
Multivariate ECOGARCH processes

Stephan Haug, Robert Stelzer

Abstract

A multivariate extension of the exponential continuous time GARCH(p, q) model
(ECOGARCH) is introduced and studied. Stationarity and mixing properties of the new
stochastic volatility model are investigated and ways to model a component-wise leverage
effect are presented.

1 INTRODUCTION

GARCH type processes have become very popular in financial econometrics to model returns
of stocks, exchange rates and other series observed at equidistant time points. They have
been designed (see [11] and [4]) to capture so-called stylised facts of such data, which are
e.g. stochastic volatility clustering, dependence without correlation and tail heaviness. An-
other characteristic is that stock returns seem to be negatively correlated with changes in the
volatility, i.e. that volatility tends to increase after negative shocks in the price and to fall
after positive ones. This effect is called leverage effect and cannot be modelled by a GARCH
type process without further extensions. This finding led [22] to introduce the exponential
GARCH process, which is able to model this asymmetry. In that paper the log-volatility of
the EGARCH(p, q) process was modelled as an ARMA(q, p− 1) process.

Starting with [21] continuous time models related to GARCH processes have been invest-
igated for a long time. As several important characteristic features of GARCH processes get
lost in the originally studied diffusion limits of GARCH processes, [17] introduced the COG-
ARCH process as a continuous time analogue of the GARCH process, which inherits many of
the characteristic features of GARCH processes. Likewise, [13] recently defined and analysed
an EGARCH process in continuous time and [8] presented first estimation results.

In this paper we develop and analyse a multivariate version of the exponential continuous
time GARCH process (ECOGARCH) of [13]. Note that in discrete time matrix exponential
GARCH processes have for the first time been studied by [16] in a truly multivariate sense,
whereas before only the variances, but not the whole covariance matrix, have been modelled
as EGARCH processes (cf. [23], [31] or [32] for some typical examples).

In our EGARCH specification we model the logarithm of the covariance matrix process as
a CARMA process in the symmetric matrices using the multivariate continuous time ARMA
processes (CARMA) introduced in [20]. Taking the exponential then automatically ensures
positive definiteness of the covariance matrix process. The standard mathematical fact that
the exponential of a symmetric matrix is positive definite seems to have been used only very
rarely in order to model covariance matrices so far (the recent paper [16], for instance, does
not credit any references for this idea). To the best of our knowledge the first appearance in
the statistics literature is [7].
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One main feature of our model is the inclusion of the leverage effect. We will give some
(approximate) calculations and examples which show how to choose the parameters to obtain
a leverage effect. In other multivariate models in continuous time inclusion of this effect is
far from easy. The multivariate Ornstein-Uhlenbeck type model of [24] looses (like in the
univariate case, see [2]) much of its tractability and its pure stochastic volatility nature. In
the multivariate COGARCH of [30] it seems necessary to have only positive jumps in the
volatility, thus one cannot have positive shocks which lead to a lower volatility. In the mul-
tivariate variance Gamma model of [28] one does not have a volatility process and needs the
multidimensional time process to be independent of the multidimensional Brownian motion.
Finally, in purely Brownian motion based models, e.g. the Wishart models of [12], one can
have negative dependence between volatility and price, but one can no longer speak of shocks
and look at the relation between jumps in the price and in the volatility, because there are no
jumps. Hence, in these models one has to quantify the leverage effect differently than we do
later on.

The paper is now organised as follows. At the end of this section some notation used
throughout is given. In Section 2 we first recall some basic facts on multivariate Lévy processes
and on the multivariate Lévy-driven CARMA process, as defined in [20]. We further give a
sufficient condition for the existence of the α-th exponential moment of a CARMA process.
In the second part of the section we introduce a general specification of the discrete time
multivariate EGARCH process and propose two ways of modelling asymmetric behaviour in
the vectorised log-volatility process. In the first part of Section 3 the multivariate ECOGARCH
process is defined and stationarity conditions are discussed. In the second part we show the
strong mixing property of the volatility and the return process and shortly consider the mean
and autocovariance function of the return process. The third part provides an approximate
calculation of the leverage effect. In the last part we briefly discuss a result of [29], viz. that for
an ECOGARCH(1,1) process there exists a sequence of EGARCH(1,1) processes converging to
the ECOGARCH process, which adds important insight regarding the relation between our
continuous time model and discrete time multivariate EGARCH processes. Finally, we present
some explicit examples along with simulations in the final Section 4.

1.1 Notation

Throughout this paper we write R+ for the positive real numbers including zero and we
denote the set of real d × m matrices by Md,m(R). If d = m, we simply write Md(R) and
denote the group of invertible d × d matrices by GLd(R), the linear subspace of symmetric
matrices by Sd, the (closed) positive semi-definite cone by S+

d and the open (in Sd) positive
definite cone by S++

d . Id stands for the d × d identity matrix, det(A) for the determinant
and σ(A) for the spectrum (the set of all eigenvalues) of a matrix A ∈ Md(R). Moreover,
vech : Sd → Rd(d+1)/2 denotes the “vector-half” operator that stacks the columns of the lower
triangular part of a symmetric matrix below another. Finally, A∗ is the adjoint of a matrix
A ∈ Md(R).

Norms of vectors and matrices are denoted by ‖ · ‖. If the norm is not specified then it is
irrelevant which particular norm is used.

The exponential of a matrix A is denoted by exp(A) or eA (see [14, Ch. 6] for a detailed
discussion). Recall that for square matrices it is defined by functional calculus and it holds
that

exp(A) =
∞

∑
k=0

Ak

k!
.

From functional calculus it is immediately clear that the matrix exponential maps the sym-
metric d× d matrices to the positive definite ones. Moreover, we denote by A1/2 the unique
positive semi-definite square root of a matrix A ∈ S+

d .
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For a matrix A we denote by Aij the element in the i-th row and j-th column and this
notation is extended to processes in a natural way.

Regarding all random variables and processes we assume that they are defined on a
given appropriate filtered probability space (Ω,F , P, (Ft)t∈R+) satisfying the usual hypo-
theses (complete and right continuous filtration). Lp denotes as usual the space of all random
variables with a finite p-th moment, i.e. all random variables X with E(‖X‖p) < ∞ in a
multivariate setting.

2 THE BUILDING BLOCKS

Before we introduce a general specification of the discrete time multivariate EGARCH process,
we briefly review multivariate Lévy and CARMA processes.

2.1 Multivariate Lévy and Lévy-driven CARMA processes

2.1.1 Basic facts on multivariate Lévy processes

Now we state some elementary properties of multivariate Lévy processes that will be needed.
For a more general treatment and proofs we refer to [27], [1] or [25].

