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Abstract One important component of model selection using generalized

linear models (GLM) is the choice of a link function. We propose using

approximate Bayes factors to assess the improvement in fit over a GLM

with canonical link when a parametric link family is used. The approximate

Bayes factors are calculated using the Laplace approximations given in [32],

together with a reference set of prior distributions. This methodology can

be used to differentiate between different parametric link families, as well as

allowing one to jointly select the link family and the independent variables.

This involves comparing nonnested models and so standard significance tests

cannot be used. The approach also accounts explicitly for uncertainty about

the link function. The methods are illustrated using parametric link families

studied in [12] for two data sets involving binomial responses.
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1 Introduction

To find an appropriate generalized linear model (GLM) for regression data

involves choosing the independent variables, the link function and the vari-

ance function ([24]). Typically, many different models are compared using

individual significance tests based on the asymptotic distribution of the de-

viance. As pointed out by [17] and [32], this strategy cannot be used for

comparing nonnested models. In addition, model uncertainty is usually ig-

nored, as are power considerations. A Bayesian approach can avoid these

difficulties and to implement this, [32] developed approximate Bayes factors

for GLM’s based on the Laplace method for integrals. These approximations

require only the maximum likelihood estimate (MLE), the deviance and the

observed or expected Fisher information. [22] and [20] review Bayes factors

and discuss different ways to calculate Bayes factors.

In this paper, we extend the approach taken by [32] to calculate ap-

proximate Bayes factors for GLM’s with a parametric link function. Even

though GLM’s with canonical links (for definition see [24]), such as the logit

link in binomial regression, guarantee maximum information and a simple

interpretation of the regression parameters, they do not always provide the

best fit available to a given data set. Link misspecification can lead to sub-

stantial bias in the regression parameters and the mean response estimates

(see [14] for binomial responses). One common approach to guard against

link misspecification in generalized linear models is to embed the canonical
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link in a wide parametric class of links � = {F (·, ψ), ψ ∈ Ψ}, which includes

the canonical link as a special case when ψ = ψ0. Many such parametric

link classes for binary regression data have been proposed in the literature.

[26], [8], [2] , [19], [27] and [38] proposed one-parameter families, while [31],

[30], [34] and [10] considered two-parameter families. Link functions for the

non-binary case were studied in [30],[10] and [12].

With the multitude of link families to choose from, the Bayes factor

approach is able to compare different link families, regardless of whether

they are nested or nonnested. We will illustrate this ability by using the

two-parameter link family suggested by [12] in several data sets. In addition,

we are able to choose the link family and the set of independent variables

jointly.

In Section 2 we define and discuss GLM’s with parametric links, while

in Section 3 the calculation of approximate Bayes factors including the

choice of priors will be discussed. Applications will be given in Section 4 and

Section 5 will provide a summary and discussion of the method presented.

2 Generalized Linear Models with Parametric Links

The following model for regression data with response Yi and independent

variables Xi = (xi1, · · ·xip) for i = 1, · · · , n will be used:

1. Random Component: {Yi, 1 ≤ i ≤ n} are independent and have a

density of the form

fyi
(yi, θi, φ) = exp[

yiθi − b(θi)
a(φ)

+ c(yi, φ)], (2.1)

for some specified functions a(·), b(·) and c(·). The scale parameter φ is

allowed to be known or unknown.
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Table 1 Link Families for GLM’s

Error Parameter Canonical Link Family
Distribution Restriction Link � = {F (·, ψ) : ψ ∈ Ψ}
Normal µ real F (η) = η F (η, ψ) = h(η, ψ)

Binomial µ ∈ (0, 1) F (η) = exp(η)
1+exp(η)

F (η, ψ) = exp(h(η,ψ))
1+exp(h(η,ψ))

Poisson µ > 0 F (η) = exp(η) F (η, ψ) = exp(h(η, ψ))
Gamma µ > 0 F (η) = η−1 F (η, ψ) = [exp(h(η, ψ))]−1

Inv. Gaussian µ > 0 F (η) = η−.5 F (η, ψ) = [exp(h(η, ψ))]−.5

2. Systematic Component: The linear predictors ηi(β) = β0 + β1xi1 +

· · ·+βpxip for 1 ≤ i ≤ n influence the response Yi. Here β = (β0, · · · , βp)

are unknown regression parameters.

