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Abstract

Over the past 40 years the automotive industry has experienced a huge shift from
constructing mainly mechanical systems to designing embedded real-time systems.
Current luxury class cars contain about 2000 individual functions, which are exe-
cuted — oftentimes under hard real-time constraints — on a distributed platform
of up to 70 computing nodes. Regarding their complexity and safety requirements,
such automotive systems resemble their avionic counterparts, which evolved simi-
larly. Software engineering for automotive systems, however, is essentially different
from that employed in the avionic domain. While designers of avionic systems make
extensive use of model-based engineering, the automotive industry still lacks a con-
sensus what an ideal model-driven development should look like. With automotive
manufacturers and their suppliers using various — often incompatible — tools, a
comprehensive modeling of entire automotive systems is out of reach. This also ap-
plies to related model-based techniques like model checking, simulation, and code
generation, as well as other typical benefits: lower development time, decreased
development cost, and higher system quality.

This thesis presents an approach for the automated deployment of distributed au-
tomotive applications. The concept is based on the Component Language (COLA),
which has been created for the design of automotive systems during a joint research
project between BMW Group Research and Technology, and Technische Universität
München. COLA facilitates software modeling throughout the entire development
process by providing concepts for modeling requirements, functionality, and techni-
cal aspects of the system under design. With such a comprehensive model available,
it is not only possible to derive executable code for applications, but also generate
configuration data for the target platform. Thus, the generated system is ready for
execution on a distributed platform without any manual integration required.

As an extension to the deployment approach, concepts for generating fault tol-
erance modes and for replaying runtime data in the COLA model simulator are
presented in the thesis. Further, a concept for integration of COLA modeling and
the Automotive Open System Architecture (AUTOSAR) is outlined. The viability
of the described deployment approach is exemplified using two case studies.
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The thesis at hand describes an approach for the model-based generation of
distributed embedded hard real-time systems, particularly those used in the au-
tomotive domain. These systems are characterized by their distributed nature,
that is, they consist of a cluster of networked computing nodes, as well as their
real-time critical properties, meaning severe hazards may arise from their failure.
Consequently, the correct implementation of these highly complex systems is a
must. The approach presented in this thesis aims at raising the quality of systems
through the avoidance of programming and system integration faults. This im-
provement in quality can be achieved by employing models for system design and,
as we will show, an automated transformation of those models into an executable
system. In addition we will present a new debugging concept being integrated in
the proposed system design process. Further we present an adaption of the concept
to the Automotive Open System Architecture (AUTOSAR) standard as well as a
methodology for the generation of fault tolerance mechanisms.

This chapter gives a short introduction into the evolution of automotive systems.
Based on the insights described we will argue for the employment of model-driven
development (MDD) in the domain. Subsequently, the limitations of MDD methods
currently used in automotive software development are summarized and a problem
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1 Introduction

statement is presented along with a possible solution. The chapter concludes with
an overview of the organization of the remainder of the thesis.

1.1 Evolution of Automotive Systems

The electronic systems used in cars have significantly changed over the past decades.
Initially electrically powered components, like servo motors, replaced their previous
mechanic counterparts. The control of those components continually grew more and
more complex by employing more capable control units, evolving from simple on/off
switches to relays and later on to microcontrollers.

Consider for example a system which appears to be as simple as a windshield
wiper. Initially operated manually in the early days of automobiles, the mechanics
were soon driven by an electric motor. A simple switch was sufficient to start and
stop operation of the wiper. The bidirectional motion was implemented using an
arrangement of levers without altering the motor’s rotational direction. Later the
switch was replaced by a relais which was able to drive the motor in both directions
and at different speeds, making the levers obsolete. In addition an intermittent
mode for light rain was developed. Today wipers are controlled by one of the
many electronic control units (ECU) contained in modern cars. These ECUs are
built around microcontrollers which implement the desired behavior in software.
The wiper motor is connected as an actuator and different sensors are used for
governing the wiper’s operation. By attaching a rain sensor the wiper may be
turned on and off autonomously, and its speed can be adjusted to the amount of
water on the windshield. Through governing the wiper’s movement its speed can
be kept constant, independently of the car’s velocity and the occurring head wind.
The driver’s input is comprised as another source for input data altering parameters
like the sensitivity of the rain sensor.

In actual automotive systems the number of ECUs employed is often related to
the number of different user functions the car features. The evolution exemplified
before led engineers to the practice of replacing each of the former subsystems by a
distinct ECU and adding even more ECUs for newly invented functions. Thereby,
today’s automotive systems are huge networks of up to 80 ECUs, communicating
via several bus systems [27, 26, 125]. This requires great effort regarding the ca-
bling, increased weight, and difficulties with free space for the systems in an actual
automobile. Of course, such a highly distributed system is extremely difficult to
program and to integrate without severe faults.

Still the use of microcontrollers is very beneficial. It allows to implement differing
behavior of an ECU for alternative applications which is of great benefit for its use
in multiple product lines or new car models of a manufacturer. Besides that, the
flexibility of changing a subsystems behavior simply by altering its software allows
to mask deficiencies of the connected sensors and actuators. Finally, more complex,
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system-wide behaviors may be implemented if an ECU is able to interact with other
ECUs.

To get the implementation of such a system under control demands for new devel-
opment concepts which reduce the complexity for the developer. The need for such
approaches is obvious as statistics show increasing car breakdown rates caused by
electronics and software faults [42]. It is our belief that automotive systems can be
highly improved regarding safety and reliability by employing MDD in combination
with code generation and automatic configuration of the platform. If the model
contains the necessary information, additional non-functional requirements like re-
duced overall power consumption or maximum hardware cost could also be satisfied.
Unfortunately, an adequate MDD approach providing all necessary information for
distributed code generation is missing, especially one providing a combination of
soft- and hardware characteristics. We will propose a suitable approach in this
thesis.

1.2 Model-Driven Development

In respect of the huge demands regarding safety of automotive systems, manual im-
plementation can be considered error-prone. Even worse, the complexity of these
embedded systems is increasing because of the growing amount of functionality
realized by software, as has been presented by Ebert and Salecker [43]. In order
to reduce the complexity developers have to deal with, especially in case of the
distributed systems used in the automotive domain, MDD is a welcome facilita-
tion. The use of models, which allows an abstraction of certain details of the target
domain, makes the overall system easier to understand [48]. Coupling different
types of models — or more precisely, different abstractions — results in a modeled
system which still holds all relevant information. When combined with automatic
code generation, MDD avoids most of the typical coding errors arising from manual
programming. Adding a technique of platform configuration, turns system integra-
tion into an automated process, further reducing the risk of faults and making this
time-consuming task redundant.

As a result the systems quality is further increased and the necessary development
time is decreased. The time needed for development may be even more diminished
due to a lower number of faults to debug, reducing the effort for changes and
refactoring. These benefits result in a shorter time to market and reduced cost
which is essential especially for the automotive domain. The mentioned advantages
of MDD for embedded systems have been stated, amongst others, by Liggesmeyer
and Trapp in [90] and Balasubramanian in [14].

Consequently, a multitude of MDD approaches and tools has been presented over
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1 Introduction

the past years. In the automotive domain MATLAB/Simulink 1 and ASCET-SD2

are the best-known commercial tools for designing and generating functional code.
The Unified Modeling Language (UML) [114] and EAST-ADL [40] in contrast, focus
on modeling the architecture of the overall system and its behavior at a rather
abstract level. The lack of any formal semantics for those modeling languages
makes code generation at best tool specific, if not impossible, when the resulting
code shall be used unaltered in an actual system. Without defined semantics the
models can neither be verified by model checkers, nor can their transformation
into code be guaranteed to be consistent across different implementations. Rather,
rough drafts as a base for manual coding can be derived. We will illustrate the
shortcomings of those tools in Section 4.5.

1.3 Limitations of Current Software Development
Approaches

As stated by Lee [88] embedded systems development failed to catch the interest of
computer scientists in the early days of such systems. Over time embedded systems
grew more and more complex as their functionality and safety-relevance increased.
Today, automotive and avionic systems require huge effort for their implementation
and integration. Hence, new development concepts which lead to less faults and
decreased time-to-market are highly welcome.

In the course of dealing with this issue, MDD is seen as a viable solution to
increase quality of the resulting systems. Several approaches and tools have been
created for this purpose. A common shortcoming of these concepts is that they
all focus on certain aspects of systems development rather than providing support
throughout the entire process. Consider for example the afore mentioned modeling
tools MATLAB/Simulink and ASCET-SD which are today used by original equip-
ment manufacturers (OEM) and their suppliers in the automotive sector. These
tools focus on designing and optionally generating the functional code for an ECU.
What they do not provide is a means of specifying a distributed system’s software
architecture, let alone its hardware architecture. Without these informations they
cannot enable code generation for distributed applications without manual integra-
tion effort. Consequently, these tools are rather used for designing single functions
or, at most, the code for a single ECU. Systems integration remains a subsequent,
manual step.

At the other end of the spectrum are concepts for the design of architectural
aspects of an automotive system like EAST-ADL or UML, that allow a high-level
description of the distribution aspects of software and hardware. At the same

1http://www.mathworks.com
2http://www.etas.com
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time they fall short when considering behavioral modeling at a detail-level suited
for code generation. Rather they allow to optionally integrate other modeling
languages for functional modeling like MATLAB/Simulink. But this combination of
different modeling languages bears the inherent risk of incompatibilities or a loss of
information at the contact points. And if in turn the functional code is implemented
manually rather than generated automatically, the risk of coding errors is huge. To
avoid basic coding errors, automatic code generation is seen as a must by scientists
familiar with the safety-critical domain, as stated by Sangiovanni-Vincentelli and
Di Natale [116].

The analysis of these limitations together with the specifics of embedded hard
real-time systems and the available MDD tools enables us to derive the following
problem statement.

1.4 Problem Statement

In order to tackle the complexity and safety requirements of automotive systems,
model-driven development is seen as a possible solution. Yet the existing approaches
and tools focus solely on few of the aspects of the target system. We can distinguish
two classes of tools: the first class of tools currently used allows for functional mod-
eling and code generation. They are aimed at designing single software functions,
ignoring distribution problems. However, the second class of tools, which are in-
tended for architecture modeling of distributed systems, does not enable developers
to carry out a functional specification of the system which is detailed enough to
generate code and configure the distributed system. Thus, there is not a single in-
tegrated MDD approach, ranging from requirements specification over architecture
modeling down to functional and technical specifications needed for code generation
and configuration of a distributed platform [90].

With the lack of an integrated modeling approach, code generation and auto-
mated configuration of distributed embedded hard real-time platforms is unfor-
tunately out of reach. Since current tools impede an automation of these steps
through a lack of comprehensive system information, manual coding and system
integration are required, which are some of the most error-prone tasks during em-
bedded systems development. As a result, systems are often faulty and require a
huge effort for bugfixing to conform to the necessary safety requirements.

Over the recent years an approach supporting all steps from requirements specifi-
cation to functional and platform modeling has been developed at TU München [55].
The approach is built around the Component Language (COLA) [86], which pro-
vides modeling artifacts along the entire development process. A COLA model
comprehends all information relevant for the automatic generation of an executable
system. Thereby, the COLA development approach implements the demanded in-
tegrated approach and solves the previously mentioned problems.

5
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1.5 The Solution — Model-Based Code Generation
and System Integration

The deployment concept presented in this thesis aims at generating distributed
application code and platform configuration data. The term deployment is used in
various contexts within the field of computer sciences. Oftentimes, it is applied to
describe the job of rolling out a certain piece of software onto numerous identical
target machines. In this thesis, deployment is used in a slightly different sense:

Definition 1.1. In the thesis at hand the term deployment indicates the transfor-
mation of a modeled system into an executable target system. This transformation
includes generation of functional code as well as configuration data for a distributed
target platform.

Platform configuration includes processor and communication schedules along
with a communication matrix for an automotive platform. As a result the modeled
applications, for which code has been generated, do not need to be integrated man-
ually. Rather the integration is already achieved by the code generation tools and
the temporal behavior of the system is fixed. In order to provide this determinism
a future automotive target platform is necessary which features several key char-
acteristics. In this section we will give an outline of the code generation solution
along with our vision for a suitable future target platform. In the following, we will
give the rationale why this platform is a realistic vision.

Solution approach. The code generation concepts presented in this thesis are part
of a project having been carried out in the context of the Car@TUM cooperation.
This cooperation is a framework for scientific projects of Technische Universität
München and BMW Group. The main goal of the project was to find a solution for
the model-driven development of automotive systems not being limited to certain
steps along the development process, like algorithm design or task distribution on
the target platform, but covering all necessary steps. To this end the Component
Language has been invented providing modeling artifacts for requirements specifi-
cation as well as functional design and technical views of the system under develop-
ment. Together with the language a prototype tool-chain for system development
support was created. This tool-chain implements an integrated MDD approach,
making the use of adapters for heterogeneous stand-alone tools and manual data
migration — as is state-of-the-art nowadays [63] — redundant.
COLA features formal semantics which enable the use of model checking during

development. While not all properties of a model can be checked due to computa-
tional complexity, the resulting model is already of higher quality. To retain this
quality down to executable code on a distributed platform, the code generation

6
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tools described in this thesis are used. The application code generator uses the
functional system design given in COLA for its translation into C Code. The allo-
cation of modeled tasks to computing nodes of the hardware platform is specified in
the technical view of the COLA model. Furthermore the COLA model contains
information about the hardware platform including processing speeds, memory ca-
pacities and bus systems. This information is used to calculate valid schedules and
a communication matrix. The schedules and the communication configuration files
are used by the target platform during execution of the generated system. We will
show that the information contained in a COLA model can be employed to further
enhance the system quality by debugging design faults at model level and by gener-
ating fault-tolerant systems. We have given a detailed introduction to the COLA
development process in [55]. The different steps of this process will be recapitulated
in this thesis.

To ensure correct behavior of the target system, a custom architecture is envi-
sioned for the platform consisting of hardware, operating system, and middleware.
This vision is guided by hard real-time constraints and experiences from the avionic
domain, which is similar to the automotive domain regarding its safety require-
ments. Next we will sketch our vision for a future automotive platform which is
suitable to back the described system generation concepts.

Target scenario. The deployment described here is aimed at the typical control
loop applications used in automobiles. This includes safety-critical functions for
driver assistance, passenger safety, comfort electronics, and similar functions. The
part where this concept is not significant for are entertainment functions like radio,
television, navigation, etc., which are in modern luxury cars provided by an ECU
referred to as head unit . While the head unit is typically a single processing node,
control loop functions are distributed over tens of nodes connected by several bus
systems and types, as has been mentioned before.

In order to achieve the timing requirements necessary for the targeted control
loop applications, we rely on time-triggered scheduling rather than using a priority-
backed event-triggered approach. The benefit of time-triggered scheduling lies in
its deterministic behavior. If computing times for all tasks as well as their deadlines
and processing power of the target platform are known, valid schedules meeting all
timing requirements can be calculated offline. To achieve a time-triggered execution
for distributed tasks independent single-ECU schedules are not sufficient. Rather
a system wide scheduling plan has to be used. This plan contains starting points
for all tasks, along with communication slots in between. The execution of this
plan demands a global clock on all nodes of the system. In combination with a
time-triggered bus protocol such a platform yields guaranteed timing behavior.

Hence, our platform concept envisions a middleware which is based on a time-
triggered bus and provides access to a globally synchronized clock. In addition the
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middleware offers an abstraction from specific bus systems and addressing schemes
to the applications. This property not only simplifies code generation, but also fa-
cilitates the reuse of software [63, 103]. The middleware’s configuration is achieved
by a configuration tool that maps data exchange between distributed software com-
ponents of the COLA model to middleware communication. The middleware is
intended to be configurable accordingly at system start-up. The use of a standard-
ized middleware API and logical addressing allows for the generation of code, even
before an allocation decision has been made. In addition a relocation of tasks from
one ECU to another is facilitated, possibly even at runtime. The middleware shall
also be used by applications for hardware access. By avoiding direct calls from the
application to the hardware, remote use of hardware connected to a different ECU
is feasible.

The named characteristics are similar to those of the TTA proposed by Kopetz
in [80]. We will explain the differences between the TTA and the approach proposed
here in Chapter 2. The following section explains why the outlined platform is a
realistic vision for future automotive systems.

Scenario justification. Over the recent years automotive software grew more and
more complex. Today up to 90 percent of innovation in automobiles is due to
software or at least supported by it, as shown by Broy in [26]. This results in an in-
creased overall number of nodes as well as the use of more powerful microcontrollers
in the individual nodes.

The avionic domain has been faced even earlier by a similar growth of safety-
critical software systems. In order to reduce the number of individual nodes, aiming
at less weight, cabling, and required space, the concept of integrated modular avion-
ics (IMA) [5, 109] has been created. IMA proposes the use of a small number of
powerful multi-purpose computing nodes, each replacing a large number of the
smaller legacy nodes. By employing time-triggered task execution and communica-
tion according to the ARINC methodology [20, 33, 36, 110], timely execution of the
integrated safety-critical applications can still be ensured, despite a lower overall
number of processors.

The transfer of these avionic concepts to the automotive domain fits the target
scenario described before very well. The evolution towards a homogenous automo-
tive platform, consisting of a number of powerful computing nodes seems immanent,
just as it happened with avionic platforms. This requires the same time-triggered
mechanisms that are already used in airplanes. Otherwise a prediction of the sys-
tems’ timing behavior would be impossible.

The use of fewer processors in such a platform leads to a better overall utilization
of the processing power available. Lots of the microprocessors used in actual cars
are executing NOPs, that is, they have no operations to execute and burn processing
cycles most of the time. Consider for example a power window controller that is
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rather rarely activated. Despite being not required this ECU is active all the time,
consuming energy when the ignition is turned on.

As for the middleware proposed in this thesis, a similar hardware abstraction layer
is already emerging for automotive systems. Looking at the interfaces described
in the AUTOSAR standard, a unified access model for bus communication and
hardware interfacing is proposed. The middleware described in this thesis extends
the AUTOSAR concept towards flexibility at runtime and additional middleware
services, as we will show.

1.6 Outline of the Thesis

The remainder of this thesis is structured as follows:

Chapter 2 — Foundations of Embedded Real-Time Systems. In Chapter 2
we give a more detailed introduction into the field of embedded real-time systems.
The reader is given a deeper insight into the specific challenges during the design
and implementation of safety critical systems being subject to real-time constraints
and distributed topology. The automotive systems targeted in the thesis are clearly
within that field.

Chapter 3 — Specifics of the Target Domain. Subsequently, in Chapter 3
the complexity, safety, and cost requirements of automotive systems are discussed.
Furthermore, a summary of current automotive software development concepts is
given. The chapter concludes with an outlook on future trends for automotive
systems.

Chapter 4 — The COLA Approach. Chapter 4 begins with a description of
our vision for model-driven development of automotive systems. Subsequently it
provides an introduction to synchronous dataflow languages. Next, the COLA
modeling language and its concepts are introduced, as well as the generic tool-
chain built around it. As for the tool-chain, the focus of this chapter is more on the
modeling and verification tools, since the code generators used by the deployment
concept presented in this thesis are detailed in Chapter 5. Further, a summary of
related work targeted at MDD of automotive applications is given.

Chapter 5 — Fully Automatic Deployment. The main contributions of this the-
sis are presented in Chapter 5. The deployment concept presented here builds on
the modeling concepts of the COLA approach introduced in the chapter before. Us-
ing the deployment tools, distributed applications can be generated from a COLA
model, rendering redundant any need for manual coding or integration. The gener-
ated artifacts include appropriate configuration data for the distributed execution
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platform. The chapter starts with an overview of the deployment process and the
requirements for a suitable target platform. Afterwards, the custom middleware is
introduced, before we outline the different deployment tools for transforming the
model into an executable system.

Chapter 6 — Extensions of the Deployment Concept. Because COLA pro-
vides an integrated model covering the entire automotive system, additional benefits
besides the basic code generation can be shown. One additional concept which has
been accomplished is a mature debugging approach, backing up the code genera-
tion with a reverse mapping of runtime data to model elements. This facilitates
debugging at model level, without any manual coding. Another concept enables
the generation of fault tolerance modes, enabling the implementation of software
redundancy in an automated manner.

The concepts presented in this thesis require a specific target platform to take
full advantage of the COLA approach. The automotive industry already began
to migrate towards a different platform standard named AUTOSAR, which is sup-
ported by many well-known automotive OEMs like BMW, Volkswagen, Daimler,
Ford, Toyota, as well as a major number of their suppliers. While some of the
ideas presented in this thesis cannot be carried out using an AUTOSAR platform,
basic code generation for AUTOSAR from COLA models is still possible. We will
explain the key differences between AUTOSAR and the original platform concept
along with possible modifications of the deployment tools in this chapter.

Chapter 7 — Evaluation of Concepts. In order to show the viability of the
deployment concept, two case studies have been completed. These case studies
are presented in Chapter 7. The first case study illustrates the generation of code
from a COLA model for an undistributed platform. The second case study shows
a distributed platform, thus demonstrating the full functionality of the deploy-
ment approach. Besides testing the deployment tool prototypes, the second case
study was also used to exemplify the model-level debugging approach introduced
in Chapter 6.1.

Chapter 8 — Conclusions. In Chapter 8 we will summarize the achievements
of the presented approach and discuss its integration into the current automotive
software development process. Finally, we give some future prospects for software
development in the automotive domain.
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The software development concept presented in this thesis is targeted at automo-
tive systems, which are embedded real-time systems from a more abstract point of
view. Real-time systems are typically operating under stringent timing constraints.
The moment in time the system sends a results is as important as the result itself for
correct behavior. As these systems are not visible as computers in an automobile,
but rather interact with their environment using sensors and actuators, they are
called embedded systems. In addition, automotive systems are typically distributed
which refers to their structure as an interconnected network of computing nodes,
exchanging their respective current states. We will summarize the key aspects of
real-time and embedded systems in Sections 2.1 and 2.2, respectively, to give a bet-
ter understanding of the general conditions for the implementation of automotive
systems. In Section 2.3, we want to give a short overview of the actual practice of
embedded real-time systems development. Finally, in Section 2.4 we will introduce
the time-triggered architecture, a well accepted standard for the implementation of
highly safety critical real-time systems.
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2.1 Real-Time Systems

As described, for example, by Koptez [79] a real-time computer system is charac-
terized by the fact that the correctness of its operation is not only dependent on
the logical results, but also on the point in time at which these results are pro-
duced. The real-time computer system is the central part of each real-time system,
which additionally compromises an operator and a controlled object . As depicted
in Figure 2.1 the operator controls the operation of the real-time computer sys-
tem using a man machine interface. The real-time computer system interacts with
the controlled object accordingly via the instrumentation interface. For some real-
time systems the operator is optional. In that case, the real-time computer system
is programmed with a fixed parameter set how to modify the controlled object,
according to the current sensor values.

Operator
Real-time 
computer 
system

Controlled 
object

Man-machine
interface

Instrumentation
interface

Figure 2.1: Real-time system (cf. [79])

The temporal requirements for real-time systems arise from their use for control
loop applications . The control loop is established between the real-time computer
system and its environment, consisting of operator and controlled object. The
computer system reads sensor data which correspond to the actual state of the
controlled object as well as user input. Using these data the computer system
is able to calculate possible deviations of the object’s actual state from the in-
tended optimal state. Based on the result the computer system triggers actuators
to influence the state of the controlled object. The result of this modification can
subsequently be seen in changing sensor data. So the system reacts continuously
and instantly to its changing environment. Hence, control loop systems are also
defined as reactive systems . This term has been introduced by Harel in [65].

Figure 2.2 shows the control loop for an automotive anti-lock braking system
(ABS). As soon as the operator pushes the brake pedal, the brake is slowing down
the car’s wheels. The anti-lock brake controller, which is implemented by a real-
time computer system, monitors the revolutions per minute (RPM) for each wheel
using wheel speed sensors. If it detects a sudden change in the RPM, a change
to zero in particular, the system assumes that the wheel blocked due to braking
intervention. The anti-lock brake controller reacts to this situation by opening the
hydraulic valve for the respective wheel until its RPM is detected to be within the
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2.1 Real-Time Systems

Anti-lock 
brake

controller
Hydraulic 

valves

Hydraulic line 

Sensor wiring 

brake
pedal

Car

Wheel

Wheel

Figure 2.2: Control loop of an anti-lock braking system

given boundary. Then the valve is closed, providing the wheel with full hydraulic
pressure again.

2.1.1 Soft and Hard Real-Time

Real-time systems can be categorized into soft and hard real-time systems. In a soft
real-time system the occasionally delay or omission of a result leads to a degradation
of the intended functionality. In a hard real-time system late or missing results
compromise its safety, which might lead to huge warranty costs, human injury, or
even casualties. An example for a soft real-time system would be a home theatre
computer, where delayed sound playback during a movie might annoy the user.
But this problem is surely not fatal for the user. In contrast a car is considered a
hard real-time system as the failure of one of the safety-critical ECUs could entail
an accident. The afore described example of an anti-locking braking system falls
clearly in the latter category.

Guaranteeing the timely operation of a hard real-time system requires predictable
behavior even under peak-load. This demands a more conservative allocation of
computing resources, which can guarantee timely execution of all tasks. Worst-case
execution times (WCET) of all tasks have to be known to facilitate the analysis of

13



2 Foundations of Embedded Real-Time Systems

schedulability of the task set. Further, all delays in the system caused by jitter,
fetching data, and operating system overhead, have to be restricted to a known
maximum, as Silberschatz et al. point out in [117]. For the same reason advanced
operating system features like virtual memory are not employed, since they tend
to provoke unknown overhead.

For a soft real-time system, it is acceptable to provide degraded service in case
of peak-load. Hence, the requirements towards the timeliness of such a system
are less strict than for a hard real-time system. Soft real-time systems typically
give critical tasks highest priority until they finished their execution. The exact
duration of the tasks’ execution is not necessarily known a priori. This approach
can lead to occasional deadline violations, which is — within limits — acceptable
for soft real-time systems.

Hard real-time systems in contrast may not miss any deadline. Consequently, the
scheduling algorithms used for hard real-time systems have to guarantee the timely
execution of all tasks. To this end offline calculation of schedules is oftentimes
employed [132]. Priorities and starting times for the tasks are carefully assigned to
avoid deadline misses due to priority inversion or delayed process execution.

The majority of systems in an automobile are hard real-time systems. Since these
systems provide essential functions needed for the safe operation of the vehicle, they
must not fail. We will thus focus on this kind of real-time systems in the remainder
of this thesis.

2.1.2 Real-Time Communication

Real-time systems are often of distributed nature. A distributed real-time system
architecture consists of a set of nodes and a communication network between these
nodes. Thus, the system’s functionality is not necessarily implemented on a sin-
gle node, but may be attained by an arbitrary number of cooperating nodes in
the system. From a functional point of view there is no difference whether the
computation is distributed over several nodes, or executed on a single node. The
distributed solution, however, yields several advantages:

Architectural considerations: It may be advantageous to execute a function on
dedicated hardware. This approach allows the employment of hardware com-
ponents, for example a digital signal processor, which are optimized for the
respective function. The resulting node is able to calculate results faster or
more efficient. If several nodes with identical hardware architecture can be
used in the overall system, the opportunity of mass production might also
reduce the cost per node.

Other constraints for the system’s architecture may originate from the histor-
ical evolution of the system. Considering an automotive system, the function-
ality of subsystems has been largely improved by replacing simple circuitry
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2.1 Real-Time Systems

with micro controllers. The resulting system is a large set of small subsys-
tems, which are also referred to as nodes of the system. Often it is easier to
situate the simpler, and hence smaller, subsystems in the installation space
available, than larger pieces of hardware. At the same time, the cabling might
be reduced if each subsystem’s physical location is close to the sensors and
actuators it uses, compared to a star topology in a centralized system.

Further, from a system architect’s point of view, the abstraction provided by
the distributed nodes eases the design of the overall system. As explained
by Kopetz [79], each node is an autonomous real-time system with essential
functional and temporal properties. The exact implementation of the node is
hidden beneath its interface.

Fault containment: Hiding a node’s internal state is also advantageous in case of
failure of a node. Since each node is implemented as an autonomous subsys-
tem, it can be prevented from influencing the rest of the system if it fails. The
communication system is liable for providing a mechanism which avoids the
propagation of erroneous values to other nodes of the system. This approach
largely improves the reliability, and thus safety, of the overall system.

Extensibility: With all subsystems providing a common interface, easy extensibility
of the real-time system is achieved. If the communication system provides the
necessary resources, it is sufficient from an architect’s point of view to add
further nodes to the system by connecting them to the communication system.
Of course this approach requires the subsystems to be composable, that is,
their integration into the overall system via the communication mechanism
must not invalidate the timeliness property achieved by the system.

Parallelism: The availability of a larger number of processors and memory, com-
pared to a single node solution, enables the parallel execution of tasks. This
is mainly of interest for large scale systems, where several independent tasks
are ready for computation at the same time. Parallelization of the system not
only improves processing speeds, but also lowers overall system cost. As pre-
sented by Patterson and Hennessy in [106], the approximate cost of a chip is
proportional to the third power of the die area: Cost = K ∗ (Die area)3 (with
K being the cost factor for process and production technology employed).
Hence, adding more processors to the system is, at least in the long term,
a more cost effective method to increase performance than employing more
capable processors with a larger number of transistors. The increase in cost
for adding processors is only linear, as depicted in Figure 2.3. Still, the ideal
sizing of the employed processors is dependent on the respective executed
tasks.
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System
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System size
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system

Distributed
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Break-even point

Figure 2.3: Cost growth of centralized versus distributed architectures (cf. [79])

Event and state messages. The nodes contained in a distributed real-time sys-
tem exchange their view of the system and its environment by means of messages.
This enables the nodes to acquire other input data than just those produced by
their directly connected sensors or the locally executed tasks. Regarding message
semantics, event messages and state messages are distinguished. Event messages
are triggered by an event occurring in the sending node, which is instantly forwarded
to a receiving node. Typically, the message is only sent once and it is necessary for
the receiver to get and process the message. Otherwise, the system state as seen
by the sender is different from the state assumed by the receiver. Guaranteeing the
reception and interpretation not only requires a reliable communication system,
but also a synchronous communication between sender and receiver. If the receiver
would not process the messages instantly, its message buffer might overflow in case
of a large number of messages — sent by either one or several nodes. Event-message
semantics are used by most non real-time systems.

State messages, in contrast, provide cyclic updates of a node’s state. They are
sent at a defined frequency and contain the current state of the sending node,
as far as it is important for the other nodes in the system. State messages are
automatically buffered by the communication controller of the receiving node. If
a receiving node does not process one of these messages, a subsequent update
simply overwrites the buffered data. Since the applications in a state message based
system are aware of possibly missed updates, this loss of data does not influence
the system’s operation in a negative way.

Event- and time-triggered communication systems. In an event-triggered com-
munication system each communication partner may start to send an event message
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at a random point in time. Hence, the timing of the communication is controlled by
the host computers rather than the communication system. The need for process-
ing messages momentarily requires the application processor to interprete this data
as soon as a incoming message is detected. Thus, the execution of other tasks may
be delayed in an unpredictable manner depending on the number of messages. The
receiver may also be overloaded, if a larger number of sending nodes decides to send
messages to it at the same point in time. Furthermore, if a shared medium is used
the simultaneous access of sending nodes to the communication system may cause
unpredictable delays. Ethernet is a prominent example of a bus protocol using a
shared medium and random access technique. Other protocols like Token Ring or
the Controller Area Network (CAN) [121] make use of tokens or message priorities,
respectively, to control access to the medium. Still, they rely on the application
processor to take care of the timely transmission and reception of messages.

Time-triggered communication systems make use of dedicated communication
controllers which take care of the timing for sending and receiving messages. State
messages are transmitted cyclically at predefined points in time. The exact tim-
ing is transparent to the sending and receiving applications. They only interface
with the communication system for sharing data. The schedule for accessing the
communication medium is stored in every communication controller, assigning ded-
icated sending slots to each sender. This approach avoids message collisions at the
medium level. Since the communication schedules are defined at design time of the
system, the temporal behavior at the communication interface is fixed and can be
tested for each single node. The system is now predictable in contrast to a system
based on an event-triggered communication system, whose behavior differs with the
number of messages sent [77, 78]. Examples for time-triggered (tt) bus protocols
are FlexRay [96] and the Media Oriented Systems Transport (MOST)1, which are
already employed in actual automotive systems. Another prominent example is the
Time-Triggered Protocol (TTP), which is used in the Time-Triggered Architecture
(TTA). We will give an introduction to the TTA in Section 2.4. All these protocols
assign time slots for communication to regulate access to the medium. Further, the
protocols are implemented in form of bus controllers, taking care of the necessary
message timing.

2.1.3 Clock Synchronization

In a system whose quality is dependent on the production of results within given
time bounds, a common view onto the current time is advantageous, if not even
fundamental. The time may serve as an input to the executed applications, as well
as for synchronization of the distributed execution of these applications. To this
end, all nodes of a system should maintain a matching reference time, which is

1http://www.mostcooperation.com
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called global time. The global time is — logically — kept by a global clock . Since
typically not all nodes have direct access to a suitable reference clock, they have
to employ their respective local timers for keeping track of time. These timers are,
however, not able to provide exact synchronous time since they will always differ
by a tiny bit from each other due to hardware restrictions. Hence, a means of clock
synchronization is necessary. This synchronization makes sure that the deviation
in each node’s view of the global time is always within an upper and lower bound.

Node-local
clock

Reference Clock

Ideal
clock

Clock
node 1

Clock
node 2

Clock
node n

Figure 2.4: Drift between ideal clock and local clocks of nodes

Figure 2.4 depicts, how the time measured by a local clock deviates more and
more from the reference time during system execution. If the local clocks would
measure time perfectly, they would match the ideal clock shown in the figure. The
deviation between ideal clock and a local clock is called drift . The amount of drift
over a certain period is denoted as the drift rate. To keep the drift within limits
requires cyclic synchronization of all clocks in the system. The period between
synchronizations has to be chosen based on the desired maximum drift and the
drift rate of the timers employed in the system. Figure 2.5 shows, how the local
drift of each node can be kept within upper and lower bounds by synchronizing the
respective clocks cyclically.

Often no external reference clock providing the needed precision is available.
Therefore, a local synchronization protocol has to be used. Various protocols for
such an internal clock synchronization have been proposed [83, 113]. These proto-
cols can be categorized into central master and distributed solutions. For a central
master algorithm one of the nodes of the system is declared to be the master node
for clock synchronization, all other nodes are slaves in this protocol. The master’s
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Figure 2.5: Bounded drift by synchronizing local clocks (cf. [79])

local time is assumed to be correct and therefore used for clock synchronization. To
this end the master sends its local time as the system’s reference time to all slaves,
which update their respective local clocks, accordingly. Distributed synchroniza-
tion is achieved by exchanging information about the respective local time between
all nodes of the system. Each node uses the received information to calculate its
own drift and correct is local timer accordingly.

For all synchronization protocols, message transmission times, jitter, delay, etc.
have to be applied to the time value contained in the synchronization message.
Faulty timers which exhibit a larger drift rate than specified, or even change their
value randomly, have to be taken into account. Finally, a possibility for applying
corrections to the local timer value without influencing the applications currently
executed on the node has to be provided. For the implementation of these require-
ments, please consider the algorithms quoted above.

2.1.4 Hardware Devices

Distributed real-time systems interface a lot of sensors and actuators in order to
interact with their environment. These devices are either directly connected to
a node by dedicated cabling, or may be interfaced by a field bus . Field busses
are rather slow, but very robust communication mechanisms, relying often on un-
shielded two-wire cables, keeping the costs low. Their performance is sufficient for
transmitting the small datagrams used sensors and actuators in time. By offering
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the possibility to connect several devices to them field busses further reduce the
amount of cables needed and thus lower cost and weight of the system.

For interacting with a node of the system, sensors and actuators use two different
mechanisms:

Interrupt-driven: In an interrupt-driven system, communication with a device is
initiated by the device itself, not the node. The device uses an interrupt
line to signal the availability of data to the respective node. As soon as the
node receives the interrupt, it pauses its current task and executes a handling
routine for the interrupt in question.

The approach ensures minimum latency, since the node reacts instantly to the
device’s signal. This concept is the standard mechanism in desktop systems.
However, the approach yields some problems for a real-time system. First, if
more than one device is connected to the node, an order has to be specified
on the interrupts. If more than one interrupt is generated at the same time,
the higher priority interrupt is served first and the lower priority interrupt
accordingly delayed. As a result, minmal latency can only be guaranteed
for the highest level interrupt in any node. Second, the processing of the
interrupt handling routine delays execution of the currently active task. In
extreme cases, where lots of interrupts arrive close to each other, this might
cause an application task to miss its deadline.