We consider a Lévy process L = (Lt)t∈R+ (where L0 = 0 a.s.) in Rd determined by its
characteristic function E

[
ei〈u,Lt〉

]
= exp{tψL(u)}, t ≥ 0, in the Lévy-Khintchine form where

ψL(u) =i〈γL, u〉 − 1
2
〈u, CLu〉+

∫
Rd

(
ei〈u,x〉 − 1− i〈u, x〉1[0,1](‖x‖)

)
νL(dx)

for u ∈ Rd, γL ∈ Rd, CL ∈ S+
d and νL is a measure on (Rd,B(Rd)) that satisfies νL({0}) = 0

and
∫
Rd

(‖x‖2 ∧ 1) νL(dx) < ∞. The measure νL is referred to as the Lévy measure of L. A Lévy

process is said to be a pure jump one if the Brownian part vanishes, i.e. CL = 0.
It is a well-known fact that to every càdlàg Lévy process L on Rd one can associate a

random measure NL on R+ ×Rd \ {0} describing the jumps of L (see e.g. [15, Section II.1]).
For any measurable set B ⊂ R+ ×Rd \ {0},

NL(B) = ]{s ≥ 0 : (s, Ls − Ls−) ∈ B}.

The jump measure NL is a Poisson random measure (as defined in [15, Definition II.1.20]) on
R+ ×Rd \ {0} with intensity measure nL(ds, dx) = ds νL(dx). By the Lévy-Itô decomposition
we can rewrite L almost surely as

Lt = γLt + Bt +
∫

‖x‖≥1

∫ t

0
x NL(ds, dx) + lim

ε↓0

∫
ε≤‖x‖≤1

∫ t

0
xÑL(ds, dx) (2.1)

for every t ≥ 0. Here B is a Brownian motion in Rd with covariance matrix CL, ÑL(ds, dx) =
NL(ds, dx)− dsνL(dx) is the compensated jump measure, the terms in (2.1) are independent
and the convergence in the last term is a.s. and locally uniform in t ≥ 0.

In the sequel we will sometimes work with a two-sided Lévy process L = (Lt)t∈R, con-
structed by taking two independent copies (L1,t)t∈R+ , (L2,t)t∈R+ of a one-sided Lévy process
and setting

Lt =

{
L1,t if t ≥ 0
−L2,−t− if t < 0.
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Assuming that νL satisfies additionally
∫

‖x‖>1
‖x‖2 νL(dx) < ∞, L has finite mean and covari-

ance matrix ΣL given by ΣL = CL +
∫
Rd

xx∗ νL(dx).

For the theory of stochastic integration and SDEs (with respect to Lévy processes and/or
random measures) we refer to any of the standard texts, e.g. [15], [25] or [1].

2.1.2 Multivariate Lévy-driven CARMA processes

As the name “continuous time ARMA” (CARMA) already suggests, these processes are the
continuous time analogue of the well-known ARMA processes. A d-dimensional CARMA(q, p)
process Y with q, p ∈ N0 can be viewed as the stationary solution to the formal differential
equation:

Q(D)Yt = P(D)DLt ,

where L = (Lt)t∈R is a d-dimensional Lévy process and D the differential operator with
respect to t.

Q(z) = zq + A1zq−1 + A2zq−2 + . . . + Aq

P(z) = B0zp + B1zp−1 + . . . + Bp

with B0, . . . , Bp, A1, . . . , Aq ∈ Md(R), Aq ∈ GLd(R) and B0 6= 0 are referred to as the autore-
gressive and moving average polynomial, respectively. In order to be able to define CARMA
processes properly one needs q > p and that the zeros of det(Q(z)) have all strictly negative
real parts. Then the CARMA(q, p) process Y is defined as the unique stationary solution of

Yt = (Id, 0, . . . , 0)Xt (2.2)
dXt = AXtdt + B̃dLt, (2.3)

where

A =


0 Id 0 · · · 0
0 0 Id · · · 0
...

...
...

. . .
...

0 0 0 · · · Id
−Aq −Aq−1 −Aq−2 · · · −A1

 ∈ Mdq(R)

and B̃ = (B̃∗1 , B̃∗2 , . . . , B̃∗q )∗ is a qd× d matrix with elements B̃q−j = −∑
q−j−1
i=1 Ai B̃q−j−i + Bp−j

for j = 0, 1, . . . , q − 1 (setting Bi = 0 for i < 0). The process X is usually called state space
representation.

Later on we need the following result on the existence of exponential moments. By Ei :
R\{0} → R we denote the exponential integral, i.e.

Ei(x) =
∫ x

−∞

et

t
dt = γ + ln |x|+

∞

∑
k=1

xk

k · k!
for all x ∈ R\{0} (2.4)

taking the Cauchy principal value of the integral for x > 0 and γ being the Euler constant.

Proposition 2.1. Let Y be a stationary d-dimensional CARMA(q, p) process satisfying

σ(A) ⊂ (−∞, 0) + iR ,

‖ · ‖ a norm on Rd and its induced operator norm, α > 0 and C, b > 0 such that

‖(Id, 0, . . . , 0)eAsB̃‖ ≤ Ce−bs
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for all s ≥ 0. If ∫
‖x‖≥1

Ei(αC‖x‖)νL(dx) < ∞ , (2.5)

then E
(

eα‖Y0‖
)
< ∞.

Let max(<(σ(A))) be the maximal real part of all eigenvalues of A. Then for all
0 < b < −max(<(σ(A))) there exists a C > 0 such that ‖(Id, 0, . . . , 0)eAsB̃‖ ≤ Ce−bs holds
for all s ≥ 0. If A is diagonalisable this holds also for b = −max(<(σ(A))). Furthermore, (2.5) is
implied by ∫

‖x‖≥1
eαC‖x‖νL(dx) < ∞. (2.6)

Proof. It is elementary to see (using e.g. the Jordan decomposition of A) that σ(A) ⊂ (−∞, 0)+
iR implies for all 0 < b < −max(<(σ(A))) that there exists a C > 0 such that
‖(Id, 0, . . . , 0)eAsB̃‖ ≤ Ce−bs holds for all s ≥ 0. If A is diagonalisable, this also shows that one
can take b = −max(<(σ(A))).

From Proposition 3.27 of [20] we know that the stationary distribution of Y is infinitely
divisible. Denote by (γY, σY, νY) the characteristic triplet of the stationary distribution of Y.
[27, Theorem 25.3] implies that for all α > 0 we have E(eα‖Y1‖) < ∞ if and only if∫

‖x‖≥1
eα‖x‖νY(dx) < ∞.

Proposition 3.27 of [20] implies∫
‖x‖≥1

eα‖x‖νY(dx) =
∫ ∞

0

∫
Rd

eα‖(Id,0,...,0)eAs B̃x‖1[1,∞)(‖(Id, 0, . . . , 0)eAsB̃x‖)νL(dx)ds

≤
∫ ∞

0

∫
Rd

eαCe−bs‖x‖1[1,∞)(αCe−bs‖x‖)νL(dx)ds

=
∫
‖x‖≥1/(αC)

∫ ln(αC‖x‖)/b

0
eαCe−bs‖x‖dsνL(dx)

=
1
b

∫
‖x‖≥1/(αC)

∫ αC‖x‖

1

ez

z
dzνL(dx)

=
1
b

∫
‖x‖≥1/(αC)

(Ei(αC‖x‖)− Ei(1)) νL(dx).

