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AbstractIn this paper we introduce an ACD-ECOGARCH(1, 1) model. An exponential autoregressive
conditional duration model is used to describe the dependence structure in durations of ultra-high-
frequency financial data. The innovation process of the ACD model then defines the interarrival times
of a compound Poisson process. We use this compound Poisson process as the background driving
Lévy process of an exponential continuous time GARCH(1, 1) process. The dynamics of the random
time transformed log-price process are then described by the latter process. To estimate its parameters
we construct a quasi maximum likelihood estimator under the assumption that all jumps of the log-
price process are observable. Finally the model is fitted for illustrative purpose to General Motors
tick-by-tick data of the New York Stock Exchange.
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1. Introduction

The fundamental characteristic of tick-by-tick, or also called ultra-high-frequency, data is the
irregular spacing of the observation times. This feature prevents the application of standard
discrete time econometric models to analyse such kind of data. The reason is of course that
in such models the durations between two observations are assumed to be constant. Thus
new econometric methods have to be developed for the analysis of ultra-high-frequency data.
In doing so one has to deal with several problems. One such problem is that the random
durations seem not to be independent but show an autoregressive dependence structure given
the past observations. Therefore Engle and Russell (1998) introduce the autoregressive con-
ditional duration model (ACD) to describe such a behaviour. Based on the ACD model there
were several extensions of the GARCH process developed to model irregularly sampled fi-
nancial time series. Here we have to mention the ACD-GARCH model of Ghysels and Jasiak
(1998) and the work of Engle (2000). Both approaches are summarised and compared in
Meddahi, Renault, and Werker (2006). The authors also propose a further specification of a
GARCH model for irregularly spaced data, which incorporates the advantages of the previous
two models. Grammig and Wellner (2002) extend the UHF-GARCH model of Engle (2000) by
modelling the interdependence of intraday volatility and trading intensity. All of these mod-
els are based on the discrete time weak or strong GARCH process. A different way to model
tick-by-tick data is to assume the existence of an underlying continuous time model. Such
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an approach was developed in Maller, Müller, and Szimayer (2008). They specify a discrete
time approximation of the continuous time GARCH(1, 1) process (COGARCH) defined in
Klüppelberg, Lindner, and Maller (2004), which is suitable for irregularly spaced observation
times. This idea can be extended to other continuous time GARCH or stochastic volatility
models as long as the approximation has a tractable form. We refer to Lindner (2009) and
the references therein for an overview of continuous time approximations of GARCH and
stochastic volatility models.
Bollerslev, Litvinova, and Tauchen (2006) report that a model, which is applied to high-
frequency financial data, has to be able to describe the so called leverage effect. A continuous
time model with a tractable discretisation, which further incorporates a leverage effect, is the
exponential COGARCH process recently introduced by Haug and Czado (2007). However the
exponential COGARCH as well as the other approaches based on continuous time models can
not directly deal with a dependence structure in the durations between observations. Therefore
we will combine in the present paper the ACD model and the exponential COGARCH(1, 1)
process to address both, the dependence structure in the durations and the leverage effect. Be-
fore we explain the structure of the current paper, we will recall from Haug and Czado (2007)
the definition of an exponential COGARCH(1, 1) process, abbreviated to ECOGARCH(1, 1).
For a detailed discussion of the ACD model we refer to Engle and Russell (1998). A survey of
the several extensions and enhancements of the ACD model is provided by Pacurar (2008).
Haug and Czado (2007) consider a zero mean Lévy processes L := (Lt)t≥0 defined on a prob-
ability space (Ω,F , P ). In this paper we only consider the case of L being the compound
Poisson process (CPP)

Lt =
Jt∑

k=1

Zk, t > 0, L0 = 0 , (1)

where (Jt)t≥0 is an independent Poisson process with intensity λ > 0 and (Zk)k∈N is an
i.i.d. sequence of random variables independet of J . The jump sizes Zk are assumed to have
a symmetric distribution function F0,1/λ with mean 0 and variance 1/λ. In this case the
ECOGARCH(1, 1) process is defined as follows:

