0

(4) compute the uplink receivers �̃�H
𝑘 using (29)

(5) diagonalize the MSE matrices using (32) and (33)
(6) perform UL to DL transformation using (35) and (36)
(7) compute the downlink receivers 𝒗(𝑠),H

𝑘 of active streams
using (38)

(8) compute the new per-stream rates (𝒓𝑘)∀𝑘 using (4)
(9) compute the rate targets (𝝆𝑘)∀𝑘 by applying projection

rule (27) to (𝝆𝑘)∀𝑘 ← (𝒓𝑘/𝑅0)∀𝑘
(10)

(
𝑅0, (𝒒𝑘)

𝐾
𝑘=1

)← 𝒬((
�̃�
(1)
𝑘 , . . . , �̃�

(𝑆𝑘)
𝑘 ,𝝆𝑘

)
∀𝑘

)
(11) compute the downlink receivers 𝒗

(𝑠),H
𝑘 of inactive

streams by repeatedly solving (49)
(12) compute the gradient using (14)
(13) 𝑑← 𝑑0
(14) loop
(15) compute (𝝆𝑘)∀𝑘 by performing the gradient step (25)

with step size 𝑑
(16) compute the rate targets (𝝆𝑘,new)∀𝑘 by applying pro-

jection rule (27) to (𝝆𝑘)∀𝑘
(17)

(
𝑅new, (𝒒𝑘,new)

𝐾
𝑘=1

)←𝒬((
�̃�
(1)
𝑘 , . . . , �̃�

(𝑆𝑘)
𝑘 ,𝝆𝑘

)
∀𝑘

)
(18) if 𝑅new ≥ 𝑅0 then
(19) 𝝆𝑘 ← 𝝆𝑘,new ∀𝑘, 𝒒𝑘 ← 𝒒𝑘,new ∀𝑘, 𝑅0 ← 𝑅new

(20) break
(21) else if 𝑑 < 𝑑min then
(22) break
(23) end if
(24) 𝑑← 𝑑/2
(25) end loop
(26) until 𝑅0 −𝑅last ≤ 𝜖Grad

A method to find vectors that comply to these two demands
is described in Appendix A. It is based on solving a gener-
alized eigenvalue problem of dimension smaller than 𝑆𝑘 for
each inactive stream.

VII. OVERVIEW, CONVERGENCE, AND INITIALIZATION

The method proposed in this paper is summarized in Algo-
rithm 1. In the main, it is an alternating optimization consisting
of three steps in each iteration: the gradient-projection step for
the relative per-stream rate targets, the update of the downlink
transmit filters, and the update of downlink receive filters.
Within these steps, the optimization from Section III, which is
encapsulated in the function 𝒬, is called at several positions as
an inner optimization to compute the currently optimal power
allocation and the current value 𝑅0 of the objective function.
Convergence is guaranteed since no step can decrease the value
𝑅0 and, on the other hand, 𝑅0 is bounded from above by the
finite optimal value.

As an initialization, we have to choose downlink receive
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Fig. 1. Sum Rate for Relative Rate Targets 𝜚1 = 𝜚2 = 1, 𝜚3 = 𝜚4 = 2.

filters 𝒗
(𝑠)
𝑘 and relative per-stream rate targets 𝜌

(𝑠)
𝑘 for all 𝑘

and 𝑠. However, unlike other rate balancing algorithms, such
as the one proposed in [11], [12], the method does not need
any initial values for the transmit powers. Instead, the initial
powers depend on the initial rate targets and are computed
in the first line of the algorithm. Thus, when comparing our
approach with the one from [11], [12], the two optimizations
are not started with the same initialization. Instead, initializing
with relative per-stream rate targets instead of with per-stream
powers can be considered as a specific feature of the algorithm.

In our numerical simulations, we used the initial filters

𝒗
(𝑠)
𝑘 = 𝒆𝑠 ∀ 𝑘, 𝑠 (41)

and the initial rate targets

𝜌
(𝑠)
𝑘 =

{
𝜚𝑘 if 𝑠 = 1
0 otherwise

∀ 𝑘. (42)

Unlike in the case of power minimization studied in [14], no
feasibility considerations are needed since the rate balancing
problem is always feasible. Therefore, any other choice for the
initial per-stream rate targets would be applicable. However,
since the algorithm is able to activate previously inactive
streams, there is no need to start with more than one active
stream per user. This is another difference to the algorithm in
[11], [12], which does not support inactive streams and has to
be initialized with all possible streams being active.