Since νL is a Lévy measure,
∫
‖x‖≥1/(αC) Ei(1)νL(dx) < ∞ for all α > 0 and the integral∫

‖x‖≥1/(αC) Ei(αC‖x‖)νL(dx) is finite if and only if
∫
‖x‖≥1 Ei(αC‖x‖)νL(dx) < ∞. Therefore

(2.5) is sufficient for E(eα‖Y1‖) < ∞.
From (2.4) it follows that for any c > 0 there exists a K(c) > 0 such that |Ei(x)| ≤ K(c)ex

for all x ≥ c. This shows that (2.6) implies (2.5).

If (q, p) = (1, 0), A1 is diagonal or unitarily diagonalisable, ‖ · ‖ is the Euclidean norm and
B0 = Id, then one can take b = −max(<(σ(A))) and C = 1. So a d-dimensional CARMA(1,0)
process (OU process) with unitarily diagonalisable A has at least as many exponential mo-
ments as the driving Lévy process.

2.2 Multivariate EGARCH processes in discrete time

Multivariate EGARCH processes have been introduced recently in [16] as a natural extension
of the univariate model of [22]. Yet, it should be noted that the definition below is more
general than the one of [16]. For the necessary background on multivariate ARMA processes
we refer to [5].
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Definition 2.2 (Multivariate Discrete Time EGARCH(p,q)). Let d, p, q ∈ N, µ ∈ Sd, α1, . . . ,
αq, β1, . . . , βp ∈ Mm(R) with m = d(d+1)

2 , ε = (εn)n∈Z an i.i.d. sequence of Rd-valued random
variables with E(ε1) = 0 and Var(ε1) = Id and f : Rd → Rm a measurable function such that
f (ε1) ∈ L2. Suppose αq 6= 0 , βp 6= 0 and that

det(1− α1z− · · · − αqzq) 6= 0

on {z ∈ C | |z| ≤ 1}. Then the process Y = (Yt)t∈Z, where

Yt = exp((µ + Ht)/2)εt

and the vectorised log volatility H is given by

vech(Ht) =
p

∑
k=1

βk f (εt−k) +
q

∑
k=1

αkvech(Ht−k)

for all t ∈ Z, is called an EGARCH(p, q) process.

Above we have considered a general transformation f of the noise sequence ε. Concrete
specifications should be made in such a way that the model exhibits some desired properties,
e.g. a leverage effect (i.e. an asymmetric response to positive and negative shocks). In the
univariate case the “standard choice” introduced originally in [22] is

f (η) = θη + γ(|η| −E(|ε1|))

with some real parameters θ, γ. This choice allows for a leverage effect, is at the same time of
a simple structure and ensures E( f (ε1)) = 0. The logarithmic volatility models put forth in
[16] can all be transformed into our above model using appropriate choices of f . However, all
of them lead to functional forms involving only the individual components εi,t, i = 1, . . . , d,
of the innovation sequence ε and their absolute values |εi,t| in a linear manner. In particular,
crossproducts of the form εi,tεj,t do not enter the specification of f . Dependence on these
crossproducts seems, however, desirable, especially when comparing things to multivariate
GARCH specifications. We thus suggest two new possible choices for f now. The first possible
choice

f (η) = Θη + Γ
(

vech
(
(ηη∗)1/2

)
−E

(
vech

(
(ε1ε∗1)

1/2
)))

(2.7)

with η ∈ Rd, Θ ∈ Mm,d(R) and Γ ∈ Mm(R) is a straightforward multivariate extension of
the standard choice. Note that (ηη∗)1/2 can be interpreted as an extension of the absolute
value to a multidimensional setting and that

(
(ηη∗)1/2

)
ij
= ηiηj/‖η‖2 with ‖ · ‖2 denoting

the Euclidean norm on Rd. The second possibility we suggest is to use a generalised standard
choice component-wise, viz.

f (η) = vech(g(η)−E(g(ε1))) with (2.8)
g : Rd → Sd, (η1, η2, · · · , ηd) 7→

(
gij(ηi, ηj)

)
1≤i,j≤d

gii(ηi, ηi) := θi,iηi + γi,i|ηi| for i = 1, 2, . . . , d

gij(ηi, ηj) := θi,j
ηiηj√
|ηiηj|

+ γi,j

√
|ηiηj| for i = 1, 2, . . . , d, j = 1, 2, . . . , i− 1

gij(ηi, ηi) := gji(ηi, ηj) for i = 1, 2, . . . , d, j = i + 1, i + 2, . . . , d

where θi,j, γi,j with i = 1, 2, . . . , d, j = 1, 2 . . . , i are real parameters.
The following proposition shows that f as specified in (2.7) or (2.8) satisfies the required

conditions for EGARCH processes.
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Proposition 2.3. Let ε1 be an Rd-valued random variable with ε1 ∈ L2 and f : Rd → Rm as specified
in Equation (2.7) or (2.8). Then f is well-defined and f (ε1) ∈ L2.

Proof. If f is specified by (2.8) this follows from an element-wise application of the Cauchy-
Schwarz inequality.

If f is given by (2.7) we are free to choose any norm for the proof. Thus we work in the
following with the Euclidean norm ‖ · ‖2 on Rd, resp. Rm, and the induced operator norm on
matrix spaces. Elementary calculations give

∥∥(ε1ε1
∗)1/2

∥∥
2 = ‖ε1‖2, which implies the well-

definedness. Likewise, we use the operator norm ‖ · ‖ induced by these choices for the vech
operator. We have

‖ f (ε1)‖2 ≤ ‖Θ‖2‖ε1‖2 + ‖Γ‖2

(
‖vech‖

∥∥∥(ε1ε1
∗)1/2

∥∥∥
2
+
∥∥∥E
(

vech
(
(ε1ε1

∗)1/2
))∥∥∥

2

)
.

Using Jensen’s inequality one obtains∥∥∥E
(

vech
(
(ε1ε1

∗)1/2
))∥∥∥

2
≤ ‖vech‖E(‖ε1‖2).

Thus
‖ f (ε1)‖2 ≤ (‖Θ‖2 + ‖Γ‖2‖vech‖) ‖ε1‖2 + ‖Γ‖2‖vech‖E(‖ε1‖2).

Since ε1 ∈ L2 this immediately implies f (ε1) ∈ L2.

3 MULTIVARIATE EXPONENTIAL COGARCH

3.1 Definition and stationarity

Now we define the exponential continuous time GARCH(p, q) process by specifying the vech-
transformed log-volatility process as a CARMA(q, p− 1) process.