3. Parametric Link Component: The linear predictors ηi(β) are related

to the mean µi of Yi by µi = F (ηi(β), ψ) for some F (·, ψ) in � =

{F (·, ψ) : ψ ∈ Ψ} .

We will restrict attention to link families � that contain only strictly

monotone continuous functions F (·, ψ). Note that in conventional GLM no-

tation the link g is equal to the inverse of F . An unknown scale parameter φ

in (2.1) is typically estimated by an appropriate moment estimator involving

the Pearson χ2 Statistic ([24]). For a fixed link parameter ψ we remain in

the class of GLM’s, while this is no longer true if the link parameter ψ and

the regression parameter β are jointly estimated by the data. It is shown in

[13] that the joint MLE δ̂ = (β̂, ψ̂) of δ = (β, ψ) is strongly consistent and

efficient under regularity conditions.

We will illustrate our approach by using the link families suggested by

[12]. They allow separate modifications of the left and/or right tail of the

link function and exhibit low variance inflation ([35], [36]) for the regression

parameters when the link is estimated from the data. This is due to the fact
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that the parametrization is locally orthogonal (see [9]). In addition, they

are location and scale invariant (see [12]). For GLM’s with parametric links

they are defined as in Table 1. In Table 1, h(η, ψ) is one of the following

functions:

Both tails: hb(η,ψ = (ψ1, ψ2)) =

{
+ (η+1)ψ1−1

ψ1
if η ≥ 0

− (−η+1)ψ2−1
ψ2

otherwise
(2.2)

Right tail: hr(η, ψ1) =

{
+ (η+1)ψ1−1

ψ1
if η ≥ 0

η otherwise
(2.3)

Left tail: hl(η, ψ2) =

{
η if η ≥ 0
− (−η+1)ψ2−1

ψ2
otherwise

. (2.4)

The parameter restriction for the mean response makes a right tail mod-

ification for the Poisson and a left tail modification for the Gamma and

inverse Gaussian cases the only sensible modifications to be considered. In

all other cases all modifications of the link function are allowed. In par-

ticular, (2.4) is a special case of (2.2) with ψ1 = 1, and (2.3) is a special

case of (2.2) with ψ2 = 1. As ψ1 increases, the right tail of G(·,ψ) becomes

lighter, while an increasing ψ2 makes the left tail of G(·,ψ) lighter. The

specification (2.3) is asymmetric if ψ1 �= 1, while the specification (2.4) is

asymmetric if (ψ2 �= 1). The both tails specification (2.2) is asymmetric if

ψ1 �= ψ2. Further, for ψ1 < 0 and ψ2 < 0

lim
η→∞hr(η, ψ1) =

1
|ψ1| and lim

η→−∞hl(η, ψ2) = − 1
|ψ2| ,

lim
η→∞hb(η,ψ = (ψ1, ψ2)) =

1
|ψ1| and lim

η→−∞hb(η,ψ = (ψ1, ψ2)) = − 1
|ψ2| .

This, together with monotonicity of hr, hl and hb, imply restrictions on

the range of allowable means µi = E(Yi) if ψ1 < 0 or ψ2 < 0. In particular,

for binomial links, we have restrictions on the allowable success probabilities
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pi given by

pi ≤
exp{ 1

|ψ1|}
1 + exp{ 1

|ψ1|}
if ψ1 < 0 (2.5)

pi ≤
exp{− 1

|ψ2|}
1 + exp{− 1

|ψ2|}
if ψ2 < 0. (2.6)

For example if we want an allowable range of success probabilities between

.1 and .9, this implies that ψ1 ≥ −.46 and ψ2 ≥ −.46 if negative link values

are allowed, by inversion of (2.5) and (2.6). There are no restrictions on the

success probabilities when ψ1 ≥ 0 and ψ2 ≥ 0.