VIII. NUMERICAL RESULTS

To evaluate the performance of the proposed method,
we have performed numerical simulations in a system with
𝑀 = 10 transmit antennas, 𝐾 = 4 users, 𝑁𝑘 = 5 receive
antennas for all users, and relative rate targets 𝜚1 = 𝜚2 = 1
and 𝜚3 = 𝜚4 = 2. All channel coefficients were drawn
independently from a circularly symmetric complex Gaussian
distribution with zero mean and unit variance, and the results
are averaged over 1000 channel realizations.

As can be seen in Fig. 1, which shows the sum rate
𝑅sum =

∑𝐾
𝑘=1 𝑟𝑘 versus the transmit power 𝑃 , the proposed

rate balancing algorithm for MIMO broadcast channels with
linear precoding performs very similar to the GP-based scheme
from [11], [12]. However, as will be discussed below, the



computational complexity of the GP-based algorithm is sig-
nificantly higher.

We have also included the curve of the globally optimal
DPC solution, which can be computed as described in [8].
Although in general not achievable in systems that are con-
strained to use linear transceivers, this curve is an interesting
benchmark as it is an upper bound for the linear precoding
case. It can be seen that both the gradient-based and the GP-
based scheme perform close to the optimal DPC solution, but
it is not clear, which portion of the rate gap between the two
schemes and the DPC optimum is a result from the subop-
timality of the optimization procedures and which portion is
due to the restriction to linear transceivers. Nevertheless, it
can be seen that the gap is relatively small, i.e., the proposed
method performs close to the globally optimal solution.

In [12], the authors acknowledge that “power allocation with
GP has high complexity.” Indeed, in our simulations it turned
out that solving a geometric program in 𝐾𝑁 variables, as it is
necessary in each iteration of the algorithm proposed in [11],
[12], needs much more computation time than the execution
of the operations within an iteration of the proposed gradient-
projection algorithm. The computationally most complex sub-
problem of the gradient projection approach is the repeated
evaluation of the function 𝒬 defined in (13). Depending on
the required accuracy, this function is evaluated up to about
ten times per iteration using the iterative procedure from
Section III, which converges in a very small number of steps
(typically about ten). As a result, this inner optimization can
be performed significantly faster than the inner optimization
of the GP-based method. Another computationally complex
step in the gradient projection algorithm is the repeated
computation of generalized eigenvalue decompositions during
the update of the filters of currently inactive streams. However,
firstly, as the involved matrices have moderate sizes of less
than 𝑆𝑘, this step is also much less complex than the solution
of the geometric program, and secondly, it can even be skipped
if a further complexity reduction is desired. By instead leaving
the filters of inactive streams as they were in the previous
iteration, the resulting sum rate was decreased on average by
no more than 5% in our numerical simulations.

For a lower overall complexity it is not sufficient to have a
lower complexity per iteration, but it is also necessary to take
the total number of iterations into account. To this end, we
have included Fig. 2, where we have plotted the developing
of the sum throughput over the iterations. The curves are again
averaged over 1000 channel realizations. It can be seen that the
number of iterations needed by the gradient-based algorithm to
achieve a certain sum throughput is at least not higher than the
number needed by the GP-based method. Furthermore, it can
be seen that due to the difference in the initialization, which
we already discussed in the previous section, the gradient
projection algorithm starts at a significantly higher sum rate.

IX. CONCLUSION

In this work, we have derived a gradient-projection algo-
rithm for the rate balancing problem in MIMO broadcast
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Fig. 2. Convergence of the GP-based and the Gradient-based Algorithm for
𝑃 = 20dB.

channels with linear transceivers. The gradient update is
performed with respect to a set of auxiliary variables, the so-
called relative per-stream rate targets. Further major steps of
the algorithm are the power allocation in an effective MISO
system, the alternating update of uplink and downlink filters
of the active streams based on the MMSE rule, and the
update of the filters of inactive streams based on a generalized
eigenvalue problem. In numerical simulations, the proposed
algorithm turned out to have a similar performance as the
geometric programming based method from [11], [12] at a
lower complexity. In particular, the computation time per
iteration was reduced significantly, but also the number of
iterations was lower.

