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Asian options on a single asset under a jump-diffusion model can be
priced by solving a partial integro-differential equation (PIDE). We con-
sider the more challenging case of an option whose payoff depends on
a large number (or even a continuum) of assets. Possible applications
include options on a stock basket index and electricity contracts with a
delivery period. Both of these can be modeled with an exponential, time-
inhomogeneous, Hilbert space valued jump-diffusion process. We derive
the corresponding high- or even infinite-dimensional PIDE for Asian op-
tion prices in this setting and show how to approximate it with a low-
dimensional PIDE. To this end, we employ proper orthogonal decomposi-
tion (POD) to reduce the dimension. We generalize the convergence results
known for European options to the case of Asian options and give an esti-
mate for the approximation error.

1 Introduction

It is well known that the price of an Asian option on a single asset driven by a ge-
ometric Brownian motion is the solution of a partial differential equation [15]. This
equation depends on two space variables, the value of the underlying and its average
up to the current time. If we add jumps to the model, we obtain an additional integral
term which yields a partial integro-differential equation (PIDE). In fact, there are sev-
eral ways to derive such a PIDE. Using clever parametrizations, it is possible to obtain
a PIDE with only one space variable [18].

The PIDEs corresponding to Asian options in general cannot be solved analytically.
They are, however, the basis for numerical pricing methods. Using appropriate al-
gorithms, the PIDEs can be solved in a numerically stable way, see [19, 6] and the
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references therein. For an overview of methods for pricing Asian options, we refer
to [17].

In the present article, we consider arithmetic average Asian options depending on
more than one underlying asset. More precisely, we will use the time-inhomogeneous,
Hilbert space valued jump-diffusion model introduced in [10]. This is a quite general
approach suitable for a wide range of applications. We may, e.g., price Asian options
written on an index depending on a large basket of stocks. In this case, we would
choose the Hilbert space to be finite-dimensional, the dimension equals to the num-
ber of stocks. There are, however, also markets in which the option depends on a
continuum of assets. This happens, among others, in electricity markets. Electricity
option payoffs depend on the forward curve of prices which can be modeled with a
function-valued process [8]. We discuss our model and the driving stochastic process,
which is applicable to both stock baskets and electricity contracts, in Section 2.

Introducing the arithmetic average as an additional space variable, the option price
can be written as a function of time, the average value, and the Hilbert space val-
ued variable describing the state of the underlying assets. This is a high-dimensional
(possibly infinite-dimensional) object. The main objective of this article is to derive a
low-dimensional PIDE which approximates the option price. To this end, we gener-
alize the dimension reduction method for European options presented in [9] to Asian
options. The reduction is based on proper orthogonal decomposition (POD) and uses
a similar idea as principal component analysis. In Section 3, we first describe the POD
method for Asian options in detail. Then, we derive the low-dimensional PIDE satis-
fied by the approximated price process. We show convergence of the PIDE solution
to the true value of the Asian option in Theorem 3.9, which is the main result of this
paper. The numerical solution of the PIDE is beyond the scope of this article. This
will be a topic for future research. All the results presented here are also applicable to
European options as a special case.

2 Hilbert Space Valued Jump-Diffusion

In this section, we state our market model. We first define the driving stochastic pro-
cess, a time-inhomogeneous Hilbert space valued jump-diffusion. Then, we construct
the exponential of this process, which we will use to model the underlying assets.
Finally, we discuss the payoff of an Asian option.

2.1 Driving Stochastic Process

Since we consider Hilbert space valued processes, we will make use of infinite-dimen-
sional stochastic analysis. For a definition of integrals with respect to Hilbert space
valued Brownian motion see, e.g., [5, 11]. An overview of Poisson random measures
in Hilbert spaces can be found in [7], the case of Lévy processes is treated in [13].

Let (D,FD, µD) be a finite measure space. We consider the separable Hilbert space

H := L2(D; µD).
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For every h ∈ H, we denote the corresponding norm by

‖h‖H :=
√∫

D

[
h(u)

]2
µD(u).

This is the state space for the underlying assets of the Asian option. To model, e.g., a
basket of stocks, we could choose a discrete set D, with ‖·‖H denoting the Euclidean
norm. For a continuum of assets, on the other hand, we may consider a compact
interval D ⊂ R and the Lebesgue measure µD.