3 Approximate Bayes Factors for GLM’s with Parametric Link

We are interested in assessing the evidence for a GLM with a noncanonical

link against the same GLM with a canonical link using Bayes factors. For

this, we denote by Mψ a GLM with a fixed link parameter ψ for a given

set of independent variables, while Mc denotes the same GLM using the

canonical link. We denote the regression parameter corresponding to model

Mψ by βψ to indicate that the regression parameters are on different scales

for different ψ’s. We are interested in the Bayes factor for model Mψ against

model Mc given the data Y = (Y1, · · · , Yn), which is defined as the ratio of

posterior to prior odds, namely

Bψ :=
pr(Y |Mψ)
pr(Y |Mc)

, (3.1)

the ratio of the integrated likelihoods. In equation (3.1),

pr(Y |Mψ) =
∫

pr(Y |Mψ,βψ)p(βψ|Mψ)dβψ, (3.2)

where βψ is the corresponding regression parameter in Model Mψ and

p(βψ|Mψ) is its prior density in model Mψ. Note that Mc corresponds to

Mψ with ψ = 1.



8 Claudia Czado, Adrian E. Raftery

The Bayes factor is a summary of the evidence for Mψ against Mc pro-

vided by the data. Sometimes it is useful to consider 2 log Bψ, which is on

the same scale as the familiar deviance and likelihood ratio test statistics.

We use the rounded scale given in Table 1 of [32] for interpreting Bψ or

2 log Bψ.

This approach allows us to compare different parametric link families

as follows. Let Mθ denote a GLM using a link family indexed by the link

parameter θ and construct Bθ in a similar fashion as Bψ. The quantity Bψ

Bθ

then provides a summary of the evidence for model Mψ against model Mθ

given the data and the same set of independent variables. In a similar way

we can construct comparisons of models with different sets of independent

variables and link parameters.

For the link families given in Table 1 it is also of interest to assess whether

a right tail, left tail or a both tail modification is needed. For this we can

compare Bψ1(Bψ2) and Bψ=(ψ1,ψ2)
for individual link parameter values or

construct overall Bayes factors for each tail modification, given by

Both Tails : Bb =
∫

Bψ=(ψ1,ψ2)
pr(ψ|Mψ=(ψ1,ψ2)

)dψ (3.3)

Right Tail : Br =
∫

Bψ1pr(ψ1|Mψ1)dψ1 (3.4)

Left Tail : Bl =
∫

Bψ2pr(ψ2|Mψ2)dψ2, (3.5)

where pr(ψ|Mψ=(ψ1,ψ2)
), pr(ψ1|Mψ1) and pr(ψ2|Mψ2) denote the corre-

sponding prior densities for ψ, ψ1 and ψ2, respectively. If the link parame-

ter values are not chosen in advance, but instead are estimated, Bψ1 , Bψ2

and Bψ will tend to overstate the evidence for a modification. The overall

Bayes factors Br, Bl and Bb are preferable in this case, because they take
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into account the fact that the link parameters are unknown and thus take

link uncertainty into account. For example, the ratio Bb

Br
will compare a both

tails modification to a right tail one. In a similar fashion we can assess the

evidence for one link family against another one given the same or different

set of independent variables.

To complete the specification of these overall Bayes factors, we have to

select prior distributions for the regression parameters given a model with

a specified link parameter, as well as the prior distribution to be used for

the link parameter.

For the prior distribution of the regression parameters βψ in the model

Mψ we use the reference proper prior distributions suggested by [32] for

GLM’s, since for fixed values of the link parameter ψ we remain in the class

of ordinary GLM’s. These prior distributions assume little prior information.

They are based on adjusted dependent variables to mimic the behavior for

ordinary linear regression models. For a (p + 1)-dimensional βψ including

an intercept, we use the prior

βψ|Mψ ∼ Np+1(vψ, QψUQ′
ψ), (3.6)

where Np(µ, Σ) denotes a p-dimensional normal distribution with mean

vector µ and covariance matrix Σ. To specify the quantities in (3.6), the

adjusted dependent variable zψ
i = gψ(µ̂ψ

i ) + (yi − µ̂ψ
i )g′ψ(µ̂ψ

i ) with weights

wψ
i ([24], p.40) has to be considered. Here µ̂ψ

i denotes the MLE of the ith

mean response in the GLM with link parameter ψ, and gψ(·) is the inverse
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of F (·, ψ). Define the weighted summary statistics:

zψ =
∑n

i=1 wψ
i zψ

i∑n
i=1 wψ

i

and sψ
0 =

√√√√∑n
i=1 wψ

i (zψ
i − zψ)2∑n

i=1 wψ
i

, (3.7)

xψ
j =

∑n
i=1 wψ

i xij∑n
i=1 wψ

i

and sψ
j =

√√√√∑n
i=1 wψ

i (xij − xψ
j )2∑n

i=1 wψ
i

, j = 1 · · · , p.(3.8)

Then the prior mean is specified as v′
ψ = (zψ, 0, · · · , 0)′, U denotes a diag-

onal matrix with diagonal entries given by (1, σ2
p, · · · , σ2

p) and

Qψ = sψ
0




1 −xψ
1

sψ
1
−xψ

2

sψ
2
· · · −xψ

p

sψ
p

0 1

sψ
1

0 · · · 0

0 0 1

sψ
2

· · · 0
...

