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Abstract

This report considers the problem of complexity in reducadlinear models derived by the so-called
system matrices optimization method. The solution suggesere is adding a class of secondary
conditions that impose a simpler structure on the reducetbein®istinct choices of these conditions
have different impacts on the accuracy of the reduced mdusiefore a pioneered search based on
genetic algorithms is proposed that finds the optimal chofa@nditions. By means of two exam-
ples, itis illustrated that this method can effectively gromise between simplicity and accuracy of
the reduced model. In order to improve the numerical effmyesf the solution and to speed up the
pace of convergence some enhancements are presented.
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1 Introduction

Typical nonlinear dynamical systems are modeled by means of a set ajrflest coupled differential
equations or a set of partial differential equations. The models whicteseribed with partial differ-
ential equations can be also solved numerically by first spatially discretizerg tly means of finite
element, boundary element and similar methods which lead to a set of ordifiargmial equations. In
the first case the order of the system (number of state variables) depetide quality of modeling and
complexity of the system, but in the second case it depends on the qualitycrdtdiation. Recent ad-
vances in hardware and software technology provide this ability to solydamge systems of ordinary
differential equations. Nevertheless, typically these calculations nealigbarocessing which increases
the cost of simulation drastically, and as a result, limits the simulation applicabilityderably. There-
fore the complexity of simulation, analysis and controller design of a systgmande directly on the
complexity of the corresponding system model. On the one hand high adglex models are more
accurate and reliable and on the other hand their cost of simulation andiagngalynuch higher. In order
to face this dilemma, two methodologies are imaginatnéer reductionandstructure simplification

1. Theidea behind order reduction is to approximate a dynamic system withed witidless number
of state variables. Order reduction methods generally calculate modelsefdoder but of high
inner complexity. In other words they generally result in reduced systethshigh number of
internal interconnections, i.e. the inner model structures are complex.

2. The idea behind structure simplification is simplifying the relations and couatimeng the state
variables. This idea is published in [3] and it was developed later in [Q]xard [28].

The problem that we address through this report is a combination of thesedas in one algorithm.
Starting from an enhanced version of the system matrices optimization metésehped in this re-
port, secondary conditions are formulated to calculate reduced systemsiwgler structures. One of
the methods to find optimal secondary conditions is exploiting genetic algorithmadér o perform a
global search within the search space. In this report an effectiveditoaction is presented, which sim-
plifies the search procedure and enormously reduces the computatidn &io a method for omitting
improper candidates is suggested that accelerates the whole seaegsppshrinking the search space.

In section 3 some well-known methods of nonlinear order reduction arewed. Section 4 gives a
summary of Order reduction using system matrices optimization method [15nd6{ proposes some
new enhancements of this method. Section 6 introduces appropriate agcondditions to simplify
the reconstruction matrix and the reduced order system matrices. Tléveffiess of the results are
demonstrated via two examples in section 7 and section 8 contains concludiaise

2 Preliminaries

The notation used in this report is moderately standard. Matrices arsegped as bold upper cask),
column vectors as bold lower ca&e) and real or complex scalars as italic lower cé&ge All vectors

are column vectors unless explicitly written as transpoged: andA” denote respectively the inverse
and transpose of A. The notatigA || means the square of the Euclidian (Frobenius) norm of matrix
and is defined ag/> _ diag(ATA). We consider the nonlinear dynamical systems modeled by means
of a set of first-order coupled differential equations (which desdtieebehavior of the state variables)
together with a set of algebraic equations (which describe the depgndenatputs on internal state

variables) as follows:
5, { (1) = £(x(t), u(t)) M
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or with more details:
S, { x(t) = Ax(t) + Bu(t) + Fg(x,u)
27 y(t) = Cx(t)

In this representation the vectgtx, u) exclusively includes the nonlinear summands of the elements
f(x,u) in the system representation (1). This special representation (2) id bagke assumptions that
some of the state equations of many technical systems contain linear terms ovendyeecompletely
linear, resulting zero-rows in matrik. The problem that we address here is to simplify or approximate
the original nonlinear system with another one with smaller number of stateSraptk structure.

(2)

3 Review of known techniques

In this section we will review briefly some well known methods of nonlineaeoréduction and we
discuss why none of the existing methods fulfills our expectation of computfioiency and simplicity
of the reduced order system.

Singular Perturbation([13, 23]): This method is based on the assumption that the system equzgions
be separated into fast and slow modes as follows:

S | x(t) =f(x,z,u,t,pn)
SlowsIet g = g%zt p)

wherep > 0 is a scalar ang, z andu are vectors. This method decreases the order of the model, first
by ignoring the fast modes of the system and keeping the slower modesmigs. close to zero and
substituting the steady state valuezofdenoted byz) in the original system, the following results will

be achieved.

2 - ¢(i7 u7 t)a
SFimabPer-. 2(1) = £(%, ¢(X, u, t),u, 1)

reduced

It should also be noted that it is not always easy to find the fungtiand the combination&(x, ¢, u, t)
has normally a very complicated structure.

