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Abstract

Salt and ions are ubiquitous in every chemical and biological reaction in aqueous envi-
ronment and therefore of fundamental interest. Intriguingly, different salt types affect
the stability of colloidal and biological systems, as for example molecules in aqueous so-
lution, very differently. These ion-specific effects can be attributed to salt properties in
homogeneous solution (bulk) and to the interaction of ions with interfaces. In this thesis
we will address both, but limit ourselves to simple model surfaces. Molecular dynamics
(MD) simulations, in which water molecules and ions are simulated explicitly in atom-
istic detail, are used as an input to liquid state theory in order to study both bulk and
interfacial properties of aqueous electrolyte solutions.

In the first part of this work we focus on bulk features and compute the ion-specific
fluid structure of concentrated LiCl, NaCl, KCl, CsCl, KF, and Nal solutions. We then
extrapolate short-ranged (nonelectrostatic) ion-ion potentials of mean force that enable
us, on one hand, to calculate effective ion sizes and, on the other hand, to analyze
structural consequences to the osmotic pressure. Since the latter is easily accessible
experimentally, our presented methods permit to assess the viability of the MD setup
for the ions up to high salt concentrations. In the second part we turn our attention to
interfacial properties and show that structural inhomogeneities in the vicinity of a surface
can be treated using classical density functional theory. Indeed, ion-specific excluded-
volume correlations and electrostatic correlations can be included efficiently in a nonlocal
Poisson-Boltzmann framework. The latter is simple-to-implement since the electrolyte
is treated as an asymmetric nonadditive hard sphere system with previously calculated
ion-specific ion sizes. In the final part we provide microscopic insights into crystallization.
We focus on the NaCl salt and study fast crystallization in both bulk and confinement
situations.

In summary, this thesis demonstrates how ion-specific macroscopic thermodynamic
properties (pressure, solvation forces, etc.) can be interpreted and predicted by trac-
ing them back to ion-specific microscopic structural properties. Presented methods are
furthermore perfectly suited to be used in future investigations of more complicated,
biologically relevant systems at high salt concentrations.
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Zusammenfassung

Salz spielt eine fundamentale Rolle beim Ablauf biologischer und chemischer Reaktio-
nen. Erstaunlicherweise beeinflussen verschiedene Salzarten die Stabilitét kolloidaler und
biologischer Systeme héchst unterschiedlich. Das Auftreten dieser sogenannten salzspezi-
fischen Effekte muss Salzeigenschaften in homogener Losung, sowie der Wechselwirkung
von Jonen mit Oberflichen zugeschrieben werden. Wir behandeln in dieser Arbeit beide
Fille, wobei wir uns auf einfache Grenzflachen beschrianken. Wir verwenden Ergebnisse
aus Molekulardynamik (MD) Simulationen, in welchen Wasser und Ionen explizit mit
atomarer Genauigkeit simuliert werden, um mit Hilfe der Fliissigkeitstheorie und statis-
tischer Mechanik wichtige Salzeigenschaften in homogener Losung und an Grenzflachen
zu bestimmen.

Im ersten Teil dieser Arbeit konzentrieren wir uns auf Eigenschaften homogener Fliis-
sigkeiten und berechnen die salzspezifische Struktur konzentrierter LiCl, NaCl, KCI,
CsCl, KF, und Nal Losungen. Uns gelingt es kurzreichweitige, nichtelektrostatische Ion-
Ion Wechselwirkungspotentiale zu extrapolieren, aus welchen wir einerseits effektive Ionen-
grofen, und andererseits die Auswirkungen der Salzstruktur auf den osmotischen Druck
berechnen. Da dieser eine experimentell einfach messbare Grofe ist, konnen wir Riick-
schliisse auf die Anwendbarkeit unseres MD Ansatzes zur Modellierung von Ionen bei
hohen Salzkonzentrationen ziehen. Im zweiten Teil dieser Arbeit widmen wir uns Grenz-
flacheneigenschaften und analysieren die Salzstruktur zwischen zwei hydrophoben Platten
mit Plattenabstédnden im Nanometerbereich. Wir zeigen, dass ionenspezifische Ion-Ion
Korrelationen im Rahmen eines nichtlokalen Poisson-Boltzmann Ansatzes effektiv be-
handelt werden kénnen. Wir betonen hierbei die Einfachheit dieser Methode, in welcher
Ionen als asymmetrische und nichtadditive harte Kugeln betrachtet werden. Im drit-
ten Teil dieser Arbeit gewinnen wir Einblick in die Kristallbildung auf mikroskopischen
Skalen und analysieren mittels MD Simulationen die Kristallstruktur des NaCl Salzes
zwischen zwei Platten und in homogener Losung.

Zusammenfassend zeigen wir wie salzspezifische makroskopische thermodynamische Ei-
genschaften von Salzlosungen (Druck, Kréfte auf Oberflachen, etc.) auf mikroskopische
strukturelle Eigenschaften zuriickgefiithrt werden kénnen. Wir betonen des Weiteren, dass
unsere Methoden in zukiinftige Untersuchungen komplizierter, biologisch relevanter Sys-
teme bei hohen Salzkonzentrationen einbezogen werden sollten.






Chapter

Introduction

Aqueous electrolyte solutions are of fundamental importance to (physical) chemistry and
biology, and form a basic matrix for technological fluids and the evolution and function
of life. Especially the monovalent ions Na™, K+, and Cl~ are substantial ingredients in
the specific or unspecific regulation of (bio)molecular processes, such as action potentials,
osmotic flows, or the stabilization and function of proteins, lipids, or nucleic acids [1].
The simplest model for describing aqueous electrolytes is the so-called primitive model
(PM), in which ions are modeled as charged hard spheres (HS) and water is treated
as a continuum dielectric background. Even though the PM is still in use today, it is
evident that such a non-specific model fails in predicting even the most basic thermo-
dynamic properties of aqueous electrolytes. The osmotic coefficient, which is a measure
for the deviation of the osmotic pressure compared to the ideal gas (non-interacting
point-particles) pressure, varies widely for different monovalent salts [2]| as can be seen in
fig. 1.1; an observation that cannot be explained on the PM level. The specific action of
individual ions (e.g., Na™ vs. KT) has received increased attention only recently and has
triggered a revival in the investigation of ionic properties in bulk and at interfaces, as well
as of ionic interactions with biomolecules and accompanying 'Hofmeister effects’ [3-8§].
The latter terminology, going back to Hofmeister’s investigation of salt’s specific action
on the precipitation of egg white protein [9], is often used synonymously for salt-specific
effects; typically those are found categorized in cation and anion 'Hofmeister series’ but
are not unique in general.

Even in homogeneous, aqueous bulk solutions, salt-specificity can occur already at an
electrolyte concentration p larger than the Debye-Hiickel limiting value of ~ 10 mM [11]
and affects macroscopic quantities, such as the solution activity, the electrolyte osmotic
pressure II, or the static dielectric constant €(p). These experimentally accessible prop-
erties show a complex dependence on salt concentration and type. At a fixed p, for
instance, the osmotic coefficient for a growing van der Waals radius of an alkali ion (e.g.,
Nat — K™) decreases in presence of the anion C1~ but increases in the presence of F~ [2]
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Figure 1.1.: The experimental osmotic coefficient ¢ vs. salt concentration p, taken from ref. [10],
for LiCl, NaCl, KCI, CsCl, Nal, and KF. The ideal gas osmotic coefficient ¢ = 1 is depicted as
the horizontal black line.

(cf. fig. 1.1). Similarly, simple salts at a moderate concentration can considerably alter
the value of the dielectric constant at infinite dilution €(0) involving nontrivial trends:
the relative decrease of €(p) at a fixed p, for instance, increases for a growing radius of
halide ions (e.g., KF — KCIl) but decreases for a growing radius of an alkali ion (e.g.,
NaCl — KCl) [12].

The microscopic reason for these context-dependent trends above lies apparently in
the water structure around individual or interacting ions in aqueous environment [12—
15]. The highly complex hydration patterns must be traced back to the multipolar and
anisotropic nature of the water molecule. In fact, it has been argued that these individual
solvation properties govern the affinity of ionic groups in bulk and at (biomolecular)
interfaces to associate and form direct salt pairs [16, 17]. In this view, referred to as the
"law of matching water affinities’, only oppositely charged ions with matching free energies
of hydration form contact ion pairs (sometimes called ’inner sphere’ pairs, where the ions
"touch’ and loose part of their first hydration shell). This proposal has been supported
by recent experimental and theoretical studies on dilute systems [18-21]. Whether this
view holds for concentrated solutions and how it affects macroscopic bulk or interfacial
properties, is, however, not well understood.

In principle, a means to access the detailed solution structure is provided by explicit-
water molecular dynamics (MD) computer simulations [22-30], in which water atoms
and ions are explicitly resolved on an atomic scale by assigning (partial) Coulombic
point charges g;, excluded-volume sizes, and dispersion attractions. Typically, the non-
electrostatic atom-atom interaction between two atoms at a distance r is modeled by a
radially symmetric Lennard-Jones (LJ) potential that depends on the atom-atom inter-
action length o and the energy scale e. The whole set {0, €, ¢}, accompanied by adequate
mixing rules, typically defines the total force field. It has to be emphasized that in this
picture quantum effects and ion polarizabilities are not included and that therefore the
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viability of the LJ approach depends on whether the latter can be neglected. Further-
more, the LJ potential is empirical and the {o,€} set is typically fitted to reproduce
experimentally accessible characteristics. The empirical force fields for the ions used are
typically benchmarked to single ion properties (such as the solvation free energy), and
often fail to reproduce realistic electrolyte structure or thermodynamics at non-vanishing
concentrations. As has been recognized early in literature, one reason is the strong sensi-
tivity of thermodynamics to small changes in the potential of mean force (pmf) between
two ions in solution [31-33|. Ion force field development thus remains an active field of re-
search [34-36]. A link between the microscopic structure and electrolyte thermodynamic
properties is given by liquid state theory [37—41]. The electrolyte thermal compressibility
x7 and the electrolyte osmotic pressure 11, for instance, can in principle be calculated
exactly via a superposition of integrated ionic pair structures [39, 40]. This exact proce-
dure, called the compressibility route, allows for a direct test of the empirical MD force
fields and is presented in detail in this work.

A second, more popular way to obtain the electrolyte osmotic pressure is to calcu-
late effective (solvent-averaged) ion-ion potentials as supplied by McMillan-Mayer the-
ory [37, 38|, and use them as input in implicit methods, such as Hypernetted-Chain
(HNC) integral equations or Monte-Carlo (MC) simulations |24, 25, 27-32, 42-46|. Here,
the electrolyte osmotic pressure IT can directly be calculated from the virial equation [39—
41|. While the McMillan-Mayer theory is in principle exact, a major problem of the HNC
and MC approach is that they require effective pair (two-body) potentials. Effective ion-
ion potentials are, however, not pairwise additive due to solvent-mediated many-body
contributions. This has been systematically demonstrated by Lyubartsev and Laakso-
nen using involved inverse MC methods [24, 25]. As a possible simplification, it has
been suggested that many-body effects in electrolytes could be effectively modeled by
a concentration-dependent dielectric constant €(p) [47-49]. In fact, Hess and coworkers
have recently applied this correction to MD-derived infinite-dilution pair potentials in
implicit stochastic computer simulations and could accurately reproduce experimental
osmotic coefficients for NaCl [27, 28|. The osmotic coefficient is a quantity highly sensi-
tive to the particular force field or pmf [25, 27, 28, 31, 32|, but good agreement could be
achieved by using a NaCl force field benchmarked to solution activity derivatives [50].
This method, however, does not offer a direct way to the electrolyte osmotic pressure.
We will present in this thesis an efficient way, via the so-called virial route, to benchmark
MD force fields to this sensitive quantity of high physiological relevance [1]; a highly
relevant topic of current investigations [51-53].

Considering interfacial properties of dense electrolytes, the study of ion-specific sol-
vation forces and ionic structure between two adjacent surfaces is highly relevant for
biological and colloidal systems [8, 54|. Detailed knowledge of the ion-surface interac-
tion is therefore required [55]. The potentials describing these interactions are known
to be not only ion-specific but also highly dependent on the surface chemistry [56, 57].
Indeed, force measurements show that solvation forces between mica- 54, 58| and silica-
[59, 60| surfaces are non-monotonic, ion-specific, and cannot be described with the clas-



sical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory (described in more detail in
the next paragraph). In this realm, the ion-specific restabilization of dispersions of col-
loids [61, 62] and clays [63, 64] in dense electrolytes or the origin of charge reversal and
attraction between like-charged surfaces [65, 66| is not entirely understood and still a
matter of ongoing research [67].

The ion-specific restabilization of protein coated cationic (IgG-)latex particles at high
salt concentrations shown in fig. 1.2 cannot be explained with the DLVO theory. The
DLVO theory treats the colloidal system as polyions (dispersed phase), in this specific
case the cationic latex particles, and microions (continuous phase). The electrolyte (mi-
croions) degrees of freedom are integrated out on a mean-field level. The resulting elec-
trostatical part of the DLVO interaction between two polyions is strictly repulsive [40]
and compensates the attractive van der Waals force. At low salt concentrations (<0.5 M)
the colloidal suspension will therefore be stabilized due to the repulsive DLVO interac-
tion. For increasing salt concentration, the surface charge of the (cationic) particles will
gradually be compensated by surface-adhering (anionic) counterions and the colloidal
suspension will aggregate (flocculate) due to the attractive van der Waals forces. The
restabilization of the IgG-latex particles at high salt concentrations above 1 M, observed
in fig. 1.2, cannot be explained within the DLVO theory, and is attributed to the so-
called, non-DLVO, hydration or solvation forces [68|. The origin and the ion-specificity
of the latter are not understood.

Protein-protein interactions between hydrophobic, nonpolar, groups are also highly af-
fected by the salt type in solution |69, 70]. These findings are highly relevant at moderate
to high salt concentrations for protein crystallization studies, which are of considerable
interest, since they provide a link to protein structure by means of X-ray crystallogra-

phy [71].

The study of ion-specific properties of electrolyte solutions in confinement situations
is therefore highly relevant. The mean-field Poisson-Boltzmann (PB) theory is a useful
starting point for the examination of electrolytes in confinement because of its simplicity
and predictive power, particularly in systems with weak surface charges and low ion
valencies [40, 72, 73]. In PB theory, ions are treated as point-charges interacting only
electrostatically on a mean-field level. On such a premise, universal electrostatic ion-
ion correlations that are important for systems with strong electrostatic coupling are not
accounted for [74]. Methods on how to venture beyond this limitation have been discussed
in literature [75-77]. For dense and very inhomogeneous electrolytes in confinement,
however, one can suspect the system to be dominated by nonelectrostatic excluded-
volume interactions and thus electrostatic correlations to be of minor importance.

The inclusion of those nonelectrostatic (partially solvent-mediated) ion-ion and ion-
surface pair potentials is a subtle matter since PB treats the solvent as a homogeneous
background continuum with a uniform dielectric constant. In order to account for these
potentials we employ explicit-water molecular dynamics (MD) simulations to compute
effective ion-ion and ion-wall potentials of mean force at infinite dilution. In this picture,
the water degrees of freedom are integrated out and dispersion, hydration, and image
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Figure 1.2.: Stability ratio W plotted versus electrolyte concentration for protein coated 1gG-latex
particles at pH 4. At high salt concentrations (>1 M) the colloidal system exhibits a restabilization
pattern that cannot be explained by the classical DLV O theory. The effect is shown for different
electrolytes: NaSCN (x), NaNOs (o), NaCl (e), and Ca(NOs )2 (3). Figure taken from ref. [61].

charge effects are included on a two-body level. An ion-surface pmf can easily be included
in the Boltzmann exponent as an external potential, whereas the nonelectrostatic ion-ion
interactions are often treated using local or nonlocal extensions to PB theory [40]. How
to design these extensions to PB efficiently in order to study for instance aforementioned
solvation forces, is an integral part of this work.

For a certain threshold salt concentration, which depends on the salt type and on
environmental conditions, a liquid-crystal phase change occurs in the slab-water-salt
system. Indeed, crystallization of salts inside porous materials such as concrete, mortar
or stone degrades buildings and our cultural heritage. Salt weathering has therefore been
studied for decades experimentally and theoretically [78-81|. Nonetheless, the mechanism
of crystallization pressure in confinement, that is believed to be the main reason for salt
damage, is still not understood on a molecular level [82-93]. The amount of damage,
for example, depends on multiple factors such as the salt type, interfacial properties
or the preference of salt to crystallize inside pores (subfluorescence) or outside pores
(efflorescence), the latter being far less harmful [80].

Classical MD simulations provide a direct means to investigate salt crystallization in
confinement at molecular detail. However, while one-component systems under confine-
ment conditions have been studied in detail [94-104], results remain patchy for more re-
alistic slab-water-salt systems at saturated salt concentrations. The molecular modeling
of the latter is indeed complex and poses many problems. Most notably, realistic confin-
ing surfaces have to be modeled phenomenologically and, furthermore, the time scale on
which salt crystallization takes place is prohibitively long for standard MD simulation



setups. Thus, more sophisticated methods might be required [105, 106]. Nonetheless, it
is in principle possible to follow a more direct and simplified approach: one can induce
sufficiently large supersaturations in order to cause crystallization within a few nanosec-
onds, a time range accessible with MD simulations [107, 108]. In this work we suggest to
study a simplified setup for a sufficiently long, but accessible time range. We use simple
model surfaces and the NaCl salt as a first step, since little is known so far concerning
the crystal structure and the molecular origin for crystallization stresses.

This thesis is structured as follows:

Outline

In chapter 2, we describe all computational techniques involved.

In chapter 3, we explain the theoretical methods that we use in this work. We focus
on how electrolyte structure and thermodynamics are linked by liquid state theory and
how density functional theory (DFT) can be used to modify the mean-field PB theory
in order to account for electrostatic and excluded-volume correlations.

In chapter 4, we first calculate the electrolyte structure and effective ion-ion diame-
ters for a range of monovalent salts by means of all-atom MD simulations in bulk. We
then compute the osmotic pressure via the compressibility and the virial routes and
demonstrate that they yield equivalent results up to moderate salt concentrations. Ad-
ditionally, we compare the calculated osmotic coefficients to experimental values and
find good agreement for most salts. The dielectric constant €(p) is shown to decrease
with increasing salt concentration p for all salts and good qualitative agreement with
experimental data is observed.

In chapter 5, we use effective short-ranged ion-ion as well as short-ranged ion-surface
potentials of mean force, both MD-derived at infinite dilution, and include them in mod-
ified PB theories. The simplest-to-implement nonlocal DFT-PB approximation (NPB-
HS)—which treats the electrolyte as an asymmetric and nonadditive hard sphere (HS)
system—is shown to reproduce the ionic structure in a slab geometry very well compared
to results of MD and MC simulations. All local approaches fail. We then use NPB-HS
in order to inspect the impact of ion-specific excluded-volume correlations on solvation
forces, salt expulsion between two like-charged plates (Donnan effect), and overcharging.

In chapter 6, we single out the NaCl salt and analyze crystallization patterns in both
bulk and a slab geometry. For slab geometries and surface-to-surface distances of roughly
1.5 nm, we observe a desalting effect in a pseudo grand canonical ensemble, where the
salt is entirely expelled from the still hydrated slab.

In chapter 7, we present a summary and an outlook.



Chapter

Computational Methods

In this chapter we will describe all computational methods used in this work. First, we
will provide computational details on the molecular dynamics (MD) simulation setup
for simulations of bulk electrolytes. Then, configurations derived from both MD and
Monte-Carlo (MC) simulations for an electrolyte in a one-dimensional nanoconfinement
will be described. As to the MD simulations, setups in both the canonical and a pseudo
grand canonical ensemble will be presented. We will finally sketch shortly the algorithm
we use for solving modified Poisson-Boltzmann (PB) equations.