Definition 3.1. Let L = (Lt)t≥0 be a d-dimensional zero-mean Lévy process with Lévy measure νL
such that

∫
‖x‖≥1 ‖x‖

2νL(dx) < ∞ and associated jump measure NL. Furthermore, let h : Rd → Rm

with m = d(d+1)
2 be a measurable function satisfying∫

Rd
‖h(x)‖2νL(dx) < ∞, (3.9)

p, q ∈ N with q ≥ p and A1, . . . , Aq, B0, . . . , Bp−1 ∈ Mm(R) with Aq ∈ GLd(R) and B0 6= 0 such
that all zeros of the determinant det(Q(z)) of the autoregressive polynomial Q(z) := zq + A1zq−1 +
A2zq−2 + . . . + Aq, z ∈ C, have strictly negative real part.

Then we define the d-dimensional exponential COGARCH(p, q) process G, abbreviated to ECO-
GARCH(p, q), as the stochastic process satisfying,

dGt := exp((µ + Ht−)/2)dLt, t > 0, G0 = 0,

where µ ∈ Sd and the log-volatility process H = (Ht)t≥0 is a process in Sd with vectorial state space
representation

vech(Ht) := (Im, 0, . . . , 0)Xt, t ≥ 0, (3.10)
dXt = AXtdt + B̃dMt , t > 0, (3.11)

with the initial value X0 ∈ Rqm being independent of the driving Lévy process L and

Mt :=
∫ t

0

∫
Rd\{0}

h(x)ÑL(ds, dx) , t ≥ 0,
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being a zero-mean Lévy process. The matrices A ∈ Mqm(R) and B̃ ∈ Mqm,m(R) are defined by

A =


0 Im 0 · · · 0
0 0 Im · · · 0
...

...
...

. . .
...

0 0 0 · · · Im
−Aq −Aq−1 −Aq−2 · · · −A1

 , B̃ =


B̃1
B̃2
...

B̃q−1
B̃q

 ,

with coefficients B̃q−j = −∑
q−j−1
i=1 Ai B̃q−j−i + Bp−1−j for j = 0, 1, . . . , q − 1 (setting Bi = 0 for

i < 0). If p = q = 1, we have A = −A1 and B̃ = B0.

In a financial context G is understood to be the log price process of d stocks with volatility
(instantaneous variance) process exp(µ + H). Moreover, the log returns over a time interval of
length r > 0 ending at time t, which are especially relevant in a financial context, are described
by the increments of G

G(r)
t := Gt − Gt−r =

∫
(t−r,t]

exp((µ + Hs−)/2) dLs , t ≥ r > 0 . (3.12)

Thus our continuous time model gives us the possibility to model ultra high frequency data,
which consists of returns over varying time intervals. On the other hand an equidistant
sequence of such non-overlapping returns of length r is given by (G(r)

nr )n∈N. Such a sequence
then corresponds to a discrete time multivariate EGARCH process Y.

Remark 3.2. (a) The condition (3.9) ensures that the integral defining the Lévy process M is indeed
well-defined and that M has a finite variance.

(b) After extending the Lévy process (Mt)t∈R+ to one defined on the whole real line the unique
stationary version of H can be written as

vech(Ht) =
∫ t

−∞
(Im, 0, . . . , 0)eA(t−s)B̃dMs .

(c) If q ≥ p + 1 the log-volatility process is continuous and (q− p− 1) times differentiable, which
follows from the state space representation of vech(H) (cf. [20, Proposition 3.32]). In particular, the
volatility will only contain jumps for p = q.

So far we have considered a general transformation h of the jumps of the driving Lévy
process L. Concrete specifications should be made in such a way that the model exhibits
similar properties, e.g. a leverage effect, as in the discrete time case. The choice

h(η) = Θη + Γvech
(
(ηη∗)1/2

)
, (3.13)

with Θ ∈ Mm,d(R) and Γ ∈ Mm(R), being the continuous time analogue of (2.7) clearly is
always a valid choice, as an inspection of the proof of Proposition 2.3 shows. Again it is
noteworthy that this extends the standard choice from the univariate literature.

A choice analogous to (2.8) is
h(η) = vech(g(η)) (3.14)

with g as in (2.8). That
∫
Rd ‖h(x)‖2νL(dx) is finite is elementary to see.

Both specifications (3.13) and (3.14) obviously allow for asymmetric responses to positive
and negative shocks in the logarithmic (co)variance components. Concrete examples for the
choice of Θ and Γ in (3.13) are given in Section 4.
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Proposition 3.3. Let H and G be as in Definition 3.1 with h satisfying (3.9). If the eigenvalues
of A, which are the same as the zeros of det(Q(z)), all have negative real parts and X0 has the
same distribution as

∫ ∞
0 eAuB̃dMu, then X, H and exp((µ + H)/2) are strictly stationary. Further

(G(r)
nr )n∈N is strictly stationary.

Proof. The result on X and H follows from [20, Theorem 3.12]. If H is stationary the station-
arity of (G(r)

nr )n∈N is obvious, since the increments of L are stationary and independent by
definition.

Remark 3.4. Necessary and sufficient condition for the existence of a unique stationary volatility
process exist up to now only in the univariate case. Suppose that d = 1, q ≥ 1, (B0, . . . , Bq) 6= 0
and the Lévy process M is not deterministic. Then equations (3.10) and (3.11) have a unique strictly
stationary solution H if and only if E(log+(|M1|)) < ∞ and all singularities of the meromorphic
function z 7→ Q(z)/P(z) on the imaginary axis are removable. This result follows from [6, Theorem
4.2]. Moreover, [20, Proposition 3.30] show that a multivariate CARMA process has finite second
moments if and only if the driving Lévy process has finite second moments, provided B̃ is injective.
This shows that in the univariate case the conditions of Definition 3.1 are (up to adding common
zeros in Q and P) basically the necessary and sufficient conditions for the existence of the logarithmic
volatility process H in L2. We conjecture that a comparable result is true in the multivariate case,
but this first requires extending the results of [6] to the multivariate case which is intricate and hence
beyond the scope of the present paper.

3.2 Mixing and second order properties

Mixing properties (see [10] for a comprehensive treatment) are useful for a number of ap-
plications. In particular for asymptotic statistics, since consistency results and central limit
theorems exist for mixing processes. Thus we will derive mixing properties of the strictly
stationary volatility process and the return process. First we recall the definition of strong
mixing, which is also called α-mixing for a process with continuous time parameter.

Definition 3.5 ([9]). For a process Y = (Ys)s≥0 define the σ-algebras FY
[0,u] := σ((Ys)s∈[0,u]) and

FY
[u+t,∞) := σ((Ys)s≥u+t) for all u ≥ 0. Then Y is called strongly or α-mixing, if

α(t) = sup
u≥0

α(FY
[0,u],F

Y
[u+t,∞))

:= sup
u≥0

sup{|P(A ∩ B)− P(A)P(B)| : A ∈ FY
[0,u], B ∈ FY

[u+t,∞)} → 0,

as t→ ∞.