Proper Orthogonal Decompositiqifi26]): Consider the nonlinear system represented by (1). For d fixe
inputu, the state trajectory at certain instances of tijies measured as follows:

x = [x(t)x(t2) - - x(tn)] 3)

This is called a matrix o§napshot®f the states. If the singular values of (3) decrease rapidly, it can be
proved that the optimal approximation gfin the sense of; norm, evolves on a low-dimensional space
which is spanned by the firgtleading columns olU as shown below:

x=UZVT ~U, V], k<n

whereU andV are unitary matrices antl = diag(o, ..., 0,,) is diagonal [7, 9, 10]. Then the reduced
order system will be obtained as follows:

SPOoD :{ x(t) = ULE(UX(t), u(t))
reduced 1y (t) = h(U,X(t), u(t))

In the POD procedure the effect of states and inputs on outputs is natita&eccount and this confines
its application, for more details and examples refer to [20, 21].
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Nonlinear Balancind[25]): This method is an extension of balancing for linear systems in treesbat
itis based on extended definition of balancing and Hankel singular funsotibich was first introduced in
by Scherpen [24, 25]. This method is applicable to nonlinear systems witbltbeihg representation:

f (1) = £(x) + gx)u(t)
82'{ y(t) = h(x(t))

The main objective involved in balancing theory are the controllability andrebbgity energy func-
tions, which are defined as follows:

0
Lexo) = _min 5 [ uoPar @

/Hy J[2dt, x(0) = xo,u(t)] =0 (5)

0<t<oo

This method similar to the concept of balancing for linear systems finds ainatedransformation
in form of x = ¢(z) that balances the system due to extended definitions of balancing for eemlin

systems, which results in ~
S { (1) = E(2) + g(@)u(t)
y(t) = h(z(t))
The reduced model is obtained by trimming the states corresponding to smidliidargular values [25].

Computation ofL.. via (4) requires solution of an optimal control problem, which presents atatipnal
difficulties and restricts its application to very low order nonlinear systems.

4 System matrices optimization method

Since thesystem matrices optimizationethod is the core of our discussions, it is described in more de-
tails in this section. The system matrices optimization method [15, 16, 17] caipluéted for nonlinear
systems with the representation in (2). Starting from (2) the task of ordactien in system matrices
optimization method is to find a system of lower ordewhich delivers an approximatiork) of the
dominant state variables§,) as follows:

%(t) = A%(t) + Bu(t) + Fg(Wx, u)

y(t) = Cx(1) ©)

Sreduced * {

These dominant state variables are chosen by the designer and areammklme vectoxgy, which is
related to the original vectot by

Xdo = Rx. @)

Based on the given system (2) and the definition of dominant state varigiidesystem matrices op-
timization method calculates the matrices that describe the reduced order ¢FsteriA, B, F] and
‘W) such that they optimally fit the snapshots of the dominant state variables ofitfiieal system in
the sense of Euclidean norm [16, 17]. Assume that maticesqo, Xdo , ¥ andI’ are the snapshots
of the original system for typical input signals that respectively showthmerical values of state vari-
ables, dominant state variables, derivative of dominant state variatpess end nonlinear part as shown
below:

Xdo=[Xdo(t1)Xdo(t2) - - Xdo(tn )], ¥=[u(t1)u(tz) - - - u(tn)]
Xd

Xdo(t1)Xdo(t2) - Xdo(tn)], T'=[g(t1)g(t2) - - - g(tN)]
x=[x(t)x(t2) - x(tn)]-
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To find E andW, the following optimization problems are solved:

_ _ _ Xdo

min [[Xgo —[A B F] | ¥ | [[= Enc (8)
E —— r
——

M

min{|x = Wxdo| = Wne ©)
The optimal solution can be evaluated using (10).

Eopt = ¥MT(MMT) ™!, Wopt = Xxdo (XdoXdo) ™ (10)

Exploiting the result of (10) the reduced system is completely determined awttition to dominant
state variables the non-dominant state variables are approximatedWsimgccordingly, the vectog
of the nonlinearities is taken over from the original system (2) into the emtlocder system and no
additional nonlinearities are introduced. For more details on the method stanite how to choodR

in (7) and the input signals refer to [15, 16, 17].

4.1 New development: row by row reduction

In following theorem we show that the original optimization problem can be sitsmaller row by
row optimization problems (see application in section 6.1).

Theorem 1. In system matrices optimization method solving the following optimization problem

_ _ _ Xdo
min|[Yeo ~[A B F]| @ || (11)
E ——— r
E —_——
M

is equivalent to solving independent optimization problems as follow:

_ _ _ Xdo
m%,n” kgoi - [AI Bi Fl] v ”7 1= 1727"'aﬁ
e —_— T
T

e;
i

Whereicgoi is the snapshots of thg, states derivative and;, B; and F; are thei,;, row of the reduced
order system matriceA, B and F respectively, that should be calculated.

Proof: See the Appendix.

Using Theorem 1 the optimization problems in (8,9) are equivalent-ton independent optimization
problems as follows:

fori=1,2,....,n IIvlleH x§ — Wi Xdoll, = Whe (12)
fori=1,2,...,n
N ~ 5 Xdo
m,}n || kgoi - [Az' B; Fz] v H = Enca (13)
] —_——
E el r
1 N—  —
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Wherefchoi is the snapshots of derivative of thg state variabIeAi, B; andF; are thei;;, row of the
reduced order system matricAs B andF respectivelyx:' is the snapshots af;, state variable and-

is theiy, row of matrix W. The indexnc means no constraints is applied to the optimization problem.
In fact E,,. and W, are the optimal answers in the sense of (8) and (9). The optimal solutiomecan
evaluated explicitly using (14).

eg‘pti - ).(goiMT<MMT)_17 Wg‘pti - XrierTo(XdOXgo>_1 (14)

Exploiting the result of (14) the reduced system is completely determined amddhbced system is set
up as in (6).