2.1. MD simulations in bulk

We simulate aqueous electrolytes by means of all-atom classical molecular dynamics
(MD) simulations, a standard computational method in which Newton’s equation of
motion is integrated for every atom [109, 110]. We use the MD simulation package
GROMACS [111, 112] and simulate at constant particle number N, pressure P = 1 bar,
and temperature 7' = 300 K using a Berendsen barostat and thermostat [113] (NPT
ensemble), respectively. The periodically repeated cubic simulation box has an edge
length L ~ 4 nm and includes explicit ions and SPC/E water [114] yielding a total number
of N, >~ 2000 simulated water molecules. A few simulations are conducted at box lengths
of 3 and 6 nm to assess finite-size effects. We use the three dimensional particle-mesh
Ewald (PME) summation method for electrostatics [115]. The PME routine employs a
grid-spacing in Fourier space of 0.12 nm in all three directions, an interpolation order 4,
a distance cut-off of 0.9 nm for the real-space interactions, and a relative strength of the
electrostatic interaction at the cutoff of 107°. Typical runs for gathering statistics are
150-200 ns in time after a ~ 5 ns period of equilibration. We focus on bulk structure
and thermodynamics of the six simple salts LiCl, NaCl, KCIl, CsCl, Nal, and KF for a
wide range of electrolyte densities from high dilution p = N;/L3 ~ 0.025 M (mol/l) up
to 5 M, provided by Ng = 1 up to ~ 200 salt pairs in solution, respectively. Note that
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the total number of ions in our symmetric and monovalent system is 2N, that leads to
a factor of 2 in some of the thermodynamic definitions in chapters 3 and 4. The ions
are modeled as charged and nonpolarizable Lennard-Jones (LJ) spheres. Two charged
LJ spheres 7, j, separated by a distance r, interact with the radially symmetric potential

Viy(r) = Vi (r) + Vig(r), (21)

consisting of the LJ potential Vlgﬂ] and the Coulombic potential V&, viz.

150

r T

Vi (r) = deq; [(%)12 - (0”)6} 22)

qiq;
‘/;;’(T) = éhrleﬁ’ (2.3)

where ¢; is the charge of sphere i, ¢y is the vacuum permittivity, and € is the dielectric
constant.

The LJ parameters, the energy e and size o of Lit, Nat, K*, Cs™, F~, and Cl™
are taken from Dang [116-119]. For KCI we investigate an additional force field from
Joung and Cheatham [35] for comparison. The cross interactions are calculated by the
Lorentz-Berthelot mixing rules. The resulting ion-water LJ parameters and the SPC/E
parameters are summarized in tab. 2.1 on the facing page. Hydration structure and the
mobility of single ions within the above MD force field have been studied in literature
before |14, 120, 121]. We note that we attempted our analysis also for NaCl and KCl
from the Amber force fields, which employs cations from Aqvist [122] and chloride from
Dang. No reasonable analysis was possible, however, because of unphysical clustering at
concentrations p 2 0.2 M as has been reported previously [28, 35, 50, 123].

2.2. MD simulations in confinement

2.2.1. Canonical ensemble

Our MD simulations in confinement situations are very similar to the simulations in bulk
described previously and the same MD package is used. Nonetheless, due to the different
geometry, we want to point out a few differences. We simulate at constant particle number
N, constant pressure P ~ 1 bar using an anisotropic Parrinello-Rahman barostat [124]
in - and y-direction—contrary to the bulk case no pressure coupling in the z-direction
is used—and a temperature 7' = 300 K using a Nosé-Hoover thermostat [125]. The
rectangular simulation box has periodically repeated edges of size L, ~ L, ~ 4.15 nm
and is delimited in vertical z-direction by two walls specified in the following with a
surface-to-surface distance d, which is defined as the distance on the z-axis between the
centers of the respective surface C-atoms (cf. fig. 2.1(a)). We simulate a number of
N, = 700 — 900 SPC/E [114] water molecules and N; = 1 — 90 explicit ion pairs in
this one-dimensional confinement. The ions are nonpolarizable and interact with the
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Table 2.1.: Ton-water oxygen (10) and wall-water oxygen (CO) Lennard-Jones (LJ) parameters
and charges used in this work. The LJ potential is given by V”L‘J(r) = 4e;; [(0”)12 — (ﬂ)ﬁ}

T T

Lorentz Berthelot mizing rules are given by o;; = (0“270“) and €;; = \/€;i€j;.-
Ton oio(nm) | €o(kJ/mol) | charge ¢/e
Lit 0.2337 0.6700 +1
Na™ 0.2876 0.5216 +1
K™ 0.3250 0.5216 +1

K*+(I) | 0.3004 1.0816 +1
Cst 0.3526 0.5216 +1
Crr 0.3785 0.5216 -1

CI-(II) 0.4000 0.1866 -1
F- 0.3143 0.6999 -1

I 0.4168 0.5216 -1
SPC/E
O 0.3169 0.6500 -0.8476
H - - +0.4238
Wall
C 0.3537 1.2861 0

Coulomb and LJ interaction described previously. FElectrostatics are treated with the
two-dimensional particle-mesh Ewald (PME) summation method [115].

The surface is modeled by a solid-like assembly of atomistic LJ spheres in a close-
packed, harmonically restrained, hexagonal lattice arrangement. The LJ diameter is
chosen so that the atoms have the size of a methyl group o;; = 0.3905 nm [126], and the
energy €; = 1.024 kT is chosen in order to reproduce the contact angle of a simple,
nonpolar organic material such as paraffin of ~ 110°. This angle is calculated by a
simple mean-field integration over the interactions between the solid and the liquid [127].
Typically n = 480 wall atoms are involved of which ng = 120 are situated on the surface;
the wall width is [, ~ 1 nm which, given L, and L,, corresponds to a volume number
density of pyen ~ 28 nm 3. The positions of the wall atoms are harmonically restrained
in 3 dimensions with a force constant & = 5000 kJ mol~! nm~2, which relates the force to
a one-dimensional displacement by F; = —kAx;. The lattice constants are a ~ 0.39 nm
for the basal and b ~ 0.64 nm for the height parameter. A typical simulation snapshot
of the molecular slab-water-salt system is shown in fig. 2.1(a).

In order to obtain effective infinite-dilution ion-wall pmfs V% (2) we use umbrella
sampling. A cation or anion is placed in the water phase near one wall and the ion-wall
pmf is obtained by the weighted histogram analysis method (WHAM) [129, 130], see
fig. 2.1(c) for an illustrative MD snapshot. Runs for gathering statistics of 1.5 ns in time
each after an equilibration period of 500 ps are carried out in 80 distinct windows. We
use a spring constant of 500 kJ mol™ nm~2.
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(c¢) Setup for umbrella sampling. One cation is positioned in front of
the surface. Views in the x-y plane (a) and slightly tilted x-z plane
(b) are presented. Only water molecules in the first two hydration
shells of the ion are displayed.

Figure 2.1.: Snapshots of typical MD simulations at molar salt concentration in (a) and (b).
Cations (blue spheres) and anions (yellow spheres) in a one-dimensional nanoconfinement of
width d immersed in water depicted as one oxygen (red sphere) and two hydrogen (white spheres)
atoms. d is the surface-to-surface distance between the centers of adjacent surface C-atoms
(turquoise spheres). The pictures are made using the VMD software [128].
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2.2.2. Pseudo grand canonical ensemble

MD simulations of confined electrolytes in the grand canonical ensemble are hard to
simulate due to the per definitionem infinite salt reservoir. We therefore simulate a finite,
sufficiently large, electrolyte reservoir in atomistic detail that mimics a grand canonical
ensemble, which is clearly a compromise between accuracy and feasibility. We simulate
an in all three directions periodically repeated rectangular box of edge sizes L, ~ 4 nm,
L, ~ 85 nm and L, = 3 — 5 nm, the latter depending on the size of the confinement.
The ratio of simulated water molecules in confinement to water molecules in the reservoir
depends on the size of the confinement but is on the order of 1/9. A snapshot of a typical
simulation for a surface-to-surface distance of d = 2.5 nm is shown in fig. 2.1(b). Note
that for practical reasons we use a wall that is slightly smaller in y-direction than the one
described before, i.e., I, = 3 nm, but otherwise similar. The number of water molecules
in the reservoir is N,, >~ 2600 and the number of ion-pairs is N; = 0 — 200 depending on
the studied salt concentration. Typical simulation times are t = 100 — 200 ns.

2.3. Implicit-water MC simulations

We compare our results to standard MC simulations in the canonical ensemble [110, 131].
All MC simulations were performed by Julius Schulz within the framework of his diploma
thesis [132]. Ion-ion and ion-wall interactions are modeled with radially symmetric short-
range ion-ion pair potentials V;¥(r) and effective ion-surface potentials V;**!(z), that
depend on the lateral distance z to the wall only, respectively. Both V;(r) and VEr(z)
are MD-derived potentials that will be described in detail in chapter 4. The effective
potentials are linearly interpolated, continued to infinity on the lower bound and set to
zero on the upper bound for cut-off distances of 2 =0.95 — 1 nm and » = 1 nm. Up to
N = 308 salt pairs are simulated in charged and uncharged slabs with width d = 2 nm and
periodic boundary conditions in lateral xy-directions with box-lengths L, = L, = 4.2 nm.
A typical simulation runtime is 105 MC steps with 10% equilibration steps. To accurately
account for the long-ranged electrostatics, the two-dimensional Lekner-Sperb summation
is used [133, 134]. The Lekner-Sperb potential is tabulated using a grid-size of 128 in
each direction, where the points are quadratically distributed and linearly interpolated.
For small separations (r < 171074 nm) the potential is calculated explicitly.

2.4. Poisson-Boltzmann solver: numerical details

The equations of our modifications to PB theory presented in chapter 3 are solved by
means of a general relaxation method. The domain of interest, the z-axis in the case
of a one-dimensional confinement, is approximated by a mesh of up to 2100 grid points.
Each mesh point corresponds to a finite difference equation that relates two neighboring
points. Starting from an initial guess, the results relax to the actual solution. The con-
volutions in the NPB equations are treated with standard one-dimensional Fast Fourier
Transform (FFT) techniques. We use a binning of N = 8192 points and a Nyquist
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frequency of f. = 1/(2Az) = 250 nm~!. Further technical details as to the methods
involved are described in great detail elsewhere [135].



Chapter

Liquid State Theory of Electrolytes

In this chapter we will introduce the theoretical methods used in this work. First, we
will detail how the electrolyte structure in form of the radial distribution function (rdf)
can be linked to bulk thermodynamic properties like the osmotic pressure. Additionally,
fluctuation formulas provide insight into the dielectric constant and the shear viscosity
of electrolyte solutions. Secondly, we will show how to map an electrolyte and its intri-
cate, water-mediated interactions onto an asymmetric and nonadditive hard-sphere (HS)
system. The latter can easily be incorporated into various modified Poisson-Boltzmann
(PB) descriptions by density functional theory (DFT) taking into account ion-specific
excluded-volume correlations. Further on, we will introduce a method that enables us
to include electrostatic correlations, that are important for low salt concentrations and
high ion valencies, in a similar fashion. Thirdly, and as a means to investigate the in-
fluence of excluded-volume correlations in chapter 5, we will describe among others the
origin of the double-layer pressure between two plates and salt expulsion between two
like-charged plates (Donnan effect). In the last part of the chapter we will analyse the
so-called Grahame equation—that links the surface charge to the salt concentration in
the reservoir and the electrostatic potential at the interface—by means of NPB-el, a
modified PB equation that accounts for electrostatic correlations.

3.1. Electrolyte structure

3.1.1. Radial distribution functions

Let us consider, as a starting point, an isotropic system of N indistinguishable parti-
cles. The n-particle density pg\?) (7) is then defined such that pg\?) (7™)d7™ represents the
probability to find n particles with coordinates 7 in the volume element di". We are
particularly interested in the one- and two-particle densities pg\l,) and pg\Q,), since they will
prove to be easy to compute and adequate in order to calculate thermodynamic prop-
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(a) Rdfs for different particle area fractions of 30%, 40% and (b) Schematic picture showing the
50% top to bottom figure, in order. preferred positions of hard-
spheres in terms of distance to

one central sphere.

Figure 3.1.: Radial distribution functions of identical small metallic spheres of diameter 2R
experimentally obtained by means of video analysis. Figures taken from ref. [136].

erties with sufficient accuracy. For the two-particle density, it is useful to introduce a
two-particle distribution function gj(\?) that is defined as [40, 137, 138]

@)~ - P (71, 7)
9N (7“1,1"2) = 1), - O, - (31)
(71) X py (72)

and is a measure of the randomness in the system. In an isotropic system, g](\?) depends

only on the distance between the two particles r = |75 —77 | and is therefore simply written
as g(r). g(r) is called the radial distribution function (rdf). pg(r) is the average particle
density at distance r from the origin, given that one particle is located at the origin in
an electrolyte of average concentration p. Similarly, one may define the coordination
number

To
Ncoord = 47Tp/ g(T’) 7’2(?17“, (32)
0

that defines the number of neighboring particles closer than rg to the particle at the
origin.
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The one- and two-particle densities, and thus also g(r), can conveniently be expressed
by delta functions [40]:

N N
2) 1o o ! N
)= (S 3 - -5 ) 3.
i=1 j=1
N N
py(r) < DD =7+ > (3.5)
=1 j=1
where the double sum does not include ¢ = j terms and the < --- > are ensemble

averages. In the canonical ensemble—with fixed N,V and T—the two-particle density
for example reads

L. N(N —1 oo
pg\%)(rl,rg) = (ZN)/exp(—,BVN)drldrg, (3.6)

where Vi is the interatomic potential energy and Zy = [ exp(8Vn)dr N'is the configura-
tional integral. Note that in (3.6) the integrals over momenta cancel. The N (/N —1) term
in (3.6) stems from the fact that there are as much possibilities to choose two particles
from a total of N particles.

Let us now consider the easy example of an ideal gas. Hence, our N particles being
point particles, one- and two-particle densities as well as g(r) are easy to compute and
yield

N
9 N (N-1) N2 1 1
N=y—=m=ll-5)="-% (3:8)
(2)
p 1
o) ="% = (1- 5 ). (3.9

where V' is the total volume of the system. The % term on the rhs of the equations

(2)

for py’ and g(r) is a finite size correction. In the thermodynamic limit N — oo, the
two-particle density reduces to pS\Q,) = p? and the radial distribution function is g(r) = 1.

In a nonideal liquid, g(r) typically deviates from 1, most notably for small separations
because two particles cannot come indefinitely close due to their finite size, and converges
to the ideal gas limit for r — oo. The g(r) is a local measure of the deviation of the
system from an uniform ideal gas like distribution and is in general accessible through
radiation-scattering experiments [40, 137|. For descriptive reasons, we show rdfs of a
model system of identical small metallic hard spheres in fig. 3.1.
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When treating electrolytes, we will calculate rdfs g;;(r; p) between a pair of ions i and
7 at a salt concentration p, where the indices ¢, ) = +— can represent cations or anions,
i.e., the particles are distinguished as cations or anions. For monovalent ions, the bulk
salt concentration equals the cation and anion concentrations p; = p_ = p and the rdf
can be written as

9ij(r;p) = (3.10)
Analogously to the case of indistinguishable particles, pg;;(; p) is—at a salt concentration
p—the average density of ions of type ¢ at a distance r from the origin, given that an
ion of type j is placed at the origin. The g;;(r; p) is therefore a direct measure of the
electrolyte structure.

3.1.2. Potential of mean force decomposition

In the low-density limit, the pair potential or potential of mean force (pmf) between two
ions can be computed by simply Boltzmann inverting the radial distribution function [37,
38] and reads

Bwij(r; p) = —Ingi;(r; p)], (3.11)

where S~ = kpT is the thermal energy.
It turns out to be instructive for the analysis of charged systems to decompose the
pmfs (or rdfs) into short-ranged and long-ranged contributions via [29, 30, 40, 139|

wij(r; p) = Wi (r; p) + wi(r; p), (3.12)

where the short-ranged part wfj(r; p) is assumed to be salt-density independent. This
should be a good approximation as long as p is smaller than a critical overlap density p*
at which the ion solvation shells around two ion pairs frequently start to interfere due to
packing. As a good estimate, the typical extension of the second solvation shell is the
location of the second minimum in the ion-water oxygen rdf [14], that is 74, ~ 0.6 nm, so
that we find roughly p* = (2r¢1) 2 ~ 1 M. Thus, for p < 1 M we expect the short-ranged
pair potential to be quite undisturbed and nearly independent of salt concentration. A
weak salt-density dependence of wii(r; p) has been noted in literature previously [139].

ij
With (3.11) and (3.12), we can define a short-ranged structure by

935 (15 p) = exp[=Bwyj(r; p)]. (3.13)

The long-ranged part Bw%(r; p) in (3.12) is typically approximated by a Debye-Hiickel

(DH) type of potential of the form [11, 40|

Buwp™(r; p) = 2i2;)i5(p) expl—r(p)r]/r, (3.14)



3 Liquid State Theory of Electrolytes 17

which is strictly valid only for infinitely dilute electrolyte systems [40]. Here, z; is the ion
valency and A;;(p) is an unknown parameter with unit of length. The density-dependent
inverse screening or Debye length is

,%(p):\/471')\]3(;));)2:,2142 . (3.15)
=%

The electrostatic coupling parameter called the Bjerrum length is defined as

Be?
AB(p) = Treoe(p) (3.16)

and is p-dependent due to the salt-induced change of the (static) water dielectric constant
€(p) |12]. For SPC/E water the dielectric constant is €(0) ~ 72 [140] and the Bjerrum
length has a value of Ag(0) = 0.78 nm, roughly 10% larger than the one of real water.

In the low density limit of the salt (p — 0), the pmf between two ions reduces to their
mutual effective pair potential

eff 1 .
Vg (r) = ;I_If%)wij("”,/)), (3.17)

which consists of the intrinsic (vacuum) ion-ion interaction and the water mediated con-
tribution. The pmf decomposition (3.12) is then identical to the splitting of the pair
potential into a short-ranged and a pure Coulombic part as given by

Vi‘;ﬂ(r) =V (r) + 2i2;As(0) /1. (3.18)

Recall that for p < p*, wij(r;p) = V;5"(r) should hold. We emphasize that in the case
of a finite simulation box even the simulation of only a single ion pair is not close to the
infinite dilution limit; one ion pair in a 4 nm quadratic box, for instance, results in a
density of p ~ 0.025 M, above the typical validity range (p < 10 mM) of Debye-Hiickel
(DH) limiting laws [11]. In order to obtain the pair potential (3.17) we thus extrapolate
w;j(r; p) to the low-density limit as explained in the following.