Above we denote by σ(·) the generated completed σ-algebra. The strong mixing property
with exponential rate of the log-volatility, volatility and return process is the subject of the
next theorem. Here strong mixing with exponential rate (exponential α-mixing) means that
α(t) decays to zero exponentially fast for t→ ∞ .

Theorem 3.6. Let vech(H) be defined by (3.10) and (3.11). Assume that the eigenvalues of A all have
negative real parts and X0 has the same distribution as

∫ ∞
0 eAuB̃dMu, hence H and exp(µ + H) are

strictly stationary.
(i) Then there exist constants K > 0 and a > 0 such that

αH(t) ≤ K · e−at and αexp(µ+H)(t) ≤ K · e−at , as t→ ∞,

where αH(t) and αexp(µ+H)(t) are the α-mixing coefficients of the log-volatility and volatility process,
respectively.
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(ii) Then for all r > 0 the discrete time process (G(r)
nr )n∈N, where G(r)

nr is defined in (3.12), is strongly
mixing with exponential rate and ergodic.

Proof. (i) Since vech(H) is a CARMA(q, p− 1) process the result follows from [20, Proposition
3.34] and the fact that α-mixing is preserved under continuous transformations.
(ii) The proof works along the lines of the proof of [13, Theorem 3.1].

Corollary 3.7. Let (tn)n∈N0 be a strictly increasing sequence of observation time points with
limn→∞ tn = ∞ and tn = knc for all n ∈ N0, where kn ∈ N0 and c > 0. Then the discrete time
process (G(∆n)

tn
)n∈N,

G(∆n)
tn

:= Gtn − Gtn−1 ,

with ∆n = tn − tn−1, is strongly mixing with exponential rate.

Proof. Simply expand the grid of observation times to an equidistant one with step size c.
Then clearly

FG(∆·)
1,2,...,l ⊂ FG(c)

1,2,...,tl/c and FG(∆·)
k+l,k+l+1,... ⊂ FG(c)

tk+l/c,tk+l+1/c,... ,

where FG(∆·)
1,2,...,l is the σ-algebra generated from the random vectors G(∆1)

t1
, . . . , G(∆l)

tl
and the

other σ-algebras are defined analogously. An application of Theorem 3.6 then provides the
result.

Now we derive the second order moment structure of the return process (G(r)
t )t≥r consider-

ing only the case of a strictly stationary volatility process.

Proposition 3.8. Let L be a Lévy process with E(L1) = 0 and E(‖L1‖2) < ∞. Assume that the
log-volatility process H is strictly stationary and E(‖ exp((µ+ Ht)/2)‖) < ∞. Then E(‖Gt‖2) < ∞
for all t ≥ 0, and for every t, h ≥ r > 0 it holds that

EG(r)
t = 0

E(G(r)
t (G(r)

t )∗) =
∫ r

0
E(exp((µ + Hs−)/2)E(L1L∗1) exp((µ + Hs−)/2))ds

Cov(G(r)
t , G(r)

t+h) = 0.

The results follow analogously to the univariate case in [13, Proposition 5.1]. Note that
the second order moment structure of vech(H) is clear from [20], whereas for the volatility
exp(µ+ H) and the “squared returns” G(r)

t (G(r)
t )∗ the formulae obtained in the univariate case

are already not explicit. Thus we refrain from stating them in our multivariate setting.
Regarding the finiteness of “exponential moments” of H needed above we have the fol-

lowing result.

Proposition 3.9. (i) Let ‖ · ‖∗ be an algebra norm on Sd and the ECOGARCH log-volatility process
H be strictly stationary. Then

E(eα1α2‖H1‖∗) < ∞ with α1, α2 > 0 (3.15)

implies
E (‖ exp(α1(µ + H1))‖α2

∗ ) < ∞. (3.16)

(ii) Let moreover C > 0 be such that

sup
x∈Rm,‖vech−1(x)‖∗=1

{∥∥∥vech−1
(
(Im, 0 . . . , 0)eAsB̃x

)∥∥∥
∗

}
≤ Ce−bs
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for all s ≥ 0 and some b > 0. Then (3.15) is in turn implied by

∫
x∈Rd,‖vech−1(h(x))‖∗≥1

Ei
(

α1α2C‖vech−1(h(x))‖∗
)

νL(dx) < ∞

or ∫
x∈Rd,‖vech−1(h(x))‖∗≥1

exp
(

α1α2C‖vech−1(h(x))‖∗
)

νL(dx) < ∞.

Proof. (i) Since ‖ · ‖∗ is an algebra norm, ‖ exp(α1(µ + H1))‖α2∗ ≤ eα1α2‖µ‖∗eα1α2‖H1‖∗ . This im-
mediately shows (i).

(ii) The second part follows from Proposition 2.1 using the norm ‖ · ‖ = ‖vech−1(·)‖∗
on Rm and the definition of M implying νM(dx) = νL(h−1(dx)), because vech(H) is an m-
dimensional stationary CARMA process.

3.3 Approximate Calculation of the Leverage effect

Intuitively it seems obvious that our model is capable of reproducing the leverage effect (for
the first asset) when one specifies the function h in such a way that h(ε)1 is larger when ε1 is
negative (price of the first asset goes down) than when ε1 is negative. However, quantifying
the leverage effect in our model is a very intricate issue. Therefore, we will below only give
an approximate calculation in the general case. However, in Section 4 we will show the
presence in concrete simulated examples and also one general class of models in dimension
two where the presence of the leverage effect can be shown rigorously. Note that we quantify
the leverage effect by looking at the covariance Cov(∆Gt, vecp(exp(µ + Ht))) of a jump in
the price process and the volatility immediately after the jump. It is easy to see that this
quantity equals Cov(∆Gt, ∆(vecp(exp(µ + Ht)))) if E(∆Lt) = 0. To make everything well-
defined all these expectations and covariances have to be understood as being conditional on
‖∆Lt‖ > ε for some ε > 0 (if L is a compound Poisson process, ε = 0 may also be taken).
Based on this quantity we say that the leverage effect is present (in e.g. the first component) if
(Cov(∆Gt, vecp(exp(µ + Ht))))11 < 0 (for all “sufficiently small” minimal jump sizes ε).

One of the main problems, why it is much more complicated to quantify the leverage effect
compared to the univariate case, is the following. In the univariate case the sign of ∆Gt equals
the sign of ∆Lt. However, in the multivariate case (∆G)1,t = ∑d

i=1(exp((µ + Ht−)/2))1i(∆Li,t)
maybe for instance negative and (∆L1,t) positive, since the current covariance structure allows
also jumps in the other components of L to affect (∆G1,t). Another problem is that the matrix
exponential is not an operator monotone function (see [3, Problem V.5.1] or [14, p. 554]). This
means that if X, Y ∈ Sd satisfy X ≥ Y, i.e. X − Y ∈ S+

d , this does not imply that eX ≥ eY.
Likewise no componentwise monotonicity holds, since in principle all components of X ∈ Sd
contribute to, say, (eX)11. These problems are probably also the reason why [16] claims but
does not show that his models may capture the leverage effect.