5 Dominant State Finder Algorithm (DSFA)

The choice of matri®R. in (7) can be a difficult task. Therefore, this section proposesminant State
Finder Algorithm(DSFA) that enablegautomatic selection of dominant stateg, in nonlinear systems,
without losing their physical meanings. Our algorithm is based on the soiepajectories of the original
system as shown below:

(x(t1)x(t2) - - - x(tn)], W=[u(tr)u(ts) - - - u(ty)]
[X(t1)X(t2) - -~ X(tn)], T=[g(t1)g(t2) - - - &(tn)] (15)
[y(tl)a y(tZ)a U 7Y(tN ]

We define a set of states;, as dominant state variables if there exist matriCed, B, F andW such
that the following errors are small

[1] >ﬁ =

er=[ly(t) = Cxao(t)ll, €2 = [|g(x, u) — g(Wxao, u)ll,

; ! 5 i} (16)
e3 = [|Xdo — (Axdo + Bu + Fg(Wx4o,u))||.

The idea here is to approximate the error in (16) by exploiting the snapstiatesa The points of
interest are marked by dashed boxes in the block diagram in Fig. 1, wheréb.) and (c.) show
output, nonlinear part and derivative of states respectively.

A 2
('S
~~
=
&
N
[ )

Figure 1:a.: System output”; b.: The nonlinear function(X,, U); c.: X is constructed byX, g(X, U)
andU

Considering the snapshot matrices

Xdo=[Xdo(t1)Xdo(t2) - - - Xdo(tN)],  Xdo=[Xdo(t1)Xdo(t2) - - - Xdo(tN)]

Xdo represents the dominant states if the following three conditions are satisfied
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1. subspacg is close to subspacey, (y can be approximated bwy,)
2. subspacg is close to subspacey, (g(x, u) can be approximated ky(Wxg,, 1))
3. subspaceyq, is close to the union of subspacgs,, I’ and ¥ (x4, can be approximated by

Xdo> g(xdoa 11) andu)

The closeness of two subspaces can be interpreted mathematically bygl#famiangle between them
as presented in [12]. If the angle is small, the two subspaces are closghtotbar and nearly linearly
dependent. In our case, suppokdescribes the complete snapshots of a physical modeBatescribes

a subset of it, then the angle between these two spaces gives a meathaawfount of information
afforded by the full snapshot not associated with the reduced solapSuppose two subspaces are
specified by the columns of orthonormal matricésand B, the angle between these two subspaces,
according to [2], is calculated as follows:

for k=1:size(A)
B=B- A, AI'B
end

whereA;, denotes thé;, column ofA. If |B]| < 1
Z(A,B) = sin™'(||B]I)

otherwiseZ(A, B) = 5.The angled is contained by the intervdd, 7]. Where the anglé = 0 of two
basesA and B means, thatl is subspace td& and forf = 7 no correlation between the two bases is
given.

Based on above definitions of dominant states and angle between sefspagropose the following
algorithm for finding the dominant states:

1. Choose an upper bound for the maximum allowed artglg.()

2. Sort the states according to the angles between their snapshots antdsoafgshot matrix defined
as follows:

Z(Xi,E), 1= 1, R () Wherexz- = [Xi(tl), B ,Xi(tN)]
3. Find the minimum number of states{) such that
Z(X1:mys Z) < Omaz Wherexy.n,, is the union ofy;s,i = 1,--- ,my a7)

4. Sort the remaining stateénf; + 1) : n) according to the angles between their snapshots and
original states snapshot matrix defined as follows:

A(XZHX)v i:(m1+1)a"' y T
5. Add the minimum number of statesif) to the last selected set such that
4(X1:(m1+m2)u X) < Omaz (18)

6. Sort the remaining state&; + mo + 1) : n) according to the angles between their snapshots and
the union of snapshot matricesI" and¥ defined as follows:

Zlxi, (xUTUW)), i=(m+mog+1),---,n
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7. Add the minimum number of statesif) to the last selected set such that
Z(Xl:(ml—I—mg—i—mg)a (X U r U \I’)) < emam (19)

8. The selectedh; + mo + ms states indicate the dominant state variables.

The inequalities (17), (18) and (19) are connected to the eerors andes in (16) respectively. By
proper choice o0b,,.., the errors in (16) can be kept deliberately small. The algorithm has Ipgpdiec
successfully to different models resulting automatic selection of dominans skaieinstance in section
7 by settingd,,... = 15 for a mechatronic protection valve, the algorithm identifieate variables as
dominant states. For further discussions and simulation results refeitimnséc

6 Structure simplification

Most of the models based on physical phenomena have simple inner steuanut consist of sparse
matrices, but after applying the system matrices optimization method, normallygtesrsynatrices of

the reduced order system are full of nonzero elements. This cormgspo a high model complexity,
since each non-zero element represents one internal coupling withiystieens

By observing precisely the system matrices, it can be perceived thatyusame of their elements are
very small. Thus the conjecture lead us to the question that "Are they rediiyntambers or they are
just results of some errors or round off in numerical computations?”.alitleenticity of this guess can
be checked by forcing the related elements to zercebglving the original optimization problem with
appropriate constraintsThe question arises is “which elements are not significant and can laegdp
by zeros with negligible impact on the approximation error?”. To verify theiance of each element
and its effect on the performance and quality of the reduced ordemsyateost function is required.
Afterward we should search between the possible options to find a s&tmémts that minimize the
cost function. Often there are a large number of different choicesrty oat this task and this number
is related directly to the size and complexity of the original system. In fact ittisiswally possible to
check every single option independently and find the best solution, thergme methods for pioneered
searching such as genetic algorithm (GA) is demanded. These ideasanmddthematical background
is presented in the succeeding subsections.