The accurate calculation of ion-ion pair potentials at infinite dilution in explicit aque-
ous solutions is problematic as has been pointed out in literature [29, 30, 44, 141]. Typi-
cally, problems arise due to the high dilution in a finite-simulation box, yielding sampling
problems and unphysical interaction truncations due to the weak electrostatic screening.
A better starting point is thus a rdf g;;(r; p) at a reasonably high concentration, so that
the system is electroneutral, statistics can be gathered conveniently, and the screening
length is smaller than the box length, x(p)~! < L. On the other hand, the density
should be small enough so that the short range structure of the pmf is not disturbed,
i.e., p < p*. Nevertheless, small finite size effects will still be observable for low densities
(small Ny) far away from the thermodynamic limit (Ngy — oo, L — o0), as we already
observed in the case of an ideal gas in section 3.1.1. These effects are embodied mainly
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in an erroneous normalization of the simulated rdfs, gfji-m(r; p), as has been discussed by

Lyubartsev and Mar¢elja [44]. A correcting factor f(p) has to be introduced:

9ii(r; p) = f(p)g5" (75 p), (3.19)
where f(p) should be on the order of 1+ 1/N; (cf. section 3.1.1). In order to determine
f(p) accurately from the simulation rdfs we make use of our knowledge of the asymp-
totic behavior in r: multiplying the long-ranged interaction (3.14) by r and taking the
logarithm of both sides (and allowing just positive arguments), we arrive at

Inf|Bwi™ (75 p)r|] = nflziz; A (p)]] = w(p)r, (3.20)

where the rhs is a simple, linear function with a negative slope defined by (p) in (3.15).
The normalization correction f(p) can thus be determined by least-square fitting the
lhs of (3.20) to a linear function. The resulting axis intercept of the latter additionally
yields Aj;(p). This procedure allows for correction of the rdfs and pmfs to yield the right
asymptotic behavior for small densities p < p*.

Once the parameters f(p) and A;;(p) are known, the long-ranged Debye-Hiickel part of
the interaction can be subtracted from wj;(r; p) to yield the short-ranged pair potential
via

Vil o wi(r; p) = wij(r; p) — wij" (75 p), (3.21)
where the lhs equality should be valid for p < p*. The pair potential then follows

from (3.18). Note that (3.20) and the above procedure can be equivalently performed on
gij(r; p) — 1 as it obeys the same long-ranged behavior (3.14) as the pmf [40].

3.2. Dielectric constant

In a polar system, the dielectric constant is directly related to the fluctuations of the
total dipole moment M. The exact form of this relation depends on the geometry of
the system. We consider now a reaction field geometry, i.e., all interactions between two
particles that are farther apart then a certain cut-off radius r. are approximated by a
continuum with dielectric constant erp, giving rise to the so-called correcting reaction
field that applies to every particle. For those systems, the dielectric constant € is linked
to the total dipole moment M in three dimensions by the fluctuations formula [142, 143]

- 0\ 2
2
e—1 1 6_12(€RF_1) 71_<M>t_<M>t (322)
€+2 €+2 2egp+1 B WkgT '
where the < --- >; are time averages, V is the volume of the system, and T is the

temperature. Note that eq. (3.22) does not depend on the radius of the reaction field
cut-off r.. Considering now conducting boundary conditions, i.e., egp — 00, the lhs
of (3.22) can be simplified and yields
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-1 _ (1), - (),

3 9VkgT (3:23)
Rearranging terms gives us
(512), - (1),
e=1+ 3‘;kBT L (3.24)

where in our MD setup M is the total dipole moment of the water molecules and V is
the volume of our simulation box.

The reason why we use conducting boundary conditions is of technical nature and lies
in the fact that long-range Coulomb interactions are treated in bulk MD simulations
with the three-dimensional particle-mesh Ewald summation method [115], as already
mentioned in chapter 2. For details, we refer to refs. [109, 115].

We are aware that in a slab geometry, introduced and used in chapter 5, conduct-
ing boundary conditions are, unlike in the bulk case, not rigorously satisfied. We will
nonetheless assume that this perturbation is not critical in relation to the magnitude of
the dielectric constant of bulk water. An additional hindrance of the slab geometry is
that the volume accessible to the water molecules is less than the total volume inside the
slab and has to be estimated since the repulsive interactions with the walls prevent the
water molecules to come too close. We quantify the effective distance perpendicular to
the walls accessible to the water molecules as in previous work [144]:

g Jco T o900

2
with oco and opp being LJ parameters given in tab. 2.1. The accessible volume, that we
use in the calculation of the dielectric constant, is therefore Vit = Ly X Ly X dyyar. We
emphasize once more that the calculation of the dielectric constant in our slab geometry
in chapter 5 is not exact and is treated as an estimation.

dwat = = d—0.335 nm (3.25)

3.3. Shear viscosity

In order to calculate the shear viscosity n of a liquid, we make use of two different
methods. On one hand, 7 is given by the Green-Kubo (GK) formula [40, 145, 146]
V (o]
=17 (Prz(to) Prs(to + 1))y, dt, (3.26)
BL Jo
involving the off-diagonal components of the pressure tensor P,, only. Averaged vis-
cosities are obtained over a correlation time of 5 to 20 ps. The latter choice reflects
the fact that the viscosity converges rapidly, but exhibits large statistical errors for long
correlation times [147].
On the other hand, 1 can also be calculated by means of a non-equilibrium perturbation
method, where we apply an external force [145]. Choosing the external force in a way that
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only the x—component of the acceleration profile a, is non-zero and depends on z only,
the solution of the Navier-Stokes equation, neglecting pressure gradients in z—direction
reads

Oug(z) Puqz(z)

where u;(z) is the velocity profile and p the concentration of the liquid. An easy way to
obtain smooth velocity profiles in our periodically repeated simulation box is to choose
the acceleration profile as a cosine function:

a,(z) = Acos(kz), (3.28)

with k£ = 2%, L being the edge length of the simulation box. The amplitude A should be
chosen small enough in order not to drive the system out of the linear response regime
and at the same time large enough to get good statistics. For a more detailed discussion
we refer to [145] and set the amplitude to A = 0.02 nm ps~2. The resulting velocity
profile then yields

ue(z) = nTg (1 e > cos (kz), (3.29)
with the boundary condition u,(z) = 0 for ¢ = 0. In an MD simulation, the average

velocity profile u,(z) can be calculated and permits us to evaluate the shear viscosity
n [145].

3.4. Thermodynamic routes to the osmotic coefficient

The electrolyte osmotic coefficient is defined as

é(p) = B/ (2p), (3.30)

IT being the osmotic pressure of the electrolyte. The factor 2 in the denominator of (3.30)
is due to the total number of ions N = 2N, where Ny = Ny = N_ (for a monovalent
electrolyte) is defined as both the number of cations and anions in solution. II can
be derived starting from the virial equation as the so-called wvirial route to the osmotic
pressure [13, 40, 41]. We will briefly sketch the derivation in the following.

The virial equation reads

N
IV = NkgT — é <Z;F -VVn (FN(t))> : (3.31)

where the < - - - > denote an ensemble average and Vy is the interatomic potential energy.
With % = 2N7 = 2p, one arrives at
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pmr_._ B

20 6N, "
N

Vyir = <Zfi - VVy (FN(t))> : (3.32)
=1

The virial contribution to the osmotic pressure v, is hard to evaluate. However, if we

consider the ions to interact through effective pairwise-additive and density independent

forces BF;;(r) = dﬁ‘g ) involving infinite dilution pair potentials Veff( ) as in (3.17),

one can simplify to

N N
Brvir = <sz dovt < T”)> (3.33)

=1 j>1

where, for the moment, we ignore the distinction between cations and anions and 7;; =
|7ij| = |7j—7;| is the distance between particle 1 and particle 2. In the canonical ensemble,
(3.33) reads

_ N(N -1) dpvefi(ry) [ 1 . N
/BV,U”,— 2//T12(17“ Z]V//drngN dr1d7’27 (334)

because the integrals over the double sum in (3.33) yield N(N —1)/2 equal terms. With
(3.6) and (3.10), one can link the osmotic coefficient to the electrolyte structure:

A _ 1 1N? // N, dgvet(ryg)
2p 6N 2V2 7"127 T12 dT’ dTldTg (3.35)

When placing particle 1 at the origin—the integration over 7] yields V—and integrating
over 772, one obtains

JEini 1 N, dpVett (1) )

2% TR g(r12; p) T12 T T rigdriz

JEini 7 / 5 dpVet(r)

2% 5P g(r;p)r T r, (3.36)

where we replaced 12 by r. As a last step, in order to account for the ion-specific cation-
anion, cation-cation, and anion-anion potentials, we have to sum over all contributions
and arrive at our final expression, viz.

dﬁVeH( )

op)=1-3p Y. /gzﬂp (3.37)

7] +7

The pair-force dﬁV;‘;ﬁ(r) /dr is in principle density-independent, while the g;;(r; p) has
to be evaluated at the considered density. The virial route is not exact as it employs the
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infinite dilution pair potential, and many-body contributions (induced by the water) to
the ion-ion interactions for higher densities are not considered. As it has been shown
by Hess et al., those contributions can be qualitatively corrected by taking into account
the density-dependence of the water dielectric constant €(p) [27]. Here, the long-ranged
Coulomb part in the pair potential V,L‘;ff(r) has to be altered by using €(p) instead of the
limit €(0), to obtain a corrected pair potential [27, 28]

ZiZj

Vel (rs p) = Ve (r) AB(0) — As(p)], (3.38)

r

which is now implicitly p-dependent and has to be used in (3.37) instead. The necessary
input parameter €(p) can directly be calculated from our all-atom MD simulations using
eq. (3.24).

An advantage of the virial route is that it allows us to investigate and analyze short-
ranged and long-ranged contributions to the virial separately by splitting the pair poten-
tial as in (3.18). We can thus write

o d
) = 1= 503 | wstog BV )+ V] e (339)
_ 1+A¢ST‘+A¢DH’

where A¢™ = 7, - A¢; and APl = > AqﬁB-H are the partial corrections to the
osmotic coefficient due to the short and long-ranged virial contributions of every ion pair
ij, respectively.

The second route to the osmotic coefficient makes use of the link between the compress-
ibility x7 and microscopic particle fluctuations in the grand canonical ensemble and is
called the compressibility route. Here, the full electrolyte structure in terms of interionic
rdfs is directly related to the electrolyte isothermal compressibility [40]

XT = <p gg) B : (3.40)

The link to electrolyte structure is provided by the compressibility rule (sometimes called
Kirkwood-Buff formula), which can be written for a binary mixture with components
i,7 =1,2 as [39, 40|

14 p(G11 4 G22) + p? (G11Ga2 — G3,)
14 p(Gi1 + Ga2 — 2G12) /2

and is expressed by integrals over the structure, namely, the Kirkwood-Buff factors [39]

20kpTxT = (3.41)

Gij = 47‘(‘/ [gij (r; p) — 1]r2dr. (3.42)
0

A complete and detailed derivation of (3.41) can be found for example in ref. [148] and
will not be repeated here. However, we want to point out that the water-water and
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Figure 3.2.: Illustration of the compressibility route to the osmotic pressure and its error esti-
mate for NaCl. The inset shows the calculated inverse compressibility (2kgTpx7) " vs. density
p calculated from the Kirkwood-Buff formula (3.41). The curves enclosing the shaded region are
upper and lower estimates obtained from the statistical errors of the rdfs (see text) and spline
procedure. The central line is the average and is considered the result. Integration leads to the
osmotic coefficient ¢, (p) with an error given by the shaded region. Note that DH limiting laws
are employed for p < 10 mM (dashed lines).

water-ion interactions are not included in the calculation of the osmotic coefficient and
our binary mixture consists of cations and anions only. Eq. (3.41) can be integrated us-
ing (3.40) to obtain the osmotic coefficient from the compressibility route ¢, (p). It is in
principle exact, i.e., an accurate knowledge of the structure at every density allows for the
calculation of the compressibility without underlying assumptions. In practice, however,
we have to evaluate the compressibility (3.41) at discrete densities and then interpolate
it. As the structure at small densities is hardly accessible due to weak computational
sampling, in the limit p — 0 it is necessary for the interpolation and subsequent integra-
tion of (3.41) to include the analytic DH limiting behavior. The DH limiting law for the
osmotic coefficient can be easily derived from a virial integration over DH forms starting
with (3.37) and reads [11, 149|

()3
¢pu(p) = [1 - 453/7)3;)} : (3.43)

Relation (3.40) leads to the DH limiting law for the compressibility

20kpTxpu = [1 — K(p)As(0)/4] ", (3.44)

where we neglected the density-dependence of the dielectric constant. The integrals
leading to (3.43) and (3.44) are carried out in detail in appendix A. We complement
thereby our MD results by data in the validity range of the DH limiting law, p < 10 mM.
Interpolations are performed using an Akima spline [150]. For densities p < p* the
integration of the compressibility equation (3.41) is performed beyond the simulation box
limits by extending the rdfs and pmfs using the long-ranged form (3.14). A representative



24 3.5. Barker-Henderson mapping onto hard spheres and nonadditivity

result of the compressibility route to ¢, is shown in fig. 3.2 on the previous page, where
we anticipate MD results that will be presented in chapter 4. Integration of the splined
compressibility data leads to a continuous plot of the osmotic coefficient ¢, (p). The error
(shown as shaded area in fig. 3.2) is related on one hand to the statistical variance of
the correcting factors f(p) and \j;(p) (mainly for p < 1 M) and on the other hand to
the statistical precision of each rdf. To compare those osmotic coefficients with the ones
obtained from experiments or the virial route, we choose discrete points of our continuous
plot and set the error bars according to the variance in the integration.

3.5. Barker-Henderson mapping onto hard spheres and
nonadditivity

The ion-ion short-range pmfs V;'(r) exhibit oscillations on a kgT' energy scale due to
hydration effects. As it is computationally easier and more convenient to deal with
hard-spheres (HS) we intend to map the intricate ion-ion interactions onto simple HS
interactions. We use therefore the Barker-Henderson (BH) scheme which relates the
short-ranged pair potentials V;i"(r) to an effective hard-core diameter via [40, 151]

O'ij = — /drfij(r), (3.45)

the subscripts ¢, j = +, — specifying cations or anions, which consists of a one-dimensional
integral over the Mayer-function of the short-ranged pair potentials

fij(r) = [exp (—ﬁv;jr(r)) - 1] ) (3.46)
Our HS system can be asymmetric, i.e., o044+ # o—_, and additionally nonadditive. We
define the nonadditivity by

or =5 (ohrto ) X (1+AL) (3.47)
with a nonadditivity parameter A;; # 0. It is well known that nonadditivity strongly
influences fluid structure and phase behavior in binary hard-sphere mixtures [152, 153].
A;; > 0 results in an increasingly repulsive cross-correlation and can lead to stable fluid-
fluid demixing transitions even at small positive values A;; = 0.2 [154, 155]. A;; < 0
not only entails a significantly lesser correlated system but can cause partial clustering
as observed experimentally in superparamagnetic colloidal suspensions [156].

3.6. DFT approximations for electrolytes

3.6.1. Introduction

In density functional theory equilibrium one-particle densities are obtained via mini-
mization of a grand potential functional € [40]. Thus, the equilibrium ion densities p;
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satisfy the variational principle %;Z_’p*] = 0. The grand potential functional of charged
particles has the general form

psop-] = Flpssp-] = [ s = Ve @] st 0 (3.15)

where Vfrt(F) is the external potential acting on ions of species ¢ = +, u; is the chemical
potential, and F'is an intrinsic free-energy functional of the one-particle densities. F' is
typically split into ideal and excess parts via

Flpw,p-) =Y Fpi] + F%[py, p-] (3.49)

7

with the ideal contribution F*[p;] = kgT [ p; (7) (In [A3p;(¥)] — 1) d7, A being the de
Broglie thermal wavelength, and an excess contrlbutlon F¢* which we assume can be
separated into a mean-field, purely Coulombic and a correlation part:

Flpp) = 50 [ g)’};’? G+ Fp p ] (3.50)
with
p(7) = 2 pi(7) + 2 p () (3.51)

as the charge density.
Minimizing the grand potential {2 with respect to p; in a one-dimensional slab geometry
leads to

pi(2) = &exp[-B(ziet(2) + VE(2)) + ci(z)] (3.52)

with the activity & = exp(Bu;)/A3 of species 7, 1(2) being the local electrostatic potential
and
6(/8FCOTT)

Ci(Z) = - 5p

(3.53)
the one-particle direct correlation function [40]. For fixed p;(z), the electrostatic potential
satisfies Poisson’s equation

82
ef 8%(22) = —47 g p(z). (3.54)

The boundary conditions link the charge density o to the first derivative of the elec-
trostatic potential:

ef = —4r)s 2. (3.55)
e
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3.6.2. PB in DFT

Neglecting correlations (c;(z) = 0) egs. (3.51), (3.52) and (3.54) yield the standard
mean-field Poisson-Boltzmann (PB) equation. Note that in this definition, the external
potential V*(z) is still included:

2 z
eﬁa V) —A4dn )\ Z zi&iexp [0 (ziep(2) + Vi (2))] - (3.56)

0%z .
1=+,—

When referring to the PB solution in this work, we apply eq. (3.56).
oo for z <0

, €q. (3.56) can be further
0 forz>0

In the special case of hard walls, i.e., V! (z)

simplified to

d2¢(z) _ : 20
e 2 - 8w Apposinh (Bey(z)) = k*sinh (Bey(z)), (3.57)
where kK = /8T Appo is the inverse screening lenght. For small enough surface charges
the rhs of (3.57) can be linearized [149], leading to

2
eﬁd;é(;) = K%efi(2). (3.58)

In the following, we will examine local- and nonlocal approximations for the correlation
free energy F°""[p4, p—] (second term in the rhs of (3.50)) and ¢;(2) of (3.53). We will,
in the last part of this section, also explain how electrostatic correlations can be included
by modifying the Coulombic mean-field term on the rhs of (3.50).

We want to point out that in DFT one can easily switch from a canonical to a grand
canonical description. In the canonical ensemble (fixed number of particles) we fix the
ion area density 7. In the grand canonical ensemble (fixed chemical potential or reservoir
density pp) the activity is specified along with the chemical potential. In the case of PB
we get & = po.

3.6.3. Poisson-Fermi

One way to extend PB to consider steric interactions in a local way is to derive the free
energy functional from a lattice gas model [157]. For monodisperse systems each ion
occupies a site using a certain excluded-volume and inhibiting other ions to occupy that
site. It can easily be extended to a polydisperse system by Taylor-expanding the free
space entropy [158|. Incorporating the effective ion-wall potentials finally yields for a
one-dimensional confinement the so-called Poisson-Fermi (PF) distribution:

ﬂea%/}(z) > %i €xp (zmﬁ@b(z) — V;.e””(z))

9%z 1—p 3505 (1+exp (2eB(2)))
with the effective density p = 7, where 7 is the ion area density, d the plate separation
and the o;; are the effective cation-cation and anion-anion BH diameters. Note that the
cation-anion BH diameters do not enter in (3.59).

= —47wAgp

(3.59)
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3.6.4. Local density approximation for nonadditive hard-spheres

In the framework of DFT local extensions to PB can be employed by using the local
density approximation (LDA) [40]. In the LDA, the correlation excess free energy is
given by an integral over a local excess free energy f’" per volume of a homogeneous
solution of density p:

Feorfp) = / a7 f (p). (3.60)

As we showed before, after subtracting electrostatic interactions, ions resemble asym-
metric and nonadditive HS mixtures. Thus f“"" should describe the free energy of a
binary, asymmetric and nonadditive HS mixture for 1:1 salts. As there is no closed accu-
rate expression available, we resort to a virial expansion of f°" up to third order given

by [159):

T -
B = pip; BY T3 > pipipk BY

iJ ijk
with the virial coefficients
9
1) 3
By = 3 o
. 4 /72
ijk 3 3 3
By" =g (g) (Cksij 03 + Cjiit i + Cisjk k)
2
o ..
3 3 ksig
Ck"' = O7.:: _|_ 770—“'160—"416
8 k,l] 2 Uz] 2¥) 75t
Okiij = O3k + Ojk — 04 (3.61)

where oy.;; is interpreted as an effective diameter of sphere k as seen from the pair ¢ and
j. We will refer to the second order virial expansion as B2 and to the third order virial
expansion as B3 in the following.

