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Abstract

This report considers the problem of complexity in reduced nonlinear models derived by the so-called
system matrices optimization method. The solution suggested here is adding a class of secondary
conditions that impose a simpler structure on the reduced model. Distinct choices of these conditions
have different impacts on the accuracy of the reduced model,therefore a pioneered search based on
genetic algorithms is proposed that finds the optimal choiceof conditions. By means of two exam-
ples, it is illustrated that this method can effectively compromise between simplicity and accuracy of
the reduced model. In order to improve the numerical efficiency of the solution and to speed up the
pace of convergence some enhancements are presented.
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1 Introduction

Typical nonlinear dynamical systems are modeled by means of a set of firstorder coupled differential
equations or a set of partial differential equations. The models which aredescribed with partial differ-
ential equations can be also solved numerically by first spatially discretizing them by means of finite
element, boundary element and similar methods which lead to a set of ordinary differential equations. In
the first case the order of the system (number of state variables) depends on the quality of modeling and
complexity of the system, but in the second case it depends on the quality of discretization. Recent ad-
vances in hardware and software technology provide this ability to solve very large systems of ordinary
differential equations. Nevertheless, typically these calculations need parallel processing which increases
the cost of simulation drastically, and as a result, limits the simulation applicability considerably. There-
fore the complexity of simulation, analysis and controller design of a system depends directly on the
complexity of the corresponding system model. On the one hand high order complex models are more
accurate and reliable and on the other hand their cost of simulation and analysis is much higher. In order
to face this dilemma, two methodologies are imaginable,order reductionandstructure simplification:

1. The idea behind order reduction is to approximate a dynamic system with a model with less number
of state variables. Order reduction methods generally calculate models of lower order but of high
inner complexity. In other words they generally result in reduced systems with high number of
internal interconnections, i.e. the inner model structures are complex.

2. The idea behind structure simplification is simplifying the relations and couplingamong the state
variables. This idea is published in [3] and it was developed later in [4, 5, 29] and [28].

The problem that we address through this report is a combination of these two ideas in one algorithm.
Starting from an enhanced version of the system matrices optimization method presented in this re-
port, secondary conditions are formulated to calculate reduced systems withsimpler structures. One of
the methods to find optimal secondary conditions is exploiting genetic algorithm in order to perform a
global search within the search space. In this report an effective fitness function is presented, which sim-
plifies the search procedure and enormously reduces the computation effort. Also a method for omitting
improper candidates is suggested that accelerates the whole search process by shrinking the search space.

In section 3 some well-known methods of nonlinear order reduction are reviewed. Section 4 gives a
summary of Order reduction using system matrices optimization method [15, 16] and it proposes some
new enhancements of this method. Section 6 introduces appropriate secondary conditions to simplify
the reconstruction matrix and the reduced order system matrices. The effectiveness of the results are
demonstrated via two examples in section 7 and section 8 contains concluding remarks.

2 Preliminaries

The notation used in this report is moderately standard. Matrices are represented as bold upper case(A),
column vectors as bold lower case(x) and real or complex scalars as italic lower case(t). All vectors
are column vectors unless explicitly written as transposed.A−1 andAT denote respectively the inverse
and transpose of A. The notation‖A‖ means the square of the Euclidian (Frobenius) norm of matrixA

and is defined as
√∑

diag(ATA). We consider the nonlinear dynamical systems modeled by means
of a set of first-order coupled differential equations (which describethe behavior of the state variables)
together with a set of algebraic equations (which describe the dependency of outputs on internal state
variables) as follows:

S1 :

{
ẋ(t) = f(x(t),u(t))
y(t) = h(x(t),u(t))

(1)
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or with more details:

S2 :

{
ẋ(t) = Ax(t) + Bu(t) + Fg(x,u)
y(t) = Cx(t)

(2)

In this representation the vectorg(x,u) exclusively includes the nonlinear summands of the elements
f(x,u) in the system representation (1). This special representation (2) is based on the assumptions that
some of the state equations of many technical systems contain linear terms or may even be completely
linear, resulting zero-rows in matrixF. The problem that we address here is to simplify or approximate
the original nonlinear system with another one with smaller number of states andsimple structure.

3 Review of known techniques

In this section we will review briefly some well known methods of nonlinear order reduction and we
discuss why none of the existing methods fulfills our expectation of computationefficiency and simplicity
of the reduced order system.

Singular Perturbation([13, 23]): This method is based on the assumption that the system equationscan
be separated into fast and slow modes as follows:

Sslow−fast :

{
ẋ(t) = f(x, z,u, t, µ)
µż = g(x, z,u, t, µ)

whereµ > 0 is a scalar andx, z andu are vectors. This method decreases the order of the model, first
by ignoring the fast modes of the system and keeping the slower modes. Assumingµ close to zero and
substituting the steady state value ofz (denoted bỹz) in the original system, the following results will
be achieved.

z̃ = φ(x̃,u, t),

SSingPer.
reduced : ˙̃x(t) = f(x̃, φ(x̃,u, t),u, t)

It should also be noted that it is not always easy to find the functionφ and the combinationsf(x̃, φ,u, t)
has normally a very complicated structure.