Now we give an approximate calculation quantifying the leverage effect.
Denoting Frechet/total differentials with D and setting f : Md(R)→ Md(R), X 7→ exp(X)

we have

D f (A) : Md(R)→ Md(R), X 7→
∫ 1

0
e(1−t)AXetAdt.

see [3, Example X.4.2 (v)]. Below all expectations and covariances have formally to be under-
stood as being conditional on ‖∆Lt‖ > ε with some ε > 0. If L is compound Poisson, we can
take ε = 0. Let G now be an ECOGARCH(p, p) process driven by a Lévy process L satisfying
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E(∆Lt) = 0. Then using a first order Taylor approximation

Cov(∆Gt, vecp(exp(µ + Ht))
∗)

= E
(

exp((µ + Ht−)/2)∆Ltvecp(exp(µ + Ht− + vech−1(B̃1∆Mt)))
∗
)

≈ E (exp((µ + Ht−)/2)∆Ltvecp(exp(µ + Ht−))
∗) + E

(
exp((µ + Ht−)/2)∆Lt

×
∫ 1

0
vecp

(
exp((1− u)(µ + Ht−))vech−1(B̃1∆Mt) exp(u(µ + Ht−))

)∗
du

)

= E

(
exp((µ + Ht−)/2)∆Ltvecp(vech−1(B̃1∆Mt))

∗

×
∫ 1

0
exp(u(µ + Ht−))⊗ exp((1− u)(µ + Ht−)) , du

)

Hence, using the stochastic continuity of H

vecp (Cov(∆Gt, vecp(exp(µ + Ht))
∗))

≈ E

(∫ 1

0
exp(u(µ + Ht−))⊗ exp((1− u)(µ + Ht−)) du⊗ exp((µ + Ht−)/2)

)
×E

(
vecp

(
∆Ltvecp(vech−1(B̃1∆Mt))

∗
))

= E

(∫ 1

0
exp(u(µ + Ht))⊗ exp((1− u)(µ + Ht)) du⊗ exp((µ + Ht)/2)

)
×E

(
vecp(vech−1(B0h(∆Lt))⊗ ∆Lt)

)
. (3.17)

A very nice property of the above expression is that this approximation of Cov(∆Gt,
vecp(exp(µ + Ht))∗) factorises into one quantity which only depends on the stationary distri-
bution of H and a second factor depending only on the jumps of L. The second factor can be
easily calculated from the Lévy measure of L as

E
(

vecp(vech−1(B0h(∆Lt))⊗ ∆Lt)
)
= νL(‖x‖ > ε)−1

∫
‖x‖>ε

vecp(vech−1(B0h(x))⊗ x)νL(dx)

and regarding the first factor one should note that the stationary distribution of H is known
via its characteristic function/characteristic triplet (see [20, Proposition 3.27]), since H is an
MCARMA process. The second factor also resembles our intuition that we have the leverage
effect, if B0 and h are such that B0h(x) is bigger for “negative” x than for “positive” ones. Of
course, this is only valid when the first factor is such that the signs of the elements corres-
ponding to the variance (=diagonal) components of exp(µ + Ht) are preserved.

Let us illustrate this with a concrete example where we without loss of generality consider
the first component. Assume h is of the form (3.13) and the components of L are completely
independent, i.e. if L jumps then only one component jumps or in other words νL is concen-
trated on the axes. Then we have that

E
(

vecp(vech−1(B0h(∆Lt))⊗ ∆Lt)1

)
= E ((B0h(∆Lt))11∆L1,t)

= E

((
m

∑
i=1

B0,1i (Θi1∆L1,t + Γi1|∆L1,t|)
)

∆L1,t

)
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This shows – assuming the first factor in (3.17) does not change the sign of the first component
– that we have a leverage effect in the first component when ∑m

i=1 B0,1i (Θi1∆L1,t + Γi1|∆L1,t|) is
always positive, but larger for negative values of ∆Lt than for positive ones, and the jumps of L
have a symmetric distribution. Thus, like in the standard univariate case we have the leverage
effect in the first component if ∆L has a symmetric distribution and B0,1i, Γi,1,−Θi1, Γi,1 +Θi,1 ≥
0 for all i = 1, . . . , m.

3.4 Approximation of ECOGARCH(1,1) processes by EGARCH(1,1) processes

In this section we summarise a result of [29] which provides an important link to discrete time
EGARCH models and may serve as a starting point for estimating ECOGARCH(1,1) processes
based on discrete observations. As [29] is concerned with approximations of SDEs in general
and the presentation and lengthy proofs there are rather technical, it seems worthwhile to
summarise the results for the ECOGARCH(1,1) process here.

For the rest of the section we will just consider the ECOGARCH(1,1) process G satisfying,

dGt = exp((µ + Ht−)/2)dLt, t > 0, G0 = 0,

where the vectorised log-volatility process Xt := (vech(Ht))t≥0 is the process in Rm satisfying

dXt = −A1Xtdt + B0dMt , t > 0,

with the initial value X0 ∈ Rm being independent of the driving Lévy process L. In [29] a
first jump approximation of multivariate Lévy driven stochastic differential equations is intro-
duced. This result was then used to show the convergence of a sequence of piecewise constant
processes determined by discrete time EGARCH(1,1) to the ECOGARCH(1,1) process in the
Skorokhod topology in probability. For a complete and separable normed space (E, ‖ · ‖E) we
denote the convergence of a sequence (Z(n))n∈N of E-valued càdlàg random processes in prob-
ability in the Skorokhod topology to a càdlàg random process Z by plimn→∞dE(Z(n), Z) = 0
with plim denoting the limit in probability and dE is a metric inducing the Skorokhod topo-
logy (see e.g. [18]). The result is then the following

Theorem 3.10 ([29], Theorem 4.1). Let (G, X) in Rd ×Rm be a d-dimensional ECOGARCH(1,1)
process G and its associated vectorised log-volatility process X = vech(H) with initial value (G0, X0).
Let (t(n)i )i∈N0 for each n ∈ N be a strictly increasing sequence in R+ with t(n)0 = 0 and limi→∞ t(n)i =

∞. Defining δ(n) = supi∈N

{
t(n)i − t(n)i−1

}
assume that limn→∞ δ(n) = 0.