Let L be the CPP (1). Then the ECOGARCH(1, 1) process G is defined as the stochastic
process satisfying,

Gt =

∫ t

0
σs−dLs =

Jt∑

k=1

σtk−Zk , t > 0, G0 = 0 ,

where (tk)k∈N are the jump times of L. The log-volatility process (log(σ2
t ))t≥0 is an Ornstein-

Uhlenbeck process with state space representation

log(σ2
t ) = µ+ b1Xt

Xt = e−a1tX0 +

∫ t

0
e−a1(t−s)dMs , t > 0 ,

and parameters µ, a1, b1 ∈ R. Here X0 ∈ R is independent of the driving CPP L and Mt =∑Jt

k=1[θZk + γ|Zk|]− γλKt , with K =
∫
R
|x|F0,1/λ(dx), is a zero mean CPP with parameters

(θ, γ) ∈ R
2 \ {0}.

The paper is now organised as follows. In Section 2 we show how to extend the ECOGA-
RCH model by incorporating an ACD model. Since estimation of the ACD model is rather
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straightforward and very well explained in Engle and Russell (1998), we concentrate in Section
3 on introducing a quasi maximum likelihood estimator (QMLE) for the parameters of the
ECOGARCH(1, 1) process under the assumption of full observation of the sample path. An
illustrative data example is presented in Section 4. Concluding remarks are made in Section
5.

2. ACD-ECOGARCH(1,1) model

We assume to have ultra-high-frequency observations PT1
, . . . , PTn

of an asset log-price at
transaction times Ti, i = 1, . . . , n. The observed durations ∆Ti will be modeled by an expo-
nential ACD(p, q) model, p, q ∈ N, as introduced in Engle and Russell (1998), i.e.

∆Ti = ψi∆ti ,

where

ψi = E(∆Ti|∆Ti−1, . . .∆T1) = ω +
p∑

j=1

αj∆Ti−j +
q∑

j=1

βjψi−j .

We have to assume an exponential distribution for the innovations ∆ti since they will be
the interarrival times of the driving compound Poisson process L of the ECOGARCH(1, 1)
process. This implies that the observations Gti of the ECOGARCH(1, 1) process are given
by Gti := PTi

, i = 1, . . . , n . The ACD(p, q) model can of course be replaced by one of the
many extension introduced in the recent years as long as the innovations are exponentially
distributed. We refer to Pacurar (2008) for an extensive overview of ACD models.
Here we want to mention that this approach is different to the one proposed by
Ghysels and Jasiak (1998). They use the expected conditional duration ψi and not the in-
novation ∆ti as an input variable for the volatility equation at time Ti. In contrast Engle
(2000) assumes in his simplest volatility model that the variance per unit time follows a
GARCH(1, 1) equation. Thus he considers the model

σ̃2
i = Var(ri/

√
∆Ti | rj ,∆Tj, j < i; ∆Ti) = c+ a(ri/

√
∆Ti)

2 + bσ̃2
i−1 ,

where ri = PTi
− PTi−1

. He further proposes specifications of σ̃2
i including the duration ∆Ti

as well as the expected duration ψi.

3. Estimation in the ACD-ECOGARCH(1,1) model

To estimate the parameters in our model we will follow a two step estimation strategy. In a
first step the MLE ϑ̂

d
n of the parameter ϑ

d ∈ R
p+q+1 of the ACD(p, q) model will be computed

as described in Engle and Russell (1998). In our example in Section 4 we consider the cases
p = q = 1 and p = q = 2. Given the observed durations ∆Ti, i = 1, . . . , n, and the MLE ϑ̂

d
n

we can compute the fitted innovations

∆̂ti =
∆Ti

ψ̂i
, i = 1, . . . , n ,

where ψ̂i = ω̂n +
∑p
j=1 α̂jn∆Ti−j +

∑q
j=1 β̂jnψ̂i−j . In the following we will denote them by

∆ti for ease of notation. Hence after the first estimation step the data is given by the pairs
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{(G∆ti
ti ,∆ti) , i = 1, . . . , n} , where G∆ti

ti := Gti −Gti−1
.