We assume that our model is stated under the risk neutral measure. The driving
stochastic process for our model is the H-valued process

(1) Xt :=
∫ t

0
γs ds +

∫ t

0
σs dW(s) +

∫ t

0

∫
H

ηs(ξ) M̃(dξ, ds), t ≥ 0.

The diffusion part is driven by an H-valued Wiener process W whose covariance is a
symmetric nonnegative definite trace class operator Q. The jumps are characterized
by M̃, the compensated random measure of an H-valued compound Poisson process

Jt =
Nt

∑
i=1

Yi, t ≥ 0,

which is independent of W. Here, N denotes a Poisson process with intensity λ and
Yi ∼ PY (i = 1, 2, . . .) are iid on H (and independent of N). The corresponding Lévy
measure is denoted by ν = λPY. We denote by L(H, H) the space of all bounded linear
operators on H. We assume the drift γ : [0, T]→ H, the volatility σ : [0, T]→ L(H, H),
and the jump dampening factor η : [0, T] → L(H, H) to be deterministic functions.
Let further (Ω, (Ft)t∈[0,T]) be the filtered measurable space on which the risk neutral
measure is defined, with the natural filtration (Ft)t∈[0,T] generated by X. We make the
following assumption, which is similar to the finite-dimensional moment conditions
in [16, sec. 25].

Assumption 2.1. We assume that the second exponential moment of the jump distribution Y
exists:

E[e2‖Y‖H ] =
∫

H
e2‖ξ‖H PY(dξ) < ∞.

We assume further γ ∈ L2(0, T; H), σ ∈ L2(0, T; L(H, H)), and

‖ηt‖L(H,H) ≤ 1 for every t ∈ [0, T].

In a finite-dimensional setting (dim H < ∞), the value of each underlying asset at
time t ≥ 0 is modeled by the exponential of one component of the driving process X,

(2) Si(t) = Si(0) eXi(t) ∈ R, i = 1, . . . , dim H,
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where Si(0) ∈ R denotes the initial value. For a generalization of the exponential to
an infinite-dimensional Hilbert space, let {ek}k∈N be an orthonormal basis of H. We
then define

(3) St := ∑
k∈N

〈S0, ek〉H e〈Xt,ek〉H ek ∈ H,

for t > 0, with the initial value S0 ∈ H. While it might not be obvious that St is an
element of H again, this is indeed a consequence of Assumption 2.1, see [8, Thm. 2.2].
Note that this definition reproduces (2) in the finite-dimensional case, if we choose ei
to be standard unit vectors.

2.2 Value of an Asian Option

Before we can define the value of an arithmetic average Asian option, we need to
clarify what exactly average is supposed to mean in our Hilbert space valued setting.
Consider the application of our model to a basket of stocks. An index on such a basket
is basically a weighted sum of the individual stock values. The Asian option is then
written on the time-average of this sum. The weight factors are nothing more than a
linear mapping working on the vector of asset prices. More generally, we consider an
arbitrary bounded linear mapping w : H → R, which we identify with w ∈ H by the
representation theorem of Fréchet–Riesz. The arithmetic average up to time t > 0 is
then given by

(4) At :=
1
t

∫ t

0
〈w, Su〉H du ∈ R.

Using the Jensen inequality, the Cauchy–Schwarz inequality, and Fubini’s theorem, we
obtain

E
[
A2

t
]
=

1
t2 E

[(∫ t

0
〈w, Su〉H du

)2
]
≤ 1

t2 ‖w‖
2
H

∫ t

0
E ‖Su‖2

H du.

This expression is finite by [8, Thm. 2.2]. Hence, the average is a well defined random
variable in L2(Ω) for t > 0. The defining equation (4) is, however, not valid for t = 0.
Intuitively,

(5) A0 := 〈w, S0〉H

is the obvious continuation for A. The following theorem shows that this is indeed the
correct choice.

Proposition 2.2. The following convergence holds almost surely:

lim
t→0

At = 〈w, S0〉H .
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Proof. Using the definition of A, we find

(6) |At − 〈w, S0〉H | ≤
1
t

∫ t

0
|〈w, Su − S0〉H | du.

In order to find a bound for 〈w, Su − S0〉H, we consider the driving process X. From
the proof of [10, Thm. 2.2], we know that

E ‖Xt‖2
H ≤

∫ t

0

(
‖γs‖2

H + (tr Q) ‖σs‖2
L(H,H) + C

∫
H
‖ηs(ξ)‖2

H ν(dξ)
)

ds.