Proper Orthogonal Decomposition([26]): Consider the nonlinear system represented by (1). For a fixed
inputu, the state trajectory at certain instances of timetk is measured as follows:

χ = [x(t1)x(t2) · · ·x(tN )] (3)

This is called a matrix ofsnapshotsof the states. If the singular values of (3) decrease rapidly, it can be
proved that the optimal approximation ofχ in the sense ofℓ2 norm, evolves on a low-dimensional space
which is spanned by the firstk leading columns ofU as shown below:

χ = UΣVT ≈UkΣkV
T
k , k ≪ n

whereU andV are unitary matrices andΣ = diag(σ1, ..., σn) is diagonal [7, 9, 10]. Then the reduced
order system will be obtained as follows:

SPOD
reduced :

{
˙̃x(t) = UT

k f(Ukx̃(t),u(t))
y(t) = h(Ukx̃(t),u(t))

In the POD procedure the effect of states and inputs on outputs is not taken into account and this confines
its application, for more details and examples refer to [20, 21].
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Nonlinear Balancing([25]): This method is an extension of balancing for linear systems in the sense that
it is based on extended definition of balancing and Hankel singular functions which was first introduced in
by Scherpen [24, 25]. This method is applicable to nonlinear systems with the following representation:

S2 :

{
ẋ(t) = f(x) + g(x)u(t)
y(t) = h(x(t))

The main objective involved in balancing theory are the controllability and observability energy func-
tions, which are defined as follows:

Lc(x0) = min
x(−∞)=0,x(0)=x0

1

2

∫ 0

−∞

‖u(t)‖2dt (4)

Lo(x0) =
1

2

∫ 0

−∞

‖y(t)‖2dt, x(0) = x0,u(t)

∣
∣
∣
∣
0<t<∞

= 0 (5)

This method similar to the concept of balancing for linear systems finds a coordinate transformation
in form of x = ψ(z) that balances the system due to extended definitions of balancing for nonlinear
systems, which results in

Sbalanced :

{
ż(t) = f̃(z) + g̃(z)u(t)

y(t) = h̃(z(t))
.

The reduced model is obtained by trimming the states corresponding to small Hankel singular values [25].
Computation ofLc via (4) requires solution of an optimal control problem, which presents computational
difficulties and restricts its application to very low order nonlinear systems.

4 System matrices optimization method

Since thesystem matrices optimizationmethod is the core of our discussions, it is described in more de-
tails in this section. The system matrices optimization method [15, 16, 17] can be exploited for nonlinear
systems with the representation in (2). Starting from (2) the task of order reduction in system matrices
optimization method is to find a system of lower orderñ which delivers an approximation (x̂) of the
dominant state variables (xdo) as follows:

Sreduced :

{
˙̃x(t) = Ãx̃(t) + B̃u(t) + F̃g(Wx̃,u)

y(t) = C̃x̃(t)
(6)

These dominant state variables are chosen by the designer and are combined in the vectorxdo which is
related to the original vectorx by

xdo = Rx. (7)

Based on the given system (2) and the definition of dominant state variables, the system matrices op-
timization method calculates the matrices that describe the reduced order system(E = [Ã, B̃, F̃] and
W) such that they optimally fit the snapshots of the dominant state variables of theoriginal system in
the sense of Euclidean norm [16, 17]. Assume that matricesχ, χdo, χ̇do ,Ψ andΓ are the snapshots
of the original system for typical input signals that respectively show thenumerical values of state vari-
ables, dominant state variables, derivative of dominant state variables, inputs and nonlinear part as shown
below:

χdo=[xdo(t1)xdo(t2) · · ·xdo(tN )],Ψ=[u(t1)u(t2) · · ·u(tN )]

χ̇do=[ẋdo(t1)ẋdo(t2) · · · ẋdo(tN )],Γ=[g(t1)g(t2) · · ·g(tN )]

χ=[x(t1)x(t2) · · ·x(tN )].
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To findE andW, the following optimization problems are solved:

min
E

‖χ̇do − [Ã B̃ F̃]
︸ ︷︷ ︸

E





χdo

Ψ

Γ





︸ ︷︷ ︸

M

‖ ⇒ Enc (8)

min
W

‖χ− Wχdo‖ ⇒ Wnc (9)

The optimal solution can be evaluated using (10).

Eopt = χ̇MT(MMT)−1, Wopt = χχT
do(χdoχ

T
do)−1 (10)

Exploiting the result of (10) the reduced system is completely determined and inaddition to dominant
state variables the non-dominant state variables are approximated usingW. Accordingly, the vectorg
of the nonlinearities is taken over from the original system (2) into the reduced order system and no
additional nonlinearities are introduced. For more details on the method, for instance how to chooseR
in (7) and the input signals refer to [15, 16, 17].

4.1 New development: row by row reduction

In following theorem we show that the original optimization problem can be splitinto smaller row by
row optimization problems (see application in section 6.1).

Theorem 1. In system matrices optimization method solving the following optimization problem

min
E

‖χ̇do − [Ã B̃ F̃]
︸ ︷︷ ︸

E





χdo

Ψ

Γ





︸ ︷︷ ︸

M

‖ (11)

is equivalent to solving̃n independent optimization problems as follow:

min
eT

i

‖ ẋT
doi

− [Ãi B̃i F̃i]
︸ ︷︷ ︸

eT

i





χdo

Ψ

Γ



 ‖, i = 1, 2, . . . , ñ

whereẋT
doi

is the snapshots of theith states derivative and̃Ai, B̃i and F̃i are theith row of the reduced

order system matrices̃A, B̃ and F̃ respectively, that should be calculated.

Proof: See the Appendix.

Using Theorem 1 the optimization problems in (8,9) are equivalent ton + ñ independent optimization
problems as follows:

for i = 1, 2, . . . , n min
wi

‖ xT
i − wT

i χdo‖, ⇒ Wnc (12)

for i = 1, 2, . . . , ñ

min
eT

i

‖ ẋT
doi

− [Ãi B̃i F̃i]
︸ ︷︷ ︸

eT

i





χdo

Ψ
Γ





︸ ︷︷ ︸

M

‖ ⇒ Enc, (13)
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whereẋT
doi

is the snapshots of derivative of theith state variable,̃Ai, B̃i andF̃i are theith row of the

reduced order system matricesÃ, B̃ andF̃ respectively,xT
i is the snapshots ofith state variable andwT

i

is theith row of matrixW. The indexnc means no constraints is applied to the optimization problem.
In fact Enc andWnc are the optimal answers in the sense of (8) and (9). The optimal solution canbe
evaluated explicitly using (14).

eT
opti

= ẋT
doi

MT(MMT)−1,wT
opti

= xT
i χ

T
do(χdoχ

T
do)−1 (14)

Exploiting the result of (14) the reduced system is completely determined and the reduced system is set
up as in (6).

