
Predicting Cache Contention in
Multicore Processor Systems

Michael J. Zwick

Lehrstuhl für Datenverarbeitung

Technische Universität München

T E C H N I S C H E U N I V E R S I T Ä T M Ü N C H E N

Lehrstuhl für Datenverarbeitung

Predicting Cache Contention in
Multicore Processor Systems

Michael J. Zwick

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Informationstechnik

der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr.-Ing. habil. Erwin Biebl

Prüfer der Dissertation:

1. Univ.-Prof. Dr.-Ing. Klaus Diepold

2. Univ.-Prof. Dr.-Ing. Georg Färber (em.)

Die Dissertation wurde am 22.11.2010 bei der Technischen Universität München einge-

reicht und durch die Fakultät für Elektrotechnik und Informationstechnik am 21.03.2011

angenommen.

Contents

Abstract 9

1 Introduction 11

1.1 Background . 11

Clock Speed Limitations and Instruction Level Parallelism 11

Thread Level Parallelism . 12

Processor Memory Gap . 14

Cache Contention . 14

Cache Contention Aware Co-Scheduling 17

The Ideal Cache Contention Prediction Method 19

1.2 State-of-the-Art Methods and their Limitations 21

1.3 Formulation of Research Problem 24

Evaluation Objectives . 24

Evaluation Preferences . 25

Method Description . 25

Limitations . 26

1.4 Contributions . 28

Precise Definition of Cache Contention Prediction Techniques 28

Unambiguous Definition of the Evaluation Process 28

Evaluation Results . 29

1.5 Overview . 30

2 Techniques to Predict Cache Contention 31

2.1 Stack distance histograms . 33

2.2 The FOA Method . 36

5

Variation ‘one’ . 38

Variation ‘set’ . 39

Variation ‘set, masking’ . 40

2.3 The SDC Method . 42

Variation ‘one’ . 42

Variation ‘set’ . 43

Variation ‘lru set group’ . 45

2.4 The Prob Method . 50

2.5 The Width Method . 57

Variation ‘one’ . 57

Variation ‘set, mask’ . 58

Variation ‘set, mask, exp delta’ . 58

2.6 The Pain Method . 60

Variation ‘one’ . 61

Variation ‘one, sens38’ . 61

Variation ‘one, misses’ . 62

Variation ‘one, sens38, misses’ . 63

Variation ‘set’ . 63

Variation ‘set, misses’ . 64

Variation ‘set, sens38, misses’ . 64

2.7 The Misses Method . 65

Variation ‘one’ . 66

Variation ‘set, mask’ . 67

2.8 The Miss Rate Method . 67

2.9 The Activity Vector Method . 68

Variation ‘superset’ . 70

Variation ‘set’ . 72

Variation ‘set, mask’ . 73

6

2.10 The DMax Method . 74

Variation ‘one’ . 76

Variation ‘one, set’ . 77

Variation ‘one, set, inf’ . 78

Variation ‘set, mask’ . 80

Variation ‘one, set, acc’ . 81

Variation ‘set, acc, mask’ . 82

Variation ‘set, exp, acc, mask’ . 83

2.11 The Diff method . 84

Variation ‘one’ . 84

Variation ‘set, mask’ . 86

Variation ‘one, miss rate’ . 86

Variation ‘one, set, acc’ . 87

Variation ‘one, two’ . 87

2.12 The DMiss method . 88

Variation ‘one’ . 89

Variation ‘one, sens38’ . 89

Variation ‘set, sens38’ . 90

3 Evaluating the Prediction of Cache Contention 93

3.1 Evaluation framework . 94

Memory Reference Extraction with Pin 95

Predictor Calculation . 96

Calculation of Prediction Rankings . 96

Generation of Ground Truth Reference 99

3.2 General Ranking Performance . 108

NMRD - Normalized Mean Ranking Difference 108

Good scalability regarding the number of cores ψ 112

Poor performance of access or hit based methods 113

7

Good performance of miss based and related methods 114

Per-cache-set calculation not beneficial 116

Limited gain of masking . 117

Weighting stack distance entries . 119

Wider stack distance histograms . 119

Infinite LRU stack . 119

TLB effects . 120

Comparing results to others . 120

MP - Mean Penalty . 124

Big Picture . 128

3.3 Best-Selection Performance . 130

PPBAB - Penalty Predicted Best vs. Actual Best 130

PPBRS - Penalty Predicted Best vs. Random Selection (Gain) 134

3.4 Timing Performance (Cost) . 136

3.5 Gain vs. Cost Analysis . 140

4 Conclusion 143

Bibliography 145

Appendix 149

Cache Glossary . 149

Stack Distance Histograms . 150

Distributions . 153

List of Symbols and Abbrevations 155

8

9

Abstract

When several computer program applications are executed in parallel on a multithreaded

processor system, they permanently compete for shared resources, one of them being

shared processor caches. As some applications interfere much more than others, over-

all performance in multithreaded processor systems depends on the applications that are

chosen to be executed in parallel, i.e. co-scheduled. In order to maximize overall per-

formance, future operating systems might predict cache contention and co-schedule only

those threads that minimize cache interference.

In this thesis, I present several state-of-the-art cache contention prediction methods, vari-

ations of them, and completely new methods in a unified framework that makes them both

well defined and highly comparable.

I evaluate the methods by means of

• their ability to rank a given set of candidate co-schedules by the amount of cache

contention they introduce to an application,

• their ability to select the candidate co-schedule that introduces the least amount

of cache contention to an application,

• timing performance, and

• efficiency (gain vs. cost analysis).

My evaluation reveals that – with minimum effort – cache interference of co-scheduled

applications is best predicted when applying the number of stand-alone cache misses as

predictor. This is an interesting result, as most state-of-the-art cache contention prediction

methods rely on the distribution of references to cache LRU stack positions, stand-alone

cache hits as well as the total number of cache references as predictor.

I demonstrate that the accurate prediction of cache contention by stand-alone cache misses

is caused by high temporal locality of computer program memory references; this can be

observed by a highly concentrated distribution of stack distance histogram entries.

10 Abstract

1.1 Background 11

1 Introduction

For this thesis, the following notation applies: References in brackets, such as

[Zwick et al., 2010], refer to the corresponding publication (cf. chapter Bibliography). Ref-

erences without brackets, such as Zwick et al., 2010, or simply Zwick et al., refer to the

author(s) of the corresponding publication. References located at the end of a paragraph,

behind the last period, apply to the whole paragraph.

1.1 Background

Clock Speed Limitations and Instruction Level Parallelism

During the past 40 years, chip manufacturers improved microprocessor performance pri-

marily by two methods: The first method was simply to raise processor clock speed,

and the second method was the introduction of more and more complex processor en-

hancements to exploit instruction level parallelism. Since such processors are capable to

execute more than one instruction per processor clock cycle, they are called superscalar.

Some years ago, both methods turned out to be a dead end.

When reaching processor clock speeds of about 3 GHz, the effort to further increase pro-

cessor clock speed became unmanageable due to propagation delays and a too high heat

dissipation on a too small area. Besides, methods to exploit single thread instruction level

parallelism, such as multi-staged pipelines, out-of-order execution, and dynamic branch

prediction for speculative instruction execution, heavily increased processor complexity.

But an increased processor complexity, in turn, degraded program execution performance

due to higher wire and gate delays. There is a clear reason for the heavy increase of

processor complexity: Instruction level parallelism tries to execute as many instructions

in parallel as possible, and its efficiency is negatively correlated with data dependency and

conditional branches inherent in the executed code. However, as it is a key issue of com-

puter programs that single instructions process results of previously executed instructions

(data dependency), and as the probability of branches increases for longer instruction

streams, it appears obvious that exploitation of instruction level parallelism has a severe

12 1 Introduction

limitation: It does not scale. This limitation is emphasized by Olukotun et al.’s discovery

that, for a superscalar processor architecture, the “implementation complexity of the dy-

namic issue mechanisms and size of the register files scales quadratically with increasing

issue width and ultimately impacts the cycle time of the machine” [Olukotun et al., 1996].

In 1997, Hammond et al. stated that the “reliance on a single thread of control limits the

parallelism available for many applications, and the cost of extracting parallelism from

a single thread is becoming prohibitive” [Hammond et al., 1997] and that to “continue

this trend will trade only incremental performance increases for large increases in overall

complexity” [Hammond et al., 1997].

To overcome this dilemma and to further increase computer systems performance, thread

level parallelism had been investigated and exploited.

Thread Level Parallelism

In 1995, Tullsen et al. examined simultaneous multithreading (SMT), an extension to

wide-issue superscalar processors that allows, besides instruction level parallelism, the

exploitation of thread level parallelism [Tullsen et al., 1995]. To handle multiple threads

in parallel, a hardware context has to be provided for each thread: A general purpose

register file, a program counter register and other state and control registers. The complex

issue queue and execution units however can be shared amongst different threads in order

to reduce cost significantly. [Tang et al., 2005]

In 1996, Olukotun et al. discovered that a single chip multiprocessor (CMP) architecture

with multiple, relatively simple processor cores on a single chip, might achieve a perfor-

mance boost of 50% up to 100% for applications with large grained thread-level parallelism,

compared to a superscalar architecture with the same clock speed. For applications featur-

ing fine grained thread-level parallelism only, Olukotun et al. observed that a superscalar

microarchitecture performs at most 10% better than the CMP architecture, given com-

parable clock rates. The authors anticipated, however, that the straightforward design of

CMP architectures will allow higher clock rates than the complex design of superscalar

architectures, eliminating this small performance difference. For applications that cannot

be parallelized, Olukotun et al. observed CMP performance to lag behind performance of

superscalar architectures by about 30%. [Olukotun et al., 1996]

1.1 Background 13

As time went by, chip manufacturers revised their roadmaps: Predictions of a single-chip

10 GHz processor were altered to predictions of processors featuring much lower clock

rates, but multiple cores. As an example, Intel CEO Paul Otellini announced a single-chip

processor featuring up to 80 cores for special purpose applications. [Otellini, 2006]

For general purpose desktop and laptop computers, a hybrid SMT-CMP architecture, as

it is exemplarily shown in figure 1, has evolved the standard processor design.

L1
instr.
cache

Floating
point

register
file

Integer
register

file

Floating point
issue queue

Decode/
rename

unit

Fetch queue
Load/store

queue

L1
data
cache

Front end

Execution engine

Register
files

Integer
issue queue IFU

FFU

FFU

IFU

IFU

IFU

IFU

Functional
units

ba

c d

core 1

L1
instr.
cache

Floating
point

register
file

Integer
register

file

Floating point
issue queue

Decode/
rename

unit

Fetch queue
Load/store

queue

L1
data
cache

Front end

Execution engine

Register
files

Integer
issue queue IFU

FFU

FFU

IFU

IFU

IFU

IFU

Functional
units

core 2

Thread 2

Thread 3

Thread 0

Thread 1

L2
data
cache

Figure 1: Dual Core CMP of partitioned dual-threaded SMT processors, as it is similarly
shown in [El-Moursy et al., 2006]. Each core consists of an integer and a floating point
register file (a) to store intermediate data, several integer (IFU) and floating point (FFU)
functional units (b) to perform calculations, a level 1 (L1) instruction cache (c) and an
L1 data cache (d) that both buffer memory references in order to reduce main memory
access time. Within a core, the caches, queues, register files, and functional units can
be shared by two threads in parallel; both processor cores share a common level 2 (L2)
cache.

With such architectures, chip manufacturers try to satisfy the ever escalating demand

for computational power by parallelization on thread or process basis. Hereby, they are

14 1 Introduction

strongly assisted by Moore’s law that allows to double the number of transistors on a

processor about every two years. While the increasing number of transistors led to ever

more complex microprocessors in the past, exploiting instruction level parallelism, the

huge number of transistors available today is rather spent on additional processor cores

and on-die caches than on an ever further increasing processor complexity, exploiting

instruction level parallelism. Since Moore’s law is still valid today, this approach seems to

be a promising way to improve processor computational power significantly.

Processor Memory Gap

One important limitation that does not rely on processor clock speed but on the computa-

tional power of the processor is the ever increasing processor memory gap: Although both

processor and DRAM (dynamic random access memory) performance grow exponentially

over time, the difference between processor and DRAM performance grows exponentially

as well. This happens due to the fact that “the exponent for processors is substantially

larger than that for DRAMs” [Wulf and McKee, 1995] and “the difference between diverg-

ing exponentials also grows exponentially” [Wulf and McKee, 1995]. Therefore, reducing

memory traffic is a key issue regarding processor performance, and instruction and data

caches become more and more important.

Cache Contention

If several applications access identical cache regions in parallel, as it is the case for SMT

or CMP processors, and if cache associativity is not large enough, then the applications

displace each others’ data from the cache in order to fill it with their own. If the displaced

data has to be re-fetched, so-called contention misses occur.

As an example, figure 2 a) demonstrates cache contention misses introduced in a time-

slice 3 to an application a1, regarding timesliced multithreading on a single core processor;

figure 2 b) depicts cache contention misses introduced in timeslice 3 to application a1 for

timesliced and simultaneous multithreading on a processor with 2 execution units sharing

the same cache. In figure 2 a), timeslice 2, application a2 displaces two cache lines that

have been fetched by application a1 in timeslice 1 (black dashed lines). In timeslice 3,

application a1 has to re-fetch both cache lines (grey dashed lines). This introduces addi-

1.1 Background 15

tional penalty compared to stand-alone execution, i.e. when solely executing a1 in each

timeslice. In figure 2 b), timeslice 2, application a2 again displaces two cache lines of

a1, introducing the same penalty as in figure 2 a). However, this time, there are further

applications a3 and a4 sharing the same cache. In timeslices 1 and 2, applications a3 and

a4 displace cache lines of a1 that additionally have to be re-fetched by a1 in timeslice 3. In

timeslice 3, however, a3 is also executed in parallel to a1 and the amount of grey dashed

lines indicates that this co-scheduling introduces many contention misses. However, still

the question remains why there are so much more contention misses introduced from the

application that is executed in parallel, compared to contention misses introduced from

applications that have been executed on a previous timeslice. The answer is as follows: If

Timesliced multi-
threading only

Timeslice1 2 3 4

Timesliced and
simultaneous
multithreading

a2a1 a1 a2

a2a1 a1 a2

a3 a4 a3 a4

a)

b)

Cache line of a1 gets displaced by a2

a1 has to re-fetch the displaced cache line⇒ contention miss

Figure 2: Inter-application cache contention misses on a) a single core
processor applying timesliced multithreading, and b) a dual core CMP
applying timesliced and simultenous multithreading.

a3 displaces an entry of a1, then a1 has to re-fetch it and might hereby displace an entry

of a3. If a3 then, again, re-fetches the entry that has been displaced by a1, a3 might again

displace an entry of a1 etc. These displace and re-fetch cycles might occur frequently on

simultaneous multithreaded systems if applications that are executed in parallel share the

same cache. However, if multithreading is performed on timeslice basis only, displace and

re-fetch cycles (per cache line) can only occur at a maximum rate of 1 per 2 timeslices:

If, in figure 2 a), application a2 displaces an entry of a1 in timeslice 2, then this entry can

at the earliest be re-fetched at the beginning of timeslice 3. Even if this re-fetch displaces

16 1 Introduction

an entry of a2 from the cache, a2 can re-fetch this entry not before the beginning of time-

slice 4. As a consequence, sharing a cache in parallel has the potential to introduce far

more inter-thread cache contention misses than timesliced multithreading.

Figure 3 shows L2 cache hitrate of the SPEC 2006 test benchmark milc for the case that

milc is executed stand-alone (topmost bold black curve), and for the case that milc is

co-scheduled with each of the applications astar, gcc, bzip2, gobmk, and lbm. Obviously,

there are applications that have a limited degradation effect, such as astar or gcc, while

there are others that have more serious impact, like lbm.

Given this information, it seems obvious that operating systems, that currently apply ba-

sic load balancing only when (co-)scheduling applications [Knauerhase et al., 2008], could

achieve a much better (co-)scheduling performance if they would account for cache con-

tention. Therefore, accounting for cache contention is one optimization criterion of the job

shop scheduling multicriteria optimization problem regarding SMT and CMP processor

architectures with (partially) shared caches. In the following, I refer to (execution intervals

of) applications as co-scheduled if they are executed in parallel and simultaneously share

a common cache.

0 50 100 150 200 250

0.2

0.4

0.6

0.8

chunks (1 chunk = 2 instructions)20

L
2

ca
ch

e
h
it

ra
te

 (
%

)

milc @!c0: milc
milc @ c0: milc, c1: astar
milc @ c0: milc, c1: gcc
milc @ c0: milc, c1: bzip2
milc @ c0: milc, c1: gobmk
milc @ c0: milc, c1: lbm

Million instructions

Figure 3: L2 cache hitrate degradation introduced to
application milc when co-scheduling milc with each of
the applications astar, gcc, bzip2, gobmk, and lbm on a
CMP architecture; simulation has been performed ap-
plying the MCCCSim simulator [Zwick et al., 2009a].

1.1 Background 17

Cache Contention Aware Co-Scheduling

Cache contention aware co-scheduling minimizes penalties introduced from cache con-

tention by

• a proper mapping of applications to processor cores, and

• an appropriate scheduling of the applications,

ensuring that only those applications get co-scheduled, i.e. executed in parallel, sharing a

common cache, that compete as little as possible. For this minimization, cache contention

has to be predicted. Therefore, some predictors have either to be read from memory (if

the predictors are, for example, delivered with the binary), or from special purpose perfor-

mance registers (if the predictors are determined at runtime). Given the predictors, some

computational performance has to be spent to calculate several predictions and select the

best. If gain in memory hierarchy performance is higher than degradation of memory hi-

erarchy performance introduced from reading predictors and calculating predictions, then

cache contention aware co-scheduling can be regarded as a way to transform computa-

tional performance into memory hierarchy performance. To illustrate this idea, I present

figure 4 that shows computational performance and memory hierarchy performance of an

application a that is being co-scheduled with another application.

Computational performance

Overall
performance
gain

Memory hierarchy performance

Overall system performance

P
er

fo
rm

an
ce

a) b)

Figure 4: Computational performance
and memory hierarchy performance apply-
ing a) standard co-scheduling and b) cache
contention aware co-scheduling.

18 1 Introduction

In figure 4 a), memory hierarchy performance of application a is heavily degraded from

cache contention; if application a is memory bound, then its overall performance is re-

stricted by its memory hierarchy performance. In part b) of the figure, however, memory

hierarchy performance of application a is increased by cache contention prediction and

proper application co-scheduling. As the prediction will cost some computational perfor-

mance, the computational performance of application a achieved in a) is higher than in

b). If the overall performance of application a is memory bound, however, this might be

without any effect on overall performance. Note that I assume applications to be rather

memory bound than bound on computational performance in the future, as they will likely

be programmed to fully exploit the high amount of parallelism available in SMT/CMP

computer systems.

If the gain in memory hierarchy performance, achieved from proper co-scheduling, is higher

than the degradation of memory hierarchy performance that has been introduced by the

prediction, then there is an overall memory hierarchy performance gain. Therefore, appli-

cation a shows a higher memory hierarchy performance in figure 4 b) than in figure 4 a).

If performance of application a is memory bound, then this higher memory hierarchy

performance of a will result in an overall performance gain of application a.

Therefore, if application performance is memory bound, which is quite likely for SMT or

CMP systems, then cache contention aware co-scheduling allows to transform computa-

tional performance into memory hierarchy performance.

Coupling memory hierarchy performance with computational performance in order to let

memory hierarchy performance also benefit from improvements in computational perfor-

mance seems to be a way to attenuate the growth of the processor memory gap, and increase

overall system performance.

1.1 Background 19

The Ideal Cache Contention Prediction Method

In order to achieve the best overall performance gain, an ideal method has to predict

cache contention as accurately and as fast as possible, applying a minimum set of resources

(computational and memory performance, size of predictors) at the same time.

The most accurate prediction will apparently be performed if a method would be able to

exactly predict the number of additional cache misses that a set of applications Cψa =

{ca,1, ca,2, . . . ca,ψ−1}, named (candidate) co-schedule, introduces to an application a on

a processor architecture that can execute ψ threads in parallel, sharing the same cache.

Adding both additional cache misses the applications in Cψa introduce to a and the misses

a introduces to the applications in Cψa , you get the total number of cache misses that

will be introduced from co-scheduling a and the applications in Cψa . If such a number is

determined for all applications a in a set of applications A and all possible co-schedules

{Cψa,1, Cψa,2, . . . }, Cψa,j ∈ A\{a}, then the set of applications in A that minimizes overall

cache contention can easily be determined.

Nevertheless, in many cases a prediction method might be sufficient that determines a

candidate co-schedule ranking, i.e. sorts the set of all possible candidate co-schedules

{Cψa,1, Cψa,2, . . . } of an application a by the amount of cache misses they introduce to a.

There might also be many cases that suffice a method that selects that candidate co-

schedule Cψa,j from the set of all possible co-schedules that minimizes the contention in-

troduced to an application a.