6.1 Secondary conditions

The general linear equality constrained minimization problem can be writterlaw$:
Find X such that it minimizeg| AX — B|| and fulfills the equalityCX = D

whereA is an m-by-n matrix:{, < n) andCX = D defines a linear equality constraint. In [8, 14] some
methods for solving this optimization problems are proposed. The ability to sptiraimation problems
with constraints can be used to combine some additional features to systenes@pticnization method
for order reduction and structure simplification. In [17] this basic ideaes! digr improving the steady
state performance.

Application of Secondary Conditions to Structure Simplificat®imce each non-zero element represents
one internal coupling within the system, it is therefore appropriate to notrediyce the system order
but also to keep the reduced system simple by aiming at a significant nunmienoaglements i and

‘W. In order to achieve this, we first formulate complexity constraints on théceztimodel (6) by the
following secondary conditions:

eiThe,i - le,i = 0T7 VV:I‘hw,i - lw,i =0T (20)

1
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WhereeiT is theiy, row of matrixE andwgF is thei,, row of matrixW. For instance for forcing the first
element in the second row of matrix (a21) to zero, we can choose the following secondary conditions
for the second row of matri (eJ ):

he,2 = []-7 07 e 70]T7 19,2 = [O]
The optimization problems (13) with secondary conditions of type (20) resutistimal solutions (21):
Copty = XaoyM T (MM ™)1 (Ig; — X3, MT(MMT) 'he)-
(b (MM ™) " he ;) “The(MM™) ™! 1)

WoTpti = X’irxgo(XdOXg‘o)_l_‘_(lW,i - X;TXEO(XdOXgo)_thJ)'

-(hyy i (XdoXdo) "hw.i) " hy i (XdoXdo)

Using secondary conditions presented in (20), we can force any elehsgstem matrices to zero
deliberately. But the problem is that we don’'t know which elements are igotfisant and can be
replaced by zeros. Therefore we should search between the passiioles to find the optimal places
that can be replaced by zeros. If the suitable complexity constiaamgh are found, the optimization
problems (12,13) with secondary conditions of type (20) result in a estisienplified model.

6.2 Method for simplifying the reconstruction matrix Wy

Each row ofW . shows the optimal estimation of the corresponding state variable in the origatahs
based on the state variables of the reduced order system. In the cagestbaginal state variable be
one of the dominant state variables, the corresponding rdW dfas very simple structure as follows:

WI _ (0 0 1 0 .0
ldo igpcol.

therefore no further simplification is applicable. But other rows need tdbeked for the possibility of
simplification. For instance if one of the rows W, looks like the following row vector:

wi=(4 3x1077 -7 3x107" 107)

our method tries to replace the very small elements (number 2,4 and 5) witharet@multaneously
examine precisely the effect of this replacement on the approximation énrorder to carry out this
task we define an acceptable error range (accuracy criterion)dorrew as follows:

{EI‘Wi , (1 + ]{)EI‘WI] (22)

whereErw; = || x{ — wi Xdo|| @and parametei can be any value greater than zero. The typical value
of k is around 0.1 which shows losing the accuracy not more than 10 percém optimum answer,

of course this value can be changed with regard to the application. Thissidgaphically presented

in Fig. 6.2. It means that we search for the simplest model among the simplifiede order models
that have acceptable performance (set A in the figure) defined by T@2)o so our algorithm replaces
some elements with zeros by adding the corresponding (zero forcing)d&y conditions to (12) and
solving (21) for a candidat&. Then if the added secondary condition results in an approximation error
(Ery,,) in theError Range[Erw; , (1 + k)Erw], it calculates the following simplicity cost function:

F' = number of nonzero elements (23)

otherwiseF' will be set to zero. For small matrices it is possible to check all the possilie f@eing)
secondary conditions and compare the results with respect to their simplisity Tlous the row with
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The whole search space (M)

B

/

The non-simplified model Simplified models with acceptable

with the best accuracy accuracy (new search space)

Figure 2: Error bound fitness function’s effect on the search space

the higher cost function has the highest simplicity and at the same time it dé@snitnuch accuracy.
But when the number of different options exceeds a limit, we propose t&Asd hen, the steps and
algorithm of this search are as follows:

1. Cenerate a starting popul ati on of genes

2. Evaluate the quality index of genes (Fitness
Funct i ons)

e Construct the secondary conditions (hy;,ly;)
correspondi ng to each gene
e Calculate the sinmplified W; using (21)
e Eval uate each gene’s fitness function F, using
(22, 23)
3. Sort the genes regarding their fitness val ues

4. if (the breaking condition is fulfilled)
choose the row vector corresponding to the best gene

el se
Cenerate a fitter popul ation using genetic operators
and go to 2).

In this GA, a gene is a binary string of length where each bit indicates, whether the corresponding
element ofij should be enforced to zero or not. For more details see [3, 4, 5] atidrséd4.
6.3 Methods for simplifying the reduced order system matrice® .