...
...

...
...

0 0 0 · · · 1

sψ
p




.

It remains to specify σ2
p. The arguments of [32] and subsequent experience

using Bayes factors for GLM’s (e.g. [37]) suggests using the value σ2
p = 1.

We now consider the choice of the prior distribution for the link param-

eter ψ. For the link families specified in (2.3) and (2.4), we require that

ψ1 ≥ ψl and ψ2 ≥ ψl, where ψl is chosen in such a way that the restriction

on the range of the allowable mean values is reasonable. As noted before for

binomial links, ψl = −.46 restricts the success probabilities to be between

.1 and .9 for ψ1 < 0 and ψ2 < 0. If ψl = 0, there are no restrictions on

the success probabilities. Therefore it makes sense to consider prior distri-

butions that are truncated to [ψl,∞) as prior distributions for ψ1 and ψ2,

respectively. As a first choice we consider a truncated normal distribution

with mean 1, corresponding to the canonical link, and standard deviation

σψ. The left column of Figure 1 shows the corresponding prior densities for

ψl = −.5 and ψl = 0.
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Fig. 1 N(1, σψ) priors truncated to [ψl,∞) and Pareto priors defined in (3.9)
for the link parameter ψ.

As a second choice we consider Pareto densities given by

f(ψ; a, ψl) =
a

(1 + ψ − ψl)a+1
, ∀ψ ≥ ψl, a > 0. (3.9)

This prior choice can be motivated by the same arguments as those of [29] on

page 11. In particular, the link function g(µ;ψ) := F−1(µ;ψ) for (2.3) and

(2.4) changes most rapidly for the smallest allowable ψ value, i.e. ψ = ψl.

Therefore [29] chose priors which have highest densities at ψl and tails that

are montonically decreasing. The Pareto prior family given in (3.9) satisfies

these conditions and is illustrated in the right column of Figure 1.

It seems natural to want the prior distribution of link functions to be

centered at, or symmetric about the canonical link function, in some sense,

since the canonical link plays a role similar to that of a null hypothesis. As
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Table 2 P (ψ ≤ 1) for Pareto and truncated normal prior family for ψ.

P (ψ ≤ 1) for Pareto prior P (ψ ≤ 1) for N(1, σ2
ψ) trunc. to [ψl,∞)

a ψl = −.5 ψl = 0 σψ ψl = −.5 ψl = 0

.75 .50 .41 1.00 .46 .41
1.00 .60 .50 2.00 .35 .28
1.50 .75 .65 4.00 .23 .16

a measure of the symmetry of these prior choices about the canonical link

parameter we use P (ψ ≤ 1), which is tabulated in Table 2 for the different

prior choices considered. For the Pareto priors this shows that a = .75 can

be considered symmetric about the canonical link ψ = 1 if ψl = −.5, while

a = 1 is symmetric if ψl = 0. For the truncated normal priors, link values

larger than 1 are favored when these parameter values are used.

So far we have considered only single tail modifications. For the both tails

case (2.2) with ψ = (ψ1, ψ2), we assume independence of the components

and use the same priors for ψ1 and ψ2 as for the single tail modifications.

To approximate the Bayes factors Bψ of (3.1) we use the Laplace ap-

proximation for Bayes factors for GLM’s given in [32], namely

2 log Bψ ≈ χ2
ψ + (Eψ − E0), (3.10)

where χ2
ψ = dev(Mc) − dev(Mψ). Here dev(M) denotes the deviance of

model M . Let Fψ denote the observed or expected Fisher information matrix

at the MLE β̂ψ in the model Mψ. Then Eψ in equation (3.10) is given by

Eψ = log |Gψ| − (β̂ψ − vψ)′Cψ(β̂ψ − vψ) − log |Fψ + Gψ|, (3.11)

where Gψ = (QψUQ′
ψ)−1 is the inverse of the prior variance in (3.6) and

Cψ is defined as

Cψ = Gψ{I − Hψ(2I − FψHψ)Gψ}, where Hψ = (Fψ + Gψ)−1.
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Table 3 Minimal Deviances and Approximate Maximal Bayes Factors for the
Generalized Link Functions against the Canonical Link, for the Menarche Data
(with prior variance parameter σp = 1)