APPENDIX A
DETAILS OF THE FILTER UPDATE FOR INACTIVE STREAMS

Any downlink receive filter that complies to the zero-
interference requirement (40) can be expressed as 𝒗

(𝑠)
𝑘 =

𝜱𝑘𝒗
(𝑠)
𝑘 , where 𝜱𝑘 is a matrix of basis vectors of the nullspace

of diag{𝒑𝑘} 1
2𝑩H

𝑘 𝑯𝑘, and 𝒗
(𝑠)
𝑘 is a vector of appropriate

size without any special structure. Note that currently inactive
streams do not reduce the dimensionality of the nullspace
since 𝑝

(𝑠′)
𝑘 = 0 for all 𝑠′ that correspond to currently inactive

streams.
A stream has a good chance to get activated in a gradient-

projection step if the absolute value of the derivative ∂𝑅0

∂𝜌
(𝑠)
𝑘

is

small, i.e., if the non-positive derivative is large. Therefore,
our aim is now to find the vector 𝜱𝑘𝒗

(𝑠)
𝑘 that maximizes this

derivative.
Let us reorder the columns and rows of 𝑱𝑅 such that the

reordered version 𝑱𝑅 can be partitioned into

𝑱𝑅 =

[
𝑱𝑅,aa 𝑱𝑅,ai

𝑱𝑅,ia 𝑱𝑅,ii

]
(43)

where the first letter in the second subscript refers to rows
belonging to active (a) or inactive (i) streams, and the second
letter refers to the columns. For instance, 𝑱𝑅,ia contains the

derivatives ∂𝑅(𝜎)
𝜅

∂𝑞
(𝑠′)
𝑘′

with (𝜎)
𝜅 corresponding to inactive and (𝑠′)

𝑘′

corresponding to active streams. As can be easily verified,



∂𝑅(𝜎)
𝜅

∂𝑞
(𝑠′)
𝑘′

= 0 if (𝜎)
𝜅 is inactive and (𝜎)

𝜅 ∕= (𝑠′)
𝑘′ . Thus,

[
𝑱𝑅,aa 𝑱𝑅,ai

0 𝑱𝑅,ii

]−1

=

[
𝑱−1
𝑅,aa −𝑱−1

𝑅,aa𝑱𝑅,ai𝑱
−1
𝑅,ii

0 𝑱−1
𝑅,ii

]
, (44)

where the second equality is due to [19], and 𝑱𝑅,ii is the
diagonal matrix

𝑱𝑅,ii =
1

ln 2
diag

{
�̃�(𝜎),H
𝜅 𝑿(𝜎),−1

𝜅 �̃�(𝜎)
𝜅

}
, (45)

whose diagonal elements correspond to the inactive streams
(𝜎)
𝜅 . Using 𝝆all = [𝝆T

a 𝝆T
i ]

T = [𝝆T
a 0T]T and 𝒆

(𝜎)
𝜅 to denote the

accordingly reordered versions of 𝝆all and 𝒆
(𝜎)
𝜅 , respectively,

we get for an inactive stream (𝜎)
𝜅 [cf. (14)]:

∂𝑅0

∂𝜌
(𝜎)
𝜅

=
−𝑅0

1T𝑱−1
𝑅 𝝆all

1T𝑱−1
𝑅 𝒆(𝜎)𝜅 =

−𝑅0

1T𝑱−1
𝑅 𝝆all

1T𝑱−1
𝑅 𝒆(𝜎)𝜅

=

−𝑅0 ⋅ ln 2 ⋅ 1T

[
−𝑱−1

𝑅,aa𝑱𝑅,ai𝒆
(𝜎)
i,𝜅

𝒆
(𝜎)
i,𝜅

]