Polling: In a system based on polling, devices are not allowed to interrupt the
application processor of a node. Rather, the node itself keeps temporal con-
trol and devices may deliver data when, and only when, the node asks them
to do so. This requires the devices to contain a dedicated microcontroller
able to communicate with the application processor of the connected node.
This dedicated microcontroller is used to store values temporarily during the
polling interval, that is, between the points in time at which the application
processor is requesting data. Due to the use of a dedicated microcontroller
such devices are also called intelligent devices . As a side effect these de-
vices are oftentimes connected to a bus system, which enables their use by
several application processors and reduces the amount of cabling necessary.
Due to these advantages, intelligent devices are becoming more and more
common [101].

The polling solution results in higher latency times than an interrupt-driven
one, because the data acquired by a device are not delivered to the application
processor requesting them. Thus the worst-case latency is expanded by the
duration of the polling interval. In addition, a polling approach might result
in some overhead because the polling interval is not necessarily related to the
availability of data. Therefore, a lot of polling requests might return old or
even no data. There again, the predictability of a polling solution facilitates
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2.1 Real-Time Systems

guaranteed maximum reaction times, independently of the number of inter-
rupts. And — even more important — the execution times of applications on
the respective node are not influenced, as described for the interrupt-driven
case.

Overall, the polling approach brings about somewhat more overhead — especially
in case of sparse data — and increased latency times. The latter problem can be
diminished by choosing an appropriate polling interval. On the plus side, the
concept of polling results in a higher predictability of the system, which is highly
welcome for hard real-time systems.

2.1.5 Real-Time Scheduling

Scheduling tasks — or processes, from an operating system’s point of view — in
a real-time system is subject to the respective deadlines required for these tasks.
As indicated in Figure 2.6, the execution of a task is only beneficial if it delivers
a result after its starting time and within its deadline. In the case of a safety-
critical systems, shown in Figure 2.6, results generated before the start time or
after the deadline might even cause damage and negatively impact the system’s
safety requirements.

Time

Utility

Damage Start time Deadline

Figure 2.6: A safety-critical real-time system (cf. [31])
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Processes. Processes can be categorized into two distinct forms: periodic and
aperiodic processes . Periodic processes are executed on a regular basis and can
be characterized according to their period, deadline and worst-case execution time.
Aperiodic processes, however, have unknown starting points being related to some
event. Since lots of such events can occur at the same instant — called a burst —
a temporary overload of the executing processor cannot be averted. Consequently,
as explained by Burns in [31], aperiodic processes cannot have hard deadlines. A
worst-case calculation could only be facilitated by specifying minimum periods for
each event.

Real-time scheduling

HardSoft

Dynamic Static

Preemptive Non-preemptive Preemptive Non-preemptive

Figure 2.7: Taxonomy of real-time scheduling algorithms (cf. [79])

Scheduling algorithms. Figure 2.7 gives an categorization of scheduling algo-
rithms for real-time systems. As shown in the figure, a basic distinction is made
into algorithms for soft and hard real-time systems. As explained before, we are
focusing on hard real-time in this thesis. The according algorithms are either of
static or dynamic nature. Static algorithms are being computed offline, that is,
before the target system is executed. The resulting pre-set schedules are stored
in form of tables, based on the a priori knowledge about all processes. During
execution of the target system, the scheduler acts simply as a dispatcher, assign-
ing the processor according to the pre-calculated table. Dynamic algorithms, in
contrast, select the active process based on the current set of ready processes and
their respective priorities. Hence, every process has to be assigned a priority before
execution. Static as well as dynamic scheduling algorithms can be preemptive or
non-preemptive. Accordingly, a running process may either be paused by another
higher priority process becoming ready, or not.

As explained by Burns in [31], dynamic algorithms are rather suited for soft
real-time systems, due to their typical usage with aperiodic tasks triggered by
external events. In a hard real-time system it is undesirable for unpredicted events
to occur. However, using solely periodic tasks with static scheduling may result
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2.2 Embedded Systems

in low processor utilization, if these tasks frequently need less execution time than
their specified WCET. Still, the resulting system is guaranteed to show predictable
behavior. The same can only be achieved for dynamic scheduling of aperiodic
tasks, if a worst-case assumption about their maximum number of invocations is
made. The reservation of an appropriate amount of processing time would cause
identical processor utilization as a periodic invocation of the same task. Therefore,
the static scheduling approach is mandatory for hard real-time tasks. As stated by
Xu and Parnas in [132], pre-runtime scheduling is often the only practical solution
to achieve a predictable complex real-time system.

2.2 Embedded Systems

Embedded systems are ubiquitous today. More than 90 percent of all processors
produced are already used in embedded systems [26, 74, 43]. In contrast to other
computer systems, embedded systems are typically hidden from the user, i. e., the
operator. Embedded computer systems control physical processes according to a
given control software. To this end embedded systems interface sensors and ac-
tuators which are used to acquire input data and generate output reactions. The
operator makes use of the system via a man-machine interface, which is specif-
ically designed for the purpose of the system in question and should be easy to
operate [79]. Further, embedded systems typically have neither a sophisticated
interface for programming and debugging, nor are they multi-purpose computers.
The employed hardware is rather reduced to the minimum necessary for the in-
tended function. This also applies to the processing power and memory capacities
of the employed components.

Marwedel mentions in [98] a number of application areas, in which embedded
systems are being used. Amongst those areas are:

Consumer electronics: Music and video players, either stationary or portable, are
a prominent example of embedded systems. Using digital signal processing,
these devices provide an increasingly number of services which are of bet-
ter quality compared to their analog counterparts. Another major driver of
innovation in the area are mobile phones which have a special emphasis on
communication and energy-awareness.

Plant-automation systems: One of the first fields for real-time computer control
were plant-automation systems. Compared to the former human operators,
directly controlling the plants, a computer system is more accurate and de-
pendable, especially in a twenty-four-seven duty cycle.

Automobiles and airplanes: Cars make use of embedded computer systems for
the reliable operation of safety relevant functions like ABS, airbag controllers,
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electronic engine control, etc. Similarly, lots of the control systems of modern
airplanes are implemented by embedded systems. This includes flight control
systems, anti-collision systems, and pilot information systems.

From the above list it is obvious that embedded systems are used in a vari-
ety of systems with real-time constraints. While missed deadlines in consumer
electronics devices only reduce the quality of those systems, a similar miss in a
plant-automation system, or an automobile or airplane, could endanger the oper-
ator as well as other people. Consumer electronics accordingly can be considered
embedded soft real-time systems, while the other mentioned systems are clearly
embedded hard real-time systems.

According to Kopetz, embedded real-time systems share some key characteris-
tics [79]:

Mass production: Most embedded systems are intended for a mass market. They
are produced in large numbers and the production cost of any single unit
must be as low as possible.

Static structure: The embedded system is usually used unaltered throughout its
lifetime and has a dedicated use. The a priori known static environment und
intended function helps in analyzing requirements and designing the software.
This avoids unnecessary complexity of the systems, since little flexibility or
dynamic algorithms are needed.

Ability to communicate: In case of distributed embedded systems like cars or air-
planes, robust and deterministic behavior of the employed communication
system is more important than transmission speeds. Therefore, the focus for
the employed protocols results in predictable timing and absence of collisions.

The mentioned application areas and characteristics for embedded real-time sys-
tems show that they require special care during their implementation. To this
end, a comprehensive view onto the overall system is beneficial, especially if it is
distributed. We will exemplify how this view can be achieved using model-based
approaches in the next section.

2.3 Embedded Real-Time Systems Development

The design of embedded real-time systems is guided by a load of different prereq-
uisites, arising from the system’s environment, its intended functionality, and the
safety requirements demanded of it. The size and complexity of today’s distributed
systems, for example in automobiles are expected to reach up to 100 million lines of
code in 2010 [116], making development even more difficult. To tackle this complex-
ity, a suitable abstraction as well as a separation of concerns is employed. By using
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2.3 Embedded Real-Time Systems Development

models for the description of the system, details unnecessary for the respective work
are hidden from the system developers. The utilization of different types of models
enables developers to solve different issues in separate development steps [28, 79].

As explained by Harel [65], the design of complex real-time systems can be eased
by separating the functional design, i. e., the behavior of the system from its struc-
ture, that is its architecture. The same concept is proposed in articles by Broy [28],
and Sangiovanni-Vincentelli and Di Natale [116], who advise the separation of mod-
eling functional design and physical distribution of the software. Figure 2.8 depicts
a possible design flow for such a modeling approach. After the functional archi-
tecture is designed, the system is partitioned into distributable components. An
allocation of these components to their respective location of execution is achieved
based on a model of the target platform. The platform is modeled by means of the
physical topology of available processing nodes and devices in combination with
their respective key figures and the employed communication system.

Code implementation

Functional architecture Physical architecture

Partitioning
Function allocation

Scheduling
Communication analysis

Figure 2.8: Separating functional and physical architecture

Languages based on the so called synchronous approach have proven their suit-
ability for the functional design of highly safety critical real-time systems. Some of
them were used during the design of flight control systems for several Airbus mod-
els, as well as the control systems of nuclear power plants [19]. The synchronous
approach eases the separation of functional and architectural designs through its
concept of modeling time. According to this approach, the execution of any compo-
nent is carried out instantly. After its activation by some event, the component is
processed in logically zero time. As a result timing model assumes that the compo-
nents outputs are produced synchronously with the respective inputs — therefore
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the name synchronous, as explained by Beneviste and Berry in [16]. Events can
only occur at discrete points in time, called ticks. This view of time as a sequence
of clock ticks renders a discretization of the underlying continuous time. The event
triggering a component’s execution may either arise from the system’s environment
or it may be a timing event. The synchrony assumption is beneficial for the par-
titioning of a system into functional components, because of the execution of any
component being instantaneous, there is no need for complex timing analysis of
the different components during partitioning. Rather, timing analysis is separated
from functional and architectural design. After partitioning is finished, the actual
WCET of any component is analyzed and matched to the deadline specified for it
in order to calculate schedules for the execution on an actual platform.

A more detailed introduction to synchronous languages will be given in Sec-
tion 4.2. Well-established languages based on the synchronous design are, for ex-
ample, Signal [17], Esterel [22], Lustre [61], and Statecharts [64].

The mapping of the designed software components requires the availability of a
platform model. This model gives an abstract view of the capabilities of the hard-
ware platform from a software developer’s point of view. The model should provide
data about processing speeds, memory, communication speeds, etc. However, up
to now there is no approach which provides functional and platform modeling to
the level of detail necessary for generating a distributed system thereof. Instead,
modeling languages are well suited to model functionality — like the synchronous
languages — or they facilitate modeling of software and hardware architectures. In
order to avoid the need for combining several tools which are perhaps not entirely
compatible, a language covering both dimensions would be preferable. If such a lan-
guage is combined with a platform providing standardized interfaces, automated
generation of the system would be facilitated.

Historically, the target platform for an embedded systems was often designed
from scratch along with its software. For complex distributed embedded real-time
systems an effective co-design of hardware and software throughout the entire de-
velopment process is often implausible due to the sheer size of the system and
the number of developers and different tools involved. Instead of a complete rede-
velopment, a standardized interface between application software and the platform
consisting of hardware and basic software like operating system, device drivers, and
communication primitives is needed [28, 32, 88, 116]. Such a platform concept leads
to an architecture which has to provide robust communication and deterministic
behavior by construction [70, 95].

If functional modeling is carried out using a synchronous language, employing a
time-triggered platform is ideal, since those platforms fit well with the synchrony
assumption, cf. [19]. The discrete ticks of the synchronous software model can be
mapped easily to the timing events of the time-triggered platform. Another benefit
of a time-triggered platform is its timing predictability. A prominent example for
such an architecture is the TTA, which has been used in numerous automotive and
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2.4 Time-Triggered Architecture

avionic projects [80]. We will give an overview of the TTA in the following section.

2.4 Time-Triggered Architecture

The time-triggered architecture is intended to provide a computing infrastructure
for the design and implementation of distributed embedded real-time systems. To
this end, the TTA defines concepts for distributing real-time applications over a
number of computing nodes and providing reliable communication between those
nodes. Besides being used in actual systems like the Airbus A380 [95], it has been
shown to be a suitable platform for the semantically equivalent execution of systems
modeled with synchronous modeling language Lustre [34].

Concept. The TTA is not aimed at modeling the behavior, that is the functional-
ity, of a real-time system. It is rather meant for providing a reliable, fault-tolerant
platform for the integration of autonomous subsystems. The TTA prevents negative
mutual influence of the subsystems by avoiding conflicts during the access of the
shared communication medium. The TTA is based on the following principles [95]:

Consistency: The TTA provides each node of the system with a consistent view
onto the system. The current system state apparent to every node is guaran-
teed to be identical to that of all other nodes. The communication protocol
of the TTA ensures this consistency by fault-detection mechanisms as well as
optionally redundant transmission using two independent bus systems.

Temporal firewall: Bus access in the TTA is governed by specialized communi-
cation network interfaces (CNI). The CNI takes temporal control over the
communication, thus avoiding collisions at the bus level. The sender pushes
its information into the CNI’s memory. The CNI forwards this informa-
tion according to a pre-defined time-triggered schedule to the communication
medium. At the receiver side the local CNI stores the arriving data into its
private memory and waits for the receiving application to request them. This
decoupling of sub-domains prevents applications from sending messages at
random points in time and facilitates predictable communication delays.

Composability: Today distributed embedded real-time systems are oftentimes im-
plemented by a large number of developers. The participating developer
teams are neither necessarily working at the OEM selling the system, nor
do they use the same tools and processes to implement their part of the
software. Rather, a group of suppliers develops parts of the system for the
OEM [38]. This division of labor is, for example, typical for the automotive
domain, where the OEM is mainly concerned with manufacturing the motor
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and chassis of the car and most of the electronic subsystems are developed
by suppliers.

Integrating the different parts into a functioning system is a huge challenge.
By defining strict communication interfaces and semantics, the TTA can pro-
vide guaranteed integration of nodes into the overall system. The temporal
firewall property of the TTA makes sure that the timely execution of the sys-
tem is not corrupted by a faultily implemented node. Therefore, the stability
of a system is not impacted by adding nodes.

Scalability: The combination of the temporal firewall and composability properties
lets developers focus on their respective part of the system to implement. The
fixed interface in a temporal and syntactic sense, provides the developers with
an abstract view of the system. The successful integration of a new subsystem
into and existing system is guaranteed by the concepts of the TTA. This eases
development of subsystems a lot.

Communication. Communication in a system based on the TTA is provided by
the Time-Triggered Protocol. In the TTP access to the communication medium
is controlled by a Time Division Multiple Access (TDMA) scheme. According to
this scheme communication is arranged in recurring rounds. Each round is divided
into communication slots, each of which may be assigned exclusively to one node
of the system. Hence, in the respective slot only the assigned node is allowed to
send data, while all other nodes have to remain quiet and receive data.

The exact timing is crucial for the correct operation of a TDMA-based communi-
cation system. Letting the application processor of each node handle the resulting
workload is not advisable. First, it would decrease the processing capacity available
to applications by a large amount, not only when data have to be sent, but also
when data may be received from other nodes. Second, the processor would have
to preempt application tasks in order to execute the communication protocol stack
for sending or receiving data. Depending on the message size, the time for which
the application task is preempted may vary and thus its deadline could be missed.
To avoid the mentioned interference of application tasks and TTP tasks, the TTP
is implemented in a dedicated communication controller. This controller is solely
responsible for sending and receiving data according to the TDMA scheme. The
particular scheme for a system is defined prior to the system’s execution and loaded
into the communication controller. Messages are exchanged between applications
and the controller using a dual-port memory. This memory is accessed by the
application processor as well as the communication controller.

The TTP also features clock synchronization for the system. The availability of a
global time is necessary to enable operating the TDMA scheme. As the sending slots
of all nodes in the system are predefined and known by every node, the difference
between the time a message is received at a node and the time it was expected to
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be received according to the TDMA scheme, can employed to calculate the drift
of the local clock. The result is used to synchronize the local offset in time to the
global clock.

In summary, the TTA provides the desired abstraction to ease the development of
complex distributed real-time systems. The approach of time-triggered communi-
cation has been implemented by other bus protocols as well, which are also already
used in automotive systems. Rushby gives a good overview of the advantages of
time-triggered bus protocols suitable for safety-critical systems in [115]. Accord-
ing to Kopetz, however, TTP provides better reliability at reduced cost compared
to FlexRay [81]. Maier in addition states TTP’s advantages compared to tt-CAN
in [95].

2.5 Chapter Summary

In this chapter we have given an introduction to the basic requirements of real-
time systems and the challenges during their development. A categorization into
soft and hard real-time systems has been given, as well as a comparison of event-
triggered and time-triggered communication. We have argued why time-triggered
communication and static scheduling are more suited for our target domain, namely
automotive systems.

Considering suitable abstraction concepts for the ease of automotive systems’
development, we have presented synchronous languages as a well-established mod-
eling approach. Further, we have introduced the TTA as a concept for providing a
standardized execution platform, enabling the distributed development of a system.
The TTA ensures composability of the originating subsystems, even without com-
prehensive knowledge of the overall system available to all developers. The TTA is
also a well suited target platform for the deployment of synchronous models.

A common shortcoming of approaches like Lustre and TTA is their focus on
isolated aspects of real-time systems. While Lustre is well suited to model a system’s
functionality it does not consider architecture or distribution aspects. It provides
an abstract way of designing a system’s behavior, yet it gives no guidance on how to
deploy the model onto a distributed platform. The TTA in contrast, is solely meant
for providing a basis for successful integration of already written application code. It
does not feature any concept for modeling system behavior. A development concept
providing comprehensive solutions to both aspects — behavior and architecture of
a system — is proposed in this thesis.

Before giving an overview of our approach in Chapter 4, we want to give a more
detailed description of the specific needs of automotive systems, the current state,
and the future of automotive platforms. The next chapter presents these needs and
outlines recent architectural changes for automotive systems, which our approach
takes care of.
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We have given a general introduction to embedded real-time systems in the pre-
vious chapter. Automotive systems clearly fall in that domain, but compared to
airplanes or plant-automation systems cars have evolved differently over the years.
The automotive domain faces more stringent constraints regarding cost and weight,
and is affected by a different division of labor between OEMs and suppliers.

An overview of the specific challenges of automotive systems is given in Sec-
tion 3.1. Software engineering is employed — at least in parts of the automotive
domain — to tackle these challenges. We will summarize some of the efforts and
the remaining problems in Section 3.2. The AUTOSAR standard, which will be
explained in Section 3.3, is one of these efforts and is currently being adopted for
more and more ECUs. Finally, in Section 3.4, we want to give an outlook on future
trends and challenges in automotive systems.

3.1 Characteristics of Automotive Systems

The importance of software for automobiles is undeniable. According to Hardung et
al. [63], automotive electronics account for 90 percent of innovations in automobiles.
Of those innovations 80 percent are achieved by software. Hardung et al. also
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mention a study, according to which the cost of software is expected to raise from
4 percent of the overall vehicle cost in 2000 to 13 percent in 2010.

Being of such importance, the quality of automotive systems is a major concern
for any OEM. Especially today, as they are no longer limited to ignition or comfort
electronics, but include safety-relevant systems for active safety and driving assis-
tance [89]. Moreover, X-by-wire applications have long been, and are still, expected
to replace the mechanical control solutions for steering and braking.

Yet, automotive software is far from being error-free. According to a study of the
IBM Institute for Business Value, automotive OEMs pay over 500US$ of warranty
costs per vehicle [7]. The study suggests that over 30 percent of that cost are caused
by electronics and software defects. This lack of quality arises from the continuing
effort to produce complex, safety-critical software under tight cost constraints.

An introduction to the specifics of automotive systems is given in the following.

3.1.1 Complexity

The complexity of automotive systems is caused by two distribution aspects: first,
the computing platform is composed of a huge number of subsystems or computing
nodes. Second, the application software executed on an automotive platform is
distributed over its hardware platform. This distribution requires reliable commu-
nication and compatible interfaces of the involved tasks for providing the desired
functionality. At the same time, hardware and software distribution must not affect
the timing requirements of the application in a negative way, causing the applica-
tion to miss its deadlines. The reasons for hardware and software distribution are
as follows:

Hardware distribution. Traditionally, automobiles have been mainly mechanical
systems. Software has made its way into cars about 40 years ago. First, it was
used in ignition systems, later on its use expanded to airbag controllers, anti-lock
braking systems, etc. As described by Venkatesh et al. in [125], these systems
operated rather isolated from each other and used their own respective sensors and
actuators. With the increasing number of subsystems and the growing number of
sensors and actuators, a lot of cabling was required. This cabling accumulated to
a lot of weight — up to 50 kilograms [89] — and consumed a significant amount
of space. The solution to handle these problems came in form of bus systems,
connecting the subsystems to their devices. As indicated in Figure 3.1, the amount
of cabling can in many cases be reduced significantly by using a bus instead of a star
topology. Naturally, the idea grew that the employed bus connections could also
be used to exchange messages between the subsystems, thereby influencing each
other. Today, up to five separate bus systems — which are even using different
protocols — connect up to 80 ECUs and the necessary sensors and actuators in a
luxury car [26].
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Bus topology Star topology

Figure 3.1: Comparison of bus and star topologies

The historical growth of automotive systems is however just one reason for their
highly distributed nature. The relationship between automotive OEMs and their
suppliers is also responsible for the current automotive architecture. Automotive
OEMs see their typical field of work in the mechanical domain of a car and not so
much in electronics or software. Therefore, the development of ECUs is distributed
over a number of suppliers capable to deliver the desired part. The supplier develops
hard- and software fulfilling the requirements specified by the OEM and delivers
the result as a black box. The integration of all the different black boxes is then
the duty of the OEM [30, 63, 108]. Only few of the ECUs contained in a car are
developed by the OEM itself — usually those being intended to differentiate the
own products from those of other OEMs. For all other electronics the trend of
outsourcing development continues [38].

Further, parallelization is a striking argument for the employment of several
ECUs — and thus processors — compared to a centralized in-car system. By using
separate processors for different time-critical applications, their timely operation is
easier to ensure. Today, this advantage is partly neglected by the distribution of ap-
plications over several processors. The implicated bus communication and its delay
are hard to predict due to congested bus systems. The automotive industry handles
this problem by using bus systems with more and more bandwidth. In addition,
several bus systems are employed, which are interconnected by gateways [103]. This
adds further complexity to the distributed automotive topology.

Finally, the different nodes can be used as fault-containment units. If the ap-
plication execution on a node produces errors or the hardware of the node fails, a
distributed execution allows to isolate the resulting error state from other nodes of
the system. Therefore, the failure of one node does not necessarily compromise the
operation of the entire system [95, 107]. However, for distributed applications this
may not be applicable.

Software distribution. As described before, the availability of a communication
system led developers to design applications which exchange messages during their
operation. This data exchange enables the use of hardware for several different
applications. A wheel speed sensor, for example, can be used for an anti-lock brak-
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ing system as well as for electronic stability control and a tire-pressure monitoring
system. These applications are not necessarily implemented in the same computing
node. That is why the exchange of data is necessary. Many functions provided by
an actual car are distributed over a large set of nodes. A common example for a
highly distributed application is the central locking system, which is implemented
using up to 19 different subsystems in current vehicles [125]. This increased cou-
pling between distributed components results in very complex and manually hard
to implement application code [30, 52]. This becomes even more evident regarding
the huge amount of code used in current automotive system, amassing up to 65
megabytes of binary code [127].

Given the described physical distribution of the hardware platform as well as its
high interconnection by distributed applications, the development of high quality
automotive systems is a huge challenge. According to Venkatesh et al. [125], the
steady increase in the number of hardware modules employed was accompanied by
an exponential increase in interaction of these modules.

3.1.2 Safety Requirements

With the high amount of interaction between different features, ensuring the safe
operation of the overall system is very demanding. Compared to avionic systems,
which were first used in military planes and faced a high demand of safety, auto-
motive software was in the early days limited to rather noncritical applications like
ignition control systems. As a result, neither safety considerations were applied nor
are systematic development processes required by law [125].

Even today, process standards which are intended to enhance safety of an au-
tomotive system are optional. The use of such a process still does not necessarily
result in a safe system. Instead, the explicit use of methods for safety analysis is
required [118, 127]. Of course, the system’s implementation has to avoid errors
where possible. MDD has shown to effectively reduce the number of errors and,
consequently, results in a higher quality and often also safer system [90].

Taking into account the usual system lifetime of 10 to 15 years in the automotive
sector, avoiding any implementation faults is even more vital as errors are more
likely to show up during such a long operating time [28].

3.1.3 Cost Constraints

Compared to the avionic domain, the automotive domain faces a much higher cost
pressure on a per-unit scale. While 100 to 1,000 units of a specific aircraft might
be produced, a car manufacturer produces 50,000 to 1 million units of a model [28].
In a high volume domain like the automotive one, the addition of a small amount
of memory or the use of a faster processor in one of the ECUs may add up to
a large amount of money [122]. Therefore, automotive systems face more narrow
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resource constraints than avionic solutions. Still, an enormous increase of hardware
and software could be observed over the past years. These systems are expected to
account for up to 30 percent of a car’s overall cost in the near future [26]. However,
the effort to drive down this cost by cutting processing speeds and memories is not
without problems. As a result, code has to be optimized for the respective ECU
and can hardly be expanded with new functionality or reused for another platform.
Moreover, in case of failures it is harder to identify and fix the bugs [30].

Another major cost factor can be found in form of development cost. Regarding
the high number of units produced, development cost per unit are much lower in the
automotive domain than in the avionic domain. But with the increasing amount
of functionality realized by software, development costs keep growing as well [30].
Therefore, automotive OEMs try to decrease development expenses where possible
in order to manufacture products at competitive prices. MDD is seen as one of the
most promising approaches for reducing development cost and time to market while
at the same time increasing product quality [90]. On the one hand, the possibility
to quickly implement new functionality is a key factor in competition with other
OEMs, especially in the luxury class [52]. On the other hand, the improved quality
reduces warranty and goodwill costs caused by erroneous systems.

Cost reduction can also be achieved by shortening development cycles via reusing
existent code. However, the predominant approach of the OEMs, which considers
all ECUs as separate units, hinders the reuse of software. ECUs are ordered from
the suppliers as black boxes, consisting of soft- and hardware. The particular code
is implemented specifically for the respective hardware. Reusing that code for a new
project, possibly demanding different hardware and being developed in cooperation
with another supplier, is impossible [63]. This is why the reuse of code calls for
a common platform interface. Implementing such an interface in hardware would
result in an inflexibel solution. A standardized software interface however can be
implemented on a lot of different hardware platforms. One automotive platform
concept that features the needed abstraction is presented in the Section 3.3.

3.2 Current State of Automotive Software
Engineering

Naturally, the development of automotive software has to adhere to the afore men-
tioned constraints. The historic relationship between OEM and supplier, where the
supplier builds a mechanical component of the car and the OEM uses these com-
ponents to assemble the final product, has been adapted to automotive software
development. Today, with the software — and often also the related hardware —
being developed by suppliers, the OEM is responsible for integrating the supplied
subsystem into an automotive network. But, as design, architecture, and interac-
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tion are only specified insufficiently due to lacking experience with software devel-
opment, integration is error-prone and requires lots of error correction [27]. Lately,
there has, for some part, been a shift in this classical division of labor. Since func-
tionality implemented by software has become a major part of automotive systems,
OEMs have begun to develop an increasing part of their systems in-house. Thereby
they can ensure the exclusivity of a function for their automobiles, which allows to
distinguish themselves from the competition [52].

No matter whether parts of the system are developed by the OEM or an supplier,
regarding the huge dimension of nowadays’ automotive systems, development time
and software quality may significantly improve using clear specifications. For this
reason, the automotive industry has begun to use models and model-based devel-
opment, even if only at particular areas in the development process. The employed
modeling approaches are however still influenced by the various core disciplines in-
volved in automobiles, such as electrical and mechanical engineering. Each of the
disciplines, as well as each supplier, is free to use its own process and tools for de-
velopment. This results in a large number of different tools from different vendors,
lacking a common modeling concept. There is still no tool-based solution covering
the entire development process and yielding a comprehensive model of the overall
system.

As a consequence the gaps between phases and tools have to be covered manually
by porting data from one tool to the next which is error-prone and time consuming.
Attempts have been made to form a tool-chain from existing tools. But the results
are not yet ready for production [52, 108]. With modeling languages like the UML
employed, which have no precisely defined semantics, the use of models is at the
moment mainly restricted to structural modeling and documentation purposes [21,
45]. The derivation of consistency checks or target code from such a model is hardly
possible or leads to ambiguous results. The lack of automated code generation is
an even bigger problem, regarding the percentage of problems caused by coding
errors, falling between 40 and 60 [128].

Another shortcoming can be found in the lack of a capable standardized plat-
form. Today, 90 percent of software for automotive systems is rewritten, although
only 10 percent of the functionality is actually changed from one car generation
to the next [27]. This is mainly due to a lack of compatible execution platforms
employed in different car generations. Even though the automotive industry has
created specifications like the OSEK1 standard, defining the interfaces an automo-
tive operatings system and communication stacks should provide, a comprehensive
standard that takes distribution of the platform into account, is missing. OSEK
also does not define any interfaces for accessing hardware devices. The latest at-
tempt to close this gap has been made in form of the AUTOSAR standard, which
provides a standardized execution platform, as well as a concept for architecture

1http://portal.osek-vdx.org
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modeling. Currently, the industry is moving towards a migration of its systems for
use with AUTOSAR. The AUTOSAR concept however has also some shortcom-
ings from a software engineering point of view, as we will explain in the following
section.

3.3 AUTOSAR

The design of the Automotive Open System Architecture was initiated to define an
open industry standard for automotive architectures. It was started by a number
of automotive manufacturers and their suppliers, among which are BMW, Toyota,
General Motors, Ford, Volkswagen, Daimler, and Bosch [46]. AUTOSAR is aimed
at decoupling application and infrastructure software. To this end it comprises
the AUTOSAR metamodel which describes a schema for models of automotive
systems. Semantics of the metamodel are only partially defined, giving users the
possibility to tailor the use of AUTOSAR to their respective needs [75]. AU-
TOSAR also defines a platform interface which is provided by a common software
infrastructure [66]. This infrastructure includes operating system, communication
primitives, and drivers for hardware devices. It is also referred to as basic software
in the AUTOSAR documents. Figure 3.2 shows the generic layout of an AUTOSAR
compliant architecture.

AUTOSAR provides the application software with the so-called Virtual Func-
tional Bus (VFB), which serves as a mediator for communication between appli-
cation software (AUTOSAR software) and infrastructure (basic software), as well
as between different application software components. The VFB is a model of the
platform’s communication system and is only present in the AUTOSAR model.
For an actual node of the system, it is implemented by the AUTOSAR Runtime
Environment (RTE), shown in Figure 3.2. The RTE carries out the mapping of the
VFB’s transparent communication onto a distributed hardware platform.

For automotive systems it is common to use sensors and actuators from different
vendors for the same model of a car. This results in a higher competition between
the suppliers which lowers the price. Further, the availability of a sufficient number
of hardware devices can be ensured. From a software point of view this causes a
problem. Different devices often feature varying characteristics or interfaces requir-
ing changes in the respective application code. In order to deal with this problem,
AUTOSAR software consists not only of application software components, but also
of sensor and actuator software components, as depicted in Figure 3.2. These
sensor/actuator components provide a common mode of operation to application
software components no matter which version of a device is used. To integrate
different devices into the platform it is sufficient to replace the sensor or actuator
software component. The application software component may be used unaltered,
which improves reusability of the application code.
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Figure 3.2: Basic structure of an AUTOSAR system (cf. [8])

Main goals of the AUTOSAR standard are the improved reusability of software
by using a common platform and standardized interfaces, and provision of archi-
tecture descriptions for the distributed development of software components and
their subsequent integration.

3.3.1 AUTOSAR Modeling

According to the metamodel, an AUTOSAR design consists of models for applica-
tion software components (SWC), ECU resources, and system constraints defining
a mapping between the two. For all these models templates for suitable exchange
formats — based on XML — are available. Thus, the OEM is enabled to pass a
defined architecture, or parts of it, to suppliers and distributed implementation is
facilitated. AUTOSAR does not specify a universal software development process
and this is the reason it lacks a strict order of activities [126]. The definition of
such a process is up to the respective OEM.

An AUTOSAR software model consists of SWCs which can be modeled either as
atomic or composite components . While composite components can be aggregated
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from other SWCs, atomic components do not contain further SWCs. Rather, an
atomic SWC is made up of a set of runnable entities . A runnable entity encap-
sulates some functionality which is triggered by some event. As soon as the event
occurs, the runnable entity is started and executed to completion. The SWC may
define shared memory for the runnables it contains. To specify input and output
connections to the SWC’s environment, the component exhibits ports. These ports
are connected to ports of other components by means of connectors. Communica-
tion between SWCs is only allowed using these ports and connectors.

Wheel speed
sensor

Wheel speed
sensor

Wheel speed
sensor

Wheel speed
sensor

Anti-lock
brake controller

Hydraulic
valve actuator

Figure 3.3: AUTOSAR model for the anti-lock braking system

Figure 3.3 shows a possible AUTOSAR software model for the anti-lock braking
system from Figure 2.2. In Figure 3.3 six SWCs can be seen. The SWC named
Anti-lock brake controller implements the control-loop of the ABS and is a
composite component, indicated by the pictogram in the upper right corner. The
other five SWCs are sensor and actuator SWCs, respectively. Hence, they share
another pictogram. All software components in the model feature ports at their
boundary lines. Ports pointing inwards are receiver ports, while ports pointing
outwards are sender ports. The ports are concatenated using connectors. The ex-
ample gives only a brief impression of AUTOSAR’s modeling elements. A complete
overview is given in the respective documents of the standard.

An AUTOSAR hardware model consists of sensors and actuators and ECU in-
stances connected by physical channels. The channels correspond to the bus topol-
ogy of the actual hardware. This model is employed to define a mapping of the
modeled application components to ECUs.

In order to provide a decoupling of application SWCs and an actual hardware
platform, the VFB serves as an abstraction layer. All external communication of
a SWC is mapped to the VFB, which abstracts the application layer from the
implementation details of the basic software as well as hardware aspects. The VFB
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forms this way the interface to the execution platform, from the applications point
of view.

3.3.2 AUTOSAR Platform

When the design of the system is finished, code generators may be used to translate
the VFB model into the so-called Runtime Environment. A specific RTE instance
is created for every ECU of the system and serves as a middleware layer at run-
time. The RTE is not a classical middleware, providing dynamic look-up of services
or registration or additional applications at runtime. It can rather be thought of
as a model-based middleware [108], since the provided mapping of the application
interface to the common software infrastructure is hardcoded during code genera-
tion. For an automobile this approach is valid, since in actual automotive systems
the after-market installation or upgrade of software is not an issue nowadays. The
advantage of the RTE’s fixed structure is its small footprint regarding memory
consumption and processing overhead.

In order to facilitate the RTE generation, AUTOSAR also defines a set of stan-
dardized interfaces which have to be provided by the basic software. This is partic-
ularly crucial for the API of the employed operating system and the communication
system. The necessary operating system interface is based on the OSEK specifica-
tion [9]. The goal of the communication system API is to define a common interface
for exchanging data with other ECUs, no matter which bus protocol is used.

3.3.3 AUTOSAR Open Issues

AUTOSAR does not solve all of the previously mentioned problems of automotive
software engineering. While it does define standards for modeling systems and
basic software interfaces, there is no reference implementation available. Rather,
the specific implementation of the standard is left to the user. Unfortunately,
the standard is not described unambiguously in the AUTOSAR documents. As
a result, different OEMs and tool vendors have developed their own respective
implementations. Because AUTOSAR does not define a comprehensive data model,
consistency of models is not guaranteed when designed by different parties involved
in the development of a system [126].

Furthermore, designing an AUTOSAR system is restricted to architecture mod-
eling. The exact behavior of SWCs — or, more precisely, runnable entities — is
not contained in the model. That is why it is not possible to model-check, generate
code for, or simulate an AUTOSAR model in a comprehensive way, although this
would ease debugging and result in higher quality systems.

Another issue is that timing semantics of an AUTOSAR model are not clearly
defined. AUTOSAR allows the definition of event-triggered and time-triggered
scheduling models, as well as combinations of both. In addition, the buses which
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may be used for the platform may also be event-triggered or time-triggered. If
event-triggered tactics are used, the timing analysis based on an AUTOSAR model
is at least imprecise, if not impossible.