5 Dominant State Finder Algorithm (DSFA)

The choice of matrixR in (7) can be a difficult task. Therefore, this section proposes aDominant State
Finder Algorithm(DSFA) that enablesautomatic selection of dominant statesxdo in nonlinear systems,
without losing their physical meanings. Our algorithm is based on the snapshot trajectories of the original
system as shown below:

χ=[x(t1)x(t2) · · ·x(tN )],Ψ=[u(t1)u(t2) · · ·u(tN )]

χ̇=[ẋ(t1)ẋ(t2) · · · ẋ(tN )],Γ=[g(t1)g(t2) · · ·g(tN )] (15)

Ξ=[y(t1),y(t2), · · · ,y(tN )]

We define a set of statesxdo as dominant state variables if there exist matricesC̃, Ã, B̃, F̃ andW such
that the following errors are small

e1 = ‖y(t) − C̃xdo(t)‖, e2 = ‖g(x,u) − g(Wxdo,u)‖,

e3 = ‖ẋdo − (Ãxdo + B̃u + F̃g(Wxdo,u))‖.
(16)

The idea here is to approximate the error in (16) by exploiting the snapshot matrices. The points of
interest are marked by dashed boxes in the block diagram in Fig. 1, where(a.), (b.) and (c.) show
output, nonlinear part and derivative of states respectively.

A
F

B

),( uxg

B C
U

.
X X Y

(c.)

(b.)

(a.)

Figure 1:a.: System outputY ; b.: The nonlinear functiong(Xg, U); c.: Ẋ is constructed byX, g(X,U)
andU

Considering the snapshot matrices

χdo=[xdo(t1)xdo(t2) · · ·xdo(tN )], χ̇do=[ẋdo(t1)ẋdo(t2) · · · ẋdo(tN )]

xdo represents the dominant states if the following three conditions are satisfied



TUM Tech. Rep. Auto. Cont. Vol. TRAC-1 9

1. subspaceΞ is close to subspaceχdo (y can be approximated byxdo)

2. subspaceχ is close to subspaceχdo (g(x,u) can be approximated byg(Wxdo,u))

3. subspacėχdo is close to the union of subspacesχdo,Γ and Ψ (ẋdo can be approximated by
xdo,g(xdo,u) andu)

The closeness of two subspaces can be interpreted mathematically by defining the angle between them
as presented in [12]. If the angle is small, the two subspaces are close to each other and nearly linearly
dependent. In our case, supposeA describes the complete snapshots of a physical model, andB describes
a subset of it, then the angle between these two spaces gives a measure ofthe amount of information
afforded by the full snapshot not associated with the reduced snapshot. Suppose two subspaces are
specified by the columns of orthonormal matricesA andB, the angle between these two subspaces,
according to [2], is calculated as follows:

for k = 1 : size(A)

B = B −AkA
T
kB

end

whereAk denotes thekth column ofA. If ‖B‖ ≤ 1

∠(A,B) = sin−1(‖B‖)

otherwise∠(A,B) = π
2 .The angleθ is contained by the interval[0, π

2 ]. Where the angleθ = 0 of two
basesA andB means, thatA is subspace toB and forθ = π

2 no correlation between the two bases is
given.

Based on above definitions of dominant states and angle between subspaces, we propose the following
algorithm for finding the dominant states:

1. Choose an upper bound for the maximum allowed angle (θmax)

2. Sort the states according to the angles between their snapshots and output snapshot matrix defined
as follows:

∠(χi,Ξ), i = 1, · · · , n whereχi = [xi(t1), · · · ,xi(tN )]

3. Find the minimum number of states (m1) such that

∠(χ1:m1 ,Ξ) < θmax whereχ1:m1 is the union ofχis, i = 1, · · · ,m1 (17)

4. Sort the remaining states ((m1 + 1) : n) according to the angles between their snapshots and
original states snapshot matrix defined as follows:

∠(χi, χ), i = (m1 + 1), · · · , n

5. Add the minimum number of states (m2) to the last selected set such that

∠(χ1:(m1+m2), χ) < θmax (18)

6. Sort the remaining states ((m1 +m2 +1) : n) according to the angles between their snapshots and
the union of snapshot matricesχ,Γ andΨ defined as follows:

∠(χi, (χ ∪ Γ ∪ Ψ)), i = (m1 +m2 + 1), · · · , n
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7. Add the minimum number of states (m3) to the last selected set such that

∠(χ1:(m1+m2+m3), (χ ∪ Γ ∪ Ψ)) < θmax (19)

8. The selectedm1 +m2 +m3 states indicate the dominant state variables.

The inequalities (17), (18) and (19) are connected to the errorse1, e2 ande3 in (16) respectively. By
proper choice ofθmax, the errors in (16) can be kept deliberately small. The algorithm has been applied
successfully to different models resulting automatic selection of dominant states. For instance in section
7 by settingθmax = π

100 for a mechatronic protection valve, the algorithm identifies8 state variables as
dominant states. For further discussions and simulation results refer to section 7.

6 Structure simplification

Most of the models based on physical phenomena have simple inner structures and consist of sparse
matrices, but after applying the system matrices optimization method, normally the system matrices of
the reduced order system are full of nonzero elements. This corresponds to a high model complexity,
since each non-zero element represents one internal coupling within the system.