The direct correlation function now follows from the first functional derivative of the
correlation term of the excess free energy:

6 (ﬁ Fcorr)

ij 3 i
5p; = —c,-(z) = 2 Z Pj ng + 5 Z Pj Pk ngk- (3'62)
! J

ik
The correction to PB theory is local in terms of the fact that the correlation function
depends on the amplitude of the local density only.

3.6.5. Nonlocal PB and its hard-sphere versions (NPB-HS)

As a starting point to the nonlocal treatment of the correlation term of the excess free en-
ergy we will introduce a coarse-grained density p(7) defined through an appropriately cho-
sen, a priori unknown, normalized weight function w(7) as p(7) = [w (|F—7]) p(7) d7.
Eq. (3.60) then reads
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Frrle) = [ 0 (0) ol o7 (3.63)

where ¢°F(p) = f°""(p)/p is the excess free energy per particle of the homogeneous fluid
at a density p [40]. Eq. (3.63) represents a weighted-density approximation (WDA). In
the low density limit, the leading term of the virial expansion yields ¢*(p) = kT p Ba,
with By being the second virial coefficient [40]. As Bj is defined by the Mayer-function
shown in eq. (3.46), viz. By = —% [ f(r)d7, we obtain the nonlocal expression [40]:

ﬁFcorr[p_Hp_} — _% Z//df’dfq{pl(z) pj(z/) fij (}7_"— F‘) . (364)

We emphasize that in our assumption F°"" approximates the excess free energy of a
binary fluid interacting with the short-ranged pair potentials V;3"(r). Explicit Coulom-
bic correlations, which become important at high electrostatic coupling, are therefore
neglected.

The direct correlation function is now given by convolutions of the density profile over
the Mayer-functions of the short-ranged potentials:

az) = X [ apifs (7). (3.65)
J

In the case of hard-spheres the Mayer-function degenerates into a shifted Heaviside step
function f;;(r) = ©(0;; —r) —1. Convolutions over step functions are easier and faster to
compute than convolutions over the Mayer-function of the full short-ranged potential. In
the following we will refer to NPB-HS when using this HS expression with the effective BH
diameters of tab. 4.3 and to NPB when employing the MD derived short-range potentials
Vi described in chapter 4.

When we refer to the grand canonical ensemble with a given reservoir density pg we
choose the activities & of eq. (3.52) in a way that the electrolyte concentration in the
middle of the slab matches pg in the limit of infinite wall-to-wall distances d. This activity
depends on the direct correlation functions ¢; [160].

We are aware that in the realm of DFT Rosenfeld’s fundamental-measure theory
(FMT) [161] is a more elaborate way to treat hard-sphere fluids nonlocally. The rel-
evant generalization of FMT to nonadditive binary HS mixtures has been developed by
Schmidt and applied to a broad range of nonadditivities [162, 163]. Nonetheless, as FMT
involves a decomposition of the Mayer-function and requires a very sophisticated treat-
ment [164]|, we content ourselves with our NPB and NPB-HS theories in the following.

3.6.6. An attempt to include electrostatic correlations: NPB-el

For low salt densities and high ion valencies electrostatic correlations dominate excluded-
volume correlations [74]. In our DFT-PB picture, these correlations must be included by
modifying the mean-field Coulombic term in the rhs of eq. (3.50). In principle, this can
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be done exactly by means of ion-ion rdfs g(r)s. The Coulombic free energy term then

reads:
ox kBT o) g(|F =7 .
coul [P+ P— /// . L’ 719 grar da, (3.66)

where the integration over « “turns on” the interaction. As we already saw in section 3.1.1,
the g(r)s are in general (for electrolytes for example) not mean-field like, i.e., constant
at g(r) = 1 for all values of r, and feature intricate oscillations before converging to 1
for r — oo. It is therefore difficult to treat (3.66) analytically. In order to simplify, lets
assume that the rdf for the interaction z;zjaAg /1 is given by a simple Debye-Hiickel form

A
g(r;a) = exp(—zizjaTBe_\/a’W). (3.67)

We can then Taylor-expand the exponential. Inserting (3.67) in (3.66), the first term in
the Taylor-expansion will yield the mean-field expression of eq. (3.50). The other terms
have to be integrated over a:

1 o oo
/0 da Z ana” exp(—ny/akr) = QZan(r)Cn(r) (3.68)
n=1 n=1

with a, = 4;(—2izjAg/r)". The C,(r) are, after carrying out simple integrations shown
in more detail in appendix B, given by

2n+1 m
C(r) = m (16—"“ 3 (”’:n""!) ) (3.69)

m=0

The approximation is valid for distances above (nx)~!, a value that represents the inverse

screening lenght in the Taylor-expansion. Thus, the expansion must be performed up to
the order n ~ (ko)~!, where o defines the hard-core cutoff distance for the considered
ions. Numerically, this approach consists in using in eq. (3.52) a convolution with the
hard-core functional of eq. (3.65) for |7 — 7| < o, and with

Nmazx

Z/drp] oI mzan (|7 = 71) (3.70)

for |7 — 7| > o, where the z; are ion valencies. We typically use an order of 1,4, = 12 in
the Taylor-expansion. If we make use of ¢;(z) in the following, especially in section 3.9,
we will refer to the NPB-el method.

3.7. Solvation forces

We place two infinitely large surfaces in an ionic reservoir of concentration pg, meaning
that the chemical potential ug of the electrolyte inside the slab is equal to the chemical
potential in the reservoir. We compute solvation (s) forces by calculating the difference
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of the “internal” pressure between the surfaces and the “external” bulk pressure of the
reservoir. The bulk pressure is given by the “internal” pressure in the limit of infinite
surface separations d — oo [165]. We obtain thus for the solvation pressure:

Py(d) = [P(d) - P(oc)]. (3.71)

To calculate the internal ionic pressure, typically a contact theorem can be derived by
differentiating the free energy with respect to the surface separation [160, 166]. We use
here a somewhat more general expression [167], viz.

ext
Bt D75+ T <o (3.72)
where p is the local pressure along the z—axis and 1 is the electrostatic potential in-
troduced before. By replacing the density in the second term by the Poisson equation,
eq. (3.54), and integrating from z = 0 to z = d we see that, given the boundary con-
ditions of eq. (3.55), the second expression vanishes and the total ionic pressure on one
wall inside the slab simply is

d ext P
Pld) = — Z/O dzp,-(z)aviaz(). (3.73)

We are then enabled to investigate the impact of steric ion-ion excluded-volume correla-
tions by comparing the results of the PB and NPB-HS methods, viz.

AP,(d) = PNYB-HS(q) — PPB(q), (3.74)

which is the steric correction to the solvation pressure. We can integrate again to obtain
the steric correction to the interaction between the surfaces:

AVi(d) = —A / T dd AP(d) (3.75)
d

for a unit area of A.

3.8. Salt expulsion: Donnan effect

When two plates in contact with a (much larger) electrolyte reservoir of density py are
charged with an identical uniform charge density, counterions will be attracted to the
surfaces in order to ensure electroneutrality, as has been anticipated at the end of the
previous chapter. Coions on the other hand will be repelled by the latter. The salt,
which has by definition the same concentration as the coions, is therefore expelled from
the slab with increasing surface charge. This so-called Donnan effect can be treated
analytically with a linearized Poisson-Boltzmann equation in the case of an ideal gas and
hard walls [149]. Our coarse-grained PB and NPB-HS theories (in the grand canonical
ensemble) permit us then to examine the impact of ion-ion excluded-volume correlations
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and ion-surface interactions on the Donnan effect. We compare results for LiCl and
Nal in the following for positive and negative surface charges and a reservoir density of
po = 3 M.

In the case of an ideal gas, i.e., point charge particles, and (structureless) hard walls the
PB equation can be linearized for sufficiently low surface charges. Even though hardly
being a new result we treat this case quickly as a starting point for clarity. Our starting
point is the linearized PB equation shown in eq. (3.58). The boundary conditions are
given by the surface charge density at the surface o and by the electroneutrality condition
in the middle of the slab and read

d
dv =0 T Y (3.76)
dz 2=d)2 dz |, e

d being the width of the slab. The solution of eq. (3.58) satisfying the latter boundary
conditions is [149]

dm g (o/e)

P(z) = mcosh(ﬁz), (3.77)

Kk = /87 A p being the inverse screening length. In our simple model system, the salt
concentration is given by the Boltzmann distribution p4(2) = prexp (FPey(z)). We can
thus write

d
pe = = /0 prexp (FBet(2) dz = (3.78)

-
d d’
where the + sign refers to the two distinct cases of positively or negatively charged
coions. For an ideal gas and hard walls the two cases are equal. We will consider the
first- and second-order terms in the Taylor-expansion of the exponential in eq. (3.78).
The first order term is proportional to o; the second order term is proportional to o?.
The expansion up to second order in |o| finally yields

) o]\ 1 lo]\? [ (47)p)? kd\  (4rAg)? 1
spo [1— () — 4+ (2) [ =28 coth | — .
Ps = Po [ < e ) pod + e 2dk3 €0 2 + 8k3  gsinh? (%d)

(3.79)
In the inset of fig. 5.6(a) on page 61 we show, for d = 2 nm, how the salt concentration
in the slab depends on the absolute value of the surface charge density. The sign of the
latter does indeed not change the result in the case of an ideal gas. At ¢ = 0 the mean
salt concentration equals the concentration in the reservoir pg. The salt concentration
decreases then with the surface charge. This decrease is linear in ¢ only for small surface
charge densities up to 0.2 e nm~2. By including the second term in the Taylor-expansion

we are able to reproduce the numerical result up to surface charge densities of 0.8 e nm=2.
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3.9. Contact potential at charged interface: Grahame
equation

In this section we will shortly examine the impact of electrostatic correlations on highly
charged systems. Inspired by recent experimental observations that report non-DLVO
behavior for the interaction of colloidal spheres in the presence of multivalent ions [168],
we investigate the electrostatic potential near a highly negatively charged wall in pres-
ence of mono- and divalent counterions by means of the NPB-el method presented in
section 3.6.6.

We first treat for descriptive reasons the case of an ideal monovalent gas and a hard
wall because of its simplicity. The respective PB equation is shown in eq. (3.57). The
hard wall is charged with a surface density of o and is at contact with a salt reservoir of
concentration pg. Thus, the two boundary conditions at contact and infinitely far away
from the surface are

. dy dy _ o
le)l&& =0 @ o = 47T)\Bg (380)
Integrating (3.57) using (3.80) leads to
ef(z) = 4arctanh [tanh <ﬂe4¢0 exp(—mz))} , (3.81)

k = /8T Appo being the inverse screening lenght and )y = ¥ (z = 0) being the electro-
static potential at contact with the wall. The relation between the surface charge density
and the electrostatic potential at contact is now obtained via the boundary conditions
and yields the Grahame equation [72, 149]:

o ([ 2po P Bedo
o= <7T)\B> smh< 5 > (3.82)

This equation is exact for our model system. Rearranging terms leads to

o |TAB
1 / 2100] . (3.83)

We investigate now similar systems numerically. We treat a negatively charged wall with
a constant surface charge density of 0/e = —1nm™2 in contact with a salt reservoir of
mono- and divalent counter- and monovalent coions—with coion concentration pg—by
means of PB and NPB-el. The ions are modeled in NPB-el as symmetric and additive
HS spheres of diameter 0.3 nm. As a reminder, we choose in NPB-el, equivalently to
NPB-HS, the activities & of eq. (3.52) in order to match the coion concentration pg far
away from the wall. We probe additionally the influence of a simple attractive model
box ion-wall potential.

Fig. 3.3(a) on page 34 shows results for monovalent counterions. We first observe that
for all cases, the electrostatic potential at a distance Az = 0.3 nm from the wall is shifted

eByg = 2arcsinh
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and less negative than the one at contact with the wall. A similar shift is induced by the
attractive ion-wall box potential. Comparing results for PB and NPB-el, we find that
electrostatic correlations increase the contact potential, i.e., shifting it to less negative
values. The latter increase is however small. Indeed, the contact value of the potential
for Az = 0 calculated with NPB-el is very similar to the analytic mean-field result of
eq. (3.83), shown as the black full line in fig. 3.3(a).

We turn now our attention to divalent ions and focus on hard walls. In fig. 3.3(b)
we recover on one hand the shift in contact potential to higher values for Az = 0.3 nm
compared to Az = 0. On the other hand, we notice that the results for NPB-el differ
strongly from PB. In the former case, g exhibits a steep increase for concentrations
po < 0.05 nm—3 and converges then rapidly to an equilibrium value. For PB, 1y shows
the same slow increase as observed for monovalent counterions.

We conclude that electrostatic correlations have a minor impact for monovalent coun-
terions. For divalent counterions, however, we observe that the electrostatic contact
potential of a highly negatively charged wall increases rapidly with salt concentration
already at concentrations in the millimolar range. The latter points to strong charge
compensation due to electrostatic correlations for multivalent counterions.
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Figure 3.3.: Electrostatic potential next to a highly charged hard wall plotted with respect to the
salt reservoir concentration. The contact potential is defined as either at direct contact with the
wall or at a distance Az = 0.3 nm, corresponding to the size of the counterions. The surface
charge is £ = —1nm™2.



Chapter

Structure-Thermodynamics Relation
of Electrolyte Solutions

This chapter addresses ion-specific thermodynamic properties of bulk aqueous electrolytes.
For this, we will first compute ion-specific radial distribution functions out of explicit-
water MD simulations of bulk electrolytes. We will then calculate effective short-range
ion-ion potentials of mean force (pmfs) and deduce Barker-Henderson diameters for ev-
ery ion-ion combination. We furthermore compute osmotic coefficients for the studied
electrolytes by the compressibility and the virial route up to high salt concentrations of
~ 6 M. In the latter route we will employ a correction via a concentration dependent
dielectric constant, that we additionally extract from our simulations and compare to ex-
periments. The virial route permits us to inspect short-ranged cation-anion, anion-anion
and cation-cation, as well as long-ranged Debye-Hiickel contributions to the osmotic coef-
ficient separately. Finally, we will calculate bulk shear viscosities by means of fluctuation
formulas at salt concentrations of ~ 3.5 M.

4.1. lon-specific electrolyte structure

4.1.1. lon-specific rdfs

In our bulk MD simulations, the ion-ion radial distribution functions g;;(r; p) of eq. (3.10)
are evaluated by standard probability histograms. Examples of g;;(r; p)s for concentra-
tions up to p = 4 M including the low-density limit p — 0 are presented in fig. 4.1 on
page 38 for LiCl, NaCl, Nal, KF, KCl and CsCl. For p — 0, all salts show the expected,
long-ranged o exp(+Ag(0)/r) decay for Coulomb interactions. Already at p = 0.3 M the
curves exhibit a strong electrostatic screening and the rdfs reach the asymptotic value of
1 below 7 ~ 2 nm, consistent with the small decay length of x~! ~ 0.5 nm. The short-
ranged oscillations hardly change qualitatively with density, i.e., the peak positions and
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overall wavelength seem not to be affected by a large density.

The rdfs show very distinct structural signatures and can significantly differ between
the various salts. Let us focus in the following on the cation-anion rdf as it turns out
later that they dominate the specific trends in the osmotic pressure behavior. The Li-Cl
and Na-I rdfs, for instance, feature a quite small contact peak (contact values of 3 to
6) while the second peak is larger or of comparable height. This is in stark contrast
to the structural behavior of KCl and CsCl, where the first peak is significantly larger
and the second peak is relatively small. A similar but weaker trend is observed for
NaCl and KF. For a comparison, the height of the contact peak of the cation-anion
rdfs vs. salt concentration is plotted in fig. 4.2 for all salts. Apart from LiCl and
Nal, a strong concentration dependence for p < 0.5 M is observable due to electrostatic
screening. An inversion in the order of peak heights for KCIl and CsCl can be observed at
around 0.3 M. At a moderate density of p ~ 1 M the order of decreasing peak height is
KC1>CsCl>NaCl>KF>LiCl>Nal. Furthermore, the results for K(IT)Cl and K(II)CI(II)
force field parameters (also shown in fig. 4.2 for p = 0, 0.3, and 2 M) can significantly
differ from the Dang KCI results featuring much smaller contact peaks. Note that the
force field parameters for K and K(II) have different o and € values but are balanced
such that the effective size of the ion is similar. The same effective size, however, does
obviously not lead to the same electrolyte structure. Interestingly, although KT (II)
features a larger dispersion attraction than K, contact ion pair formation is suppressed
which is probably due to a stronger binding of the first hydration shell.

The above observations are interesting in the view of Collins’ law of matching water
affinities and the salt’s respective probability to form direct or indirect ion pairs [16, 17].
The LiT-Cl~ and Nat-I~ pairs are relatively asymmetric in their size and water affinity
behavior [12]. Indeed, we observe that they prefer not to form contact pairs, visible from
the small first and large second peak in the rdf. The opposite behavior is observed for
the more symmetric salts KCI and CsCl. To quantify this, we estimate the ratio between
the mean counterion densities in the second (one-solvent-molecule separated) and first
solvation shell, that is

(7“:1)’ - rg) f:f gi; (13 p)r? dr
(r3 = 19) fyy 9ij (s p)r? dr’

The integration boundaries ri, with k£ = 1, 2, are the location of the first two minima in
the cation-anion rdf, respectively, and rg is the distance at which the rdf vanishes to zero.
Note that for uncorrelated systems, or if the mean number densities of particles in the
first and second solvation shells are the same, the definition above leads to x = 1. The
values of the distances r; and results for z(p) are summarized in tab. 4.1 on page 39 for
two different concentrations, p = 0 and 1 M. The 1st and 2nd solvation shell widths lie
between r; —r9 ~ 0.09 nm (KF) and ~ 0.15 nm (CsCl), and 7 —r; ~ 0.23 nm (LiCl) and
~ 0.25 nm (KF), respectively. The calculated values of z(p) clearly distinguish between
contact and solvent-separated ion pairs: for Nal and LiCl the counterion density in
the second solvation shell can be 2 to 5 times higher than in the first solvation shell,
respectively. In contrast, for KCl and CsCl the average counterion density in the first

2(p) = (4.1)
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Figure 4.1.: Continued on next page.
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Figure 4.1.: MD results for the radial distribution functions for different monovalent electrolytes
at different salt concentrations. Note that also the zero-density limit (p — 0) is shown. Concen-
tration values are rounded to the first digit after the comma.

solvation shell almost doubles the one in the second solvation shell. For NaCl and KF, x is
closer to unity. That is unexpected for KF because it is a rather asymmetric salt |16, 17].
The value for K(II)Cl and K(II)CI(II) can qualitatively deviate from KCl, demonstrating
a strong sensitivity of contact ion formation to the particular force field, a fact noticed
previously in literature on ion-ion pmf modeling [116]. We conclude that Collin’s law of
matching water affinities is partly supported by our simple structural analysis, while the
contact probability shows a strong force field sensitivity. Thus, a likely reason for the
unexpected ’'symmetric’ behavior of KF may just be a bad choice of L.J parameters.

4.1.2. lon-specific short-ranged pmfs

The intricate structural behavior of electrolytes is solvent-induced and stems from differ-
ent hydration properties of the individual ions. As we have demonstrated in the previous
chapter, by subtracting the Debye-Hiickel interaction we can obtain an unobstructed
view on the short-ranged pair potential Vi (r) or structure.

An illustrating and representative example of the procedure is shown in fig. 4.3 on
page 41 where we plot In[w;;(r)r] of eq. (3.20) for Na™ and Cl~ at salt densities p =0.025,
0.2, 0.3, 0.5 M. As anticipated, we observe that for » 2 2rg,; = 1.2 nm the short-

~
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Figure 4.2.: Height of the first peak (located at r = 114 ) of the cation-anion g;;(r) for the
considered salts vs. concentration p.