3.4 Future Trends in Automotive Systems

With the number of functions implemented by automotive systems ever increasing,
the complexity of their hardware and software architectures has reached a dimension
which is difficult to handle.

Considering the hardware architecture, the sheer space consumed and weight
accumulated by adding more and more ECUs to automotive systems has become a
major problem. Besides, the large amount of wiring also compromises reliability, as
the large numbers of connectors are more likely to fail [89, 119]. On the other hand,
more powerful processors become cheaper over time, making it possible to execute a
larger number of applications without increased hardware cost. This trend already
allowed the avionics domain to rely on a smaller number of computing nodes, each
of which has higher processing power. Even the overall computational power of the
system could be improved. Each of the nodes in such a system integrates functions
from a number of the legacy nodes used in former architectures. The platform
concept is called Integrated Modular Avionics (IMA) [24, 109]. A similar trend
of using a smaller number of more capable ECUs is imminent in the automotive
industry [107].

The use of less computing nodes could also alleviate the problem of current
automotive communication systems. Because of the large number of communication
partners and their different criticalities, automotive platforms usually comprise
several communication networks. This use of a dedicated network per domain
ensures higher capacity and fault-containment compared to a single bus system.
However, since the different networks contain applications which exchange data,
they are interconnected by gateways. These gateways are rather powerful devices,
since they have to handle large amounts of data. With faster, predictable bus
protocols available, like FlexRay or TTA, it is possible to fulfill the capacity and
fault-containment needs within a smaller number, if not a single bus [103].

As another result of the extensive use of electronics in automotive systems, energy
consumption has risen dramatically. Well-equipped automobiles draw 2kW and
more peak power [89]. In case of momentary peaks, the battery serves as a buffer for
providing a stable voltage supply. This, however, significantly reduces its lifetime.
Moreover, the electric generator requires a reasonable amount of mechanical power
from the motor, which increases fuel consumption. The issue becomes even more
critical considering the current shift of automobiles towards electric driving, where
a lower energy consumption of the overall systems means higher operating range.

Reducing the amount of energy consumed in an automotive system could be
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achieved by deactivating unneeded ECUs, as well as sensors and actuators. But
such a fundamental change in system behavior could compromise safety through
unintended side effects, if not planned carefully. Designing such an energy-aware
system would require detailed knowledge about all applications executed and the
hardware employed. Nowadays, such a comprehensive system model is not avail-
able and complex applications affecting the overall system are almost impossible
to realize. As a consequence, future modeling methods have to provide a compre-
hensive view of the system, including architecture, behavior, timing, and hardware
characteristics [27].

3.5 Chapter Summary

In this chapter the specific challenges of automotive systems and their implementa-
tion have been introduced. As explained, the number of computing nodes included
in an automotive system has grown continuously over the past 40 years. Imple-
menting such a system is a huge challenge regarding the complexity of current
automotive software. Even more so when taking into account the high quality
demands arising from the safety-criticality of the implemented functions.

In order to tackle the complexity, model-driven development is seen as a possible
solution. By using the abstractions provided by a model, developers are able to
concentrate on a smaller number of concerns at a time, which results in shorter
development time and higher system quality. Unfortunately, MDD is still only
used for parts of the system. Moreover, a multitude of different modeling tools
and languages is used throughout the development process, which hampers the
integration of the different subsystems.

With the advent of the AUTOSAR methods, a standardized modeling concept
for the automotive industry was created. But even during AUTOSAR develop-
ment incompatibilities may arise, due to differing customizations of the respective
AUTOSAR models. Furthermore, AUTOSAR is not intended to model system
behavior, i. e., functionality, but is limited to architecture modeling. Lacking a
possibility to model and analyze the exact timing behavior of a system may result
in systems which do not meet their timing requirements. And the AUTOSAR ap-
proach still requires a lot of manual work necessary for implementing an overall
system, possibly leading to erroneous results.

Future automotive systems are subject to a reduction of processing nodes and an
even higher number of software functions. Their implementation is therefore even
more critical since a negative mutual influence of different coexisting functions on
a computing node must be prevented. This calls for new modeling methods, which
provide a more comprehensive view onto the system under design and extended
tool support during implementation. Consequently, the number of human faults
during system implementation may be reduced.

42



T
he

C
O
L
A
A
pp
ro
ac
h

Chapter 4
The COLA Approach

4.1 Our Vision for MDD of Automotive Software . . . . . . . . . . 44

4.2 Introduction to Synchronous Dataflow Languages . . . . . . . 48

4.3 The Component Language . . . . . . . . . . . . . . . . . . . . . 53

4.4 Tool Support for COLA . . . . . . . . . . . . . . . . . . . . . . . 70

4.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 75

As described in Chapters 2 and 3, automotive systems have huge quality demands
regarding their real-time and safety requirements. At the same time the develop-
ment of those systems has to account for the huge cost pressure in the automotive
domain, without compromising these requirements. Thus, methods for the efficient
development of high quality automotive systems are sought-after.

In this chapter we will outline how the modeling language COLA, and the de-
velopment approach based on it, helps to achieve these goals. Section 4.1 gives an
overview of the proposed process and states its advantages compared to existing
approaches. Afterwards, in Section 4.2 the basic concepts of synchronous dataflow
languages will be introduced to provide a basic understanding for the mode of op-
eration of the COLA language. Subsequently, in Section 4.3 we will introduce
those concepts and language constructs of COLA, which are necessary for the
understanding of this thesis.

Besides the deployment plug-ins described in this thesis, several other tools have
been designed and implemented for the COLA language throughout the project.
Section 4.4 presents these tools and their use for the design of COLA models. Since
the development of automotive systems is not an entirely new domain, a number of
tools and approaches has been proposed over the past years. A survey of existing
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tools and their differences in comparison to the COLA approach will be given in
Section 4.5. Since COLA is at the core of our concept, we will limit the description
of related work to alternative modeling approaches. Additional references related
to our deployment concept are given in the respective sections.

4.1 Our Vision for MDD of Automotive Software

Model-driven development is seen as the most promising way to get to grips with
the complexity of distributed hard real-time systems like automotive networks. The
abstraction provided by models lowers the complexity of the system apparent to
the developers and thus effectively decreases the number of design faults. How-
ever, there is not a single tool providing an integrated approach for both, vertical
and horizontal dimensions of automotive development. By vertical we refer to the
consecutive refinement of a model during the development process, using different
abstractions — with its levels of detail — throughout the respective development
phases. The horizontal dimension, in contrast, refers to the distribution of auto-
motive applications over a large number of processing nodes. Since development
in both dimensions is split among a lot of project groups, oftentimes working for
different sub-contractors, a comprehensive, integrated development process is still
rather an exception to the rule. Up to now there is no comprehensive tool available
yet for these reasons.

The tools commercially available are instead limited to the description of selected
aspects of an automotive system, ranging from requirements to its architecture, the
specification of its functionality, or the employed hardware components. Through-
out the automotive development process however, the use of a multitude of different
tools is inevitable today [63, 92]. The result is a manual conversion and integra-
tion of different data formats between the employed tools. Of course this practice
is error-prone and hampers reuse and refinement of models. As a workaround it
has become a common technique to implement adapters automating the neces-
sary data conversion steps. But this workaround yields large implementation and
maintenance overhead, and cannot guarantee a lossless transformation, if the em-
ployed modeling languages are of uneven capabilities. Further, a comprehensive
view onto the entire system enables the use of global optimizations, rather than
applying improvements just locally. To tackle this problem, the COLA approach
has been developed in cooperation with BMW Research and Technology [55]. This
new approach was designed to cover the entire automotive software development
process using a single modeling language. In addition it facilitates the automated
transformation of the model into an executable distributed hard real-time system.
To this end the approach we envision is a combination of modeling and platform
concepts.

At the core of the COLA approach is the Component Language. This modeling
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4.1 Our Vision for MDD of Automotive Software

language covers all software relevant information from requirements, over software
architecture, to functional design, and technical platform details. At the same
time it takes the distributed nature of the target platform into account, enabling
the automated code generation for, and configuration of, the target system. The
implemented COLA editor features a set of plug-ins which enable the automated
processing of the model to raise its quality and finally derive an executable system.
We will describe our requirements for a suitable execution platform in Section 5.2.
Figure 4.1 gives an overview of the different actions throughout the COLA-based
development process, with a special focus on tool supported actions. We will de-
scribe each of these actions in the following.

System modeling: The process starts with the definition of a system model, which
is indicated in the upper left of Figure 4.1. COLA facilitates the modeling
along different layers of abstraction, as we will detail in Section 4.3. This
results in a comprehensive system model containing all information about
soft- and hardware which are necessary for deriving an implementation of the
software system.

Model analysis: The formal semantics of COLA enable the application of model
checkers for an analysis of the model’s correctness. This leads to a reduction
of faults in the functional model, with respect to the defined requirements
as well as the detection of possible modeling faults like type incompatibility,
non-determinism, and the likes.

In order to estimate a feasible complexity of the model regarding the employed
target hardware, it is beneficial to analyze the performance needs already
at model level, that is before any deployment takes place. To this end, the
simulation of COLA models using SystemC has been developed, as described
by Wang et al. in [129]. If the simulation indicates that the model is overly
complex, either the model or the hardware platform have to be modified
accordingly.

System partitioning: The checked model serves as input for system partitioning
which divides the overall software model into distributable entities. The par-
titioning can either be carried out manually by the developer or calculated
automatically according to some other heuristics like a maximum size con-
straint.

Code generation: Starting with the partitioned model, the code generator pro-
duces a source code file for each distributable entity, which may then be com-
piled to derive an executable program. A middleware assures the necessary
communication at runtime.
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Figure 4.1: COLA development workflow
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Resource estimation: The generated source code is compiled and used by the
SciSim tool, which has been described by Wang et al. in [130], to derive cycle
accurate execution times for each microprocessor in question. The obtained
resource figures serve as an input for the subsequent allocation and scheduling
steps.

Allocation: When the resource consumption of all tasks is known, a valid alloca-
tion scheme can be calculated. The according algorithm is based on the use
of non-functional requirements which may include, besides computing and
memory resources, further parameters like deadlines, energy consumption,
redundancy, etc. The algorithm has been presented first in [85].

Scheduling: When a valid allocation has been identified, a possible schedule for
this respective allocation is calculated. The schedule respects all computing
times, communication delays, and possible jitter. If it is impossible to find a
valid schedule for the current allocation, the allocation is marked invalid and
a new allocation must be computed. This round-trip continues until a valid
pair of allocation and system schedule has been found. We have introduced
our scheduling approach in [84].

System configuration: With allocation scheme and schedule available, the exe-
cution platform may be configured. To this end configuration files for the
employed middleware as well as the task scheduler are generated. These files
assure the correct integration of the modeled system at target level. The re-
sult is an executable system which matches the behavior modeled in COLA.

Model-level debugging: The final system might still contain bugs which could
not be identified during model checking. One reason may be checks which
cannot be carried out due to their computational complexity. Another source
for faults is environmental feedback which does not meet the assumptions
made in the model. To facilitate the debugging of such design faults the
COLA approach optionally features the concept of model-level debugging.
This concept enables the mapping of runtime data back to the COLA model,
making it easier to identify the source for errors in the model and fix the
specific mistake. We introduced this concept in [54].

It is important to point out that all described steps from code generation on-
wards are performed in an unattended manner by the COLA tool-chain. In ad-
dition, model analysis is conducted automatically and system partitioning may
optionally be calculated without the input of a system designer. The generated
application code together with the system configuration data yields an executable
system, without the need for further manual integration effort. This high degree
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of automation eliminates a large amount of possible sources for errors during dis-
tributed systems development. Hence, the described process covers the previously
mentioned horizontal dimension in the development of automotive applications.

The vertical dimension is taken care of by the integrated nature of the COLA
language. Comprising all modeling steps from requirements definition, architec-
ture description, functional specification, to technical realization, COLA avoids
the error-prone porting of model data from one tool to the next. The resulting
systems are of higher quality and contain less faults. To retain this quality down
to executable code, an automatic deployment concept like the one introduced in
this thesis is a necessary prerequisite, as Sangiovanni-Vincentelli and Di Natale
postulated in their work about system design for automotive applications [116].

4.2 Introduction to Synchronous Dataflow
Languages

At the core of the COLA approach is the Component Language which is a syn-
chronous dataflow language. Before we delve into the details of COLA in the next
section, we want to give an introduction to the concepts of synchronous dataflow
languages and the reason why they are suitable to model automotive systems.

In order to be useful for the design of automotive — or more general, reactive
systems — any modeling language used provides an abstraction from specifics of the
actual execution platform, rather relying on higher-level logics. Further, reactive
systems share several key features, as described for example by Halbwachs et al.
in his introduction to the synchronous dataflow language LUSTRE in [61]. These
features have to be taken into account during design of such a system. Let us
recapitulate these characteristics, which have already been mentioned in Chapter 2,
due to their importance:

Parallelism: Reactive systems are often parallel systems in order to achieve the
necessary reaction times for a timely interaction with their physical environ-
ment. Besides that the employment of a distributed solution may provide
better fault tolerance.

Reliability: Reactive systems are used in safety-critical domains, like the automo-
tive domain we are dealing with in this thesis. The correctness of their design
is therefore crucial for the safety of the system. The final system’s quality may
be improved, if the modeling language supports formal verification methods
and automated code transformation.

Time constraints: The proper operation of a reactive system is not only based on
its result values, but also on the moment in time at which these results are
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produced. A delay during evaluation of the given tasks may reduce the use
of the result or may even render it useless.

In the following we will argue why synchronous dataflow languages are suited to
address those requirements.

4.2.1 Dataflow Languages

As summarized by Ackermann in [2], dataflow languages have originally been in-
vented to ease the complex programming of multiprocessors, vector machines, and
array processor computer systems. Earlier programming languages for those ar-
chitectures revealed the hardware properties of the computer to the programmer,
aiming at an efficient use of its capabilities. However, such a program is specific to a
certain machine and is possibly hard to understand, program, and modify without
in-depth knowledge of the target processor architecture. Dataflow languages where
created as a higher level programming concept independent of hardware specifics
and can be mapped to parallel hardware architectures automatically by the respec-
tive compiler.

* +
x

y

z Result

Figure 4.2: A simple dataflow model

The graphical representation of a dataflow program is usually a directed graph,
where edges — or vertices — depict the flow of data and nodes represent opera-
tions on these data. The nodes are — depending on the respective language —
referred to as operators, functions, or processes. Edges transfer input and output
values between operators. The causal order of operators is implied by the edges,
that is, an operator may only be applied to the input data when all values are
available. Applying the operation makes the result(s) available at the outgoing
edge(s). Operators may not use any other data than those provided by incoming
edges. Figure 4.2 shows an example for a dataflow network which calculates the
result of x + y ∗ z.

The example shows what Hils denotes in his survey of dataflow visual lan-
guages [73] as pure dataflow. Such a language does not include any control flow
elements like loops or selection/branching statements. According to Hils, designers
of dataflow languages often find it necessary — depending on the target domain —
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to add constructs for control flow to the language, like SWITCH-statements. Control
flow constructs enable the developer to specify distinct execution paths in a conve-
nient way. The same is true for COLA, which features automata to express control
flow, as we will explain in Section 4.3. Each state of the automaton incorporates a
different execution path which may be chosen.

Figure 4.3 shows two different options for calculating the absolute value of an
input value x. Depending on the value of x being either greater-than-or-equal, or
less zero, x is returned unchanged or negated. In pure dataflow languages such
a distinction would necessitate the modeling of parallel execution paths for every
case. A terminating selector would then decide on one of the incoming values to
be propagated as the overall result. This approach is shown in Figure 4.3(a). In
contrast, an automaton is used to first check on the input value and, based on the
result, evaluates the execution path defined in the respective state. In Figure 4.3(b)
such an automaton is depicted. The former use of dataflow elements is clearly less
intuitive to read and understand than the latter version using the automaton.

*
if

x
Result

<

x 0

x

-1

(a)

x x -1 * x

x < 0

x >= 0

Result

(b)

Figure 4.3: Comparison of control flow modeled without automaton in Figure (a)
and using an automaton in Figure (b)

Better readability of a dataflow model can also be achieved by condensing a part
of a dataflow graph into a single node, which is then called a procedure. We will
also use the term composite element interchangeably with procedure. The number
of input and output edges is identical to that of the replaced part of the graph.
Hils refers to this technique as procedural abstraction. Using procedural abstraction
repeatedly and building new networks of procedures, a refinement hierarchy can be
established. Each individual hierarchy level of such a model is easier to grasp thanks
to a reduced number of operators which are visible at once. COLA features the
same abstraction concept, but the resulting compound elements are called networks
rather than procedures, as we will show in Section 4.3. Using the abstraction
concept, dataflow languages may also be used to specify a software architecture,
not just basic algorithms.

Two important properties of dataflow languages make them well suited for the
programming of parallel systems:
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Freedom from side effects: Dataflow models are functional models, that is, they
consist solely of operators transforming several input values into one or more
output values, according to the function represented by the operator, as Ack-
ermann points out in [2]. In dataflow languages, these operators are combined
to form larger networks, by connecting the operators using edges. The edges
depict the flow of data between the different operators. This explicit modeling
of dataflow has two major advantages: first it prevents the existence of any
complex side effects, since all inputs to an operator are modeled explicitly. It
is not possible for an operator to access any data, if there is no connecting
edge to the respective node. Second, the mathematical transparency arising
form their functional nature, makes dataflow languages well suited for formal
verification and automated model transformation.

Parallel modeling: Dataflow models are also parallel models. Hence they can be
used to specify parallel executing algorithms, or parts thereof. Any guidelines
for synchronization, and thus scheduling of systems derived from a dataflow
model, are defined implicitly through data dependencies.

The absence of side effects is a basic requirement for efficient parallel program-
ming, as described by Tesler and Enea in [120]. Together with the explicit paral-
lelism apparent in dataflow networks, the derivation of a parallel implementation
is made possible. The formal verifiability of a dataflow model is well suited to raise
the model’s quality regarding absence of implementation faults and the depend-
ability of the resulting system. The dataflow approach therefore fits well two of the
characteristics of reactive systems, namely parallelism and reliability.

In order to address the third property of reactive systems, that is the time con-
straints demanded for the system, dataflow modeling is not sufficient. This is why
COLA — just like similar approaches — combines the concepts of dataflow lan-
guages with those of synchronous languages, as we will explain next.

4.2.2 Synchronous Languages

In synchronous languages time is seen as a succession of discrete steps, so called
ticks. Any task modeled in such a language may be executed during each tick
and the execution itself happens infinitely fast, that is, operations take no time.
Analogously all communication between tasks is conducted in zero time. This
idealized view allows the programmer to think of his programs to react instantly.
Since inputs are only read and tasks only executed once during each tick, it is
assured that the system reacts before another event occurs. To ensure the validness
of this abstraction for a real system, the hypothesis has to be checked for a given
system and environment. If the anticipated maximum frequency of events is fair
and computing capacity of the hardware platform is sufficient, the actual mapping
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of logical ticks to a real time base can be chosen. This mapping has to ensure that
each task is executed often enough to capture each change of the input values, and
that the task operating on these values is finished before its subsequent invocation.

Synchronous languages have been proposed for the design of reactive systems by
Benveniste and Berry in [16] and Halbwachs in [60] mainly for two reasons: first,
the synchronous paradigm resembles the way design of control loop applications is
typically carried out by control engineers. A set of inputs is cyclically read, which
is called sampling, and interpreted by some microcontroller, which then outputs an
according set of values. Second, tasks in such a system are implicitly synchronized,
since the start of execution of each task is related to a global clock, which counts
time in discrete steps.

From the above explanation the question arises if different tasks may be timed
differently according to the assumed frequency for their input events. To this end
most synchronous languages enable the definition of a clock for each task. The
clocks of all tasks have to define ticks which are multiples of the basic clock of the
system.

Another question is whether the real worst-case execution time of a task may
be short enough to guarantee a termination of the task before its next invocation,
especially when dealing with continuous mathematics used in control loop appli-
cations. This problem is addressed by using appropriate discrete algorithms for
approximating the desired results. Since the use of loops might render the calcu-
lation of the worst-case execution time for a task impossible, algorithms should be
designed to calculate rather an approximation during a repeated cyclic execution of
the task, than during a single evaluation of the algorithm. Accordingly, the result
of a synchronous model is typically a system based on a cyclically executed static
schedule.

Several languages have been based on the synchronous paradigm, one of the first
being Statecharts introduced by Harel in [64]. Other languages employed the same
synchronous time assumption but were based on different programming principles
like imperative semantics used in ESTEREL, which has been presented by Berry
and Gonthier [22], or dataflow semantics which are used for LUSTRE proposed by
Halbwachs et al. in [61].

4.2.3 Synchronous Dataflow Languages

The combination of the dataflow and synchronous approaches leads to the concept
of synchronous dataflow languages. The synchronous paradigm gives a precise
timing specification for the previously asynchronous dataflow approach. Thus, the
point in time each operator is executed is defined and synchronized to all other
operators. Just like LUSTRE, COLA is based on this combined approach.

In a synchronous dataflow language the evaluation of the operators contained in
a dataflow model happens infinitely fast, that is, in logically zero time and, thus,
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all operations could be considered to be executed in parallel. Still, there is a causal
dependency between the operators which is expressed by the dataflow edges. The
dataflow semantics prevent an operator from being executed before all its inputs are
available. Hence the assumption of zero time execution does not influence dataflow
semantics in a negative way.

Another advantage of the synchronous approach, besides being easy to under-
stand, relates to the execution time of composite elements — called networks in
COLA. If the model assumption would assign an amount of time for the execution
of each composite element, the designer would also have to specify the execution
time for each of the operators — or procedures — contained in it. The sum of exe-
cution times of all these sub-components must then be equal to the execution time
of the composite element. When dealing with lots of hierarchical refinement levels,
this time specifications become tedious and error-prone to model. The zero time
assumption of the synchronous approach renders this problem redundant, thus the
developer can focus on the functional specification of his model. At the same time
the design of a refinement hierarchy is alleviated which may be used to express a
system architecture by summarizing sets of operators to larger composite elements.

As explained in the previous section, synchronous models consider time to be a
sequence of discrete steps rather than a continuous value. Synchronous dataflow
models are executed repeatedly according to these steps, seen as ticks of a global
clock. If the model is partitioned into composite elements, it may be possible to
assign a frequency for each composite element, depending on the language. Then
the element is not executed each tick of the global clock, but instead, for example,
every n-th tick. During each execution all the contained operators are executed in
the order implied by the dataflow.

Now that we have outlined the basic principles of synchronous dataflow language,
we will present our implementation of such a language, namely COLA.

4.3 The Component Language

The Component Language was invented for the design of distributed reactive sys-
tems, automotive systems in particular. Its advantage compared to other languages
lies in its applicability throughout the entire automotive software development pro-
cess. To this end it includes modeling constructs for specifying requirements as
well as functional behavior and technical aspects of the in-car computing systems.
The differentiation between these different views onto the intended system design is
provided by the use of abstraction layers, each of which focuses on distinct aspects.
The name Component Language is derived from the fact that each of these layers
is modeled by — either software or hardware — components, which encapsulate
a heap of other modeling constructs and together achieve the functionality of the
system.
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Another benefit of COLA lies in its foundation on formal semantics, which have
been introduced in detail in [86]. This property forms the basis for automated
inspection and transformation of a modeled system during model checking, system
deployment, and model-level debugging.

COLA is intended solely for dealing with digital, that is, discrete data. Contin-
uous values as they occur in the environment surrounding the system cannot be
modeled. It is rather assumed that the execution platform conducts the necessary
A/D conversion and provides the modeled software with digital inputs and similarly
accepts digital output values. Further, COLA focuses on control algorithms and
higher level logics. It is not suitable for the design of low-level software like device
drivers. Because of the employed abstraction it simply lacks hardware details that
would be necessary for low-level programming.

Before giving details about COLA’s modeling constructs, we want to give an
overview of the abstraction layers defined in COLA.

4.3.1 Abstraction Layers

As mentioned before, modeling in COLA is carried out using different abstraction
layers . Each layer gives a different, simplified view onto the system, hiding those
details which are unnecessary for the current modeling task. This concept makes
the system easier to grasp for the respective developers. In addition it provides
a separation of concerns by focusing, one after another, on requirements, func-
tionality, or technical details like distribution and hardware figures. During the
development process more and more details are captured in the model and a com-
prehensive model of the system is derived by finally combining information from
all layers. This information is then available to the COLA tool-chain for model
checking and code generation as well as system integration.

Analog to the scheme proposed by Broy et al. in [29] COLA features three
abstraction layers, as are the Feature Architecture, the Logical Architecture, and
the Technical Architecture. Their respective concern is as following:

Feature Architecture. The Feature Architecture (FA) is used to model the re-
quirements regarding the automotive system from a user’s point of view. Each
feature in the model can be experienced by the customer in the resulting system.
Further, intended and unintended feature interactions — as far as they can be an-
ticipated — may be modeled explicitly and can be checked that way against the
system’s implementation which is specified in the Logical Architecture.

Logical Architecture. Using the Logical Architecture (LA) system designers model
the functionality intended for the system under development. The Logical Archi-
tecture uses dataflow networks and mode automata to depict the according algo-
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rithms. Except for the available data sources and sinks, the Logical Architecture is
independent of any hardware properties. Partitioning of the functional design into
distributable units and allocation of these units to hardware elements is carried out
using the Technical Architecture.

Technical Architecture. The Technical Architecture (TA) provides technical in-
formation related to the computation of functions, designed at the Logical Ar-
chitecture, on an actual hardware platform. To this end it specifies an abstract
representation of the hardware platform, capturing just its software relevant prop-
erties, and defines a distribution of the functions onto this platform. Besides, it
comprehends the hardware’s capabilities, hence providing the necessary figures for
the calculation of allocation and scheduling schemes.

For the deployment approach in this thesis, the data comprised in the LA and TA
are sufficient, as deployment does not take place before the requirements specified in
the FA have been implemented in the LA and a hardware specification is available
in the TA. Therefore we will describe the LA and TA in more detail, next, while an
in-depth description of the feature structuring approach of the FA has been given
by Rittmann in [111].

4.3.2 Feature Architecture

The purpose of the FA is to structure the requirements for a system. To this end, the
requirements are brought into a tree-like hierarchy. The result is a so-called feature
tree, which shows the composition of complex features using a number of simpler
sub-features. In addition to this hierarchical composition, the feature tree also
includes feature interactions, which indicate desired or undesired interactions of the
contained features. These feature interactions can be specified either using COLA
language constructs of the LA or by temporal-logical formulae expressed in the
Smart Assertion Language for Temporal Logic (SALT), which has been introduced
by Bauer et al. in [15].

Further, the maximum deadline for the execution of a feature may be specified to
define an upper limit for its timely execution. These timing figures are transferred
to the subsequent abstraction layers to derive timing information for the respective
implementation, which may finally be used to calculate a valid scheduling plan.

Figure 4.4 shows an example feature tree from the COLA editor. The top
node of the tree represents the automobile, its children are different groups of
features related to comfort, safety, entertainment, etc., followed by their respective
implementing services. The vertical connections arise from the specification of
feature interactions and make the tree appear as a graph structure. Still, the
features are arranged in a strictly hierarchical manner.

The leaves of the tree represent different functions required for the target sys-
tem. These leaves are therefore used to derive an initial architecture of software
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Figure 4.4: The Feature Architecture

components for the LA. Modelers use this architecture as a starting point and fill
the software components with functionality using constructs of the LA.

A more detailed description of the concepts of the FA can be found in [111].

4.3.3 Logical Architecture

The LA is used to specify the functional behavior of a system design. Its constructs
are used to model an overall implementation of the system, that is, it is not limited
to a subset of tasks or single computing nodes. The system is rather designed as
a whole, without taking any partitioning or distribution onto a specific hardware
platform into account. Those jobs are done later on, using the TA. The LA is based
on the concept of dataflow, hence the diagrams of the LA consist of procedures and
dataflow edges between those operators. The operators are named units in COLA,
while the edges are called channels.

Definition 4.1. A unit is the generic type for operations in a COLA diagram.
Each unit exhibits a set of input and output connectors called ports.

Units as a generic type are the placeholders for different COLA elements. Fig-
ure 4.5 shows the (simplified) meta-model of the COLA language. We will explain
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Figure 4.5: The COLA meta-model

the COLA modeling elements shown in the figure in the remainder of this section.
As can be seen in Figure 4.5, the real implementation of a unit may be a network,
an automaton, or a block, each of which we will explain in the following.

Definition 4.2. Ports define the input and output points of a unit. Each port is
given a specific type and only ports of compatible type may be connected to it. The
set of all input and output ports of a unit is called signature.

Each unit has one or more ports, where every one may be connected to the
respective ports of other units, thus representing an exchange of data between the
two units. In the graphical syntax ports are represented as small triangles on the
borderline of a unit. Input ports point inwards, while output ports point out of
the respective unis. Connections between ports follow a 1 : n scheme, that is, each
output port may be connected to several input ports, but each input port excepts
only data from one output port. The COLA semantics require each input port
to be connected to some port of another unit, since the input of the unit would
be undefined otherwise. Output ports, however, do not have to be connected to
a subsequent input port. If they are not, their results are simply dropped. The
connections between different ports are depicted by channels.

Definition 4.3. A channel depicts a 1:n dataflow connection between the output
port of a unit and the input port(s) of (a) subsequent unit(s).
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COLA semantics prohibit channels connecting an output port of a unit to any
of the input ports of the same unit. Such a channel would depict a feedback loop
with potentially unknown runtime, which is not acceptable for a real-time system
with stringent deadlines. Rather, the loop has to contain a delay.

Definition 4.4. A delay is a COLA timing operator with exactly one input and
one output port. Whenever a value is provided at the input port, it stores that value
and in turn emits the value provided during the last execution at the output port.

Delays are buffers which store a given value for exactly one execution cycle of
the model. To guarantee a defined output during the first execution of the model,
delays must always have a default value which is defined by the modeler at design
time.

To build larger sets of operations, networks are used in COLA. A network com-
prises a set of units, that is again networks, automata, or blocks, and defines data
exchange between those units.

Definition 4.5. A COLA network is a unit which contains a set of other units
— referred to as sub-units — that are interconnected by channels. The sub-units
may use the network’s input ports and have to write to its output ports.

Network

Sub-unit
a

Sub-unit
b

Sub-unit
c

Figure 4.6: A COLA network

Figure 4.6 shows an example for a COLA network containing three sub-units.
The network is depicted by the outer box, enclosing all the sub-units of the network.
The triangles pointing into the box at the left side display input ports, while the
triangles at the right hand side point outwards to illustrate output ports. Data are
emitted into the network via the input ports, hence the sub-units may be connected
to any of the input ports using channels. COLA does not require all input ports to
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be used, that is input ports may remain unconnected from the contained sub-units.
On the contrary, all output ports of the network have to be provided with data.
Thus each output port of the network must be connected to exactly one of the
sub-units’ output ports.

As can be seen in Figure 4.6 the direction of the ports together with their con-
necting channels induce a causal order regarding the evaluation of the sub-units.
Starting at the input ports, data are available for Sub-unit a and Sub-unit b

at the same time. Thus these two units may be evaluated in any order, or even
in parallel. Sub-unit c in contrast may not be evaluated before the execution of
sub-units a and b is finished, because it is dependent on their outputs. Finally,
Sub-unit c writes the output values of the parent network.

Using the concept of networks it is possible to define a hierarchy of refinement
steps by inserting networks as the sub-units of another network. Before a COLA
model can be transformed into code, an ending point of the hierarchy, which is the
most fine-grained hierarchy level, has to be defined. This lower ending point of the
refinement hierarchy is embodied by blocks.

Definition 4.6. COLA blocks form the atomic logical and arithmetic operations
of a COLA model. They are the most fine-grained elements and my not be refined
further.

The meta-model in Figure 4.5 indicates, that the abstract element block is re-
alized either by a functional block, a timing block, a source or sink block, or a
legacy block. As described before, delays are timing blocks in the COLA lan-
guage. Functional blocks represent basic arithmetic and Boolean operators. Source
or sink blocks form the connecting points to the hardware platform. Each source
block is related to a data source, that is a sensor, of the hardware platform, while
sinks are the model representation of actuators.

Definition 4.7. Sources and sinks model the links between a functional model
and devices of the target platform. Sources are provide input to the model by rep-
resenting a sensor of the platform, while sinks define the possibility to output data
to the environment, using an actuator.

Figure 4.7 shows an example network consisting solely of blocks. The shown
network implements the Pythagorean equation a2 + b2 = c2, taking a and b as
input values and returning c2.

So far, all presented modeling elements adhere to the dataflow concept. But
COLA also features a modeling construct to represent control flow, so-called au-
tomata. Just as well as control flow defines a way to differentiate between one
execution path or the other, COLA automata enable a decision between different
behaviors according to some condition.
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Figure 4.7: A network of blocks

Definition 4.8. A COLA automaton holds a set of states of which exactly one
is active at any time. The transitions are controlled by guards which decide if a
transition from one state to the next is taken or not.

Figure 4.5 shows that the states contained in an automaton are again imple-
mented by units. Each state of a COLA automaton is implemented by either a
network, another automaton, or a block. Analog to networks this allows for hi-
erarchical refinement. The COLA semantics require the states, or their related
implementing units, to have the same signature as the automaton itself. This way
each state has the same number and types of ports as the automaton. During exe-
cution exactly one of the states is active. At the beginning of each invocation of the
automaton, the outgoing transitions of the currently active state are considered.
The transitions’ preconditions are referred to as guards in COLA.

Definition 4.9. Guards are modeled by networks which consist solely of blocks
and emit a single Boolean result value. Delay blocks may not be used inside a guard
network. If the guard of any of the transitions evaluates to true, the transition
is taken and the behavior defined for the respective target state of the transition
is subsequently executed. If all guards evaluate to false, the already active state’s
behavior is executed.

The guards’ input values are identical to those of the automaton. Thus the guards
may use all or a subset of these values for their processing. COLA semantics require
automata to be deterministic, that is only one transition may be taken at any time.
The model checking of a COLA model includes the necessary tests to make sure
guards do not define non-deterministic automata.

An example automaton is shown in Figure 4.8. Depending on the last active
state, the outgoing transition of that state is checked. Assuming that State 1 was
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Figure 4.8: A COLA automaton

the last active state, the transition indicated at the top of the figure has to be
evaluated. For clarification the guard of the transition from State 1 to State 2 is
shown in graphical COLA notation, while the second guard is depicted textually.
The guard from State 1 to State 2 emits true as its result, if a > c. In that case
the transition is taken and the implementation of State 2 is executed subsequently,
which would be Sub-network 2 in this example. State 1 is executed, otherwise,
implemented by Sub-automaton 1. Please note that the signatures of Automaton 0

and its sub-units are identical, while the guards share the same input ports, but
have only a single Boolean output, as mentioned before.

Definition 4.10. In COLA automata and delays are stateful units. A stateful
unit retains its internal state, that is, its value between cyclic invocations of the
model.

Most modeling constructs of COLA are stateless, that means they do not retain
any values. The only exceptions are delays and automata. As described, delays
store the current input value during each invocation. Similarly, automata have to
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buffer the actually selected state until their next invocation. For all stateful units
default values have to be specified to assure a defined behavior of the system. It is
the modelers responsibility to provide these values.

This completes the informal description of the constructs available in the LA.
The features of COLA presented here are limited to those information necessary to
understand the deployment approach. For more details about the COLA language,
please refer to [86].

4.3.4 Technical Architecture

The presented approach is targeted at distributed hard real-time systems. Regard-
ing the automotive domain, such a system consists of a multitude of processing units
each of which is equipped with one or more processors, memory, a communication
interface, and devices to interact with the environment. We refer to processing
units with their dedicated hardware as (computing) nodes of the real-time com-
puter system, or ECUs with respect to the automotive domain.

As it is our goal to generate the code for the system’s functionality as well as
the platform configuration for scheduling and communication, a mapping of tasks
to executing hardware nodes is necessary. To this end COLA comprises an ab-
straction layer denoted as Technical Architecture. In order to distinguish between
the software components, the ECUs, and the mapping between those, the Tech-
nical Architecture is divided into three different views. These views decrease the
number of modeling elements visible according to the current modeling task. Their
respective names are Cluster Architecture, Hardware Topology, and Allocation. We
will introduce each of these views in the following.