Each row ofE,. shows the optimal estimation of the corresponding state variable’s deeivatithe
original system. Similar to the previous step, our method tries to replace vetlyederaents of each
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Starting Population
gla gZ’ g3’ sy gm

i Evaluating the Quality Index of Each Gene (Fitness Functions)

Finding The Simplified Row Corresponding to Each Gene
Calculating the simplified E; (the i, row of E) by solving (21)
with the secondary conditions indicated in each gene.

l

Evaluating each gene’s fitness function
1. Make sure the corresponding E; estimates the original
state with the error in the predefined Error Range (24)
2. Calculate the corresponding fitness function (25)

Sorting the genes with respect to their fitness values

Choose the row
vector corresponding
to the best gene as
the simplified iy row
of E (Ey)

Breaking
Condition

Generating a fitter population using genetic operators

Figure 3: Structure simplification flow chart using GA for each roviof

row of E with zeros and simultaneously examine the effect of this replacement on phexapation
error. The acceptable error range for each row is defined as follows

[EI‘Ei , (1 + ]{)EI‘EI] (24)

whereErg; = min_r || XY  — ET M]|. At first our algorithm replaces some elements with zeros b
h do nc
i 1 1

adding corresponding (zero forcing) secondary conditions to (&8)salving it. Then it checks the
accuracy criterion and calculates the following cost function:

F = number of nonzero elements (25)

The steps and algorithm of this search is depicted as a flow chart in Fidhi& v8 an alternative to the
above gray shaded scheme.
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6.4 How does genetic algorithm help structure simplification?

Genetic algorithms apply the principles of evolution present in nature to fildi@s to optimization
problems. This is achieved by maintaining a population of best solutions dsgarghes. A string with
a fixed bit-length usually represents a solution. In order to evaluate esehtial solution, genetic al-
gorithms need a fitness function that assigns a scalar fithess value tortioylpasolution. Once the
representation scheme and fitness function are determined, a GA caseatatiing. Initially, often at
random, GAs create a certain number of strings, called the population sipemtohe first population
generation. Next, the fitness function is used to evaluate each solution irnrshigeheration. Better
solutions obtain higher fitness values. Then, on the basis of these evad,@iémetic operators such as
selection, recombination, and mutation are applied to produce the nexatienekVhile recombination
operator is very helpful in the local search, mutation helps in expandirggtireh area, and thus explor-
ing the whole search space. The procedures of evaluation and tiener iteratively performed until
the optimal solution is found, or until the time allotted for computation is over.

How Does GA Workin this part the basic steps involved in any GAs are illustrated. These stipden

1. Defining the problem in a gene representation: A suitable representdttbe solution of the
optimization problem should be defined in the form of a binary string, caresdty the required
gene length can be determined.

2. Defining a fitness function: The fitness function assigns a scalarditraése for each gene, in
such a way that this value reflects the goodness of the solution. The infhet fithess function is
a binary gene and the output should be a scalar value.

3. Creating an initial random population: The initial population can be createtbmly or based on
some intuitional knowledge.

4. Setting the evolution parameters: The evolution parameters allow us to Icti@revolution
process, by controlling the genetic operators. Recombination probabdigmbination num-
ber, mutation number, mutation probability and elite number are the more usednh@iars that
can be tuned for improving a GA.

5. Evolving a fitter population: Starting from the initial population, a new pdparais created
by applying the genetic operators such as recombination, mutation, elitism qartgt genes.
The genes inside the new population are sorted according to the fithessrvaln ascending or
descending order depending on the problem that we are looking for tl@uammor the maximum.

6. Repeating the evolution process until the fitness criteria are met, or unpitekspecified number
of iterations is reached.

These steps are graphically depicted in Fig. 4. With respect to the presgotiens, suitable choices of
1 andh are needed as candidates for the optimal simplified reduced order sysfeta® be used to
search between different options. In this method each option is presefioech of a bit string (so-called
individual) that only consists of ones and zeros and ones show thespleatezeros should be inserted in
the corresponding row of matric8andW. For instance suppose the second row of ma#xound
form (10) is equal to the following row vector:

Wa=[21 5107° 610717 ]

The constraint for the GA that forces the element of of matrix W to zero, can be presented by the
following row vector:
T _ _
gw, = 0 0 1 =001
14 col. 2,4 col. 3,4 col.
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Figure 4: Typical genetic algorithms structure

Consequently every row vector that has the length three and containsredyand zeros corresponds
to a simplified structure of the second row of matMK. In an implementation of our institute, the
starting population is selected randomand the tournament selection, two point cross over and normal
mutation are used as genetic operators [18] and the GA produces nevati@ms with better and better
individuals as long as the breaking condition (humber of produced gémes) is not fulfilled.

6.5 Improving the results by Tabu search

Tabu search is a kind of iterative search and it is able to eliminate local minim#éasehrch areas
beyond a local minimum [22]. Therefore, it increases the possibility of fondire global minimum

of a multi-modal search space. This search method can be used, as ameniffi@ GA in structure

simplification, by calculating every solution in the neighborhood of the ctuigelution and selecting
the best one for the next iteration step. This means that the Tabu seavdthatgselects the way that
produces the most improvement or the least deterioration. The advaritdgkbuosearch is the ability
to find better solutions in local regions nearby the current solution. Térera&ve recommend to solve
the introduced problem of structure simplification in two steps by exploiting tleagtpoints of both

search algorithms. First by finding the region containing the global optimuat @ast a very good
suboptimal in the large search space by GA then finding the best solution iled¢hlsregion by Tabu

search algorithm.