Table 4.1.: The ratio x(p) between the mean counterion densities in the second (one-solvent-
molecule separated) and first solvation shells of the coion for p = 0 and 1 M. The mean densities
are obtained by integration over the cation-anion rdfs defined in (4.1) using the integration bound-
aries 1, k=10,1,2.

Ion pair ro/nm | ri/nm | ro/nm || 2(p=0M) || 2(p=1M)
LiCl 0.22 0.33 0.56 5.11 3.50
NaCl 0.26 0.37 0.61 1.36 1.03
KCl1 0.29 0.42 0.66 0.63 0.63
CsCl 0.31 0.46 0.69 0.62 0.66
KF 0.25 0.34 0.59 0.95 1.13
Nal 0.29 0.41 0.66 2.15 1.68

K(I)Cl 029 | 040 | 0.64 1.32 0.04

KIDCLI) || 0.28 | 039 | 0.63 1.55 1.33

ranged structure has indeed decayed and the functional behavior is purely linear due
to the screened Coulomb interactions. The inverse screening length from eq. (3.15) is
rk(p) = 0.54,1.59,1.98 and 2.54 nm~ ! for the above densities, and we find \;;(p) =
0.96,1.11,1.17 and 1.46 nm, respectively, with an < 15% error of the latter stemming
from the standard deviation in the statistical fluctuations of ng (r). The normalization
correction for the rdfs is f(p) = 1.080, 1.056 and 1.029 for the densities p = 0.2, 0.3, and
0.5 M. The potential for p = 0.025 M results from the free energy perturbation (FEP)
calculation, described in the following, which comes with an arbitrary energy shift. The
determination of f(p) turns out to be quite accurate as the long-ranged linear decay
in eq. (3.20) is very sensitive to its value. The resulting short-ranged parts of the pair
potential V;'(r) are plotted in the inset of fig. 4.3. The low density results agree with
each other within a couple of percent. We have also attempted to evaluate Vljr(r) for
densities 0.75 and 1 M but we could not reproduce the linear behavior for any value of
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f(p); we suspect that, due to the very small screening length (~ 0.26 nm for 1 M), the
statistical sampling becomes too weak for a reasonable evaluation. The conformity of
the derived short-ranged potentials demonstrates that a), the above procedure works fine
for the calculation of accurate pair potentials, and b), that the short-ranged structure
remains indeed quite undisturbed and density independent for p < 0.5 M.

For the smallest ion concentration possible p = 0.025 M, namely, a single pair of ions
in the simulation box, we employ a simple thermodynamic integration (TI), also called
FEP, procedure: a distance constraint is added between the two ions making use of
the Lincs alorithm [169]. We set the highest order in the expansion of the constraint
matrix to 4 and the number of correction iterations in the final step to 1. Two different
distances r; = 0.25 nm and r9 = 2 nm between the constrained ions are interpolated
linearly making use of a coupling parameter 0 < A < 1. For each A, a simulation of 500
ps up to distances 79 = 1.0 nm and of 2 ns for distances r > 1 nm has been performed
in order to obtain good statistical precision. Further on, the A-spacing was set to 0.002
nm for short distances up to 0.4 nm, to 0.005 nm for intermediate distances (0.4-1.0
nm), and to 0.01 nm for distances greater than 1 nm. The total force on the two ions
(the derivative of the total Hamiltonian with respect to A) is ensemble-averaged for each
value of A\. The integrated mean force, i.e., the pmf, obtained with this procedure has
to be corrected for the entropic contribution, stemming from distance-constraining the
ions (28, 141] according to w;;(r; p) = w};I(r; p) — (D — 1)kgT In(r), where D = 3 is the
dimension of the constraint. We carefully checked for selected salts at p ~ 0.3 and 0.5 M
that TI and the standard g;;(r; p) calculations yield the same result.

The V5 (r) for all ion combinations are shown in fig. 4.4(a) on page 42 revealing a
couple of interesting features: first, comparing all cation-cation potentials, the Na™t pair
shows the strongest oscillations. We explain this by sodium’s high water binding affinity
and tightly bound hydration shells which give rise to energetic barriers whenever two
Na™ approach each other closely by a rare fluctuation. The Cs™ pair in contrast hardly
shows barriers due to weakly bound water, and the interaction is smooth and soft-sphere
like. For Li™ water binding is stronger than for Na™ as can be observed by a higher
LiO rdf contact peak (not shown), but the potential looks smooth and similar to the
Cs™t case. The reason is that the strong water binding of Li™ leads to a huge energy
barrier for close distances, so that the LiT-Li™ contact is never sampled. Turning to the
anion-anion potentials, this strong hydration does not happen for the small fluoride pairs
where contact configurations are possible and the structure is highly oscillatory. The
latter smoothens for Cl~. The large I~ exhibits a rather structureless, soft-sphere like
potential.

Let us now turn to the cation-anion pairs. In line with the rdf interpretation above
that KCl and CsCl preferably form contact ion pairs, we observe that the first (con-
tact) minimum in the potential is the global minimum of V3" (r). Adding the attractive
Coulomb potential thus clearly drives the ions into a contact configuration. For the other
salts, the second minimum at the solvent-separated configuration is the global minimum.
Especially the asymmetric salts LiCl and Nal feature a 1 — 2 kg7 deeper second min-
imum compared to the contact minimum. This big difference cannot be balanced by
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Figure 4.3.: The effective potential w;;(r) between Na™ and CI~ plotted according to eq. (3.20)
for different salt concentrations (see legend). From fitting a linear function to it with a slope given
by the inverse decay length k(p) (solid lines), the prefactor in the DH expression (3.14) can be
obtained. Subtracting the DH expression from Bw;;(r) yields the short-ranged pair potential BV
(inset) which appears to be independent of density within the considered density range.

the electrostatic attraction as we deduct from the inversion of the infinite dilution rdf
(not shown) and thus promotes solvent-separated configurations. A rather odd case is
displayed by KF: although water binding is strong for F~, the short-ranged potential ex-
hibits only weak oscillations and a quite broad second minimum pointing to an unusual
water configuration around a KF pair at a solvent-separated configuration.

A comparison between the Vljr(r) for the different KCl force fields is plotted in fig. 4.4(b)
on the following page. Although the position of the first minimum is very similar for all
combinations (within 3%), pointing to the same effective size, the depth of the potential
minimum can vary significantly between 1 and 3 kgT. This obviously tunes the height
of the contact peak, which is shown for 0.3 M in the inset to fig. 4.4(b). The contact
peak height of K(IT)Cl is smaller than that of KCl, probably due to a tighter bound first
hydration shell. The latter leads to a larger desolvation energy barrier at v ~ 0.4 nm in
Vi (r) in fig. 4.4(b). We support earlier notes [116] that by changing the individual ion
parameters slightly, the solvent-induced pair structure can be considerably affected.

Another instructive way of characterizing a pair potential in a more comprehensive way
is to calculate its second virial coefficient by integrating over the Mayer function [40],
V1Z.

B;" = —2m /OOO (exp[—BV*" ()] — 1) r2dr. (4.2)

Note that B5" > 0 for an overall repulsive interaction (yielding a positive contribution
to the osmotic pressure), and B5" < 0 for an overall attractive interaction (yielding a
negative contribution to the osmotic pressure). The values for the individual V;'(r) are
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Figure 4.4.: Short-ranged pair potential V;3"(r; p) for the simulated ion pairs vs. radial ion-ion
distance r.
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Table 4.2.: Second virial coefficient BS" for cation-cation (++), cation-anion (+-), and anion-
anion (— =) pairs defined by eq. (4.2) using their short-ranged pair potential only. The unit
is nm>. The Zm.—column is the sum of all contributions with i,j7 = +, — (counting the cation-
anion contribution twice).

Ton pair || B3"(++) | BS"(+) | B () || >,
LiCl 0.18 0.14 0.19 0.64
NaCl -0.13 0.21 0.19 0.48
KCl -0.14 0.06 0.19 0.17
CsCl 0.11 0.01 0.19 0.28
KF -0.14 -0.08 20.05 || -0.33
Nal -0.13 0.25 0.36 0.73

K(I)Cl -0.16 0.29 0.19 0.61

K(IDCIID) || -0.16 0.14 0.23 0.35

summarized in tab. 4.2.

The cation-cation pairs of Nat and KT are overall attractive in this short-ranged
picture, probably due to their smaller size and stronger oscillations with pronounced
minima when compared to Cs™ and LiT pairs which exhibit a repulsive short-ranged
potential. Li* shows the strongest repulsion as its effective size is large due to its tight,
covering hydration shell. Cs™ features a comparable size but a deeper first minimum,
so that the BS" of the Cs*-Cs™ potential is somewhat lower. A monotonic trend can
be observed for the investigated anion-anion pairs where the large I~ pair has a more
repulsive potential than that of C1~ or F~. In contrast to lithium, the small fluoride pair
shows the weakest repulsion from the anion pairs, a fact that has been controversially
discussed in literature before [32, 170-172]. The cation-anion V;'(r) are repulsive for
the Nal, NaCl, and LiCl pairs, weaker repulsive for the KCI pair, and neutral for CsCI.
Surprisingly, the KF pair features an attractive short-ranged pair potential, probably due
to the unusually broad, second minimum in V;'(r) [amplified by the r?-term in (4.2)]. We
will see later that the B35", especially the one of the cation-anion pairs, will be strongly
related to the low-density osmotic pressure behavior of the salts.

4.1.3. BH diameters

Our short-ranged ion-ion pmfs can be integrated and mapped onto a HS system along the
lines of section 3.5. Fig. 4.5 shows both f;;(r) and o;; for all ion-ion combinations of the
NaCl salt. The o;; are not to be confused with the LJ parameters of tab. 2.1. The Mayer-
functions exhibit oscillations and can become positive due to attractive regions in the ion-
ion short-range pmfs. This attraction can lead to much smaller than expected effective
diameters. A typical example is Na™-Na™, which has a BH diameter of o, = 0.22 nm
even though the ion-ion short-range potential V', (r) already diverges to infinity at a
distance r ~ 0.3 nm.

The BH diameters o;; for all studied salts are summarized in tab. 4.3 on the following
page. As ionic interactions and pairing affinities are governed by hydration effects we
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Figure 4.5.: Mapping of ion-ion short-range pair potentials onto hard-sphere interactions in
the case of sodium chloride (NaCl). Shown is the short-range pair potential V5 (black full),

its Mayer-function f;;(r) = [exp (—ﬁVer(r)) — 1] (red dashed) and the effective BH hard-sphere
diameter o;; in the form of a delta function (magenta).

Table 4.3.: Barker-Henderson diameters o;; and nonadditivity Ay _ defined by o4 _ = % (04++
o__) x (1+AL_) for all salts studied.

Salt || 044 (nm) | o4 (nm) | o—_ (nm) || Aj_
LiCl 0.45 0.38 0.46 -0.16
NaCl 0.22 0.40 0.46 0.18
KCl 0.19 0.30 0.46 -0.08
CsCl 0.41 0.22 0.46 -0.49
Nal 0.22 0.47 0.47 0.36

ascertain that it is not possible to determine the effective diameters o;; by looking at
vacuum van der Waals radii only. Another striking example is the LiT-Li* pair, which
has the smallest van der Waals radius but exhibits the largest effective BH diameter of
all cations studied. A more detailed inspection of the values o;; in tab. 4.3 shows that
electrolytes resemble size-asymmetric and nonadditive hard-sphere mixtures, viz.

The CsCl salt, for instance, has a large negative nonadditivity A, = —0.49. CsCl
will therefore show a tendency for mixing. In strong contrast, we expect Nal, having a
large positive nonadditivity of A, _ = 0.36, to be strongly influenced by excluded-volume
correlations and inclined to phase-separate. Indeed, at high concentrations, we will see
that the Nal salt in confinement will lead to a highly asymmetric system and strong
layering. A positive nonadditivity in general competes with electrostatics, which always
favors mixing of cations and anions.
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4.2. Dielectric constant

We measure €(p) in our bulk MD simulations by calculating the dipole fluctuations of the
water molecules using eq. (3.24). In the salt-free case we calculate a dielectric constant
of €(0) = 72 £ 1 for SPC/E water, consistent with the literature value [140|, and smaller
than €(0) = 78.4 for real water at 7" = 298 K. The MD results for the water dielectric
constant €(p) in dependence of salt type and concentration are presented in fig. 4.6 on
the next page. All investigated salts decrease the dielectric screening of water, while in
particular for larger salt concentrations p = 0.5 M, the decrease quantitatively depends
on salt type. Our results agree with other MD studies of NaCl and KCI using the same
force field [173], or NaCl using the KBFF ion parameters [27, 28]. We find that for
densities p < 2 M the functional form of €(p) can be fitted reasonably well with the
expression €(p) = €(0)/[1+ A(p/M)], with A = 0.31, 0.27, 0.24, and 0.23, for the chloride
salts LiCl, NaCl, KCI, and CsCl, respectively, and A = 0.34 and 0.31 for Nal and KF.

The results for the relative decrease of €(p) with salt type and concentration are in
very good agreement with experimental measurements [174-180] for concentrations up
to p ~ 1 M. The experimental results are plotted in the bottom part of fig. 4.6 for a
direct comparison. For larger concentrations the situation worsens and the simulation
overestimates the relative decrease of €(p) by up to 15%. The trends with changing
ion size, however, are reproduced for all salts by the MD results within the statistical
error: the larger the cation (Lit < Na™ < KT < Cs™), the smaller the decrease of €(p).
Interestingly, for anions the trend is reversed, i.e., by going from NaCl to Nal, or from KF
to KCI the relative decrease of €(p) enhances. Apparently, although water is more tightly
bound for both, smaller anions and cations, dipolar fluctuations change in a qualitatively
different way: they seem not necessarily be related to ionic solvation free energies (or
contact peak heights in the ion-water rdf), which monotonically follow changes in ionic
size [14].

4.3. Osmotic pressure

We compute the osmotic coefficient with the procedure shown before in fig. 3.2 on page 23.
In fig. 4.7 on page 48 we plot the comparison between the osmotic coefficients from the
compressibility route ¢, (p) and experimental results (at 7' = 298 K) for all considered
salts and densities p < 5 m. Note that we use the unit molality (m=mol/kg) instead
of molarity (M=mol/l) for the comparison. The chloride salts LiCl, NaCl, CsCl with
the exception of KCl match the experimental values within the theoretical error bar for
densities p < 2 m, indicating that the Dang-SPC/E force field combination performs
well for these salts. The osmotic coefficient for KCI deviates for p 2 1 m not only
quantitatively but exhibits a qualitative difference to the experimentally measured Lit >
Na® > K > Cs™ order in the decrease of ¢, as its ¢, (p) becomes smaller than the one of
CsCl. This is somewhat surprising, as the experimentally measured order is also obeyed
by their (van der Waals) size distribution, in reality and in the employed MD force field.
The largest deviations are observed for the Nal and KF salts. For Nal, the MD simulation
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Figure 4.6.: Water dielectric constant €(p) vs. salt concentration p from MD simulations (top
figure) and experiments [174—180] (bottom figure). Data points are depicted by symbols while lines
are guides to the eye. The magnitude of the statistical error is smaller than the symbol size. The
labels at the right vertical axes show the absolute €(p) values. The salt-specific dielectric constant
= % with €(0) being the dielectric
constant at infinite dilution and p being the concentration in mol/l (M). The ion-specific constants

C are displayed in the table on the right.

of the MD simulations can be calculated with €(p)
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shows a strongly increasing osmotic coefficient larger than ¢ = 1 for p 2 1 m in line with
the experiments but overestimates the deviation from ¢ = 1 by more than a factor of
two. The osmotic coefficient of KF from MD is entirely wrong and is ¢, < 1 for all
densities while the experiments show a change of sign at p ~ 2.3 m.

A comparison between the osmotic coefficients from the compressibility route and the
virial route, ¢, vs. ¢, is presented in fig. 4.8 on page 49 for all six salts. Without the
many-body correction by €(p), the virial route prediction deviates considerably from the
compressibility route starting from densities p ~ 0.5 m, as exemplified for NaCl in fig. 4.8.
This finding is in accord with the study of Hess et al. [27] who used the same correction
in implicit water computer simulations. We observe the same qualitative behavior for the
other salts, too (not shown). With the correction included, a reasonable agreement of the
virial route with the compressibility route can be achieved for concentrations p < 2 m
for all chloride salts within the statistical error. Deviations are found already for smaller
densities (p ~ 1 m) for KF. However, we hereby corroborate and generalize the validity of
the €(p) correction found by Hess et al. for NaCl to other salts in the molar concentration
range.

In fig. 4.8(a), we also plot selected results for the K(II)Cl and K(II)CI(II) force fields.
For p = 0.3 m, K(ITI)CI(IT) agrees well with experiments (cf. fig. 4.7) while K(II)Cl over-
estimates the osmotic coefficient. Both parameter sets predict a significantly too high
¢ at a density of p = 2.1 m with ¢ = 1.05 and 1.4 (not on scale) for K(II)CI(II) and
K(II)Cl, respectively, and out of the experimental Lit > Nat > Kt > Cs* order. From
our analysis so far, it emerges that the osmotic coefficient (and structure) of electrolyte
solutions in MD simulations is very sensitive to slight changes in the force field as ob-
served before in HNC and MC calculations |28, 31, 32]. Note that none of the tested
combinations for KCI can describe the experimental osmotic pressure at p ~ 2 M within
our error bars.

Results for the partial corrections to the osmotic coefficient A¢*" = Z” Agir and

ApPH = Z” A(;SB-H, are shown in fig. 4.9 on page 51. For all salts we observe that the
sum of long-ranged (electrostatic) contributions A¢PH is strongly negative, i.e., reducing
the total osmotic coefficient as could have been expected from DH theory only, and
hardly depends on salt type. The DH limiting law (3.43) nevertheless overestimates this
contribution by almost a factor of two because it does not consider the finite size of the
ions. Indeed, one can find easily that an analogous virial integration over DH forms [149|
with a lower distance cut-off a leads to the expression ¢pg = 1—r3/[487p(1+ra)]. Using
a ~ 0.3 nm, we find that this size-corrected DH limiting law describes the long-ranged
electrostatic data within the statistical error. Further inspection of fig. 4.9 shows that
the specificity is provided by the short-ranged contributions A¢™ and is dominated by
the cation-anion part A¢Y_ for densities p < 0.5 M, for NaCl and KCl up to 1 M. In
this range, the anion-anion and cation-cation contributions are small and/or cancel each
other while the DH contribution is counterbalanced by the cation-anion short-ranged
contribution only.

An eye-catching behavior is displayed by KF: from fig. 4.9(b) on page 51 we observe
that it is the only salt whose cation-anion short-ranged contribution acts not repulsive
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Figure 4.7.: The osmotic coefficient ¢, vs. salt concentration p from the compressibility route

[egs. (3.40) and (3.41)] compared to experimental values. The DH limiting law (3.43) is also
shown (black dashed line).

to the osmotic pressure so that the resulting A¢ is dominated by the DH part only. By
comparing this behavior to the second virial coefficient B5" of the short-ranged potentials
(cf. tab. 4.2 on page 43), we rationalize an intimate connection as only Bs" < 0 for the
K*-F~ pair. Further inspection reveals that a general trend can be observed for all
investigated salts. At moderate densities p 2 1 m, the magnitude of ¢ decreases in the
order Nal > LiCl > NaCl > CsCl > KCl > KF: the same order is found in the sum of
the second virial coefficients of the short-ranged pair potentials, see the last column in
tab. 4.2. Thus, the strong osmotic repulsion for LiCl and Nal can be traced back to the
large Lit (dressed by a water shell) and I~ -ions yielding large positive virial coefficients.
For small densities p = 0.5 m, we find that the order in decreasing osmotic pressure
is different and is Nal > NaCl > LiCl > KCI > CsCl > KF. As observed before, the
low density behavior is dominated by the cation-anion short-ranged potential; again, the
just mentioned series of salts agrees with the BS"(+—) of the cation-anion short-ranged
pair potential only, see the second column of tab. 4.2. As an important conclusion, we
emphasize that for p < 0.5, the specific behavior of ¢ is determined by the cation-anion
V3" (r) only and is strongly related to By of the latter.