By observing precisely the system matrices, it can be perceived that usually some of their elements are
very small. Thus the conjecture lead us to the question that ”Are they really valid numbers or they are
just results of some errors or round off in numerical computations?”. Theauthenticity of this guess can
be checked by forcing the related elements to zero byresolving the original optimization problem with
appropriate constraints. The question arises is “which elements are not significant and can be replaced
by zeros with negligible impact on the approximation error?”. To verify the significance of each element
and its effect on the performance and quality of the reduced order system, a cost function is required.
Afterward we should search between the possible options to find a set of elements that minimize the
cost function. Often there are a large number of different choices to carry out this task and this number
is related directly to the size and complexity of the original system. In fact it is not usually possible to
check every single option independently and find the best solution, therefore some methods for pioneered
searching such as genetic algorithm (GA) is demanded. These ideas and their mathematical background
is presented in the succeeding subsections.

6.1 Secondary conditions

The general linear equality constrained minimization problem can be written as follows:

FindX such that it minimizes‖AX − B‖ and fulfills the equalityCX = D

whereA is an m-by-n matrix (m ≤ n) andCX = D defines a linear equality constraint. In [8, 14] some
methods for solving this optimization problems are proposed. The ability to solve optimization problems
with constraints can be used to combine some additional features to system matrices optimization method
for order reduction and structure simplification. In [17] this basic idea is used for improving the steady
state performance.

Application of Secondary Conditions to Structure Simplification: Since each non-zero element represents
one internal coupling within the system, it is therefore appropriate to not onlyreduce the system order
but also to keep the reduced system simple by aiming at a significant number ofzero elements inE and
W. In order to achieve this, we first formulate complexity constraints on the reduced model (6) by the
following secondary conditions:

eT
i he,i − le,i = 0T, wT

i hw,i − lw,i = 0T (20)
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whereeT
i is theith row of matrixE andwT

i is theith row of matrixW. For instance for forcing the first
element in the second row of matrixA (a21) to zero, we can choose the following secondary conditions
for the second row of matrixE (eT

2 ):

he,2 = [1, 0, . . . , 0]T , le,2 = [0]

The optimization problems (13) with secondary conditions of type (20) resultsin optimal solutions (21):

eT
opti

= ẋT
doi

MT(MMT)−1+(le,i − ẋT
doi

MT(MMT)−1he,i)·

·(hT
e,i(MMT)−1he,i)

−1hT
e,i(MMT)−1

wT
opti

= xT
i χ

T
do(χdoχ

T
do)−1+(lw,i − xT

i χ
T
do(χdoχ

T
do)−1hw,i)·

·(hT
w,i(χdoχ

T
do)−1hw,i)

−1hT
w,i(χdoχ

T
do)−1

(21)

Using secondary conditions presented in (20), we can force any element of system matrices to zero
deliberately. But the problem is that we don’t know which elements are not significant and can be
replaced by zeros. Therefore we should search between the possibleoptions to find the optimal places
that can be replaced by zeros. If the suitable complexity constraintsl andh are found, the optimization
problems (12,13) with secondary conditions of type (20) result in a reduced simplified model.

6.2 Method for simplifying the reconstruction matrix Wnc

Each row ofWnc shows the optimal estimation of the corresponding state variable in the original system
based on the state variables of the reduced order system. In the case thatthe original state variable be
one of the dominant state variables, the corresponding row ofW has very simple structure as follows:

wT
ido

=

(
0 . . . 0 1

︸︷︷︸

ithcol.

0 . . . 0
)

therefore no further simplification is applicable. But other rows need to be checked for the possibility of
simplification. For instance if one of the rows ofWnc looks like the following row vector:

wT
j =

(
4 3 × 10−17 −7 3 × 10−14 10−14

)

our method tries to replace the very small elements (number 2,4 and 5) with zerosand simultaneously
examine precisely the effect of this replacement on the approximation error. In order to carry out this
task we define an acceptable error range (accuracy criterion) for each row as follows:

[ErWi , (1 + k)ErWi] (22)

whereErWi = ‖ xT
i − wT

nci
χdo‖ and parameterk can be any value greater than zero. The typical value

of k is around 0.1 which shows losing the accuracy not more than 10 percent ofthe optimum answer,
of course this value can be changed with regard to the application. This ideais graphically presented
in Fig. 6.2. It means that we search for the simplest model among the simplified reduced order models
that have acceptable performance (set A in the figure) defined by (22). To do so our algorithm replaces
some elements with zeros by adding the corresponding (zero forcing) secondary conditions to (12) and
solving (21) for a candidatẽwT

i . Then if the added secondary condition results in an approximation error
(Er

W̃i
) in theError Range[ErWi , (1 + k)ErWi], it calculates the following simplicity cost function:

F = number of nonzero elements (23)

otherwiseF will be set to zero. For small matrices it is possible to check all the possible (zero forcing)
secondary conditions and compare the results with respect to their simplicity cost. Thus the row with
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Figure 2: Error bound fitness function’s effect on the search space

the higher cost function has the highest simplicity and at the same time it doesn’tlose much accuracy.
But when the number of different options exceeds a limit, we propose to useGA. Then, the steps and
algorithm of this search are as follows:

1. Generate a starting population of genes

2. Evaluate the quality index of genes (Fitness
Functions)

• Construct the secondary conditions (hw,i, lw,i)
corresponding to each gene

• Calculate the simplified Wi using (21)

• Evaluate each gene’s fitness function F, using
(22,23)

3. Sort the genes regarding their fitness values

4. if (the breaking condition is fulfilled)
choose the row vector corresponding to the best gene
else
Generate a fitter population using genetic operators
and go to 2).