6.6 Condensing the search space

In this part two ideas for accelerating the search procedure of GAractare simplification based on
the fitness function in (24,25) (or similarly in (22,23)) are proposed. & ltEsas reduce the size of search
space during the search process by omitting improper (out of rangey gdime first idea is based on
the fact that if an individual results in an approximation error greater pnedefined value in (22,24),
then any individual that has the similar format of gene (has at least thersamiger of ones in the same
places) results in a greater approximation error which is surely out epéaigle range. For example if

=010 0 1 0
results in an approximation errér;, then any individual which has a gene of the following format:

gi:[*l**l*}

LIt might be useful to add specific genes to the starting population thattrsftectures close t8 from (10). For instance
in the example in 6.4g§§v2 is a good candidate to be added to the random starting population. Howeveideas have not
been deeply investigated.
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where "*” could be either one or zero, causes an approximation ereatgr thank;. For instance in
the exampleg; means forcing the second and the fifth element of a row in mattix zero, whileg; in
addition forces some other elements to zero.

Similar to the first idea it can be shown that if an individual has an approximatimr less than the
predefined error bound, any individual that has the identical forfrgee (has at least the same number
of zeros in the same places), either is not in the range or has greaterabfigtess value. For example

g=[1100 1 0

results in the fitness value equal to 3, then we claim that any individual vilaiska gene of the following
format:

gi:[**OO*O}

where ™" could be either one or zero, has a fitness values greater3ta@nit is not in the range.
The proof is so simple, because if the the approximation error of an idemtaigldual is not in the
predefined range (error bound) then anyway it is not acceptablen@te apparently its fithess value is
higher because the related genes has less ones that results in more etamrents in the corresponding
row and subsequently higher value of fitness according to (23). Useglibve two ideas after each
iteration lots of possible candidates will be omitted from the search list andebiaits in more effective
search and it extremely shrinks the search space after a few iterations.

6.7 Enhancing the fitness function

So far, the fitness function was calculated by (22)-(25) without corisgl¢he state trajectories of the
reduced model, i.e. without performing any additional simulation. For a maeiga evaluation of
the quality of approximation, one can simulate the original and the reduced madel and calculate
the mean square root of the difference between the trajectories of theabstate variables and their
approximation from the reduced order model as follows:

OHK?H.

[Edo, (1) — Wil X(t)]?dt

(26)

n

P

tN.
=11 J

! [ 2, (t)dt

0

This fitness function is equal to the norm of approximation error and isriguie the one proposed in
(22,24). Although using this fitness function sounds quite reasonabiedasuring the performance of
the reduced order system, it encounters several computation difficuldieseimendously increase the
convergence time of the GA. In the GA each individual corresponds ito@lied system and in order
to calculate (26), the corresponding simplified system ought to be simulatdéctithe simulation of
the whole simplified systems (correspond to a new population) takes heanputation effort and is a
very time consuming task. With respect to this inconvenience, (26) carenasdd as the main fitness
function from the first beginning. SincBrw; and Erg; are just an approximation of the reduction
quality, for achieving better results the structure simplification search gsa@n be carried out in two
step as follows:

1. Using (22,24) as the fitness function for the first iterations, till accéptalkults are achieved.

2. By fixing the number of zero elements run the GA, using (26) as the fifuesgon and the results
of the first search as starting population, for a few iterations.
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Figure 5: Structure simplification process

7 lllustrative examples

In order to implement our initial ideas, it was necessary to develop the eegsirftware and tools. To
make clear the required tools, the whole process of structure simplificattuoiwas described in the
previous sections) is depicted as a simple flow chart in Fig. 5. The strusiag@ification process
consists of (1) Modeling and simulation of typical nonlinear systems, (2&etluction of nonlinear
systems with required constraints by system matrices optimization meSMON) and (3) genetic
algorithm to carry out the search process. For each part a packetfinAB environment is developed
such that they are compatible with any nonlinear system in our scope ofsntEos further information
refer to the user manuals [11, 27] and [1]. In the following two exampledrifites the applicability of
the proposed method and its effectiveness.

Car Body suspension
storage Control Voltage
bearing baffling unit l/
-
| | Servo
steel _ _ Valve to pressure
‘ — > piston ) system
spring chamber oil flow Q
Axs

wheel

Figure 6: Construction of hydropneumatic vehicle suspension
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7.1 Hydropneumatic vehicle suspension

Our method was tested on an active hydropneumatic shown in Fig. 6, whielkdslaed in more detail
in [6, 15]. This device increases comfortableness and safety by saytlffareducing the incongruous
movements of the car body compared to a traditional passive spring ahsokber system. The inputs
of this system are the in and outflow of oil in the hydropneumatic system wihictld be regulated
by the controller using measurement data from the sensors. In ordesigndend simulate such a
controlled system a modelling of the system is necessary. The simulation Gutdlerated through
order reduction and furthermore it simplifies all control algorithms whichctliyeise the model, such as
state feedback observer combinations or model based feed forwatroltars. Fig. 7 shows the block
diagonal representation of this system including its nonlinear parts (meaigsde [16]). The system
has a 10th order model with the system matrices shown below:

r o 1 0 0 0 0 0 0 0 07
—4127 0 1275 O 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
1275 0 -1613 O 1600 0 0 0 0 0
A — 0 0 0 0 0 1.0 0 0 0 0
- 0 0 533333 0 533333 0 O 0 0 0
0 0 0 0 0 0 0 1.244 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 —-162 1
L O 0 0 0 0 0 0 0 —8100 0O
Y 0 7 r o0 0 0 0 0 1
4000 0 —0.014 —0.014 —-0.014 0 0
0 0 0 0 0 0 0
0 0 —0.0005 —0.0005 —0.0005 0 0
0 0 0 0 0 0 0
B = 0 0 | F= 0.66 0.66 0.66 0 0
0 0 0 0 0 0 0
0 0 0 0 0 175 —71.43
0 0 0 0 0 0 0
L O 8100 L O 0 0 0 0