Cluster Architecture. It is the task of the Cluster Architecture to define a parti-
tioning of the highly connected LA into distributable software components. These
software components are later on, during deployment, transformed into code and
become tasks in the executable system. The model representation of a task is a
cluster.

Definition 4.11. Clusters combine a set of units from the COLA LA model into
a distributable entity. A cluster becomes a task in the executable system and may
only be allocated to a single ECU and executed as a whole.

A cluster is an atomic item from the deployment’s point of view. The decision
which units of the LA to put into one cluster can be made either manually or
computed automatically according to some heuristics, as has been mentioned in
Section 4.1. For a valid Cluster Architecture, all units have to be contained in
at least one cluster after partitioning is finished. Two types of clusters can be
distinguished, the working cluster and the mode cluster.
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Definition 4.12. A working cluster comprises a unit and all of its sub-units.
Each working cluster is refined down to the level of functional blocks. All of the
contained sub-units are executed according to the dataflow semantics. Working
cluster must not overlap each other.

To specify a working cluster, a parent unit is selected from the LA. This unit
together with all its sub-units is then considered a distributable entity and will be
generated into a piece of code during deployment. In addition to working clusters,
mode clusters may be defined. Mode clusters must consist solely of automata, the
states of which are implemented either by further mode clusters or by working
clusters.

Definition 4.13. A mode cluster groups several clusters into distinct sets which
are activated alternately. To this end a mode cluster consists solely of automata
which are not refined down to the block level. Instead, each state is again imple-
mented by some cluster. The automata’s active states specify, which clusters to
execute.

Figure 4.9 gives an example partitioning of a model from the LA into working and
mode clusters. The shown subsystem changes its behavior depending on the cur-
rent ignition state. The top-level automaton features two states named Ignition

on and Ignition off. Inside the ignition on state, a further distinction is made
whether the engine is running or not, using another automaton. Each of the au-
tomata is defined to be a mode cluster, shown in dark gray. The remaining units
shown in the figure, in contrast, implement the afore mentioned operating modes.
Thus, they are defined to be working clusters, indicated by their light gray color.
The figure illustrates the fact, that mode clusters may contain other clusters, while
working clusters may not.

Just like working clusters, mode clusters are generated into code and executed
as tasks on the target platform. They are used to modify the set of activated tasks
during system execution. These different sets of tasks are referred to as operating
modes.

Definition 4.14. An operating mode defines the set of clusters — which may
be a combination of some mode clusters as well as some working clusters — to be
executed in a certain state of the system. Thus, it is possible to define a hierarchy
of operating modes.

The definition of operating modes by means of automata has been proposed by
Harel in his work about Statecharts [64]. Their use in safety critical systems has
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Figure 4.9: A possible clustering scheme

been first proposed by Maraninchi and Rémond in [97]. Examples for operating
modes in an actual car would be parking, driving, ignition off, ignition on, dry
conditions, wet conditions, and the likes. According to the actual mode, only
the respective clusters are executed, avoiding the evaluation of currently unneeded
clusters in the resulting system. Hence, a system which is based on operating modes
can be designed more resource efficient, that is, it consumes less processor power
and, accordingly, less energy. At the same time a less capable hardware platform
might be sufficient for executing such a system, reducing the overall cost.

Hardware Topology. To complement the Cluster Architecture with a model of
the target system, COLA provides the Hardware Topology as a part of the TA.
The Hardware Topology contains various information about the target platform,
including ECUs, sensors and actuators, employed communication systems, and
logical topology together with their respective characteristics. The degree of detail
is limited to those characteristics necessary for an automated deployment.

As can be seen in Figure 4.10, the hardware topology consists of processing nodes,
sensors, actuators, buses, and connections between those elements. We will explain
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Figure 4.10: The COLA hardware topology

these elements in this paragraph.

Definition 4.15. A processing node is the model representation of an ECU. The
attributes given for the processing node provide a description of the ECU’s hardware
characteristics, which serve as a basis for the deployment of a COLA model.

Essentially, ECUs are embedded computing devices consisting of a microproces-
sor, some memory, and eventually some special hardware necessary for the desired
function. Since our hardware model serves as a guideline for allocating software
tasks, we are interested in the nodes’ characteristics influencing the computation
of a task. These characteristics are modeled as attributes of the processing node in
the Hardware Topology.

The nodes’ performance is expressed by the number of processing cycles per
millisecond and amount of memory available. The number of processing cycles can
then be matched to the worst-case execution time (WCET) for every task which
might be executed on a node. If enough processing cycles are left on the node, it
is valid to allocate the task to that node.

Concerning the amount of memory we have to distinguish between memory for
program code and program execution. The node has to carry therefore information
about its ROM and RAM sizes. The memory’s speed is not looked at separately
because it is already included in the processing performance evaluation of the node.

Regarding the schedulability of a set of tasks, additional node specific factors
have to be considered. The local operating system will consume some processing
power for dispatching, memory management, interrupt handling, etc. This OS
overhead has to be measured in a realistic simulation environment. The node’s
processing speed value has to be decremented by this amount before allocating the
tasks.
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Additional tolerances concerning the scheduling of a distributed application on
several nodes have to be considered, since even in a time-triggered system there is
always some clock drift between several nodes. Thus the drift rate of each node is
of interest, which depends on the quality of the hardware timer used.

By using these figures, it is possible to derive a valid set of tasks which may be al-
located to a processing node without demanding more than the available resources.
For a valid allocation of the overall system, however, the deadlines of applications
specified in the FA of the COLA model have to be considered. These applications
may be implemented by a set of tasks distributed over several processing nodes. To
facilitate the necessary exchange of data, the processing nodes are interconnected
by a communication system. The key figures of this communication system are
expressed using connection interfaces and buses in the Hardware Topology.

Definition 4.16. Connection interfaces define the interface between a process-
ing node and a bus system. The interface is annotated with technical information
about addressing, timing, and data buffering which are necessary for platform con-
figuration.

The connection interface encapsulates technical specifications about the access
of a processing node to a bus. This includes the definition of the bus interface as
well as the according bus id for each interface the node provides. The bus id is used
for addressing messages from and to the node by the bus protocol.

Further the values for com buffer size and com delay have to be given for each
interface. These indicate the amount of RAM and processing time to reserve for
the communication protocol in question. These data are taken into account during
schedulability analysis of a possible allocation. In addition, the specifications of
the employed bus system are needed.

Definition 4.17. A bus is the model representation of a physical communication
system between ECUs. To calculate the end-to-end communication time for applica-
tions using the communication system, its characteristics are modeled as attributes
of the bus.

The characteristics of buses used in a distributed system influence severely the
performance of the system. The target architecture shall provide a bus which uses
a time-triggered protocol for communication. First the protocol’s net bandwidth
and maximum packet size are of interest. These data are used in combination with
the slot length of the communication slots to calculate the communication schedule.
Regarding the timing accuracy of the system, the synchronisation rate and jitter of
the buses have to be given. The synchronisation service is usually provided by the
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bus protocol, so the synchronisation rate depends on the protocol used. The jitter
induced by the bus decreases the accuracy and has to be taken into consideration.

For interaction with the physical environment of the car, automotive system
employ a multitude of sensors and actuators. These sensors and actuators form the
counterpart of sources and sinks in the LA. Thus for each source or sink of the LA,
an according sensor or actuator should be present in the Hardware Topology.

Definition 4.18. In COLA a sensor is the equivalent of a hardware sensor pro-
viding discrete (digital) data for the system. The model representation of the sensor
provides information about its hardware capabilities as well as a definition to which
processing node the sensor is connected.

We assume sensors to be connected to an A/D converter of the ECU. This is
why the output of a sensor is always a discrete value in the model. When dealing
with sensors, we are interested in the range of values they produce as well as the
resolution of these values. These information can be used to allocate buffers of
appropriate type during deployment and to check the characteristics given in the
software model. Further the sampling rate of the sensor is of interest. It indicates
the length of the polling interval at which a trigger task has to be invoked.

Definition 4.19. In the COLA Hardware Architecture an actuator is a sink for
discrete data. Actuators are, like sensors, connected to a certain processing node.

Similar to sensors we assume for our model that actuators are directly connected
to a D/A converter of some processing node. For the invocation of an actuator we
also need the accepted range of values and, accordingly, the resolution it accepts.
The actuator may be written to as often as indicated by its sampling rate. The
deployment tools for COLA use the information about sensors and actuators to
assure their invocation during execution and communicate the according values
using the bus system. According to our approach the devices will be interfaced by
a middleware, the configuration of which we will describe in Section 5.7.

Allocation. To provide a relation between Cluster Architecture and Hardware
Topology, an allocation from clusters and sources/sinks to hardware components is
defined.

Definition 4.20. The mapping of modeling constructs to hardware components
they are executed on is denoted as allocation.
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Mode and working clusters may be allocated to any processing node, if the node
has sufficient resources left and the clusters do not require any specific hardware.
In contrast, for sources and sinks there is exactly one valid place to be allocated,
namely the sensor or actuator they refer to. An allocation is valid if all clusters and
sources/sinks are allocated to an appropriate element of the Hardware Topology
without overcharging the resources available. However, this does not yet guarantee
a functional system, since the chosen allocation must also be schedulable. It is
the job of the scheduling tool to check for a valid schedule and, if none is found,
a different allocation has to be chosen and checked for schedulability again. We
will provide more details about deployment in general, as well as allocation and
schedulability in particular, in Chapter 5.

4.3.5 Timing Assumption

The COLA language adheres to the concept of perfect synchrony, which has been
introduced in Section 4.2. It is assumed, that the entire system modeled in the
LA is executed each tick of a discrete global clock. During each tick all units are
evaluated in (logically) zero time. Just the precedence of units implied by the
dataflow has to be considered regarding the evaluation order. In the model, the
global clock is incremented at each tick. The correlation of ticks to a real-world
wall clock is fixed in the scheduling step during deployment.

Logical
time

0 1 2 3 4

e1 e2 e3 e4

Figure 4.11: Logical timing of COLA models

Figure 4.11 shows an excerpt from a possible model timing. At each tick of
the logical clock, illustrated by markings on the number line , the entire model is
evaluated. Events generated by the environment, indicated by events e1 through
e4 in the figure, may reach the system at any point in time. The inputs given by
these events are not considered by the system before its next evaluation. Hence, e1
is interpreted at tick 1 and e4 is interpreted at tick 4. For ticks 2 and 3 it has to
be noted that COLA is based on a last-value semantics. If e2 and e3 are events of
the same type, and thus are captured by the same sensor, e3 overwrites e2. Since
there is no evaluation between the two, the value of e2 is simply lost. Similar, at
tick 3, the value given by e3 is used again, since no new input has been received.

To specify the actual timing requirements of an application, the COLA FA is
employed. For any node of the FA graph, a deadline for the execution of the respec-
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tive functionality may be defined. After the functionality has been implemented
at the LA, the WCET for all clusters involved by the application may be calcu-
lated, as we will describe in Chapter 5. Adding these WCETs to the respective
communication and scheduling delays enables the scheduling tool, which will also
be described in the deployment chapter, to derive a valid schedule.

Of course the question arises, how to choose the cycle length according to wall
clock time for one tick of the model time. The scheduling algorithm tries to calculate
a valid solution which guarantees, that first, the cycle is long enough to allow all
clusters to be executed, and second, the cycle is short enough to meet the required
deadlines for all applications. If the model may not be scheduled because of a
lack of hardware resources or a model which poses excessive timing constraints,
the scheduling tool will output an error and require the developer to refactor the
model. This refactoring might either consist of a different allocation or, if this does
not solve the problem, a different clustering scheme.

Logical
time

0 1 2 3 4

e2 e3 e4e1

t1 tn... t1 tn... t1 tn... t1 tn...

Figure 4.12: Relating task execution times to logical time

Figure 4.12 depicts the mapping of ticks of the logical time to actual task execu-
tion times. As can be seen in the figure, between any two ticks tasks t1 through
tn are executed, which implement the modeled system. Equivalent to Figure 4.11,
only the events available before the execution of t1 are considered. Events occur-
ring during the execution of the tasks are stored until the next scheduling cycle
and may be overwritten, as it is the case for e2. If this behavior is undesirable,
the actual time between the ticks has to be chosen shorter, which in turn requires
more powerful hardware to enable the execution of all tasks.

Obviously, it would be desirable to specify units in COLA, which are executed
more often than others. Partly, this was taken care of by defining a last-value
semantics for all COLA ports. Each output port always retains this way its last
value which may be read multiple times by the connected input port(s). In similar
fashion the value will be overwritten by a newer result, even if it has not been read
yet. A COLA extension regarding different execution frequencies of units which
would enable units to be only executed every “n-th” tick is still missing and will
be subject to future work.

We will describe the scheduling scheme for mapping the synchronous time model
onto our time-triggered platform in more detail in Chapter 5.
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4.4 Tool Support for COLA

For the evaluation of the approach described in Section 4.1, a prototypical tool-
chain based on COLA has been implemented. At the core of the tool-chain is the
COLA model editor which is based on the Eclipse platform1. Eclipse provides a
mature platform for the implementation of textual and graphical editors, and allows
the addition of functionality by means of plug-ins. The COLA editor can be used
to design FA, LA, and TA of a system and to control all the plug-ins operating on
the system design. The model editor implements some basic model checks, which
include compatible types of connected ports, a check for the presence of delays in
feedback loops, etc. Furthermore, all automata of the model may be checked for
determinism.

If a model of the LA is given, model-level simulation may be carried out using
the COLA simulator, as explained in detail by Herrmannsdoerfer et al. in [71].
Figure 4.13 shows the graphical interface of the simulator. It is integrated into the
COLA editor and equips the model under simulation with the respective simulation
data. As can be seen in the figure, the simulator interface provides several panels
for interaction. To specify the inputs for a unit under simulation, the runtime
configuration panel can be used. It enables the user to define a value for each input
of the unit. Using the control panel the developer may start, pause, resume, and
stop the simulation at any desired point. The simulator reads the given inputs
and calculates results according to the unit’s COLA semantics. The resulting
valuations of all ports and the active automaton states contained in the unit are
displayed textually in the runtime configuration panel, or annotated in the model
next to the respective model elements.

The simulator forms also the basis for our model-level debugging approach, which
we will present in Section 6.1.

In addition to modeling and simulation, a set of plug-ins for the deployment of
COLA models has been implemented. These plug-ins are used to perform the
system partitioning, code generation, resource estimation, allocation, scheduling,
and system configuration steps, as described in Section 4.1. All the deployment
tools may also be started from the COLA editor. The mode of operation of these
plug-ins will be explained in detail in the next chapter.

4.5 Related Work

Considering the growing importance of embedded real-time systems, it does not
come as a surprise that a multitude of concepts is available for their model-driven
development. We have selected some of the best-known approaches and will outline

1http://www.eclipse.org
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Visualization of runtime configuration

Control panel Runtime configuration panel

Figure 4.13: The COLA simulator
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their differences to our approach in this section. The section consists of three parts,
according to the different nature of these concepts.

First there are solutions focusing on modeling the architecture of a distributed
real-time system. Second we will present concepts being mainly intended for mod-
eling the behavior of those systems. Third an introduction to platform concepts
for the execution of distributed real-time systems is given. These platforms also
provide a means of model-driven development since they are configured offline using
some model of the actual application. At runtime the respective platform monitors
the applications and prevents them from occupying more resources than permitted.

4.5.1 Concepts for Modeling Architecture

Architecture modeling is important, in particular, for distributed embedded sys-
tems. Here not only the internal software architecture has to be covered, but also
the interaction of tasks on different nodes of the system has to be considered. To
this end architecture modeling for embedded systems often comprises a means of
modeling the hardware platform. Using this information the physical distribution
of tasks may be modeled. We have already given a short introduction to AUTOSAR
in Section 3.3 which enables the design of automotive system architectures. In the
following, two alternative concepts are described, namely MARTE and EAST-ADL.

Over the years, the UML [114] has become one of the best-known and widely
used concepts for software modeling. It provides a lot of different diagram types for
designing various aspects of the system in question. A common critique regarding
its use for modeling embedded real-time systems was its inability to model time at
the desired granularity.

Therefore a UML profile has been defined which is called Modeling and Analysis
of Real-Time and Embedded Systems (MARTE). MARTE extends the UML with
constructs which allow the modeling of specific aspects of those systems. To this
end, MARTE is partitioned into three main packages. The foundations package
contains constructs for modeling non-functional properties of a system, which in-
clude timing and allocation of tasks. The design package is employed to model
hardware and software resources. While the analysis package is used to analyze
schedulability and performance of the system [41, 44].

However, the UML lacks formal semantics, as pointed out by Amálio et al. in [4]
and France et al. in [47]. Without clear semantics available, the results of a timing
analysis based on MARTE are subject to the semantics of the respective tool.
In comparison to COLA, MARTE is not aimed at modeling the functionality of
a system, but is limited to its structural aspects. Due to these disadvantages,
MARTE is not suitable for generating a complete system from the model due to a
lack of information. Rather it may be used to produce code stubs which may then
be refined manually.

The Electronics Architecture and Software Technology - Architecture Description
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Language (EAST-ADL) [37] enables modeling of combined software and hardware
architectures at different levels of abstraction. Like MARTE, it is based on the
UML, and features extensions for the modeling of automotive systems. EAST-ADL
is also intended to model the structural aspects of a system. Requirements for the
systems timing and behavior may also be specified, but are not detailed enough to
enable code generation therefrom. As a solution, EAST-ADL provides a concept
for referencing existing application code in order to specify the exact behavior of
a software component. Another possibility is a reference to a MATLAB/Simulink
model. We will introduce MATLAB/Simulink in the next section. Compared to
COLA, the use of different modeling concepts in EAST-ADL contradicts the idea
of an integrated tool-chain. As a result incompatibilities may be encountered at
the contact points of the different languages.

4.5.2 Concepts for Modeling Behavior

Besides architecture modeling, a number of concepts and tools for behavioral mod-
eling are also available. They focus on the functional design of embedded real-time
systems by means of models. For this purpose, dataflow representations are very
common.

Lustre [61] is an example for such a language. It shares with COLA the concept
of synchronous dataflow. Further, it is also based on formal semantics, making
it suitable for model checking. In contrast to COLA, Lustre is limited to the
functional design of a system. It does not provide any constructs for modeling
requirements or the hardware platform. So it has to be used in combination with
other tools to cover an entire development process. Therefore it cannot be said
to be a seamless modeling approach, which was a main reason for the invention of
COLA. Seamless development allows for traceability of errors throughout the entire
development process and thus enables shorter development cycles and improved
system quality.

Lustre features only textual syntax. The SCADE tool [1] provides a graphical ed-
itor for the Lustre language. Further, target code may be generated using SCADE.
For SCADE, which is based on Lustre, a deployment concept for distributed em-
bedded systems has been presented in [34]. Compared to COLA, this approach
lacks two key concepts. First of all, without information about the platform avail-
able, it does not offer the automatic deployment for a distributed platform. While
the approach does facilitate the generation of schedules, it relies a given allocation
of tasks to computing nodes as its input. Automatic computation of allocations
is not available. Second, the approach lacks the generation of operating modes,
although Lustre supports mode automata.

The previously mentioned ASCET-SD and MATLAB/Simulink are two more
well-known tools for the development of automotive systems. While ASCET-SD is
intended specifically for designing automotive software, Simulink is targeted more
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general at embedded systems. Both tools provide graphical modeling similar to
COLA. However they do not implement synchronous languages. Rather, the mod-
eled systems are triggered by events. To this end special event sources are included
in the system design. Hence, synchronization between different parts of the system
has to be resolved by the developer during system integration.

The ASCET-SD tool includes target code generation. For Simulink code gen-
eration is available in form of the optional TargetLink code generator [131]. In
contrast to COLA, these tools are not aimed at the generation of distributed code,
let alone configuration of the target platform. They are rather limited in produc-
ing executable code for non-distributed tasks. Integration of those tasks into the
overall system remains a manual step.

4.5.3 Platform Concepts for Distributed Real-Time Systems

In addition to the presented MDD tools, concepts for execution platforms for dis-
tributed real-time systems are common. These platforms are intended to ensure
safe operation of distributed real-time systems by scheduling the resources avail-
able, e. g., processors and busses. This is either achieved by appropriate offline
scheduling or enforced by an online monitoring system, similar to the TTA which
has already been introduced in Section 2.4.

A concept called Giotto for generating target platform schedules for hard real-
time systems has been presented by Henzinger in [68]. In Giotto, tasks are modeled
by means of their WCET. Operating modes may be defined, activating or deac-
tivating tasks according to the current system state. The models specified with
Giotto are also executed in a cyclic manner, similar to COLA models. An ex-
tension of Giotto towards distributed platforms has been described in [69], called
Distributed Giotto. Unlike COLA, Giotto defines the causal order of tasks and
their resource requirements, but does not deal with specifying their implementa-
tion. Tasks are rather implemented by hand and the Giotto compiler guarantees
their timely execution on a specific platform, given worst-case execution times and
call frequencies for all tasks are known. An extension for distributed platforms
is also available [69]. COLA in contrast defines the tasks implementation, which
allows for verifying their implementation and calculating reliable execution times
based on the designed model, as presented in [130].

The BASEMENT approach [62] also envisions the configuration of the execution
platform using a model of software components. These components may be exe-
cuted either periodic or aperiodic and are called red or blue processes, accordingly.
For the red processes, processor and bus schedules are calculated offline. These
static schedules provide deterministic timing behavior at runtime. Resources which
remain unused are employed for executing blue processes. For these processes, no
timing guarantees can be given. In comparison to COLA, the BASEMENT ap-
proach does not enable the functional design of the application software. Its model
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is meant for configuring the platform only. Consequently, information about the
resource requirements of the tasks have to be provided by the developer. In a sys-
tem based on COLA, this information is calculated automatically from the model.
Further, all tasks are scheduled statically which may result in higher processor
utilization. On the other hand, the BASEMENT approach proposes the use of
separate kernels for red and blue processes, which is not necessary for a COLA
system.

4.6 Chapter Summary

In this chapter we introduced the modeling language COLA and the development
process based thereon. By providing an integrated modeling concept, which cov-
ers all phases of systems development from requirements to functional design and
technical architecture, COLA facilitates the design of automotive systems using a
single modeling language. Its integrated nature avoids any — either manual or au-
tomatic — migration steps between different languages or tools, respectively. This
way loss of information and inconsistencies caused by human errors or incompatible
modeling dialects can be prevented.

To test the applicability of the COLA concept for automotive systems, a pro-
totypical implementation of a COLA editor has been carried out as well as some
plug-ins based on it. We have mentioned the simulator and some of the model
checking tools in this chapter. In the following chapter we will introduce the plug-
ins for the automatic deployment of a system from COLA.

As we have outlined in the related work section, extensive tool support already
exists for MDD of automotive systems. However, we also identified some advantages
of the COLA approach compared to others. An approach which cannot be ignored
due to its broad support is the AUTOSAR concept. Since more and more ECUs
are migrated towards the AUTOSAR standard, any other approach should provide
a concept for integration into an AUTOSAR system. We will present such an
integration of code generated from COLA in Section 6.3
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In this chapter we focus on the main contributions of this thesis. The results
enable the unattended code generation and system integration of automotive ap-
plications modeled in COLA for a distributed embedded platform.

First, in Section 5.1 we will introduce those steps of the COLA-based devel-
opment process, which facilitate the automated deployment of automotive soft-
ware. Subsequently, the implementation of these steps, namely code generation,
allocation and scheduling, and system configuration, will be described in detail in
Sections 5.4, 5.5, and 5.7, respectively.

Besides these major steps we want to put some emphasis on several topics being
required to make the automatic deployment approach work, but are at first glance
hidden in the deployment process. First of all, code generation is dependent on the
behavior and interface of the underlying system platform. To this end, we require
the platform to consist of a custom combination of hardware, operating system, and
a communication middleware. The particular requirements for these components
will be given in Section 5.2.
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Another essential task during system deployment is the dependency analysis,
which will be introduced in Section 5.3. The resulting graph structure is used for
the assignment of communication addresses and specifies the causal order of tasks
needed by the scheduling algorithm.

In Section 5.6 we want to point out the specifics of generating system operating
modes. During the actual deployment, these are generated along with all other
tasks in the code generation step. To realize an operating mode on the target
system, however, also implies a modified scheduling scheme. This is why, we will
describe code generation and scheduling for regular tasks, before explaining oper-
ating modes.

5.1 Deployment Overview

In Section 4.1 we described our vision of an ideal automotive software development
process, based on COLA. Compared to the given description of the entire process,
we are focusing on our contributions to the process in this chapter. These contri-
butions enable the deployment of a system modeled in COLA onto a distributed
target platform. Figure 5.1 is, compared to the related illustration of the entire pro-
cess in Section 4.1, limited to those steps relevant for deployment. Again, named
arrows in the figure depict the respective actions, being performed automatically
by the deployment tools, while resulting artifacts are indicated by the small icons.
As can be seen in Figure 5.1, the deployment approach facilitates iterative changes
of the modeled system by providing the concept of model-level debugging. This
concept is an optional, advanced topic and will be described in Chapter 6.

The result of the presented process is a distributed system which is already
integrated and ready to be executed. We will give the rationale for each of the
depicted steps in the following:

System modeling: Before deployment can take place, all modeling actions have to
be finished. Thus, as an input for the deployment tools, complete Logical and
Technical Architectures have to be available. While the Logical Architecture
comprehends a model-checked design of the intended system’s functionality,
the Technical Architecture specifies a partitioning into distributable clusters
and provides key figures of the intended hardware platform.

Code generation: As a prerequisite to code generation, the dependencies between
the clusters defined in the Technical Architecture have to be known. This
knowledge is achieved during a dependency analysis step. The analysis results
in a graph structure which indicates all cluster dependencies for the given
model. The dependencies are relevant for scheduling all tasks in their causal
order. In addition, the graph is used for assigning communication addresses
to all channels which realize an exchange of data between different clusters.
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Figure 5.1: Deployment workflow
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When communication addresses are known, generation of the functional code
can take place. The according code generator transforms each cluster of the
system modeled in COLA into a task for the target system. Using only
calls to a middleware and its logical addressing for external data exchange,
the generated task is independent of its executing target hardware node. The
result of the code generation step is a set of source code files which implement
the respective clusters. These files may then be compiled to derive executable
code for two purposes. First of all, this code is executed in the resulting
system. Second, for providing input figures to the allocation algorithm, the
code my be employed to determine the task’s WCET.

Allocation: Using the concept for performance estimation, which has been pre-
sented by Wang et al. [130], the worst-case execution time for each task on
each node of the system can be estimated. These figures are used for the defi-
nition of a valid mapping between tasks and computing nodes of the hardware
platform for their respective execution. Further, the memory requirements as
well as other NFRs are considered to derive an allocation scheme. The calcu-
lated allocation is stored in the Technical Architecture and is thus available
to the scheduling tool and for system configuration.

Scheduling: As soon as the allocation is fixed, the calculation of schedules can
take place. Scheduling is done offline according to our deployment concept.
The resulting scheduling plan is then executed as defined at system runtime.
For this purpose the time-triggered paradigm, as described in Section 2.4 is
employed.

If the modeling concept of mode automata, which has been introduced in
Section 4.3, is used, the scheduling plan generator constructs a set of schedules
for each node of the system. These schedules are then switched at runtime
according to the current operating mode of the system. This concept will be
explained in detail in Section 5.6.

System configuration: In order to configure the target system, that is, loading
the communication matrix into the middleware instances and configuring the
schedulers, some configuration files are generated for each node of the system.
These files comprehend the defined communication, allocation, and scheduling
data for each computing node.

For configuration of the middleware, the addresses stored in the dependency
graph structure are matched to the allocation scheme, which is available in
the Technical Architecture.

Model-level debugging: Another major benefit of a middleware besides transpar-
ent communication is the possible inclusion of additional services. The mid-
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dleware presented in this thesis defines extensions for the model-level debug-
ging of generated applications. This is facilitated by logging data at runtime
and loading them in a model simulator afterwards. Thus, the actual behavior
of the target system can be replayed at model level to identify design errors.

Since it is our goal to deploy the model onto a distributed platform, we have some
requirements regarding the platform’s capabilities. These requirements include the
employed operating system as well as the communication mechanism. As for the
operating system, first of all the used scheduling concept is of importance. Oth-
erwise it would be impossible, to deploy the system while preserving the model’s
timing semantics. Further the mode of operation for interrupt handling and hard-
ware access, especially sensors and actuators, have to be known. By specifying a
standard for these parameters on all employed ECUs, the functional code can be
generated without knowing the physical location of execution on the target plat-
form. Our requirements towards a suitable target platform are presented in the
following section.

In summary the deployment concept enables a lossless, automatic transformation
of a system modeled in COLA into an executable system. As the COLA model
is subject to model checking, these automatic transformation steps guarantee the
preservation of system quality, by rendering manual coding redundant. Since the
Component Language covers the entire development process, especially language
constructs for software architecture as well as hardware architecture, the degree of
automation presented here is made possible. The result is a system which needs
much less effort regarding system integration. All necessary function calls for basic
system services as well as addressing for communication and task synchronization
are already ensured by the code generation tools.

5.2 Platform Requirements

The target for our deployment approach is a platform consisting of hardware, op-
erating system, and middleware meeting several requirements. We will give the
reasons for these requirements in this section. Figure 5.2 provides an overview of
the intended system architecture.

As shown in the figure, the architecture consists of a number of ECUs which
are interconnected by a bus system. In addition to the integrated components,
like processor, memory, etc., several sensors and actuators may be connected to
an ECU. Each of the ECUs comes with an operating system and the appropriate
drivers for its respective hardware components. Between the applications executed
on each node and the operating system, a middleware layer serves as a mediator, as
Figure 5.2 indicates. The middleware provides a common interface to access basic
software services like communication and hardware access on every node. By this
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Figure 5.2: System architecture

means it decouples the executed applications from their physical location and, in
addition, facilitates the automated generation of code for its fixed API.

We will specify our exact requirements for the target platform, that is, hardware,
operating system, and middleware in the following.

5.2.1 Hardware

Regarding the employed hardware, we require the processors and memories, both
for program storage and execution, to be of sufficient speed and sizes respectively.
Further all other non-functional requirements defined in the COLA model have to
be fulfilled by the platform. We will detail the particular requirements during the
description of the allocation concept in Section 5.5.1. Our deployment approach
checks for these requirements and outputs an error, if the platform is not sufficiently
equipped for execution of the modeled system, to prevent a non-operational result.
It should be clear that it is impossible for the deployment to find a valid deployment
solution, if the platform does not meet the given requirements.

Furthermore, we assume the platform to be suitable for a time-triggered execution
of the system. This requires hardware interrupts to be handled by dedicated IO-
processors rather than the application processor. Figure 5.3 depicts the required
architecture. Each ECU has one or more IO-processors which are connected to the
devices associated with the ECU. The IO-processors are responsible for receiving
and sending data from and to the sensors and actuators. To this end they have a
data buffer for the most recent values — which matches with COLA’s last-value
semantics — and communicate with the application processor. The IO-processors
accept and deliver if and only if they are polled by the processor to do so. This
prevents interrupts from influencing the timing of the pre-defined schedule. The
same concept applies for the bus controllers used in the ECUs.

Considering communication we require the platform to feature a time-triggered
communication mechanism. To achieve time-triggered communication without in-
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Figure 5.3: System architecture for polling sensors and actuators

terfering with task execution, such a communication mechanism has to be imple-
mented partly in hardware. FlexRay [23] or TTP [82] are prominent examples of
buses featuring such a mechanism. For our deployment we require a bus protocol
slightly differing from FlexRay and TTP, as we will explain shortly.

Summarizing these properties, the resulting platform is similar to the TTA in-
troduced in Chapter 2.4. Yet, the platform described here differs regarding its bus
protocol and middleware, as we will elucidate in the following section.

Bus protocol. In the course of defining a time-triggered system, we require the
bus system to provide time-triggered communication. Current bus systems like
FlexRay [23] or the TTP [82] implement the time-triggered paradigm by means of
a TDMA protocol. That means, access to the network is divided into time slots.
Within each time slot only one node is allowed to send data, all others may receive
data during that time. All slots together define the TDMA cycle. Figure 5.4 shows
such a cycle, divided into five slots. Each node can be assigned multiple slots
depending on the communication needs of the tasks it executes. An example for
this is shown in Figure 5.4 where two slots are reserved for node 0. The TDMA
cycle is repeated periodically and its duration should be chosen long enough to
facilitate all nodes to finish their respective tasks. This allows for the definition
of a system wide scheduling cycle. Tasks which have to be executed at a higher
frequency can be involved several times during each cycle.

Two approaches for allocating a time slot to a sender can be thought of. One
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Figure 5.4: TDMA scheme

possibility is that each node in the system is assigned one time slot in each TDMA
cycle, in which the node is allowed to send data. The length of that time slot either
depends on how much data has to be sent by that node or the available amount of
time is simply divided by the number of communication nodes.

Another approach of distributing slots would be to assign a time slot to every
task. This leads of course to more slots in a cycle and a longer cycle time, but the
delay between finishing a task execution and distributing the produced data can
be shortened. Therefore task scheduling and TDMA time slots have to be aligned
to minimize distribution delay, shown in Figure 5.5. For our middleware the latter
option of assigning slots to tasks rather than to nodes is chosen due to it’s greater
flexibility in generating schedules and advantages considering delay. This is why,
we require the protocol to provide a suitable configuration mechanism.

Besides that, our deployment enables the use of different system operating modes
which typically imply a change of the active tasks, and hence the communication
schedule. To this end the bus protocol has to distribute information about the ac-
tual operating mode and facilitate a method for reassigning TDMA slots to different
senders at runtime. TTP features support for operating modes in the protocol it-
self, but limits the maximum number of modes to eight, which is not sufficient for
our approach. As for the reassignment of communication slots, TTP is not designed
to enable an arbitrary number of changes of communication schedules, but allows
one schedule for each operating mode.

The COLA deployment does not specify an upper limit for the number of op-
erating modes. Thus a suitable communication protocol has to provide the basic
concepts of TTP like time-triggered operation, fault containment regions, and clock
synchronization, but at the same time should not limit the number of different
TDMA schedules. The deployed system is then able to communicate operating
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Task 1 
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Figure 5.5: Delay between task termination and data distribution

modes just like regular application data and reconfigure the bus system in case of
a change of the operating mode. For a more detailed introduction into the deploy-
ment of operating modes refer to Section 5.6.

5.2.2 Operating System

In order to ensure the preservation of the COLA model’s time semantics during
execution on an actual target platform, we require the operating system to conform
to our requirements for interfacing hardware and scheduling tasks. Regarding the
hardware requirements, we demand a fixed API for all drivers as we will outline in
the next section. Afterwards, we give our specification of a suitable task scheduling
scheme for the execution of tasks generated from COLA.

Driver concept. Today it is a well-established procedure to use custom interfaces
for the drivers in an automotive system. Since systems were manually coded from
scratch, this concept did not influence system quality in a negative way. How-
ever, reuse of existing application code was limited as it had to be adapted to each
hardware platform and its particular driver interfaces. Similarly, changing the em-
ployed driver later on, for example if the hardware was replaced by an appropriate
alternative part, was impossible without changing the related application.

Due to the increased use of embedded computers across automotive product
lines and the growing number of companies offering ECUs and sensors/actuators,
the reuse of code and hardware is seen as a key factor for lowering development cost
nowadays. In order to enable the reusability of application code, a defined standard
interface between the application and lower system layers, that is, operating and
communication system as well as hardware drivers is needed. Such a standardiza-
tion facilitates interchangeability of software and hardware elements. At the same
time a mixture of hardware suppliers can be entrusted with the delivery of alter-
native parts. If their operation as well as their driver interfaces are equivalent, the
resulting cars perform identically. This enables the OEM to profit from the arising
competition between the suppliers.

The AUTOSAR initiative chose an approach which can provide the necessary
standardization of interfaces. The employed RTE acts as a layer between applica-
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tions and operating system, or drivers, respectively. But the RTE does not rely
on a fixed API. Instead it is rather a modeling concept which is transformed into
code by the RTE generator. If used consistently, the API will look the same to all
applications, no matter which hardware is used. However, if the RTE is modeled
separately for each system, interfaces are not necessarily compatible. In this re-
spect the RTE code generated for an AUTOSAR model is rather an adapter than
a middleware.

For our deployment we decided to use a middleware with a fixed API for two
reasons. First, this API provides a fixed interface for the COLA code generator,
which eases implementation of the code generator itself. Second, a change to a
system generated from COLA does not require the middleware to be replaced,
if the interface is modified. Rather, a new configuration may be loaded into the
middleware to enable the integration of a different task set. In addition to these
properties, the implementation of the middleware should be usable in combination
with a lot of different platforms, that is without requiring changes in the source
code.