Cache contention prediction methods should generally be able to predict performance

of co-scheduled applications by characteristics obtained from the particular applications,

and not from characteristics obtained from co-scheduled applications. Otherwise, each

combination of applications would have to be executed in order to determine co-schedule

performance, as it is exemplarily the case in [Snavely and Tullsen, 2000], rendering pre-

diction infeasible if the set of applications A is not very small.

20 1 Introduction

1.2 State-of-the-Art Methods and their Limitations 21

1.2 State-of-the-Art Methods and their Limitations

Several cache contention prediction methods have been proposed in the past.

In [Chandra et al., 2005], the authors introduce two heuristics and one probabilistic ap-

proach to predict cache contention. The heuristic methods are based on the estimation

of a ‘reduced cache associativity’, determined by cache access frequency and the amount

of references to the various LRU stack positions; the probabilistic method calculates for

each stand-alone cache hit the probability to become a miss under cache sharing. The

authors evaluate prediction accuracy of their methods by calculating the difference be-

tween additional cache misses that were predicted, and the actual additional cache misses

observed using a simulator. An evaluation regarding timing performance is not performed.

Sometimes, the description of the methods turns out to be ambiguous. For example, it

is sometimes not clear, which calculations have to be performed per cache set, and which

have to be performed only once, using average per-cache-set data.

In [Settle et al., 2004], the authors describe a method to predict cache contention that

tries to exploit spatial locality. They cluster cache sets to groups and indicate for each

group by a single bit, if it suffers from many accesses/misses, or just a few. However,

from their publication, you cannot extract the cutoff frequency of accesses/misses they

apply to distinguish between many or few accesses/misses. A further publication of a

co-author however brings up an evaluation of several cutoff measures and it turns out

that good prediction results can be achieved within the “third quartile used as the cut-

off” [Kihm and Connors, 2004]. But you cannot extract if this result has been applied in

[Settle et al., 2004], or not. In order to evaluate prediction accuracy, the authors integrate

their prediction method into a scheduler and compare program execution time achieved

with the modified scheduler to program execution time measured when applying stan-

dard round-robin priority scheduling. An evaluation of the time necessary to perform a

prediction is not performed.

In [Knauerhase et al., 2008], the authors investigate methods to improve scheduling and

load balancing on multicore processors. Knauerhase et al. state that they “explored various

definitions of cache weight to find the most useful input to scheduling policy [... and in]

the end, our experimentation found that cache misses per cycle are the best indication of

22 1 Introduction

cache interference” [Knauerhase et al., 2008]. However, a traceable analysis of the “various

definition of cache weight” is not presented. To evaluate the applicability of the cache

misses approach, they perform adaptions to a scheduler and compare execution times to

those achieved by a non-adapted scheduler. An evaluation regarding the time necessary

to perform co-scheduling predicitons is not presented.

In [Fedorova et al., 2010], the authors propose a method based on the sensitivity of an ap-

plication to suffer from contention misses, and the intensity of an application to introduce

cache misses to another application. They evaluate their method in relation to two other

state-of-the-art prediction methods by comparing performance degradation of predicted

best co-schedules to that of actual best co-schedules. A performance evaluation regarding

prediction time is not performed.

In the following, I present the most severe limitations of previous publications:

• There are cache contention prediction methods that have not been well-defined;

as a consequence, you sometimes do not exactly know what the published results

actually express.

• Often, cache contention prediction methods have not been compared to one

another, but to a ground truth measure. As most proposals, however, applied

different ground truth measures that are not comparable to one another, it is

infeasible to extract accuracy of the methods in relation to one another from

the published results. Further, all evaluations have been performed considering

individual processor architectures, applying different sets of input data (memory

references), individual sizes of input data, and different performance measures.

As a consequence, an evaluation of state-of-the-art cache contention prediction

methods in relation to one another cannot be performed from the given results.

• Besides the ambiguous definition of cache contention prediction methods and

the application of various uncomparable evaluation settings, the applied evalu-

ation process has often not been defined properly as well, rendering the results

untraceable.

1.2 State-of-the-Art Methods and their Limitations 23

• Previous publications evaluate cache contention prediction methods primarily

by means of prediction accuracy and rarely perform a timing analysis. Some-

times, authors state that the time to perform a prediction is very small and can

be disregarded, which seems to be an information of limited use. As previous

publications spent only minimum effort, if any, regarding timing of cache con-

tention prediction methods, it is obvious that state-of-the-art cache contention

prediction methods cannot be compared to one another by means of timing

performance at all.

• Generally lacking a timing evaluation, a gain-cost analysis of cache contention

prediction methods cannot be extracted from published evaluation results.

• A unified description of state-of-the-art cache contention prediction techniques,

applying the same notation, is completely missing; this makes it hard to see

similarities and differences between the various methods, although this would

be a good starting point to extract performance information of the underlying

characteristics of the various methods.

As you can see from this list, it is impossible to determine a performance ranking of cache

contention prediction methods, i.e. to evaluate cache contention prediction methods in

relation to one another. It is even impossible to determine the best performing method,

i.e. the method that best approximates an ideal prediction method.

24 1 Introduction

1.3 Formulation of Research Problem

The research problem addressed in this thesis is an

• analysis and precise reprocessing of state-of-the-art cache contention prediction

methods, the

• introduction and proper definition of new cache contention prediction methods

that do not belong to state-of-the-art methods yet, and an

• evaluation of the presented methods regarding prediction accuracy and timing

performance.

As it has not been common with most other publications regarding cache contention pre-

diction, this thesis focuses on an unambiguous, precise and at any time replicable definition

and evaluation of cache contention techniques. Only if these conditions are met, a high

credibility of the presented results can be guaranteed, rendering the presented results

reasonable to be used by others in the future.

Evaluation Objectives

In order to evaluate cache contention prediction methods, the methods should be evaluated

in relation to one another regarding their

• ability to rank the elements in a set of candidate co-schedules {Cψa,1, Cψa,2, . . . } by

the amount of additional cache misses they introduce to an application a, their

• ability to select the candidate co-schedule Ca,j from a set of candidate co-

schedules that introduces the least cache misses to an application a,

• timing performance, i.e. the time necessary to perform a prediction, and

• prediction efficiency (gain vs. cost analysis).

Further, the evaluation should

• reveal performance of the underlying characteristics of a method (cache accesses,

hits, misses, ...), and it should

• point out why methods of some type perform better than others.

1.3 Formulation of Research Problem 25

Evaluation Preferences

As underlying condition, methods should be evaluated on

• different sets of execution interval sizes to determine if a method performs better

on a smaller or larger amount of instructions. For this task, I define a minimum

interval size of z = 220 and a maximum interval size of z = 229 instructions to

be sufficient. Further, the evaluation should be performed considering

• 2-, 4- and 8-fold parallelism ψ in order to investigate the methods’ ability to

predict cache contention in cases where there are many references contending

for the shared cache in parallel, or just a few.

At all times,

• evaluation should be unambiguous and traceable in order to make the results

re-usable by others. Note that this requirement also requests that

• a precise definition of the applied ground truth reference has to be performed.

Method Description

In order to make the evaluation meaningful and reproducible, the

• applied cache contention prediction techniques have to be defined unambiguously ;

besides new methods, this also includes state-of-the-art methods.

To make cache contention techniques better comparable to one another and to enable an

easy detection of the underlying characteristics of each method,

• methods should be described uniformly. Therefore, a single equation should be

specified to define, for each method, how the prediction of additional cache misses

introduced from a set of applications Cψa = {ca,1, ca,2, . . . } to an application a

in an execution interval of size z is performed.

If possible, the variables contained in this single equation should easily be trace-

able to the elements of a so-called stack distance histogram.

26 1 Introduction

In order to make timing performance reproducible, the

• predictors applied in the calculation of the prediction should be specified. This

way, the calculation of the predictions will become much more transparent and

it will be easy to see which calculations are performed at runtime and add to

timing performance, and which will not.

To make timing performance comparable, the

• applied predictors should ideally include all calculations that can be performed

in advance to runtime, i.e. before knowing which applications are about to be

co-scheduled.

Limitations

For the evaluation, I define the following limitations to be appropriate:

• The evaluation exclusively incorporates data references, as it has been done in

[Huffmire and Sherwood, 2006]; instruction references are omitted and effects

arising from instruction ↔ instruction or instruction ↔ data interference are

not included in the evaluation. Note that this limitation increases evaluation

accuracy: State-of-the-art cache contention prediction methods incorporate only

one memory reference stream (e.g. data); effects from a second stream (e.g. in-

structions) are not modelled. A ground truth measure, however, would model

effects arising from another interference source. But if the assumptions incor-

porated in the prediction model do not match the assumptions incorporated in

the ground truth model, then errors caused by this inconsistent modelling would

overlay prediction errors and render the evaluation less accurate.

• Processor caches process virtual addresses rather than physical addresses; this

definition makes contention between co-scheduled applications more related to

cache misses than to TLB (translation look-aside buffer) misses. This is a rea-

sonable approach, as state-of-the-art cache contention prediction methods are

modelled to predict cache contention, and not contention introduced from addi-

tional TLB misses.

1.3 Formulation of Research Problem 27

• There do not occur any waitstates caused by busy resources such as busses, shared

caches etc., and co-scheduling penalties are defined to exclusively originate from

displacing already fetched items from a shared cache.

• Timeslices are of infinite length. As state-of-the-art cache contention prediction

methods generally do not incorporate timeslicing in their models, this assump-

tion ensures that a ground truth reference does only incorporate characteristics

of those applications that are also included in the prediction model.

• Memory access time and cache hit time to any address is constant at any time.

This means, in particular, that there is no timing difference between two con-

secutive memory accesses to same or different memory banks.

• Caches and TLBs apply LRU (least recently used) replacement policy, as it is

common in many processor systems.

• Caches apply write back policy ; multi-level cache inclusion property (cf.

[Baer and Wang, 1988]) can be disregarded.

• Each application is single threaded, and memory references that are processed

in parallel exclusively originate from different applications.

• There is no data sharing among applications; therefore, applications can only

suffer a performance degradation from co-scheduling; an overall performance

improvement due to inter-application prefetching effects cannot occur.

Let ιzi be one execution interval in the set of execution intervals ιz = {ιz1, ιz2, . . . ιz|ιz|},
let |ιz| be the amount of intervals ιzi in ιz, and let each ιzi ∈ ιz represent the number

of z instructions.

• The contents of a cache at the beginning of an execution interval ιzi is identical

to the contents of the cache at the end of interval ιzi−1 if the same set of

applications has been executed in both intervals, what is the case for the applied

ground truth measure. At the beginning of interval ιz0, the cache is empty.

• Inter-interval effects, such as cache contention introduced in an interval ιzi from

other intervals ιzj , j 6= i, are not regarded in the prediction.

28 1 Introduction

1.4 Contributions

Precise Definition of Cache Contention Prediction Techniques

In this thesis, I introduce a new and consistent notation to unambiguously describe cache

contention prediction techniques. Applying this notation, I present several state-of-the-art

techniques and introduce variations of them to investigate, in particular, whether or not

• applying cache set granularity would achieve better prediction results,

• different weightings of stack distance histogram entries are favorable,

• prediction accuracy is correlated rather with stack distances observed on cache

LRU stack accesses, cache misses, or the total number of cache accesses.

Besides those state-of-the-art methods and their variations, I further present and investi-

gate some new cache contention prediction methods. Hereby, the applied notation makes

it easy to reveal similarities and differences between the various methods. To ensure

traceable timing analysis, I specify which calculations have to be performed at runtime

(prediction), and which do not (predictor).

To the best of my knowledge, this thesis is unique in specifiying such a large number of

cache contention prediction techniques both such uniformly and precisely at the same time.

Unambiguous Definition of the Evaluation Process

Besides a proper definition of cache contention prediction techniques, I present the whole

evaluation process I apply with mathematical definiteness, including

• the evaluation measures and their application, even for various lengths of pre-

diction intervals and various number of processor cores,

• the way I generate the ground truth reference,

• the input data I apply to the predictions and how they are obtained.

As evaluation measures, I apply

• the ability of a prediction method to rank candidate co-schedules {Cψa,1, Cψa,2, . . . }
by the amount of cache contention they introduce to an appliciation a,

• the ability of a prediction method to select that candidate co-schedule Cψa,j

1.4 Contributions 29

from a set of candidate co-schedules {Cψa,1, Cψa,2, . . . } that introduces least cache

contention to an application a,

• the time necessary to perform a prediction, and a

• gain vs. cost analysis.

To the best of my knowledge, neither has the process of evaluating cache contention

predictions methods ever been described such precisely and extensively before, nor has a

gain vs. cost analysis of cache contention prediction methods been performed so far.

Evaluation Results

Amongst others, my evaluations demonstrate that

• cache set granularity is not required to achieve good prediction results,

• an enhanced weighting of stack distance histogram entries does not achieve sig-

nificant improvements, as

• cache contention prediction is best performed by stand-alone cache misses;

• cache accesses as well as distribution of LRU stack distances are of limited use

regarding cache contention prediction due to high temporal program locality,

although most state-of-the-art prediction methods rely on these measures.

Note that the last two points are the most significant result of this thesis. They support and

further explain the surprising observation in [Fedorova et al., 2010] that the application

of stand-alone cache misses is generally one of the best ways to predict cache contention

introduced from parallel application execution.

For an explanation why stand-alone cache misses turn out to be superior regarding cache

contention prediction, and why the amount of cache accesses or stand-alone cache hits is

a rather poor predictor, see

• section 2.5, method Width, variation ‘set mask exp delta’,

• section 2.6, method Pain, variation ‘one, misses’, and

• section 3.2, General Ranking Performance, subsections

• ‘Poor performance of access or hit based methods’ and

• ‘Good performance of miss based and related methods’ and the

• ‘Big Picture’.

30 1 Introduction

1.5 Overview

The remainder of this thesis is organized as follows:

In chapter 2, I present a uniform description of state-of-the-art cache contention prediction

methods, extensions to those methods, and completely new methods.

To evaluate the presented techniques, I apply chapter 3. In this chapter, I define evaluation

measures, their application, and present the evaluation results achieved.

Chapter 4 concludes this thesis.

In the appendix, I provide

• a cache glossary that defines the applied terminology regarding processor caches,

• several stack distance histograms that reveal temporal activity and reuse behav-

ior of the SPEC 2006 test benchmark applications I apply in my evaluation,

• a short overview of data distributions of the averaged evaluation results pre-

sented in chapter 3, and

• a list of symbols and abbrevations.

31

2 Techniques to Predict Cache Contention

Many techniques to predict cache contention have been proposed in the past. Needless

to say, most of the methods have been proposed using their own nomenclature. As a

consequence, comparing the various methods makes it hard to extract similarities and

differences. However, this has not been a big issue yet, as an extensive comparison of

cache contention prediction methods has not been performed so far. This thesis, however,

not only compares several state-of-the-art methods in relation to one another, but also

introduces many variations to them and further proposes new methods. The amount of

cache contention prediction techniques defined and evaluated in this thesis exceeds all

other publications by far. In order to make the description of the techniques, despite their

amount, as comprehensible as possible, I apply a homogenous description that is mostly

based on stack distance histograms. This allows an easy extraction of similarities and

differences from the various methods, making it simple to extract the methods’ underlying

characteristics, such as stand-alone cache misses, for example.

In the past, cache contention prediction methods have not always been described properly,

introducing inconsistencies and ambiguities. In order to achieve a most precise definition

of cache contention prediction methods, I specify an equation pCa,ιzi for each method to

determine the way a method predicts cache contention with mathematical definiteness.

Each equation of pCa,ιzi defines how the corresponding method predicts the penalty a

set of co-scheduled applications Ca = {ca,1, ca,2, . . . ca,|Ca|} introduces to an application

a /∈ Ca in interval ιzi, i.e. when executing instructions i · z . . . (i + 1) · z − 1. Generally,

higher values of pCa,ιzi denote higher penalty, lower values denote lower penalty. Note

that absolute values of pCa,ιzi have a specific meaning such as ‘additional cache misses’

only in some special cases. Instead, values of pCa,ιzi have to be compared in relation to

one another in order to evaluate the predicted performance of one co-schedule to another.

Comparing values of pCa,ιzi to one another is meaningful only if they were calculated by

the same method and the same variation. In order to compare various techniques to one

another, pCa,ιzi has to be used as input to the evaluation processes presented in chapter 3.

In order to make the evaluation of timing performance replicable, I specify for each pre-

32 2 Techniques to Predict Cache Contention

diction pCa,ιzi the predictors I apply to calculate the prediction. Predictors are calculated

in advance to the prediction and do not contribute to the amount of time necessary to

perform a prediction at runtime; the time to perform a prediction, however, is significant

for timing performance. With this partitioning, it can easily be extracted which calcula-

tions are performed before runtime and are encapsulated in predictors and therefore do not

contribute to prediction time, and which calculations have to be performed at runtime and

do contribute to execution time. Without that knowledge, evaluation results regarding

timing performance would be of limited use.

In order to achieve a fair evaluation of timing performance, predictors are designed to

include all calculations that can be performed before runtime, i.e. without any knowledge

of the applications that are about to be co-scheduled.

I apply the following notation regarding ‘methods’ and ‘variations’: I refer to the key

idea used for prediction as ‘method’ and apply term ‘variation’ to differ between different

versions of a method, even if a version is identical to an original state-of-the-art method

that has already been proposed by another author. At any time, however, I will make

clear which variations represent state-of-the-art techniques, an which do not. As the

variation name is used to describe special characteristics of a method, this makes it easy

to remember implementation differences when comparing the results in chapter 3.

2.1 Stack distance histograms 33

2.1 Stack distance histograms

In this section, I introduce so-called stack distance histograms; I apply stack distance

histograms in order to define cache contention prediction methods.

Stack distance histograms have been proposed in 1970 by Mattson et al. in order to

investigate virtual memory systems [Mattson et al., 1970]. Since that time, the concept

has also been applied to analyze cache memory systems, cf. [Hill and Smith, 1989].

In this context, they summarize program memory access patterns by giving an overview of

the amount of references to cache lines of a cache set that have most recently, second most

recently, ... α most recently and > α most recently been accessed; α is the associativity of

the cache. The term stack distance relates to the distance δ observed on the LRU stack of

a cache set when accessing a cache line. See figure 40 in the appendix for an explanation

of cache set or cache line.

Figure 5 a) shows an LRU stack ζSs for a cache set s in case associativity α = 8.

ζS
s (1)

ζS
s (2)

δ = 1

δ = 2

MRU

LRU Hsd,S
a,ι�i,s(δ)

a) b)

1

Hits Misses

δ
α α+ 1

δ = α ζS
s (α)

.
.
.

2

Figure 5: a) LRU stack ζSs for cache set s; δ = 1 depicts the most recently used
(MRU) element, and δ = α = 8 the least recently used (LRU) element; b) stack
distance histogram Hsd,S

a,ιzi,s for application a, cache set s, execution interval ιzi.
Note that Hsd,S

a,ιzi,s denotes a stack distance histogram for a specific cache set s.

Let S = {s1, s2, . . . s|S|} be the set of cache sets of a processor cache and let |S| be the

number of cache sets. Generally, a cache with |S| cache sets and associativity α applies

|S| LRU stacks ζS = {ζS1 , . . . ζS|S|} of capacity α each in order to track cache line references

and to determine which element to displace next.

34 2 Techniques to Predict Cache Contention

Definition: Let ζ be a stack. If it is said that stack ζ is of capacity α, α ∈ N+, then ζ

can hold up to α numbers ∈ N. ζ(δ), 1 ≤ δ ≤ α, is the operation that references stack

element at position δ (cf. figure 5 a)). ζ{x} is the operation that returns the stack position

of element x according to

ζ{x} =





δ, if ∃ δ, 1 ≤ δ ≤ α : ζ(δ) = x

α+ 1, if @ δ, 1 ≤ δ ≤ α : ζ(δ) = x
(1)

If there is more than one δ with ζ(δ) = x, the least valued δ is returned. �

Figure 5 b) shows a per-cache-set stack distance histogram Hsd,S
a,ιzi,s for application a,

interval ιzi, cache set s, associativity α = 8. Hsd,S
a,ιzi,s(δ) refers to element δ in stack distance

histogram Hsd,S
a,ιzi,s and represents the number of references of application a, execution

interval ιzi that map to cache set s and address the δ most recently referenced cache line.

As figure 5 b) suggest, Hsd,S
a,ιzi,s(α+1) represents the number of cache misses of application

a in intervall ιzi, cache set s. For application a in interval ιzi, the number of cache hits

in cache set s calculates to
∑α

δ=1H
sd,S
a,ιzi(δ), and the total number of references to cache

set s calculates to
∑α+1

δ=1 H
sd,S
a,ιzi,s(δ). Contrary to per-cache-set histograms Hsd,S

a,ιzi,s, stack

distance histogram Hsd
a,ιzi summarizes the amount of distances of all cache sets, i.e.