Model Minimal (ψ1, ψ2) df Maximal (ψ1, ψ2)
Deviance Bayes Factor

Right 25.10 (.88,-) 22 2.23 (.75,-)
Left 17.62 (-,1.40) 22 95.05 (-,1.40)
Both 15.38 (1.25,1.67) 21 287.14 (1.27,1.72)

Finally, E0 is equal to Eψ, where ψ is taken to be the value corresponding

to the canonical link. Equation (3.11) corresponds to equation (9) in [32].

To calaculate approximations to the overall Bayes factors specified in

(3.3)-(3.5) we use the above approximation and numerically integrate out

ψ using the prior specifications for ψ.

4 Applications

4.1 Age of Menarche in Polish girls

In [25] a sample of 3918 Warsaw girls are presented. It is recorded whether

or not they had reached menarche together with their age. This is a well

known data set and has often been used to demonstrate the need for a link

function other than the logistic one. The residual deviance for the logistic

regression model with a linear age covariate is 26.70 with 23 degrees of

freedom suggesting the possibility of some improving of the fit. Figure 2 gives

the deviance profiles and contours when the link families (2.2)-(2.4) are used

for binomial regression. The corresponding approximate Bayes factors Bψ

as a function of ψ using σp = 1 are given in Figure 3. The minimal deviances

and the maximal approximate Bayes factors are presented in Table 3.

From Table 3 we see that a left tail modification improves the fit us-

ing either deviances or Bayes factors. While the deviance indicates that a
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Fig. 2 Minimal Deviance Profiles and Minimal Deviance Contours for the Menar-
che Data

single tail modification is sufficient, the maximal approximate Bayes factor

for the both tail modification is quite high. When looking at the maxi-

mal approximate Bayes factor we ignore the error made by estimating the

link parameter and therefore it is more appropriate to consider the overall

Bayes factor, which accounts for link uncertainty. Since the observed success

probabilities vary between 0 and 1 and since a large range of ages was inves-

tigated, it seems reasonable not to impose any restriction on the allowable

success probabilities. Therefore we assume ψl = 0. Table 4 gives the overall

Bayes factors for the different prior choices for the link parameter.
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Fig. 3 Approximate Bayes Factor Profiles and Contours for the Menarche Data,
with prior variance parameter σp = 1.

Table 4 Approximate Overall Bayes Factors for the Generalized Link Functions
Against the Canonical Link, for the Menarche Data with ψl = 0

Pareto prior N(1, σ2
ψ) truncated to [ψl,∞)

a Right Left Both σψ Right Left Both
Tail Tail Tails Tail Tail Tails

.75 .12 5.73 .14 1.00 .23 15.22 9.64
1.00 .13 5.83 .15 2.00 .14 9.93 4.68
1.50 .15 5.97 .15 4.00 .08 5.84 1.69

From Table 4 we see that a left tail modification improves the fit re-

gardless of which prior specification is used for the link parameter and if

we account for link uncertainty. The approximate overall Bayes factors also

show that a right tail modification gives no improvement for all priors used,

while there is slight evidence for a both tail modification when truncated
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normal priors are used. Note that these priors give more probability to link

values larger than the canonical link value. From Figure 3 we see that Bψ

is largest for link values greater than 1. In contrast, the Pareto priors favor

small link values. This explains that the approximate overall Bayes factors

are lower for the Pareto priors compared to the truncated normal priors.

Before we can conclude that a link function with a left tail modification

is better than the logistic link for these data, we need to consider and

exclude possible alternative explanations of what we have observed. It is

possible that a transformation of the age variable may be preferable to

a link modification, and that the apparently poorer performance of the

logistic link is just an artifact due to nonlinearity of the effect of age. We

now investigate this possiblility.

We consider polynomial models for age of the form

ηi = β0 + β1agei + · · · + βpagep
i .