The configuration of the middleware according to a specific platform is achieved
by a configuration file which is read by the middleware at system start-up. Besides
bus addresses, the configuration file also specifies the hardware devices to use. For
interfacing these devices the middleware requires a UNIX-like driver interface, that
is, the drivers can be opened like a file and accept or provide character input or
output. Stream-based data exchange is not envisioned at the moment since most
sensors and actuators use only small datagrams of fixed size for communication. In
principle, of course, the middleware could be extended towards stream-based com-
munication. The assumption of small datagrams is valid since sensors are becoming
more and more intelligent subsystems, which are able to provide an A/D conversion
of input data, filter glitches, and even fusion data of several sensors before deliv-
ering their results to the ECUs. This evolution and possible architectures thereof
have been presented, amongst many others, by Luo and Kay [93], and Meier [101].

As the deployment concept aims at creating time-triggered systems, sensor drivers
shall not generate interrupts. Rather, the middleware polls data whenever neces-
sary. This polling is achieved by issuing a read command to the according driver.
When this command is received, the driver shall return the most recent values.

Task scheduler. For the task scheduling of the underlying operating system we
require time-triggered, non-preemptive scheduling. This assumption is made by
the scheduling tool described later in this chapter to calculate the overall system
schedules. During execution, the nodes’ schedulers serve only as dispatchers, that
is, the schedulers do not decide on which task to execute, but rather read the tasks
and their starting times from a schedule which is generated offline by the scheduling
tool and copied onto the ECUs. The operating system scheduler is just liable to
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release the tasks at the calculated points in time.
The rationale for employing a time-triggered approach is its natural fit with

synchronous languages. Benveniste et al. characterize the TTA as a synchrony
compliant architecture in [19], which also employs time-triggered scheduling. Just
like a synchronous model which is based on the cyclic execution of software compo-
nents, the TTA is based on a fixed schedule which is executed over and over again.
Thus, it is able to meet the timing requirements demanded by a synchronous model.
In addition, the time-triggered approach is favored instead of event-triggered con-
cepts for hard real-time systems. Amos Albert gives a good overview about the
advantages for distributed system of both approaches in [3]. While event-triggered
scheduling leaves some uncertainty regarding system behavior at runtime, time-
triggered scheduling can be guaranteed to show deterministic time response.

5.2.3 Execution Middleware

Several middleware implementations for distributed embedded systems have been
proposed over the years. The reason for designing a custom middleware for the
deployment approach presented here, lies in a lack of flexibility of the existing con-
cepts. Considering for example the current state-of-the-art, namely the AUTOSAR
RTE, its addressing is fixed at system creation. By generating hardcoded commu-
nication channels from the AUTOSAR model, a subsequent change regarding the
placement of tasks onto ECUs or the design of their interfaces is impossible. Thus,
it might be necessary to re-program more than a single ECU in case of a change.
On the other hand, the middleware presented here is configured at system start-up
and might therefore be reconfigured simply by copying the new parameters to the
ECUs and restart the system. Besides providing a convenient way of bug fixing,
this flexibility will aid in changing application software components during system
lifetime, which is one of the future goals for automotive systems, as presented for
example by Pretschner et al. [108], and Heinisch and Simons [67].

An advantage of the RTE is that it already defines a lot of functions for system
management and diagnostics. These functions are a necessary part of automotive
systems. The middleware presented here does not yet feature such an extensive
API. Instead we focus on the transmission of messages between tasks and hardware,
as well as task data storage in the system, which are the essential facilities for
our deployment. For productive use, the addition of management and diagnostics
functionality would however be a necessary extension.

We will give a short introduction into the functionality of the middleware, which
we implemented for the COLA deployment, in this section. The middleware has
first been described in [53].

Local and remote communication. A basic function of each middleware is the
provision of communication mechanisms. For a clustered COLA model this in-
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cludes inter-cluster communication. The border lines separating clusters are crossed
by communication channels. Each such channel indicates a need for data exchange
at runtime. This is one of the duties of our middleware. Every channel is assigned
a virtual address, which is inserted into the appropriate middleware read and write
calls during code generation. The middleware distinguishes between local and re-
mote communication, according to the placement of sender and receiver. During
execution remote communication is then accomplished using the underlying bus
system, while local communication is achieved by buffering messages in the local
middleware instance.

Cluster d

Cluster a

Cluster b

Cluster c

Network c

Network a

Automaton b

Network d

ECU 1 ECU 2 ECU 3

Bus

Figure 5.6: A possible allocation of clusters to ECUs of the target platform

Figure 5.6 shows an example allocation of clusters to ECUs of the target platform.
As indicated by the gray arrows, Cluster a is allocated to ECU 1, clusters b and c

are mapped to ECU 2, and Cluster d is mapped to ECU 3. That is why the channels
connecting the clusters have to be replaced by middleware communication during
execution of the system. Since Cluster b and Cluster c are executed on the same
ECU, their data are communicated locally by the middleware using some buffers.
The channels connecting the remaining clusters are mapped to bus communication,
since the respective clusters are run on different ECUs.

Synchronous modeling languages assume tasks to be executed periodically. In
COLA tasks containing either a delay or an automaton are stateful, as described
in Section 4.3.3. Besides enabling communication between tasks, the middleware
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also provides data keeping for all stateful tasks. The necessary middleware API
calls are inserted into the functional code during code generation.

Hardware interaction. In COLA several channels may read data from the output
port of a unit. If this unit is a source this indicates the value of a sensor to be used by
two different software components. Following the synchronous semantics of COLA,
both software components have to be provided with the same value. Additionally
the hypothesis of perfect synchrony assumes the complete system to be executed
in virtually no time. If several sources are read or actuators are written, semantics
claim this to happen instantly. This requirement could not be fulfilled if hardware
would be accessed directly by each task, as tasks are executed sequentially on each
node of the system. This might lead to a significant advance in time between the
data access of two consecutive tasks. The same is true for one task which reads the
inputs of several sensors, as described in Section 4.3.5.

Anti-lock braking system

Sensor 1
post-processing

ABS calculation

Sensor 2
post-processing

Sensor 3
post-processing

Sensor 4
post-processing

Sensor left-front

Sensor right-front

Sensor left-rear

Sensor right-rear

Actuator left-front

Actuator right-front

Actuator left-rear

Actuator right-rear

Figure 5.7: ABS example

Considering for example the implementation of an anti-lock braking system in
Figure 5.7, the example unit gathers input from the speed sensors of all four wheels
to check if one of the wheels is blocking. If that case occurred, the system would
adjust the braking power at the respective wheel accordingly. In our example the
system is implemented by five units, one for each input from the wheels, and the
fifth unit for comparing the values and calculating an adjustment of the braking
power, if necessary. It should be evident that for a correct function of the system,
the data of the wheel sensors have to be acquired at the same point in time. In
the same way, the actuators have to be modified in parallel to achieve the desired
effect. If, however, the five units were contained in different clusters, they might be
distributed over different ECUs of the target platform, for example one ECU for
the front sensors and one for the back sensors, in an arbitrary manner. To retain
the model assumption of a zero time data acquisition, which means the data would

89



5 Fully Automatic Deployment

be acquired at the same moment, a special polling scheme has to be employed by
the middleware. This scheme starts with the acquisition of sensor data during each
execution cycle, following the clusters are executed, and at the end of the cycle all
actuators are written. This scheme guarantees that corresponding sensor data are
recorded at the same time.

Figure 5.8 shows this invocation of sensors, tasks and actuators during a schedul-
ing cycle. As the middleware uses last-value semantics, sensor values can be ac-
cessed several times by different tasks. Each task will then read the same value.

scheduling cycle

Middleware
running

Middleware
running

Applications
running

Read sensors COLA tasks Write actuators

Figure 5.8: Hardware interaction

Global time. The realization of a time-triggered system relies on the availability
of a global time, as described in Section 2.4. According to this global time, each
node can determine the start of the communication slot(s) assigned to it, as well
as the points in time data sent by other nodes in the system have to be received.
Further, the global time is used to coordinate the execution of tasks on the different
nodes according to the globally defined schedule.

The middleware provides access to the global time maintained by the bus proto-
col, featuring the mw global time() call. This function can be used by the nodes’
local dispatchers to initiate execution of the tasks. The synchronization of the
global time has to be provided by the underlying bus protocol. The middleware
simply provides access to this time base for the executed applications.

Middleware API. For transmitting data the middleware does not rely on bus
addresses of sender or receiver nodes. Instead every datum is assigned a unique
numerical identifier used as its logical address. When a datum has to be transmit-
ted to other nodes, it is passed to the middleware in combination with its logical
address. Using this identifier, the middleware can determine which TDMA time
slot has to be used for sending. As the TDMA cycle reaches the determined time
slot, the datum with its identifier is broadcasted over the network. The receiving
nodes store the received datum with the identifier as its key. Already existing data
with the same key are replaced with the received data. Tasks on the receiving nodes
are now able to retrieve the datum from the middleware by passing the identifier.
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The configuration for each node’s middleware instance is achieved by reading a
configuration file during start-up.

Middleware

ECU 2

Middleware

ECU 1

Task 1 Task 2

Bus

Task 5 Task 6

send ID42 receive ID42 receive ID42 receive ID42

receive broadcastbroadcast ID42

Figure 5.9: Send and receive data using the middleware

The scheme of two nodes communicating is shown in Figure 5.9. Task 1 on ECU 1

sends data with identifier ID42. The data is stored in the middleware, Task 2 on
the same node has immediate access. After the broadcast (which might be some
time later), the tasks on ECU 2 also have access to the data sent by Task 1.

1 mw_send(&variable_y, sizeof(variable_y), 17);

2 mw_receive(&variable_x, sizeof(variable_x), 16);

Listing 5.1: Inter-cluster communication

To achieve a small and simple API, the middleware only provides the basic func-
tions mw send() and mw receive() for inter-cluster communication. The first ar-
gument is a pointer to a variable the data are read from or written to, while the
second argument specifies the amount of data to read or write. A logical address
identifying which data to send or receive is passed to the function as third argument.
An example for the application of these calls is shown in Listing 5.1. The listing de-
picts the code for some fictive variables named variable x and variable y which
are read and written, respectively.

1 mw_restore_task_state(&unit_state, sizeof(unit_state), 7);

2 mw_save_task_state(&unit_state, sizeof(unit_state), 7);

Listing 5.2: Task state storage
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For restoring and saving a task’s state the calls mw restore task state() and
mw save task state() are used. The usage of these calls is shown in Listing 5.2.
The functions’ arguments are identical to those of mw send() and mw receive().

The middleware’s functions for inter-task communication may also be used to
exchange data between a task and a device, as we will describe next.

Interfacing sensors and actuators. Since a real-time computer system has to
interact with the real world, there is a need to connect the tasks with sensor and
actuator devices. These devices can be attached to any node in the system. The
middleware provides functionality for transparent handling of remote devices to
all nodes. Therefore sensor data are presented to the task like all other data, as
described in the previous section. That means every sensor is assigned a unique
identifier, the middleware is in charge of polling the sensor in an appropriate cycle
time and storing the result with the identifier as a key. To make the data available
for remote nodes the distribution mechanism for data is used.

Writing data to actuator devices works similar. Data are stored in the middleware
and distributed. When the node with the actuator device attached has to write
a new value, it looks up the data for the identifier associated with the actuator
device and writes it to the device. Sensor and actuator interaction is completely
handled by the middleware, tasks just have to use the middleware’s mw send() and
mw receive() API functions to write and read values.

As hardware device interaction is handled by the middleware and not by tasks
directly, a scheme is needed defining when this interaction takes place. The scheme
is indicated in Figure 5.8. At the beginning of a cycle the middleware first reads
sensor devices. Each sensor is read according to a given frequency. This means a
sensor could be read every n-th cycle, in all other cycles the last value read will be
used. After sensor values have been read and distributed, they are available to all
tasks on all nodes. At the end of the cycle, when all tasks have finished execution,
each node with an actuator connected checks for data with the ID of the actuator.
If such data are found in a buffer, they are written to the hardware. The update
frequency of actuator values can again be specified in the COLA model. This
way the middleware does not try to write the actuator more often, avoiding race
conditions in the actuator’s data buffer.

Since the middleware instances on all nodes of the system are synchronized,
the first scheduling cycle should start with a synchronous sensor reading of all
middleware instances. Thus, each cluster is provided with its respective input
values. Subsequently, for each actuator there is a calculated value at the end of the
scheduling cycle. This scheme would render initial values for sensor and actuator
data unnecessary. However, to guarantee a safe operation of the system in case
one sensor could not be read or an ECU does not provide a value to an actuator
due to a defect, all sensor and actuator buffers are initialized with default values.
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These values are taken from the COLA model and encoded in the middleware
configuration.

Middleware configuration. The middleware can be configured using a file. It
contains an element hierarchy of nodes, tasks and data. Data identifiers can be
defined and assigned to the tasks they belong to, tasks are sub-elements of nodes.
TDMA slots can be assigned at task level, i.e., all data belonging to one task will be
sent in the slot assigned to that task. Further, sensors and actuators are assigned
to nodes so that the middleware can perform hardware access on the proper node.
Sensor and actuator elements are like data elements with some hardware specific
information, i.e., they also have identifiers for send/receive operations. Additionally
a TDMA slot has to be assigned to hardware devices for sending values, because
they operate independent of tasks as shown in Figure 5.8.

With this configuration information, the middleware is able to allocate buffer
space during the startup phase, initialize sensor and actuator hardware for opera-
tion and distinguish between local and remote communication. The exact syntax
of the middleware configuration file will be explained in Section 5.7, which deals
with the configuration of the target platform.

5.3 Dependency Analysis

An elementary step in our system deployment concept is the analysis of cluster
dependencies. These dependencies provide the basis for logical address generation,
communication buffer allocation, and the calculation of valid system schedules.
In order to capture the dependencies in an easily processible way, we created the
Cluster Dependency Graph (CDG), which has been first presented in [84].

Our graph construction algorithm parses the Technical Architecture of a COLA
model to derive the appropriate CDG. The resulting graph consists of vertices
representing either clusters or communication buffers, and edges indicating data
exchange between the former. The CDG is a directed and acyclic graph, thus
illustrating the direction of the dataflow. We will introduce the different graph
elements in the following, using the graphical representation of the example graph
in Figure 5.10. The graph is taken from one of our case studies, which will be
presented in Section 7.1.

Working cluster vertices: For every working cluster of the model an according
vertex is created in the CDG. The graphical representation of a working
cluster vertex is a rectangle. These clusters receive and send messages from
and to other clusters. Each of these messages, which are exchanged along
channels in a COLA model, are routed along the edges of the CDG. Radar
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Figure 5.10: A cluster dependency graph

and Rotation are two examples for working cluster vertices in the given
example.

Some of the shown working cluster vertices carry the prefix DEV in their
names. This prefix indicates the clusters to model a device, that is, a source
or a sink. Devices are represented as working clusters, too, since they emit
and absorb values which have to be transmitted by our middleware. It is
therefore necessary to give these devices an address, and provide a buffer for
the respective values. Hence their inclusion in the CDG.

Mode cluster vertices: Mode clusters vertices stand for the mode clusters of the
model. Each mode cluster indicates a possible change in the control flow of
the model, thus deciding on which working clusters to executed subsequently.
This determination is pictured in the CDG by subordinating the mode clus-
ter vertex the cluster vertices it activates or deactivates. These subordinate
clusters may be either working or mode clusters. The diamond shaped ACC is
an example for a mode cluster vertex in Figure 5.10. It determines whether
ACC on or ACC off has to be executed.

Just like a working cluster vertex, the mode cluster vertex has ingoing edges
which represent received messages. The cluster uses these data to calculate
which subordinate cluster to execute. In contrast to working cluster vertices
however, the mode cluster vertex does not emit an arbitrary number of mes-

94



F
ul
ly
A
ut
om

at
ic
D
ep
lo
ym

en
t

5.3 Dependency Analysis

sages, but always exactly one. This message represents the result of its mode
decision.

The input data available to the subordinate clusters are identical to those
received by the mode cluster.

Buffer vertices: Whenever data are communicated between clusters, these data
have to be stored temporarily by the middleware. Since one of the goals
of the CDG is the generation of logical addresses for the middleware, the
according data buffers for temporary storage of messages exchanged between
clusters, are also present in the CDG. To this end each connection between
two working cluster vertices contains a buffer vertex.

In Figure 5.10 the buffer vertices are depicted as octagons. Typically, buffer
vertices have one incoming and one outgoing edge. If, however, a buffers
stores data which are read by several clusters, the buffer vertex may have
more than one outgoing edge. It also may feature several incoming edges, if
more than one cluster writes the buffer. However, this is only possible if the
writing clusters are in different operating modes and thus can’t be active at
the same time. ACC on and ACC off are an example for such alternatively
activated working clusters. Depending on the result of mode cluster ACC,
either ACC on or ACC off is executed and, hence, only one of them writes its
results to the buffers acc disp and s mot. So despite the possibly multiple
incoming edges there are no race conditions at a buffer vertex.

Dataflow edges: The CDG’s vertices are either connected by dataflow edges or
mode edges. Dataflow edges do represent data exchange from clusters to
buffers or the other way round. Their direction indicates whether a buffer
vertex receives or emits data via the edge. If a vertex has more than one
incoming or outgoing dataflow edge, each edge represents a connecting chan-
nel between the according cluster and its environment. Clusters which only
have outgoing edges contain sources, while clusters containing sinks only have
incoming edges.

Examples for such clusters can be seen at the top and bottom of Figure 5.10,
respectively. The according dataflow edges are depicted as solid arrows in the
figure. Their direction matches the direction of the dataflow.

Mode edges: In opposition to dataflow edges, mode edges represent a means of
control flow. To this end, a set of mode edges is directed from each mode
cluster vertex to its subordinate cluster vertices. Each of the those subor-
dinate cluster vertices together with its descendent cluster vertices forms an
operating mode of the system. Thus the mode edges stand for an exclusive
activation of the connected working clusters.
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The working cluster vertices ACC on and ACC off are examples of such working
clusters in Figure 5.10. The according mode edges are depicted as dashed
arrows. They indicate the decision for the current operating mode made by
the mode cluster ACC.

To improve the graphical cleanness of the graph, dataflow edges are omitted
for working cluster which have ingoing mode edges. ACC on and ACC off

are an example for this: as they both have the same input data as their
superordinate mode cluster ACC, the according dataflow edges are left out in
Figure 5.10.
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25 27 28

31 32 33 34

35 36
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23 24
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26

14 15

29 30

Figure 5.11: A possible address generation result

When the CDG construction is finished, the assignment of logical addresses for
communication via our middleware can take place, based on the graph structure.
For each working cluster vertex a distinct numerical address is assigned. This
address is used for storing the internal state of the associated cluster during system
execution. Further, each buffer is assigned an address which the code generator
uses to write and read data that are exchanged between clusters. As can be seen in
Figure 5.10, mode edges do not contain any buffer vertices. Since the only output
of a mode cluster is its decision on the current operating mode, there is no need
for an arbitrary number of output values. Rather than inserting buffer vertices
into all mode edges, the mode cluster vertex itself is assigned two addresses. One
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for its internal state and one for its mode decision result. A possible result of the
address generation process for our example graph is shown in Figure 5.11, stating
the according addresses for all vertices of the graph.

The algorithm for calculating time-triggered system schedules, also uses the de-
pendency graph for analyzing the causal order of clusters to be executed. Basically
it follows all the paths in the graph from top, i. e. the sensors, to bottom, which
depicts the actuators, and derives a suitable execution order of the according tasks.

5.4 Application Code Generation

The input for the application code generator is a self-contained COLA model. That
means that all networks and automata are refined all the way down to the block-
level and the model is partitioned into clusters. It is the task of our application
code generator to consider the clusters one by one and generate C code for each of
them. The result is a set of source code files which are, after compilation, ready
for execution by the system as tasks during runtime. For that reason we will use
the terms cluster and task interchangeably, here. The following explanation is
considering the generation of code for working clusters. We will describe the code
generation for mode clusters in Section 5.6 and explain how they modify the active
schedule to alter the set of working clusters invoked.

The top-level unit of each working cluster will most certainly be an automaton
or a network, since clustering single blocks is not advisable due to the enormous
overhead implied by scheduling a plethora of such simple, atomic operations. In
the majority of cases this automaton or network will have several input and output
ports, which implies some inter-cluster communication.

The code generator will start its traversal of the working cluster beginning with
the input ports of this top-level unit and follow the respective connected channels.
As soon as it hits another network or automaton, it will descend into the model
hierarchy and produce code for the implementation of this unit before evaluating
the other units at the same level. This recursive operation resembles to a depth-first
search as used for algorithms based on graphs. The light gray track in Figure 5.12
indicates this search path for a COLA example. In the example the algorithm
first hits Unit 1.3 and starts descending to its sub-units. A resulting sequence of
encoded units could be:

1.3 → 1.3.1 → 1.3.1.1 → 1.3.1.3 → 1.3.1.2 → ... → 1.3.2 →
→ 1.3.2.1 → 1.3.2.2 → ... → 1.4 → ...

Subsequently, Unit 1.1 and Unit 1.2 would be evaluated, accordingly.
Code generation for the cluster is finished, when the search algorithm has reached

every output port of the cluster, providing subsequent clusters or actuators with
input data.
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Unit 1.1 Unit 1.2

Unit 1.3
Unit 1.4

Unit 1

Unit 1.3.1 Unit 1.3.2

Unit 1.3

Unit 
1.3.1.2

Unit 
1.3.1.1 Unit 

1.3.1.3

Unit 1.3.1

Unit 
1.3.2.1

Unit 
1.3.2.2

Refinement

Refinement

Unit 1.3.2

Figure 5.12: Unit evaluation order

5.4.1 Inter-Cluster Communication

As mentioned before, all channels extern to a cluster, that is, those which connect
the cluster with either a source, a sink, or with another cluster, imply a need
for communication. This communication is realized by our middleware. The code
generator inserts appropriate calls to the middleware’s API during code generation.
Likewise the code generator inserts calls for restoring and saving the task’s most
recent state. This state is updated during each execution of the task.
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Network c

Network a

Automaton b

Network d

Cluster x

Figure 5.13: Example cluster x

Figure 5.13 shows a snippet taken from a COLA system. In this example
Cluster x consists of Network c, which features three input and two output
ports. The channels connecting the network with Network a and Network d and
Automaton b are mapped to middleware communication by the code generator. A
shortened example of the resulting code is given in Listing 5.3.

1 void cluster_x() {

2

3 ... <variable declarations> ...

4

5 mw_restore_task_state(&unit_state, sizeof(unit_state), 7);

6 mw_receive(&var_a, sizeof(var_a), 16);

7 mw_receive(&var_b, sizeof(var_b), 19);

8 mw_receive(&var_c, sizeof(var_c), 29);

9

10 ... <cluster implementation> ...

11

12 mw_send(&var_x, sizeof(var_x), 42);

13 mw_send(&var_y, sizeof(var_y), 66);

14 mw_save_task_state(&unit_state, sizeof(unit_state), 7);

15 }

Listing 5.3: Inter-cluster communication

As can be seen in the example, the code generator creates a method named after
the cluster. The first step inside the method is a call to the middleware, namely
mw restore task state() shown in line 5, which returns the most recent internal
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state of the cluster. Subsequently the input ports of the cluster are read by calling
the mw receive() function of the middleware. As explained in Chapter 5.2.3, both
API functions take a numerical address and a pointer to the intended variables as
arguments. After reading all inputs, the acquired values are used by the cluster’s
implementation to calculate results. For the cluster’s state as well as all input
and output values, local variables are declared inside the method for storing the
respective values during execution.

After the implementation is fully evaluated, the results are written to the output
ports of the cluster. In order to enable the middleware to forward these values to
another cluster or an actuator, the respective values are copied to the middleware
using mw send() calls. An example of these calls is shown in lines 12 and 13 of
our example listing. The last operation of the cluster is the storage of its mod-
ified internal state to the according middleware buffer. This is achieved by the
mw save task state() call exemplified in line 14.

The calls for reading input and writing output values are identical, no matter
whether the communication partner is local or remote, a hardware device, or an-
other cluster. The middleware takes care of either buffering the values locally or
relying them over the bus system or to a connected sensor or actuator. The gen-
erated cluster code is that way independent of the location of its execution. This
portability is also important for the estimation of a cluster’s worst-case execution
time, which has been realized in the SciSim tool presented by Wang et al. in [130].
It allows the clusters’ execution on any target system, either real or — in case of
SciSim’s SystemC platform simulation — virtual, as long as the target provides the
common middleware API.

It should be pointed out again, that the middleware uses last-value semantics.
This means that reading a value is non-destructive and thus, if a cluster is exe-
cuted at a higher call rate than the preceding cluster which delivers its inputs, the
cluster is still enabled to read valid data. Together with the initialization of all the
middleware’s buffers for sensor values and the causal order of clusters guaranteed
by the time-triggered schedule, there is never the risk of reading uninitialized input
values. For the same reason the source code file generated for a cluster always
contains a method which is responsible for initializing all stateful units contained
in the cluster. This applies to all automata and delays nested in the cluster. The
values for this initialization are taken from the COLA model and account for the
cluster’s initial internal state.

5.4.2 Networks

Cloning the hierarchical structure of the COLA model, the code generator creates
a separate function for every network of the respective cluster. As described before,
the top-level unit of a cluster is translated into a method without parameters. All
input and output values are communicated using middleware calls.
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In contrast, all networks and automata on lower hierarchy levels are coded as
functions featuring in their signature one parameter for each input or output port.
These parameters are realized as pointers for two reasons. First, nesting units
according to the model hierarchy would lead to a good amount of unnecessary
memory consumption, if the parameters were passed by-value, rather than by-
reference. Second, for the output ports it is a convenient possibility to realize several
return values, instead of the single value allowed for functions in the C language.

Network n

Sub-net x

Sub-atm y

Sub-net z

Port a

Port b

Port c

Port d

Port e

Figure 5.14: An example network

Listing 5.4 provides an example of the code generated for the network shown
in Figure 5.14. As can be seen in the Listing, all ports are cited in the functions
parameter list. Further, a struct containing the network’s and its sub-units’ states
is added to the parameter list. This struct holds the values of all automata and
delay blocks, which are nested inside the actual network, and thus make up its
internal state. For all delay blocks, the struct exhibits primitive values, while
for all sub-networks or sub-automata the struct features nested structs with the
respective values. If, however, the network only contains stateless sub-units, that
is no automata or delays, the network itself is stateless and the struct is omitted.
A definition of stateful and stateless units has been given in Section 4.3.3.

For executing the sub-units defined inside a network, the evaluation order induced
by their connecting channels is important. Of course, the sequence of calls has to
preserve the order induced by the semantics of the dataflow, that is, for each unit to
be executed its inputs have to be available. To guarantee this, the set of sub-units
provided for the network is searched for units not dependent on other units in the
network. A call to each function implementing such a unit can be instantly inserted
in the resulting C code, and the unit can be removed from the set. At first, this
is only true for units connected to an input port of the parent network. Over time
there are more and more units whose inputs are connected to an output port of a
unit already coded, or to a unit which represents a constant value, a source or sink,
or a delay. As soon as all inputs are available, these units may be inserted into
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the code and removed from the set as well. This search over the set of sub-units is
repeated until the set is empty. Then all sub-units are coded in a sequential order
preserving the dataflow semantics.

1 void network_n(state_net_n* unit_state, int* port_a, int* port_b,

2 int* port_c, float* port_d, int* port_e)

3 {

4 int ch1;

5 int ch2;

6

7 sub_net_x(unit_state->state_sub_net_x1, port_a, port_b, &ch1);

8 sub_atm_y(unit_state->state_sub_atm_y1, port_b, port_c, &ch2);

9 sub_net_z(unit_state->state_sub_net_z1, &ch1, &ch2,

10 port_d, port_e);

11 }

Listing 5.4: Generated network code

The result of this algorithm can, again, be seen in Listing 5.4. If more than one
unit is ready to be inserted in the code, these units may be coded in an arbitrary
order. For all channels not connected to an input or output port of the parent
network, local variables are declared inside the function to allow data exchange
between the sub-units. The variables ch1 and ch2 are examples for such data
buffers. They correspond to the channels connecting Sub-net x and Sub-net z,
or Sub-atm y and Sub-net z, respectively. For all other channels, the pointers
from the function’s parameter list are used.

5.4.3 Automata

Just as networks, each automaton is coded as a separate C function. Its parameters
are the input and output ports of the automaton. Unlike networks not all elements
depicted in an automaton are executed during each invocation. Rather, they are
operating in exactly one of their states, depending on the previous as well as the
actual input values, and are thus stateful elements. Hence, the signature of an
automaton always contains a state parameter. This state parameter is a struct
consisting of the automatons currently executed state, represented as an integer
value and the state struct for all the automaton’s sub-units which implement the
automaton’s possible different behaviors.

The implementation of the automaton itself is realized as a switch-case state-
ment in C code. The switch argument is the reference number of the automaton’s
currently active state. Inside the according case statement, the guards of all out-
going transitions are computed. If one of the guards evaluates to true, first the
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Atm b

Port a

Port b
Port u

State a

State c

State b

State d

(Port a <= 5) && (Port b > 27)

(Port a > 5)

Figure 5.15: An example automaton

reference number for the active state is updated and then the implementation of
the target state is called. Otherwise the behavior of the already active state is
executed. The example code for an automaton’s implementation is given in List-
ing 5.5. The according automaton is taken from Figure 5.15. In the figure only
the guards exemplified in Listing 5.5 are depicted. The Listing shows these guards
to be evaluated, if State c is active, which corresponds to case 0. If any of the
guards evaluates to true, the variable holding the active state is updated and the
according target states is executed. State c is otherwise executed. As the units
which implement the automaton’s states all feature the same input and output
ports as the automaton itself, the corresponding parameters of the automaton are
passed to the function calls for the implementing units.

In case the automaton is a mode cluster rather than a regular automaton, its
implementation is differing slightly. Instead of just calling a sub-unit, a mode cluster
decides on a set of other clusters to be executed. To this end it uses facilities
provided by the middleware. The details of this approach will be explained in
Section 5.6.
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1 void atm_b(atm_b_state* unit_state, int* port_a, int* port_b,

2 int* port_u) {

3

4 //check active atm state

5 switch(unit_state->atm_state)
6 {

7 //atm "State c" active

8 case 0:

9 //check first guard

10 if(*port_a > 5)

11 {

12 //update state reference and call implementation

13 unit_state->atm_state = 2;

14 state_a(&(unit_state->state_a_impl), port_a, port_b,

15 port_u);

16 break;
17 }

18 //check second guard

19 if(((*port_a <= 5) && (*port_b > 27)))

20 {

21 //update state reference and call implementation

22 unit_state->atm_state = 3;

23 state_b(&(unit_state->state_b_impl), port_a, port_b,

24 port_u);

25 break;
26 }

27 //call actual state implementation

28 state_c(&(unit_state->state_c_impl), port_a, port_b,

29 port_u);

30 break;
31 case 1:

32 //atm "State d" active

33 <implementation omitted>

34 case 2:

35 //atm "State a" active

36 <implementation omitted>

37 case 3:

38 //atm "State b" active

39 <implementation omitted>

40 }

41 }

Listing 5.5: Automaton code
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5.4.4 Basic Blocks

As has been described before, every network and automaton is encoded as a separate
C function. For basic COLA blocks this is not the case. Since basic blocks represent
atomic operations like arithmetic or Boolean calculations, calling each operation as
a function would induce a huge overhead. Therefore, basic blocks are interpreted
inline, which means the according operation is transformed into a single line of
code, replacing the basic block with its C counter piece, as one would assume.

*

Network d

+
Port a

Port b

Port c

Port x* -

7

Figure 5.16: A network of blocks

Figure 5.16 shows an example COLA network which consists of a number of
blocks. The resulting code is shown in Listing 5.6. As one can easily see, the blocks
are replaced by basic C operations. Braces are added to make the precedence of
operations clear.

1 void network_d(int* port_a, int* port_b, int* port_c, int* port_x)

2 {

3 *port_x = ((*port_a + *port_b) * (*port_b * *port_c) - 7);

4 }

Listing 5.6: Inlining for a network of blocks

In case of a delay block, the C interpretation would be a simple assignment of
the new value to the state struct member holding the delay’s value. Thus during
code generation, the generator adds a struct member of appropriate data type for
each delay to the state struct of the parent cluster.
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5.4.5 Code Optimization

It should be obvious that the code generation approach described above results in
C code which reflects the behavior of the corresponding COLA model. Following
the structure of the model very closely, the use of separate functions for each net-
work in the model hierarchy yields a code that is still readable and can be compared
to the modeled system if necessary. Yet, it is not the goal of a code generator for
embedded systems to produce the most readable, but rather very efficient code.
An exploration of the potential for optimizations has been carried out as student’s
work by Hierl in [72]. The goals of the work were a reduction of function calls in
the resulting code as well as a reduced use of variables, thus speeding up execution
and saving the amount of memory needed for the call stack on the target platform.

As another topic the compliance of the generated code to the Motor Industry
Software Reliability Standard (MISRA) [102] should be examined. MISRA is a
common coding standard for high-confidence embedded systems as described by
Anderson in [6]. Compliance of the resulting code to the MISRA C standard would
be most likely a requirement — as it is for today’s automotive software — if the code
generator should be certified for use in automotive development. Such a certification
would qualify the generator to be used for production code, which could be used
without any manual changes in actual cars. This approach would yield a shorter
time-to-system, as it would not be necessary anymore to certify every new piece
of code. Instead, if the model editor and checker are certified as well as the code
generator, any generated code would be considered correct by construction.

All optimizations are based on an intermediate representation of the model as an
abstract syntax tree (AST). The optimizer parses this tree to search for suboptimal
structures, regarding efficiency of the produced code. One optimization of the tree
is the so-called flattening of networks. Flattening means that the nested hierarchical
structure of networks in a COLA model is nullified by reducing all networks to a
huge single network with exactly one hierarchy layer. Figure 5.17 gives an abstract
example of a hierarchy of networks. Figure 5.18 shows an equivalent flattened
network. For reference, the inlined sub-networks are colored in the two figures. As a
result of this flattening fewer function calls are produced during code generation. It
should be noted that flattening is only used for networks. Whenever an automaton
is found in the AST, the automaton is coded as described above. While it would be
possible to flatten an automaton too, this might result in huge nested switch-case
statements, which are not necessarily more efficient to compute.

Another optimization was realized, targeting a reduction of local variables used
for representing channels inside a network. The original version of the code gen-
erator would create a separate variable for every channel of a network. The opti-
mization in contrast, reduces the number of variables by reusing them for several
channels. To this end, every variable is annotated in the AST with a counter. The
counter is incremented when the variable is written, and decremented as soon as the
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Network n

Sub-network b

Sub-network a

Sub-network c

Refinement

Figure 5.17: The hierarchical Network n

according date is used. This is why, the code generator only creates new variables
if none with a usage count of zero is left. Otherwise a free variable is used.

The described changes to the code generator have been implemented during the
student’s work. Tests using several different COLA models showed mixed results.
While the binary size of the produced code, as well as the execution speed and
stack consumption, where reduced in some cases, other examples showed no change
or even reduced efficiency. These non-uniform results point at a dependency on
the employed compiler carrying out optimization itself. When using its automatic
optimizations, a lot of the additional function calls produced by the original code
generator where simply removed by the compiler, that is the compiler used inlining
to reduce the number of calls. If, however, optimizations where disabled for guar-
anteeing equivalence of source code and binary representation, as is state-of-the-art
for many embedded systems (cf. [76]), the modified code generator would produce
a more efficient result. There is also a lot of effort spent onto proving the correct-
ness of optimizations done by compilers, for example by Engelen et al. [123, 124],
Cimatti et al. [35], Necula [104], and others. So maybe in the future, compiler
optimizations for production code will be permitted.

Considering MISRA conformance, the work pointed out that the original code
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Network n

Figure 5.18: A flat version of Network n

generator violated several of the rules defined in the standard. However, as Ander-
son points out in his overview of coding standards for embedded systems [6], only
23 percent of the defined rules are aimed at predictability. These rules shall avoid
the use of ambiguous statements of the C or C++ language, whose interpretation
is dependent on the employed compiler. All other rules are targeted at simplicity
and readability of the code, which is a major concern for human programmers. The
analysis of our code generator showed, that it doesn’t violate any of the predictabil-
ity rules, so the resulting software behaves deterministically. As the generated code
is not intended to be read or modified manually, the violation of all other types of
rules is not a concern and has thus been ignored for the rest of the student’s work.