In this GA, a gene is a binary string of lengthn, where each bit indicates, whether the corresponding
element ofwT

j should be enforced to zero or not. For more details see [3, 4, 5] and section 6.4.

6.3 Methods for simplifying the reduced order system matrices̃Enc

Each row ofẼnc shows the optimal estimation of the corresponding state variable’s derivative in the
original system. Similar to the previous step, our method tries to replace very small elements of each
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Starting Population 

g1, g2, g3, ..., gm

Evaluating the Quality Index of Each Gene (Fitness Functions) 

Evaluating each gene’s fitness function

1. Make sure the corresponding Ei estimates the original 

state with the error  in the predefined Error Range (24) 

2. Calculate the corresponding fitness function (25) 

Finding The Simplified Row Corresponding  to Each Gene 

Calculating the simplified Ei (the ith row of E) by solving (21) 

with the secondary conditions indicated in each gene. 

Breaking

Condition  

Sorting the genes with respect to their fitness values 

Choose the  row 

vector corresponding 

to the best gene as 

the simplified ith row 

of E (Ei)

Generating a fitter population using genetic operators 

Figure 3: Structure simplification flow chart using GA for each row ofẼ.

row of Ẽ with zeros and simultaneously examine the effect of this replacement on the approximation
error. The acceptable error range for each row is defined as follows:

[ErEi , (1 + k)ErEi] (24)

whereErEi = mineT

i

‖ ẋT
doi

− ET
nci

M‖. At first our algorithm replaces some elements with zeros by
adding corresponding (zero forcing) secondary conditions to (13) and solving it. Then it checks the
accuracy criterion and calculates the following cost function:

F = number of nonzero elements (25)

The steps and algorithm of this search is depicted as a flow chart in Fig. 3, which is an alternative to the
above gray shaded scheme.
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6.4 How does genetic algorithm help structure simplification?

Genetic algorithms apply the principles of evolution present in nature to find solutions to optimization
problems. This is achieved by maintaining a population of best solutions duringsearches. A string with
a fixed bit-length usually represents a solution. In order to evaluate each potential solution, genetic al-
gorithms need a fitness function that assigns a scalar fitness value to any particular solution. Once the
representation scheme and fitness function are determined, a GA can startsearching. Initially, often at
random, GAs create a certain number of strings, called the population size, toform the first population
generation. Next, the fitness function is used to evaluate each solution in this first generation. Better
solutions obtain higher fitness values. Then, on the basis of these evaluations, genetic operators such as
selection, recombination, and mutation are applied to produce the next generation. While recombination
operator is very helpful in the local search, mutation helps in expanding thesearch area, and thus explor-
ing the whole search space. The procedures of evaluation and generation are iteratively performed until
the optimal solution is found, or until the time allotted for computation is over.

How Does GA Work:In this part the basic steps involved in any GAs are illustrated. These steps include:

1. Defining the problem in a gene representation: A suitable representationof the solution of the
optimization problem should be defined in the form of a binary string, consequently the required
gene length can be determined.

2. Defining a fitness function: The fitness function assigns a scalar fitness value for each gene, in
such a way that this value reflects the goodness of the solution. The input ofthe fitness function is
a binary gene and the output should be a scalar value.

3. Creating an initial random population: The initial population can be createdrandomly or based on
some intuitional knowledge.

4. Setting the evolution parameters: The evolution parameters allow us to control the evolution
process, by controlling the genetic operators. Recombination probability, recombination num-
ber, mutation number, mutation probability and elite number are the more useful parameters that
can be tuned for improving a GA.

5. Evolving a fitter population: Starting from the initial population, a new population is created
by applying the genetic operators such as recombination, mutation, elitism on theparent genes.
The genes inside the new population are sorted according to the fitness value in an ascending or
descending order depending on the problem that we are looking for the minimum or the maximum.

6. Repeating the evolution process until the fitness criteria are met, or until thepre-specified number
of iterations is reached.

These steps are graphically depicted in Fig. 4. With respect to the previoussections, suitable choices of
l andh are needed as candidates for the optimal simplified reduced order system. GAs can be used to
search between different options. In this method each option is presentedin form of a bit string (so-called
individual) that only consists of ones and zeros and ones show the places that zeros should be inserted in
the corresponding row of matricesE andW. For instance suppose the second row of matrixW found
form (10) is equal to the following row vector:

W2 = [ 2.1 5.10−5 6.10−17 ]

The constraint for the GA that forces the elementw23 of of matrix W to zero, can be presented by the
following row vector:

gT
W2

= 0
︸︷︷︸

1st col.

0
︸︷︷︸

2nd col.

1
︸︷︷︸

3rd col.

= 001
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Figure 4: Typical genetic algorithms structure

Consequently every row vector that has the length three and contains onlyones and zeros corresponds
to a simplified structure of the second row of matrixW. In an implementation of our institute, the
starting population is selected randomly1 and the tournament selection, two point cross over and normal
mutation are used as genetic operators [18] and the GA produces new generations with better and better
individuals as long as the breaking condition (number of produced generations) is not fulfilled.

6.5 Improving the results by Tabu search

Tabu search is a kind of iterative search and it is able to eliminate local minima andto search areas
beyond a local minimum [22]. Therefore, it increases the possibility of finding the global minimum
of a multi-modal search space. This search method can be used, as a complement for GA in structure
simplification, by calculating every solution in the neighborhood of the current solution and selecting
the best one for the next iteration step. This means that the Tabu search algorithm selects the way that
produces the most improvement or the least deterioration. The advantage of Tabu search is the ability
to find better solutions in local regions nearby the current solution. Therefore we recommend to solve
the introduced problem of structure simplification in two steps by exploiting the strong points of both
search algorithms. First by finding the region containing the global optimum orat least a very good
suboptimal in the large search space by GA then finding the best solution in thislocal region by Tabu
search algorithm.