There are seven dominant state variables. so the reduced order rhod##y can be calculated. The

uy () 50O . U, (1) w3 Xg () o9 Agreelt)
—_— 5 —
242 Dw s +w§
cr )
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Figure 7: block diagram of hydropneumatic vehicle suspension model
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order reduction method without structure simplification calculates the thresnsysnatrices as follows:

5.9¢—13 1.0 —38e~ 13  52e 14 6713 7.2e— 14 2.5e 14
—4.1e3 —24e 1 1.3e2 1.2~ —14e 9 —7.9e 1 1.0e 1!
_ 3.1e 13 —15e713 _85e 14 1.0 3.2e 13 6.9e14 1.9¢~14
A = 1.3¢! 7.6e=3 —1.1e! —3.6e2 -1.3 8.8¢—2 —8.6e~2
—4.9¢ 14 7.1e 15 2.9e— 14 5.0e"15 4.9 14 1.2 —2.3e~ 15
—2.3e712  _11e M 1.9e12  73e 14 _—25e 12  35e13 7814
—1.4e! 1.2 1.5¢! —3.0 —2.1el —1.4e! —1.9¢!
—23e~ 14 4715 5.0e17  4.1e"16 4.2e717  _84e 14 3514
4.0e3 —4.7e~13 —1.5e72  —1.5e72 —15e 2 —1.3e 11 —84e 12
_ 6.1e—15 4.7¢~15 _ 4517 3.6e~16 43717 _73e714  _j51e 14
B=| -13 1.8¢72 |, F = | 1673 1.4e73 1.5¢73 3.0e72 2.0e7!
9.7¢—15 9.4¢~15 2.6~ 18 53e18 2818  6.7e—15 2.0e— 14
3.2¢~13 —3.5e~4 8.8¢ 17 _—25e716 18e~17 1.8¢e! —7.1e!
8.0e ! 2.8¢e! 2.3¢4 —2.1e73  —3.3¢ % 3.2 —6.9¢!

The approximation of the original model is good, but the complexity of theaediunodel is very high
because all of the8 elements of these matrices are non-zero. Using the simplification methodtpresen
through this report a reduced and simplified model of ofderas achieved, wherB was chosen as in
[16]. To find the simple structure system, the GA needed to calculate apptek20 solutions for the
global search and the Tabu search algorithm calcultiexblutions for the local search within a search
space containing x 2'4 ~ 114.6 x 103 possible solutior’s The system matrices of the resulted model
are as follows:

0 1.0 0 0 0 0 0
—41275 0 1275 O 0 0 0
_ 0 0 0 1.0 0 0 0
A = 0 0 0 0 -—168 0 0
0 0 0 0 0 1.2 0
0 0 0 0 0 0 0
| 0 0 0 0 0 0 —31.6
[0 0 0 0 0 0 0
4000 0 —0.015 —0.015 —0.015 0 0
~ 0 0 - 0 0 0 0 0
B=| o 0 |, F= [00024 00013 00015 0 0
0 0 0 0 0 0 0
0 0 0 0 0 175 —71.4
| 0 335 0 0 0 0 0
roo1 0 0 0 0 0 0 7
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
W — | 0021 0.003  0.980 —0.002 0.026  —0.010  0.003
— | —1.73¢ 0.146 1.189  1.022 —1.671 2.570  —0.5386
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
| —56.291 —1.657 54.279 1.582 —72.199 —54.848 178.019 |

where81 elements are forced to zero and the interaction between the states are xtteaneased.
To illustrate the quality of approximation the original system, the reduced systender7 and its
simplified form are excited with the input(t) = [0.16(t) 0], whereo(t) denotes the step signal.
The time curves of dominant statesg, x3, x5 andxg are depicted in Fig. 8. The results show that the
reduced simplified system, found by the two search algorithms, is less tethaa original reduced
system, but the error lies in an acceptable range. It is evident that thisi®the price paid for much
higher simplicity.

2In [5] and [6] the search space2d("+2+5) — 298 pecause the row by row simplification was not used!
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Figure 8: Time curves of four dominant state variables of the original sy$selid), reduced order
system of7;;, order derived by SMO without simplification (dash) and its simplified fornitétt) excited
by u(t) = [0.10(t) 0]T.

7.2 Mechatronic Protection Valve

Another example that was used for further implementation of the method is a trwtbgrotection
valve. The model is of order 11 and contains nine nonlinear equatiomsmekhanical structure of the
model is shown in Fig. 9. The valve can be activated for pressuretiedury stimulating a pneumatic
valve. The activation is realized by a rectangular pulse-function with aritaichg change fron) to 25
Volts. For illustration of the reduction process, the main system matixaf the protection valve is
shown below:
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&
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0 0

By applyingSMOmethod in conjunction witlDSFA the model was reduced to orderThe snapshots
were generated by simulation of the original system with a sequence offpmisigons representing a
repeated switching of the valve. Then the snapshot matrices are evalititéelp ofDSFA The quality
criterion in (17), (18) and (19) was setdp,.. = 15; andDSFAassigned the vector of dominant states
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Figure 9: Mechanical structure of the mechatronic protection valve,syuofeHuba Nemeth [19].