5.5 Allocation and Scheduling

The concepts for allocating and scheduling COLA tasks are joint work with Stefan
Kugele, who helped developing the relevant algorithms in this solution. We have
introduced the algorithms in detail in [56] and [85], so we will limit the description
to an overview of the most important concepts, here.

5.5.1 Allocation

In order to find an optimal solution, it would be necessary to accomplish a combined
optimization for allocation and scheduling. But since finding solutions for a valid
allocation, or schedule, is complex enough, we kept both steps separate. During
allocation the algorithm tries to find a valid mapping of tasks to computing nodes of
the system, while the scheduling algorithm aims at calculating a schedule meeting
all deadlines for the previously defined allocation. If it is not possible to schedule
a given allocation, it is up to the developer to modify the input values for the
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allocation algorithm and repeat its execution.
To get a guidance for allocation, the algorithm uses non-functional requirements

(NFRs) specified in the software model and matching the capabilities of the hard-
ware model. The lists of possible requirements and capabilities are not fixed, which
means they could be extended in the future according to the respective needs of a
specific system. Regarding clusters, the requirements can be separated into essen-
tial and auxiliary NFRs. Essential NFRs have to be fulfilled by a valid allocation
plan, otherwise the system will not behave as intended. Missing auxiliary require-
ments do not influence the functioning of the system negatively, but they improve
system quality considering safety, cost, etc. For the allocation algorithm, usually
both types of requirements are hard prerequisites for a valid allocation plan. If,
however, it is not possible to find a valid allocation, the auxiliary NFRs could be
removed one after another, until a valid allocation can be calculated. A list of
possible essential and auxiliary requirements is given in Table 5.1.

Table 5.1: List of non-functional requirements

Requirement Unit Description

cpu cycles (ID, cycles) The amount of processing cycles needed is specific for
every processor in question. Thus the value is specified
as a tuple mapping the processor ID to a number of
cycles.

deadline ms Specifies a deadline within a cluster has to be executed.
RAM req kByte The dynamic memory demand during task execution.
ROM req kByte The memory needed for binary file storage.
power state Name Name of the lowest power state in which this task is

active.
supplier Name The name of the supplier implementing this cluster.
replicas Instances The number of copies distributed over the system for

redundancy reasons.
cpu type Set<Arch.> The names of valid processor architectures.

The requirements for CPU cycles, required RAM and ROM, as well as the power
state a task is active in, are essential. If the computing node, a task is allocated
to, does not provide the necessary computing power or memory sizes, the resulting
system would not be operational. The power state requirement corresponds to
different energy modes the platform might be in. In the following we will give a
brief description of the essential requirements:

CPU cycles: Each cluster needs a certain amount of computing power for execu-
tion. This amount is annotated to the cluster covering its worst-case require-
ment. Hence, this requirement can be checked against the given platform. If
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more clusters are allocated onto a single processing unit than it can handle,
not all clusters can be guaranteed to be evaluated.

The value given for the computing power is generated by the SciSim tool
presented by Wang et al. [130]. This tool simulates the worst-case amount of
processing cycles necessary to execute the code generated for a cluster. This
simulation is accomplished for any processor architecture in question, that is
each architecture found on any node of the hardware model, which is eligible
for executing the task regarding other NFRs.

Deadline: The deadline given for a cluster specifies the maximum amount of time
which may pass from the start of a scheduling cycle until the completion
of the cluster’s execution. If this deadline is not met, the system would
not show the desired behavior. The deadline is specific to each application
and therefore has to be declared by the developer. During the allocation
and scheduling steps, a solution is calculated matching the deadline with the
needed computing power for the cluster and the processing capabilities of the
platform.

Memory: Similarly to computing power a cluster needs a minimum amount of
available memory. Two forms of memory are consumed: first, the binary file
generated for a cluster has to be stored in the permanent storage (ROM) of
the ECU. Second, the code generated for the cluster has demands regarding
the RAM available during execution.

Power state: Typically, embedded systems are restricted to a limited power sup-
ply. Huge efforts are put into research and development of power saving tech-
nologies. For distributed embedded systems like cars, this can be achieved
through the definition of different power states. According to the actual state
of the car, e. g. locked, ignition off, ignition on, a varying number of ECUs
might be active. Other nodes are shut down at the same time to avoid a
waste of power. Allocating a task like the central locking system to such a
shut down node would disallow the owner to enter the car again. To avoid
such a situation each task should be annotated with its lowest necessary power
state.

To distinguish power states, a state hierarchy is given. Each power state
defines the set of ECUs running in it. A higher state contains the same,
and at least one additional ECU. Therefore the relation S0 ⊂ S1 ⊂ S2 ⊂ S3

indicates four power states which S0 being the lowest state and S3 being the
highest state.

In addition to the mentioned essential NFRs, we also address auxiliary NFRs.
These are not necessary for correct operation, but raise further demands on the
system which, for example, lower its cost or improve its efficiency:
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Supplier: Large scale embedded systems are often the result of a cooperation of
several partners in industry. When defining a model for the whole system,
the definition of work packages for the different team partners is desirable.
These could consist of several clusters each in case of a COLA system. To
allow for this partitioning the designated partner can be annotated to each
cluster of the model. The supplier information can then be used to allocate
tasks implemented by a single supplier exclusively onto the same ECU(s).
This approach enables the partners to retain their current work-sharing where
each partner implements a piece of hardware, e. g. an ECU, together with
the corresponding software.

Redundancy: Dealing with safety-critical hard real-time systems, demands emerge
for the implementation of error correcting techniques in case of a system
node’s failure. A frequently used technique for error masking is the use of
redundant software components, specified by means of clusters in our case.
The specification of a redundancy requirement defines the number of redun-
dant cluster copies to use in the system, i. e., on how many different ECUs a
cluster should be deployed.

CPU architecture: If a cluster’s implementation is dependent on a specific pro-
cessor’s capabilities, e. g. a digital signal processor (DSP), the cluster has to
be placed accordingly. This might be necessary for implementations of algo-
rithms requiring a large amount of processing power without violating given
deadlines.

Table 5.2: List of capabilities

Capability Unit Description

proc cycles Cycles/ms To state the amount of processing power available, the
number of cycles per millisecond is given.

cpu arch Name Processing units differ by their respective processor archi-
tecture. Thus general purpose processors, DSPs and others
can be distinguished.

os overhead ms For every called task, a certain amount of operating sys-
tem overhead is generated for dispatching, memory man-
agement, etc.

RAM cap kByte The working memory available on the node.
ROM cap kByte The amount of permanent memory available on the node.
power state State An ECU is active in the specified power state and all higher

power states.
supplier Name The name of the supplier building this piece of hardware.
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As for the hardware model, a matching set of capabilities can be defined for each
ECU of the system. An overview of the defined capabilities is given in Table 5.2.
While most capabilities are used as constraints for choosing valid allocation and
scheduling schemes, the cost attribute has to be handled differently. It allows for an
optimization of the resulting allocation and scheduling plan by calculating the most
economic system architecture. We will give a short description of the capabilities
in the following:

Processing cycles: For a valid allocation of a task to a processor, the CPU has to
provide at least enough computing power to execute the task within its dead-
line. By specifying the available number of processing cycles per millisecond
and comparing them with the amount of cycles necessary for executing the
task in relation to its deadline, a valid allocation can be searched. The calcu-
lation also takes into account a fixed worst-case amount of time necessary for
OS execution (see below), that is, re-scheduling, memory management, and
the likes.

CPU architecture: The CPU architectures of all ECUs used by the hardware plat-
form provides input for SciSim, which processors to simulate during worst-case
execution time estimation. The allocation algorithm uses the same informa-
tion for analyzing a possible placement of a task onto an ECU. To this end,
the respective number of processing cycles for the task on the CPU in question
are loaded from SciSim’s list of simulation results.

Further the architecture attribute indicates the availability of a specific in-
struction set, as it might be the case for a DSP.

OS overhead: A fixed amount of OS overhead is specified for each ECU being re-
quired for executing the code of the operating system for scheduling, memory
management, etc. This overhead has to be taken into account for each task
that is placed onto the respective ECU. Hence, the amount of available CPU
cycles is reduced accordingly.

The worst-case figures for the OS overhead have to be evaluated specifically
for every platform.

Memory: The available size of permanent and dynamic memory has to fulfill the
requirements of all tasks placed onto the respective ECU.

Power state: This attribute specifies the lowest active power state for the ECU.
Any task which is active in this or a higher power state, could be placed onto
the ECU.

Supplier: If soft- and hardware are provided by the same supplier, this attribute of
an ECU should match those of all tasks allocated to it. Other restrictions like
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a co-operation between different manufacturers could also be defined by using
a matching label for the soft- and hardware resulting from the co-operation.

The stated requirements and capabilities are used by the allocation algorithm
to find a solution for the allocation problem. Its evaluation is resolved using in-
teger linear programming (ILP), akin to the approaches by Matic et al. [99] and
Zheng et al. [134].

In order to optimize the allocation for a given metric, costs may be assigned to
all properties. The allocation algorithm then tries to minimize the cost function
during allocation. For the exact algorithm, please refer to [85]. The allocation
result is stored in the COLA model and by this made available to the scheduling
tool.

5.5.2 Scheduling

Based on the result of the allocation step, the search for a suitable schedule can
take place. For our scheduling approach we rely on time-triggered co-operative
(TTC) scheduling [91]. In a time-triggered co-operative system, tasks are scheduled
offline, that is, before the system is executed, according to their respective worst-
case execution times, frequencies, and deadlines. Preemption is not allowed in
this scheduling scheme, hence the term co-operative. The frequency of repeated
execution of a task as well as its deadline have to be given by the COLA model.
Its worst-case execution time is calculated automatically by the SciSim tool. Using
these data an overall system schedule, with respect to data dependencies, can be
derived. As the schedule is dealing with control loop applications, it is executed
cyclically, according to the task frequencies. At the beginning and end of each
scheduling loop, the sensors are read and the actuators written, respectively. By
that the model assumption of values read and written from and to the environment
at the same instant in time can be best imitated.

Figure 5.19 shows an example of a possible scheduling loop. In the figure, a
group of n ECUs is executing an application of eight tasks. At the beginning
of the cycle sensors are read, then the tasks t1 to t8 are executed and finally,
actuators are written. The execution of the tasks is distributed over the ECUs, thus
requiring communication between the ECUs. This exchange of message is depicted
by the small arrows between the tasks. In order to guarantee the availability of
the communication medium, the bus is regarded by the scheduling algorithm as an
additional ECU. Accordingly, the scheduler assigns not more than one message to
the bus at any time, thus avoiding collisions. Messages transmitted over the bus
are indicated by the small gray boxes in the lower part of Figure 5.19. Each box
corresponds to a message exchange of the tasks shown in the upper part of the
figure. The resulting schedule for the bus can subsequently be used to define an
appropriate TDMA scheme for bus communication.
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Figure 5.19: Scheduling cycle

For improved readability jitter and overhead caused by clock drift, operating sys-
tem, and middleware execution are omitted in Figure 5.19. The according worst-
case assumptions are added to each task’s WCET and each inter-task communica-
tion.

The CDG serves as an input for the scheduler during calculation. Using the
contained information about data dependencies between the clusters, a valid order
of tasks can be chosen. Based on the number of mode cluster vertices contained
in the graph and the number of their related sibling nodes, the scheduler is able
to calculate the number of different schedules to calculate. These schedules are
necessary for implementing the system operating modes, as we will describe in the
next section. For the exact algorithm of the scheduler, please refer to [56].

5.6 System Operating Modes

As mentioned in Section 4.3.4, COLA allows for the definition of operating modes.
Each mode cluster triggers a set of subordinate clusters for execution. During code
generation all clusters are transformed into executable tasks. Hence, the activation
of a mode, and all of its sub-modes, is calculated by a task as well. We call such a
task a mode-task. Like all other tasks, called working tasks in the following, mode-
tasks use the communication abilities of the middleware. Compared to working
tasks, mode-tasks do not write any actuators directly, but output a value, which
indicates their decision on the mode to be activated.
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5.6 System Operating Modes

Atm b

Port a

Port b
Port u

State a

State c

State b

State d

(Port a <= 5) && (Port b > 27)

(Port a > 5)

Figure 5.20: An example mode automaton

5.6.1 Generating Code for Mode Clusters

According to their definition, we require mode clusters to consist solely of automata.
Hence the code generated for a mode cluster is similar to that of an automaton.
But instead of calling a function which implements the automaton’s active state,
a value indicating the current operating mode is written to a distinct middleware
address. The scheduling routine reads this value to decide which subsequent tasks
to execute. These tasks may again be mode tasks, resulting in a hierarchy of
operating modes, or working tasks which implement the current mode.

We reuse the automaton shown in Section 5.4.3 to provide better comparability
of the resulting code. Assuming that the automaton from Figure 5.20 was not
contained inside a working cluster, but rather in a mode cluster, the code shown
in Listing 5.7 would be generated. Listing 5.7 shows just the implementation of
State c, but the remaining states would be implemented analogously.

Differing from the code shown in Section 5.4.3, the code for a mode automaton
contains a local integer variable mode, which can be seen in line 3 of Listing 5.7.
This variable is used as a local buffer for the calculated mode, before writing it to
the middleware. Since we are using a mode cluster here, the cluster’s state as well
as its inputs are read from the middleware as shown in lines 6 through 8.

If the automaton is invoked with State c active, the conditions of the outgoing
transitions are checked first. In line 15 the first condition is evaluated. If the result
is true, the active state changes to State a, which corresponds to an integer value
of 2. Hence, this value is set as the new automaton’s internal state in line 18, as
well as assigned to the buffer as result in line 19.
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1 void atm_b() {

2 atm_b_state unit_state;

3 int mode, port_a, port_b;

4

5 //get actual state and input values

6 mw_restore_task_state(&unit_state, sizeof(unit_state), 17);

7 mw_receive(&port_a, sizeof(port_a), 22);

8 mw_receive(&port_b, sizeof(port_b), 23);

9

10 //check active atm state

11 switch(unit_state.atm_state)
12 {

13 //atm "State c" active

14 case 0:

15 if(port_a > 5) //first guard

16 {

17 //update state and result variable

18 unit_state.atm_state = 2;

19 mode = 2;

20 break;
21 }

22 if(((port_a <= 5) && (port_b > 27))) //second guard

23 {

24 //update state and result variable

25 unit_state.atm_state = 3;

26 mode = 3;

27 break;
28 }

29 //update state and result variable

30 mode = 0;

31 break;
32 case 1:

33 //atm "State d" active - implementation omitted

34 case 2:

35 //atm "State a" active - implementation omitted

36 case 3:

37 //atm "State b" active - implementation omitted

38 }

39 //write mode and updated state to middleware

40 mw_send(&mode, sizeof(int), 31);

41 mw_save_task_state(&unit_state, sizeof(unit_state), 17);

42 }

Listing 5.7: Mode automaton code
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5.6 System Operating Modes

Equally, the second guard is evaluted from line 22 on, if the first transition
has not been taken. Finally, if none of the transitions is taken, the current state
remains active and thus the mode variable is assigned 0, which is the integer value
corresponding to State c.

After the automaton is fully evaluated, the result value buffered in the mode

variable is written to the middleware for reference by the local scheduler. The
according middleware call can be seen in line 40. Finally, the updated state is
stored to the middleware in line 41.

5.6.2 Operating Mode-Aware Scheduling

As explained earlier, the result produced by a mode task triggers a set of other
tasks for execution. Accordingly, the current schedule has to be altered to disable
the old and enable the new set of tasks to be executed.

w1

w2

m1

w3

w4

w5

w6

w7

w8

m2

w9 w10

w11

Figure 5.21: Scheduling graph

To this end, the scheduling tool described above is aware of mode clusters in the
model and considers a branching after each mode cluster inserted into the schedule.
Figure 5.21 points this approach out. Mode clusters are marked grey in the figure,
while working clusters are white. At the beginning of the scheduling cycle, some

117



5 Fully Automatic Deployment

working clusters might be scheduled, see w1 and w2 in the figure, before at some
point a mode cluster is executed, m1 in our example. Depending on the number of
states of the mode cluster, a corresponding number of possible sub-schedules might
be executed thereafter. In the example shown in Figure 5.21, mode cluster m1

features three states allowing three possible sub-schedules to be triggered. Each
of these sub-schedules may again contain working clusters, w3 through w11 in the
figure, or mode clusters, in our example m2. This requires a branching into several
sub-schedules. As a result the overall system schedule is a directed graph, as shown
in Figure 5.21. For each path from the root node to any of the leaf nodes, a
scheduling plan has to be calculated by the scheduling tool. Figure 5.22 shows the
derived schedules S1 through S4 for the scheduling graph from Figure 5.21.

S4S3S2
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m1
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w4
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w8

m2

w9

w1

w2

m1

w10

w11

w1

w2

m1

w8

m2

S1

Figure 5.22: Scheduling options

The actual switching of tasks is carried out by the scheduling loop, the generation
of which we will explain in the following section. Basically, each time a mode
task has finished execution, the scheduler reads the result from the middleware.
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Subsequently, the scheduling loop calls the according set of tasks. Since the schedule
is calculated system wide, and its execution is time-triggered according to a globally
synchronized clock, it can be guaranteed that the change of an operating mode will
be accomplished system wide and reliably. To achieve this, all tasks depending on
the mode task’s decision are not started by the respective scheduling loops, before
the mode task is fully executed and its result communicated throughout the system
by the middleware.

5.7 System Configuration

After functional code for the COLA model has been generated, and allocation as
well as scheduling are determined, the software is ready to be executed on the target
platform. This demands the configuration of the basic software, that is, operat-
ing system and middleware, according to the generated allocation and scheduling
schemes. The middleware is handed over the specific addressing scheme, including
the generated logical addresses from the CDG, the timing for message transmission
and reception, and the polling of respective sensors and actuators. Likewise, the
operating system is configured with the timing calculated for task execution.

Similar approaches for the configuration of automotive platforms have been pro-
posed by the OSEK Implementation Language (OIL) and AUTOSAR. OIL differs
from our approach in matters of its target systems. The attributes described in
OIL aim at configuring the scheduling of a single node, not that of multiple ECUs
— let alone their communication. Descriptions of OIL’s features can be found in
the related standards document [105] as well as an article about OIL by Zahir [133].

AUTOSAR on the contrary is aimed at distributed systems. Generation of the
information captured in an AUTOSAR model are transferred to a specific platform
by means of the RTE, which is responsible for timely task execution and com-
munication in the system. Compared to the deployment approach described here,
this configuration is transformed into hardcoded C code statements. A subsequent
change of the configuration, say a change of logical addresses, is therefore only
possible by re-generating the entire code — a drawback AUTOSAR shares with
OSEK. Since our middleware loads its configuration from a config file during each
start-up, it is much more flexible regarding such changes.

We will give an introduction into the configuration parameters for our middleware
as well as the task scheduler in the following.

Middleware settings. We will explain the relevant settings for our middleware,
using the example given in Listing 5.8. The example is in XML format, though an
implementation for a productive automotive system would employ a more memory
efficient format for data storage. However, the use of XML was also used with our
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prototypical implementation of the middleware, as it is easier to understand (and
debug), and we will stick to it here for the same reason.

The first information in the middleware configuration is related to the length of
the communication cycle and the slot definition for that cycle. In line 2 the length
of the TDMA cycle is specified by the attribute cyclelen. Further, the id of the
operating mode is given. For every operating mode, such a definition of slots is
necessary. Next in lines 3 through 9, the communication slots of the TDMA cycle
in that operating mode are enlisted. Each slot definition states the numerical slot id
and the respective starting time in milliseconds relative to the start of the current
cycle.

1 <mw_config>

2 <mode id="0" cyclelen="210">

3 <slot id="0" time="0"/>

4 <slot id="1" time="5"/>

5 <slot id="2" time="12"/>

6 <slot id="3" time="27"/>

7 <slot id="4" time="34"/>

8 <slot id="5" time="55"/>

9 <slot id="6" time="63"/>

10 ...

11 <slot id="18" time="200"/>

12 </mode>

13 ...

14 <node id="0" master="1">

15 <sensor slot="" dataid="122" datalen="3" driver="/dev/rfcomm1" cycle="1" init="0"/>

16 <sensor slot="14" dataid="130" datalen="3" driver="/dev/rfcomm2" cycle="1" init="0"/>

17 <actuator slot="" dataid="135" driver="/dev/motor1" cycle="1" init="50"/>

18 <task id="106" slot="2" name="normal206613" trace="0">

19 <data id="137" channel="in" name="distance_front" type="INT" len="4"/>

20 <data id="103" channel="out" name="parking_ready_out" type="INT" len="4"/>

21 <data id="101" channel="out" name="emergency_stop_out" type="INT" len="4"/>

22 </task>

23 <task id="108" slot="3" name="speed_control" trace="0">

24 <data id="128" channel="in" name="speed_in" type="INT" len="4"/>

25 <data id="134" channel="out" name="speed_out" type="INT" len="4"/>

26 </task>

27 <task id="104" slot="12" name="rotation_count" trace="0">

28 ...

29 </task>

30 ...

31 </node>

32
33 <node id="1" master="0">

34 ...

35 </node>

36
37 <node id="2" master="0">

38 ...

39 </node>

40 </mw_config>

Listing 5.8: Middleware configuration

Following the TDMA scheme, the configuration for the different nodes of the
system are given. Lines 14, 33, and 37 show the particular beginning tags for
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different node elements of the XML. Each node refers to an ECU of the target
platform. It is important to understand, that all nodes of the system receive the
same configuration file containing the sending slots of all adjacent nodes. This
information may be used by a middleware instance to determine that point in
time, or more precise the TDMA slot, when input data for a local cluster can be
received from the bus.

The node tags include a reference number related to the COLA hardware model
and a Boolean value called master. This value declares whether the relative node is
the bus master, being responsible for sending global time synchronization messages,
or not. This information as well as the TDMA scheme is passed on to the bus
driver by the middleware. Inside each node element the sensors and actuators
connected to the node are specified, as well as the tasks allocated to it. While the
information about hardware components is, again, taken from the hardware model,
the allocation is the result of the afore described allocation algorithm.

In the example two sensors and one actuator are connected to the node with
id 0. For each of these components, a TDMA slot may be specified, as can be seen
in line 16. Accordingly, the data received from the sensor are transmitted over the
network using the specified slot and may be used by a task on another ECU. If no
value is specified, the data are only used locally. The dataid defines the logical
middleware address for the particular value. The middleware instance reserves a
buffer of sufficient size, accordingly.

As explained in Section 5.2, we rely on the hardware components to feature a
UNIX-like driver interface. The driver attributes in lines 15 through 17 tell the
middleware which device to open for interfacing the respective sensor or actuator.
The polling frequency of each component is declared in multiples of TDMA cycles,
using the cycle attribute, and the init value specifies initial values for safety
reasons for each piece of hardware, though these values are not necessary if the
system operates normally. For sensors an additional parameter named datalen

specifies the size of the datum to read.
Following sensors and actuators, the tasks allocated to the particular ECU are

declared. In Listing 5.8 three tasks are defined in lines 18, 23, and 27. The id

of each task is identical to the address defined during dependency analysis in the
CDG. Thus, the task may store its internal state using this address. The name

attribute is meant for debugging purposes only, while the Boolean trace attribute
specifies, whether the task’s internal state, input, and output shall be recorded
during execution. This flag can be set in the model editor and the saved information
may be used for model-level debugging, which we will introduce in Section 6.1.

Inside each task element its communication points to the middleware are defined.
This information is extracted from the communication channels of the according
clusters in the COLA model. Each of the data elements carries an id identical to
the respective buffer vertex of the CDG, a direction whether it specifies an in- or
output datum, a data type and the size of that data type. For debugging purposes,
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again, the name of the original COLA channel is mentioned. The described scheme
is repeated for each tasks and ECU.

Using this configuration file, the middleware is able to send and receive messages
in the pre-defined slots of the TDMA schedule and to allocate an appropriate
amount of memory for all exchanged data.

Scheduling plan. For the scheduling of tasks on each ECU, a configuration file
with the scheduling plan calculated by the afore described scheduling tool is gener-
ated. As mentioned, the particular scheduler instance, which is implemented in the
operating system of each ECU, is not required to make any scheduling decisions
at runtime. It serves rather as a dispatcher for activating tasks according to the
schedule, which has already been constructed offline.

Schedule
ECU nt5

ECU 1

ECU 2

ECU 3

ECU n

t6 t7

t8

t1

t2

t3

t4

...

Bus
TDMA

schedule

Schedule
ECU 3

Schedule
ECU 2

Schedule
ECU 1

Figure 5.23: Construction of per-ECU schedules

Figure 5.23 shows the graphical representation of a possible output of the offline
scheduler. The example corresponds to the example system already presented in
Figure 5.19. As can be seen in the figure, the resulting schedule is an overall
system schedule. Thus, all ECUs contained in the system are depicted with their
respectively allocated tasks. The bus used for communication in the system is
shown as another resource, being busy during message transmission. The depicted
schedule is repeated cyclically according to a defined frequency.

As indicated in Figure 5.23, the configuration for individual ECUs is derived from
this system schedule. To this end, a code file containing only the tasks allocated to
the ECU in question is generated. Listing 5.9 represents a code snippet from the
scheduling loop for a single ECU. In line 4 the scheduling function for an ECU is
defined. It’s first action is to wait for synchronization of the global time carried out
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5.7 System Configuration

by the bus protocol. As soon as the ECUs are synchronized all ECUs, as well as
the bus controllers, execute the defined scheduling cycle, as can be seen in line 8.

1 TIME time_start, time_actual, time_sleep;

2 const TIME length_of_cycle = 210;

3

4 function schedule_loop() DO

5

6 //wait for global time "0"

7 wait_for_initial_sync();

8 //start operating system loop

9 while(true) DO

10 //global time at start of the loop

11 time_start = mw_global_time();

12

13 //get recent time and wait until 12ms

14 time_actual = mw_global_time();

15 time_sleep = 12 - (time_actual - time_start);

16 if (time_sleep > 0) DO

17 sleep(time_sleep);

18 DONE

19 task_id106();

20

21 //get recent time and wait until 27ms

22 time_actual = mw_global_time();

23 time_sleep = 27 - (time_actual - time_start);

24 if (time_sleep > 0) DO

25 sleep(time_sleep);

26 DONE

27 task_id108();

28

29 ...

30

31 time_actual = mw_global_time();

32 //wait till end of cycle

33 time_sleep = lenght_of_cycle - (time_actual - time_start);

34 if (time_sleep > 0) DO

35 sleep(time_sleep);

36 DONE

37 DONE

38 DONE

Listing 5.9: Per-ECU scheduling loop
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At the beginning of each cycle the actual global time is stored to a variable. The
code example comprehends an appropriate middleware call in line 11. To calculate
the waiting time until the next execution of each task, the actual time is read again,
as shown in line 14, calculating the offset to the beginning of the current cycle, which
is exemplified in line 15. Subtracting this offset from the desired starting time of
a task gives a slack time, defined as a sleep period for the scheduling. An example
of this is presented in line 17. Finally, after the slack time has passed, the task is
executed as shown in line 19.

This scheme is repeated for every task that has to be executed on the respective
ECU. After the last task has finished, the remaining time in the current scheduling
cycle is calculated, as can be seen in line 33. To this end the cycle length specified
in line 2 is employed. After sleeping for the rest of the cycle, the scheduling loop is
repeated thus beginning the next invocation of tasks.

In the given example, we omitted the use of an operating mode to avoid confusion.
If operating modes are present in a system, the scheduling loop is extended with
calls to the middleware. These calls are used for receiving mode decisions from
mode clusters. Depending on the respective result, the scheduling loop chooses the
appropriate set of tasks for execution.

5.8 Chapter Summary

In this chapter we presented our concepts for deploying an automotive system
modeled in COLA onto an actual distributed target. By making use of the entire
amount of information provided by an integrated modeling language, we are able
to not only generate code for single functions, but also calculate an allocation, a
valid scheduling scheme, and configuration data for the target platform.

This approach is facilitated by defining standards for driver interfaces and schedul-
ing behavior of the operating system, along with a custom middleware comprising
key features like transparent communication and sensor polling, which have to be
provided by the target platform. The result is a fully integrated and ready-to-
run system, which adheres to hard real-time constraints and follows the model’s
semantics as closely as possible.

Besides the basic requirement of generating a properly functioning system, the
information captured in COLA can be used during deployment to produce even
higher quality systems. In the next chapter we will show how runtime informa-
tion can be mapped back to elements in the model editor for debugging, and how
fault-tolerant operating modes can be generated automatically. Finally, a possible
integration of certain aspects of the deployment concept into an existing AUTOSAR
development process is outlined.
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Chapter 6
Extension of the Deployment Concept
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In the preceding chapters, we presented the use of COLA for the specification of
embedded systems enabling the unattended generation of code and configuration
data for a distributed automotive platform. Besides this primary goal, our approach
allows for further improvement of system quality and higher flexibility. In this
chapter we will present two concepts for increasing the reliability of systems, as
well as a concept for the deployment onto an alternative platform.

The first concept presented here is aimed at further reducing the number of
faults in the generated system. While the absence of syntactical programming
faults can be assured by the code generation tools, there is still a possibility for
functional errors due to a faultily designed COLA model. To enable the detection
of such faults in the model, we introduce the concept of model-level debugging in
Section 6.1.

Improvement of the system’s quality can also be achieved by providing concepts
for its safe operation even in the presence of hardware failures. In Section 6.2 we
propose an extension of our deployment concept allowing the generation of fault
tolerance modes. These modes are based on a redundant allocation of highly safety-
critical tasks. As a result the defect of an ECU of the target platform my be masked
or at least a graceful degradation of the system is achieved.

The third concept presented in this chapter deals with the integration of func-
tionality modeled in COLA into existing AUTOSAR systems. In principle, the
modeling in COLA is intended to cover entire automotive systems. Only if the
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whole system is specified in COLA and deployed to a suitable platform, full ad-
vantage can be taken of its integrated approach. However, since AUTOSAR is
already used in actual automotive systems, a method for integrating hybrid sys-
tems, consisting of tasks modeled in COLA alongside tasks modeled in AUTOSAR,
is beneficial. This would allow for a step to step migration from an AUTOSAR-
to a COLA-based development process. The necessary changes to the COLA de-
ployment concept for generating such hybrid systems are described in Section 6.3.

The implementation of the three concepts is facilitated by two key factors of
the COLA approach: first, the model covers the necessary software and hardware
characteristics to generate complex distributed systems. The availability of these
information leads to a comprehensive view of the system, and opens the possibility
to address complex, system wide issues. Second, the COLA language abstracts
from specific implementation details like programming language, operating system,
and employed hardware. Thus, the same COLA model — or parts of it — may
be deployed onto different platforms by adapting the code generation tools for the
relevant platform.

6.1 Model-Level Debugging

As explained in Section 4, the complexity of a designed real-time system calls for
an automatic transformation of the model into executable code. The tools built
around COLA not only enable the generation of code representing the modeled
functionality, but also accomplish the configuration of the distributed target plat-
form. This automated translation reduces the number of faults and guarantees
reproducible results, while improving overall quality.

But even such a generated system may show failures due to faults contained in the
system specification, or because of limited knowledge about the exact environmental
conditions. Consequently, faults become evident not until executing the software
on the target platform and are hard to debug regarding its embedded nature. To
get a grip on such faults calls for a technically mature debugging concept, even in
a MDD process.

In order to deal with the problem, feedback from the executed system to the
model would be desirable, but recent MDD concepts do not provide this feedback.
Instead, developers typically start to change the model on a trial and error basis
or — due to a lack of time — ignore the model altogether and commence to debug
at source code level. This practice could be prevented by providing adequate tool
support for debugging the model.

While code generation for dataflow models is well known [18], we are not aware of
any approach facilitating the debugging of a generated system therefrom at model-
level. Regarding safety requirements for generated code as well as its readability,
we consider this form of debugging a must. The approach has been first presented
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6.1 Model-Level Debugging

in [54]. Since existing concepts like RT-Simex [39] or Rational Rose RT1 are based
on the UML, the exact functional implementation of a system may not be modeled.
Hence, the traced application data can only be mapped to the respective structural
model, giving just the approximate location of the error.

6.1.1 Sources for Errors

In current MDD practice systems development is often intended to be a one-way
process. The system is designed by means of models. Simulation is used to validate
these models against the functional specification. If no more errors show up during
simulation, code is generated from the models which is then tested on the target
platform. In our experience, however, it often happens that the code does not
behave as intended, because some types of errors cannot be identified during static
analysis or simulation of the model. These system errors may arise for different
reasons:

Environmental feedback: One reason might be faulty assumptions about the ac-
tual system behavior, which are not discovered during simulation at model-
level because of missing or incomplete environmental feedback. For example,
if an adaptive cruise control system adjusts the current throttle position to
increase the speed of a vehicle, the wheel speed sensors will subsequently de-
liver higher values due to the increased velocity. But these values are also
influenced by the weight of the vehicle, the current wind speed, etc. Including
all these parameters in simulation demands a complex environmental model,
which is time consuming and difficult — if in some cases not impossible —
to provide. Therefore, the initial design of some applications is more or less
an approximation of the final system, and only tests on the target platform
allow to verify the correct functioning of the design.

Digitalization errors: Another source for unintended system behavior may be sud-
denly varying sensor and actuator accuracy. A sensor will eventually deliver
values different from assumptions made in the model, due to digitalization
errors. Unexpected, intermittent steps in the delivered values are a prominent
example of this problem. Similarly, actuators might react differently or less
accurate than anticipated to rapidly changing real-world values or ambient
conditions.

Erroneous specifications: Finally, the generated system is only as good as the
underlying model. During development of a large scale system like an au-
tomobile, some information about the characteristics of employed hardware

1http://www.ibm.com/software/rational
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components might not be available right from the beginning. Rather, occur-
ring communication delays, overhead, processing speeds, and accuracy of the
actual hardware components might differ from the specification stated in the
hardware model. Such deviations might occur when pieces of hardware are
replaced by an alternative, not entirely identical choice. Or, for example, a
piece of hardware behaves slightly different than specified in the associated
data sheet because of a spread for standard factory models.

Since the mentioned sources for errors are also valid for MDD, debugging is still
an elementary task in such a process.

6.1.2 Classical Debugging

Figure 6.1 shows a comparison of classical debugging on the left, and the new
approach of model-level debugging on the right. Without appropriate tool-support
for debugging at model-level today, developers start to debug the generated code —
even in a MDD process. Thus classical debugging is carried out at platform-level.
In a MDD however, we propose to carry out changes solely at model-level. This
can be achieved be employing the concept shown on the right side of Figure 6.1.
There, the generated code is executed on the target platform and runtime data of
the system in execution are captured. These data may then be mapped back to
the model to identify problems at model-level, rather than at code-level.

Model-level debugging is favorable in comparison to classical debugging for sev-
eral reasons:
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Figure 6.1: Classical versus model-level debugging
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6.1 Model-Level Debugging

• In embedded systems development there are very limited possibilities for com-
municating debug information. Textual error messages — as oftentimes used
with desktop systems — cannot be employed typically due to the lack of a
display. Instead, debug messages are signaled by a blinking LED or other
low-level communication mechanisms, making debugging much more time
consuming. A mature debugging approach for embedded systems should pro-
vide a concept for reporting errors more conveniently. Existing debuggers like
the GNU Debugger2 or the Trace32 In-Circuit Debugger3 typically provide
raw data. They can capture datagrams transmitted by a network or bus sys-
tem, or save the stack and register contents of a processor during execution
on an actual CPU. Few of the tools provide a mapping of these values to the
source code — let alone to a model — of the executed application. The gath-
ered results are rather shown as lists of values. Our new approach, however,
is aimed at the debugging of applications at model-level using data captured
at the target system. This new debugging method closes the gap between
graphical model and executed code.

• An additional problem, especially when employing MDD, arises from com-
pliance requirements regarding source code which is automatically generated
from the model. If a certified code generator is used — i.e., it is proven that
the generator retains the model semantics — the code is assumed to be cor-
rect with respect to the model. Any manual modification of the generated
code must be prevented in order to preserve its correctness. Thus changes to
the design, if necessary, should be carried out at model-level.