4.4. Shear viscosity

In order to get a more complete picture of the solvent properties we calculate bulk shear
viscosities for NaCl, KCI, and Nal at moderate concentrations around ~ 3.5 M. We
use SPC/E water, but present also results for the rigid TIP3P water model. For the
Green-Kubo method, we use MD simulations of a bulk electrolyte, where, after N PT-
equilibration we proceed with an NVT-production run of 50 ns. In the case of the
non-equilibrium method, the external acceleration profile of eq. (3.28) is applied to every
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water molecule and salt ion in a bulk NV T-simulation.

With the GK formula we find values of 79 = 0.31 £0.01 10~2 kg/(m-s) for pure TIP3P
water, corroborating with a previous study [181], and n = 0.58, 0.74, and 0.6+0.01
1073 kg/(m-s) for the KCI, NaCl, and Nal solutions at a concentration of 3.6 mol/l,
respectively. For SPC/E water we find 79 = 0.68 +0.01 1073 kg/(m-s) for pure water,
again similar to earlier work [181], and 1 = 1.34, 1.41, and 1.37£0.01 1073 kg/(m-s)
for the KCI, NaCl, and Nal solutions at a concentration of 3.6 mol/l, respectively. The
non-equilibrium method yields the same results within a 5% error range. Compared
to experimental values [2| the MD simulation considerably overemphasizes the increase
of the viscosity at this elevated salt concentration for both water models; indeed, the
viscosity was experimentally found to increase by only roughly 5% for KCI and 30-40 %
for NaCl and Nal compared to pure water. This failure in describing the correct bulk
viscosities of the electrolyte solutions must be attributed to inaccuracies in the force field.
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4.5. Short summary

In this chapter we calculated as a first step the fluid structure of homogeneous aqueous
electrolyte solutions for LiCl, NaCl, KCIl, CsCl, KF, and Nal by using all-atom molecular
dynamics (MD) simulations of the frequently employed Dang force field for ions [116-119]
and SPC/E water [114]. We found that the short-ranged, water-mediated ion-ion struc-
ture remains p-independent for p < 0.5 M, which can be rationalized by the small packing
fraction and overlap probabilities of the ion pairs in this density range. We utilized this
fact to efficiently derive accurate ion potentials of mean force (pmfs) from non-vanishing
densities (p ~ 0.3 M) by subtracting the long-ranged, screened Coulomb part. Further
on, simple integrals over the latter short-ranged pmfs yielded effective ion-ion Barker
Henderson (BH) diameters. The osmotic coefficient ¢, calculated from the exact com-
pressibility route for the employed cation-Cl~ force fields from Dang match experiments
well for p < 2 M, whereas for Nal-—while reproducing the ’hofmeister order’'—the agree-
ment is not quantitative. KF parameters failed. Comparison of ¢, to ¢, from the virial
route, which relies on the pair potential approximation, showed us that many-body effects
become important for all salts above p >~ 0.5 M but can be corrected using a p-dependent
dielectric constant €(p). The latter finding corroborates and generalizes previous studies
on NaCl only [27, 28|. Additionally, the salt-type dependent €(p)/e(0) data from our MD
simulation agreed well with experiments. By analyzing the short- and long-ranged pair
potential contributions to the virial, we found that for p < 0.5 M, the specific osmotic
properties are determined by the short-ranged cation-anion pair potential only and are
strongly related to the second virial coefficient of the latter. Simple structural properties
such as contact pairing probabilities, however, have only weak relation to osmotic trends.
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Figure 4.9.: Individual contributions to the change A¢ in the osmotic coefficient ¢ = 1 + Ag.
The symbols are the contributions due to the short-ranged part of the pair potential from cation-
anion (circles), cation-cation (squares), and anion-anion (diamond) pairs. The black long-dashed
line corresponds to their sum, i.e., the total short ranged part, while the red, short-dashed line is
the total contribution from the long-ranged part of the pair potential. The dot-dashed line is the
sum of the total long-ranged part and the cation-anion short-ranged part only. The thick solid
line is the total change Ad.
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4.5. Short summary




Chapter

TIon-Specific Structure and
Correlations in a Nanoconfinement

This chapter addresses the ion-specific structure of confined dense electrolytes. For this,
we first compare the ionic structure of our DFT-PB approaches to MD and MC simulation
results for all salts in a one-dimensional nanoconfinement. The latter consists of both
charged and uncharged model hydrophobic surfaces with surface-to-surface distances on
the order of d ~ 2 nm. Effective salt concentrations are in the molar range. We then
proceed by investigating excluded-volume correlations in case of the Donnan effect for
Nal and LiCl. We then compute solvation forces for all salts for like-charged plates and
compare them to the uncharged case. Finally, we inspect the charge distribution in the
vicinity of a charged surface and will analyze whether ion-surface interactions or ion-ion
excluded-volume correlations drive overcharging.

5.1. Structure at infinite dilution

In order to effectively coarse-grain our slab-water-salt system we extract two main terms
from all-atom MD simulations at infinite dilution: ion-ion short range pmfs V;jr(r) or
effective ion-ion BH diameters, and the (also short-ranged) ion-surface pmf V™t (r). The
Vizr(r) have already been computed in the previous chapter and the relevant cation-
anion pmfs are summarized in fig. 5.1 on the following page. We calculate the V;*(r)
by umbrella sampling (methodological details are given in chapter 2). The resulting
ion-wall pmfs are shown in fig. 5.1. We observe partial attraction for the large I~ and
Cs™ ions, while Na™ and CI™ are repelled from the surface, corroborating with earlier
studies |57, 182]. A more astonishing feature is that the Li™ cation, even though having a
very small van der Waals radius (cf. tab. 2.1 on page 9), is attracted to the hydrophobic
wall instead of favoring hydration in bulk water. This could be attributed to a force
field problem but is presumably due to the tightly bound first solvation shell that is
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Figure 5.1.: Effective ion-surface potentials V#**(z) (top) and the short-ranged part of the
cation-anion pair potentials V;5"(r) (bottom). The latter curves are shifted vertically for a bet-
ter view where the shifted x-azxes are depicted as dotted lines. The potentials are obtained from
explicit-water MD simulations described in chapter 4.

not clearly distorted at the location of the minimum in the ion-wall pmf at a distance
z = 0.43 nm from the surface. Similar trends have already been seen at the air-water [56]
and a hydrophobic interface [183].

5.2. Electrolyte structure

5.2.1. MD and MC

Fig. 5.2 on page 56 displays a comparisons of MD- and MC-derived density profiles for
LiCl, NaCl, CsCl and Nal for two different ion area densities. The MC profiles are
shown using on one hand realistic, MD-derived dielectric constants, given in the caption
of fig. 5.2, and on the other hand one corresponding to experimental pure bulk water. We
observe in general good agreement between the results for MD and MC for an area density
of 7 ~ 3 nm~2, even though the MC simulations with the realistic dielectric constant
perform better. This trend substantiates even more for higher concentrations, i.e., larger
dielectric deviation from bulk water. The special case of the NaCl salt at the higher
effective concentration is due to fast crystallization and will be treated later in chapter 6.
The MC simulations with MD-derived dielectric constants reproduce particularly well
the ionic concentration at the walls and in the middle of the slab in the MD simulation.
However, we note that the agreement of MC in comparison with MD is ion-specific. For
LiCl, for example, MC is able to predict the MD profiles almost perfectly, whereas for
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NaCl the cation density profile exhibits differences already at the lower concentration.
This is due to multi-body and explicit-water effects that seem to play a more important
role for Na™, the effectively smallest cation in our study, than for LiT, the effectively
biggest. Nonetheless, we highlight that MC simulations with correctly chosen ion-ion
and ion-wall interactions and a reasonable dielectric constant are able to reproduce the
electrolyte structure in an explicit-water system in a slab-confinement fairly well. The
importance of a properly chosen dielectric constant has been pointed out in literature so
far only for bulk thermodynamic properties as the osmotic pressure |27, 28|.

5.2.2. MC and DFT-PB

Fig. 5.3 on page 57 show a comparison of ion density profiles for MC, PB, PF and
hard-sphere LDA approaches for two different area densities. We observe that PF and
all local corrections to PB tend to level off regions of high and low ionic concentration
within the slab. While in the case of NaCl the B3 and B2 LDA methods can describe
well the ion-ion correlations seen in MC, they fail to reproduce the ion density profiles of
a lower correlated system as CsCl (A;; = —0.49 < 0). Local theories in general perform
badly for electrolytes with ions attracted to the interface as the lithium cation or the
iodide anion (not shown). This is due to the indiscriminative energy penalty imposed on
high salt concentrations. There are no systematic trends to validate any of the discussed
local theories, on the contrary, in most cases the “unimproved” Poisson-Boltzmann theory
seems to be better or equally well-suited for a wide range of concentrations and salts as
CsCl or LiCl. For a further analysis we compute the pressure on one wall, defined as in
eq. (3.73), for MC and the B3 LDA for all salts at the higher ion area density. In tab. 5.1
we see that the B3 method, even though performing better than PB, overestimates the
pressure of MC always by 20 to 30 %, independently of the salt studied. Furthermore,
none of the tested LDAs are able to compute stable ion density profiles for Nal. It was
noted in literature before that local density approximations for hard-sphere ions lead
to instabilities beyond certain ion sizes [184|. As a conclusion, we state that LDAs are
neither able to predict electrolyte structure nor the correct pressure for inhomogeneous
electrolytes in confinement.

In fig. 5.4(a) we show a comparison of the same MC ion density profiles with both the
NPB-HS and NPB theories. We observe on one hand that NPB-HS and NPB perform
quasi-identically; on the other hand, we observe that the nonlocal theories, even though
neglecting electrostatic correlations, are able to reproduce the electrolyte structure of the
MC simulations even at regimes of low dielectric constants fairly well with the exception
of Nal. In addition, we compare in fig. 5.4(b) results for NPB-HS on an additive, i.e.,
A;j = 0 and therefore o4 _ = % (04++0__), and nonadditive level, assessing the impact
of A;j. We see only a minor difference for the NaCl and LiCl salts, whereas for CsCl
and Nal a difference and better performance of the nonadditive model is discernible. We
quantify the latter by analyzing the relative error in pressure compared to MC in tab. 5.1
on page 59. LiCl and NaCl perform equally well on the additive and the nonadditive
level. This is not surprising given their small nonadditivity, see tab. 4.3 on page 44. For
CsCl and Nal, on the contrary, the nonadditive theory is evidently superior. For CsCl for
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e(p) = W in all cases with a salt specific constant C' given in fig. 4.6 on page 46.
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Table 5.1.: Total pressure exerted by the ions on one wall for LiCl, NaCl, CsCl and Nal. The
system is the same as shown in figs. 5.3(b) and 5.4(b). The pressure for PB, LDA B3, additive
(NPB-HS add.) and nonadditive NPB-HS is shown in terms of the relative error to MC pressure
in percent. For Nal the B3 method failed to yield a stable result.

Salt Pyc Relative error = % (%)
(bar) || X =PB | X =B3 [ X = NPB-HS add. | X = NPB-HS
LiCl 1089 114 -22 -6 3
NaCl 993 90 -23 4 -5
CsCl 775 62 -29 -34 -16
Nal 1355 202 n/a 83 53

example the additive NPB-HS performs equally bad as the B3 method in terms of pressure
while the nonadditive theory is better by a factor of 2. For Nal, which exhibits the largest
positive nonadditivity (Ay_ = 0.36 > 0) of all salts studied, even the nonadditive NPB-
HS underestimates the MC-derived pressure by roughly 50 %. We argue therefore that
systems with large ions in terms of effective size and a high positive nonadditivity are
dominated by excluded-volume interactions and need a more sophisticated treatment, as
for example a nonadditive FMT approach [162].

Finally, in fig. 5.5 on the following page we show ion density profiles for LiCl and
Nal for both negatively and positively like-charged surfaces. Since the system has to be
electroneutral we observe an asymmetry in the cation and anion area densities in the
form of /e = == ;T+, where o is the surface charge density of one wall. This asymmetry
leads to a very different ion structure depending on the nature of the counterions. Nal is
an interesting example since Nat is the effectively smallest and I~ the largest ion in our
study. For this reason, negatively charged walls lead to a relatively unstructured system,
whereas positively charged walls lead to accumulation of counterions and depletion of
coions at the surface. In the latter case there are roughly 4 times as many counterions
than coions near the positively charged surface at z ~ 0.5 nm. For negatively charged
walls, on the contrary, there are roughly as many counter- than coions for distances
2z < 0.6 nm from the wall.

5.3. Donnan effect

In fig. 5.6 we show the dependence of the effective mean coion concentration ps = 7/d on
the surface charge density in the case of positive and negative surface charges for LiCl
and Nal. As the ion-wall interaction is repulsive close to the surface, the ions can not
come indefinitely close. Hence, we do not recover the reservoir density py for o = 0.
We will generally underestimate the effective mean coion concentration in terms of the
(restricted) volume accessible to the ions. We are not bothered since we are interested
in the relative decrease in salt concentration with the surface charge density. Indeed,
the effective concentrations for neutral walls will also be different for PB and NPB-HS,
given that in the grand canonical ensemble the particle number may vary for the same
reservoir density pg = 3 M.
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In fig. 5.6(a) we assess the effect of ion-ion correlations and ion-wall interactions on
the Donnan effect in the case of negatively charged walls (sodium being the counterion)
and positively charged walls (iodide being the counterion). We first turn our attention
towards the results of PB and therewith “switch on” the ion-wall interactions only. We
observe a more pronounced decrease in salt concentration in the case of negatively charged
walls indicating that sodium depletes the coion concentration more than iodide does. We
make the following assertion. The attractive part of the ion-wall pmf for iodide drives
the counterions to the wall and therefore leading to a lower effective surface charge
density than in the case of sodium being the counterion. We expect excluded-volume
effects to depend particularly on the effective ion sizes of the counterions o;; and on the
nonadditivity parameter A;;. Asstated in tab. 4.3 on page 44, Nal is a highly asymmetric
and nonadditive salt. We anticipate that iodide as a counterion with an effective diameter
of o__ = 0.47 nm will squeeze out more salt than sodium that is less than half as big
(04+ = 0.22 nm). As we can see, this is what happens. The excluded-volume impact
overcompensates the effect of the pmf so that the Donnan effect is overall greater for
positive surface charges.

In order to validate our assessments we repeat in fig. 5.6(b) the same procedure for LiCl.
The latter is a more symmetric and less nonadditive salt than Nal with an attractive
part in the cation-wall pmf and a purely repulsive anion-wall interaction (see fig. 5.1
on page 54). Examining the results for the PB method, we recover the same trend
as for Nal. The bigger the attraction/repulsion discrepancy between cation- and anion-
pmfs the wider the gap in salt expulsion will be when changing the sign of the surface
charge density. As to the excluded-volume correlations, the small relative change of salt
expulsion between the PB and NPB-HS methods corroborates with the fact that LiCl
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Figure 5.6.: NPB-HS and PB derived Donnan effect in a d = 2 nm slab-confinement in the
case of positively and negatively like-charging the walls. The reservoir density is pg = 3 M. The
difference in effective concentrations p = 7/d of the two methods for neutral walls (c =0) is due
to different (reservoir) fugacities.
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is the most symmetric salt we study and does not display a big difference in the impact
of ion-ion excluded-volume correlations switching cations for anions. In the inset of
fig. 5.6(b) we show the same analysis with a smaller wall-to-wall distance d = 1.5 nm. We
recover the same trends implying that our analysis is valid also for smaller confinements
as long as the ion-wall PMFs of the two walls do not overlap.

5.4. Solvation forces

In fig. 5.7 we compare the solvation pressure Py(d) of LiCl for three different reservoir
densities pp = 1, 3 and 5 M in an uncharged slab-confinement. As we increase the
density, the pressure variations get more pronounced, in particular for NPB-HS. The loci
of the maxima and minima stay untouched, a behavior that is expected since the ion-wall
interactions are unaffected by the increase in concentration. The steric correction in turn
is always repulsive and increases with pg. We observe a change of one order of magnitude
in the repulsive barrier going from pg = 1 M to pg = 3 M and of roughly a factor of
two increasing the reservoir concentration from pg = 3 M to pg = 5 M. The repulsive
barrier for pg =1 M and pg = 5 M is ~ 0.4 kgl and ~ 55 k7T, respectively, for two
close colloidal surfaces with an area A = 10 nm~2. This corresponds to a difference of
two orders of magnitude.

In fig. 5.8 we choose a reservoir density of pg = 3 M and show the solvation pressure
P,(d) obtained for charged and uncharged walls with PB and NPB-HS for LiCl, NaCl,
CsCl and Nal. A common feature of all salts studied is the strong dependence of Py on
the shape of the ion-wall potentials V,**. A nice example is LiCl with the cation partially
attracted and the anion repelled from the surface. While a positive surface charge leads
to a high solvation pressure mainly due to chloride counterions, Ps features regions of
strong attraction for negative surface charges that are related to the loci and magnitudes
of attraction in the ion-wall short-range potentials of the lithium counterions. We observe
the same effect for Nal. The anion and cation V;*** of NaCl being similar translates into
like shapes of Py for positively and negatively charged walls in.

Turning our attention now to the steric correction we note another trait common
to all salts. The mainly repulsive barrier induced by ion-ion correlations for uncharged
surfaces decreases with increasing surface charges, independently of the sign of the latter.
We explain this behavior with the following argument. For small confinements and
high surface charges the pressure inside the slab is dominated by the force exerted by
the counterions on the surfaces. We observe that for d < 1.2 nm the two pressures
calculated with PB and NPB-HS start to converge. This is expected since nonlocality
plays a less important role in confinements of dimensions as small as an effective ion
diameter. Note that in general the ions do not come closer than ~ 0.38 nm to the walls
(cf. fig. 5.1 on page 54). Since the term P(oco) of eq. (3.71) is always smaller for PB
than for NPB-HS due to excluded-volume effects on a primitive model level, we obtain a
mainly negative contribution to eq. (3.74) for small confinements and high surface charge
densities. Indeed, fig. 5.8 shows that for & = + 0.4 e nm~2 the solvation pressure for PB
is always larger than for NPB-HS for wall-to-wall separations of d < 1.1 nm.
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Figure 5.7.: Distance resolved solvation pressure Ps(d) for LiCl in the case of neutral walls.
Results for three different reservoir densities pg = 1, 3, 5 M are shown. Inset: corresponding
steric corrections for a unit area A =1 nm?.

For LiCl only a very small repulsive barrier is still discernible for a negative surface
charge density 0 = —0.4 e nm ™2
tion becomes purely attractive. For NaCl, CsCl and Nal the steric barrier disappears
independently of the sign of the surface charge and gives way to a purely attractive
correction.