Since we assume to observe G at n consecutive jump times 0 = t0 < t1 < · · · < tn, the state
process X of the log-volatility process has the following autoregressive representation

b1Xti = b1e
−a1∆tiXti−1

+ b1θZi + b1γ

(
|Zi| −

λK

a1
(1 − e−a1∆ti)

)
(2)

(cf. Example 3.1 in Haug and Czado (2007)). Here we used the fact Jti−1
+ 1 = Jti = i.

This implies that the left-hand limit log(σ2
ti−) of the log-volatility process at the jump times

0 < t1 < · · · < tn is given by

log(σ2
ti−) = µ+ b1e

−a1∆tiXti−1
− b1γ

λK

a1
(1 − e−a1∆ti) . (3)

In Haug and Czado (2007), Proposition 3.1, it is shown that the leverage effect depends on the
sign of θb1. To identify θ as the leverage parameter we will set b1 equal to one in the following.

The observations of the ECOGARCH process are then Gti =
∑Jti

k=1 σtk−Zk = Gti−1
+ σti−Zi ,

which implies that the return at time ti is equal to G∆ti
ti := σti−Zi .

Given the data {(G∆ti
ti ,∆ti) , i = 1, . . . , n} , we now aim at estimating the remaining unknown

parameters ϑ
g := (a1, θ, γ, µ, λ,K) =: (ϑ, λ,K) in our model. But equation (3) contains an

identifiability problem. The constant term in (3) is given by µ∗ := µ − γ λKa1 . In the QML
approach, which we will take, only the constant term µ∗ is identifiable and not µ, K and
λ. Because of that we will estimate the rate λ given only the jump times t1, . . . , tn of the
compound Poisson process through the MLE λ̂n := n∑

n

i=1
∆ti

. Different estimators of K and

thus µ∗ are analysed in Czado and Haug (2009) with regard to their finite sample properties.
In the following we work with the approximation K̂n := (π2 λ̂n)

−1/2, which is motivated by

the fact that K = (π2λ)−1/2 in case F0,1/λ is a normal distribution.
To derive a contrast function, which we can maximise with respect to the unknown parameters,
we followed Engle (2000) by assuming the log-likelihood is of the following form

log ρ(λ,ϑ)(G
∆
n ,∆tn|X0) =

n∑

i=1

(
log ρg(λ,ϑ)(G

∆ti
ti |G∆

i−1,∆ti) + log ρdλ(∆ti|∆ti−1)
)
,

where G∆
k = (G∆t1

t1 , . . . , G∆tk
tk

), 1 ≤ k ≤ n, and ∆tk is defined analogously. One should re-
member that the distribution of the durations ∆ti is independent of the current and past
returns. Since the conditional distribution of the returns is unknown we will follow a QML
approach in the second estimation step by choosing a Gaussian quasi log-likelihood as contrast
function. This is analogously to QML estimation in discrete time conditionally heteroscedas-
tic time series models, see e.g. Berkes and Horváth (2003), Berkes, Horváth, and Kokoszka
(2003), Hall and Yao (2003), Jeantheau (1998) and the monograph Straumann (2005).

Since the Gaussian quasi log-likelihood depends on the volatilities σ2
ti , which are unobserv-

able, it can not be evaluated numerically. Thus we need an approximation of the volatility,
which is given by

σ̂2
ti−(ϑ, λ̂n) := exp

(
µ+ e−a1∆tiX̂ti−1

(ϑ, λ̂n) − γ
λ̂nK̂n(1 − e−a1∆ti)

a1

)
, i = 1, . . . , n,
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with X̂ti(ϑ, λ̂n) = e−a1∆tiX̂ti−1
(ϑ, λ̂n) + θ

G
∆ti

ti

σ̂ti−
(ϑ,λ̂n)

+ γ

(
|G

∆ti

ti
|

σ̂ti−
(ϑ,λ̂n)

− λ̂nK̂n(1−e−a1∆ti)
a1

)
.