1T𝑱−1
𝑅,aa𝝆a ⋅ �̃�(𝜎),H

𝜅 𝑿
(𝜎),−1
𝜅 �̃�

(𝜎)
𝜅

= −𝛽 ⋅ 𝒗
(𝜎),H
𝜅

(
I𝑁𝑘

+𝑯H
𝜅 𝑫𝑯𝜅

)
𝒗
(𝜎)
𝜅

𝒗
(𝜎),H
𝜅 𝑯H

𝜅 𝑿−1𝑯𝜅𝒗
(𝜎)
𝜅

, (46)

where 𝒆
(𝜎)
i,𝜅 is the canonical unit vector that identifies the

stream (𝜎)
𝜅 among all inactive streams. The abbreviation

𝛽 =
𝑅0 ⋅ ln 2
1T𝑱−1

𝑅,aa𝝆a
(47)

is positive and depends solely on the active streams, and the
matrix 𝑫 is given by

𝑫 =
∑

(𝑠)
𝑘 : active

1T𝑱−1
𝑅,aa𝒆

(𝑠)
a,𝑘 ⋅𝑿(𝑠),−1

𝑘 �̃�
(𝑠)
𝑘 𝑞

(𝑠)
𝑘 �̃�

(𝑠),H
𝑘 𝑿

(𝑠),−1
𝑘

ln 2 ⋅
(
1 + 𝑞

(𝑠)
𝑘 �̃�

(𝑠),H
𝑘 𝑿

(𝑠),−1
𝑘 �̃�

(𝑠)
𝑘

) , (48)

where 𝒆(𝑠)a,𝑘 is the canonical unit vector that identifies the stream
(𝑠)
𝑘 among all active streams.

Thus, in order to maximize the derivative ∂𝑅0

∂𝜌
(𝜎)
𝜅

for the first

inactive stream (𝜎)
𝜅 of user 𝜅, we have to solve the optimization

problem

𝒗(𝜎)
𝜅 = 𝜱𝜅 argmin

𝒗
(𝜎)
𝜅

𝒗
(𝜎),H
𝜅 𝜱H

𝜅

(
I𝑁𝜅

+𝑯H
𝜅 𝑫𝑯𝜅

)
𝜱𝜅𝒗

(𝜎)
𝜅

𝒗
(𝜎),H
𝜅 𝜱H

𝜅𝑯
H
𝜅 𝑿−1𝑯𝜅𝜱𝜅𝒗

(𝜎)
𝜅

, (49)

which is a generalized eigenvalue problem, i.e., the
optimal 𝒗

(𝜎)
𝜅 is the generalized eigenvector of the

matrices 𝜱H
𝜅

(
I𝑁𝜅

+𝑯H
𝜅 𝑫𝑯𝜅

)
𝜱𝜅 ∈ ℂ

𝑆0,𝑘×𝑆0,𝑘 and
𝜱H

𝜅𝑯
H
𝜅 𝑿−1𝑯𝜅𝜱𝜅 ∈ ℂ

𝑆0,𝑘×𝑆0,𝑘 that belongs to the smallest
generalized eigenvalue. Here, 𝑆0,𝑘 < 𝑆𝑘 denotes the
dimensionality of the nullspace of diag{𝒑𝑘} 1

2𝑩H
𝑘 𝑯𝑘. The

generalized eigenvector can be scaled to unit norm without
loss of generality.

The procedure is repeated for all inactive streams of a user,
but after the 𝑖-th inactive filter 𝒗(𝜎𝑖)

𝜅 of user 𝜅 has been com-
puted, the matrix 𝜱𝜅 is replaced with a matrix of basis vectors

of the nullspace of [diag{𝒑𝑘} 1
2𝑩H

𝑘 𝑯𝑘,𝒗
(𝜎1)
𝜅 , . . . ,𝒗

(𝜎𝑖)
𝜅 ]H.

This ensures that orthogonal directions are chosen for sub-
sequently computed filters. As a result, the first computed
filter has the best direction with respect to the criterion defined
above, and the corresponding stream has the highest chance to
get activated in the next iteration. On the other hand, the stream
corresponding to the filter computed last is very unlikely to
be activated.
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