We corroborate at this point with the aforementioned study [160] that the steric cor-
rection due to ion-ion correlations is mainly attractive for highly charged surfaces, even
though we operate on a primitive model where excluded-volume interactions are purely
repulsive, whereas Burak and Andelman used an attractive correction. We also note that
the form of the solvation interaction is strongly coupled to the ion-surface interaction
and a net attraction can not be predicted without knowledge of the latter.

whereas for positive surface charges the steric correc-

5.5. Overcharging

Overcharging is in essence known as the phenomenon where an electric double-layer
appears to attract more charges from counterions than is needed to compensate for the
surface charge. This effect is very important to evaluate long-range interactions between
two charged surfaces in an electrolyte solution. Our aim in this paper is not to provide
a detailed study of the phenomenon because we use only a simple hydrophobic surface
and limit ourselves to monovalent ions. Indeed, detailed reviews as to the “physical” and
“chemical” nature of overcharging can be found in literature [67, 185]. Our coarse-grained
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methods PB and NPB-HS do, however, allow us to compare the effect of ion-specific ion-
surface interactions and excluded-volume correlations on overcharging. In this simplified
picture the nonelectrostatic ion-wall interactions mirror the role of “chemical” adsorption
whereas ion-ion correlations mimic the “physical” component. More explicitly, we want
to inspect the crucial role assigned to excluded-volume by the authors of a previous
study [186].

We place one infinitely large surface in an ionic reservoir of concentration pg. The
system is equivalent to that of section 3.7 except for the fact that we examine only a
single surface, meaning that we set the inter-surface distance d to infinity. To study
overcharging we calculate the net charge area density in the system. This charge density
is given by the surface charge density at the wall and decreases to zero for large distances
to maintain electroneutrality. We obtain the net charge area density simply by integrating
over the charge density of eq. (3.51) :

owt(z)/e = ofe + /Ozp(z’)dz'. (5.1)

We proceed with a similar analysis as in section 5.3. We first discuss results for the
PB method and inspect the role of ion-surface interactions. We then compare them
to results from NPB-HS where we “switch on” ion-ion excluded-volume correlations. In
fig. 5.9(a) on the facing page we show the distance resolved net charge area density of a
plate immersed in a LiCl electrolyte scaled by the surface charge density. We use surface
charge densities of ¢ = 0.4 ¢ nm~2 and a reservoir density of pg = 3 M. The PB
results show a distinct difference for negative (LiT being the counterion) and positive
(C1™ being the counterion) surface charges. If Lit is the counterion, the surface charge
is compensated already at a small distance z ~ 0.5 nm from the plate. The net charge
area density is then shown oscillating around zero. In sharp contrast to the latter, in
the case of a positive surface charge the net charge area density becomes even slightly
more positive up to distances of z ~ 0.6 nm and only then decays slowly to zero. These
considerably different effects are obviously related to the ion-surface interaction that is
attractive for Li* and repulsive for C1™. Fig. 5.9(b) exhibits a qualitatively similar picture
in the case of Nal keeping in mind that in this case the anion is attracted to the interface
whereas the cation is repelled. The trends are the same as for LiCl, even though we see
no oscillations around zero of the net charge area density for a positive surface charge
density, and the compensation of the latter is more linear for a negative surface charge.
At this point, we note that overcharging in the absence of excluded-volume correlations
is in our model only possible for very attractive interactions between the interface and
the counterions or, analogously, very repulsive interactions between the coions and the
surface.

We now turn our attention to the influence of excluded-volume correlations and thus
to the results of the NPB-HS method. In fig. 5.9(a), for LiCl, the net charge area density
switches sign for a negative surface charge. It exhibits a strong positive net charge
area density of o4t (z = 0.55 nm) ~ 0.13 ¢ nm~2. For a positive surface charge, on
the contrary, the net charge area density even increases by almost 20 % at a distance



5 Ion-Specific Structure and Correlations in a Nanoconfinement 67

— — - PBo=-04enm”
e N NPB-HS cs=-0,4§nm’2 ]
r "= "= PBo=+04enm

i \ — - — = NPB-HSG=+04e¢nm"

© L

= \

=05\ . c :
R K LiCl

o |\ s

o<0
v b b bev s b b b v b Lo g b i
03 04 05 06 07 08 09 1 1.1 12 13
z (nm)
(a) LiClL
LRI L L B L L LR LR L L UL
1 -
— — - PBo=-04enm”
S ] NPB-HS 6=- 0.4 ¢nm”
L i\ "= = PBo=+04enm”
. _ N 2
o L 0 NPB-HS6=+04 ¢nm
= 05+ .
R B
3 v
£ | \
© \.
L -\
| \ -
\
Okssssn- [SPEFEEE s
i o>0NL .o -~
v v b bov b b b by bvnna Lo by i

03 04 05 06 07 08 09 1 1.1 12 13
z (nm)

(b) Nal.

Figure 5.9.: Distance resolved net charge area density cioi(2) divided by the surface charge

density. The reservoir density is pg = 3 M. Results for both negative and positive surface charge

densities are shown with o = £ 0.4 e nm™2.



68 5.6. Short summary

z =~ 0.51 nm before declining slowly to zero. It is interesting that up to distances
z = 0.55 nm the net charge area density is even higher than the surface charge density.
For Nal we obtain in fig. 5.9(b) a continuous compensation of the negative surface charge
density with increasing distance z. The positive surface charge, on the other hand, is
compensated already at a distance z ~ 0.52 nm and the net charge area density becomes
negative for a distance range of 0.52 < z < 1.3 nm. The scale of the observed overcharging
might in this case be more of a lower limit because, reminiscent of our structural analysis
of section 5.2.2, NPB-HS underestimates the excluded-volume correlations for Nal.

We can sum up our analysis stating that excluded-volume correlations can lead to
overcharging for dense electrolytes. Nonetheless, the role of ion-specific ion-surface inter-
actions is more important. Excluded-volume correlations can not lead to overcharging if
the counterions are nonelectrostatically more repelled from the surface than the coions.
In the latter case, ion-ion correlations can even increase the surface charge and thus lead
to a competing effect to charge compensation.

5.6. Short summary

We used in this chapter the effective short-ranged ion-ion pmfs for LiCl, NaCl, CsCl,
and Nal and similarly calculated ion-surface potentials in modified PB theories. We
were therewith enabled to calculate the ionic structure and solvation forces of dense elec-
trolytes in planar confinement. In order to assess the validity of the DFT-derived PB
(DFT-PB) theories we performed both implicit-solvent Monte-Carlo (MC) and explicit-
solvent MD simulations in a one-dimensional nanoconfinement. In our MC simulations,
ions interact with the above pmfs, derived from MD at infinite dilution. Comparing MC
and MD derived density profiles at finite salt concentration clarified that we can correct
for (solvent-mediated) many-body interactions by choosing a realistic dielectric constant
in the MC simulation, as was previously shown to be the case for bulk thermodynamic
properties [27]. Then, comparing DFT-PB derived ion density profiles to MC, which
treats nonelectrostatic and electrostatic ion-ion correlations exactly, enabled us to eval-
uate the local and nonlocal approximations in DFT as well as the validity of neglecting
electrostatic ion-ion correlations at high salt concentrations.

We showed that the simplest-to-implement nonlocal approximation is able to correct
for excluded-volume correlations in a wide parameter range. For this, we used effective
BH diameters and treat the electrolyte as an asymmetric and nonadditive charged hard-
sphere system. The BH diameters and the level of nonadditivity gave us a qualitative
picture of the importance of excluded-volume correlations in the system. All local theo-
ries performed much worse than nonlocal PB (NPB), as was already hinted at in earlier
work [184]. The computational simplicity of both PB and NPB methods permitted us
to investigate the influence of excluded-volume correlations on salt expulsion between
charged plates, the Donnan effect, on solvation forces between both like-charged and
uncharged surfaces, and on overcharging of a single charged plate immersed in a dense
electrolyte. Steric corrections, i.e., corrections due to ion-specific excluded-volume cor-
relations, were found to amplify salt expulsion in all cases. Solvation forces are strongly
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coupled to the ion-surface interaction and are therefore ion-specific. Steric corrections
were found to be mainly repulsive for uncharged plates for all salts but disappeared
or became attractive for highly like-charged surfaces at small separations. Further on,
we observed that the charge distribution in the vicinity of a charged surface is mainly
governed by ion-surface interactions but that excluded-volume correlations can trigger
overcharging in a dense, highly correlated system. Finally, we emphasized that, even
though the exact form of the ion-surface and ion-ion interactions depends strongly on
the studied system, NPB can be used in general for a wide range of systems provided
that ion-surface interactions and effective diameters of the ions are accessible.
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5.6. Short summary




Chapter

Crystallization Structure and
Desalting: An MD study for NaCl

In this chapter we investigate a dense NaCl electrolyte at critical and supersaturated
conditions. First, we show that crystallization in bulk is triggered in our simulations
by supersaturations that exceed a certain threshold value. With the help of this robust
kinetic criterion for fast crystallization we then investigate whether our nanoconfinement,
consisting of two hydrophobic model surfaces in a pseudo grand canonical ensemble,
impedes or facilitates fast crystallization at critical salt concentrations. In this context
we will describe a desalting effect for very small surface-to-surface separations in the
nanometer range. Finally, we will inspect fast crystallization patterns in the canonical
ensemble for moderate supersaturations and different surface-to-surface separations.

6.1. Crystallization in bulk

In order to inspect the average hydration pattern around a single ion during crystalliza-
tion, we first study the number of oxygen atoms in the first hydration shell for a single
Na™ and a single ClI~ atom in a water box. This endeavor is fairly simple and consists of
three steps. We first compute the radial distribution function (RDF) between the ion and
the water oxygen atoms. The first minimum in this RDF represents the outer boundary
of the first hydration shell around the ion. The RDFs and thus the locations of the first
minima differ for Na™ and Cl1~ as can be seen in the inset of fig. 6.1. The average number
of water oxygen atoms within the first hydration shell—the ion-water coordination num-
ber—can then easily be obtained by simple counting atoms or, analogously, integrating
the ion-oxygen RDF up to the location of the first minimum as shown previously in (3.2).
The corresponding values are ny = 5.9, with the location of the first minimum in the
Na™-O RDF being r, = 0.325 nm, and n_ = 7.2, with the corresponding r_ = 0.39 nm
for C1™.



72 6.1. Crystallization in bulk

We compute cation-anion coordination numbers in a similar fashion. Nat-Cl~ RDFs
have been computed in chapter 4. The first minimum in the RDF has been shown to be
insensitive to electrolyte concentration and is located at r4_ = 0.375 nm. The cation-
anion coordination number is concentration dependent and can be computed by simply
counting the average number of cations within the first hydration shell of an anion or
vice versa. In a perfect cubic crystal the cation-anion coordination number is ny_ = 6.

We simulate a dense NaCl bulk electrolyte for a range of different supersaturations,
namely salt concentrations of p ~ 6.4, 6.7, and 6.8 M (mol/1), or equivalently p ~ 7.9,
8.3, and 8.4 m (mol/kg). The latter, considering that NaCl crystallizes experimentally
roughly at p = 6.1 M [187|, represent supersaturations of § = 1.05, 1.1, and 1.11,
respectively. We want to point out at this point that the exact values are not particularly
important because the exact supersaturation at which bulk sodium chloride crystallizes
in a simulation depends on one hand on the force field and is on the other hand hard
to estimate due to prohibitively long equilibration times. We will therefore use the
term fast crystallization for a supersaturated electrolyte that forms a cluster of critical
size, i.e., does not dissociate, after an equilibration time of ¢ = 180 ns. This kinetic
criterion is robust if the electrolyte exhibits fast crystallization above a certain threshold
supersaturation while remaining in the dissociated state for lower supersaturations. As
we will see in the following, this is indeed the case.

In the upper panel of fig. 6.1 we plot the average ion-water coordination number per
ion ny and n_ with respect to time for the dense systems described before. As expected
for such high concentrations, the latter is in all cases considerably lower than at infinite
dilution. A more characteristic feature is that above supersaturations of 5 = 1.11 we
observe that the coordination number decreases drastically within the equilibration pe-
riod and converges to a new equilibrated value. The latter effect is probably due to the
incipient crystallization process. We observe the same trend (not shown) also for super-
saturations of 8 = 1.01 (no fast crystallization) and 8 = 1.13, 1.18 (fast crystallization).
In order to confirm this assumption we inspect in the following cation-anion coordination
numbers.

In the lower panel of fig. 6.1 we plot the Na™-Cl~ coordination number n, _ with re-
spect to time for all inspected supersaturations. We discover a clear analogy between the
average ion-water and the cation-anion coordination number. The ion-water coordina-
tion number drops within the same time frame as the cation-anion coordination number
surges. The latter does not equilibrate to ny_ = 6, the value expected for a perfect cubic
crystal, due to the remaining ions that stay in solution. Our conclusion so far is twofold.
On one hand, we can state that both average ion-water and cation-anion coordination
numbers per ion are valuable proxies for the fast crystallization process and corroborate
with previous work [108]; on the other hand we observe that fast crystallization occurs
above a threshold supersaturation, roughly S = 1.11 in our specific case. The exact
value of the latter depends obviously on the considered time frame but is not of major
importance for our approach. As mentioned before, determining a more general and
exact threshold supersaturation for crystallization of NaCl in simulation requires more
sophisticated methods [105, 106] and/or much longer simulation times and is thus out of
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Figure 6.1.: Average coordination number in bulk for the Na™ : CI”, Na* : O™ and CI” : O
pairs, where O~ denotes the oxygen atom of the water molecule, plotted with respect to time
for different salt concentrations. Inset: Rdfs between an ion and the oxygen atom of the water
molecule for both one Na© cation and a CI” anion.

scope of this work.

We finally scrutinize the form of the formed NaCl clusters. An MD simulation snapshot
of the latter is shown in fig. 6.3. Experimentally, one expects to find a so-called NaCl
cubic lattice structure. We therefore calculate the structure parameter 4 which is defined
as

1 Nlayer 1 Nf)
Yy = > D exp(id6))] ) (6.1)
Nlayer N; =1

i=1 4

where we sum over Njayer layers of the crystal in (100) direction, Nl-b being the number of
nearest neighbors of particle 4, and ¢; being the angle of bond vectors between particles
1 and j. Note that a perfect square lattice corresponds to a value of ¢4 = 1. We perform
the analysis for supersaturations of 5 = 1.11, 1.13, and 1.18, and average over 4 layers of
the NaCl cluster. We let the system equilibrate for ¢ = 180 ns and then average over a
time window of A¢ = 20 ns. The obtained values do not depend crucially on the level of
supersaturation and are roughly 14 ~ 0.7, a very high value considering that a perfect
crystal structure is not possible due to kinetic reasons.

We conclude that in our bulk simulations sodium chloride exhibits fast crystallization
into a cubic lattice NaCl structure for supersaturations above g = 1.11.
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6.2. Salt expulsion in the grand canonical ensemble

It is well established that confinement can induce preliminary freezing between two hard
walls for a one-component system [94, 95]. In this section we will investigate whether this
confinement induced freezing can also be observed for a slab-water-salt system between
our two simple hydrophobic walls.

We use a simple setup. We simulate a dense NaCl solution in the pseudo grand canon-
ical ensemble described above at roughly p >~ 6.1 M, a high but subcritical concentration
in terms of fast crystallization in bulk in order to avoid salt clustering in the reservoir.
After an equilibration time of ¢ = 180 ns we gather data for At = 20 ns. Since we know
from the previous section that fast crystallization is strongly linked to the level of super-
saturation, we compute both the molality inside the slab and in the reservoir by simply
counting water molecules and salt atoms. For this, we delimit the slab in y—direction
by the centers of the outer surface C-atoms of one wall (cf. fig. 6.2). With the latter
method we obtain a molality of p ~ 5.1 m inside the slab and p ~ 6.4 m in the reser-
voir. We observe therefore that the concentration in terms of molality in the reservoir
is 25% higher than inside the slab. The latter shows that ions are expelled from the
slab and that therefore the necessary supersaturations for fast crystallization might not
be reached between the hydrophobic walls for a reservoir at critical supersaturation. A
further analysis of the cation-anion coordination number for atoms inside the slab yields
a constant value of ny_ = 1.75 for both equilibration and production period. Fig. 2.1(b)
on page 10 represents a snapshot of the MD simulation after equilibration. Obviously no
clustering of the salt inside the slab occurred.

Since salt is apparently expelled from the slab, we expect for small confinements a
desalting effect, similar to dewetting. Hence, we simulate an NaCl electrolyte in our
pseudo grand canonical ensemble using a reservoir concentration of p ~ 2 M for surface-
to-surface distances of d = 1.0, 1.2, 1.3, 1.4 and 1.5 nm. The simulation time is At =
50 ns after an equilibration time of ¢ = 5 ns, the latter is sufficient since we do not expect
fast crystallization inside the slab due to very low local salt concentrations. The starting
configuration, before equilibration, always involves a slab filled with water and ions. In
fig. 6.2 we show simulation snapshots and in tab. 6.1 we plot average salt densities in
and outside (in the reservoir) the slab for all investigated surface-to-surface distances.
We observe dewetting for d = 1.0 nm, corroborating with earlier, similar but larger scale
simulations [188], i.e., all water molecules are expelled from the slab and with it all salt for
the entire simulation time. For hydrophobic nanopores, it has been observed before that
ions do only permeate the pore in the presence of water molecules [189]. For d = 1.2 nm
we observe that water from the reservoir is reentering the slab for both equilibration and
production run so that the filled configuration is the stable one, as observed before for
two paraffin plates immersed in water for surface-to-surface distances d > 1.1 nm [190].
The water occupancy in the slab does not exhibit wetting/dewetting transitions as has
been observed for the nanopore system [189]. Interestingly, all salt atoms stay in the
reservoir, the latter confirmed by an average number of cations and anions around 1.5.
As we proceed to larger surface-to-surface distances, Na™ and Cl~ ions reenter and the
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Figure 6.2.: Snapshots of MD simulations in a pseudo grand canonical ensemble after equi-
libration for a reservoir salt density of roughly p ~ 2 M and three different surface-to-surface
distances: a) d = 1.0 nm; b) d = 1.2 nm; ¢) d = 1.4 nm. The confinement is delimited in y
direction by the center of the outmost surface C-atoms, as depicted by Ay in a). The colorscheme
is equivalent to fig. 2.1.

molality inside the slab equilibrates to a value of roughly p ~ 1 m for d = 1.5 nm, a
concentration much lower than in the reservoir. The concentrations inside the slab and
in the reservoir are summarized in tab. 6.1.

Therefore, a one-dimensional confinement of two hydrophobic walls in the grand canon-
ical ensemble does not promote fast crystallization of sodium chloride. On the contrary,
Na™ and CI~ ions can be expelled completely from the slab for small enough confinements
leading to a desalting effect. We underline that this effect depends on the ion-surface
interaction and is therefore not only ion-specific but can also be altered by the morphol-
ogy of the wall, substituting the hydrophobic surface by a hydrophilic one for example.
Substituting the NaCl salt with Nal would, as another example, not lead to a desalting
effect since 1™ is attracted to the wall (cf. fig. 5.1 on page 54). Further on, the lateral
size of the confinement is expected to enhance the effect as reported for dewetting [188|.