6.6 Condensing the search space

In this part two ideas for accelerating the search procedure of GA for structure simplification based on
the fitness function in (24,25) (or similarly in (22,23)) are proposed. These ideas reduce the size of search
space during the search process by omitting improper (out of range) genes. The first idea is based on
the fact that if an individual results in an approximation error greater thanpredefined value in (22,24),
then any individual that has the similar format of gene (has at least the samenumber of ones in the same
places) results in a greater approximation error which is surely out of acceptable range. For example if

g1 =
[
0 1 0 0 1 0

]

results in an approximation errorE1, then any individual which has a gene of the following format:

gi =
[
∗ 1 ∗ ∗ 1 ∗

]

1It might be useful to add specific genes to the starting population that reflect structures close toW from (10). For instance
in the example in 6.4,gT

W2
is a good candidate to be added to the random starting population. However such ideas have not

been deeply investigated.
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where ”*” could be either one or zero, causes an approximation error greater thanE1. For instance in
the example,g1 means forcing the second and the fifth element of a row in matrixE to zero, whilegi in
addition forces some other elements to zero.

Similar to the first idea it can be shown that if an individual has an approximation error less than the
predefined error bound, any individual that has the identical format of gene (has at least the same number
of zeros in the same places), either is not in the range or has greater or equal fitness value. For example

g1 =
[
1 1 0 0 1 0

]

results in the fitness value equal to 3, then we claim that any individual whichhas a gene of the following
format:

gi =
[
∗ ∗ 0 0 ∗ 0

]

where ”*” could be either one or zero, has a fitness values greater than3 or it is not in the range.
The proof is so simple, because if the the approximation error of an identicalindividual is not in the
predefined range (error bound) then anyway it is not acceptable. Otherwise apparently its fitness value is
higher because the related genes has less ones that results in more nonzero elements in the corresponding
row and subsequently higher value of fitness according to (23). Using the above two ideas after each
iteration lots of possible candidates will be omitted from the search list and that results in more effective
search and it extremely shrinks the search space after a few iterations.

6.7 Enhancing the fitness function

So far, the fitness function was calculated by (22)-(25) without considering the state trajectories of the
reduced model, i.e. without performing any additional simulation. For a more precise evaluation of
the quality of approximation, one can simulate the original and the reduced order model and calculate
the mean square root of the difference between the trajectories of the original state variables and their
approximation from the reduced order model as follows:

F =
P∑

j=1

ñ∑

i=1

tNj∫

0

[ẋdoi
(t) − wi

T x̃(t)]2dt

tNj∫

0

ẋ2
doi

(t) dt

(26)

This fitness function is equal to the norm of approximation error and is superior to the one proposed in
(22,24). Although using this fitness function sounds quite reasonable formeasuring the performance of
the reduced order system, it encounters several computation difficulties that tremendously increase the
convergence time of the GA. In the GA each individual corresponds to a simplified system and in order
to calculate (26), the corresponding simplified system ought to be simulated. In fact the simulation of
the whole simplified systems (correspond to a new population) takes heavy computation effort and is a
very time consuming task. With respect to this inconvenience, (26) can not be used as the main fitness
function from the first beginning. SinceErWi andErEi are just an approximation of the reduction
quality, for achieving better results the structure simplification search process can be carried out in two
step as follows:

1. Using (22,24) as the fitness function for the first iterations, till acceptable results are achieved.

2. By fixing the number of zero elements run the GA, using (26) as the fitnessfunction and the results
of the first search as starting population, for a few iterations.
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Figure 5: Structure simplification process

7 Illustrative examples

In order to implement our initial ideas, it was necessary to develop the required software and tools. To
make clear the required tools, the whole process of structure simplification (which was described in the
previous sections) is depicted as a simple flow chart in Fig. 5. The structuresimplification process
consists of (1) Modeling and simulation of typical nonlinear systems, (2) Order reduction of nonlinear
systems with required constraints by system matrices optimization method (SMOM) and (3) genetic
algorithm to carry out the search process. For each part a package inMATLAB environment is developed
such that they are compatible with any nonlinear system in our scope of interest. For further information
refer to the user manuals [11, 27] and [1]. In the following two examples illustrate the applicability of
the proposed method and its effectiveness.

Car Body
 suspension

storage


wheel


baffling unit


oil flow Q


A
KS


Control Voltage


Servo

Valve
 to pressure


system

steel

spring


bearing


piston

chamber


Figure 6: Construction of hydropneumatic vehicle suspension
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7.1 Hydropneumatic vehicle suspension

Our method was tested on an active hydropneumatic shown in Fig. 6, which is described in more detail
in [6, 15]. This device increases comfortableness and safety by significantly reducing the incongruous
movements of the car body compared to a traditional passive spring shock-absorber system. The inputs
of this system are the in and outflow of oil in the hydropneumatic system which should be regulated
by the controller using measurement data from the sensors. In order to design and simulate such a
controlled system a modelling of the system is necessary. The simulation can beaccelerated through
order reduction and furthermore it simplifies all control algorithms which directly use the model, such as
state feedback observer combinations or model based feed forward controllers. Fig. 7 shows the block
diagonal representation of this system including its nonlinear parts (more details in [16]). The system
has a 10th order model with the system matrices shown below:

A =













0 1 0 0 0 0 0 0 0 0
−4127 0 127.5 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0
12.75 0 −1613 0 1600 0 0 0 0 0

0 0 0 0 0 1.0 0 0 0 0
0 0 533333 0 −533333 0 0 0 0 0
0 0 0 0 0 0 0 1.244 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −162 1
0 0 0 0 0 0 0 0 −8100 0