QML estimates ϑ̂n are then obtained by maximising

L(ϑ|G∆
n ,∆n, λ̂n) := −1

2

n∑

i=1

(
log(σ̂2

ti−(ϑ, λ̂n)) +
(G∆ti

ti )2

σ̂2
ti−(ϑ, λ̂n)/λ̂n

)

with respect to ϑ. An extensive simulation study of the small sample properties of ϑ̂n is given
in Czado and Haug (2009), showing satisfactory results.

4. An illustrative example

As an illustration of the potential usefulness of the ACD-ECOGARCH model, it is now applied
to tick-by-tick data traded on NYSE: GM (General Motors). The data was extracted from
the Trade and Quote database released by the NYSE. The time period under consideration
spans four weeks starting form 6th of May 2002 until the 31st of May. Due to the Memorial
Day there was no trading on the 27th of May at the NYSE. Only transaction between 9:30am
and 4:00pm are considered. If equal transaction times Ti occurred, the corresponding trades
are combined to a single trade at an average price. We omitted consecutive zero returns if
they occurred at the beginning or end of the trading day. On average we have about 1960
observations per day.
The data will be analysed on a daily basis to get insight about varying parameter val-
ues over the observation period. Since durations in ultra-high-frequency data are charac-
terised by an intraday seasonality, as e.g. reported in Bauwens, Giot, Grammig, and Veredas
(2004), Engle and Russell (1998) or Tay, Ting, Tse, and Warachka (2009), we diurnally ad-
justed them at first. For that purpose we fitted a cubic smoothing spline to the durations
of each day of the week. The diurnally adjusted durations are then computed by dividing
each durations with the corresponding smoothing spline value. If we would aim at estimating
one model for the whole data set, then the overnight durations have to be adjusted as e.g.
explained in Bauwens and Giot (2000). Typically the volatility also shows a deterministic
time-of-day effect, see e.g. Engle (2000). We therefore computed diurnally adjusted returns
by dividing each returns with the corresponding value of a cubic smoothing spline fitted to
the absolute returns. The resulting smoothing splines are shown in Figure 1. The volatility
smoothing splines for Wednesday and Thursday show a rather atypical behaviour of slightly
increasing during the first half of the trading day and decreasing afterwards. The shapes of
the remaining splines are conform with results reported in the literature. Further we have to
take into account a market microstructure noise on this fine level. To address this problem
we will follow Engle (2000), by considering mid quotes, which are the average of the last bid
and ask quote just before the trade, as our price data. In particular this means, if we have
observation points T1, . . . , Tn, then the log-price PTi

is given by

PTi
=

1

2
(log(bTi−) + log(aTi−)) , i = 1, . . . , n,

where bTi− (aTi−) denotes the last bid (ask) quote just before or at time Ti.

However one has to be aware that this choice of price measure reduces the econometric
issues of bid ask bounce and price discreteness but it does not eliminate these problems
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Figure 1. Cubic smoothing splines of durations (left) and absolute returns (right).

as mentioned by Engle (2000). More sophisticated models or approaches in dealing with
market microstructure noise can be found e.g. in Aı̈t-Sahalia, Mykland, and Zhang (2005) or
Engle and Sun (2007) and references therein.

Autocorrelation in the diurnally adjusted durations was tested through a Ljung-Box test
with 15 degrees of freedom. The hypothesis of no correlation is rejected for all 19 days. An
ACD model was estimated for each day. We just considered the cases p, q ∈ {1, 2} and chose p
and q such that the test statistic of the Ljung-Box test with 15 degrees of freedom applied to
the fitted innovations ∆̂ti = ∆Ti

ψ̂i

, i = 1, . . . , n, was minimal. The hypothesis of no correlation

in the fitted innovations could not be rejected at the 0.05 significance level on each of the
19 days. Except for two days, where we fitted an ACD(1, 1) model, an ACD(2, 2) model
was utilised. The sums over the estimated coefficients vary mainly between 0.6 and 0.9, but
significantly smaller values such as 0.18 are also obtained for two of the days. Given the fitted
innovations we define through t0 = 0, ti = ti−1 + ∆̂ti , i = 1, . . . , n , the observations of the
ECOGARCH process as Gti = PTi

, i = 1, . . . , n .