Calculations of the deviances show that the quadratic model is little better

than the linear one, that there is a substantial reduction in deviance when

one goes from quadratic to cubic, and little further gain for additional poly-

nomial terms. We therefore restrict ourselves to considering a cubic model

for age.

Our question is thus whether a left tail modification with linear age is

better than a canonical link with cubic age. The most common approach

to this question is to compute deviances and degrees of freedom for the two

competing models. The left tail modification with linear age has deviance

17.62 on 22 d.f., while the canonical link with cubic age has deviance 15.04

on 21 d.f. These models are not nested, so a standard likelihood ratio test
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cannot be carried out. Nevertheless, the deviance difference is 2.58 with a

difference in degrees of freedom of 1, and if this was compared with the

standard chi-squared distribution (which cannot validly be done), it would

not be significant, and one would typically choose the more parsimonious

left tail modification with linear age model.

Bayes factors do allow us to make a formal comparison between these

two nonnested models. The Bayes factor for the left tail modification with

linear age model against the canonical link model with cubic age is 233 for

the Pareto prior with a = 1, and 396 for the truncated normal prior with

σ = 2, so that the left tail modification with linear age model is favored.

Thus with Bayes factors we reach the same conclusion as with the informal

comparison of deviances, with the difference that Bayes factors provide a

formal justification for the conclusion.

4.2 Beetle Mortality

In [5] the number of insects dead after five hours’ exposure to gaseous carbon

disulphide at various concentrations are recorded and the data are presented

in Table 5. This is also a well known data set for investigating a different

link function other than the logistic one. Here, the residual deviance for a

logistic model with a centered log dose covariate is 11.23 with 6 degrees of

freedom, suggesting some lack of fit.

Figure 4 gives the deviance profiles and contours, when the link families

(2.2)-(2.4) are used for binomial regression. They suggest that a link tail

modification in this data set is useful and improves the fit. We will now

use Bayes factors to decide which specific tail modification is needed. We
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Table 5 Beetle Mortality Data

Yi ni Dose

Number killed Number of Insects log10 CS2mgl−1

6 59 1.6907
13 60 1.7242
18 62 1.7552
28 56 1.7842
52 63 1.8113
53 59 1.8369
61 62 1.8610
60 60 1.8839
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Fig. 4 Deviance Profiles and Deviance Contours for the Beetle Mortality Data

use the prior specification (3.6) with σp = 1 for the regression coefficients.

Figure 5 shows the Bayes factors Bψ as a function of ψ, and in Table 6 we

give the minimal deviances and maximal individual Bayes factors Bψ for

each tail modification.
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Fig. 5 Approximate Bayes Factor Profiles and Contours for the Beetle Mortality
Data with σp = 1

Table 6 Minimal Deviances and Approximate Maximal Individual Bayes Factors
for the Beetle Mortality Data (prior variance parameter σp = 1)

Model Minimal (ψ1, ψ2) df Maximal (ψ1, ψ2)
Deviance Bayes Factor

Right 3.96 (1.92,-) 5 116.66 (1.99,-)
Left 3.04 (-,.16) 5 46.41 (-,.21)
Both 2.81 (1.2,.3) 4 123.89 (1.8,.8)

From this we conclude that the Bayes factors clearly favor a right tail or

both tail modification over a left tail modification. While the likelihood ratio

test can be used to show that the reduction in deviance achieved by using a

both tail modification over a right/or left tail modification is insignificant,

we cannot compare right and left tail modifications, since they are not nested

models. Graphically, we see that in Figure 4, the lines determining the
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Table 7 Approximate Overall Bayes Factors for the Beetle Data with ψl = −.5

Pareto prior N(1, σ2
ψ) truncated to [ψl,∞)

a Right Left Both σψ Right Left Both
Tail Tail Tails Tail Tail Tails

.75 10.10 8.08 .59 1.00 27.76 8.75 15.37
1.00 9.80 9.48 .60 2.00 26.65 6.55 10.83
1.50 7.77 11.00 .90 4.00 18.14 4.15 5.28

point (1,1) (corresponding to logistic link) intersect the confidence regions,

suggesting that single tail modifications are sufficient.