Thus, limt→0 ‖Xt‖H = 0 in L2(Ω). Consequently, there is a sequence {tn}n∈N ⊂ R+

satisfying limn→∞ tn = 0 such that almost surely

lim
n→∞
‖Xtn‖H = 0.

Moreover, almost surely there exists δ > 0 such that the path of X is continuous in
[0, δ). Consequently, we have almost surely

lim
t→0
‖Xt‖H = 0.

Due to the Cauchy–Schwarz inequality, this yields almost surely limt→0 〈Xt, ek〉H = 0
and thus

lim
t→0

e〈Xt,ek〉H = 1

uniformly in k. Hence, we have almost surely

|〈w, St − S0〉H | = ∑
k∈N

〈S0, ek〉H 〈w, ek〉H
(

e〈Xt,ek〉H − 1
)
→ 0 for t→ 0.

We apply this limit to (6) and the proof is complete.

Let T > 0 be the maturity of an Asian option. By definition, the value of the option
depends on AT. In addition, it may depend on the state ST of the underlying at
maturity, e.g., in the case of a floating strike. The state ST in turn is a function of
the driving process XT, defined in (3). It turns out that in view of the dimension
reduction methods which we will discuss in Section 3 it is useful to introduce the
centered process

(7) Zt := Xt − E[Xt], t ≥ 0.

Hence, St = St(Zt) is completely determined by Zt. We can write it as the function

(8) St :

{
H → H,

z 7→ ∑k∈N 〈S0, ek〉H e〈
∫ t

0 γ(u) du+z, ek〉H ek.
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We denote the value of the option at time t ∈ [0, T], discounted to time 0, by

(9) V̂(t, z, a) := e−rTE[G(ZT, AT)
∣∣Zt = z, At = a] for every z ∈ H, a ∈ R.

This is the conditional expectation of the payoff G : H ×R → R at maturity T given
the current state z ∈ H of the underlying assets and the average a ∈ R. We make the
following assumption concerning the payoff.

Assumption 2.3. We assume that there are constants LG
z and LG

a such that the payoff function
G satisfies the Lipschitz conditions

|G(z1, a)− G(z2, a)| ≤ LG
z ‖z1 − z2‖H for every z1, z2 ∈ H, a ∈ R,

|G(z, a1)− G(z, a2)| ≤ LG
a |a1 − a2| for every z ∈ H, a1, a2 ∈ R.

Note that this assumption is satisfied, e.g., for Asian call and put options on AT with
fixed or floating strike.

Similar to the finite-dimensional case, the option value V̂ satisfies a PIDE. In order to
derive this PIDE in the Hilbert space valued setting, we need H-valued generalizations
of two concepts: covariances and derivatives. Covariance matrices are replaced by co-
variance operators which can be interpreted as possibly infinite dimensional matrices.
By [10, Thm. 2.4],

(10) CXT :

{
H → H′,
h 7→ E

[
〈XT − E[XT], h〉H 〈XT − E[XT], ·〉H

]
is a well defined, symmetric, nonnegative definite trace class operator (and thus com-
pact). We are particularly interested in the subspace of H where CXT is strictly pos-
itive definite, i.e., the orthogonal complement of its kernel. We denote this space by
E0(CXT )

⊥ (E0 denoting the eigenspace corresponding to eigenvalue 0).
Furthermore, we denote by DzV̂(t, z, a) ∈ L(H, R) the Fréchet derivative of V̂ at

(t, z, a) ∈ [0, T] × H × R with respect to z. The second derivative is D2
zV̂(t, z, a) ∈

L(H, H). The derivatives are continuous linear operators such that for every t ∈ [0, T],
z ∈ H, and a ∈ R we have

V̂(t, z + ζ, a) = V̂(t, z, a) + [DzV̂(t, z, a)](ζ) +
1
2

〈
[D2

zV̂(t, z, a)](ζ), ζ
〉

H
+ o(‖ζ‖2

H)

for every ζ ∈ H. It is often convenient to identify D2
zV̂(t, z, a) with a bilinear form on

H × H, setting

[D2
zV̂(t, z, a)](ζ1, ζ2) :=

〈
[D2

zV̂(t, z, a)](ζ1), ζ2

〉
H

for every ζ1, ζ2 ∈ H.