The parameter ϑ
g of the ECOGARCH(1, 1) process is then estimated as explained in

Section 31. The estimated parameter values suggest that we have a leverage effect, which is
the case if θ̂n < 0, on 9 of the 19 days. On these days we observe different types of leverage
effects. We have the case that a positive jump to the log-price increases the log-volatility less
than a negative one (−γ̂n < θ̂n < 0), the case that a negative jump in the price process
decreases the log-volatility less than a positive one (γ̂n < θ̂n < 0) and also the case that
a negative jump in the log-price processes increases while a positive one decreases the log-
volatility (θ̂n < −|γ̂n|). From equation (3) we see that mostly long durations will decrease
the volatility as long as γ̂n is positive, which is the case for 17 of the 19 days. The parameter
a1 reflects strong dependence in the log-volatility process for most of the days by taking on
values between 0.0074 and 0.1577. However we also have two days with almost no correlation
since â1n is equal to 3.9915 and 4.9336 on those days. The estimated parameters (â1n, θ̂n, γ̂n)

1All calculations are done using MATLAB 7.6
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along with bootstrapped standard errors2 on days with strong persistence in the log-volatility
are shown in Figure 2. Due to the assumptions in the exponential ACD model the jump rate
λ should be one, which is confirmed by estimates λ̂n being close to one. Estimation results for
µ along with the full set of estimated parameters can be found in Czado and Haug (2009).
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Figure 2. Estimated parameters (â1n, θ̂n, γ̂n) together with bootstrapped standard errors on those days with
strong persistence in the log-volatility.

Given the parameter estimate ϑ̂
g
n we are able to estimate the volatility, which allows us to

compute the fitted innovations Ẑi = G∆ti
ti /σ̂ti−. Due to our assumptions there should be no

correlation in the squared fitted innovations. Therefore we performed a Ljung-Box test for
the squared fitted innovations Ẑ2

i on each day. The hypothesis of no correlation is rejected at
the 0.05 significance level only on May 15th. Over the remaining days the average p value is
equal to 0.76. The degrees of freedom df were chosen such that df ≈ √

n.
Mentionable is now that we obtained a suitable fit for most of the days although there is no
direct dependence between the volatility and the observed durations in our model. The log-
volatility process (2) depends only on the i.i.d. sequence of innovations (∆ti)i=1,...,n and not
on the observed or conditional durations. Therefore the dependence structure in the durations
does not influence the volatility process, which is in contrast to the results in Engle (2000),
Ghysels and Jasiak (1998) and Meddahi, Renault, and Werker (2006).

5. Conclusions

In this paper we introduced the ACD-ECOGARCH(1, 1) model to analyse ultra-high-frequency
data. The ACD model of Engle and Russell (1998) describes the dependence in the durations
whereas the ECOGARCH models the stochastic volatility of the price process. Both models
are linked through the innovation sequence of the ACD model. We have shown that the model
can be estimated by a QML approach. The limiting properties of the proposed estimator are
however not investigated. But this is to the best of our knowledge also an open problem in
the discrete time EGARCH model except for some special cases, see e.g. Straumann (2005).
The application to General Motors stock prices demonstrates the potential usefulness of this

2We computed 999 residual-based bootstraps. For details on residual-based bootstrap see e.g.
Corradi and Iglesias (2008) and references therein.
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class of models. They are able to identify and quantify a leverage effect present in the data.
On a daily basis different behaviours are detected.
We like to note that this model assumes that all jumps are observable and that the driving
Lévy process is of compound Poisson type. Although we successfully fitted the model to ultra-
high-frequency data these assumptions certainly will not hold for all kinds of data. Relaxing
these assumptions would also allow to consider other distributions than the exponential dis-
tribution for the innovations in the ACD model. Therefore the development of estimation and
prediction methods for the general ECOGARCH model is necessary and subject of current
research.
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