Hsd
a,ιzi(δ) =

|S|∑

s=1

Hsd,S
a,ιzi,s(δ) , 1 ≤ δ ≤ α+ 1, (2)

and the number of cache hits, cache misses, and cache accesses calculate accordingly.

Algorithm 1 shows how to calculate both the set of per-cache-set stack distance histograms

Hsd,S
a,ιzi =

{
Hsd,S
a,ιzi,1, . . . H

sd,S
a,ιzi,|S|

}
and the combined histogram Hsd

a,ιzi from a given tuple of

memory references Ma,ιzi = (ma,ιzi,1, . . .ma,ιzi,|Ma,ιzi |) that an application a references

when it executes instructions z · i . . .z · (i + 1) − 1. |Ma,ιzi | is the number of references

in ιzi. Each reference ma,ιzi,j ∈Ma,ιzi is a natural number of range 0 ≤ ma,ιzi,j < 232.

In order to extract the cache set address of a memory reference m, I apply operation

ς(m). Given a cache of way size |w| and line size |λ| (cf. figure 40 in the appendix), then

ς(m) = ((m/|λ|) mod (|w|/|λ|)) + 1; note that 1 ≤ ς(m) ≤ |S|; |w| and |λ| are measured

in units of byte.

To extract the key address of a memory reference m, I apply operation κ(m). Given a

cache of way size |w|, then κ(m) = m/|w| and ∀m : κ(m) ≥ 0.

2.1 Stack distance histograms 35

Algorithm 1 Generating stack distance histograms Hsd,S
a,ιzi,s and Hsd

a,ιzi for interval ιzi of

an application a and an α way set associative cache with |S| cache sets.

1: # —– Initialization ——

2: for δ ← 1 to α+ 1 do

3: Hsd
a,ιzi(δ)← 0

4: for s← 1 to |S| do

5: Hsd,S
a,ιzi,s(δ)← 0

6: if δ ≤ α then

7: ζSs (δ)← −1

8: end if

9: end for

10: end for

11: # —– Process all references in Ma,ιzi —–

12: for j ← 1 to |Ma,ιzi | do

13: s← ς(ma,ιzi,j)

14: δ ← ζSs {κ(ma,ιzi,j)}
15: Hsd

a,ιzi(δ)← Hsd
a,ιzi(δ) + 1

16: Hsd,S
a,ιzi,s(δ)← Hsd,S

a,ιzi,s(δ) + 1

17: if δ > α then

18: δ ← α

19: end if

20: # —– Adjust LRU stack —–

21: while δ > 1 do

22: ζSs (δ)← ζSs (δ − 1)

23: δ ← δ − 1

24: end while

25: ζSs (1)← κ(ma,ιzi,j)

26: end for

36 2 Techniques to Predict Cache Contention

2.2 The FOA Method

The FOA (frequency of access) method is one of two heuristic cache contention prediction

methods proposed in [Chandra et al., 2005]. It is based on the idea that a thread that

gets co-scheduled with other threads, and competes for shared cache space, receives only

a subset of the whole cache space, the so-called effective cache space for that thread. The

ratio of a thread’s effective cache space to its working set size determines the impact cache

sharing has on the thread’s performance: The lower the effective cache space, compared

to the working set size, the more the thread suffers from cache sharing. Given an α way

set associative cache and a stack distance histogram Hsd
a,ιzi , then the lower effective cache

space results in lowering the hit ↔ miss barrier from associativity α to a virtual effective

associativity α′, while way size and line size of the cache remain unchanged. Figure 6

shows how Chandra et al.’s FOA method assumes that the cache space is reduced.

1

Hits Original
Cache
Misses

δ
α� α α+ 1

Extra
Cache
Misses

Hsd
a,ι�i

(δ)

Figure 6: Extra cache misses from cache sharing.

If an application a is executed stand-alone without sharing the cache with any other ap-

plication, the number of misses µ of a in execution interval ιzi for an α way set associative

cache is determined by

µa,ιzi = Hsd
a,ιzi(α+ 1). (3)

If, in contrast, for an application a, sharing the cache with a set of applications Ca in

interval ιzi would reduce α to an effective α′Ca,ιzi ∈ N, additional misses would have to

2.2 The FOA Method 37

be considered and the total number of misses then calculates to

µa,ιzi =
α+1∑

δ=α′Ca,ιzi
+1

Hsd
a,ιzi(δ). (4)

When calculating additional misses from α′, Chandra et al. note that they apply “linear

interpolation whenever necessary” [Chandra et al., 2005]. Therefore, if α′Ca,ιzi ∈ R, I

calculate µ by

µa,ιzi =
(
dα′Ca,ιzie − α′Ca,ιzi

)
·Hsd

a,ιzi(bα′Ca,ιzic+ 1) +
α+1∑

δ=dα′Ca,ιzie+1

Hsd
a,ιzi(δ) (5)

With the FOA method, Chandra et al. propose a technique to estimate the reduction of

α to α′. They assume that a thread’s effective cache space is proportional to its access

frequency, as threads with high access frequency are likely to bring in more data into the

cache and retain it [Chandra et al., 2005].

In the following, I present three variations of the FOA method.

38 2 Techniques to Predict Cache Contention

Variation ‘one’

Variation ‘one’ represents the original FOA method as it has been proposed in

[Chandra et al., 2005]. Hereby, ‘one’ means that there is exactly one histogram Hsd
a,ιzi

for each execution interval ιzi of an application a. Let a be an application and let Ca

be the set of applications that are co-scheduled with a and compete for a shared cache of

associativity α and let Hsd
a′,ιzi

, a′ ∈ {a} ∪Ca be the stack distance histograms of capacity

α + 1 that are calculated from stand-alone execution of applications a′ in interval ιzi as

presented in algorithm 1. The effective associativity α′Ca,ιzi for application a, interval ιzi

calculates to

α′Ca,ιzi =

α+1∑

δ=1

Hsd
a,ιzi(δ)

∑

a′∈{a}∪Ca

α+1∑

δ=1

Hsd
a′,ιzi(δ)

· α. (6)

Similar to equation 5, Chandra et al. calculate predictor pCa,ιzi that predicts additional

misses introduced to application a in interval ιzi due to reduced associativity α′Ca,ιzi by

pCa,ιzi =
(
dα′Ca,ιzie − α′Ca,ιzi

)
·Hsd

a,ιzi(dα′Ca,ιzie) +
α∑

δ=dα′Ca,ιzie+1

Hsd
a,ιzi(δ). (7)

Let l = 4 be the word length of a processor, measured in units of byte. I apply the

following predictors:

Predictor For all a′ ∈ Size (each a′)

Hsd
a′,ιzi

{a} (α+ 1) · l
∑α+1

δ=1 H
sd
a′,ιzi

(δ) {a} ∪ Ca l

2.2 The FOA Method 39

Variation ‘set’

Calculating α′ by equation 6 as it has been proposed in [Chandra et al., 2005] implicitly

assumes that memory references are uniformly distributed in the set of cache sets S.

However, memory references might show spatial locality, referencing only a small subset

of the available cache sets [Settle et al., 2004]. Therefore, if access frequency really had

a significant effect on α′, as it has been stated by Chandra et al., then α′ actually would

have to be calculated on a per-cache-set basis. Therefore, I present variation ‘set’ that

calculates a separate α′SCa,ιzi,s for each cache set according to

α′SCa,ιzi,s =

α+1∑

δ=1

Hsd,S
a,ιzi,s(δ)

∑

a′∈{a}∪Ca

α+1∑

δ=1

Hsd,S
a′,ιzi,s

(δ)

, (8)

where Hsd,S
a′,ιzi,s

, a′ ∈ {a} ∪ Ca is the per cache set stack distance histogram of application

a′, interval ιzi, cache set s that can be calculated as shown in algorithm 1.

Given α′SCa,ιzi,s and Hsd,S
a,ιzi,s for every s ∈ S, then, in variation ‘set’, pCa,ιzi that predicts

additional cache misses introduced to application a, interval ιzi due to cache contention

with applications Ca calculates to

pCa,ιzi =
|S|∑

s=1

((
dα′SCa,ιzi,se − α′SCa,ιzi,s

)
·Hsd,S

a,ιzi,s(dα′SCa,ιzi,se)+

α∑

δ=dα′SCa,ιzi,se+1

Hsd,S
a,ιzi,s(δ)

)
(9)

For my evaluations, I calculate pCa,ιzi from the following predictors:

Predictor For all s ∈ S and a′ ∈ Size (each a′)

Hsd,S
a′,ιzi,s

{a} |S| · (α+ 1) · l
∑α+1

δ=1 H
sd,S
a′,ιzi,s

(δ) {a} ∪ Ca |S| · l

40 2 Techniques to Predict Cache Contention

Variation ‘set, masking’

In variation ‘set, masking’, I account for those cache sets only to contribute to pCa,ιzi

that are able to introduce contention misses from memory references that are hits in

stand-alone execution. This might be a significant enhancement, if cache contention

is primarily determined by stack distance histogram entries 1 . . . α, as it is assumed by

the FOA method and nearly all other state-of-the art prediction methods as well (e.g.

[Chandra et al., 2005]). Therefore, I calculate a mask ξSCa,ιzi,s for each cache set by

ξSCa,ιzi,s{x} =





1, if
∑

a′∈{a}∪Ca

δmax,S
a′,ιzi,s

> α

0, if
∑

a′∈{a}∪Ca

δmax,S
a′,ιzi,s

≤ α
(10)

where δmax,S
a′,ιzi,s

, a′ ∈ {a}∪Ca, represents the largest δ with δ ≤ α, that yields Hsd,S
a′,ιzi,s

(δ) 6= 0

(cf. section 2.10). Given a cache of way size |w|, line size |λ| and associativity α, I calculate

δmax,S
a′,ιzi

as shown in algorithm 2.

Algorithm 2 Calculating predictor δmax,S
a,ιzi,s from Hsd,S

a,ιzi,s.

1: for s← 1 to |S| do

2: δmax,S
a,ιzi,s ← α

3: while δmax,S
a,ιzi,s > 0 ∧Hsd,S

a,ιzi,s(δ
max,S
a,ιzi,s) = 0 do

4: δmax,S
a,ιzi,s ← δmax,S

a,ιzi,s − 1

5: end while

6: end for

To exclusively account for those α′SCa,ιzi,s that belong to cache sets that have the potential

to introduce cache contention misses from stand-alone cache hits only, I integrate ξSCa,ιzi,s

in equation 9 to mask out all other cache sets and calculate pCa,ιzi according to

pCa,ιzi =
|S|∑

s=1

(
ξCa,ιzi,s ·

((
dα′SCa,ιzi,se − α′SCa,ιzi,s

)
·Hsd,S

a,ιzi,s(dα′SCa,ιzi,se)+

α∑

δ=dα′SCa,ιzi,se+1

Hsd,S
a,ιzi,s(δ)

))
, (11)

where α′SCa,ιzi,s is calculated as shown in equation 8.

2.2 The FOA Method 41

I calculate pCa,ιzi from the following predictors:

Predictor For all s ∈ S and a′ ∈ Size (each a′)

Hsd,S
a′,ιzi,s

{a} |S| · (α+ 1) · l
∑α+1

δ=1 H
sd,S
a′,ιzi,s

(δ) {a} ∪ Ca |S| · l
δmax,S
a′,ιzi,s

{a} ∪ Ca |S| · l

However, assuming that a thread’s effective cache space is proportional to its access fre-

quency is a very coarse model. In fact, it is rather a different distribution of stack distance

frequencies that will affect a thread’s ability to keep its data in cache, as for example

a more concentrated stack distance profile (i.e. ∀δ, 1 ≤ δ < α : Hsd
a,ιzi(δ + 1) 6= 0 ⇒

Hsd
a,ιzi(δ) � Hsd

a,ιzi(δ + 1)) corresponds to a high temporal locality, making cache lines

less likely to be replaced, which in turn increases the effective cache space. Chandra et

al. try to address this observation by their SDC (stack distance competition) and Prob

(probabilistic) methods, while I address this observation by my Width and DMax methods.

42 2 Techniques to Predict Cache Contention

2.3 The SDC Method

With the SDC (stack distance competition) model, Chandra et al. propose an alternative

to the FOA method to calculate effective α′. The model merges stack distance entries

Hsd
a′,ιzi

of competing threads a′ ∈ {a} ∪ Ca to build up a new stack distance histogram

Hsd,merged
{a}∪Ca,ιzi of capacity α by applying a greedy strategy. Then, the effective cache space

for each application a′ ∈ {a} ∪ Ca is computed proportionally to the number of entries in

Hsd,merged
{a}∪Ca,ιzi that originate from a′, i.e. 0 . . . α.

Variation ‘one’

Just like variation ‘one’ in the FOA method, variation ‘one’ in the SDC model corresponds

to the original method proposed in [Chandra et al., 2005] and calculates α′Ca,ιzi and pCa,ιzi

from only a single stack distance histogram Hsd
a′,ιzi

for each application a′ ∈ {a} ∪Ca and

execution interval ιzi.

Let a 7→ b be the operation that replaces, in an algorithm, element a by element b. In

SDC variation ‘one’, α′Ca,ιzi is calculated as presented by algorithm 3, but with |S| 7→ 1,

Hsd,S
a′,ιzi,s

7→ Hsd
a′,ιzi

and α′SCa,ιzi,s 7→ α′Ca,ιzi ; note that pure algorithm 3 calculates α′ on

a per-cache-set basis. Contrary to the FOA method, the SDC algorithm to calculate

α′Ca,ιzi results in values of α′Ca,ιzi ∈ N+
0 . Therefore, no interpolation has to be performed

(contrary to equation 7) and prediction pCa,ιzi calculates to

pCa,ιzi =
α∑

δ=α′Ca,ιzi
+1

Hsd
a,ιzi(δ). (12)

Compared to the FOA method,
∑α+1

δ=1 H
sd
a′,ιzi

for each a′ ∈ {a} ∪ Ca can be omitted; the

predictors necessary for SDC variation ‘one’ is as follows.

Predictor For each a′ ∈ Size (each a′)

Hsd
a′,ιzi

{a} ∪ Ca (α+ 1) · l

2.3 The SDC Method 43

Variation ‘set’

Variation set tries to exploit spatial locality as presented in [Settle et al., 2004]. Therefore,

α′ calculates on a per-set basis according to algorithm 3. Given α′SCa,ιzi,s for each cache

set s ∈ S, prediction pCa,ιzi calculates to

pCa,ιzi =
|S|∑

s=1

α∑

δ=α′SCa,ιzi,s
+1

Hsd,S
a,ιzi,s(δ), (13)

applying a stack distance histogram for each cache set as predictor.

Predictor For all s ∈ S and a′ ∈ Size (each a′)

Hsd,S
a′,ιzi,s

{a} ∪ Ca |S| · (α+ 1) · l

In contrast to the FOA method (cf. FOA, variation ‘set, masking’), the SDC method has

masking integrated automatically.

Proof: If a merged stack distance histogram Hsd,merged,S
{a}∪Ca,ιzi,s

contains all stack distance

entries Hsd,S
a′,ιzi,s

(δ) 6= 0, 1 ≤ δ ≤ α of all co-scheduled applications a′ ∈ {a} ∪ Ca, then

algorithm 3 calculates α′SCa,ιzi,s as the number of all entries in Hsd,S
a,ιzi,s(δ), 1 ≤ δ ≤ α that

are 6= 0, i.e.
∑

a′∈{a}∪Ca

δmax,S
a′,ιzi,s

≤ α ⇒ α′SCa,ιzi,s = δmax,S
a,ιzi,s. (14)

Given effective associativity α′SCa,ιzi,s as calculated by equation 14. Then, in equation 13,
∑α

δ=α′SCa,ιzi,s
+1H

sd,S
a,ιzi,s(δ) = 0, because all δ with α′SCa,ιzi,s + 1 ≤ δ ≤ α can address only

those entries in Hsd,S
a,ιzi,s that are 0, as α′SCa,ιzi,s + 1 ≤ δ implies δ > δmax,S

a,ιzi,s. �

As masking is implicitly integrated in SDC variation ‘set’, there is no need to investigate

a separate variation ‘set, masking’.

44 2 Techniques to Predict Cache Contention

Algorithm 3 SDC model to calculate reduced associativity α′SCa,ιzi,s.

1: # —– Iterate over all cache sets —–

2: for s← 1 to |S| do

3: # —– Initialize pointers to next element of each histogram —–

4: for all a′ ∈ {a} ∪ Ca do

5: δa′ ← 1

6: end for

7: # —– Calculate contribution of a when merging histograms —–

8: for δ ← 1 to α do

9: # —– Get application with highest histogram value —–

10: H ← 0

11: a′′ ← a

12: for all a′ ∈ {a} ∪ Ca do

13: if Hsd,S
a′,ιzi,s

(δa′) > H then

14: H ← Hsd,S
a′,ιzi,s

(δa′)

15: a′′ ← a′

16: end if

17: end for

18: # —– Increase contribution —–

19: if H > 0 then

20: δa′′ ← δa′′ + 1

21: end if

22: end for

23: # —– δa − 1 corresponds to α′SCa,ιzi,s —–

24: α′SCa,ιzi,s ← δa − 1

25: end for

2.3 The SDC Method 45

Variation ‘lru set group’

In this variation, I combine Chandra et al.’s SDC method with a technique presented by

Suh et al. for cache partitioning [Suh et al., 2002].

In [Suh et al., 2002], Suh et al. introduce a method to partition a cache among multiple

applications in order to maximize overall cache performance. The method is based on the

miss rate versus cache size curve an application shows when executed in absence of any

other application, i.e. on stand-alone execution. Figure 7 shows a miss rate curve similar

to the one presented in [Suh et al., 2002] for the gcc benchmark.

knee

Miss Rate

Cache Size
(kByte)

0%

20%

40%

60%

80%

100%

0 64 128 196 256

Figure 7: Miss rate curve for an application as it has similarly
been presented in [Suh et al., 2002].

For small cache sizes, the curve quickly drops off and then settles down, forming a knee

that is typical for many applications [Suh et al., 2002]. If an application has less cache

space available than determined by the abscissa of its knee, cache performance heavily

degrades. For larger cache sizes however, only a small gain in cache performance can be

achieved. By reason of this observation, Suh et al. suggest to assign at least as many

cache resources to an application as it is determined by the abscissa of the knee in the

application’s miss rate vs. cache size diagram — for stand-alone execution as well as

for execution in co-schedule with other applications where each application is assigned a

predefined partition of the cache. To determine the partition sizes for the applications,

Suh et al. apply a greedy strategy on the derivative of the miss rate curve that has been

multiplied by the number of memory references: they assign to each application at least

46 2 Techniques to Predict Cache Contention

as many cache blocks as determined by the abscissa of the knee in the miss rate curve

— just the way Chandra et al. merge stack distance histogram entries of co-scheduled

applications to a new stack distance histogram when calculating α′ in algorithm 3. Since

the multiplication of the number of memory references with the derivative of the miss rate

curve results in a function that plots misses vs. cache size, i.e. a stack distance histogram

for a fully associative cache, Suh et al. actually presented Chandra et al.’s SDC method

(2005) as early as 2002.

Although Suh et al. consider set associative caches, they calculate their partitions from

the miss rate curve of a fully associative cache; to obtain that curve, however, they apply

data gathered from performance counters of a set associative cache. As a cache with

associativity α results in only α different entries in a stack distance histogram (Suh et

al. only regared cache hits ⇒ entry α + 1 is not used), Suh et al. not only use LRU

information from cache ways, but also LRU information from cache set accesses to obtain

stack distance histograms with more than just α entries: They partition |S| cache sets

into |G| equally sized groups G = {g1, . . . , g|G|} (Suh et al.: |G| ∈ {8, 16}) and monitor,

if the currently accessed cache set is member of the group that has least recently, 2nd

least recently . . . or |G| least recently been accessed, applying an LRU algorithm. To

combine way LRU and set LRU information, Suh et al. create the set of |G| histograms

Hsd,G
a,ιzi = {Hsd,G

a,ιzi,1, . . . ,H
sd,G
a,ιzi,|G|} of capacity α each. Hsd,G

a,ιzi,δG
(δS) refers to the number of

accesses to set groups of LRU stack position δG and to cache ways of LRU stack position

δS . To transform histograms Hsd,G
a,ιzi into one stack distance histogram Hsd,ext

a,ιzi of extended

size, Suh et al. take all α · |G| elements stored in Hsd,G
a,ιzi , sort them by value and create a

new histogram Hsd,ext
a,ιzi of capacity α · |G| that holds all those values.

Given a set associative cache of associativity α and |S| cache sets S = {s1, . . . , s|S|} and

an application a with memory references Ma,ιzi in execution interval ιzi.

Let ζS = {ζS1 , . . . , ζS|S|} be the set of stacks of capacity α that hold LRU information for

the lines of each cache set, let ζG be a stack of capacity |G| that holds LRU information for

|G| set groups, and let γ(s) =
(
(s− 1) · |G|/|S|

)
+ 1 be the operation that extracts the set

group from set number s and let 1 ≤ γ(s) ≤ |G|. Then, in variation ‘lru set group’, stack

distance histogram Hsd,ext
a,ιzi of capacity α · |G| for application a, interval ιzi is calculated

as shown in algorithm 4. For my evaluation, I apply |G| = 16.