The one-dimensional partial derivatives of V̂ with respect to time and average are
denoted by ∂tV̂ and ∂aV̂, respectively. We can now state the Hilbert space valued PIDE
for V̂. We denote the trace operator by tr(·), and the adjoint operator of σt ∈ L(H, H)
by σ∗t .
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Theorem 2.4. Suppose that the discounted price V̂ defined in (9) is continuously differentiable
with respect to t and twice continuously differentiable with respect to z and a. Moreover,
assume that the second derivative with respect to z restricted to an arbitrary bounded subset of
H is a uniformly continuous mapping to the Hilbert–Schmidt space LHS(H, H). Then V̂ is a
classical solution of the PIDE

−∂tV̂(t, z, a) =
1
2

tr
(

D2
zV̂(t, z, a)σtQσ∗t

)
+

1
t
(〈w, St(z)〉H − a) ∂aV̂(t, z, a)

+
∫

H

[
V̂(t, z + ηt(ζ), a)− V̂(t, z, a)−

[
DzV̂(t, z, a)

]
ηt(ζ)

]
ν(dζ)

(11)

with terminal condition

V̂(T, z, a) = e−rTG (z, a)

for every t ∈ (0, T), z ∈ E0(CXT )
⊥, and a ∈ R.

Proof. The proof is very similar to the one of [8, Thm. 4.5]. Applying Itô’s formula for
Hilbert space valued processes [13, Thm. D.2] to V̂(t, Zt, At), t > 0, yields

V̂(t, Zt, At) =

V̂(0, Z0, A0) +
∫ t

0
∂tV̂(u−, Zu−, Au−) du +

∫ t

0
DzV̂(u−, Zu−, Au−) dZu

+
∫ t

0
∂aV̂(u−, Zu−, Au−) dAu +

1
2

∫ t

0
D2

zV̂(u−, Zu−, Au−) d[Z, Z]cu

+ ∑
0≤u≤t

[
V̂(u, Zu, Au)− V̂(u−, Zu−, Au−)−

[
DzV̂(u−, Zu−, Au−)

]
(Zu − Zu−)

]
,

(12)

where [Z, Z]c denotes the continuous part of the square bracket process as defined in
[13]. Note that the average process A is continuous and of finite variation. Hence, the
jump part of the equation does not contain the partial derivative ∂aV̂. For the same
reason, the square bracket processes [A, A] and [A, Z] do not occur in the equation.

We first simplify the covariation term. By the properties of quadratic variations for
real-valued processes and [5, Cor. 4.14], we obtain

[Z, Z]ct = ∑
i,j∈N

ei ⊗ ej
[
Xc

i , Xc
j
]

t

= ∑
i,j∈N

ei ⊗ ej

[〈∫ ·
0

σu dWu, ei

〉
H

,
〈∫ ·

0
σu dWu, ej

〉
H

]
t

= ∑
i,j∈N

ei ⊗ ej

( ∫ t

0

〈[
σuQσ∗u

]
ej, ei

〉
H du

)
,

where ei ⊗ ej denotes the tensor product of the two basis elements (compare also the
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proof of [8, Lemma 4.4]). Thus, we get∫ t

0
D2

zV̂(u−, Zu−, Au−) d[Z, Z]cu

=
∫ t

0
∑

i,j∈N

[
D2

zV̂(u−, Zu−, Au−)
]
(ei, ej)

〈[
σuQσ∗u

]
ej, ei

〉
H du

=
∫ t

0
∑
j∈N

[
D2

zV̂(u−, Zu−, Au−)
]([

σuQσ∗u
]
ej, ej

)
du

=
∫ t

0
tr
(

D2
zV̂(u−, Zu−, Au−)σuQσ∗u

)
du.

Next we calculate dAu. By definition (4) of A we have

〈w, Su〉H du = d(uAu) = Audu + udAu.

Hence, we obtain

dAu =
1
u
(〈w, Su(Zu)〉H − Au) du.

Finally, we reorganize the jump terms in (12) exactly in the same way as in the proof
of [8, Lemma 4.4]. The result is

dV̂(t, Zt, At) =

∂tV̂(t−, Zt−, At−)dt +
1
2

tr
(

D2
zV̂(t−, Zt−, At−)σtQσ∗t

)
dt

+
1
t
(〈w, St(Zt−)〉H − At−) ∂aV̂(t−, Zt−, At−) dt

+
∫

H

[
V̂(t, Zt− + ηt(ζ), At−)− V̂(t−, Zt−, At−)− DzV̂(t−, Zt−, At−)ηt(ζ)

]
ν(dζ) dt

+ DzV̂(t−, Zt−, At−)σt dWt

+
∫

H

[
V̂(t, Zt− + ηt(ζ), At−)− V̂(t−, Zt−, At−)

]
M̃(dζ, dt).