6.3. Crystallization in confinement

The study of dense electrolytes in the canonical ensemble seems to be less relevant to
an experimental setup than in the grand canonical ensemble. Furthermore, it poses a
range of problems. The chemical potential of water cannot be easily fixed through a bulk
reservoir and a realistic water density inside the slab is hard to estimate. Salt crystal-
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Table 6.1.: Average salt density inside a nanoconfinement between two simple hydrophobic walls
i a pseudo grand canonical ensemble for different surface-to-surface distances d, some of them
shown in fig. 6.2, and a reservoir salt density of roughly p ~ 2.5 m ~ 2 M. For d = 1.0 nm
dewetting occurs and the salt density cannot be computed.

d (nm) 10 | 12 [ 13 [ 14 | 15 |25
pstay (mol/kg) | N/A | 0.32 | 0.66 | 0.83 | 1.0 | 5.0
pres (mol/kg) | N/A | 225 | 25 | 2.5 | 2.50 | 6.4

lization in a one-dimensional model-confinement is experimentally typically induced by
gradual evaporation until a critical supersaturation is reached and crystallization ensues,
as in a recent investigation of supersaturated NaCl in a model-confinement [191]. The
water density in such a model-system depends for example on temperature and pressure
and particularly on the level of supersaturation. Despite those issues, we think that
simulating a supersaturated electrolyte in the canonical ensemble for a certain effective
salt concentration is instructive in order to analyze crystallization patterns and stress
inside the slab. As we have seen in the previous section, the latter is difficult in the
grand canonical ensemble due to prior fast crystallization in the reservoir for moderate
supersaturations.

Unlike in the case of the grand canonical ensemble, the level of supersaturation in the
canonical ensemble is harder to evaluate due the the difficulty in assessing the effective
salt concentration inside the slab. Additionally, the system can be very inhomogeneous
so that the local salt concentration next to the surface and in the middle of the slab are
often very different. The local ion concentrations do indeed depend strongly on the exact
form of the water-induced ion-surface interaction. Since both Na™ and Cl1~ are repelled
from our hydrophobic model surface, we suspect the local salt concentration to be very
high in the middle of the slab for small confinements in the nanometer range.

In order to study the influence of a slab-like nanoconfinement on fast crystallization
of NaCl we will study in the following a slab-water-salt system at moderate supersatura-
tions. The exact level of supersaturation is on one hand hard to evaluate and can even
be locally very different within the slab, as stated before, but is on the other hand largely
irrelevant for our purpose since we know from the previous section that above a certain
threshold fast crystallization always occurs in a bulk system. We will therefore choose
and set an effective concentration of p ~ 5 M, which is supposed to lead to a sufficiently
high salt concentration locally inside the slab to trigger fast crystallization. In terms of
molality the concentration is maintained at p = 6.5 +0.1 m. A summary of the systems
with different surface-to-surface distances d studied is given in tab. 6.2 on page 79.

In fig. 6.4 we show ion density profiles for 4 different systems. The profiles are averaged
over At = 20 ns after an equilibration time of ¢ = 180 ns. As a first observation, we
can state that, even though being a hydrophobic surface, the water molecules show a
higher propensity next to the wall than the ions. The latter signifies that the volume
available to the water molecules inside the slab is higher than the volume available to
the ions. We will therefore, reminiscent of our definition of the effective concentration
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Figure 6.3.: Snapshots of typical MD simula-
tions in the canonical ensemble after an equili-
bration time of t = 180 ns. Snapshots for two
different distances are shown: a) d = 2.0 nm;
b)d=2.5nm. In c) a zoomed-in picture of the
NaCl cluster of b) is shown in the x — y plane.
The colorscheme is equivalent to fig. 2.1.
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Figure 6.4.: MD-derived density pro-
files in the canonical ensemble af-
ter equilibration at a moderate su-
persaturation for d = 1.8, 2.0, 2.1
and 3.0 nm. The effective concentra-
tion remains constant and is roughly
p ~ 5 M. Density profiles for Na©
(full), CU" (dashed), water oxygen
(dot-dashed) and the wall C-atoms
(dotted) are shown. The water oxy-
gen density profiles are divided by 10
for a better view.
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Table 6.2.: Effective concentrations for MD simulations in the canonical ensemble for different
surface-to-surface distances d. Concentrations are given in terms of molality p and molarity

P = T Tydwa

d(om) [18[20[21[25]30
p (mol/1) | 5.0 (50|50 50]50
p (mol/kg) | 6.6 | 6.4 | 6.6 | 6.5 | 64

p = z— underestimate the local ion concentration in the middle of the slab for very
small confinements and will recover the given p = 5 M for very large confinements. In
this latter case we will actually not observe fast crystallization anymore as we expect
bulk behaviour with a threshold concentration around 6.5 M, i.e., considerably higher
than our average concentration of p ~ 5 M.

The two lower panels of fig. 6.4 show density profiles for two different wall-to-wall
distances d = 2.1 nm and d = 3.0 nm. The ion density profiles for anions and cations
overlap, hinting to a strongly oriented crystal. They furthermore show distinct peaks
along the z-direction, which points to a crystal that is layered in sheets parallel to the
surfaces. This is indeed the case as can be seen in fig. 6.3, which shows an MD snapshot
after equilibration of the system for d = 2.5 nm. The peaks observed in the ion density
profiles clearly correspond to the sheets in the NaCl crystal structure seen in the MD
snapshot. Further on, we observe a layer of water molecules between the outer crystal
layer and the confining surfaces. Moreover, fig. 6.3 clearly shows that the ion density
profile is not nil between the ion crystal layers. This is due to remaining “loose” ions, not
forming part of the crystal, that remain even after equilibration.

The ion density profiles for wall-to-wall distances of d = 1.8 nm and d = 2 nm shown in
the upper panels of fig. 6.4 exhibit strikingly different properties. Neither do the cation
and anion profiles overlap, nor do they display a similarly structured shape. We suspect
that the system does not show fast crystallization even though both local cation and
anion concentrations in the middle of the slab are around p ~ 8 M and thus around
30% higher than the threshold concentration for fast crystallization seen in bulk. The
snapshot of the system with d = 2 nm after equilibration shown in fig. 6.3 does not show
a crystalline order and supports the assumption that no fast crystallization takes place.

In the lower panel of fig. 6.5 we show for wall-to-wall distances of d = 2.1 nm and
d = 3.0 nm the average hydration number per ion for cations and anions with respect to
time for the whole simulated time interval, i.e., equilibration and subsequent production
run. We observe a steep decline in the hydration number for wall-to-wall distances of
d=2.1 nm and d = 3.0 nm while for d = 1.8 nm and d = 2 nm it remains constant over
the whole time span (not shown), corroborating with the form of the density profiles
seen in fig. 6.4. Moreover, for d = 2.1 nm and d = 3.0 nm, the average hydration
number for cations and anions converges to 2 and 3.5, respectively. The latter means
that fast crystallization occurs until a critical cluster size is reached and, akin to the
bulk situation, the salt concentration in solution is not sufficient anymore to ensure
further crystal growth [192]. For illustrative purposes we show in fig. 6.6 on page 82 MD
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Figure 6.5.: Pressure exerted on the walls in perpendicular z— direction before, during and after
fast crystallization in the canonical ensemble at moderate supersaturations for two surface-to-
surface distances d = 2.1 nm and d = 3.0 nm. The pressure is plotted component-by-component
(upper panels) for Na© (full), CI~ (dotted) ions and the water oxygen (dot-dashed) molecules,
as well as the sum of all components (dot-dashed). The ion-water coordination number (lower
panels) is plotted as a prozy for fast crystallization.
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snapshots for the d = 3.0 nm system at a time frame that corresponds to roughly 20 ns
after crystallization starts, i.e., at t; = 90 ns, and after equilibration, i.e., at to = 180 ns.
We observe that at ¢ a critical cluster evidently formed in the middle of the slab, but
does not exhibit the same sheet structure parallel to the confining surface as observed
after equilibration at to. The latter suggests that the regular equilibrium structure is
only attained after equilibration and that crystal growth proceeds in a more isotropic
fashion.

We finally analyze the pressure exerted on one wall by the ions and the water molecules
during fast crystallization. In the upper panels of fig. 6.5 we plot both the total and
component-by-component pressure on one wall with respect to time for the systems with
d = 2.1 nm and d = 3.0 nm, i.e., the systems that exhibit fast crystallization. We
observe immediately that the pressure induced by both cations and anions is always
negative and subsequently attractive on the walls. The pressure exerted by the water
molecules , on the other hand, can be both repulsive and attractive. The latter is rather
surprising since water between hydrophobic plates is known to exert a purely attractive
force [54]. We explain this anomaly by the following argument. The perpendicular
pressure exerted by the water molecules in a nanoconfinement is highly dependent on
the average water density inside the slab in the canonical ensemble. A realistic value of
the latter is hard to evaluate in an MD simulation and we additionally suspect the number
of water molecules in the slab to depend crucially on the ensemble used. We thus expect
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the total perpendicular pressure of the water molecules to be rather arbitrary. We will
therefore focus on the relative change of the pressure components before, during and after
fast crystallization only. We observe that for both d = 2.1 nm and d = 3.0 nm the pressure
exerted by the cations and anions increases only feebly during fast crystallization. The
water exhibits a more pronounced decrease in pressure. Considering the change in total
pressure on the walls the picture remains inconclusive, given a decrease in pressure for
d = 2.1 nm and a slight increase for d = 3.0 nm. We conclude that for a supersaturated
NaCl crystal the pressure on the wall that originates from fast crystallization seems to be
of minor importance. Considering earlier speculations [80, 193, 194|, this might on one
hand be due to the even shape of the perfect, smooth-faced cubic NaCl crystal sheets and
on the other hand to the thin water layer between the crystal and the wall that limits
the amount of stress exerted on the surface by the ion cluster. It has been speculated
before that the crystallization pressure of cubic halite crystals on confining surfaces is
expected to be small [80, 193, 194].

6.4. Short summary

In this last chapter we showed that fast crystallization in bulk is triggered in our sim-
ulations by supersaturations that exceed a certain threshold value. We then simulated
a slab-water-salt system—using simple model surfaces—in a pseudo grand canonical en-
semble at close to critical reservoir salt concentration. We probed hereby whether con-
finement induced freezing takes place, i.e., that fast crystallization is triggered by the
slab geometry. Salt was shown to be expelled from the slab and the effective ion concen-
tration inside the nanoconfinement to be always considerably lower than the reservoir
salt concentration so that no fast crystallization takes place inside the confinement. We
additionally described that for very small surface-to-surface distances (d < 1.5 nm) salt
is almost entirely expelled, while water remains in the slab. Hence, in order to study
fast crystallization in confinement, we simulated NaCl at moderate, above threshold,
supersaturations in the canonical ensemble. We observed formation of salt clusters that
exhibit a cubic lattice structure as observed in our bulk simulations but are in addition
arranged in sheets parallel to the surface. Further on, a water film of roughly half a
nanometer in size perpendicular to the surface was found to remain between the crystal
and the surface and thus prevented direct contact between the salt cluster and the wall.
We finally inspected the pressure exerted by the salt ions and the water molecules on the
walls during fast crystallization and observed that the change in pressure between the
walls during the latter is small.
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Figure 6.6.: MD snapshots of a simula-
tion in the canonical ensemble for a surface-
to-surface distance of d = 3.0 nm at two
different time frames. At t = 90 ns (up-
per panel) a critical salt cluster has been
formed in the middle of the slab but no equi-
librium has been reached. At t = 180 ns
(lower panel) the equilibrium configuration
is depicted. The colorscheme is equivalent
to fig. 2.1.



Chapter

Summary and Outlook

The aim of this thesis was to analyze and understand ion-specific effects on an atomistic
level, a subject that has gathered considerable attention in the last 10 years and remains
a matter of vivid research. We investigated ion-specific thermodynamics and ionic struc-
ture in both bulk and (nano)confinement geometries. We presented methods that can
be used for a wide range of systems, such as multivalent ions and/or biological surfaces.
However, we focused on the study of alkali halides at salt concentrations in the molar
range and used a simple hydrophobic model surface.

After presenting the computational and theoretical tools used in this work in chap-
ters 2 and 3, we analyzed bulk properties of aqueous electrolytes in chapter 4. We
first calculated the microscopic fluid structure—in the form of pair correlation functions
g(r)—for concentrated LiCl, NaCl, KCl, CsCl, Nal, and KF solutions employing all-atom
MD simulations. We used the pair correlation functions to obtain accurate short-ranged
nonelectrostatic pair potentials and effective ion-ion diameters from MD simulations. In
a second step, the short-ranged, solvent-induced structure was integrated using liquid
state theory to obtain the osmotic coefficient, allowing for a systematic investigation of
structural consequences to macroscopic behavior. The concentration dependent osmotic
coefficients showed good agreement to experimental data for the chloride salts, while Nal
and KF performed worse.

Current force fields of electrolytes, e.g., for use in biochemical simulations, are gener-
ally benchmarked to single ion properties only. Our results demonstrate that it is crucial
for future force field refinement to additionally include collective bulk properties. Ongo-
ing work in our group showed that such a procedure works well for some alkali halides
but proves to be more difficult for certain salts as for example KF [53]. It is tempting
to speculate that the inclusion of ion polarizabilities, neglected in the classical LJ force
fields, might be critical for a correct modeling of the F~ anion.
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In chapter 5, we turned our attention to dense electrolytes in a nanoconfinement. More
specifically, we calculated for LiCl, NaCl, CsCl, and Nal the ionic structure—in the form
of ion density profiles—between two simple hydrophobic model surfaces by means of
explicit-water MD simulations, implicit-water MC simulations and modified PB theo-
ries. By taking into account a density-dependent dielectric constant, we found that the
results of the MC simulations agree in general well with MD. We then showed that a
simple nonlocal modification to PB—treating the electrolyte as an asymmetric and non-
additive hard-sphere system using the ion-ion diameters calculated in chapter 4—is able
to reproduce the ionic structure of the MC simulations, that treat ion-ion correlations
exactly on a two-body level. We additionally suggested a method to include electrostatic
correlations in a similar way in order to study highly charged systems. Solvation forces
between like-charged plates were found to be highly ion-specific and dominated by the
(counter )ion-surface potential, while the steric correction (due to excluded-volume cor-
relations) was mainly repulsive for high salt concentrations and low surface charges. We
therefore suspect excluded-volume correlations to play an important role in the restabi-
lization of colloidal suspensions at high salt concentrations described in the introduction
of this thesis.

Our findings in this chapter provide a common framework that permits to include
both excluded-volume correlations, that are important for very dense systems, and elec-
trostatic correlations, that are important for highly charged systems, on an ion-specific
level. Such a framework is well suited to be implemented in coarse-grained biochemical
simulations, that currently treat ions on a mean-field level only. An obvious important
issue still to be tackled is the extension of the method to more complex geometries, where
curvature plays a significant role, for instance, ion channels [195, 196] or charged pro-
tein binding pockets [197], where locally the ion concentration can be enormous. Recent
work highlights that this is indeed feasible [198]. Our methods could then be implemented
in existing continuum Poisson-Boltzmann solvers like the Adaptive Poisson-Boltzmann
Solver (APBS) [199]. Future investigations should also include more realistic, biologically
relevant surfaces in order to compare theoretical results to experimental measurements.

In chapter 6, we singled out the NaCl salt and investigated crystallization in bulk and
nanoconfinement geometries by means of MD simulations. In bulk, we found crystalliza-
tion to be triggered by a threshold supersaturation. In confinement, conclusions depend
on the morphology of the confining surfaces and on the considered ensemble. For hy-
drophobic model surfaces, we found both Nat and C1™ ions to be expelled from the slab
in a pseudo grand canonical ensemble, and did for this reason not observe crystallization
inside the slab. Even more, we observed a desalting effect for small surface-to-surface
distances d < 1.5 nm, i.e., salt ions to be completely expelled from the still hydrated slab.
In the canonical ensemble the picture was very different. Moderate salt supersaturations
induced the formation of a critical cluster in the middle of the slab and subsequent cluster
growth led to a crystal arranged in sheets parallel to the surfaces. For small values of d
(< 2 nm), fast crystallization was inhibited and the salt remained dissolved even at high
supersaturations.
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Figure 7.1.: Apparent stability of halophilic malate dehydrogenase (MaIDH) immersed in a
variety of electrolytes, depicted as a percentage of MalIDH found in its native folded form, plot-
ted versus salt concentration. The specific effect of different cations (fig. 7.1(a)) and anions
(fig. 7.1(b)) is shown separately by keeping the other ion constant. Fluorescence and residual
actiwity measurements are carried out at T = 4°C and pH 8 after an 24h incubation period. The
case of MaIDH immersed in a 4M NaCl electrolyte is used as a reference point for 100% of the
protein in folded form. Figure taken from ref. [200].

The results in this chapter are a first step towards a better understanding of salt
weathering on a molecular level. Room for improvement is vast. Future research should
include not only hydrophilic surfaces but especially other salt types, such as sodium sul-
fate that is experimentally known to cause considerable more damage due to a higher
crystallization pressure [82]. How these complex to model salts [201] can efficiently be
included remains to be seen.

This thesis serves as a stepping stone for future investigations. The understanding
of protein stabilization at high salt concentrations is of high biological relevance. For
instance, the salt-specific stability of halophilic (salt-loving) proteins, that require high
salt concentrations for stability and activity [202-204], is not understood on a molec-
ular level. Fig. 7.1 depicts stability measurements of halophilic malate dehydrogenase
(MaIDH) for a series of salts. The curves exhibit a marked salt dependency, even chang-
ing the cation or anion can significantly alter the shape of the protein stability curve. So
far, we focused on static properties. It would be interesting to analyze non-equilibrium
effects, such as applying a shearing force on the surfaces, as has been done in previous
work for a slab-water system [205]. The investigation of multivalent ions can also prove
to be very rewarding. In this realm, the strong ionic denaturant guanidinium (or the salt
guanidinium chloride) is of interest in protein stability studies [206].
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Summing up, we highlighted that ion-specific effects at non-vanishing salt concentra-
tions are significant and can be tackled with a range of theoretical tools beyond the mean
field level. We hope that our results lead to further refinement of presented methods.
These methods are crucial in order to improve the accuracy of biochemical simulations
of macromolecular systems.



Appendix

Debye-Hiuckel Limiting Laws

In order to derive eq. (3.43), we start with eq. (3.37):

dBVeH( )
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The pair potential, and the pair force accordingly, as well as the rdf in the limit of infinite
dilution is given by the DH terms
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where h;;(r) is the pair correlation function. The osmotic coefficient in the DH limit is
given by:

¢DH( -1_ *P Z / Z] 3 dﬁwzj( ) <A3)

a] +7

where we inserted h;;(r) instead of g;;(r) due to electrostatic cancellation. Inserting
and summing up the DH-terms for cation-anion (yielding a factor 2 due to symmetry),
cation-cation and anion-anion terms leads to
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where, in the last equation we inserted
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Inserting the DH limit of the osmotic coefficient ¢py into the definition of the osmotic
pressure IIpy (3.30) leads to

IIpu = kT ¢pu(p)2p

= 20kpT [1 - ’Zzgfp)] . (A.6)

Taking the first derivative with respect to p yields
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With the help of the expression
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one easily finds

Ollpy 3 (p) K3 (p) K3 (p)
=2kgT |1 — 2pkgT |— =2kgT [1—
op B [ 48mp +ops 967 p? B 32mp

= 2kgT (1 - W) : (A.9)

4

where we used x3(p) = 87Ag(0)pr?(p) in the last expression.

1
finally yields:
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Multiplying with p, taking the inverse, and using xr = (p%—%)
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Derivation of C),(7)

We start the derivation of the C,,(r) terms of the rhs of eq. (3.68) with the lhs of eq. (3.68):

o0

! 1 As\"
/0 da Z ] <—z,~zj;3> a" exp(—ny/akr).

n=1

Introducing the terms
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we simplify (B.1) to
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At this point we make use of the following expression [207]:
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Repeated integration of (B.3) leads to
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By carrying out all 2n 4 1 integrations we arrive at
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inserting back (B.2), and by merging the terms in (B.6) into a sum, one finally arrives at
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