2.3 The SDC Method 47

Given stack distance histograms Hsd,ext
a′,ιzi

for all applications a′ ∈ {a} ∪ Ca, I calculate

α′Ca,ιzi according to algorithm 3 with

• |S| 7→ 1,

• Hsd,S
a,ιzi,s 7→ Hsd,ext

a,ιzi ,

• α 7→ α · |G| and

• α′SCa,ιzi,s 7→ α′Ca,ιzi .

Given Hsd,ext
a,ιzi and α′Ca,ιzi , I calculate prediction pCa,ιzi for SDC variation ‘lru set group’

according to

pCa,ιzi =
α·|G|∑

δ=α′Ca,ιzi
+1

Hsd,ext
a,ιzi (δ). (15)

For this calculation, I apply predictors as follows.

Predictor For all a′ ∈ Size (each a′)

Hsd,ext
a′,ιzi

{a} ∪ Ca |G| · α · l

48 2 Techniques to Predict Cache Contention

Algorithm 4 Generate stack distance histogram Hsd,ext
a,ιzi of capacity α · |G|.

1: # —– Initialize stacks and histograms —–

2: for s← 1 to |S| do

3: for δS ← 1 to α do

4: ζSs (δS)← −1

5: end for

6: end for

7: for δG ← 1 to |G| do

8: ζG(δG)← −1

9: for δS ← 1 to α do

10: Hsd,G
a,ιzi,δG

(δS)← 0

11: end for

12: end for

13: # —– Calculate all |G| histograms Hsd,G
a,ιzi,g, g ∈ {1, . . . , |G|} —–

14: for j ← 1 to |Ma,ιzi | do

15: # —– Update histogram —–

16: s← ς(ma,ιzi,j)

17: δG ← ζG{γ(s)}
18: δS ← ζSs {κ(ma,ιzi,j)}
19: if δS ≤ α then

20: Hsd,G
a,ιzi,δG

(δS)← Hsd,G
a,ιzi,δG

(δS) + 1

21: else

22: δS ← α

23: end if

24: # —– Adjust line LRU stack of cache set s —–

25: while δS > 1 do

26: ζSs (δS)← ζSs (δS − 1)

27: δS ← δS − 1

28: end while

29: ζSs (1)← κ(ma,ιzi,j)

2.3 The SDC Method 49

30: # —– Adjust set group LRU stack —–

31: if δG = −1 then

32: δG ← |G|
33: end if

34: while δG > 1 do

35: ζG(δG)← ζG(δG − 1)

36: δG ← δG − 1

37: end while

38: ζG(1)← γ(s)

39: end for

40: # —– Merge all |G| histograms Hsd,G
a,ιzi,g, g ∈ {1, . . . , |G|}

to a single sorted histogram Hsd,ext
a,ιzi of extended size —–

41: for δ ← 1 to α · |G| do

42: H ← 0

43: δS ← 0

44: δG ← 0

45: for δ′G ← 1 to |G| do

46: for δ′S ← 1 to α do

47: if Hsd,G
a,ιzi,δ′G

(δ′S) > H then

48: H ← Hsd,G
a,ιzi,δ′G

(δ′S)

49: δS ← δ′S

50: δG ← δ′G

51: end if

52: end for

53: end for

54: Hsd,G
a,ιzi,δG

(δS)← 0

55: Hsd,ext
a,ιzi (δ)← H

56: end for

50 2 Techniques to Predict Cache Contention

2.4 The Prob Method

With their heuristic methods FOA and SDC, Chandra et al. calculate additional cache

misses introduced from cache contention by means of a reduced cache size, reflected in

an effective associativity α′ for set associative caches (cf. figure 6). With their analytical,

inductive probability based Prob method, Chandra et al. calculate additional cache misses

introduced from cache contention by the probability that a hit in stand-alone execution

turns into a miss when sharing the cache [Chandra et al., 2005]. Given this probabil-

ity, they predict additional cache misses introduced from a set of applications Ca to an

application a in execution interval ιzi by

pCa,ιzi =
∑

ca∈Ca

α∑

δ=1

Hsd
a,ιzi(δ) · Pmissca,ιzi(δ). (16)

Hsd
a,ιzi(δ) refers to element δ in stack distance histogram Hsd

a,ιzi (cf. algorithm 1) and

denotes the frequency of memory references with LRU stack distance δ in application a,

interval ιzi. Pmissca,ιzi(δ), 1 ≤ δ ≤ α, is the probability that a memory reference of application

a, interval ιzi that accesses the LRU stack with a distance δ will turn into a miss, if a is

co-scheduled with ca. Figure 8 exemplarily shows how these extra misses are located in a

stack distance histogram Hsd
a,ιzi ; note the difference to figure 6.

δ
1

Original
Cache
Misses

α+ 1α

Extra Cache Misses

Hsd
a,ι�i

(δ)

Figure 8: Effective cache space Prob model.

To turn a memory reference ma of application a to cache set s with LRU stack distance

δ, 1 ≤ δ ≤ α and key κ(ma) into a miss, a co-scheduled application ca has to provide

memory sequences to δca ≥ α− δ + 1 different cache lines in cache set s.

2.4 The Prob Method 51

Chandra et al. calculate Pmissca,ιzi(δ) by

Pmissca,ιzi(δ) =
E(νca,ιzi (δ))∑

δca=α−δ+1

P seqca,ιzi(δca , E(νca,ιzi(δ))), (17)

where E(νca,ιzi(δ)) is the expected number of memory addresses that application ca refer-

ences in that time that application a, on average, takes to refer to δ different cache lines.

P seqca,ιzi(δ, ν) is the probability that within a sequence of ν memory references of applica-

tion ca in interval ιzi that map to the same cache set, δ different cache lines are used.

Chandra et al. refer to such sequences as seq(δ, ν). To calculate P seqca,ιzi(δ, ν), Chandra et

al. recursively apply

P seqca,ιzi(δ, ν) =





(
P distca,ιzi(1)

)ν−1
, if ν ≥ δ = 1

P seqca,ιzi(δ − 1, δ − 1) ·
α+1∑

δ′=δ

P distca,ιzi(δ
′), if ν = δ > 1

P seqca,ιzi(δ, ν − 1) ·
δ∑

δ′=1

P distca,ιzi(δ
′)+

P seqca,ιzi(δ − 1, ν − 1) ·
α+1∑

δ′=δ

P distca,ιzi(δ
′), if ν > δ > 1

(18)

where P distca,ιzi(δ), 1 ≤ δ ≤ α+ 1 is the probability that a memory reference of application

ca in interval ιzi has a stack distance of δ. Given a stack distance histogram Hsd
ca,ιzi(δ),

P distca,ιzi(δ) can be calculated by

P distca,ιzi(δ) =
Hsd
ca,ιzi(δ)

α+1∑

δ′=1

Hsd
ca,ιzi(δ

′)

(19)

and

y∑

δ=x

P distca,ιzi(δ) =

y∑

δ′=x

Hsd
ca,ιzi(δ

′)

α+1∑

δ′=1

Hsd
ca,ιzi(δ

′)

. (20)

Note that in equation 17, E(νca,ιzi(δ)) might be larger than α+ 1. This generally poses a

problem, as the calculation of P seqca,ιzi(δca , E(νca,ιzi(δ))) according to equation 18 calculates

P distca,ιzi(δca) by equation 19, which is not defined for values of δca > α+ 1, as Hsd
ca,ιzi(δca) is

52 2 Techniques to Predict Cache Contention

defined for 1 ≤ δca ≤ α+ 1 only. This problem is not addressed in [Chandra et al., 2005].

However, I found out that δca > α + 1 ⇒ P seqca,ιzi(δca , E(νca,ιzi(δ))) = 0 independently of

P distca,ιzi(δca).

Proof:

• In equation 18, assume to calculate P seqca,ιzi(α+ j, α+ j) with j ∈ N, j > 1. Then,

due to
∑α+1

δ′=α+j P
dist
ca,ιzi(δ

′) = 0 (line 2), P seqca,ιzi(α+ j, α+ j) = 0.

• In equation 18, assume to calculate P seqca,ιzi(α+ j, α+ k), j, k ∈ N, 1 < j < k.
• In line 4,

∑α+1
δ′=α+j P

dist
ca,ιzi(δ

′) = 0, because α + j > α + 1. Applying

recursion in line 4, line 4 will turn either into 0 · (line 3 + line 4), or

into 0 · line 1. Therefore, line 4 will always be 0 for δca > α+ 1.

• Applying recursion in line 3, line 3 will k − j − 1 times

turn to
(∑δca

δ′=1 P
dist
ca,ιzi(δ

′)
)
· (line 3 + line 4), before it turns to

(∑δ
δ′=1 P

dist
ca,ιzi(δ

′)
)
· line 2. As line 4 turns to 0 for δca > α + 1 how-

ever, line 3 actually turns k− j− 1 times to
(∑δ

δ′=1 P
dist
ca,ιzi(δ

′)
)
· line 3

before it turns to
(∑δca

δ′=1 P
dist
ca,ιzi(δ

′)
)
· line 2. Therefore, calculating

P seqca,ιzi(α + j, α + k) with j, k ∈ N and 1 < j < k, line 3 turns to[∏k−j
n=1

∑δca
δ′=1 P

dist
ca,ιzi(δ

′)
]
· line 2. As line 2 is 0 for δca > α + 1, line 3

also is 0.

• As both line 3 and 4 turn to 0 for δca > α+ 1, P seqca,ιzi(α+ j, α+k) = 0

if j, k ∈ N, 1 < j < k.

• As both P seqca,ιzi(α+ j, α+ j) = 0 with j ∈ N, j > 1 and P seqca,ιzi(α+ j, α+ k) = 0

with j, k ∈ N, 1 < j < k, P seqca,ιzi(δca , E(νca,ιzi(δ))) = 0 for δca > α+ 1. �

2.4 The Prob Method 53

As mentioned before, E(νca,ιzi(δ) is the expected number of memory accesses that appli-

cation ca performs in that time that application a, on average, takes to refer to δ different

cache lines. Still the question remains how to calculate E(νca,ιzi(δ)).

Chandra et al. estimate E(νca,ιzi(δ)) from νa,ιzi(δ), the average number of memory refer-

ences of application a in interval ιzi that occur when a accesses δ different cache lines per

set: They scale νa,ιzi(δ) by the ratio of all memory references in a and ca according to

E(νca,ιzi(δ)) = νa,ιzi(δ) ·

α+1∑

δ′=1

Hsd
ca,ιzi(δ

′)

α+1∑

δ′=1

Hsd
a,ιzi(δ

′)

. (21)

Thereto, they calculate νa,ιzi(δ) by

νa,ιzi(δ) =

νmax∑

ν=δ+1

Hcseq
a,ιzi(δ, ν) · ν

νmax∑

ν=δ+1

Hcseq
a,ιzi(δ, ν)

. (22)

Note that I apply νmax = 128, as it is proposed in [Chandra et al., 2005].

Hcseq
a,ιzi is a three dimensional histogram of capacity α × (νmax − 1) for application a,

interval ιzi. Hcseq
a,ιzi(δ, ν) with 1 ≤ δ ≤ α, δ ∈ N+ and 2 ≤ ν ≤ νmax, ν ∈ N+ refers to

the histogram entry that tracks the frequency of so-called circular sequences cseqs(δ, ν)

that occur in any cache set s ∈ S of application a in interval ιzi. A circular sequence

cseqs(δ, ν) is a sequence of ν memory references to cache set s, where the first and the

last reference map to the same cache line λ′ and the references in between refer to δ − 1

different cache lines {λ1, . . . , λδ−1} = Λ and λ′ /∈ Λ. Figure 9, that can similarly be

found in [Chandra et al., 2005], demonstrates the difference between sequences seq(δ, ν)

and circular sequences cseq(δ, ν).

A B C A D D C

cseq(1,2)cseq(3,4)

cseq(3,5)

seq(4,7)

Figure 9: Difference between sequences seq(δ, ν) and circular sequences cseq(δ, ν), as it
has similarly been presented in [Chandra et al., 2005].

54 2 Techniques to Predict Cache Contention

Let ζd,S = {ζd,S1 , . . . , ζd,S|S| } be the set of stacks of capacity α that are used to implement

LRU replacement, and let ζn,S = {ζn,S1 , . . . , ζn,S|S| } be a set of |S| stacks of capacity α and

let element δ of stack ζn,Ss , referenced by ζn,Ss (δ), be the element that is used to track the

number of memory references to cache set s that occur between the last memory reference

to cache set s and the δ most recently used cache line in cache set s.

For an application a, interval ιzi, H
cseq
a,ιzi calculates as presented in algorithm 5.

Algorithm 5 Generation of a circular sequence histogram Hcseq
a,ιzi for interval ιzi of appli-

cation a, applying an α way set associative cache with |S| cache sets.

1: # —— Initialize stacks and histograms ——

2: for δ ← 1 to α do

3: for s← 1 to |S| do

4: νs,δ ← 0

5: ζd,Ss (δ)← −1

6: ζn,Ss (δ)← 0

7: end for

8: for ν ← 2 to νmax do

9: Hcseq
a,ιzi(δ, ν)← 0

10: end for

11: end for

12: # —— Calculate Hcseq
a,ιzi ——

13: for j ← 1 to |Ma,ιzi | do

14: s← ς(ma,ιzi,j)

15: for δ ← 1 to α do

16: ζn,Ss (δ)← ζn,Ss (δ) + 1

17: end for

18: δ ← ζd,Ss {κ(ma,ιzi,j)}

2.4 The Prob Method 55

19: if δ ≤ α then

20: ν ← ζn,Ss (δ)

21: if ν > νmax then

22: ν ← νmax

23: end if

24: Hcseq
a,ιzi(δ, ν)← Hcseq

a,ιzi(δ, ν) + 1

25: end if

26: # —— Adjust stacks ——

27: if δ > α then

28: δ ← α

29: end if

30: while δ > 1 do

31: ζd,Ss (δ)← ζd,Ss (δ − 1)

32: ζn,Ss (δ)← ζn,Ss (δ − 1)

33: end while

34: ζd,Ss (1)← κ(ma,ιzi,j)

35: ζn,Ss (1)← 1

36: end for

I apply the following predictors when calculating pCa,ιzi :

Predictor For each a′ ∈ Size (each a′)

Hsd
a′,ιzi

{a} ∪ Ca (α+ 1) · l
∑α+1

δ=1 H
sd
a′,ιzi

{a} ∪ Ca l

νa′,ιzi {a} α · l

For performance reasons, I calculate equation 18 only once, then store P seqca,ιzi(δ, ν) for each

reasonable combination of δ and ν in a table and then apply them to equation 17.

56 2 Techniques to Predict Cache Contention

While Chandra et al. calculate additional misses introduced to application a for each

application ca ∈ Ca separately, Chen and Aamodt propose a more advanced variation

of the Prob model [Chen and Aamodt, 2009] that incorporates effects of all co-scheduled

applications at the same time. They adapt equation 16 to

pCa,ιzi =
α∑

δ=1

Hsd
a,ιzi(δ) · PmissCa,ιzi(δ) (23)

and calculate PmissCa,ιzi(δ) by

PmissCa,ιzi(δ) = 1−
∑

δca,1+δca,2+···+δca,|Ca|≤α−δ

∏

ca′∈Ca

P seqca′ ,ιzi
(δca′ , E(νca′ ,ιzi(δ))). (24)

However, as my simulations showed that calculating co-scheduling penalty by equation 17

is already computationally too slow to predict cache contention effects in a reasonable

amount of time (similarly noted by Zhuravlev et al.: “only two of them (FOA and SDC)

are computationally fast enough to be used” [Zhuravlev et al., 2010]), and equation 24 will

calculate much slower than equation 17 as P seqca,ιzi is calculated over far more combinations

of input parameters, I desist from investigating Chen and Aamodt extension any further.

While Chandra et al. restricted themselves to threads exploiting private data only, Song

et al. extended Chandra’s work in [Song et al., 2007] by supporting not only threads with

private, but also with shared data, considering effects such as prefetching of shared data as

well. However, as this work focuses on cache contention of different processes not sharing

any address space, the adaptions proposed by Song et al. are not discussed any further.

2.5 The Width Method 57

2.5 The Width Method

With the Width method, I investigate two assumptions on stack distance histograms Hsd
a,ιzi

and Hsd,S
a,ιzi,s respectively for their ability to predict cache contention:

• Application intervals featuring more concentrated stack distance histograms

(e.g. 0.25 · α ≤ δ ≤ α ⇒ Hsd
a,ιzi(δ) = 0) are less likely to account for

cache contention than application intervals that are less concentrated (e.g.

δ ≤ 0.75 · α ⇒ Hsd
a,ιzi(δ) 6= 0). This seems to be a valid statement, as a co-

scheduled application has to provide many references to different cache lines

within a short amount of time to displace cache lines of an application with

a very concentrated stack distance histogram — and many references to many

different cache lines are less likeley to occur than many references to only a small

amount of different cache lines due to program locality. On the contrary, it takes

only a few references to different cache lines (which is more likely to occur) to

displace cache lines of a co-scheduled application that feature a high distance δ.

• For a given δ, an application a is more likely to have cache lines replaced by a

co-scheduled application if Hsd
a,ιzi(δ) has a high value rather than a small value.

This seems to be a valid statement as a high value of Hsd
a,ιzi(δ) means that there

are many references with distance δ, which in turn makes it more likely for a

co-scheduled application to displace one, as if there were just a few references

with distance δ.

Combining both assumptions, I investigate if multiplying δ byHsd
a,ιzi(δ) and δ byHsd,S

a,ιzi,s(δ)

respectively would achieve any promising results in predicting cache contention.

Variation ‘one’

With variation ‘one’, I calculate predictor pCa,ιzi from one stack distance histogram per

execution interval ιzi per application a according to

pCa,ιzi =
∑

a′∈{a}∪Ca

α∑

δ=1

Hsd
a′,ιzi(δ) · δ. (25)

58 2 Techniques to Predict Cache Contention

Note that I apply
∑α

δ=1H
sd
a′,ιzi

(δ)·δ as predictor in order to perform only those calculations

at runtime that cannot be calculated in advance; this makes timing performance of the

method more comparable.

Predictor For all a′ ∈ Size (each a′)

∑α
δ=1H

sd
a′,ιzi

(δ) · δ {a} ∪ Ca l

Variation ‘set, mask’

With variation ‘set, mask’, I calculate predictors on a per-cache-set basis, multiplying

each δ, 1 ≤ δ ≤ α, with the stack distance histograms Hsd,S
a,ιzi,s(δ) of the various cache

sets. Additionally, I add masking that I already proposed to be incorporated in the FOA

method to account for those cache sets in S only that introduce contention misses even

from stand-alone cache hits. I calculate pCa,ιzi by

pCa,ιzi =
|S|∑

s=1

(
ξSCa,ιzi,s ·

∑

a′∈{a}∪Ca

α∑

δ=1

Hsd,S
a′,ιzi,s

(δ) · δ
)
, (26)

where ξSa,ιzi,s is calculated as presented in equation 10.

For my calculations, I apply the following predictors:

Predictor For all s ∈ S and a′ ∈ Size (each a′)

∑α
δ=1H

sd,S
a′,ιzi,s

(δ) · δ {a} ∪ Ca |S| · l
δmax,Sa′,ιzi,s

{a} ∪ Ca |S| · l

Variation ‘set, mask, exp delta’

With variation ‘set, mask, exp delta’, I investigate my assumption that a higher δ might

contribute much more to cache contention than a higher Hsd(δ), where Hsd(δ) is short for

any Hsd
a′,ιzi

(δ) with a′ ∈ {a}∪Ca (or Hsd,S
a′,ιzi,s

(δ) with a′ ∈ {a}∪Ca and s ∈ S respectively).

In variation ‘one’, scaling δ by a factor f has the same effect as scaling Hsd(δ) by f .

However, as I observed that stack distance histograms are often highly concentrated and

2.5 The Width Method 59

Hsd(1) often exceeds Hsd(2) by several orders of magnitude, variation ‘one’ primarily uses

Hsd(1) as a measure for cache contention, which I think is not an optimal choice: Hsd(1)

represents the number of references with stack distance δ = 1. Although there are many of

these, it is unlikely that any reference in Hsd(1) will become a miss if the number of cores

is small compared to associativity α, as it is just the high number of references Hsd(1) that

imply that the next reference will go to the same cache line and a single entry on the LRU

stack will satisfy a huge number (i.e. Hsd(1)) of references. Even if this LRU stack entry is

pushed back some stack positions by references of other applications, it is the high number

of Hsd(1) which makes it very likely that this LRU stack entry will shortly be moved to

LRU position 1 and other applications will not be able to displace it from the LRU stack.