We now take into account the link uncertainty by considering overall

Bayes factors, which are given in Table 7 for ψl = −.5. We use ψl = −.5

since the observed success probabilities vary between .1 and .9. Therefore

we would like to allow for links which take this restriction into account. For

the Pareto priors a single tail modification is sufficient, but the difference

between a left tail or right tail is minimal. The truncated normal priors

favor a right tail modification over a left tail or both tail modification. The

difference in the results for the two prior specifications can be explained as

follows. Pareto priors favor small link values while truncated normal priors

favor large link values. In this data set, this corresponds to left tail modifi-

cations for the Pareto priors and right tail modifications for the truncated

normal priors.

This data set has also been considered in [6] p. 108-112, where they

allowed for the inclusion of a quadratic term on the original CS2 scale in

a logistic model. This yields a residual deviance of 3.08 with 5 degrees of

freedom. We can now use Bayes factors to decide if the right tail link fit is

preferable over the inclusion of a quadratic term on the original CS2 scale.

Note that these models are again nonnested. The corresponding Bayes factor
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is given by

Bψ1=1.99 ×
Pr(Y |Mψ1=1,x=log(CS2))

Pr(Y |Mψ1=1,x=(CS2,CS2
2))

= 116.66 × .0011 = .1280 =
1

7.80
,

and the overall Bayes factor using a right tail modification

Br ×
Pr(Y |Mψ1=1,x=log(CS2))

Pr(Y |Mψ1=1,x=(CS2,CS2
2))

varies between 1
32 and 1

117 for the different link prior specifications. This

shows that a logistic model using a quadratic term on the original scale is

favored over a right tail link family. In [6] on p. 140 it was noted that a

complementary log-log model for the link parameter fits the data as well as

the logistic model using a quadratic term. It is argued that the complemen-

tary log-log model would be preferable since it has fewer parameters, but

this ignores the uncertainty in the choice of link function.

5 Discussion

We have presented a Bayesian approach to model selection in GLM’s with

parametric link using Bayes factors to account for structural model un-

certainty (see [16]) such as the choice of link in a GLM. This involves a

continous model expansion over ordinary GLM’s when a particular link

family was considered as well as a discrete model expansion when different

link families were compared. In addition we were able to jointly assess the

choice of link together with the choice of the set of independent parameters

to include in the model. This involves the comparison of nonnested models,

which cannot be carried out using classical model selection strategies based

on significance tests.
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We used reference proper priors for the regression parameters of a GLM

with a fixed link function as suggested by [32]. These priors vary with the

link parameter, reflecting the fact that the regression parameters are on dif-

ferent scales for different link functions. This reference proper prior avoids

the problem of Bartlett’s ([4]) or Lindley’s ([23]) paradox and thus in this

case Bayes factors have the advantage over posterior Bayes factors ([1]),

p-values or the AIC criterion that they correctly identify the correct model

in large samples, while the other criteria do not ([33]). Different prior distri-

butions of the link parameter were investigated. Finally, the Bayes factors

were approximated using the Laplace approximations given in [32]. With

regard to prior sensitivity we observed the following. For the large menar-

che data set the qualitative conclusions are unchanged by the link prior

specification, while for the smaller beetle data set we observed a moderate

dependency on the prior specification. This kind of behavior is common in

Bayesian analysis.

While Markov Chain Monte Carlo (MCMC) methods have been widely

applied to GLM’s and their hierarchical extensions both in time and space

(see for example the books by [18],[15],[7] and [3] and the references within),

a fully Bayesian analysis with MCMC of GLM’s with data selected link func-

tions have been considered in [11] and [28]. These estimation methods are

computer intensive and might require user written software. The methods

presented in this paper can be used for a final analysis, or could be used

to screen for plausible models, which could then be used as starting points

for a complete Bayesian analysis. Note that our methods for calculating

these Bayes factors only require software that is able to fit a GLM with
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an arbitrary link. In particular, joint maximization over regression param-

eters and link parameters to determine the maximum likelihood estimator

is not needed. Here, calculations were conducted in S-Plus using the glm()

function together with integration functions in one or two dimensions.

It should be noted that Bayes factors address the issue of model choice,

and not parameter estimation. For inference about model-independent quan-

tities such as the log odds ratio of a treatment effect or the mean response at

a particular value of the independent variables, methods for taking account

of model uncertainty such as Bayesian model averaging (see for example

[21]) are needed. This also allows a Bayesian alternative to the quantifica-

tions of change to quantities of interest when changing from a GLM with

canonical link to one with noncanonical link. This was the goal of a paper

by [13].
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