Then there exists for each n ∈ N a function hn : Rd ×R+ → Rm and a sequence of independ-
ent random variables (ε

(n)
i )i∈N in Rd with finite variance and E(ε

(n)
i ) = 0 ∀ i, n ∈ N such that

hn

(
ε
(n)
i , t(n)i − t(n)i−1

)
has finite variance, E

(
hn

(
ε
(n)
i , t(n)i − t(n)i−1

))
= 0 and

plimn→∞dRd×Rm

(
(IY(n), X(n)), (G, X)

)
= 0 ,

where for each n ∈ N the process (IY(n), X(n)) in Rd ×Rm is defined by

(IY(n)
0 , X(n)

0 ) = (G0, X0),

IY(n)

t(n)i

= IY(n)

t(n)i−1

+ exp
((

µ + vech−1
(

X(n)

t(n)i−1

))
/2
)

ε
(n)
i ,

X(n)

t(n)i

= e−A1

(
t(n)i −t(n)i−1

)
X(n)

t(n)i−1

+ B0hn

(
ε
(n)
i , t(n)i − t(n)i−1

)
for all i ∈ N and

(IY(n)
t , X(n)

t ) =

(
IY(n)

t(n)i−1

, X(n)

t(n)i−1

)
for t ∈ (t(n)i−1, t(n)i ), i ∈ N.
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The sequence (ε(n)i )i∈N can be chosen to be i.i.d. provided t(n)i − t(n)i−1 = δ(n) for all i ∈ N.
If h is continuous, hn can be chosen such that the sequence of functions hn : Rd × R+ → Rm

satisfies

lim
n→∞

(
sup
z∈K

sup
i∈N

{∥∥∥hn

(
z, t(n)i − t(n)i−1

)
− h(z)

∥∥∥}) = 0 (3.18)

for all compact K ⊂ Rd. If h is uniformly continuous, hn can be chosen such that (3.18) holds with Rd

instead of K.

When the time grids are equidistant, i.e. t(n)i − t(n)i−1 = δ(n) for all i ∈ N, and (ε
(n)
i )i∈N is chosen

i.i.d., then the increments
(

Y(n)

t(n)i

)
i∈N

:=
(

IY(n)

t(n)i

− IY(n)

t(n)i−1

)
i∈N

of IY(n) are a discrete time mul-

tivariate EGARCH(1,1) process with associated vectorised log-volatility process
(

X(n)

t(n)i−1

)
i∈N

.

Only Var(ε(n)i ) = Id will usually not be satisfied, but [29, Theorem 4.4] provides a variant of
the above statement ensuring also this property up to a scaling corresponding to the size of
the time grid.

Remark 3.11. The function hn in Theorem 3.10 can be specified as hn : Rd ×R+ → Rm,

(z, t) 7→ h

(
z +

1− e−νL(J(n))t

νL
(

J(n)
) ∫

J(n)
xνL(dx)

)
− 1− e−νL(J(n))t

νL
(

J(n)
) ∫

J(n)
h(x)νL(dx) ,

where J(n) =
{

x ∈ Rd : ‖(x∗, h(x)∗)∗‖ > m(n)
}

and (m(n))n∈N is a positive sequence such that
condition (3.1) in [29] is satisfied. Based on a choice for h and given observations Gt1 , . . . , Gtn a quasi
maximum likehood type estimator for the unknown parameters could be defined similar as in [19].

4 EXAMPLES AND SIMULATIONS

In this section we demonstrate how to choose the parameters in the model to obtain a lever-
age effect. We simulate sample path trajectories for three different examples. The first two
examples are such that a leverage effect is present. To empirically control the leverage effect
we compute estimates for the following quantities

Corr(∆G1,t1,∗ , exp(µ + Ht1,∗)11) and Corr(∆G2,t2,∗ , exp(µ + Ht2,∗)22) , (4.19)

where ti,∗, i = 1, 2, is a jump time in the i-th component.
As a first example we consider a bivariate ECOGARCH(1,1) process. The driving Lévy

process L has the characteristic function

E[ei〈u,Lt〉] = exp
[
−1

2
〈u, I2u〉+

∫
R2
(ei〈u,x〉 − 1)νL(dx)

]
,

where νL is a finite measure with density

f (x) = λ

√
n1λ

n1 − 2

√
n2λ

n2 − 2
tn1

(√
n1λ

n1 − 2
x1

)
tn2

(√
n2λ

n2 − 2
x2

)
and tn denotes the density of the t-distribution with n degrees of freedom. In this particular
example we choose n1 = 4, n2 = 10 and the rate λ is set equal to 2. The log-volatility process
H has the vectorial state space representation
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vech(Ht) = Xt

dXt = −A1Xtdt + B̃1dMt

with

−A1 =

 −1.0490 −1.5078 −0.4814
−0.1496 0.1065 0.5105

1.1074 0.6021 −0.9310

 , B̃1 = B0 = I3

The Lévy process M is defined by the function

h(η) =

 −0.40 −0.40
−0.01 −0.01
−0.40 −0.40

 η +

 0.01 0 0
0 0.1 0
0 0 0.01

 vech
(
(ηη∗)1/2

)
.

From the choice of Θ and Γ it follows that future volatility should be negatively correlated

with current jumps in the price. The remaining parameter µ ∈ S2 is set to
(
−8 0
0 −8

)
.

In Figure 1 parts of the trajectories of the bivariate log-price G as well as the diagonal
elements of the volatility process exp(µ + H) are shown. The trajectories of the log-volatility
process where simulated by applying a stochastic Euler scheme over the time points consisting
of the jump times of the two compound Poisson processes and a grid with step size 0.01.

Figure 1: Simulated trajectories of the log-price process G in the top row and the diagonal elements of the volatility
process exp(µ + H) in the bottom row.

The driving Lévy process L has independent components. Nevertheless we get dependent
volatilities exp(µ+ H)11 and exp(µ+ H)22 due to the choice of parameters, as can be seen from
the empirical estimate of the crosscorrelation function ρ12(h) = Corr(exp(µ+ Ht+h)11, exp(µ+
Ht)22) in Figure 2, where a lag of one corresponds to 0.01 units of time.

To estimate the quantities in (4.19) we simulated the trajectories 1000 times and then aver-
aged over the 1000 estimates to get

Ĉorr(∆G1,t1,∗ , exp(µ + Ht1,∗)11) = −0.4665

Ĉorr(∆G2,t2,∗ , exp(µ + Ht2,∗)22) = −0.4570 .
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Figure 2: Empirical autocorrelation function ρ̂1 (top) and ρ̂2 (middle) of exp(µ + H)11 and exp(µ + H)22, respect-
ively, and the empirical crosscorrelationfunction ρ̂12 (bottom).

The corresponding empirical standard errors are 0.0083 and 0.0074, respectively.
This empirical result is also confirmed by the following Proposition.

Proposition 4.1. Let d = 2 and G a d-dimensional ECOGARCH(p, p) process with h given by (3.13).
Assume that the driving Lévy process L has independent components and that the distribution of the
jumps of Lk, k = 1, 2, is symmetric, i.e. for all ε > 0,

P(∆Lk,t ∈ dx | |∆Lk,t| > ε) = P(∆Lk,t ∈ −dx | |∆Lk,t| > ε) , t ≥ 0, k = 1, 2 .