References that correspond to entries Hsd(δ) with a high number of δ however will very

likely result in misses: First, they have a unfavorable LRU position even on stand-alone

execution and it takes only a few references from other applications to displace them from

the LRU stack. But another aspect might be more important: Due to the high stack

distance histogram concentration, references to higher LRU stack distance positions occur

less often than references to lower LRU stack positions, which means that there is a lot of

time available for other applications to displace an entry from the LRU stack. Therefore,

references with high δ seem to be much more likely to generate contention misses than

references with low δ. However, as Hsd(δ) is very low for high values of δ (remember that

Hsd(δ)� Hsd(δ+ 1)), even a high percental change in Hsd(δ) will hardly have any effect

on the predictor, as changes in Hsd(δ) for high values of δ are generally small compared

to the absolute value of Hsd(1). To boost up effects of higher values of δ, I potentiate δ

applying an exponential function and calculate the predictor for this variation by

pCa,ιzi =
|S|∑

s=1

(
ξSCa,ιzi,s ·

∑

a′∈{a}∪Ca

α∑

δ=1

Hsd,S
a′,ιzi,s

(δ) · βδ−1
)
. (27)

For my simulations I use β = 10. Note that this value was chosen without any further

investigation. I apply predictors as follows:

Predictor For all s ∈ S and a′ ∈ Size (each a′)

∑α
δ=1H

sd,S
a′,ιzi,s

(δ) · βδ−1 {a} ∪ Ca |S| · 2 · l
δmax,Sa′,ιzi,s

{a} ∪ Ca |S| · l

60 2 Techniques to Predict Cache Contention

2.6 The Pain Method

In [Zhuravlev et al., 2010] and [Fedorova et al., 2010], Sergey Zhuravlev, Alexandra Fe-

dorova and Sergey Blagodurov present their so-called Pain method that estimates co-

scheduling penalties by cache sensitivity χsensa,ιzi and cache intensity χinsa,ιzi of applications.

Cache sensitivity is the extent an application is sensitive to cache contention when sharing

the processor cache with another application. To determine cache sensitivity, the authors

multiply each cache hit by its probability to become a miss under cache sharing. To

estimate hit probability, Zhuravlev et al. employ the information, how recently the corre-

sponding cache line has been referenced: If a memory access references a cache line that

resides on top of the LRU stack, i.e. δ = 1, it is very unlikely that this reference will turn

into a miss under cache sharing. In contrast, memory accesses that reference cache lines

that have not been referenced for a long time and reside near the bottom of the LRU stack

(e.g. δ = α) are very likely to be replaced by a co-scheduled application. Generally, the

authors assume a linear loss probability and calculate the probability that an access to a

cache line of LRU stack position δ will become a miss in an α way set associative cache

by δ/(1 +α). Zhuravlev et al. define sensitivity χsensa,ιzi of an application a in interval ιzi as

χsensa,ιzi =
α∑

δ=1

δ

1 + α
·Hsd

a,ιzi(δ). (28)

Contrary to cache sensitivity, cache intensity is a measure of the intensity an application

uses cache: Memory intensive applications are more likely to replace cache lines of a co-

scheduled application than applications with low memory usage. Zhuravlev et al. define

cache intensity as the number of cache accesses for a fixed amount of instruction. As each

interval ιzi represents a fixed amount of instruction and as I compare only prediction

results of the same window size z to one another, I calculate intensity χinta,ιzi by

χinta,ιzi =
α+1∑

δ=1

Hsd
a,ιzi(δ). (29)

Given cache sensitivity and cache intensity, the authors estimate the so-called Pain intro-

duced to an application a by a co-scheduled application ca by

Pain = χsensa,ιzi · χintca,ιzi . (30)

2.6 The Pain Method 61

Variation ‘one’

With variation ‘one’, I present the original method as it has been proposed in

[Zhuravlev et al., 2010]. As the variations’ name suggests, this variation employs only

a single sensitivity/intensity descriptor per interval ιzi for each application and prediction

pCa,ιzi calculates to

pCa,ιzi = χsensa,ιzi ·
∑

ca∈Ca

χintca,ιzi . (31)

For my calculations, I apply the following predictors:

Predictor For all a′ ∈ Size (each a′)

χsensa′,ιzi
{a} l

χinta′,ιzi Ca l

Variation ‘one, sens38’

With Pain variation ‘one, sens38’, I pick up my ideas presented in variation ‘set, mask, exp

delta’ of the ‘Width’ method regarding highly concentrated stack distance histograms, i.e.

Hsd(δ)� Hsd(δ+ 1) if Hsd(δ+ 1) 6= 0. Instead of introducing an exponential function to

make high values of δ more effective as presented before, I simply omit this time Hsd(δ)

values with δ = 1 and δ = 2, i.e. I calculate application sensitivity only by stack distance

entries 3 . . . α. Given α = 8, I calculate χsens38
a,ιzi by

χsens38
a,ιzi =

α∑

δ=3

δ

1 + α
Hsd
a,ιzi(δ) (32)

and calculate prediction pCa,ιzi by

pCa,ιzi = χsens38
a,ιzi ·

∑

ca∈Ca

χintca,ιzi . (33)

I apply the following predictors:

Predictor For all a′ ∈ Size (each a′)

χsens38
a′,ιzi

{a} l

χinta′,ιzi Ca l

62 2 Techniques to Predict Cache Contention

Variation ‘one, misses’

In [Zhuravlev et al., 2010], the authors examine the impact that co-scheduled applications

ca ∈ Ca have on an application a by means of the number of references of each application

ca ∈ Ca; they refer to these references as intensity (cf. equation 29). Regarding the

distribution of stack distances in a stack distance histogram, their intensity measure is

highly dominated by Hsd
ca,ιzi(1). However, references with Hsd

ca,ιzi(1) are very unlikely to

displace a reference of an application a from the LRU stack, as they are very unlikely

not to reside on the LRU stack : Consider a memory reference ma of an application a

with (stand-alone) LRU distance δ = 1 that, for example, occupies position δ = 4 on a

(shared) LRU stack. Then, referencing ma moves the corresponding cache key from LRU

stack position δ = 4 to LRU stack position δ = 1, repositioning entries 1 . . . 3 to new LRU

stack positions 2 . . . 4. This example shows that referencing an already cached element

will not displace any element from the LRU stack, but only reposition elements with a

better LRU stack position by 1 towards position δ = α. To kick out elements from the

LRU stack (a prerequisite to generate contention misses), however, an element has to be

fetched that does not currently reside on the shared cache. This is more likely for (stand-

alone) references with high δ, but definite for references with δ > α, i.e. references that are

misses even on stand-alone execution. Therefore, references with a stand-alone LRU stack

distance of δ = α+ 1 seem to be a much better selection for intensity than simply taking

the number of memory references, as it has been done in [Zhuravlev et al., 2010]. Further

note that there are often far more references with (stand-alone) LRU stack distance δ > α

than there are references with δ = 3, or sometimes even δ = 2. In order to verify my

considerations, I apply the number of misses Hsd
ca,ιzi(α+ 1), ca ∈ Ca, as intensity measure

and calculate prediction pCa,ιzi for ‘Pain’ variation ‘one, misses’ according to

pCa,ιzi = χsensa,ιzi ·
∑

ca∈Ca

Hsd
ca,ιzi(α+ 1). (34)

I apply the following predictors for this variation of the ‘Pain’ method:

Predictor For all a′ ∈ Size (each a′)

χsensa′,ιzi
{a} l

Hsd
a′,ιzi

(α+ 1) Ca l

2.6 The Pain Method 63

Variation ‘one, sens38, misses’

With ‘Pain’ variation ‘one, sens38, misses’, I combine my considerations regarding varia-

tions ‘one, sens38’ and ‘one, misses’ and calculate prediction pCa,ιzi according to

pCa,ιzi = χsens38
a,ιzi ·

∑

ca∈Ca

Hsd
ca,ιzi(α+ 1). (35)

I apply the following predictors:

Predictor For all a′ ∈ Size (each a′)

χsens38
a′,ιzi

{a} l

Hsd
a′,ιzi

(α+ 1) Ca l

Variation ‘set’

With variation ‘set’, I investigate the maximum improvement that can be achieved with

Zhuravlev et al.’s method when additionally accounting for spatial locality. Therefore,

variation ‘set’ calculates sensitivity and intensity on a per-cache-set basis according to

χsens,Sa,ιzi,s =
α∑

δ=1

δ

1 + α
·Hsd,S

a,ιzi,s(δ) (36)

and

χint,Sa,ιzi,s =
α+1∑

δ=1

Hsd,S
a,ιzi,s(δ). (37)

Given χsens,Sa,ιzi,s and χint,Sca,ιzi,s for each ca ∈ Ca for all s ∈ S, I calculate pCa,ιzi according to

pCa,ιzi =
|S|∑

s=1

(
χsens,Sa,ιzi,s ·

∑

ca∈Ca

χint,Sca,ιzi,s

)
. (38)

I apply the following predictors:

Predictor For all a′ ∈ Size (each a′)

χsens,Sa′,ιzi,s
{a} |S| · l

χint,Sa′,ιzi,s
Ca |S| · l

64 2 Techniques to Predict Cache Contention

Variation ‘set, misses’

With variation ‘set, misses’, I enhance variation ‘one, misses’ by considering spatial locality

given by the various cache sets and determine predictor pCa,ιzi by

pCa,ιzi =
|S|∑

s=1

(
χsens,Sa,ιzi,s ·

∑

ca∈Ca

Hsd,S
ca,ιzi,s(α+ 1)

)
, (39)

applying predictors as follows.

Predictor For all a′ ∈ Size (each a′)

χsens,Sa′,ιzi,s
{a} |S| · l

Hsd,S
ca,ιzi,s(α+ 1) Ca |S| · l

Variation ‘set, sens38, misses’

With variation ‘set, sens38, misses’, I combine spatial locality with the considerations

presented in variations ‘one, sens38’ and ‘one, misses’. Therefore, I calculate a per-set-

version of sensitivity χsens38
a,ιzi by

χsens38,S
a,ιzi,s =

α∑

δ=3

δ

1 + α
Hsd,S
a,ιzi,s(δ) (40)

and calculate predictor pCa,ιzi by

pCa,ιzi =
|S|∑

s=1

(
χsens,Sa,ιzi,s ·

∑

ca∈Ca

Hsd,S
ca,ιzi(α+ 1)

)
. (41)

I apply the following predictors:

Predictor For all a′ ∈ Size (each a′)

χsens38,S
a′,ιzi,s

{a} |S| · l
Hsd,S
a′,ιzi,s

(α+ 1) Ca |S| · l

2.7 The Misses Method 65

2.7 The Misses Method

In [Knauerhase et al., 2008], the authors investigate methods to improve scheduling and

load balancing on multicore processors. To improve caching performance and reduce

cache contention, they sample performance counters such as INVALID_L2_RQSTS (L2 cache

misses) and L2_RQSTS (L2 cache references) on a per-thread basis and try to use this data

to improve co-scheduling. They discovered that the number of cache misses per cycle

performs best as indicator of cache interference. However, this does not seem to be a

surprise, as the number of L2 cache misses observed have been measured at runtime,

when the L2 cache is already shared among instructions; therefore, gathering values from

INVALID_L2_RQSTS is a measurement, and not a prediction. For Knauerhase et al.’s intent

to improve scheduling performance from runtime measures, this approach seems to be a

good solution. But for cache contention prediction, you would have to run each candidate

set of co-scheduled applications in parallel, measure cache contention and predict cache

contention of future execution intervals from previous intervals. This does not seem to be

a reasonable approach, in particular for larger prediction intervals, as program behavior

changes over time [Sherwood et al., 2003, Zwick et al., 2009b, Zwick, 2010b].

In order to use cache misses as a predictor, it seems to be worth investigating if the

number of stand-alone cache misses can be applied to predict cache contention of shared

applications. This seems to be a promising approach, as stack distance histograms are often

highly concentrated, i.e. Hsd
a,ιzi(δ)� Hsd

a,ιzi(δ + 1) for small values of δ, and Hsd
a,ιzi(δ) = 0

for most other values of δ up to α. Hsd
a,ιzi(α + 1) then often has a value in the range of

about Hsd
a,ιzi(2). See figure 12 for an example of a typical shape of such a stack distance

histogram; assume that the ordinate is of logarithmic scale. If stack distance concentration

is that high that, for a given cache set s ∈ S,
∑

a′∈{a}∪Ca δ
max,S
a′,ιzi,s

≤ α, then it is not possible

that any stand-alone cache hit of an application ca ∈ Ca will render any stand-alone

cache hit of application a /∈ Ca into a miss. In this case, cache contention introduced to

application a can soleley originate from memory references being stand-alone cache misses.

Proof: Let s be the considered cache set. Assume each a′ ∈ {a} ∪ Ca to have a

specific δmax,S
a′,ιzi,s

and let ∀a′∈{a}∪Ca : Hsd,S
a′,ιzi,s

(α + 1) = 0. Then, the worst possible LRU

stack position a reference of a′ ∈ {a} ∪ Ca can earn is
∑

a′∈{a}∪Ca δ
max,S
a′,ιzi,s

, which is ≤ α,

66 2 Techniques to Predict Cache Contention

as assumed, and therefore a cache hit. The only way, for such values of δmax,S
a′,ιzi,s

, a′ ∈
{a} ∪ Ca, to turn stand-alone cache hits of application a into contention misses is with

stand-alone cache misses. Therefore, if
∑

a′∈{a}∪Ca δ
max,S
a,ιzi,s ≤ α, which is likely due to

the high concentration of stack distance histogram values, contention misses can only be

introduced from stand-alone cache misses. �

Note the difference to variation ‘one, misses’ of the Pain method: Applications ca ∈ Ca are

considered by their amount of stand-alone cache misses Hsd
ca,ιzi(α+1) in both methods Pain

and Misses. Application a however is considered differently: In Pain variation ‘one, misses’,

a is considered by the sensitivity measure obtained from elements Hsd
a,ιzi(δ), 1 ≤ δ ≤ α.

In the Misses method however, I consider application a by Hsd
a,ιzi(α+1), i.e. just the same

way as applications ca ∈ Ca. This seems to be a valid approach, however, as stand-alone

misses of application a are related to elements Hsd
a,ιzi(δ), 2 ≤ δ ≤ α: Each Hsd

a,ιzi(α + 1)

repositions LRU stack entries of the corresponding cache set by 1 towards the LRU position

and therefore also accounts for stack distance histogram positions Hsd
a,ιzi(δ) with δ ≥ 2.

To Hsd
a,ιzi(1), entries Hsd

a,ιzi(α+ 1) do not contribute, which seems to be advantageous for

cache contention prediction, as entries Hsd
a,ιzi(1) are unlikely to turn into contention misses

(cf. discussion about variation ‘set, mask, exp delta’ of the Width method).

Variation ‘one’

With variation ‘one’, I apply the number of stand-alone cache misses obtained from ap-

plications {a} ∪ Ca as a predictor for cache contention and calculate pCa,ιzi by

pCa,ιzi =
∑

a′∈{a}∪Ca

Hsd
a,ιzi(α+ 1). (42)

I apply the following predictor:

Predictor For all a′ ∈ Size (each a′)

Hsd
a′,ιzi

(α+ 1) {a} ∪ Ca l

2.8 The Miss Rate Method 67

Variation ‘set, mask’

With variation ‘set, mask’, I investigate whether or not a better prediction accuracy can

be achieved by considering only misses of those cache sets s that are able to introduce con-

tention misses even from stand-alone cache hits, i.e.
∑

a′∈{a}∪Ca δ
max,S
a′,ιzi,s

> α. If prediction

gets worse compared to variation ‘one’, then cache contention will be caused rather by

stand-alone misses than by stand-alone hits. For this investigation, I calculate prediction

pCa,ιzi by
pCa,ιzi =

|S|∑

s=1

ξSCa,ιzi,s ·
∑

a′∈{a}∪Ca

Hsd,S
a′,ιzi,s

(α+ 1), (43)

where ξSCa,ιzi,s is calculated as presented in equation 10. I apply the following predictors:

Predictor For all s ∈ S and a′ ∈ Size (each a′)

Hsd,S
a′,ιzi,s

(α+ 1) {a} ∪ Ca |S| · l
δmax,Sa′,ιzi,s

{a} ∪ Ca |S| · l

2.8 The Miss Rate Method

In [Fedorova et al., 2010], the authors compare their ‘Pain’ method (cf. section 2.6) to

the results achieved when predicting cache contention by means of stand-alone cache miss

rates of the co-scheduled applications. They did so despite the “stronger evidence in

favor of the memory-reuse approach” [Fedorova et al., 2010] they applied for their ‘Pain’

method. Their evaluation showed, however, that stand-alone miss rate is a surprisingly

good method to predict contention of a shared cache.

In order to compare the miss rate based approach to the other techniques presented in

this thesis, I introduce the ‘Miss Rate’ method that calculates its prediction as follows:

pCa,ιzi =
∑

a′∈{a}∪Ca

Hsd
a′,ιzi

(α+ 1)
∑α+1

δ=1 H
sd
a′,ιzi

(δ)
, (44)

where I calculate the fraction in advance to the prediction and use it as predictor.

Predictor For all a′ ∈ Size (each a′)

Hsd
a′,ιzi

(α+1)Pα+1
δ=1 H

sd
a′,ιzi

(δ)
{a} ∪ Ca l

68 2 Techniques to Predict Cache Contention

2.9 The Activity Vector Method

In [Kihm and Connors, 2004], [Kihm et al., 2005] and [Settle et al., 2004], the authors

propose a method to predict L2 cache contention they call Activity Vector. The method

exploits the observation that a program’s cache utilization does not only vary in time, but

also in space: Some parts of the cache show high activity, while others show low activity,

as it is exemplarily presented in figure 10. Generally, activity vectors are bit vectors that

indicate, for a given execution interval, if a group of cache sets shows high activity (1) or

low activity (0).

4

8

12

16

20

24

28

32

Execution Interval

S
u
p
e
r

S
e
t

G
ro

u
p

100 200 300 400

> 25000 20000 - 24999 15000 - 19999

10000 - 14999 5000 - 9999 0 - 4999

Accesses per Super Set Group:

Figure 10: Activity map as it is similarly presented in [Settle et al., 2004] to demon-
strate spatial cache utilization (horizontal stripes of similar color). The abscissa rep-
resents instruction intervals, i.e. timing information; the color indicates cache access
activity (dark color = high activity; bright color = low activity). The ordinate repre-
sents 32 so-called super sets, a series of contiguous groups of cache sets that represent
space/location information.

To generate activity vectors, the authors track the number of accesses to groups G =

{g1, . . . , g|G|} of contiguous cache sets, called super sets. Further, they track the number

of cache misses per group. If, for an application a, the accesses to group g in execution

interval ιzi exceed threshold Ωacc,G
z , then element g in the so-called access activity vector

ℵacc,Ga,ιzi =
[
ℵacc,Ga,ιzi,1 . . . ℵacc,Ga,ιzi,|G|

]
is set to one, i.e. ℵacc,Ga,ιzi,g = 1; otherwise, ℵacc,Ga,ιzi,g = 0. If the

2.9 The Activity Vector Method 69

misses of application a in interval ιzi that occur in group g exceed threshold Ωmiss,G
z , then

element g in the so-called miss activity vector ℵmiss,Ga,ιzi =
[
ℵmiss,Ga,ιzi,1 . . . ℵmiss,Ga,ιzi,|G|

]
is set to

one, i.e. ℵmiss,Ga,ιzi,g = 1, otherwise ℵmiss,Ga,ιzi,g = 0. The activity vector that contains both accesses

and misses is defined by ℵGa,ιzi =
[
ℵacc,Ga,ιzi ℵmiss,Ga,ιzi

]
. Kihm and Connors analyze various de-

cision points to differentiate between high and low activity; they discover that good results

can be achieved when applying the third quartile as offset [Kihm and Connors, 2004].

Let Ω = 3
4 , let |G| = 32 be the number of groups, let |Ma| be the total number of memory

references of application a in the set of intervals ιz = {ιz1, . . . ιz|ιz|}, let A = {astar,

bzip2, gcc, gobmk, h264ref, hmmer, lbm, mcf, milc, povray} be the set of applications

I apply for my simulations, and let |A| be the number of applications in A. I define

thresholds Ωacc,G
z and Ωmiss,G

z by

Ωacc,G
z =

Ω
|A| · |G|

∑

a∈A
(|Ma|/z) (45)

and

Ωmiss,G
z =

Ω
|A| · |G| ·

∑

a∈A

z
|Ma|

∑

ιzi∈ιz

Hsd
a,ιzi(α+ 1). (46)

Activity vector of application

Activity vectors of applications to be co-scheduled with

Activity vectors of AND-ed with vector of

min.

7

8

3

SMT core

a

c�
a

c��
a

c���
a

a & c�
a

a & c��
a

a & c���
a

a

a

c�
a, c��

a and c���
a a

a

c���
a

S
el

ec
t

as
 c

o-
sc

h
ed

u
le

c��� a

Figure 11: AND-ing (&) activitiy vectors to select the best co-schedule for a
thread, as it is similarly shown in [Settle et al., 2004]. Bits filled with grey color
indicate bits set to 1; bits filled with white color indicate bits set to 0.