X4, of ordern’ = 8. The reduced main matrix(’) is as follows:

r 4.5-10713 1 0 —48-107% —96-1071® 0 1.6-10720 —1.6-10"16 7
—5-10° —500 0 —0.001 —0.028 0 0.0038 —-8.3-10~8
—-1.3-10710 —14.10713 0 4.8-10712 1.7-1072 0 -—1.1-10"18 72.1071%
Al — -1.4-107'2 -18.1071% 0 9.107M™ 24-1071% 0 —4.7.1072! 1

- 1.7-108 75-10711 0 —65-107° —-1.2-107% 0 7.5-10°16 —4.10712
—0.069 42-1076% 0 0.0020 —-14-100% 0 1.5-107° —2.5-10~8
1.7-105 2.1-10"8 0 —-1.1-100% —29.100" 0 14-10713 —1.6-1079

3.5-1079 —14-107% 0 —5.7-10° 2.1-10710 0 —23.10716 —1000

In contrast to matrixA of the original system, matriA’ is filled with many nonzero elements. It has
therefore a higher inner structure complexity. Usually not all of these elenshare the same impact
on the affiliated differential equation. To find a system with a less complegtateigenetic algorithms

in combination with an error bound fitness function as described in prevexiggs can be used to
simplify the system. The result of this procedure is shown below.

B 0 1 0 0 0 0 0 0 7
—5-10° —500 0 —0.001 —0.028 0  0.0038 —-8.3-1078
0 0 0 0 0 0 0 0
A — 0 0 0 0 24-100" 0 0 1
- 0 7.5-10711 ¢ 0 0 0 0 0
—0.069 0 0 0 —14-100* 0 1.5-107° 0
0 0 0 0 0 0 0 0
L 0 0 0 —5.7-10° 0 0 0 —1000

Fig. 10 shows the simulation results of the output (valve pressure) forrii@al model of orderl 1,
the reduced model of ord&rand the reduced and simplified model of or8dor a pulse function with
duration of20ms. The resulting trajectories show that the original system has been wetbapated by
the reduced system. Furthermore, applying structure simplification to theegdystem does not much
aggravate the approximation quality. The error of both reduced systefas;mg to the angle between
the subspace of(¢) andy(¢), is0.4 - 7/100. Also, by order reduction fronh1 to 8, the required storage
capacity was decreaseddd% of the original system and the simulation effort was decreaseX ¥y

Experiments in reducing to orders less ttsawithout significant loss of accuracy were not successful
and in some cases resulted in unstable models. We believe that it roots in thetiomaf nonlinear
parts which has also reflected in the almesiptymatrix A.
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Figure 10: The graph shows the time-response of the original and theagdystems for a rectangular
pulse-function oR0[ms] duration.

8 Conclusion

The primary method of system matrices optimization for order reduction of rearlgystems may not be
efficient for big nonlinear systems. In this report we introduced the npwoty method which contracts
the optimization problem and opens new fields to improve the results. Thendaonasimplification
scheme was presented that delivers models of reduced order and singslstimicture at the same time.
Model structures were coded in binary strings and optimized using Gerigticithms. A special fitness
functions was suggested that reduces the computational effort diigstitele still delivering good
approximation results in practice. In additions some routines for sorting matceptable selections
during the search procedure were proposed that increase thefgaceergence considerably. It should
be also noted that one of the advantages of the new method in comparisoml ifkeas issimulation
free concept reflected in the fitness functions (22) and (24). In this algouthignthe snapshots of the
original system are required and no further simulation of the original systehe reduced order system
is necessary. Future work shall focus on the suitable choices of stadimgiations of the genetic
algorithm, gained from the original model for instance, and on the applicafitireamnethod to even
larger and more challenging practical engineering problems.

A Appendix

Proof of Theorem 1:
The proof based on the following lemma

Xopty
Lemma 1. the matrixXopt = : is the optimal answer of least square problem

Xoptn
min || A — XB||
if and only if xqpt, iS the optimal answer of the least square problem

min || A; — xB|[, 1=1,2,...,n
X

whereA; andx,pt, are thei;,row of matricesA andXpt.
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Proof: Lemmal permits us to write:

Xopt1
min A - XB|| = |A - Xop B| = ||[A— | : |B
Xoptn
A1 — XoptlB
— : (27)
An — XoptnB
=Y Il Ai = xopt,Bll = Y i
=1 =1
and
min [|A; — ;B = [|A; — Xopt, B = Ji, i =1,--- ,n (28)

We would like to prove that:
Kopt; = Xopt; and J;=J;, i=1,---,n

Xopty

so if we supposd; > J; then we build the matriXopt = | Xopt; |, then

[ Xoptn |
5 n

|ARopt =Bl =Ji+ -+ S+ + Ty <> _J;
i=1

that it contradicts with (27). Similarly if we suppose that< .J; then
HAiXopt — BH =J;, < j@

that it contradicts with (28), therefotg = J;.
According to the fact that the answerain || A; — x;B|| is unique and we have proved that:

1As = Xopt; BJ| = || As — Rope, Bl = Ji = Ji
thusXopt; = Xopt; Which completes the proof of the theoram.
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