The last two summands in this equation are local martingales by definition of the
stochastic integral [13, Thms. 8.7,8.23]. Due to the fact that continuous local martin-
gales of finite variation are almost surely constant [14, Ch. II,Thm. 27], the sum of the
remaining integral terms must equal 0. This yields the PIDE.

3 Approximate Pricing with POD

The PIDE derived in the previous section depends on H-valued objects. In order to
obtain a lower-dimensional equation which allows for a numerical solution, we reduce
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the dimension using POD. The basic idea is to find a small set of orthonormal vectors
in H which allow for an accurate approximation of the state St of the underlying
assets for every t ∈ [0, T]. The POD method has been discussed in [9] in the context
of European options. We generalize the approach to Asian options. In particular, we
state an error estimate for the solution of the approximating equation.

3.1 POD for the Driving Process

We start with an approximation of the centered driving process Z at maturity T > 0.

Definition 3.1. A sequence of orthonormal elements {pl}l∈N ⊂ H is called a POD-basis for
ZT, if it solves the minimization problem

min
〈pi ,pj〉H

=δij

E
∥∥∥ZT −

d

∑
l=1

pl 〈ZT, pl〉H
∥∥∥2

H

for every d ∈N.

In other words, a POD basis is a set of deterministic orthonormal functions such
that we expect the projection of the random vector ZT = XT − E[XT] ∈ H onto the
first d elements of this basis to be a good approximation. Projecting to a POD basis
is equivalent to using the partial sum of the first d elements of a Karhunen–Loève ex-
pansion, which itself is closely connected to the eigenvector problem of the covariance
operator CXT defined in (10). The following proposition is quoted from [10, Thm. 3.3].
It shows that the eigenvectors of CXT are indeed a POD basis.

Proposition 3.2. Every sequence of orthonormal eigenvectors (pl)l∈N of the operator CXT ,
ordered by descending size of the corresponding eigenvalues µ1 ≥ µ2 ≥ ... ≥ 0, solves the
maximization problem

max
〈pi ,pj〉H

=δij

d

∑
l=1
〈CXT pl , pl〉H

for every d ∈ {1, 2, . . . , dim H}. The maximum value is

d

∑
l=1
〈CXT pl , pl〉H =

d

∑
l=1

µl .

Moreover, the eigenvectors are a POD basis in the sense of Definition 3.1, and the expectation
of the projection error is

(13) E
∥∥∥ZT −

d

∑
l=1

pl 〈ZT, pl〉H
∥∥∥2

H
=

dim H

∑
l=d+1

µl .

Subsequently, let (pl)l∈N and (µl)l∈N denote the orthonormal basis and eigenvalues
from Proposition 3.2. Further, let

Ud := span{p1, p2, . . . , pd} ⊂ H
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be the d-dimensional subspace spanned by the eigenvectors corresponding to the
largest eigenvalues. We will assume that µ1 ≥ . . . ≥ µd > 0, as there is no need
to include eigenvectors of the covariance operator corresponding to eigenvalue 0. We
define the projection operator

Pd :

{
H → Ud

∼= Rd,
z 7→ ∑d

l=1 〈z, pl〉H pl .

Hence, we can rewrite (13) as

E
∥∥ZT −PdZT

∥∥2
H =

dim H

∑
l=d+1

µl .

Whenever necessary, we will identify Ud with Rd via the isometry

ι :

{(
Ud, ‖·‖H

)
→
(
Rd, ‖·‖

)
,

x 7→ (〈x, pl〉H)
d
l=1 .

So far, we have approximated the value of Z only at time T. It turns out, however,
that this is indeed sufficient to obtain small projection errors for arbitrary t ∈ [0, T].

Proposition 3.3. Let Z be the centered jump-diffusion defined in (7). For every t ∈ [0, T], we
have

(14) E
[
‖Zt −PdZt‖2

H

]
≤

dim H

∑
l=d+1

µl .

Proof. This is a direct consequence of the independent increments of Z. Using the
Pythagorean theorem, we obtain

E ‖ZT −PdZT‖2
H = E ‖Zt −PdZt + (ZT − Zt)−Pd(ZT − Zt)‖2

H

= E ‖Zt −PdZt‖2
H + E ‖(ZT − Zt)−Pd(ZT − Zt)‖2

H

≥ E ‖Zt −PdZt‖2
H .