70 2 Techniques to Predict Cache Contention

Figure 11 shows how activity vectors are applied to select the best co-schedule for an

application a from a set of candidate co-schedules {c′a, c′′a, c′′′a } to minimize overall cache

contention. To determine the best co-schedule, the activity vector of a is bitwise logically

AND-ed with the activity vectors of the candidate co-schedules. After AND-ing the vec-

tors, the bits set to 1 in the resulting vector are counted and the thread that yields the

resulting vector with the least number of bits set to 1 is chosen as co-schedule. Note that

in figure 11, activity vectors have dimension 32 for demonstration purposes only; Settle et

al. apply activity vectors of dimension 64, as they compose an activity vector of both an

access activity vector of dimension 32 and a miss activity vector of dimension 32. In the

following, I present three variations of the ‘Activity Vector’ method.

Variation ‘superset’

Variation ‘superset’ is the original method as it is proposed in [Settle et al., 2004]. In this

variation, activity vectors ℵGa,ιzi are calculated as presented in algorithm 6.

Given ℵGa,ιzi for each application {a}∪Ca, and let variable mask = false, prediction pCa,ιzi

is calculated as shown in algorithm 7.

Algorithm 6 Calculation of activity vectors ℵGa,ιzi from stack distance histogram Hsd,S
a,ιzi .

1: # —– Init —–

2: for g ← 1 to |G| do

3: ℵacc,Ga,ιzi,g ← 0

4: ℵmiss,Ga,ιzi,g ← 0

5: end for

6: # —– Calculate group misses/accesses —–

7: for s← 1 to |S| do

8: g ← γ(s)

9: for δ ← 1 to α+ 1 do

10: ℵacc,Ga,ιzi,g ← ℵacc,Ga,ιzi,g +Hsd,S
a,ιzi,s(δ)

11: end for

12: ℵmiss,Ga,ιzi,g ← ℵmiss,Ga,ιzi,g +Hsd,S
a,ιzi,s(α+ 1)

13: end for

2.9 The Activity Vector Method 71

14: for g = 1 to |G| do

15: if ℵacc,Ga,ιzi,g > Ωacc,G
z then

16: ℵacc,Ga,ιzi,g ← 1

17: else

18: ℵacc,Ga,ιzi,g ← 0

19: end if

20: if ℵmiss,Ga,ιzi,g > Ωmiss,G
z then

21: ℵmiss,Ga,ιzi,g ← 1

22: else

23: ℵmiss,Ga,ιzi,g ← 0

24: end if

25: end for

26: ℵGa,ιzi ←
[
ℵacc,Ga,ιzi ℵmiss,Ga,ιzi

]

Algorithm 7 Calculation of pCa,ιzi from ℵGa,ιzi according to the Activity Vector method.

1: pCa,ιzi ← 0

2: for g = 1 to |G| do

3: ℵ ←∑
a′∈{a}∪Ca ℵGa′,ιzi,g

4: if mask = false ∨
(
mask = true ∧ ξSCa,ιzi,s = 1

)
then

5: if |Ca| = 1 then

6: if ℵ == 2 then

7: pCa,ιzi ← pCa,ιzi + 1

8: end if

9: else if Ca > 1 then

10: if ℵ ≥ Ω ·
(
|Ca|+ 1

)
then

11: pCa,ιzi ← pCa,ιzi + 1

12: end if

13: end if

14: end if

15: end for

72 2 Techniques to Predict Cache Contention

To calculate pCa,ιzi in variation ‘superset’, I apply the following predictor for each appli-

cation a′ ∈ {a} ∪ Ca and execution interval ιzi:

Predictor For all a′ ∈ Size (each a′)

ℵGa′,ιzi =
[
ℵacc,Ga′,ιzi

ℵmiss,Ga′,ιzi

]
{a} ∪ Ca 2 · |G| · l

Note that I do not store the predictors as 2 · |G| bits, but as 2 · |G| integers in order to

avoid additional operations to extract single bits from a word. As the size of a predictor,

even it it is stored as 2 · |G| integers, is much smaller than a memory page, there should

be no additional memory transaction penalty using integers instead of bits.

Variation ‘set’

With variation ‘set’, I investigate if a much better accuracy of the activity vector method

can be achieved when applying groups of cache set granularity in order to exploit maximum

spatial locality. For variation ‘set’, I calculate predictor ℵSa,ιzi and prediction pCa,ιzi

according to algorithms 6 and 7, but with the following modifications:

• G 7→ S

• g 7→ s

• γ(s) 7→ s; alternatively, line 8 in algorithm 6 can be omitted.

Similar to equations 45 and 46 I calculate per-set offsets according to

Ωacc,S
z =

Ω
|A| · |S|

∑

a∈A
(|Ma|/z) (47)

and

Ωmiss,S
z =

Ω
|A| · |S| ·

∑

a∈A

z
|Ma|

∑

ιzi∈ιz

Hsd
a,ιzi(α+ 1). (48)

I apply the following predictors:

Predictor For all a′ ∈ Size (each a′)

ℵSa′,ιzi =
[
ℵacc,Sa′,ιzi

ℵmiss,Sa′,ιzi

]
{a} ∪ Ca 2 · |S| · l

2.9 The Activity Vector Method 73

Variation ‘set, mask’

In variation ‘set, mask’, I additionally add masking to variation ‘set’ to consider the

activity of those cache sets s only with ξSCa,ιzi,s = 1. I calculate variation ‘set, mask’ the

same way as variation ‘set’, but with variable mask = true and ξSCa,ιzi,s as calculated

by equation 10 and algorithm 2. I apply the following predictors for each application

a′ ∈ {a} ∪ Ca and execution interval ιzi.

Predictor For all a′ ∈ Size (each a’)

ℵSa′,ιzi =
[
ℵacc,Sa′,ιzi

ℵmiss,Sa′,ιzi

]
{a} ∪ Ca 2 · |S| · l

δmax,Sa′,ιzi,s
{a} ∪ Ca |S| · l

74 2 Techniques to Predict Cache Contention

2.10 The DMax Method

In [Zwick et al., 2010] and [Zwick, 2011], I proposed the Setvector method to predict cache

contention. The Setvector method is a heuristic method that combines the ideas of stack

distances (temporal locality) and activity vectors (spatial locality). In this section, I

present the DMax method to further investigate ideas integrated in the Setvector method.

Analyzing stack distance histograms, I discovered that they are often highly concentrated,

i.e. Hsd
a,ιzi(δ)� Hsd

a,ιzi(δ + 1) for small values of δ and that larger values of δ often result

in Hsd
a,ιzi(δ) = 0. This observation conforms to the property of high temporal program

locality. For example, consider interval ιzi of application a to achieve a hitrate of 98% on

a 2 way set associative level 1 cache. If the same interval ιzi of application a would be

executed on a processor with an 8 way set associative cache, then Hsd
a,ιzi(1) and Hsd

a,ιzi(2)

would hold 98% of all memory references, while Hsd
a,ιzi(3) . . . Hsd

a,ιzi(9) would hold only 2%

of the references. As a consequence, in stack distance histograms for caches with high

associativity, there are often only the first few entries different from 0, as it is exemplarily

shown in figure 12. If there is one stack distance histogram for each cache set s to exploit

spatial locality, each histogram Hsd,S
a,ιzi,s holds only a small part of Hsd

a,ιzi and, depending

on the distribution of cache set references, many histograms Hsd,S
a,ιzi,s will have an even

lower number of non-zero histogram entries than Hsd
a,ιzi has.

In the following, I refer to the number of non-zero elements in stack distance histograms

Hsd
a,ιzi and Hsd,S

a,ιzi,s as δmax
a,ιzi (cf. figure 12) and δmax,S

a,ιzi,s respectively. With algorithm 2, I

already presented the way to calculate δmax,Sa,ιzi,s from a stack distance histogram Hsd,S
a,ιzi,s

(Hsd,S
a,ιzi,s can be calculated as presented in. Given a stack distance histogram Hsd

a,ιzi , algo-

rithm 8 shows how to calculate δmax
a,ιzi . Note that δmax

a,ιzi = max(δmax,S
ιzi,1 , δmax,S

ιzi,2 , . . . δmax,S
ιzi,|S|),

as Hsd
a,ιzi(δ) =

∑|S|
s=1H

sd,S
a,ιzi,s(δ).

Algorithm 8 Calculating predictor δmax
a,ιzi from Hsd

a,ιzi .

1: δmax
a,ιzi ← α

2: while δmax
a,ιzi > 0 ∧Hsd

ιzi(δ
max
a,ιzi) = 0 do

3: δmax
a,ιzi ← δmax

a,ιzi − 1

4: end while

2.10 The DMax Method 75

1

Hits Misses

δ

α+ 1

Hsd
a,ι�i

(δ)

δmax
a,ι�i

δmax
a,ι�i

Figure 12: In many stack distance histograms Hsd
a,ιzi , only

the first few entries are different from 0.

Regarding stack distance histograms of multiple applications {a}∪Ca that get co-scheduled

sharing a common cache, it seems to be suggested that low values of δmax
a′,ιzi

or δmax,S
a′,ιzi,s

,

a′ ∈ {a} ∪ Ca, will result in lower cache contention than high values of δmax
a′,ιzi

or δmax,S
a′,ιzi,s

:

Given a cache set s and an application a that achieves a specific δmax,S
a,ιzi,s in interval ιzi,

then cache set s can host accesses of other applications a′ ∈ Ca that (together) reference

up to α−δmax,S
a,ιzi,s additional cache lines in s with arbitrary access pattern without rendering

any cache hit of application a into a miss. Therefore, larger values of δmax,S
a,ιzi,s decrease the

number of additional cache lines that can be accessed from any a′ ∈ Ca using an arbitrary

access pattern without introducing additional cache misses to a.

In the following, I present several ways I investigate to predict cache contention with δmax
a,ιzi

and δmax,S
a,ιzi,s respectively. Note that solely applying δmax

a,ιzi and δmax,S
a,ιzi,s as predictor implies

that contention misses introduced to an application a due to co-scheduling a with Ca are

predicted by means of stand-alone cache hits of the applications in Ca only. Memory

references in Ca that are cache misses even on stand-alone execution are not considered

in this case.

76 2 Techniques to Predict Cache Contention

Variation ‘one’

With variation ‘one’, I investigate the effectiveness of summing up δmax
a′,ιzi

of all co-scheduled

applications a′ ∈ {a} ∪ Ca as a measure to predict cache contention.

Given the set of applications {a}∪Ca, application a still has enough cache space available

in order to not suffer from cache contention misses introduced from memory references in

Ca that correspond to stand-alone cache hits if
∑

a′∈{a}∪Ca δ
max
a′,ιzi

≤ α. This characteristic

is obvious, as
∑

a′∈{a}∪Ca δ
max
a′,ιzi

≤ α ⇒ ∀s ∈ S :
∑

a′∈{a}∪Ca δ
max,S
a′,ιzi,s

≤ α; this means, in

turn, that references in Ca that correspond to stand-alone cache hits can shift an entry

of a on the LRU stack of a cache set s by a maximum amount of δ =
∑

a′∈Ca δ
max,S
a′,ιzi,s

positions, which is not a sufficient distance to displace any entry of a from the LRU stack

of cache set s.

If
∑

a′∈{a}∪Ca δ
max
a′,ιzi

> α, it is still possible that stand-alone hits of applications in Ca

do not introduce any contention misses to a: First of all, not all cache sets s ∈ S do

have the same δmax,S
a′,ιzi

and therefore δmax
a1,ιzi + δmax

a2,ιzi > α does not necessarily mean that

∃s ∈ S : δmax,S
a1,ιzi,s + δmax,S

a2,ιzi,s > α.

Secondly, accesses with distance δmax,S
a′,ιzi,s

might be distributed differently in ιzi for applica-

tions a′ ∈ {a}∪Ca. As an example, figure 13 shows a distribution of stack distances of two

applications a and ca in interval ιzi for a cache set s. Although δmax,S
a,ιzi,s+δ

max,S
ca,ιzi,s = 3+3 = 6,

1

2

3

4

a
ca

δ(t)

t

Beginning of ι�i Beginning of ι�i+1

Figure 13: Example of maximum LRU stack distances
an application references over time.

2.10 The DMax Method 77

it is obvious that a cache with associativity α = 4 would be sufficient to avoid any conflict

misses in cache set s arising from contention of memory references that represent stand-

alone cache hits of a and ca in interval ιzi. However, assuming stack distance histograms

with comparable distributions (over time) and
∑

a′∈{a}∪Ca δ
max,S
a′,ιzi,s

> α, then larger val-

ues of
∑

a′∈{a}∪Ca δ
max,S
a′,ιzi,s

seem more likely to correspond to a high probability of conflict

misses introduced from cache hits than lower values do. Since the highest value of δmax,S
a,ιzi,s

for all s ∈ S might dominate cache contention, I investigate the ability of
∑

a′∈{a}∪Ca δ
max
a′,ιzi

to predict cache contention and calculate prediction pCa,ιzi for this variation according to

pCa,ιzi =
∑

a′∈{a}∪Ca

δmax
a′,ιzi . (49)

I apply the following predictors:

Predictor For all a′ ∈ Size (each a′)

δmaxa′,ιzi
{a} ∪ Ca l

Variation ‘one, set’

With variation ‘one, set’, I investigate if predicting cache contention by the number of

non-zero entries in stack distance histograms achieves significantly better results applying

cache set granularity. Therefore, I calculate prediction pCa,ιzi by

pCa,ιzi =
∑

a′∈{a}∪Ca

|S|∑

s=1

δmax,S
a′,ιzi,s

. (50)

Note that
∑|S|

s=1 δ
max,S
a′,ιzi,s

can be calculated before runtime and I apply the following pre-

dictors for my evaluation:

Predictor For all a′ ∈ Size (each a′)

∑|S|
s=1 δ

max,S
a′,ιzi,s

{a} ∪ Ca l

78 2 Techniques to Predict Cache Contention

Variation ‘one, set, inf’

With variations ‘one’ and ‘one, set’, I investigate if the number of non-zero entries δmax
a,ιzi

(and δmax,S
a,ιzi,s respectively) in a stack distance histogram can be used to predict cache

contention. A given value of δmax
a,ιzi might suggest that an application a in interval ιzi

references only such memory addresses that belong to cache lines that have either

• been used before and are re-referenced, while there are at most δmax
a,ιzi − 1 other

cache lines of a set that have been referenced in the meantime or

• have never been used before (compulsory misses).

However, although there might be entries Hsd
a,ιzi(δ) = 0, especially for values of δ approach-

ing associativity α, this does not necessarily mean that cache lines that are re-referenced

have a maximum distance of δmax
a,ιzi : A specific value of δmax

a,ιzi only means that the maximum

position on the LRU stack of size α that has been referenced is δmax
a,ιzi . If the LRU stack

however would have a size greater than α, δmax
a,ιzi might also have a value greater than α,

even if there are values of δ with δ ≤ α that result in Hsd
a,ιzi = 0.

With variation ‘one, set, inf’, I investigate on per-cache-set basis if such values are sig-

nificant regarding prediction performance. Therefore, I assume LRU stacks ζSs of infinite

capacity and calculate δmax,inf,S
a,ιzi,s according to algorithm 9.

Given δmax,inf,S
a,ιzi,s for each s ∈ S, I determine δmax,inf

a,ιzi by

δmax,inf
a,ιzi =

|S|∑

s=1

δmax,inf,S
a,ιzi,s (51)

and calculate prediction pCa,ιzi according to

pCa,ιzi =
∑

a′∈{a}∪Ca

δmax,inf
a′,ιzi

, (52)

applying δmax,inf
a′,ιzi

, a′ ∈ {a} ∪ Ca, as predictor:

Predictor For all a′ ∈ Size (each a′)

δmax,inf
a′,ιzi

{a} ∪ Ca 2 · l

2.10 The DMax Method 79

Algorithm 9 Calculation of δmax,inf,S
a,ιzi,s .

1: # —– Initialization —–

2: for s← 1 to |S| do

3: for j ← 1 to |Ma,ιzi | do

4: ζSs (j)← −1

5: end for

6: δmax,inf,S
a,ιzi,s (s)← 0

7: end for

8: # —– Iterate over all memory references —–

9: for j ← 1 to |Ma,ιzi | do

10: s← ς(ma,ιzi,j)

11: δ ← ζSs {κ(ma,ιzi,j)}

12: if δ ≤ |Ma,ιzi | then

13: # —– If the address has ever been referenced before —–

14: if δ > δmax,inf,S
a,ιzi,s then

15: δmax,inf,S
a,ιzi,s ← δ

16: end if

17: else

18: # —– Compulsory miss —–

19: δ ← δ − 1

20: end if

21: # —– Adjust LRU stack —–

22: while δ > 1 do

23: ζSs (δ)← ζSs (δ − 1)

24: δ ← δ − 1

25: end while

26: ζSs (1)← κ(ma,ιzi,j)

27: end for

80 2 Techniques to Predict Cache Contention

Variation ‘set, mask’

With variation ‘set, mask’, I apply the same concept as for variation ‘one, set’ but enhanced

by masking out cache sets s with
∑

a′∈{a}∪Ca δ
max,S
a′,ιzi,s

≤ α according to

pCa,ιzi =
|S|∑

s=1

(
ξSCa,ιzi,s ·

∑

a′∈{a}∪Ca

δmax,S
a′,ιzi,s

)
, (53)

where ξSCa,ιzi,s is calculated as presented in equation 10. With masking, only those cache

sets that are able to introduce contention misses even from stand-alone cache hits are

incorporated in the calculation of pCa,ιzi . This might be a significant improvement, if

cache contention is primarily determined by stack distance histogram entries 1 . . . α, as

it is assumed by nearly all state-of-the art prediction methods (e.g. FOA, SDC, . . .) and

the ‘DMax’ method (not variations ‘..., inf, ...’) in particular. More precisely, masking

will improve prediction accuracy, if the displacement of elements from the LRU stack

is primarily caused by stand-alone cache hits of co-scheduled applications. In this case,

masking avoids that cache sets with values
∑

a′∈{a}∪Ca δ
max,S
a′,ιzi

≤ α, but near to α, hide

distances of cache sets with
∑

a′∈{a}∪Ca δ
max,S
a′,ιzi

> α.

As an example, consider a cache of associativity α = 8 that has only two cache sets s1

and s2; further consider four applications a1, a2, a3 and a4.

Let
∑

a′∈{a1,a2} δ
max,S
a′,ιzi,s1

= 8,
∑

a′∈{a1,a2} δ
max,S
a′,ιzi,s2

= 9 and
∑

a′∈{a3,a4} δ
max,S
a′,ιzi,s1

= 4,
∑

a′∈{a3,a4} δ
max,S
a′,ιzi,s2

= 12. Applying equation 49 results in a predictor of 8 + 9 = 17

for combination {a1, a2} and a predictor of 4 + 12 = 16 for combination {a3, a4}.
If cache contention primarily originates from memory references that are stand-alone cache

hits, then combination {a1, a2} will probably suffer from cache misses to a much lower

extent than combination {a3, a4}, although the predictors indicate the opposite. Applying

masking however as it is presented in equation 53, cache contention in combination {a1, a2}
is predicted by a value of 0 + 9 = 9 and contention in combination {a3, a4} is predicted by

a value of 0 + 12, which will probably be the better estimate, if cache contention primarily

originates from stand-alone cache hits that replace other stand-alone cache hits.

As the calculation of ξSCa,ιzi,s requires knowledge of the candidate co-schedules and can

therefore not be calculated in advance, the per-set-version of δmax
a,ιzi , i.e. δmax,S

a,ιzi,s, s ∈ S, has

to be applied as predictor.

2.10 The DMax Method 81

Predictor For all s ∈ S and a′ ∈ Size (each a′)

δmax,Sa′,ιzi,s
{a} ∪ Ca |S| · l

Variation ‘one, set, acc’

Applying δmax
a′,ιzi

with a′ ∈ {a} ∪ Ca as the only predictor as it is done in variations ‘one’

and ‘one, set’ yields identical values of pCa,ιzi for identical δmax
a′,ιzi

. However, δmax
a′,ιzi

does

not account for the number of references with distance δmax
a′,ιzi

, although it seems very likely

that applications that provide a high number of references with δmax
a′,ιzi

do account more

for cache contention than applications with identical δmax
a′,ιzi

, but much less references with

distance δmax
a′,ιzi

. Therefore, in variation ‘one, set, acc’, I extend variation ‘one’ and ‘one,

set’ to additionally incorporate the number of references with distance δmax
a′,ιzi

, or rather

δmax,S
a,ιzi,s (cf. figure 14).

1

Hits Misses

δ

δmax,S
a,ι�i,s

Hsd,S
a,ι�i,s(δ)

α+ 1

δmax,S
a,ι�i,s

Hsd,S
a,ι�i,s

�
δmax,S
a,ι�i,s

�

Figure 14: Distance δmax,Sa′,ιzi,s and the number of refer-

ences Hsd,S
a′,ιzi,s(δ

max,S
a′,ιzi,s) with that distance.