B =













0 0
4000 0

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 8100













, F=













0 0 0 0 0
−0.014 −0.014 −0.014 0 0

0 0 0 0 0
−0.0005 −0.0005 −0.0005 0 0

0 0 0 0 0
0.66 0.66 0.66 0 0
0 0 0 0 0
0 0 0 17.5 −71.43
0 0 0 0 0
0 0 0 0 0













There are seven dominant state variables, so the reduced order model of order7 can be calculated. The
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Figure 7: block diagram of hydropneumatic vehicle suspension model
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order reduction method without structure simplification calculates the three systems matrices as follows:

Ã =









5.9e−13 1.0 −3.8e−13 5.2e−14 6.7e−13 7.2e−14 2.5e−14

−4.1e3 −2.4e−11 1.3e2 1.2e−11 −1.4e−9 −7.9e−11 1.0e−11

3.1e−13 −1.5e−13 −8.5e−14 1.0 3.2e−13 6.9e−14 1.9e−14

1.3e1 7.6e−3 −1.1e1 −3.6e−2 −1.3 8.8e−2 −8.6e−2

−4.9e−14 7.1e−15 2.9e−14 5.0e−15 4.9e−14 1.2 −2.3e−15

−2.3e−12 −1.1e−14 1.9e−12 7.3e−14 −2.5e−12 3.5e−13 −7.8e−14

−1.4e1 1.2 1.5e1 −3.0 −2.1e1 −1.4e1 −1.9e1









B̃ =









−2.3e−14 4.7e−15

4.0e3 −4.7e−13

6.1e−15 4.7e−15

−1.3 1.8e−2

9.7e−15 9.4e−15

3.2e−13 −3.5e−4

8.0e−1 2.8e1









, F̃ =









5.0e−17 4.1e−16 4.2e−17 −8.4e−14 −3.5e−14

−1.5e−2 −1.5e−2 −1.5e−2 −1.3e−11 −8.4e−12

4.5e−17 3.6e−16 4.3e−17 −7.3e−14 −5.1e−14

1.6e−3 1.4e−3 1.5e−3 3.0e−2 2.0e−1

2.6e−18 5.3e−18 −2.8e−18 6.7e−15 2.0e−14

8.8e−17 −2.5e−16 1.8e−17 1.8e1 −7.1e1

2.3e−4 −2.1e−3 −3.3e−4 3.2 −6.9e1









The approximation of the original model is good, but the complexity of the reduced model is very high
because all of the98 elements of these matrices are non-zero. Using the simplification method presented
through this report a reduced and simplified model of order7 was achieved, whereR was chosen as in
[16]. To find the simple structure system, the GA needed to calculate approximately 120 solutions for the
global search and the Tabu search algorithm calculated15 solutions for the local search within a search
space containing7 × 214 ≈ 114.6 × 103 possible solutions2. The system matrices of the resulted model
are as follows:

Ã =









0 1.0 0 0 0 0 0
−4127.5 0 127.5 0 0 0 0

0 0 0 1.0 0 0 0
0 0 0 0 −16.8 0 0
0 0 0 0 0 1.2 0
0 0 0 0 0 0 0
0 0 0 0 0 0 −31.6









B̃ =









0 0
4000 0

0 0
0 0
0 0
0 0
0 33.5









, F̃ =









0 0 0 0 0
−0.015 −0.015 −0.015 0 0

0 0 0 0 0
0.0024 0.0013 0.0015 0 0

0 0 0 0 0
0 0 0 17.5 −71.4
0 0 0 0 0









W =













1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0

0.021 0.003 0.980 −0.002 0.026 −0.010 0.003
−1.734 0.146 1.189 1.022 −1.671 2.570 −0.5386

0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

−56.291 −1.657 54.279 1.582 −72.199 −54.848 178.019













where81 elements are forced to zero and the interaction between the states are extremely decreased.
To illustrate the quality of approximation the original system, the reduced systemof order7 and its
simplified form are excited with the inputu(t) = [0.1σ(t) 0]T , whereσ(t) denotes the step signal.
The time curves of dominant statesx2,x3,x5 andx6 are depicted in Fig. 8. The results show that the
reduced simplified system, found by the two search algorithms, is less accurate than original reduced
system, but the error lies in an acceptable range. It is evident that this error is the price paid for much
higher simplicity.

2In [5] and [6] the search space is27(7+2+5)
= 2

98, because the row by row simplification was not used!
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Figure 8: Time curves of four dominant state variables of the original system (solid), reduced order
system of7th order derived by SMO without simplification (dash) and its simplified form (dotted) excited
by u(t) = [0.1σ(t) 0]T .

7.2 Mechatronic Protection Valve

Another example that was used for further implementation of the method is a mechatronic protection
valve. The model is of order 11 and contains nine nonlinear equations. The mechanical structure of the
model is shown in Fig. 9. The valve can be activated for pressure reduction by stimulating a pneumatic
valve. The activation is realized by a rectangular pulse-function with an amplitude change from0 to 25
Volts. For illustration of the reduction process, the main system matrix (A) of the protection valve is
shown below:

A =















0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0.0088 0 0.0039 0 −0.013 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0















By applyingSMOmethod in conjunction withDSFA, the model was reduced to order8. The snapshots
were generated by simulation of the original system with a sequence of pulse-functions representing a
repeated switching of the valve. Then the snapshot matrices are evaluatedwith help ofDSFA. The quality
criterion in (17), (18) and (19) was set toθmax = π

100 andDSFAassigned the vector of dominant states
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Figure 9: Mechanical structure of the mechatronic protection valve, curtesy of Huba Nemeth [19].