Applying Proposition 3.2 yields (14).

Consequently, it is not necessary to change Definition 3.1 in order to approximate
the whole path Zt, t ∈ [0, T]. This is due to the fact that by approximating ZT, we
obviously capture also the events up to time T. In the time-homogeneous case, we
even obtain the following t-dependent equality.

Proposition 3.4. Let Z be the centered jump-diffusion defined in (7). Suppose Z is a time-
homogeneous jump-diffusion process, i.e., σ and η in (1) do not depend on t. For every t ∈
[0, T], we then have

(15) E ‖Zt −PdZt‖2
H =

t
T

dim H

∑
l=d+1

µl .
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Proof. Due to i.i.d. increments, the covariance operator of Z(t) is given by

CXt =
t
T
CXT .

Hence, the eigenpairs of CXt are given by ( t
T µl , pl), l ∈ N. Applying Proposition 3.2

(setting T = t) yields (15).

3.2 POD for the Average

Besides the centered driving process Z, the payoff G of the Asian option also de-
pends on the average process A which is a function of the exponential S. Thus, to
approximate (11) with a low-dimensional PIDE, we need to show that A and S can be
accurately represented with the POD basis as well. To this end, recall that S is defined
as a deterministic function of Z by (8). If we apply this function to PdZt for arbitrary
t ∈ [0, T], we obtain

St(PdZt) = ∑
k∈N

〈S0, ek〉H e〈
∫ t

0 γ(u) du+PdZt, ek〉H ek ∈ H.

The following theorem is the central part of generalizing the POD method to Asian
options.

Theorem 3.5. There is a constant C > 0 (depending on T) such that

E
∣∣∣〈w, St(Zt)〉H − 〈w, St(PdZt)〉H

∣∣∣ ≤ C ‖w‖H

(
dim H

∑
l=d+1

µl

) 1
2

for every t ∈ [0, T].

Proof. From the definition of St, we get

E
∣∣∣〈w, St(Zt)〉H − 〈w, St(PdZt)〉H

∣∣∣
= E

∣∣∣∣∣∑k∈N

〈w, ek〉H 〈S0, ek〉H
(

e〈
∫ t

0 γ(u) du+Zt, ek〉H − e〈
∫ t

0 γ(u) du+PdZt, ek〉H

)∣∣∣∣∣
≤ E ∑

k∈N

∣∣∣〈w, ek〉H 〈S0, ek〉H e
∫ t

0 〈γ(u), ek〉Hdu
(

e〈Zt, ek〉H − e〈PdZt, ek〉H
)∣∣∣ .

(16)

For the term depending on γ, we use Assumption 2.1 and obtain∣∣∣∣∫ t

0
〈γ(u), ek〉H du

∣∣∣∣ ≤ ∫ t

0
‖γ(u)‖H du ≤ C1

(∫ t

0
‖γ(u)‖2

H du
) 1

2

≤ C2,

with positive constants C1, C2 depending on T but not on t. Next, we apply the mean-
value theorem to the exponential function and make use of the self-adjointness of the
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projection operator Pd for the estimate∣∣∣e〈Zt, ek〉H − e〈PdZt, ek〉H
∣∣∣ ≤ emax{〈Zt, ek〉H ,〈PdZt, ek〉H} |〈Zt −PdZt, ek〉H |

≤ emax{〈Zt, ek〉H ,〈Zt,Pdek〉H} ‖Zt −PdZt‖H

for every k ∈N. Inserting these results into (16) and using the monotone convergence
theorem yields

E
∣∣∣〈w, St(Zt)〉H − 〈w, St(PdZt)〉H

∣∣∣
≤ C ∑

k∈N

|〈w, ek〉H 〈S0, ek〉H | E
[
emax{〈Zt, ek〉H ,〈Zt,Pdek〉H} ‖Zt −PdZt‖H

]
.

With the Cauchy–Schwarz inequality, we find

E
∣∣∣〈w, St(Zt)〉H − 〈w, St(PdZt)〉H

∣∣∣
≤ C ∑

k∈N

|〈w, ek〉H 〈S0, ek〉H |
(

E
[
e2 max{〈Zt, ek〉H ,〈Zt,Pdek〉H}

]) 1
2
(

E ‖Zt −PdZt‖2
H

) 1
2

.