Then conditionally on the event |∆Lk,t| > ε, the sign of

Cov(∆Gk,t, exp(µ + Ht)kk | |∆Lk,t| > ε)

is negative if {
(B̃1Θ)11 = (B̃1Θ)31 < 0 and (B̃1Θ)21 ≤ 0, k = 1
(B̃1Θ)32 = (B̃1Θ)12 < 0 and (B̃1Θ)22 ≤ 0, k = 2

.

Proof. In case |∆Lk,t| > ε and ∆Li,t = 0 for some timepoint t, the log-volatility matrix is equal
to

Ht =

(
h1,t h2,t
h2,t h3,t

)
,

where
hj,t = Xj,t− + (B̃1Θ)jk∆Lk,t + (B̃1Γ)ji(k)|∆Lk,t| , j = 1, 2, 3,

and i(k) = 1{1}(k) + 31{2}(k).
The volatility matrix at time t is then given by

exp(µ + Ht) =
1
τ

(
σ2

11,t σ2
12,t

σ2
12,t σ2

22,t

)
with

σ2
11,t = e(µ11+µ22+h1+h3)/2

(
τ cosh

(τ

2

)
+ (µ11 − µ22 + h1 − h3) sinh

(τ

2

))
σ2

12,t = 2(µ12 + h2)e(µ11+µ22+h1+h3)/2 sinh
(τ

2

)
σ2

22,t = e(µ11+µ22+h1+h3)/2
(

τ cosh
(τ

2

)
+ (µ22 − µ11 + h3 − h1) sinh

(τ

2

))
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and τ =
√
(µ11 − µ22 + h1 − h3)2 + 4(µ12 + h2)2 (see e.g. [26]).

Since the distribution of the jumps of Lk is symmetric, we obtain

E(∆Gk,t | |∆Lk,t| > ε) = 0 .

Define PL
ε (dx) = P(∆L1,t ∈ dx | |∆L1,t| > ε). Then we get for k = 1

Cov(∆G1,t, exp(µ + Ht)11 | |∆L1,t| > ε) = E(∆G1,t exp(µ + Ht)11 | |∆L1,t| > ε)

=
∫
{X−1

t− (R
3)}

exp
(

1
2
(µ + Ht(ω))

)
11

I(ω)dP(ω) ,

where

I(ω) =
∫

x>ε
xe

1
2 (µ11+µ22+X1,t−(ω)+X3,t−(ω)+((B̃1Γ)11+(B̃1Γ)31)x){

e(B̃1Θ)11+(B̃1Θ)31)
x
2

[
cosh

(
τ+(x)

2

)
+

τ̃+(x)
τ+(x)

sinh
(

τ+(x)
2

)]
− e−(B̃1Θ)11+(B̃1Θ)31)

x
2

[
cosh

(
τ−(x)

2

)
+

τ̃−(x)
τ−(x)

sinh
(

τ−(x)
2

)]}
PL

ε (dx)

with

τ̃s(x) = µ11 − µ22 + hs
1,t(x)− hs

3,t(x) , s ∈ {+,−},

τs(x) =
√
(τ̃s(x))2 + 4(µ12 + hs

2,t(x))2 ,

and

hs
j,t(x) =

{
Xj,t− + (B̃1Θ)j1x + (B̃1Γ)j1x, s = +
Xj,t− − (B̃1Θ)j1x + (B̃1Γ)j1x, s = − , j = 1, 2, 3.

An inspection of the integrand of I(ω) reveals that I(ω) is almost surely negative if
(B̃1Θ)11 = (B̃1Θ)31 < 0 and (B̃1Θ)21 ≤ 0, which implies that the sign of

Cov(∆G1,t, exp(µ + Ht)11 | |∆L1,t| > ε)

is negative. The same reasoning leads to the desired result for k = 2.

Remark 4.2. Jumps in the k-th component of G can of course also occur due to jumps in the j-th
component in L, j 6= k. The sign of

Cov(∆Gk,t, exp(µ + Ht)kk | |∆Lj,t| > ε) , j, k ∈ {1, 2}, j 6= k,

depends in this case also on the sign of exp
( 1

2 (µ + Ht(ω))
)

kj. To assure that the off-diagonal elements

in exp
( 1

2 (µ + H)
)

are also positive almost surely, we would have to assume that H is positive almost
surely. But this seems to be too restrictive.

In the second example we study a bivariate ECOGARCH(2,2) process. The driving Lévy
process L is the same as in the first example. The vectorial state space representation is in this
case given by

vech(Ht) = (I3, 0)Xt

dXt =

(
0 I3
−A2 −A1

)
Xtdt +

(
B̃1
B̃2

)
dMt ,
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with

−A1 =

 −1.0890 1.3086 0.2193
−1.2412 −0.6910 0.1966
−1.7537 −0.6331 −0.4548

 , −A2 =

 0.0466 −0.5511 0.3881
0.2271 −1.6854 0.7785
−0.9972 0.9893 0.0554



B̃1 = B0 = I3 B̃2 = −A1B0 + B1 =

 −0.0890 1.3086 0.2193
−1.2412 0.3090 0.1966
−1.7537 −0.6331 0.5452


The remaining parameters are chosen as for the ECOGARCH(1,1) process. In Figure 3 we

see again parts of the trajectories of the bivariate log-price G as well as the diagonal elements
of the volatility process exp(µ + H).

Figure 3: Simulated trajectories of the log-price process G in the top row and the diagonal elements of the volatility
process exp(µ + H) in the bottom row.

As in the first example we would again expect future volatilities to be negatively correlated
with current jumps in the price. To check this assumption we estimated again (4.19) from 1000
simulated trajectories and the average values are

Ĉorr(∆G1,t1,∗ , exp(µ + Ht1,∗)11) = −0.2018

Ĉorr(∆G2,t2,∗ , exp(µ + Ht2,∗)22) = −0.2243 .

The corresponding empirical standard errors are 0.0074 and 0.0116, respectively. We see again
a negative correlation between current returns and future volatility. The negative correlation
between jumps in the log-price and the future volatility can also be seen from the plots in
Figure 3.

As a third example we consider again the ECOGARCH(1,1) process of the first example.
The only differences are the matrices Θ and Γ. Now they are chosen in such a way that we will
have a positive correlation between current returns and future volatility. In particular they are
given by

Θ =

 0.40 0.40
0.01 0.01
0.40 0.40

 and Γ =

 0.01 0 0
0 0.10 0
0 0 0.01


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Averaging again over 1000 simulations we get the following empirical correlations

Ĉorr(∆G1,t1,∗ , exp(µ + Ht1,∗)11) = 0.3238

Ĉorr(∆G2,t2,∗ , exp(µ + Ht2,∗)22) = 0.2921 .

The corresponding empirical standard errors are 0.0073 and 0.00067, respectively, which shows
that this is an example for the non-leverage case. Sample trajectories for one of the simulations
are shown in Figure 4.

Figure 4: Simulated trajectories of the log-price process G in the top row and the diagonal elements of the volatility
process exp(µ + H) in the bottom row.
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