Xdo of ordern′ = 8. The reduced main matrix (A′) is as follows:

A′ =










4.5 · 10−13 1 0 −4.8 · 10−14 −9.6 · 10−15 0 1.6 · 10−20 −1.6 · 10−16

−5 · 105 −500 0 −0.001 −0.028 0 0.0038 −8.3 · 10−8

−1.3 · 10−10 −1.4 · 10−13 0 4.8 · 10−12 1.7 · 10−12 0 −1.1 · 10−18 7.2 · 10−15

−1.4 · 10−12 −1.8 · 10−15 0 9 · 10−14 2.4 · 10−14 0 −4.7 · 10−21 1
1.7 · 10−8 7.5 · 10−11 0 −6.5 · 10−9 −1.2 · 10−9 0 7.5 · 10−16 −4 · 10−12

−0.069 4.2 · 10−6 0 0.0020 −1.4 · 10−4 0 1.5 · 10−9 −2.5 · 10−8

1.7 · 10−5 2.1 · 10−8 0 −1.1 · 10−6 −2.9 · 10−7 0 1.4 · 10−13 −1.6 · 10−9

3.5 · 10−9 −1.4 · 10−11 0 −5.7 · 106 2.1 · 10−10 0 −2.3 · 10−16 −1000










In contrast to matrixA of the original system, matrixA′ is filled with many nonzero elements. It has
therefore a higher inner structure complexity. Usually not all of these elements share the same impact
on the affiliated differential equation. To find a system with a less complex structure genetic algorithms
in combination with an error bound fitness function as described in previous sections can be used to
simplify the system. The result of this procedure is shown below.

A′′ =










0 1 0 0 0 0 0 0
−5 · 105 −500 0 −0.001 −0.028 0 0.0038 −8.3 · 10−8

0 0 0 0 0 0 0 0
0 0 0 0 2.4 · 10−14 0 0 1
0 7.5 · 10−11 0 0 0 0 0 0

−0.069 0 0 0 −1.4 · 10−4 0 1.5 · 10−9 0
0 0 0 0 0 0 0 0
0 0 0 −5.7 · 106 0 0 0 −1000










Fig. 10 shows the simulation results of the output (valve pressure) for the original model of order11,
the reduced model of order8 and the reduced and simplified model of order8 for a pulse function with
duration of20ms. The resulting trajectories show that the original system has been well approximated by
the reduced system. Furthermore, applying structure simplification to the reduced system does not much
aggravate the approximation quality. The error of both reduced systems, referring to the angle between
the subspace ofy(t) andỹ(t), is 0.4 ·π/100. Also, by order reduction from11 to 8, the required storage
capacity was decreased to63% of the original system and the simulation effort was decreased by30%.

Experiments in reducing to orders less than8 without significant loss of accuracy were not successful
and in some cases resulted in unstable models. We believe that it roots in the domination of nonlinear
parts which has also reflected in the almostemptymatrixA.
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Figure 10: The graph shows the time-response of the original and the reduced systems for a rectangular
pulse-function of20[ms] duration.

8 Conclusion

The primary method of system matrices optimization for order reduction of nonlinear systems may not be
efficient for big nonlinear systems. In this report we introduced the row by row method which contracts
the optimization problem and opens new fields to improve the results. Then an add-on simplification
scheme was presented that delivers models of reduced order and simple inner structure at the same time.
Model structures were coded in binary strings and optimized using Genetic Algorithms. A special fitness
functions was suggested that reduces the computational effort drastically while still delivering good
approximation results in practice. In additions some routines for sorting out unacceptable selections
during the search procedure were proposed that increase the pace of convergence considerably. It should
be also noted that one of the advantages of the new method in comparison to theold ideas issimulation
freeconcept reflected in the fitness functions (22) and (24). In this algorithmonly the snapshots of the
original system are required and no further simulation of the original system or the reduced order system
is necessary. Future work shall focus on the suitable choices of startingpopulations of the genetic
algorithm, gained from the original model for instance, and on the application of the method to even
larger and more challenging practical engineering problems.

A Appendix

Proof of Theorem 1:
The proof based on the following lemma

Lemma 1. the matrixXopt =






xopt1
...

xoptn




 is the optimal answer of least square problem

min ‖ A − XB‖

if and only if xopti is the optimal answer of the least square problem

min
x

‖ Ai − xB‖, i = 1, 2, . . . , n

whereAi andxopti are theithrow of matricesA andXopt.
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Proof: Lemma1 permits us to write:

min
X

‖A − XB‖ = ‖A − Xopt B‖ =

∥
∥
∥
∥
∥
∥
∥

A −






xopt1
...

xoptn




B

∥
∥
∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥
∥
∥






A1 − xopt1B
...

An − xoptnB






∥
∥
∥
∥
∥
∥
∥

(27)

=
n∑

i=1

‖ Ai − xoptiB‖ =
n∑

i=1

Ji

and

min
xi

‖Ai − xiB‖ = ‖Ai − x̃opti B‖ = J̃i, i = 1, · · · , n (28)

We would like to prove that:

x̃opti = xopti and Ji = J̃i, i = 1, · · · , n

so if we supposeJi > J̃i then we build the matrix̂xopt =











xopt1
...

x̃opti
...

xoptn











, then

‖Ax̂opt − B‖ = J1 + · · · + J̃i + · · · + Jn <
n∑

i=1

Ji

that it contradicts with (27). Similarly if we suppose thatJi < J̃i then

‖Aixopt − B‖ = Ji < J̃i

that it contradicts with (28), thereforeJi = J̃i.
According to the fact that the answer ofmin ‖Ai − xiB‖ is unique and we have proved that:

‖Ai − xoptiB‖ = ‖Ai − x̃optiB‖ = Ji = J̃i

thusx̃opti = xopti which completes the proof of the theorem.
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