For the first expectation, we use [8, Proposition. 2.3]:

E
[
e2 max{〈Zt, ek〉H ,〈Zt,Pdek〉H}

]
= E

[
max{e〈Zt,2ek〉H , e〈Zt,2Pdek〉H}

]
≤ E

[
e〈Zt,2ek〉H + e〈Zt,2Pdek〉H

]
≤ C3eC4T

with constants C3, C4. The Cauchy–Schwarz inequality in l2(N) yields the following
bound for the remaining sum in k:

∑
k∈N

|〈w, ek〉H 〈S0, ek〉H | ≤ ‖w‖H ‖S0‖H .

By Proposition 3.3, we thus get

E
∣∣∣〈w, St(Zt)〉H − 〈w, St(PdZt)〉H

∣∣∣ ≤ C ‖w‖H ‖S0‖H

(
E ‖Zt −PdZt‖2

H

) 1
2

≤ C ‖w‖H ‖S0‖H

(
dim H

∑
l=d+1

µl

) 1
2

.
(17)

Although St(PdZt) is still an element of the possibly infinite-dimensional Hilbert
space H, it can be computed from the d-dimensional object PdZt. This makes the ap-
proximation suitable for numerical computations. Similar to (4), we define the arith-
metic average corresponding to St(PdZt) by

Ad
t :=

1
t

∫ t

0
〈w, Su(PdZu)〉H du ∈ R

12



for t > 0. Similar to (5), we set

Ad
0 := 〈w, S0(PdZ0)〉H = 〈w, S0〉H .

We find the following estimate for the approximation error.

Corollary 3.6. There is a constant C > 0 (depending on T) such that

E
∣∣∣At − Ad

t

∣∣∣ ≤ C ‖w‖H

(
dim H

∑
l=d+1

µl

) 1
2

for every t ∈ [0, T].

Proof. By definition, Ad
0 = A0. For t > 0, we have

E
∣∣∣At − Ad

t

∣∣∣ = 1
t

E
∣∣∣∣∫ t

0
〈w, Su(Zu)− Su(PdZu)〉H du

∣∣∣∣
≤ 1

t
E
[∫ t

0
|〈w, Su(Zu)− Su(PdZu)〉H | du

]
.

Using Fubini’s theorem and applying Theorem 3.5 yields

E
∣∣∣At − Ad

t

∣∣∣ ≤ 1
t

∫ t

0
E |〈w, Su(Zu)− Su(PdZu)〉H | du

≤ 1
t

∫ t

0
C ‖w‖H

(
dim H

∑
l=d+1

µl

) 1
2

du.

Since the integrand does no longer depend on the integration variable u, the proof is
complete.

As before, we obtain an t-dependent estimate for the approximation error in the time-
homogeneous case.

Corollary 3.7. Suppose that Z is a time-homogeneous jump-diffusion process. Then there is a
constant C > 0 (depending on T) such that

E
∣∣∣At − Ad

t

∣∣∣ ≤ C ‖w‖H

√
t
T

(
dim H

∑
l=d+1

µl

) 1
2

for every t ∈ [0, T].

Proof. We apply Propostion 3.4 to equation (17) in the proof of 3.5 to obtain

E
∣∣∣〈w, St(Zt)〉H − 〈w, St(PdZt)〉H

∣∣∣ ≤ C ‖w‖H ‖S0‖H

√
t
T

(
dim H

∑
l=d+1

µl

) 1
2

.

13



We proceed as in the proof of Corollary 3.6 and find

E
∣∣∣At − Ad

t

∣∣∣ ≤ 1
t

∫ t

0

√
u
T

C ‖w‖H

(
dim H

∑
l=d+1

µl

) 1
2

du.

Since

1
t

∫ t

0

√
u
T

du =
2
3

√
t
T

,

the proof is complete.

3.3 Approximate Pricing

In the previous sections, we have seen how to approximate the processes on which
the payoff G of the Asian option depends, the centered process Z, and the average A.
Now, we use these results to find a finite-dimensional approximation of the discounted
option value V̂. For t ∈ [0, T], we define

(18) V̂d(t, z, a) := e−rTE[G(PdZT, Ad
T)
∣∣PdZt = z, Ad

t = a] for every z ∈ Ud, a ∈ R.

In contrast to the definition of V̂ in (9), the payoff is applied to the projected random
variables PdZT and Ad

T here instead of ZT and AT. Thus, V̂d is defined on the finite
dimensional domain [0, T]×Ud×R which allows for numerical discretization. Similar
to Theorem 11, we find that V̂d satisfies a PIDE. The PIDE is finite-dimensional.