• Finally, during implementation of a new system, no hardware prototype might
be available for testing the corresponding software design. However, designing
a high quality software model for the system calls for simulation, and even
software-in-the-loop (SIL) tests, based on realistic input values. Regarding
our target domain, namely automotive systems, the designed components are
frequently not entirely new concepts, but enhancements of existing ones. This
is why it would often be desirable to use values captured on the previous ver-
sion of a component for an initial test of the new design. Consequently, a
debugging approach for these domains should provide a solution to this re-
quirement. Using the approach described here it would be possible to use
previously stored input data for simulation of newly modeled systems. Sim-
ilarly, those values could be used as inputs for hardware-in-the-loop tests,
facilitating black box testing of combined hardware/software components.

To simplify the debugging of systems modeled in COLA, we propose a new
approach for a debugging at model-level. Although it is based on COLA’s basic

2http://www.gnu.org/software/gdb
3http://www.lauterbach.com
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concept of a comprehensive system model, we believe the approach to be applicable
to different modeling languages, if the availability of the necessary information
about soft- and hardware can be achieved.

6.1.3 Model-Level Debugging Concept

As indicated on the right-hand side of Figure 6.1, our model-level debugging ap-
proach aims at elevating the troubleshooting to the model-level. Using COLA, a
system model is defined and subsequently transformed into executable distributed
code by our code generator. The middleware is used for interaction between the
generated tasks on the execution platform. That means all communication of a
task is routed through the middleware. Additionally, the middleware serves as a
storage for the task’s internal state. Thus the middleware is able to capture input
and output values as well as the task’s internal data for later debugging. Since
data are always routed through the middleware, there is virtually no impact on the
timing behavior of the system. If the tiny deviation in timing is relevant for an
application, the constant overhead could be easily compensated by the schedule.

During system modeling, the developer is assisted by COLA’s model-level sim-
ulator [71]. To start a simulation, the developer can specify arbitrary input values
for the system using its graphical user interface. If input data of a real system,
like the ones logged by the middleware, are available, a more realistic replay can
be accomplished. The designed system model, as well as the corresponding val-
ues captured at platform-level, can be loaded into the simulator. These real-world
values are then used for simulation. Compared to simulation based on fictitious
values, the replay of data acquired at platform-level exhibits realistic system be-
havior. Realistic debugging at model-level is made possible this way. To trigger the
logging of runtime data, the developer may set a flag for each cluster whose data
shall be captured. This information is passed to the middleware instance on each
node of the system by means of the system configuration file. Thus, the middleware
instances know which data to store during execution.

The described approach solves the previously mentioned difficulties. Thanks to
the import of captured data into the simulator, a convenient display of runtime
data is achieved. All values are shown next to the corresponding model elements,
allowing quick and easy identification of design faults as well as their elimination.
Changes are completely performed at model-level, not affecting code integrity. Fi-
nally, the acquired input values can be reused for future simulations of new designs,
without the need for a hardware platform available from the very beginning.

6.1.4 Realization of Model-Level Debugging

Figure 6.2 gives an overview of the necessary steps conducted during the tracing
process.
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Figure 6.2: Realization of model-level debugging

By using the code generation tools, an executable system is derived as described
in Chapter 5. To enable model-level debugging, the generated functional code is
extended with meta-information about its relation to model elements, as we will
describe below. During system execution, the actual input and output data of the
clusters which shall be debugged are captured. We refer to this activity as tracing
or monitoring. The gathered data are in binary form, and therefore data extraction
has to take place, before the data can be mapped back to model elements. The
resulting trace is the model-level representation of the data captured during system
execution. Together with the original model, this trace is used to allow for a replay
at model-level. We will detail the implementation of this concept in the following.

Code generation. Application code is generated for all clusters in the same man-
ner as described in Section 5.4. Only the generation of system configuration files
is slightly modified. If a cluster is enabled for tracing in the model editor, it is
marked accordingly in the configuration file. The middleware then records a trace
for this cluster during execution.

While mapping data captured for ports back to the model is easy using their
unique middleware address, the decoding of the clusters’ internal states, which are
composed of automata states and delays, is more complex. The whole state of a
cluster is stored as a struct using a single middleware address. For each sub-unit
of a network or state of an automaton, the cluster’s struct comprehends a nested
struct for keeping the sub-state of the contained model element. To facilitate a
mapping of struct members to model elements, the C code is annotated during
code generation using unique object identifiers taken from the modeling framework.
These annotations are shown as comments in the source code. Since comments
are not present in the compiled version of the code, they do not influence system
behavior. Hence, the code generator always inserts these comments, no matter if

131



6 Extension of the Deployment Concept

model-level debugging is employed with the target system or not.

ModelCodeMemory
typedef struct {

state_parking state_parking_num1; //200:1812
state_sdc_active state_sdc_active_num2; //200:1800
state_normal state_normal_num3; //200:1788
int atm_state; //0,200:1812;1,200:1800;2,206:893;3,200:1788;

} atm_emergency_stop;

Figure 6.3: Mapping runtime data to model elements

The middle part of Figure 6.3 shows an excerpt of the struct definition for the
internal state of a cluster named atm emergency stop. The top-level unit of the
cluster is an automaton. The actual state of the automaton is stored at runtime
using an integer variable named atm state. The automaton’s states are modeled
as sub-units named state parking, state sdc active and state normal. Each
of the sub-units’ states is stored in a nested struct. To facilitate a mapping of
data back to units in the model, the states’ unique identifiers used by the modeling
framework are inserted as a comment, next to each variable definition. In the
example, these identifiers can be found at each end of line.

System execution. As described before, the middleware handles inter-cluster
communication as well as access to the underlying hardware transparently, us-
ing numerical identifiers for addressing. In addition, the tasks use the middleware
for loading and storing their internal state at the beginning and end of their exe-
cution, respectively. Thus, our middleware is able to serve at runtime — besides
its primary duty as a mediator for communication — as a monitor for exchanged
information and the tasks’ internal states.

If tracing is enabled for a cluster, its communication is logged to a file. Since
control systems are executed cyclically, this file is expanded during each invocation
of the corresponding task. As memory in embedded devices is limited and should
not be exhausted, the storage format for the trace has to be as compact as possible.
At the same time, no complicated transformations on the data should be carried
out to save processing resources. So the proposed storage format is very simple and
contains the minimum of necessary information. This includes a header specifying
the traced cluster together with its ports and the corresponding addresses as well
as the actual data in binary format. In addition, the number of elapsed task
activations is stored at the beginning of each invocation, thus allowing to calculate
the amount of time which has passed since the start of the system.

Data extraction. For decoding the trace file, it is important to know about the
structure of the file. Otherwise, the binary data cannot be transformed into the
original values. Therefore, a header is inserted at the beginning of the file. The
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6.1 Model-Level Debugging

header is in character representation and defines the values which are stored in the
binary part of the file. For each traced cluster a TASK definition specifies the types
used for the state values. After the TASK definition the DATA definitions for the ports
of the cluster follow, defining port names and data types. If more than one cluster is
traced, there may be repeated TASK and DATA definitions. The traced data are saved
to the trace file in the same binary representation as they are stored in the memory
of the system. Thus, architecture specific properties such as endianness and sizes of
primitive data types have to be considered during data extraction. Together with
the complex data types specified in the header, it is possible to partition the binary
trace into its particular values.

Visualization of runtim
e configuration

Visualization of environm
ent

C
ontrol panel

R
untim

e configuration
Trace

Figure 6.4: User interface of the simulator

For mapping port values from the trace to elements in the model, the corre-
sponding ports can be found via cluster and port names specified in the header.
Mapping state values contained in a struct to model elements is more difficult,
since the corresponding elements are distributed along different refinement layers
in the model. The values for all these elements are combined in one binary chunk
extracted from the trace, namely the state of the cluster. In order to partition the
state struct into its members, the application’s source code is considered. Using the
struct definition, the binary data can be divided into struct elements. To identify
the model unit associated with a struct element, the numerical identifier of the unit
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is looked up in the annotated C code. In Figure 6.3, these identifiers can be seen
in the form of comments in the C code. Figure 6.3 also indicates the mapping of
actual runtime data in the system to model elements using their identifiers.

Two basic types of state information can occur in the trace: current values of
delays or the current state of an automaton. For delays the stored values simply
have to be mapped to the model element. In contrast, an automaton cannot be
just provided with some value, but has to be mapped to the unit implementing
the currently active state. In the code the active state is identified by an integer
value. The struct member storing the active state is annotated with mappings from
the state number to the identifier of the unit implementing the state. With this
information, the corresponding unit can be set as the active state in the automaton
during simulation.

As can be seen in Figure 6.3, nested structs are annotated with one identifier,
while the integer variable atm state is annotated with a list of identifiers separated
by semicolons. This list is necessary because the atm state holds the active state
of the automaton encoded as an integer value in the C code. Each token of the list
contains the integer representation of an automaton state and the unique identifier
of the corresponding automaton state in the model. Using this information, the
integer value found in the trace can be mapped to an automaton state in the model.

After data extraction is finished, the recorded trace can be loaded into the sim-
ulator to replay the execution at model-level. The meta-model of a trace is clearly
defined and is part of the integrated modeling language COLA, which has been
presented in Section 4.3. Conceptually, the trace consists of a sequence of execu-
tion steps. For each execution step, it logs enough information to be able to repeat
the execution in the simulator. First, the valuations of the ports at the cluster’s
boundary are stored. This also includes sources and sinks that are contained in
the cluster. Whereas the valuations of the input ports are required to retrace the
execution, the valuations of the output ports are used to validate the executed code
against the model-level simulator. Second, the states of all stateful units that are
part of the cluster are saved. Whereas the state during the first step is required to
initialize the execution in the simulator, the states of the following steps are also
used for validation.

The actual syntax defined by our modeling language represents traces by means
of two-dimensional tables. Figure 6.4 depicts the simulator with an example trace
loaded. The according table has a row for each execution step, and a column for
each port at the cluster’s boundary as well as for each stateful unit contained in
the cluster.

Replaying traces. We extended the existing simulator [71] with the functionality
to replay a trace recorded on the hardware platform. The simulator then executes
the units which are included in the traced cluster. Due to the modular architec-

134



D
ep
lo
ym

en
t
E
xt
en
si
on
s

6.1 Model-Level Debugging

ture of our simulator, the realization of this functionality could be integrated in
a straight forward manner. The architecture of the simulator is modularized into
three components: the runtime configuration, the environment interface and the
execution strategy.

The runtime configuration describes the state of a cluster during runtime. That
means, it equips the clustered units with information required at runtime. These
include the valuations of ports and the internal states of stateful units. The initial
runtime model can be automatically derived from the structure of the clustered
units. The environment interface specifies the behavior of the environment sur-
rounding the cluster. Therefore, it controls the inputs entering and observes the
outputs exiting the ports at the cluster’s boundary. Based on the environment in-
terface provided by the simulator, different kinds of environments can be realized.
The replay of a trace is implemented by constructing an environment interface
from the trace that provides the simulator with the monitored information. The
execution strategy performs a stepwise execution of the system. This is done by
modifying the runtime configuration depending on the inputs and generating the
outputs of the cluster. The execution strategy is determined by the semantics of
our modeling language.

Figure 6.4 shows the user interface of our simulator during the replay of a trace.
The trace was recorded while testing the functionality of a case study on the hard-
ware platform. A control panel allows the user to start, pause and stop simulation
as well as to regulate its speed. The user interface provides views for both the
structure and the visualization of the runtime configuration in real syntax. An
optional visualization shows the target system’s environment.

6.1.5 Influence on the Target System

It is well known that any kind of monitoring system, like our tracing approach, is
at risk to change the behavior of the monitored system. McDowell and Helmbold
discuss this problem in their survey about debugging techniques for concurrent
programs [100]. The effect has been referred to as the Heisenberg uncertainty prin-
ciple in recording traces for debugging by LeDoux and Parker in [87] or as probe
effect by Gait in [49]. For concurrent systems the change in system behavior arises
from the fact that the monitoring code itself consumes resources like memory and
processing power, and thus the execution of the application programs is delayed or
hindered. Therefore race conditions which were present in the original and unmoni-
tored system may be altered. Furthermore, the additional memory consumption for
the monitoring code and the gathered traces might exceed the amount of memory
available in the target system.

If, however, a system is scheduled statically according to a global clock, influence
regarding race conditions could be avoided. This requires the scheduler to consider
all possible delays introduced by the monitoring. Hence, the scheduler adds the
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(a) Tracing disabled
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ECU 3
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Scheduling cycle

(b) Tracing enabled for T2 and T4

Figure 6.5: Comparison of schedules with and without tracing

time needed for storing input and output data to the WCET of every task, no
matter whether the tracing is executed for the respective task or not. The result is
a schedule which includes an amount of slack time that is equal to the amount of
time needed for tracing all tasks.

Figure 6.5 gives a comparison of two alternative schedules for a system of three
ECUs. The schedule in subfigure (a) depicts the regular schedule without any
tracing enabled. There is some slack time before and after each task, indicated
in gray in the picture, which is reserved for tracing. In subfigure (b) the same
schedule is shown, except that tracing has been enabled for Task 2 and Task 4.
The slack time surrounding these tasks is now used for tracing. Hence, the runtime
of Task 2 and Task 4 is extended by the length of the slack time. As can be seen in
Figure 6.5, the starting times for all tasks are identical, no matter whether tracing
is enabled or not. There is no change in system behavior because of a influence
on the system’s timing. Using timestamps which are stored together with the data
in the trace file, it is possible to match the respective data of tasks executed on
different ECUs with each other.

From the above description it should be clear that the reservation of slack time,
which may be used for tracing, lengthens the execution cycle of the system schedule.
Thus the concept of providing slack time for tracing in every schedule might not
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6.2 Generation of Fault Tolerance Modes

be applicable if this results in a violation of deadlines. However, omitting the slack
time in the schedule results in a system with different timing behavior compared
to one with the tracing function enabled. Since the COLA deployment approach
generates a static system with fixed causal ordering of tasks, one might think that
the overall system behavior should still be identical. Nevertheless, since we are
dealing with a control loop system, the changed duration between input and output
— which might be within the specified deadline in both cases — may result in a
different behavior due to the altered feedback time between producing output and
subsequently reading possibly related input.

If in contrast the system provides enough computing resources to allow the in-
clusion of slack time in the schedule, the timing of the generated system will be
identical, no matter if tracing is enabled or not. The impact that prevails is memory
consumption. There is a need for working memory to execute the tracing function
and to store the monitored data. While the overhead for the tracing program code
is very small, the amount of memory for a trace can grow considerably, depend-
ing on the size of the monitored data and the duration of the monitoring. As the
memory resources of embedded systems are in general very limited, there might be
very little free memory left which therefore limits the possible size of a trace. As a
consequence it might be necessary to add some additional memory to the hardware
platform which is used for debugging.

Concluding we can say that the described debugging approach can be imple-
mented with minimal and well-known impact onto the target system.

6.2 Generation of Fault Tolerance Modes

In order to ensure the safe operation of a real-time system, its software as well
as its hardware have to be functional. Using the afore described concepts for
programming such systems, the quality of software may well be improved. Still,
systems resulting from a MDD process bear the risk to fail because of hardware
defects. Any approach avoiding such failures is highly welcome, especially in safety-
critical system like cars or airplanes. While the avionic industry tackles the problem
using redundant software and hardware, automotive systems suffer from a much
higher cost pressure. The large number of units produced prohibits the employment
of spare hardware or concepts like 2-out-of-3 systems due to their huge cost and
energy overhead. Further, the additional weight and necessary installation space
would be a huge problem in an automobile.

However, employing appropriate allocation and scheduling mechanisms would al-
low the use of spare processing capacity on nodes already present in the distributed
computing system of a car. This spare capacity, i. e., memory and processing cy-
cles, does exist in most systems since it is generally not possible to select a platform
which exactly meets the requirements. Instead the most cost-efficient available on
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the market is selected, providing at least the needed resources. Relocating the most
important tasks from one ECU to another in case of a hardware failure would thus
be feasible, if the overall system is not endangered by the transition into the fault
tolerance mode.

The approach presented in this thesis does neither employ any new failure detec-
tion method nor is it able to deal with all possible failures. Instead its contribution
lies in its integration into our deployment approach, which disburdens the devel-
oper from programming error handling routines. This way the developer may focus
during his system design on the intended functionality, while neglecting a major
amount of effort for error handling. The deployment system is able to generate the
fault tolerance code on its own.

Support for the unattended integration of fault tolerance mechanisms into safety-
critical systems is very desirable. As a study by Mackall and colleagues showed [94],
all failures observed in the reviewed system where due to bugs in the design of the
fault tolerance mechanisms themselves. And as Rushby showed in his overview of
fault-tolerant bus architectures [115], even up to date bus systems like FlexRay do
not necessarily have integrated fault tolerance mechanisms. In contrast, the concept
presented here yields reliable fault tolerance modes by automatically generating the
appropriate code from the COLA model. Further, the concept is not dependent
on hardware support by the bus system. Instead it can be integrated into our
middleware, as we will show.

6.2.1 Fault Hypothesis

The generated fault tolerance modes are intended to guarantee the continuous op-
eration of highly safety-critical tasks in case of a hardware failure. The presented
approach makes use of our concept for operating modes described in Section 5.6.
As explained, this operating mode concept implements a switching of schedules at
runtime. The respective modes are pre-calculated offline which guarantees deter-
ministic system behavior. The schedules differ regarding which tasks are activated
and their respective starting times. By relying on the time-triggered paradigm, a
synchronous change of schedules at runtime can be ensured.

As the spare capacity in an automotive system which we intend to make use of is
very limited, it is impossible to compensate an arbitrary number of ECU failures.
Rather we intend to guarantee the substituted execution of few most important
tasks from a single failing ECU on other ECUs containing spare resources. The
decision about which tasks are elected for redundancy is up to the developer and
shall be specified in the software model. Using this information in combination
with the hardware platform model, a suitable fail-over ECU is calculated for each
task. The necessary allocation scheme as well as the changed schedule may then
be determined by our deployment tools and selected by our middleware.

The concept outlined here is able to deal with the complete loss of a single
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6.2 Generation of Fault Tolerance Modes

ECU. While this case may seem synthetic, it is quite common in practice. In
an automotive system the ECUs as well as their connecting cables are exposed
to permanent vibrations and changing environmental conditions like temperature,
humidity, etc. These conditions can easily lead to broken wires, either in form of
copper wires or the even more sensitive fiber optic cables which may be used for
example with the FlexRay or MOST bus systems. Other defects might be loose
contacts or cracks in circuit boards. Thus, while the described approach does not
address problems like a “babbling idiot” at the moment, a safe operating state can
be guaranteed for the typical case of a not responding ECU, may it be because of
communication loss, power loss, or loose electronic components.
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T3T1
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ECU 1 ECU 2 ECU 3

T7

T6

T5T3
T1

T2

ECU 1 ECU 2 ECU 3

T4 X
EC

U
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T4

Figure 6.6: Task transition in case of failure

Figure 6.6 shows an example for a switch to a fault tolerance mode. The upper
half of the figure shows three ECUs and their respective executed tasks T1 through
T7. In the lower half a possible fault tolerance mode is shown, which is activated
by the failure of ECU 2. In the exemplary fault tolerance mode the tasks T4 and
T5 are necessary for the safe operation of the system. Thus they are executed on
ECU 1 and ECU 3 respectively, if ECU 2 fails. Task T3 is not marked safety-critical
in the model and thus it is ignored in the fault tolerance mode.

The concept requires sensors and actuators being used by safety-critical tasks to
be directly connected to the bus or to have a redundant connection to the failover
ECU. Otherwise they would not be accessible in case the ECU they are connected
to fails and thus the according task could not continue its operation successfully.
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6.2.2 Redundant Allocation

The original allocation mechanism, described in the deployment chapter, tries to
find one valid allocation for the clusters given in a COLA model to the respective
hardware model. Since the fault tolerance concept is aimed at masking the loss of an
ECU, the hardware model has to be modified accordingly. Instead of having exactly
one hardware model for the platform, the fault-tolerant deployment considers n+1
hardware models for a platform consisting of n nodes. One model represents the
original platform with all nodes operational, and the n other models correspond
alternatively to the platform with one of its ECUs failing.
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Figure 6.7: Possible fault tolerance modes

Figure 6.7 shows an example of the substitute allocation schemes calculated for
the platform from Figure 6.6, which consists of three ECUs. First, in subfigure (a)
an allocation for the fully functional platform is given. In subfigures (b) through (d)
one of the ECUs failed in each case. Hence, all tasks which are allocated to it and
have been indicated as safety-critical by the developer — in the example all tasks
except the grey marked tasks T3 and T6 — are migrated to the remaining ECUs.
Their migration is indicated by small arrows. At deployment time, the allocation
routine considers each of these cases and calculates a possible allocation for it.
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When a solution has been found, the according schedule is constructed. If the
allocation is not schedulable, a different allocation has to be calculated.
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T3T4

T5

ECU 1

ECU 2

ECU 3
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T1T5

T6

T7

T4

Figure 6.8: Overview of all tasks and their redundant allocation

To allow the execution of a cluster on several ECUs requires the code generated
for it to be placed onto all ECUs in question, according to the derived allocations.
With the code, as well as the different schedules available, the restart of a task on
a different ECU is facilitated. Figure 6.8 shows the overall allocation of all tasks,
providing redundancy for the failure of any of the ECUs. The original allocated
tasks are indicated by a solid boundary line, while their redundancy is drawn with a
dashed circle. For the non safety-critical tasks T3 and T6 no redundancy is provided.

To detect the need for such a change in schedules, a means of failure detection
is needed, which we will explain next.

6.2.3 Hardware Failure Detection

In order to deal with hardware failures, a means of failure detection is necessary.
As described before, we aim at addressing defects causing a loss of communication
to a node of the system. We intend to detect a failing ECU externally by the other
ECUs of the system, as this allows for failure detection even in case of a broken
bus connection. The use of additional hardware for failure detection would lead
to additional cost and is not acceptable for an automotive system. Considering
the time-triggered nature of the intended target system, two approaches for failure
detection come to mind. The solutions differ in that one is passive and the other
is active. Both concepts may be integrated into our communication middleware.

First, it would be possible to detect the omission of an anticipated message.
Since all communication points are known in advance, the omission of a message
indicates a fault in the respective sending node. This assumption is only valid for
the observation of the overall system, if every node sends at least one message. But
in theory, there might be nodes which only receive messages, so their defect might
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Figure 6.9: Heartbeats in the communication cycle

remain unnoticed. This first approach is passive since it does not require any action
by the nodes besides their regular operation.

Second, each node in the system could send a cyclic heartbeat message to indicate
being operational. Consequently a failed ECU is identified by the other ECUs in
the system, if the heartbeat was not received within a defined window. Because of
the need for sending heartbeat messages this approach can be considered active.

For our fault tolerance approach we prefer the active approach, because of the
possibility to identify any faulty nodes. The implementation of the active approach
requires every node in the system to send a heartbeat, which can ideally be done
using a broadcast at the beginning of every communication cycle. More precisely,
first the network master ECU sends its clock synchronization to the slaves, as
indicated in Figure 6.9. Following this message each node has an assigned slot for
sending its heartbeat message. Every ECU in the system keeps a status vector
containing the timestamp of the last heartbeat of all nodes in the system. This
vector can then be used to detect faulty nodes. To avoid a split decision when to
change into the fault tolerance mode, the network master is responsible for deciding
and communicating the mode change to the slaves. An arbitrary threshold may be
specified for the number of missing heartbeat messages before an ECU is identified
as faulty. This decision might depend on the system in question. Updating the
status vector in every node of the system and not just the network master enables
all slaves to inherit the master status if the original master node fails. Further, a
node which observes continuously increasing delays for all values in the vector might
consider itself as disconnected from the network and may shut down or change into
a fail-safe mode which could mean sending safe default values to all connected
actuators.
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6.3 Adaption to AUTOSAR

6.2.4 Switching to Fault Tolerance Modes

As presented in Section 5.6, a middleware address can also be used to communicate
operating modes, which triggers a synchronous change of dispatching plans on all
nodes of the system. This ability is especially of importance for the fault tolerance
concept presented here. A fault tolerance mode is essentially an additional operat-
ing mode, which defines the execution of safety-critical tasks on a different ECU,
in case of failure of the originally chosen ECU.

As mentioned before, a system schedule is valid for a certain allocation. For
each additional allocation another schedule is calculated. Therefore the concept
introduced here results in several scheduling graphs, each of which is valid for
either the default allocation or one fault-tolerant allocation. At the beginning
of each cyclic execution, the middleware checks on system health by exchanging
heartbeat messages. The network master is then able to communicate the actual
mode, which is either default or ECU X failed, using a fixed middleware address.
Subsequently the dispatchers of all ECUs select the appropriate task set to execute.
The resulting system corresponds to the example in Figure 6.6, where ECU2 failed
and the dispatchers of ECU1 and ECU3 change their activated schedule in order to
migrate the safety-critical tasks T4 and T5.

In principle the middleware also supports the migration of the actual task state.
For this purpose cluster states may be replicated to other ECUs in each communi-
cation cycle. Whether this migration is desirable depends on the cluster in question
as the threshold of omitted messages employed for failure detection might render
the state outdated.

In summary the described concept is suited to increase the reliability of the
generated system considerably. Just by specifying safety-relevant clusters in the
model, a system engineer is able to trigger the creation of a system being able
to continue its safe operation even in presence of a hardware defect. This state
in which the system is not fully functional anymore, but provides safe operation
is often referred to as graceful degradation, consider Gärtner’s work about fault-
tolerant distributed computing [50].

6.3 Adaption to AUTOSAR

As described in Section 3.3, the automotive industry is currently adapting the
AUTOSAR standard for modeling system architecture. With AUTOSAR becoming
the de-facto standard for automotive platforms, a concept for integrating COLA
designs into an AUTOSAR development process is required. Such a concept would
allow a stepwise migration from AUTOSAR to COLA. Otherwise, the utilization
of COLA would require a complete redevelopment of the existing system, which
results in an excessive increase of development time and cost and is, therefore, not
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feasible.

Since both the COLA and the AUTOSAR approach are based on custom mid-
dleware concepts, the question arises which middleware to use for a hybrid system.
The answer can be given by considering the way software is implemented in the
two concepts. Using the afore described COLA deployment approach would require
the entire system to be modeled in COLA. During code generation, the modeled
functionality is transformed into code which interfaces the middleware described
in Section 5.2.3 at runtime. This middleware features a fixed interface and the
COLA clusters are transformed into code which matches this interface. In an AU-
TOSAR development, on the contrary, the RTE’s interface is generated according
to the respective interfaces of the connected SWCs. Thus, AUTOSAR SWCs can-
not be executed on the COLA middleware without conceptual changes of either
the middleware, or the AUTOSAR SWCs due to incompatible interfaces. It is how-
ever feasible to generate an AUTOSAR RTE specification from a COLA model.
An RTE being generated based on this description enables the integration of code
generated from COLA clusters into an AUTOSAR system. Hence, as a hybrid
scenario, we will describe the integration of COLA clusters into an AUTOSAR
system, and not the use of AUTOSAR SWCs in a COLA based system.

Because of the differing modeling and platform concepts, the execution of COLA
clusters on an AUTOSAR platform yields several kinds of problems. In the follow-
ing sections we will summarize the characteristics of the COLA and AUTOSAR
platforms. Subsequently, we will explain the arising problem areas. Finally, possible
solutions for the problem areas and a possible integration process are presented.

6.3.1 COLA Target Platform

The details of the COLA target platform have been presented in Section 5.2. In
short the platform consists of operating system and middleware. The operating
system facilitates the non-preemptive execution of tasks to a given static schedule.
The middleware provides a global time to all nodes of the distributed system,
which is used to synchronize task execution on the respective nodes. Further,
communication between tasks in the system is only allowed in predefined time
slots, which are related to the global clock, too. The middleware is also employed
to access sensors and actuators. According to the employed time-triggered concept,
the middleware cyclically polls sensors and buffers the received values. These data
may subsequently be accessed by the tasks of the system. Configuration of the
middleware is generated from the COLA model and stored in a configuration file.
This file is read by the actual middleware instances at system startup and the
instances are configured accordingly.

144



D
ep
lo
ym

en
t
E
xt
en
si
on
s

6.3 Adaption to AUTOSAR

6.3.2 AUTOSAR Target Platform

An AUTOSAR target platform consists of an AUTOSAR OS and the AUTOSAR
RTE. The AUTOSAR OS specification is not limited to a specific operating sys-
tem, though OSEK is a common choice for most systems [9]. The AUTOSAR
RTE cannot be configured in the final system, but is intended to be a static mid-
dleware layer. AUTOSAR does, however, facilitate the generation of code for the
AUTOSAR RTE according to the respective architecture model. Thus, the RTE is
configured offline and specifically for each system.

A cyclic execution of tasks is possible according to the AUTOSAR OS standard.
However these tasks are executed preemptively and, hence, may be interrupted
by another higher-priority task. Another source for task preemption are external
interrupts which trigger execution of OS kernel code like device drivers. Thus, a
strict time-triggered execution of tasks is not possible. Besides cyclic tasks, the
AUTOSAR OS allows the event-triggered execution of tasks. Since the respective
interrupts might occur at unknown points in time, the timing behavior of such a
system cannot be predicted in the general case. Rather, assumptions about the
minimum interarrival time of interrupts and spare hardware resources have to be
employed to comply with the required real-time requirements.

In contrast to the COLA middleware, the RTE is generated specifically for every
ECU according to the respective AUTOSAR model. Its interface is fixed and may
not be configured in the final system. As a result, the RTE produces very little
memory and processing overhead. But this approach also requires a replacement
of all RTE instances in a system, if the interface of a SWC is changed or another
SWC is added after the RTE has been generated.

The timing behavior of communication via the RTE is based on the bus sys-
tems currently employed in automotive systems. Synchronization of clocks between
ECUs is not offered by the RTE due to a lack of this function from several of the
employed bus protocols, like CAN and LIN. AUTOSAR proposes two event-based
communication paradigms, namely client-server and sender-receiver communica-
tion. When sender-receiver communication is used, the sender transmits messages
asynchronously. It may continue executing its tasks immediately after calling the
sending routine. The receiver is notified by an interrupt, when messages have been
received. Using client-server communication the function call for sending a mes-
sage blocks the client until a response is received from the server. The arrival of a
message, again, causes an interrupt at the receiver side.

In contrast to AUTOSAR, every exchange of data happens at predefined points in
time in a COLA-based system. The according system-wide schedule is calculated
offline and ensures the time-triggered execution of the system within its required
deadlines. This renders the use of interrupts during message exchange redundant.
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6.3.3 Integration Concept

In order to facilitate an integration of code generated from a COLA cluster into
an AUTOSAR system, compatibility of the interfaces of the cluster and of the
RTE which executes the cluster have to be established. To this end, the cluster
has to be replaced by an appropriate AUTOSAR counterpart. Comparing the
modeling artifacts of the two languages, COLA clusters are closest to AUTOSAR
SWCs. An AUTOSAR SWC is a self-contained piece of software which has its
own private memory and interacts with its environment by means of ports. These
ports are either of sender-receiver or client-server type, which implies the according
communication paradigms described before. Just like clusters, SWCs may only be
allocated to an ECU of the target platform as a whole. Each SWC may define a
number of runnables which are implemented by functions that may be scheduled
by the operating system.

AUTOSAR
SWC

AUTOSAR
SWC

AUTOSAR
SWC

COLA
Cluster

Figure 6.10: COLA cluster wrapped in an AUTOSAR SWC

As indicated in Figure 6.10, the concept for integrating a COLA cluster into
an AUTOSAR system is based on wrapping the cluster into an AUTOSAR SWC.
By equipping the cluster with an AUTOSAR interface, the code for that cluster
becomes AUTOSAR compatible. This may be achieved by using a modified version
of the code generator described in Section 5.4, which provides the cluster with the
interface of a SWC. But this code generation is limited to the cluster itself. The
integration into the AUTOSAR platform by means of a matching RTE interface is
still needed.

Regarding the regular AUTOSAR workflow, the modeled architecture is used to
generate the RTEs for all nodes of the target platform. As a result, the SWCs
can be linked to these RTE instances. When integrating a cluster from a COLA
model into an AUTOSAR system, this cluster is not present within the AUTOSAR
model. Consequently, the RTE generator would not produce code for interfacing
that cluster. Therefore, the cluster has to be declared to the RTE generator before
the RTE code is produced. This can be achieved by inserting the appropriate data
into the AUTOSAR model before passing the designed architecture to the RTE
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AUTOSAR RTE
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Figure 6.11: Workflow for integration of COLA and AUTOSAR
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generator. AUTOSAR defines the AUTOSAR XML format as a data format for
exchanging designs between tools used throughout the development process. Data
may also be distributed over several of the so-called .arxml files. Thus, if an
appropriate .arxml file is available for the COLA cluster, it may be used together
with the respective file of the remaining AUTOSAR design as input for the RTE
generator.

Figure 6.11 gives an overview of the described concept. On the left side of the
figure, modeling of parts of the system is carried out using the COLA editor.
The resulting clusters are generated into C code comprising the clusters’ behavior.
Further an AUTOSAR XML description which defines the interfaces of the clusters
is generated. The right side of the figure depicts modeling using an AUTOSAR
CASE-tool. The CASE-tool outputs C code templates which the developers use as
a basis for implementing the desired behavior. Further, the CASE-tool produces an
AUTOSAR XML file comprising the designed architecture. The two .arxml files
are merged and used by the RTE generator to produce appropriate RTEs for the
platform. As a result, the application code generated from COLA can be executed
alongside the applications designed in AUTOSAR on the target platform.

Considering the afore described workflow a technique for modeling communica-
tion between AUTOSAR SWCs and COLA clusters is missing. For the commu-
nication of COLA clusters executed on an AUTOSAR platform we intend to use
the AUTOSAR RTE instead for the COLA middleware. To facilitate this commu-
nication, the clusters modeled in COLA have to be also present in the AUTOSAR
model. This allows the SWCs from the AUTOSAR model to interface them. In
addition, the RTE code generator produces an RTE instance which provides an
interface to the COLA cluster.

To achieve this integration, each COLA cluster has to be represented by an
equivalent SWC in the AUTOSAR model. This dummy SWC must feature the
same interface as the COLA cluster, regarding its ports and runnables. This
enables the SWC to be connected to other SWCs in the AUTOSAR model. Later,
during combination of the two AUTOSAR XML files, this dummy SWC has to be
replaced by the XML specification generated from the COLA model.

The described integration concept may only work, if changes are made to the
COLA code generator. Further, special care has to be employed when interfac-
ing the COLA cluster from an AUTOSAR SWC. We will describe the necessary
changes in the following section.

6.3.4 Necessary Changes

AUTOSAR and COLA modeling yield several conceptual differences. Due to these
differences, hybrid modeling using both approaches requires a concept for mapping
elements of one language to equivalent elements of the other language. This is
especially crucial at the interfaces where elements from both languages interact. In
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6.3 Adaption to AUTOSAR

addition, the execution semantics of both languages are different regarding their
scheduling. We will outline each of the crucial problem areas in the following and
propose a solution where possible.

Communication. The COLA deployment tools insert numerical addresses as a
parameter into the middleware calls used for communication. Using these addresses
the middleware is able to transmit the message to the respective communication
partner. The signatures of the according middleware functions have been presented
in Listing 5.1.

The AUTOSAR RTE, in contrast, provides a particular function for every port
featured by a SWC. If a COLA cluster shall be executed on an AUTOSAR plat-
form, it has to use these functions instead of the COLA middleware API. Listing 6.1
shows the signature of the RTE communication functions defined in the RTE docu-
mentation [10]. In the function names, <p> is replaced by the respective port name
and <o> specifies the data object, that is the data type of the port.

1 Std_ReturnType Rte_Write_<p>_<o>(IN <data>)

2 Std_ReturnType Rte_Read_<p>_<o>(OUT <data>)

Listing 6.1: Interfaces for sender-receiver communication

In AUTOSAR distinct ports are used for sending and receiving messages, when
using the sender-receiver concept. For the client-server paradigm, a single port
is used for request and response. Since the concept of COLA ports does not
allow bidirectional communication, only sender-receiver ports should be used in
the AUTOSAR model when interfacing COLA clusters.

Regarding the identified issues, the integration of a COLA cluster into an AU-
TOSAR system requires the COLA code generator to produce AUTOSAR com-
patible send and receive functions according to the signatures in Listing 6.1. It
should be clear that the port names defined in the AUTOSAR model have to be
available in the COLA model for generating appropriate communication calls to
the RTE. Thus, ports should have the same names in COLA, as their counterparts
used for the dummy SWC in the AUTOSAR model. This enables the code gen-
erator to produce compatible communication calls. Further, only sender-receiver
ports may be used at the interface between COLA and AUTOSAR components.