I calculate predictor δmax,acc
a,ιzi by

δmax,acc
a,ιzi =

|S|∑

s=1

δmax,S
a,ιzi,s ·Hsd,S

a,ιzi,s(δ
max,S
a,ιzi,s). (54)

Note that I define Hsd,S
a,ιzi,s(0) := 0 in order to account for δmax,S

a,ιzi,s = 0. Given δmax,acc
a,ιzi , I

calculate pCa,ιzi according to

pCa,ιzi =
∑

a′∈{a}∪Ca

δmax,acc
a′,ιzi

. (55)

82 2 Techniques to Predict Cache Contention

I apply the following predictors:

Predictor For all a′ ∈ Size (each a′)

δmax,acc
a′,ιzi

{a} ∪ Ca l

Variation ‘set, acc, mask’

With variation ‘set, acc, mask’, I extend variation ‘one, acc’ to include masking as it has

been described in variation ‘set, mask’. I define predictors

δmax,acc,S
a,ιzi,s = δmax,S

a,ιzi,s ·Hsd,S
a,ιzi,s(δ

max,S
a,ιzi,s) (56)

and calculate prediction pCa,ιzi to

pCa,ιzi =
|S|∑

s=1

(
ξSCa,ιzi,s ·

∑

a′∈{a}∪Ca

δmax,acc,S
a′,ιzi,s

)
, (57)

applying predictors as follows.

Predictor For all s ∈ S and a′ ∈ Size (each a′)

δmax,S
a′,ιzi,s

{a} ∪ Ca |S| · l
δmax,acc,S
a′,ιzi,s

{a} ∪ Ca |S| · l

2.10 The DMax Method 83

Variation ‘set, exp, acc, mask’

As stack distance histograms are often highly concentrated, i.e. Hsd
a,ιzi(δ)� Hsd

a,ιzi(δ + 1)

for low values of δ and Hsd
a,ιzi(δ) = 0 for higher values of δ up to δ = α, variation ‘set,

acc, mask’ often achieves much higher predictions for small values of δmax,S
a,ιzi,s than for

higher values of δmax,S
a,ιzi,s. However, higher values of δmax,S

a,ιzi,s will probably have a much more

effect on cache contention. To properly weight high valued δmax,S
a,ιzi,s, I account for δmax,S

a,ιzi,s

exponentially by

δmax,acc,exp,S
a,ιzi,s = Hsd,S

a,ιzi,s

(
δmax,S
a,ιzi,s

)
· βδ

max,S
a,ιzi,s−1, (58)

applying base β = 10. The value of β has been chosen without any further investigation.

Given δmax,acc,exp,S
a,ιzi,s , I calculate prediction pCa,ιzi by

pCa,ιzi =
|S|∑

s=1

(
ξSCa,ιzi,s ·

∑

a′∈{a}∪Ca

δmax,acc,exp,S
a,ιzi,s

)
. (59)

I apply the following predictors for my calculation:

Predictor For all s ∈ S and a′ ∈ Size (each a′)

δmax,Sa′,ιzi,s
{a} ∪ Ca |S| · l

δmax,acc,exp,S
a,ιzi,s {a} ∪ Ca |S| · 2 · l

84 2 Techniques to Predict Cache Contention

2.11 The Diff method

Besides δmax
a,ιzi and δmax,S

a,ιzi,s, I also investigate if the number of different keys that map to the

same cache set is an appropriate measure to predict cache contention.

Variation ‘one’

To determine the number of different keys κSa,ιzi,s of application a, interval ιzi that map

(at least once) to cache set s, I apply a stack ζSs of capacity |Ma,ιzi | for each cache set

to track the keys that have already been used, as it is depicted in figure 15 a). See

algorithm 10 for an in-depth description of how to calculate κSa,ιzi,s.

used

used

used

unused

unused

1

a)

2

1

2

1

unused

unused

used

used

unused

unused

unused

used

used

used

b)

|Ma,ι�i
| |Ma,ι�i

| |Ma,ι�i
|

κS
a,ι�i,s κS

a,ι�i,s

κ�S
a,ι�i,s

Figure 15: Applying stacks to determine the number of different keys that map to the
same cache set. In a) a single stack is used for each cache set; b) follows a two-stack-
approach to mask out cache accesses that occur only once (Diff variation ‘one, two’).

Given κSa,ιzi,s, I calculate κa,ιzi by κa,ιzi =
∑|S|

s=1 κSa,ιzi,s (cf. algorithm 10). Given κa,ιzi ,

I calculate predictor pCa,ιzi for variation ‘one’ according to

pCa,ιzi =
∑

a′∈{a}∪Ca

κa′,ιzi , (60)

applying predictor κa′,ιzi for each application a′ ∈ {a} ∪ Ca:

Predictor For all a′ ∈ Size (each a′)

κa′,ιzi {a} ∪ Ca l

2.11 The Diff method 85

Algorithm 10 Calculating κSa,ιzi,s, κa,ιzi and κ′Sa,ιzi,s.

1: # —– Init —–

2: for s← 1 to |S| do

3: κSa,ιzi,s ← 0

4: for δ = 1 to |Ma,ιzi | do

5: ζSs (δ)← −1

6: ζ ′Ss (δ)← −1

7: end for

8: end for

9: # —– Iterate over all memory references —–

10: for j ← 1 to |Ma,ιzi | do

11: s← ς(ma,ιzi,j)

12: δ ← ζSs {κ(ma,ιzi,j)}
13: if δ > |Ma,ιzi | then

14: ζSs (ζSs {−1})← κ(ma,ιzi,j)

15: else

16: δ ← ζ ′Ss {κ(ma,ιzi,j)}
17: if δ > |Ma,ιzi | then

18: ζ ′Ss (ζ ′Ss {−1})← κ(ma,ιzi,j)

19: end if

20: end if

21: end for

22: κa,ιzi ← 0

23: κ′a,ιzi ← 0

24: for s← 1 to |S| do

25: κSa,ιzi,s ← ζSs {−1} − 1

26: κa,ιzi ← κa,ιzi + κSa,ιzi,s
27: κ′a,ιzi,s ← κ′a,ιzi,s + ζ ′Ss {−1} − 1

28: end for

86 2 Techniques to Predict Cache Contention

Variation ‘set, mask’

To prevent cache sets with
∑

a′∈{a}∪Ca δ
max,S
a,ιzi,s ≤ α to contribute to pCa,ιzi , I present

variation ‘set, mask’ that combines κSa,ιzi,s with masking according to

pCa,ιzi =
|S|∑

s=1

ξSCa,ιzi,s ·
∑

a′∈{a}∪Ca

κSa′,ιzi,s, (61)

where ξSCa,ιzi,s is calculated as presented in equation 10.

I apply the following predictors for each application a′ ∈ {a} ∪ Ca:

Predictor For all s ∈ S and a′ ∈ Size (each a′)

κSa′,ιzi,s {a} ∪ Ca |S| · l
δmax,S
a′,ιzi,s

{a} ∪ Ca |S| · l

Variation ‘one, miss rate’

With variation ‘one, miss rate’, I investigate if a combination of both the number of

different keys that map to the same cache set and the miss rate would achieve better

prediction results than either of the methods alone. I define predictor χµa,ιzi as follows

χµa,ιzi = κa′,ιzi ·
Hsd
a′,ιzi

(α+ 1)
∑α+1

δ=1 H
sd
a′,ιzi

(δ)
(62)

and calculate prediction pCa,ιzi by

pCa,ιzi =
∑

a′∈{a}∪Ca

χµa,ιzi . (63)

I apply the following predictors.

Predictor For all a′ ∈ Size (each a′)

χµa,ιzi {a} ∪ Ca l

2.11 The Diff method 87

Variation ‘one, set, acc’

With variation ‘one, set, acc’, I combine the number of keys that map to the same cache

set and cache activity, as it has similarly been proposed in the Activity Vector method

[Settle et al., 2004]. As a measure of activity, I apply cache access frequency and calculate

predictor κacc
a,ιzi by

κacc
a,ιzi =

|S|∑

s=1

(
κSa,ιzi,s ·

α+1∑

δ=1

Hsd,S
a,ιzi,s(δ)

)
(64)

and prediction pCa,ιzi by

pCa,ιzi =
∑

a′∈{a}∪Ca

κacc
a,ιzi . (65)

Applied predictor for each a′ ∈ {a} ∪ Ca:

Predictor For all a′ ∈ Size (each a′)

κacc
a′,ιzi

{a} ∪ Ca l

Variation ‘one, two’

With variation ‘one, two’, I calculate the number of different keys that map to the same

cache set by applying a two-step approach; in doing so, I account for those references only

that are not compulsory misses. Figure 15 b) illustrates this concept: I apply two stacks

of capacity |Ma,ιzi | for each cache set. The first time a cache line is referenced, its address

key is pushed to the first stack. When a cache line is referenced that is present on the

first, but not on the second stack, I push the corresponding key to the second stack. This

way, the second stack contains only those references to cache lines that are accessed at

least twice. I refer to this number of different keys as κ′Sa,ιzi,s; see algorithm 10 for a formal

description of the calculation of κ′Sa,ιzi,s. Given κ′Sa,ιzi,s for each s ∈ S, I calculate κ′a,ιzi
by κ′a,ιzi =

∑|S|
s=1 κ′Sa,ιzi,s. Given κ′a,ιzi , I calculate predictor pCa,ιzi by

pCa,ιzi =
∑

a′∈{a}∪Ca

κ′a′,ιzi . (66)

Predictor For all a′ ∈ Size (each a′)

κ′a′,ιzi {a} ∪ Ca l

88 2 Techniques to Predict Cache Contention

2.12 The DMiss method

With the DMiss method, I introduce a new method that enhances the Misses method. One

way to improve cache miss based methods is to exploit existing diversities in stand-alone

cache misses. One such diversity is the number of references between cache misses I call

distance; therefore the name DMiss, which means distance between misses. Figure 16 a)

shows equally distributed memory references of applications {a}∪Ca that are stand-alone

cache misses, i.e. contribute to Hsd
a′,ιzi

(α+ 1), a′ ∈ {a} ∪ Ca.

Stand-alone miss ⇒ LRU stack repositioning

Enough time to make
LRU stack 'regenerate'

Burst of stand-alone misses

 ⇒ LRU stack repositioning;

 Not enough time for LRU stack

 to 'regenerate'
t t

a) b)

Figure 16: LRU stack regeneration as function of stand-alone cache miss distribution.

With each such reference, elements δ = 1 to δ = α− 1 on the LRU stack get repositioned

by one towards LRU position δ = α. If
∑

a′∈{a}∪Ca δ
max,S
a′,ιzi,s

< α, which is likely for

concentrated stack distance histograms, and if the distance between two references that

are stand-alone misses is large enough, then the LRU stack might ‘regenerate’: If the cache

line that has been fetched and pushed to LRU stack position δ = 1 is not referenced again,

the correpsonding key on the LRU stack is moved towards the LRU position (δ = α) and

the LRU stack might be in the same state just as before the stand-alone miss reference.

In figure 16 b) however, a burst of misses occurs and there will be no time for the LRU

stack to regenerate, which might introduce cache contention misses if displaced cache lines

are referenced again in the future.

Regarding this scenario, it seems to be worth investigating if the distance between two

consecutive misses to the same cache set is a good predictor for cache contention. Relating

this method to the Misses method, the number of misses can be interpreted as a distance

measure: On average, a higher number of misses implies a lower distance between misses;

a lower number of misses implies a higher distance between misses.

2.12 The DMiss method 89

I calculate distances δmissa,ιzi and per-set distances δmiss,Sa,ιzi,s for an application a as shown in

algorithm 11. Note that lower distances between misses result in higher values of δmissa,ιzi

and δmiss,Sa,ιzi,s respectively, as shown in the algorithm.

Variation ‘one’

Given δmissa,ιzi as determined by algorithm 11, I calculate prediction pCa,ιzi by

pCa,ιzi =
∑

a′∈{a}∪Ca

δmissa,ιzi . (67)

I apply the following predictors:

Predictor For all a′ ∈ Size (each a′)

δmissa′,ιzi
{a} ∪ Ca l

Variation ‘one, sens38’

With variation ‘one, sens38’, I investigate if δmissca,ιzi , ca ∈ Ca achieves good prediction results

when applied as intensity measure, as it is done in the Pain method. Given sensitivity

χsens38
a,ιzi as calculated in equation 32, I calculate prediction pCa,ιzi as follows.

pCa,ιzi = χsens38
a,ιzi ·

∑

ca∈Ca

δmissca,ιzi (68)

I apply the following predictors:

Predictor For all a′ ∈ Size (each a′)

χsens38
a′,ιzi

{a} l

δmissa′,ιzi
Ca l

90 2 Techniques to Predict Cache Contention

Variation ‘set, sens38’

With variation ‘set, sens38’, I investigate if a per-cache-set calculation of variation ‘one,

sens38’ would achieve better results. I apply sensitivity χsens38,S
a,ιzi,s as defined in equation

40 and δmiss,Sa′,ιzi,s
as determined by algorithm 11 and calculate prediction pCa,ιzi by

pCa,ιzi =
|S|∑

s=1

χsens38,S
a,ιzi,s ·

∑

ca∈Ca

δmiss,Sca,ιzi,s, (69)

applying predictors as follows.

Predictor For all s ∈ S and a′ ∈ Size (each a′)

χsens38,S
a′,ιzi,s

{a} |S| · l
δmiss,Sa′,ιzi,s

Ca |S| · l

Algorithm 11 Calculation of δmissa,ιzi and δmiss,Sa,ιzi,s .

1: # —– Init —–

2: for s← 1 to |S| do

3: jSs ← 0

4: j′Ss ← 0

5: for j ← 1 to α do

6: ζSs (j)← −1

7: end for

8: end for

9: # —– Iterate over all memory references —–

10: for j ← 1 to |Ma,ιzi | do

11: s← ς(ma,ιzi,j)

12: δ ← ζSs {κ(ma,ιzi,j)}
13: jSs ← jSs + 1

2.12 The DMiss method 91

14: # —– If the reference is a miss —–

15: if δ > α then

16: if j′Ss 6= 0 then

17: δ′ ← jSs − j′Ss
18: if δ′ ≤ α then

19: δmissa,ιzi ← δmissa,ιzi + (α+ 1− δ′)
20: δmiss,Sa,ιzi,s ← δmiss,Sa,ιzi,s + (α+ 1− δ′)
21: else

22: δmissa,ιzi ← δmissa,ιzi + α−(blogα(δ′)c+1)

23: δmiss,Sa,ιzi,s ← δmiss,Sa,ιzi,s + α−(blogα(δ′)c+1)

24: end if

25: end if

26: j′Ss ← jSs

27: δ ← α

28: end if

29: # —– Adjust the LRU stack —–

30: while δ > 1 do

31: ζSs (δ)← ζSs (δ − 1)

32: δ ← δ − 1

33: end while

34: ζSs (1)← κ(ma,ιzi,j)

35: end for

92 2 Techniques to Predict Cache Contention

93

3 Evaluating the Prediction of Cache Contention

In this chapter, I evaluate the techniques presented in chapter 2 by

• prediction accuracy ; as evaluation measure I apply

• NMRD (normalized mean ranking difference), which measures the

ability of a prediction technique to rank a set of candidate co-schedules

Ca = {Ca,1, Ca,2, . . . } by the amount of cache contention they intro-

duce to an application a;

• MP (mean penalty), which enhances NMRD by not evaluating rank-

ing positions, but the penalty in time introduced from imperfectly

predicted ranking positions;

• PPBAB (penalty predicted best vs. actual best), which measures the

amount of time the penalty of the co-schedule, which is predicted to

be the best co-schedule, differs from the actual best co-schedule;

• PPBRS (penalty predicted best vs. random selection), which measures

the amount of time the penalty of the co-schedule, which is predicted

to be the best co-schedule, differs from the expected penalty when the

co-schedule is chosen randomly;

• time to perform a prediction, and a

• gain vs. cost analysis, which compares the amount of time that can be gained

from proper co-scheduling (PPBRS) to the amount of time necessary to perform

a prediction.

94 3 Evaluating the Prediction of Cache Contention

3.1 Evaluation framework

For my evaluation, I apply the framework presented in figure 17. As the figure suggests,

the evaluation is partitioned into 5 steps. In step A , I extract memory references of

several applications and store them to tracefiles. In step B , I apply those tracefiles to

create predictors for the various methods described in chapter 2. In step C , I apply the

predictors to each prediction method described in chapter 2; I predict the penalty that

candidate co-schedules Ca,j ∈ Ca = {Ca,1, Ca2 , . . . } introduce to a given application a

and measure the time spent to perform the prediction. Then, I sort the predictions to

determine predicted co-schedule rankings.

best

worst

{bzip2} {gobmk} {lbm}

238 524 12464
astar

1 2 9Rank prediction: ...

...

...FOA
(one)

...

{bzip2} {h264ref} {povray}

1233 5164 1125497
astar

1 2 9Rank prediction: ...

...

...

MCCCSim

Evaluation
function

{hmmer}{povray} {lbm}

2.3 2.4 134.7
astar

1 2 9Actual ranking: ...

...

...

FOA
(one)

Pain
(one)

...

sorting

sorting

Pain
(one)

sorting

...

Applications

Tracefiles

Mastar

Mbzip2
. . .

Pintool

MCCCSim

...

...

...

...

...

...
Evaluation
function

3

2

1

5 6

7

8

9

10

13

12

11

ta,ι�i

tCa,ι�i

πCa,ι�i

pCa,ι�i

pCa,ι�i

A

B

C

D

E
Predictors

. . .
χsens

astar,ι�i

Hsd
astar,ι�i

Hsd
bzip2,ι�i

4

Tracefiles

A = {astar,
bzip2, . . . }

pastar@{bzip2},ι�i

ρpred
astar@{bzip2},ι�i

ρsim
astar@{hmmer},ι�i

πastar@{hmmer},ι�i

...

...

...

Figure 17: Evaluation framework I apply to evaluate cache contention prediction techniques.

3.1 Evaluation framework 95

In step D , I calculate actual co-schedule penalties and actual rankings in order to generate

a ground truth reference. In step E , I apply several evaluation functions (NMRD, ...)

to merge predicted rankings, actual rankings, actual penalties and prediction time to a

single value; I use this value to compare various methods on a one-dimensional scale.

The remainder of this section describes steps A to D in more detail. Step E , the

evaluation by means of several evaluation functions, is accomplished in sections 3.2 to 3.5.

A Memory Reference Extraction with Pin

Let A = {astar, bzip2, gcc, gobmk, h264ref, hmmer, lbm, mcf, milc, povray} be the set of

SPEC 2006 test benchmarks I apply for my evaluation (see 1 in figure 17).

In order to extract memory references 2 from A, I implemented a pintool for the Pin

toolkit [Luk et al., 2005], as it has similarly been done in [Huffmire and Sherwood, 2006]

and [Zhuravlev et al., 2010]. The implemented pintool is a small program written in

C/C++ applying the Pin API (application programming interface) and works as fol-

lows: Invoking the pintool with an application a ∈ A, the pintool interrupts application a

whenever a performs a memory access; then, the pintool stores the corresponding address

to a buffer. Whenever the pintool has buffered memory references of 220 instructions, the

pintool writes the buffer to a tracefile 3 and resets its buffer. Then, the pintool restarts

to extract memory references of the next 220 instructions and writes them to the same

tracefile. All in all, this pocedure is performed 512 times for each a ∈ A, so memory refer-

ences from 512 · 220 instructions are stored in each tracefile. Tuple Ma = (ma,1,ma,2, . . .)

refers to the memory references stored in the tracefile of application a.

When predicting cache contention in order to bring those applications together that

best fit to one another, a major concern is the interval width z (measured in num-

ber of instructions) the prediction is performed on. If z is too small, then it might

take more time to predict cache contention than a good application match will com-

pensate for. If z gets too large, then applications are likely to change their so-called

phase within an interval [Sherwood et al., 2003], i.e. they might show a completely dif-

ferent behavior, which might degrade prediction performance. In order to evaluate

cache contention prediction techniques for several interval widths, I perform my eval-

uation on intervals of z ∈ zz = {220, 221, 222, 223, 224, 225, 226, 227, 228, 229} instructions.

96 3 Evaluating the Prediction of Cache Contention

Therefore, I partition all Ma, a ∈ A, into memory reference intervals of z instructions

each, i.e. Ma 7→ Ma,ιz = (Ma,ιz1 , . . .Ma,ιz|Ma,ιz |) and perform my evaluation on each

Ma,ιzi ∈ Ma,ιz . Note that tuple Ma,ιzi = (ma,ιzi,1, . . .ma,ιzi,|Ma,ιzi |) refers to the mem-

ory addresses that are referenced when executing instructions i ·z . . . (i+ 1) ·z− 1. The

amount of memory references of application a in interval ιzi is denoted by |Ma,ιzi |.