Theorem 3.8. Suppose that the approximated option value V̂d defined in (18) is continuously
differentiable with respect to t and twice continuously differentiable with respect to z and a.
Then V̂d is a classical solution of the PIDE

−∂tV̂d(t, z, a) =
1
2

d

∑
i,j=1

cij(t) ∂i∂jV̂d(t, z, a) +
1
t
(〈w, St(z)〉H − a) ∂aV̂(t, z, a)

+
∫

H

[
V̂d(t, z + Pdηt(ζ), a)− V̂d(t, z, a)

−
d

∑
i=1
〈ηt(ζ), pi〉H ∂iV̂d(t, z, a)

]
ν(dζ),

(19)

with time-dependent coefficients

cij(t) :=
〈
σtQσ∗t pi, pj

〉
H , i, j = 1, . . . , d,

and terminal condition

V̂d(T, z, a) = e−rTG (z, a)

for a.e. t ∈ (0, T), z ∈ Ud, and a ∈ R.
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Proof. This can be shown along the very same lines as in the proof of Theorem 2.4. The
main difference is that we make use of a finite-dimensional version of Itô’s formula
(see, e.g., [4, Prop. 8.19]). This yields finite sums of second derivatives instead of the
trace operator.

The value of the Asian option at time t = 0 is given by V̂(0, 0, 〈w, S0〉H), since Z0 =
0 ∈ H and A0 = 〈w, S0〉H ∈ R by definition. The solution of the finite-dimensional
PIDE yields V̂d(0, 0, 〈w, S0〉H). The following theorem states an upper bound of the
approximation error for the option value.

Theorem 3.9. There is a constant C > 0 (depending on T) such that the difference of the true
Asian option price and its finite dimensional approximation satisfies

(20)
∣∣∣V̂(0, 0, 〈w, S0〉H)− V̂d(0, 0, 〈w, S0〉H)

∣∣∣ ≤ C

(
dim H

∑
l=d+1

µl

) 1
2

.

Proof. We start with the definition of V̂ and V̂d and make use of Assumption 2.3 to
find∣∣∣V̂(0, 0, A0)− V̂d(0, 0, Ad

0)
∣∣∣ = e−rT

∣∣∣E[G(ZT, AT)− E[G(PdZT, Ad
T)]
∣∣∣

≤ e−rTE
[

LG
z ‖ZT −PdZT‖H + LG

a

∣∣∣AT − Ad
T

∣∣∣]
≤ e−rT max{LG

z , LG
a }
(

E ‖ZT −PdZT‖H + E
∣∣∣AT − Ad

T

∣∣∣) .

With the Cauchy–Schwarz inequality, we get∣∣∣V̂(0, 0, A0)− V̂d(0, 0, Ad
0)
∣∣∣ ≤ C

((
E ‖ZT −PdZT‖2

H

) 1
2
+ E

∣∣∣AT − Ad
T

∣∣∣) .

Applying Proposition 3.2 to E ‖ZT −PdZT‖2
H and Corollary 3.6 to E

∣∣AT − Ad
T

∣∣ com-
pletes the proof.

The theorem shows that we can achieve a good approximation, if the right-hand
side of (20) is small. In practice, we can first compute the eigenvalues µl , l = 1, 2, . . .,
and then decide how many POD components we have to include in the projection in
order to satisfy a given absolute tolerance.

For the discretization of the PIDE (19), sparse grid methods similar to those pre-
sented in [10] may be suitable. The nonlocal integral terms, which are due to the
jumps in the model, can be discretized using a Galerkin approach with a wavelet ba-
sis [12]. The POD method in combination with sparse grids was already shown to
be a promising approach to break the “curse of dimension” in the case of European
options.

There is, however, an additional numerical difficulty when dealing with Asian op-
tions. The fact that there is no diffusion in the variable a representing the aver-
age requires special attention. Equations of this kind are often termed “degenerate
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parabolic” PIDEs. A large number of authors has dealt with such problems, see,
e.g., [1, 2, 3, 19] and the references therein. Since the dimension reduced equation
is finite-dimensional, the numerical schemes and convergence result presented there
can be applied directly. These include, e.g., flux limiting methods, operator splitting,
and difference-quadrature methods. Numerical experiments concerning the presented
PIDE for Asian options will be a topic for future research.
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