Interfacing Devices. Using the COLA approach, access to sensors and actua-
tors is carried out by the middleware. The device drivers are interfaced by the
middleware, exclusively. The code generated from a COLA cluster may interface
the devices using the according middleware functions, which require the numerical
address of the device, as well as a pointer to the memory region data shall be read
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from or written to, and the length of data to read or write. The signatures of the
respective functions have been presented in Listing 5.1.

In AUTOSAR, on the contrary, access to hardware drivers is realized by the
RTE and may use arbitrary function names. The number of parameters and their
types are not fixed, as well. Furthermore, the RTE serves solely as a mediator
which forwards the function calls executed by the applications. For most hardware
devices hardware access is performed immediately according to the client-server
paradigm. There is no polling concept available in the RTE, as is the case with
COLA. Hence, hardware interfacing hardware is realized in a synchronous manner,
i. e., the application is blocked until the device driver returns from execution.

As described before, COLA does not support client-server communication. It is
therefore not possible to interface an AUTOSAR device driver directly. However,
the software layering concept of AUTOSAR envisions the use of sensor and actuator
SWCs, as outlined in the description of the AUTOSAR architecture in Section 3.3.
These SWCs are used to provide a common interface for a certain type of device,
no matter which manufacturer built the respective device. Thus, applications may
use the device unaltered, even if the manufacturer differs across different systems.
For accessing devices from code generated for a COLA cluster, these sensor and
actuator SWCs could be modified to provide sender-receiver interfaces. This way
they could be used by COLA clusters.

Storage of Internal Task States. In an embedded control system tasks often have
an internal state which is retained between subsequent invocations. Tasks generated
from the COLA approach employ the middleware for storing their internal between
execution cycles. When executing such tasks in an AUTOSAR system, a suitable
alternative has to be used.

According to the AUTOSAR standard, each SWC may define a private memory
region, called per instance memory (PIM). The size of this memory region is defined
in the .arxml file of the respective SWC. A handle to this PIM may be requested
by calling the function shown in Listing 6.2 [10]. The PIM referenced is of the data
type <type> and can be identified by its given <name>.

1 <type> Rte_Pim_<name>()

Listing 6.2: Call for accessing PIM

During generation of code for a COLA cluster, the modified code generator has
to insert calls to this PIM for accessing the task’s internal state. Further, the PIM
has to be defined in the respective .arxml file.
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6.3.5 Timing Behavior of the Hybrid System

The deployment approach described in Chapter 5 transforms a COLA model into
a time-triggered system. The schedule which defines starting times for tasks as
well as communication slots for the system is calculated offline. For the timely
execution of this schedule a global time source is needed. Systems which use the
COLA deployment approach are provided with a global clock by the middleware.
This clock is synchronized regularly to provide the necessary accuracy on all nodes
of the system.
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Figure 6.12: Comparison of COLA and AUTOSAR scheduling

AUTOSAR systems, however, operate on a event-triggered basis [11]. Execution
of tasks as well as communication is triggered by external events, by other tasks,
or by interrupts generated by a timer. Without the need for a global time, there is
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no global clock or synchronization provided.

The different execution semantics of COLA and AUTOSAR result in differing
scheduling schemes. In a system created by the COLA deployment tools, all tasks
are executed non-preemptively according to the pre-calculated time-triggered sched-
ule. AUTOSAR in contrast uses a priority based, preemptive scheduling approach
with priority ceiling [12]. Thus, if COLA clusters are executed in an AUTOSAR
system, the assumptions made about their execution order may be incorrect. It
is possible to define the COLA clusters to be executed as cyclic tasks in the AU-
TOSAR system. This resembles best the synchronous timing semantics. However,
cyclic execution on an AUTOSAR platform may yield inaccurate timing due to
preemption.
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Figure 6.13: Synchronization based on input data

A possible consequence can be seen in the example in Figure 6.12. During ex-
ecution of the three COLA clusters depicted at the top of the figure, Cluster 1

and Cluster 2 produce inputs for Cluster 3 and thus have to be executed before
Cluster 3. In the middle part of the figure, a possible execution on a COLA plat-
form is shown. As can be seen in the figure, the clusters are executed on different
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ECUs but the time-triggered schedule makes sure, the inputs for Cluster 3 have
been calculated before its execution. The lower part of the figure shows a possible
execution of the clusters on an AUTOSAR platform. In this example, ECU 1 ex-
ecutes a higher priority task which delays execution of Cluster 1. Subsequently,
Cluster 3 lacks one of its inputs when it is executed. Further, when Cluster 3 is
executed the next time, it receives inputs from Cluster 1 which are possibly out-
dated, since Cluster 2 has already been executed another time while Cluster 1

was delayed.
The above described problem could be solved by another modification to the

COLA code generator. As exemplified in Figure 6.13 for Cluster 3, a means
of synchronization could be realized by checking the respective input data of a
cluster. The code generator could insert a checking routine which starts processing
of the cluster only if all inputs have been updated. Thus, the dataflow semantics of
COLA could be implemented. The exact timing behavior of such a hybrid solution
remains, however, unpredictable.

6.4 Chapter Summary

In this chapter we have shown, how the comprehensive system knowledge provided
by a COLA model can be employed to produce additional benefit beyond simple
deployment of the system. The presented extensions of the deployment concept
further improve system quality and provide a possible integration with AUTOSAR.

The concept of model-level debugging enables developers to identify and fix mod-
eling faults at the abstract level of the COLA model. Thus, the implementation
of debugging routines at code-level is rendered redundant. Fixes are rather carried
out in the model and new code is generated from the altered model. This prevents
the occurrence of programming errors during manual coding and guarantees that
model and code are always consistent. Further, displaying the results of an execu-
tion of the system in the model is often much more convenient compared to e. g.
analyzing bus message traces.

Using knowledge about the topology of the target platform and the allocation of
tasks, the generation of fault tolerance modes is facilitated. The resulting systems
are more reliable, since they feature a redundant allocation of highly safety-critical
tasks which are activated in case of a hardware failure.

We concluded the chapter with a concept for the integration of the COLA and
AUTOSAR concepts. By implementing the proposed modifications, the execution
of clusters modeled in COLA on an AUTOSAR platform is facilitated. The result-
ing system is a hybrid solution comprising a mixture of tasks modeled in COLA and
AUTOSAR. This approach could be used for migrating from an AUTOSAR-based
to a COLA-based development.
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Chapter 7
Evaluation of Concepts
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To prove the practical viability of the COLA approach we completed two case
studies during its development. The first case study was implemented early in the
development of the COLA concept and focused on the generation of behavioral
code from a COLA model. The according demonstrator consisted of a single
computing node and any distribution aspects could still be neglected. However,
the demontrator already incroporated a middleware for transferring data between
the generated application and the hardware devices of the target platform. This
middleware provided a fixed API to the code generator for interfacing the hardware
platform. The performance of the generated code was benchmarked against a hand-
written implementation of the same functionality.

As a step up over the first demonstrator, the second case study was targeted
at a distributed solution which takes full advantage of the COLA approach. To
this end, the hardware platform consisted of three computing nodes which were
connected by a bus system. For the second demonstrator, the application code and
platform configuration were generated automatically. The middleware employed on
the different ECUs was responsible for transmitting messages between the ECUs
and for interfacing the employed hardware devices.

The COLA model and hardware platform of the second demonstrator also served
as a test case for the concept of model-level debugging. The logging of data at
runtime proved its advantages by helping to identify and remove a few bugs from
the application model of the demonstrator.
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7.1 Mindstorms Demonstrator

The first demonstrator was implemented using a LEGOR© MindstormsTM controller
as hardware platform. It was equipped with the BrickOS1 operating system. The
demonstrator was realized as a small LEGO car which should feature the function-
ality of an adaptive cruise control (ACC) [112]. An ACC is a control device for cars
providing the functionality of keeping the car’s speed at a value set by the user,
while maintaining a minimum distance to the car driving ahead. A picture of the
demonstrator can be seen in Figure 7.1.

Figure 7.1: The Mindstorms demonstrator

7.1.1 Hardware Platform

The employed LEGO Mindstorms controller — also referred to as brick — is based
on an Hitachi/Renesas R© H8/300 microcontroller which is accompanied by 32 kilo-
bytes of SRAM for storing operating system and programs. In Figure 7.1 the brick
is visible as the yellow box inside the model car. Mindstorms controllers provide
three input and three output ports for connecting additional devices. Figure 7.2
shows a block diagram of the hardware platform, with the sensors indicated in light

1http://brickos.sourceforge.net
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7.1 Mindstorms Demonstrator

gray and the actuators in dark gray, respectively. The mindstorms controller is the
white box in the middle of the figure.

Mindstorms
brick

Motor

Brake light

Touch
sensor

Rotation
sensor

Ultrasonic
sensor

Button
PRGM

Button
VIEW

DisplayTimer

Figure 7.2: The ACC demonstrator hardware platform

For our intended ACC system we used a rotation sensor for measuring rotations
of the front axle and an ultrasonic sensor to detect the current distance to the
vehicle in front. Further, a touch sensor was used which can be pressed by the user
like a conventional push button. In addition the LEGO car was equipped with a
motor and breaking lights as actuators. The sensors and actuators were connected
to the input and output ports of the Mindstorms controller. Two individually
programmed buttons of the brick served as additional input devices. The buttons
are labeled PRGM and VIEW. The display of the brick was used to output information
via seven-segment indicators. Finally, the system timer of the brick was used to
measure the advance in time. In combination with the count of rotations, the cars
speed could be calculated.

Considering the low computational power and small amount of memory, the
Mindstorms controller was quite similar to low end automotive ECUs. This prop-
erty made it a suited platform to test our automatically generated code.

7.1.2 Functionality of the Demonstrator

The intended functionality of the demonstrator includes the possibility to switch
the ACC on and off. The display indicates the current ACC state. If the device
is turned off, the motor speed set by the user is forwarded to the engine control
without any modification. By engaging the ACC, the speed and distance regulation
are activated. This includes the measurement and comparison of the pace set by
the user and the actual measured car velocity. If the desired user speed suser differs
from the actual speed sact, the target speed for the motor control is corrected by
(suser − sact)/20. This results in a speed correction of 5 percent of the difference
between actual and desired speed. This regulation is used as long as no object is
detected within 35 centimeters ahead of the car. If the distance drops below this
threshold, the actual speed is continuously decreased by 5 percent. The minimum
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distance allowed was set to 15 centimeters. If the actual distance is lower, the car
performs an emergency stop. After either reducing speed or coming to a halt, the
ACC should speed up the car smoothly again, as soon as the obstacle is out of the
critical region. Each time the speed is decreased, brake lights are engaged.

7.1.3 The ACC COLA Model

The implementation of the described functionality is guided by the hardware avail-
able. The used controller offers only two buttons available for control actions to the
operator. Additionally, three sensor and three actuator ports are present. For the
demonstrator we use the two controller buttons for setting the desired user speed.
A touch sensor is employed to switch the ACC on and off. The remaining two
sensor ports are used to connect a rotation and an ultrasonic sensor for measuring
the current speed and distance, accordingly. The motor is connected to one of the
actuator ports, while a second port was utilized to connect the brake lights.

ACC

net_ui

net_rotation
ACC_on_off

net_ultrasonic

DEV_S_VIEW

DEV_S_TOUCH

DEV_S_PRGM

DEV_S_
ROTATION

DEV_S_
SYSTIME

DEV_S_
ULTRASONIC

DEV_A_
DISPLAY

DEV_A_
MOTOR

DEV_A_
BRAKE_LIGHT

Figure 7.3: The ACC COLA model

The top-level network of the ACC COLA model is shown in Figure 7.3. Each
of this network’s ports is connected to a source or sink which are mapped to one
of the sensors and actuators used for the ACC system. The source and sink blocks
are indicated by a small, black triangle in Figure 7.3. Further, the blocks’ names
carry a prefix of either DEV S or DEV A to make clear they are sensor or actu-
ator devices, respectively. The connected sensors are in particular: the brick’s
buttons DEV S VIEW, DEV S PRGM, the rotation sensor DEV S ROTATION, the sys-
tem clock DEV S SYSTIME, the touch sensor DEV S TOUCH, and the distance sensor
DEV S ULTRASONIC. The actuators connected to the brick are the controller’s display
DEV A DISPLAY, the motor DEV A MOTOR, and the brake lights DEV A BRAKE LIGHT.
As described in Section 5.4 these sources and sinks are interfaced using the mid-

158



E
va
lu
at
io
n
of

C
on
ce
pt
s

7.1 Mindstorms Demonstrator

dleware calls mw receive() and mw send(). For example, a channel connected to
DEV A MOTOR would be transformed into mw send(&s mot 5, sizeof(&s mot 5),

13) where s mot 5 is the calculated output for the motor speed. The address 13

is the numeric middleware address assigned for this actuator. The middleware
forwards the receive and send calls to hardware driver calls provided by BrickOS,
which in turn provides sensor values or modifies some actuator state.

Since this case study was intended to be executed on a single node, i.e., a mind-
storms controller, we chose to put all parts of the model which should be imple-
mented in software into a single cluster. To this end, the network ACC was defined
to represent the only working cluster. As no distribution is possible using a single
node, the generation of a single task results in the fastest system possible. This
avoids the — in this case — unnecessary middleware communication overhead of
a distributed solution. Consequently, the comparison of runtimes against a hand-
written version of the ACC presented in Section 7.1.4 was facilitated, as the manual
implementation was also realized as a single task. Thus, the resulting runtimes are
less influenced by OS and communication overhead, and the results rather depend
on efficiency of the compared application code.

For a distributed system, a more fine-grained clustering might be favorable.

7.1.4 Benchmarking the ACC Code

When working with generated code, efficiency aspects surely play an important
role. Using any valid tricks the programmer is aware of, hand-written code may
be considerably smaller and faster. Consequently, the benefit of automatic code
generation is rather its deterministic result. If behavioral correctness of the model
has been ensured using techniques such as model checking, a code generator may
produce equivalent correct code. Coding errors like unintentional casts, wrong
pointer arithmetic and the like are avoided. Finally, a major fraction of the poten-
tial performance drawbacks are negligible due to optimizations performed by the
compiler.

To get an idea of the performance of the generated ACC code, we compiled it
successively using the optimization levels O1, O2 and O3 of the GNU C compiler
and checked the runtime results against the ones of a hand-coded version of the
ACC. To give an impression of the quality of our manually coded version, we
give the lines of code (LOC) as metrics. The hand-coded version fulfills the same
functionality using 75 LOC, while the code generator produced 249 LOC for the
modeled ACC. The resulting binaries were compared regarding their execution
times. To minimize errors in the measurement of the running period induced by
interrupts, context switches, etc., the ACC algorithm was called consecutively 100
times. We ran this benchmark 20 times for each optimization level.

The averaged resulting times are given in Figure 7.4. The third bar in the
diagram, named generated (static fct’s), indicates the values for a modified version
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Figure 7.4: Benchmarking runtime results

of the generated code, where all functions are declared static. As this allows the
compiler to disregard the use of the functions from outside the binary, the function
calls can be replaced by the functions’ respective implementation. As a result, there
is no jump to fulfill and, thus, the execution time is decreased.

As can be seen in Figure 7.4, all versions of the code benefit from an increase in
the optimization level of the compiler. Obviously, the use of static functions has
most effect in case of the O2 optimization level. The measurements show that the
execution time of our generated code isn’t too far from the version implemented
by hand. Especially when using the higher optimization levels of the compiler.
There the generated code benefits even more than the hand-coded alternative. At
maximum optimization level, i.e., O3, the generated code actually reaches almost
the execution times of the handwritten version.

7.2 Multi-Node Demonstrator

The second demonstrator was intended to show the usability of the COLA ap-
proach for a distributed system. To this end, it was based on a hardware platform
that incorporated three processing nodes. The sensors and actuators used for this
platform where connected to the different processing nodes. The nodes themselves
where interconnected by a bus system. All these hardware devices where built into
a 1:10 scale model car, which can be seen in Figure 7.5.

The idea for the case study was to build a model car featuring a function also
available in real cars. We decided to implement an autonomous parking system
based on several distance sensors. In addition, the system should be controllable
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7.2 Multi-Node Demonstrator

Infrared sensors Ultrasonic sensor

Front lighting systemRear lighting system
Micro computers

Motor/steering control

Figure 7.5: Multi-node demonstrator

manually. A cell phone which was connected to the car via Bluetooth was used as
the remote control.

For the second demonstrator, prototypical implementations of the deployment
tools described in Chapter 5 where available. Further, a graphical COLA editor
was available for designing the Functional and Technical Architectures. This eased
work a lot compared to the first demonstrator, where the model had to be specified
in textual representation. The implementation of the multi-node demonstrator
could be generated automatically using the tool prototypes.

7.2.1 Hardware Platform

The model car shown in Figure 7.5 was equipped with three Gumstix R© micro com-
puters connected by an Ethernet network. The micro computers, which represent
the electronic control units (ECU) of the demonstrator, are based on a Marvell R©

PXA255 processor. They feature 64 megabytes of RAM and 16 megabytes of flash
memory. For communication, each of the Gumstix was outfitted with an add-on
board containing the Ethernet controller. Further, the employed Gumstix connex

400xm-bt are equipped with a Bluetooth controller. Figure 7.6 shows a block dia-
gram of the hardware platform.

As can be seen in Figure 7.6, a number of input devices, indicated in light gray,
and output devices, shown in dark gray, was connected to the ECUs. Three infrared
and one supersonic sensor were used to measure distances. The supersonic sensor
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Figure 7.6: The multi-node demonstrator hardware platform

was directly connected to one of the Gumstix using a I2C connection. For connect-
ing the infrared sensors, an additional interface card — denoted as SV203 — which
incorporated an analog digital converter was employed. The interface card itself
was connected to another Gumstix by means of a serial connection. The Bluetooth
controller of the third Gumstix was used to connected to the cell phone remote.
The model car’s motor and steering, as well as indicator, reversing, and breaking
lights represent the actuators of the system. They were also accessed using the
SV203 interface card. Due to the fact that the mentioned sensors and actuators
were connected to different ECUs, the system had to be executed in a distributed
manner.

Regarding the software platform, an implementation of the COLA middleware
was employed for data exchange and clock synchronization. Xenomai [51] served
as the real-time operating system for the ECUs.
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7.2 Multi-Node Demonstrator

7.2.2 Functionality of the Demonstrator

The multi-node demonstrator features three different operating modes. It can either
be in manual control, parking, or side distance control mode. The remote control
may be used to switch between these modes. We will give a short explanation of
the modes in the following:

Manual control mode: In manual mode the model car can be controlled using the
mobile phone as remote. The user may modify the speed and direction of the
car using the directional pad of the phone. To avoid collisions, the car uses
the ultrasonic distance sensor at the front. The car initiates an emergency
stop when reaching a given minimum distance to obstacles. Indicator lights
flash as soon as the car is instructed to turn.

Parking mode: The goal of the system in parking mode is to search and find a
suitable parking space and use it for parallel parking. For our model car we
chose to drive along a wall substituting a row of parked cars. The model car
is intended to drive in parallel to this wall and detect gaps — like an open
door — which are big enough to park. As soon as such a gap is found, the
car shifts into reverse and carries out a reverse parking maneuver.

For the parking mode three infrared distance sensors are used in addition to
the supersonic sensor. As can be seen in Figure 7.5, the infrared sensors are
placed at the right side, the right front corner, and the back of the car. As
soon as the parking mode is activated, the car switches to a low, constant
speed and uses the four sensors to search for the wall and a suitable parking
space. Controlling the motor and steering settings the car then parks into the
space. The lighting system is engaged accordingly, showing turn and reverse
indicators as well as braking lights.

Side distance control mode: The side distance control mode uses part of the func-
tionality of the parking mode. Just as in parking mode, the distance sensors
are used to drive in parallel to the wall. But compared to the parking mode,
no parking spaces are searched. Instead, the car tries to keep the distance
to the wall consistent at all times. Further, in side distance control mode,
the speed may be modified by the user. Using the ultrasonic sensor at front,
obstacles are detected and collisions avoided.

To switch between these modes, the number pad of the phone is used. As a safety
switch, the 0-key may be pressed at any time. This instructs the car to execute an
emergency stop, regardless of the current mode. We will give some figures about
the COLA model for the described functionality in the following.
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Figure 7.7: The parking demonstrator COLA model
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7.2 Multi-Node Demonstrator

7.2.3 The Parking Assistant COLA Model

Figure 7.7 shows a network of the multi-node demonstrator COLA model. In
this network most of the clusters for the multi-node demonstrator are defined. The
overall model incroporates 37 automata, consisting of 100 states, and 225 networks.
For the deployment, these COLA units were partitioned into one mode cluster and
ten working clusters allocated to the different Gumstix computers.

The mode cluster is named software system and is visible in the middle of
Figure 7.7. It is implemented by an automaton consisting of three states, which
correspond the three afore mentioned operating modes. Depending on the state
of the mode cluster, which is selected according to the input from the remote,
a working cluster implementing the respective mode is chosen for execution. The
remaining seven working clusters can be seen next to the mode cluster in Figure 7.7.
These working clusters are responsible for data pre- and post-processing of sensor
and actuator data, as well as a feedback loop.

Figure 7.8: Scheduling result for the parking demonstrator

Using the deployment tools, the COLA model was translated into executable
code and configuration data for the multi-node demonstrator. After producing
C code, the allocation of all clusters was calculated. A feasible schedule was then
generated. In the deployment tool a graphical representation of the scheduling
result is available. The result for the multi-node demonstrator can be seen in Fig-
ure 7.8. Since the mode automaton features three states, three different schedules
are created. These schedules are all identical until the mode automaton, shown
in blue, is executed. Depending on its result, either the manual control (normal),
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parking (parking), or side distance control mode (sdc active) is executed. The
system switches these schedules at runtime, as described in Section 5.6. The other
tasks shown in the schedule correspond to the equally named clusters from the
COLA model in Figure 7.7.

After some debugging of the functional model, using the model-level debugging
approach, the demonstrator showed the desired behavior. We will describe our
experiences with the logging of runtime data in the demonstrator, next.

7.3 Runtime Data-Logging

During development of the afore described multi-node demonstrator, the tracing
of actual data proved to be very helpful. An early version of the modeled system
did not behave as expected. Using model-level debugging, we were able to identify
several small faults in the model. One case, for example, was related to some
flipped channels in the model, thus forwarding data of the employed sensors to the
wrong inputs. Additionally, the generated values of the used infrared and ultrasonic
sensors were not as constant as assumed in the model. There where steps in the
measured distance values, even though the actual distance did not change. By
tracking actual data in the simulator, we were able to identify the problem and
add filters for these input values to the system model. The corresponding parking

cluster contained 115 units and was traced for 147 invocations, corresponding to
14.7 seconds. The generated trace file was 45 KByte in size. So the tracing of real-
time data showed to be a valuable addition, while producing moderate memory
consumption.

Figure 7.9 shows a screenshot of the COLA simulator during execution of a
trace from the multi-node demonstrator. The control panel on the left gives the
user the possibility to start, pause, and stop the replay of the loaded trace. In the
runtime configuration window a textual view of the model elements and their
current input and output values can be seen. An overview of all values captured
on the target platform can be seen in the trace window. On the right side of the
simulator interface a visualization of the runtime configuration is given. Here,
the input and output values are annotated next the according ports. The currently
active state of an automaton is marked yellow.

To give the user an impression of the target system’s environment during execu-
tion, another visualization window has been added to the simulator. In Figure 7.9
it shows the values of the demonstrator’s side distance sensors as red and yellow
lines, and its trajectory as a black line. The current position of the car is shown as
a small circle with an arrow indicating the current heading. This visualization of
environment is, of course, specific for every platform and has to be implemented,
accordingly. However, the implementation of the simulator makes this task easy
because of its clear structure, as has been described in [71].
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Visualization of runtime configurationVisualization of environment

Control panel Runtime configuration Trace

Figure 7.9: The COLA simulator executing a trace
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7.4 Chapter Summary

In this chapter we have presented two case studies which have been implemented
to prove the usability of the COLA approach.

The single-node demonstrator contained rather little functionality and its main
purpose was to showcase the generation of application code from a COLA model.
For the multi-node demonstrator with its bigger processing capacity, the more com-
plex task of autonomous driving and parking could be realized. This case study
posed the challenge to design a larger scale COLA model, which was valuable to
verify the scalability of COLA for larger systems. Further, the execution platform
of the multi-node demonstrator was composed of three processing units. Thus,
the distribution aspects of the COLA approach, like allocation, scheduling, and
platform configuration could be tested. After some refinement of the prototypical
COLA tool-chain and the underlying processes, the case study could be automat-
ically supplied with software as desired.

Finally, the concept of model-level debugging could be tested using the multi-
node case study. The concept demonstrated its value for the COLA process during
bug fixing of the case study’s application model.
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In this chapter we present a summary of the concepts and ideas presented in this
thesis. We will recapitulate in this context the main contributions of our work for
the COLA approach. Further, we want to discuss how the COLA approach could
be integrated into today’s development process. Finally, we want to present some
perspectives, how automotive development in general — and the COLA approach
in particular — might be improved for use with future automotive systems.

8.1 Summary

In this thesis we have shown the necessary steps to automatically generate an
executable automotive system from a COLA model. The COLA approach is a
novel MDD concept for the development of reliable automotive system software. In
contrast to other MDD concepts it features integrated modeling. Hence, it can be
employed throughout the entire development process of a distributed automotive
system [55]. Using the COLA language, transitions between process steps are
simplified due to the employment of a single modeling language. This absence
of gaps between different tools — which are the norm nowadays — avoids errors
which arise from porting data between tools. As a result, the systems designed
with COLA are of higher quality. This quality can be improved even further,
using model checking for COLA models. Due to its accurately defined semantics,
automated checks of systems modeled in COLA are made possible.
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In order to retain the model’s quality for the actual system, the concepts pre-
sented in this thesis have proved their utility during implementation of the case
studies. Using the described deployment process, an executable distributed system
is generated, which can be assumed to be correct by design. The automatic deploy-
ment concept includes generation of application code, allocation and scheduling of
tasks, and configuration of the target platform. This high degree of automation is
backed by a custom platform concept. Further, all platform information relevant
for the success of the automatic deployment may be modeled in COLA.

Using the wealth of information available in a COLA model additional benefits
can be derived. By combining all information available about task distribution,
execution timing, and communication, runtime data of the actual system may be
mapped back to the model. These data may be replayed in the model simulator
which facilitates debugging of the system at model-level. Another benefit is the
possibility to automatically generate fault-tolerant systems from the model.

We will recapitulate the benefits of our main contributions in the following:

Platform concept: In order to be suited as target for automatic deployment, the
platform has to fulfill some basic conditions. For the deployment of a COLA
model we proposed the use of a time-triggered platform. This includes the
employment of a polling mechanism for transmitting data between sensors and
actuators, and the application processor of each computing node. Further, the
operating system has to provide non-preemptive scheduling of tasks at pre-
defined points in time. Thus, system-wide scheduling plans can be executed
synchronously on all nodes of the distributed hardware platform.

On top of the operating system, a custom middleware has been designed for
the COLA deployment [53]. This middleware provides synchronization of a
global clock being used by the respective schedulers to determine the reference
time. In addition, the middleware features transparent communication for
the generated application code. Using the middleware’s API, a task is able
to exchange data with other tasks as well as with sensors and actuators. The
known API of the middleware simplifies generation of the application code.

We have proposed a graph structure, called cluster dependency graph, which
is used to capture the data dependencies between tasks of the system [84].
To this end the data paths modeled in COLA are analyzed. As a result, the
graph contains information about the execution order of tasks implied by the
model. Moreover, the graph is used to assign middleware addresses for use
by the tasks.

Platform modeling: A COLA model of the hardware platform is used as a guid-
ance for deployment. The outlined concept for modeling the platform is suited
to capture all information needed for this task. To this end the COLA Hard-
ware Architecture gives an abstract description of the platform’s topology
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consisting of computing nodes, buses, sensors, and actuators. By comprising
information about properties and capabilities of these components, suitable
allocation and scheduling solutions can be derived.

Generation of application code: Our application code generator produces C code
files for all tasks designed in the COLA model [58, 59]. Calls to the middle-
ware are used for communication with other tasks or the sensors and actuators
of the underlying platform. The code generator inserts these calls using the
addresses stored in the cluster dependency graph. In addition, the code gen-
erator inserts commands to load and store the internal state of tasks via the
middleware.

The result of this code generation is a set of code files comprising the ap-
plication tasks of the system. The code is independent of the location of its
execution, thanks to the use of our middleware. Hence, the assignment of
tasks to computing nodes can be defined in a subsequent step.

Allocation and Scheduling: Our deployment concept features automatic alloca-
tion and scheduling of generated tasks to computing nodes of the target plat-
form. This is achieved by calculating worst-case execution times and mem-
ory consumption for every generated task [129]. In addition, non-functional
requirements may be specified for the task. Using these information and
matching them with the platform model, a suitable allocation may be cal-
culated [85]. When an allocation has been found, it is checked for schedu-
lability. This process is repeated until a valid combination of allocation and
system schedule has been found. The developer is informed if the allocation
or scheduling problem can not be solved for the given combination of software
and hardware model.

During the allocation step the cluster dependency graph is updated with the
calculated mapping of tasks to computing nodes. The scheduling algorithm
uses this information to derive end-to-end runtimes for applications consisting
of several communicating tasks.

Automatic platform configuration: Existing code generation concepts are usually
limited to producing a centralized system. In contrast, the concept presented
in this thesis, aims at the generation of distributed systems. To this end,
generation of application code is not sufficient. The configuration of the
platform also has to be addressed to provide integration of the tasks allocated
to different nodes of the system. In this work we have shown how to derive a
platform configuration from a COLA model.

Using the proposed platform configuration concept, it is not only possible
to execute a fixed set of tasks. Rather, operating modes may be defined
in the model, which are changed synchronously in the actual system [56].
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These changes are achieved by using the middleware to communicate changes
of the current operating mode. The schedules of all computing nodes are
then changed synchronously, thus activating another set of tasks for the new
operating mode.

Model-level debugging: As an addition to the basic deployment concept, we have
proposed model-level debugging [54]. This add-on facilitates the capturing of
input and output data as well as the internal states of tasks on the target plat-
form. Hence, actual runtime data are available for debugging. Our concept
allows the import of these data into the COLA model simulator [71]. Con-
sequently, an execution of the system on the target platform can be replayed
in the simulator.

The concept is an addition to classical remote debugging and low-level de-
bugging mechanisms. If used consistently, error-prone manual changes to the
code can be avoided. Further, if debugging is carried out in the model, target
system and model are always kept synchronous. This eases the implementa-
tion of extensions and the re-use of the model.

Fault tolerance modes: We have outlined another extension to the deployment
concept in form of generating fault tolerance modes [57]. According to the
concept, a fault tolerance mode is essentially a special case of an operating
mode.

To switch into a fault tolerance mode if necessary, the middleware continu-
ously monitors the communication between the computing nodes of the sys-
tem. If a node fails to deliver an anticipated message, the middleware assumes
this node to have failed. Hence, it initiates a change into the according fault
tolerance mode. In that mode, the safety-critical tasks which have previously
been executed on the now failed node are relocated to another node. This
can be achieved by allocating the tasks redundantly during deployment and
activating a suitable schedule at runtime. The developer may specify which
tasks are safety-critical in the model. As a result, during deployment these
tasks are allocated and scheduled redundantly.

Using the proposed deployment concepts leads to a higher quality system which
complies with the COLA specification. While the integrated character of COLA
helps avoiding errors during system specification, the deployment concept is suited
to prevent errors during implementation of the modeled design.

8.2 Discussion

Talking of MDD for automotive systems, one concept that comes to mind natu-
rally is AUTOSAR. Just like the COLA approach, AUTOSAR provides a means
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of modeling an automotive system and proposes a platform concept as well. AU-
TOSAR differs, however, from the COLA approach regarding its main purpose.
AUTOSAR modeling is limited to the design of a software system’s architecture,
while COLA also facilitates modeling of requirements and functionality. This lim-
itation of AUTOSAR has one reason: it is targeted at today’s typical development
process. This process is based on a distribution of labor between automotive OEM
and suppliers.

While the OEM specifies the desired automotive system, suppliers develop black
boxes of software and hardware with the specified functionality. These black boxes
are then integrated by the OEM into a complete system. The intellectual property
contained in the ECUs remains in the majority of cases with the supplier. This lack
of knowledge makes integration for the OEM tedious and time consuming. To ease
the integration of subsystems for the OEM, AUTOSAR enables the modeling of
interfaces between the different components. This results in better compatibility of
the different subsystems and, hence, easier integration. Further, as several OEMs
adopted the AUTOSAR standard, it allows the suppliers to deliver an already
implemented function to several OEMs without major changes.

The COLA approach, in contrast, does not yet adhere to the described develop-
ment process. To take full advantage of the COLA approach, it is necessary to have
a complete model of the overall automotive system including its functionality. As a
benefit model-checking and analyses necessary for automatic deployment can take
place. If the COLA concept would be used in the relationship described above, all
parties would have to integrate their work into a single COLA model. But as a
side effect, the suppliers’ knowledge would be disclosed to everyone who has access
to the model. This distribution of information is, of course, neither desired by the
OEM nor the suppliers. Thus, the use of COLA would either require a change in
the relationship between OEM and suppliers, or the COLA approach needs to be
modified to fit the actual development process.

As a solution to the described issue, we propose the use of a central database for
the COLA model. This database should restrict access of all parties to only their
part of the system. Confidentiality of the data could be ensured, if the database
would be hosted by a dedicated third party. This carrier is only responsible for stor-
ing data and not involved in the system design. The COLA tools for model check-
ing, simulation, and deployment are then also executed on the central database.
Thus, they have access to the entire system model. Results produced by the tools
are then forwarded by the carrier to the respective developer.

Another open issue in the COLA approach is the quality of the platform software.
With all application and configuration code generated, operating system, drivers,
and middleware remain the only parts of the system which are coded manually.
Compared to the applications, these parts remain relatively stable over several
models or generations of cars. Still, special care has to be taken during their
implementation and thorough testing is advisable.
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8.3 Perspectives

The automotive industry has experienced, and still is experiencing, a huge shift
towards the use of distributed embedded computing systems. Today, these systems
are responsible for a good amount of innovations in automobiles. This situation
demands automotive OEMs to become — at least to a certain point — software
producers. Otherwise exclusivity of new functionality is difficult to guarantee.
The COLA approach could be a welcome solution to this requirement. Using its
concepts, automotive systems can be designed which are at the same time capable
and of high quality. It is well suited to enrich the requirements modeling already
carried out by the OEM with a functional design of the system.

To simplify development using COLA, the definition of ready-to-use networks
and automata would be desirable. These networks and automata could implement
functions which are used over and over again in control engineering. Typical ex-
amples are data conversions, PID controllers, etc. Providing such units in form of
a library would speed up the development process.

Reducing the number of computing nodes in automotive systems seems to be
only a question of time. The resulting hardware platform will consist of few high-
performance nodes and high-speed busses connecting them. Guaranteeing deadlines
in face of a huge number of tasks and messages competing for resources demands
tool support for allocation and scheduling. Comprehensive modeling concepts like
COLA are able to meet this demand.

The availability of an overall system model helps designing comprehensive func-
tionality. Saving energy is a recent topic for automotive systems. This can only be
achieved, if all nodes of the system cooperate in switching to low energy states or
shutting down parts of the network. Comprehensive knowledge about the system
is a must to avoid faults in such an energy-aware system. Using the COLA de-
ployment, low energy operating modes could be defined, which are then generated
from the model automatically. The current deployment approach is already able to
adapt the executed schedule accordingly. At platform level, the operating system
and middleware would be required to provide a mechanism for shutting down parts
of the hardware. Then the change into an energy saving mode could also trigger
the necessary power saving mechanisms of the underlying hardware.

Another possible extension of the deployment concept would be a wider coverage
of code generation. As mentioned above, the manually coded parts of the system
are prone to contain errors. From the information available in a COLA model, it
would be reasonable to generate the middleware. As a result, some flexibility is lost
regarding the addition of applications in an already deployed system. On the other
hand the resulting code is eventually smaller because it only contains instructions
for the respective node the middleware instance is generated for. And, of course,
the risk of coding errors is decreased.
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ABS Anti-Lock Braking System

ACC Adaptive Cruise Control

AST Abstract Syntax Tree

AUTOSAR Automotive Open Systems Architecture

CAN Controller Area Network

CDG Cluster Dependency Graph

CNI Communication Network Interface

EAST-ADL Electronics Architecture and Software Technology - Architecture De-
scription Language

ECU Electronic Control Unit
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