B Predictor Calculation

I calculate predictors according to their definition in chapter 2. Note that calculation is

performed for each (single) application a ∈ A, for all interval sizes z ∈ zz, and for each

interval ιzi ∈ ιz. As predictors are calculated from memory references of solo applications

only, they are identical for all cases of parallelism ψ ∈ ψψψ = {2, 4, 8}.
For my evaluations, I assume predictors to be calculated at compile time; therefore, they

do not account for the time required to calculate a prediction. The size of the predictors

however might be of interest and can be extracted from the description in chapter 2.

C Calculation of Prediction Rankings

Let C(A,ψ) be the operation that returns all possible combinations of ψ elements of set A,

ψ ≤ |A|, i.e. C(A,ψ) =
{
{a1, a2, . . . aψ}

∣∣ ai ∈ A\{a1, a2, . . . ai−1}
}

. On a processor

architecture where ψ applications are executed in parallel and share the same cache,

Cψ
a = {Cψa,1, Cψa,2, . . . } = C(A\{a}, ψ−1) is the set of all possible candidate co-schedules for

an application a that can be generated from a set of applications A\{a}. The size of that

set, i.e. the amount of all possible candidate co-schedules of application a, is |Cψ
a |. Note

that I refer to this set as Cψ
a = {Cψa,1, Cψa,2, . . . } and Ca = {Ca,1, Ca,2, . . . } interchangeably;

I also abbreviate Ca,j by Ca.

Prediction rankings are calculated as follows: For each prediction technique presented in

chapter 2, for each ψ ∈ ψψψ, for each z ∈ zz, each ιzi ∈ ιz and each a ∈ A, I

• 4 calculate prediction pCa,ιzi for each Ca ∈ Cψ
a ,

• 5 sort the resulting predictions pCa,ιzi by value and, in case of equal values,

by a unique hash generated from Ca in order to ensure unambiguitiy, and

• 6 determine ranking position ρpred
Ca,ιzi

for each candidate co-schedule Ca ∈ Cψ
a .

3.1 Evaluation framework 97

Sorting and ranking is performed as follows: Given predictions {pCa,1,ιzi , pCa,2,ιzi , . . . } and

a hash function h(Ca,j) that returns a unique hash value h(Ca,j) ∈ {1, 2, . . . |Cψ
a |} for all

Ca,j ∈ Cψ
a , i.e. ∀

j,k∈{1,...|Cψ
a |}

: j 6= k ⇒ h(Ca,j) 6= h(Ca,k), I determine a unique ranking

position ρpred
Ca,j ,ιzi

∈ {1, 2 . . . |Cψ
a |} of co-schedule Ca,j in interval ιzi by

∀j,k ∈{1, 2, . . . |Cψ
a |} :

pCa,j ,ιzi < pCa,k,ιzi ⇒ ρpred
Ca,j ,ιzi

< ρpred
Ca,k,ιzi

pCa,j ,ιzi = pCa,k,ιzi ∧ h(Ca,j) < h(Ca,k)⇒ ρpred
Ca,j ,ιzi

< ρpred
Ca,k,ιzi

.

(70)

See figure 18 for an example prediction ranking with ψ = 2 for a = astar and Cψ
a =

{
{bzip2}, {gcc}, {gobmk}, {h264ref}, {hmmer}, {lbm}, {mcf}, {milc}, {povray}

}
: Co-

schedule {bzip2} is predicted to introduce the least penalty (202) to application astar

and therefore yields the best ranking position (1). Co-schedule {povray} is predicted to

introduce maximum penalty (1071) to application astar and is therefore assigned the worst

ranking position (9).

{bzip2} {milc} {gcc} {gobmk}{hmmer}{h264ref} {lbm} {mcf} {povray}

202 252 300 623 652 662 808 1054 1071
astar

1 2 3 4 5 6 7 8 9Ranking:

pastar@{bzip2},ι�i
= pCa,j ,ι�i

with a = astar and Ca,j = {bzip2}; ψ = 2

ρpred
astar@{bzip2},ι�i

= ρpred
Ca,j ,ι�i

with a = astar and Ca,j = {bzip2}; ψ = 2

Figure 18: Ranking of predictions pCψa ,ιzi for a = astar and ψ = 2.

When calculating predictions, I measure the time 7 a prediction method requires to

calculate predictions pCa,ιzi for all Ca ∈ Cψ
a and for all intervals ιzi ∈ ιz by means of

user time τuser
Ca

, system time τ syst
Ca

, and elapsed time τ elap
Ca

. Note that τuser
Ca

, τ syst
Ca

and τ elap
Ca

hold the time required for the prediction of all intervals ιzi ∈ ιz. To calculate the time

per prediction, τuser
Ca

, τ syst
Ca

, and τ elap
Ca

have to be divided by the number of intervals |ιz|,
as prediction is performed on a per-interval basis. For no specific reason, this calculation

is not performed in step C , but within the evaluation function in step E . With al-

gorithm 12, I shortly outline my implementation of time measurement: I determine τ elap
Ca

by the gettimeofday(2) function and τuser
Ca

and τ syst
Ca

by the getrusage(2) function inte-

grated in the OSX 10.6.4 operating system by default. Note that I include the time to read

the predictors from disk in order to account for different predictor sizes. To ensure equal

98 3 Evaluating the Prediction of Cache Contention

Algorithm 12 Measuring time of a prediction cycle.
1: Extract parameters a, Ca and ιz

2: Begin timing by calling gettimeofday(...) and getrusage(...)

3: for all ιzi in ιz do

4: Read predictors of interval ιzi for the selected method

5: Calculate pCa,ιzi

6: Store pCa,ιzi to buffer in RAM (random access memory)

7: end for

8: End timing by calling gettimeofday(...) and getrusage(...)

9: Calculate τuser
Ca

, τ syst
Ca

and τ elap,
Ca

from timeval and rusage structs

10: Write τuser
Ca

, τ syst
Ca

and τ elap
Ca

to disk

11: Write pCa,ιzi for all ιzi ∈ ιz to disk

conditions, all prediction methods are implemented single threaded in the same program-

ming language (C++), are compiled applying the same compiler (gcc 4.2.1) and executed

on the same otherwise unloaded computer system running OS X 10.6.4 operating system.

See the following table for a brief description of the computer system.

As data blocks on hard disk drive platters generally have a random position relative to

read/write heads when read/write commands are invoked, seek time heavily varies. In

order to keep varitions in disk access time low, the computer system I apply for time

measurements features a random access solid state drive of uniform access time.

Computer Model MacBook Pro

Computer model identifier MacBookPro5.1

Processor 2.4 GHz Intel Core 2 Duo

L1 data cache 32 kB

L1 instruction cache 32 kB

L2 cache (shared) 3 MB

Main memory 4 GB DDR3

Hard disk drive 256 GB solid state disk

Bus speed 1.07 GHz

3.1 Evaluation framework 99

D Generation of Ground Truth Reference

For each a ∈ A, each z ∈ zz, and each ιzi ∈ ιz, I

• 8 apply the MCCCSim simulator [Zwick et al., 2009a] to calculate ta,ιzi , the

amount of time application a spends on memory references in interval ιzi when

a is executed stand-alone (ψ = 1).

Then, for each ψ ∈ ψψψ, for each a ∈ A, each Ca ∈ Cψ
a = C(A\{a}, ψ − 1), each z ∈ zz, and

each ιzi ∈ ιz, I

• 9 apply the MCCCSim simulator to calculate tCa,ιz , the amount of time ap-

plication a spends on memory references in interval ιzi when a is co-scheduled

with applications ca,j ∈ Ca,
• 10 calculate πCa,ιzi = tCa,ιzi − ta,ιzi , the penalty that is introduced to appli-

cation a in interval ιzi when a is co-scheduled with Ca, and

• 11 sort all πCa,ιzi according to their value and, if values are identical, addi-

tionally by a unique hash generated from Ca in order to achieve unambiguous

rankings, and then

• 12 determine ranking position ρsim
Ca,ιzi ∈ {1, 2, . . . |C

ψ
a |} each candidate co-

schedule Ca ∈ Cψ
a achieves.

Similar to equation 70, I determine actual (and unique) ranking positions ρsim
Ca,j ,ιzi ∈

{1, 2, . . . |Cψ
a |} for candidate co-schedules Ca,j ∈ Cψ

a by

∀j,k ∈{1, 2, . . . |Cψ
a |} :

πCa,j ,ιzi < πCa,k,ιzi ⇒ ρsim
Ca,j ,ιzi < ρsim

Ca,k,ιzi

πCa,j ,ιzi = πCa,k,ιzi ∧ h(Ca,j) < h(Ca,k)⇒ ρsim
Ca,j ,ιzi < ρsim

Ca,k,ιzi .

(71)

As an example, figure 19 shows actual ranking positions for ψ = 2, a = astar, and

Cψ
a =

{
{bzip2}, {gcc}, {gobmk}, {h264ref}, {hmmer}, {lbm}, {mcf}, {milc}, {povray}

}
.

Note that in some execution intervals ιzi, co-scheduling an application a with a set of

applications Ca might result in a lower memory access time of application a than it is

achieved when executing a stand-alone, i.e. tCa,ιzi < ta,ιzi and πCa,ιzi < 0. This statement

seems to be a paradox, as any application ca ∈ Ca can only displace an address key of a

from the LRU stack, but never fetch any data of a to a cache or a TLB, as application a

100 3 Evaluating the Prediction of Cache Contention

{hmmer}{povray}{h264ref} {gcc} {bzip2} {mcf} {gobmk} {milc} {lbm}

2.3 2.4 2.7 23.0 33.9 65.3 95.2 101.6 134.7
astar

1 2 3 4 5 6 7 8 9Ranking:

πastar@{hmmer},ι�i
= πCa,j ,ι�i

with a = astar and Ca,j = {hmmer}; ψ = 2

ρsim
astar@{hmmer},ι�i

= ρsim
Ca,j ,ι�i

with a = astar and Ca,j = {hmmer}; ψ = 2

Figure 19: Ranking of actual penalties πCa,ιzi for a = astar and ψ = 2.

does not share any data with any application ca ∈ Ca (cf. ‘Limitations’ in section 1.3).

Simulating execution intervals with the MCCCSim simulator [Zwick et al., 2009a], how-

ever, I observed the following: There are cases where a co-scheduled application ca ∈ Ca
displaces an address translation of a from the shared L1 TLB. Although this introduces

an L1 TLB miss penalty to a, it also results in a better LRU stack position for this ad-

dress translation in the L2 TLB. This better LRU stack position, in turn, might result

in an L2 TLB hit of an address translation of a at a later time, while the same address

translation might result in an L2 TLB miss if application a is executed stand-alone, due

to an unfavorable TLB 2 LRU stack position.

Figure 20 shows the MCCCSim setup I apply to calculate ta,ιzi and tCa,ιzi . Note that the

L2 cache is shared among L1 data caches only; L1 instruction caches and TLBs do not

have access to the L2 cache in order to improve observability of L2 cache contention and

exclude as many side effects as possible from my simulation. Therefore, L1 and L2 data

caches also incorporate virtual addresses only and address translation (MMU, memory

management unit) is performed on L2 data cache misses only.

Figure 21 shows the parameterization of the MCCCSim simulator.

In order to make my evaluation reproducible, I introduce algorithm 13 that formally

specifies the way MCCCSim determines ta,ιzi and tCa,ιzi from a given set of memory

reference tuples Ma,ιzi and MCa,ιzi , Ca ∈ Cψ
a . In order to calculate ta,ιzi , algorithm 13

has to be executed with A′ = {a}, which implies ψ = 1; then, variable ta,ιzi in algorithm 13

corresponds to the time application a spends on memory references when executing interval

ιzi. To calculate tCa,ιzi , however, algorithm 13 has to be executed applying A′ = {a}∪Ca.
Then, variable ta,ιzi in algorithm 13 represents execution time under cache sharing for each

application ∈ A′, depending on the selection of a in lines 38 to 45.

3.1 Evaluation framework 101

L1 Data
Cache

Solid State Drive

Main Memory

L1 L2

MMU

Tuples of Virtual Addresses

Seek Time

Shared L2
Data Cache

Physical
Addresses

Access Time

Physical Page
Addresses

Virtual
Addresses

Tuples of Access Time

TLB

...

C
or

e
ψ

C
or

e
1

Access
Time

Mca,1 tca,1 taMaMca,ψ−1 tca,ψ−1

C
or

e
ψ
−

1

Figure 20: Setup of the MCCCSim simulator.

LRU LRU LRU LRU - -

- - - -

L2 data
cache access

L1 TLB &
MEM access

L2 TLB
access

MEM access
(page table) SSD access -

- -

2 8 - - - -

128 Byte 128 Byte - - - -

32 kB 2 MB 48 entries 512 entries ∞ ∞

L1 data
cache

L2 data
cache

L1
TLB

L2
TLB

MEM
(Memory)

SSD (Solid
State Disk)

tL1C = 1ns tL2C = 10ns tL1T = 1ns tL2T = 10ns

tMem = 100 ns tDisk = 0.1 ms

Size

Line Size

Associativity

Hit Time

On Miss

Access Time

Replacement

Parameter

Figure 21: MCCCSim setup parameters.

102 3 Evaluating the Prediction of Cache Contention

In algorithm 13, I apply symbols and notations as follows.

• A′ is the set of applications that are executed in parallel on the architecture

presented in figure 20. Note that each application ∈ A′ is executed on a separate

core and the number of cores equals the number of applications, i.e. ψ = |A′|.

• ζL1C,S =
{
ζL1C,S
a1 , . . . ζL1C,S

aψ

}
is a set of sets of stacks where each

• ζL1C,S
ai ∈ ζL1C,S is the set of stacks that holds tag RAM information for the

processor core executing application ai ∈ A′.
• ζL1C,S

ai,s ∈ ζL1C,S
ai =

{
ζL1C,S
ai,1

, . . . ζL1C,S
ai,|SL1C|

}
is the stack of capacity αL1C that holds

tag RAM information for cache set s ∈ {1, 2, . . . |SL1C|} of the processor core

that executes application ai, where

• αL1C = 2 is the associativity of the L1 data caches (cf. figure 21), and

• |SL1C| = 32 k/(2 · 128) = 128 is the number of cache sets of each L1 data cache.

• ζL2C,S =
{
ζL2C,S

1 , . . . ζL2C,S
|SL2C|

}
is the set of stacks that holds tag RAM information

for the shared L2 cache, where each

• ζL2C,S
s ∈ ζL2C,S is of capacity αL2C.

• αL2C = 8 is the associativity of the shared L2 cache (cf. figure 21).

• |SL2C| = 2 M/(8 · 128) = 2048 is the number of cache sets of the L2 cache.

• ζL1T is the stack of capacity KL1T that holds L1 TLB tags, where

• KL1T is 48 (cf. figure 21).

• ζL2T is the stack of capacity KL2T that holds L2 TLB tags, where

• KL2T is 512 (cf. figure 21).

• ζMem is the stack of capacity ψ · 2|m|−ld(|$|) that holds the set of unique page

addresses that the applications in A′ reference, where

• |m| = 32 is the word length of a memory address in bits, and

• |$| = 212 = 4 k is the page size in byte.

• $a(m) is the operation that transforms a memory reference m of application

a into a page address. I assume a byte addressed memory architecture and

define $a(m) = (m mod |$|)+h(a) ·2|m|−ld(|$|), where h(a) ∈ {1, 2, . . . ψ} is the

3.1 Evaluation framework 103

operation that returns a unique hash for each a ∈ A′. Therefore, ∀ai,aj ∈A′ : ai 6=
aj ⇒ @mi,mj : $ai(mi) = $aj (mj). Generally, ∀a∈A′,dld(ψ)e<ld(|$|) : $a(m) ≥ 0.

• ςL1C(m) is the operation that extracts the set address for the L1 caches from

a memory reference m. Given way size |w| = 32 k/2 = 16 k byte and line size

|λ| = 128 byte (cf. figure 21), then ςL1C(m) = ((m/|λ|) mod (|w|/|λ|)) + 1 =

((m/128) mod 128) + 1. Note that 1 ≤ ςL1C(m) ≤ |SL1C|.
• ςL2C(m) is the operation that extracts the set address for the L2 cache from a

memory reference m. Given way size |w| = 2 M/8 = 256 k byte and line size

|λ| = 128 byte (cf. figure 21), then ςL2C(m) = ((m/|λ|) mod (w/|λ|)) + 1 =

((m/128) mod 2048) + 1. Note that 1 ≤ ςL2C(m) ≤ |SL2C|.

• κL1C(m) is the operation that extracts the key part of a memory address m for

the L1 caches. Given a cache of way size |w|, then κL1C(m) = m/|w| = m/16 k.

Generally, κ(m) ≥ 0.

• κL2C
a (m) is the operation that extracts the key part of a memory address m of

an application a for the shared L2 cache. Given a cache of way size |w|, then

κL2C
a (m) = m/|w|+h(a) ·2|λ|·αL2C·|SL2C|; h(a) ∈ {1, 2, . . . ψ} is the operation that

returns a unique hash for each a ∈ A′. Therefore, ∀ai,aj ∈A′ : ai 6= aj ⇒ @mi,mj :

κL2C
ai (mi) = κL2C

aj (mj). Generally, κL2C
a (m) ≥ 0.

• tL1C, tL2C, tL1T, tL2T, tMem, and tDisk refer to hit/access times shown in figure 21.

Further, I define boolean variable

• tlb = true,

and a conditional value

• ‘a op b ? c : d’ as follows: If a op b is true, then the value of the whole

expression is c. Otherwise, it is d. Operator op stands for any operator that

returns a boolean value, e.g. compare operator =, operators <, ≥, etc.

104 3 Evaluating the Prediction of Cache Contention

Algorithm 13 Calculating execution time with MCCCSim.

1: for i← 1 to |ιz| do

2: # ################# Initialization #################

3: # ——— Init time and address index ———
4: for all a in A′ do

5: ta,ιzi ← 0

6: ja ← 0

7: end for

8: if i = 1 then

9: # ——— Reset L1 cache ———
10: for all a in A′ do

11: for s← 1 to |SL1C| do

12: for δ ← 1 to αL1C do

13: ζL1C,S
a,s (δ)← −1

14: end for

15: end for

16: end for

17: # ——— Reset shared L2 cache ———
18: for s← 1 to |SL2C| do

19: for δ ← 1 to αL2C do

20: ζL2C,S
s (δ)← −1

21: end for

22: end for

23: # ——— Reset L1 TLB ———
24: for δ ← 1 to KL1T do

25: ζL1T(δ)← −1

26: end for

27: # ——— Reset L2 TLB ———
28: for δ ← 1 to KL2T do

29: ζL2T(δ)← −1

30: end for

3.1 Evaluation framework 105

31: # ——— Reset Memory ———

32: for δ ← 1 to ψ · 2|m|−ld(|$|) do

33: ζMem(δ)← −1

34: end for

35: end if

36: # ############# Process all references in ιzi #############

37: while true do

38: # ——— Select application with least progress p ———

39: p← 1.0

40: for all a′ in A′ do

41: if (|Ma′,ιzi | = 0 ? 1.0 : ja′/|Ma′,ιzi |) < p then

42: a← a′

43: p← ja′/|Ma′,ιzi |
44: end if

45: end for

46: break if p = 1.0 # process next interval ιzi+1

47: # ——— L1 access ———

48: s← ςL1C(ma,ιzi,ja)

49: δ ← ζL1C,S
a,s {κL1C(ma,ιzi,ja)}

50: δ′ ← δ > αL1C ? αL1C : δ

51: while δ′ > 1 do

52: ζL1C,S
a,s (δ′)← ζL1C,S

a,s (δ′ − 1)

53: δ′ ← δ′ − 1

54: end while

55: ζL1C,S
a,s (1)← κL1C(ma,ιzi,ja)

56: if δ ≤ αL1C then

57: # ——— L1 Hit ———

58: ta,ιzi ← ta,ιzi + tL1C

59: else

106 3 Evaluating the Prediction of Cache Contention

60: # ——— L1 miss ⇒ L2 access (shared) ———

61: s← ςL2C(ma,ιzi,ja)

62: δ ← ζL2C,S
s {κL2C

a (ma,ιzi,ja)}
63: δ′ ← δ > αL2C ? αL2C : δ

64: while δ′ > 1 do

65: ζL2C,S
s (δ′)← ζL2C,S

s (δ′ − 1)

66: δ′ ← δ′ − 1

67: end while

68: ζL2C,S
s (1)← κL2C

a (ma,ιzi,ja)

69: if δ ≤ αL2C then

70: # —– L2 hit —–

71: ta,ιzi ← ta,ιzi + tL2C

72: else

73: # ——— L2 miss ⇒ TLB and Memory access ———

74: if tlb = true then

75: # ——— L1 TLB access ———

76: δ ← ζL1T{$a(ma,ιzi,ja)}
77: δ′ ← δ > KL1T ? KL1T : δ

78: while δ′ > 1 do

79: ζL1T(δ′)← ζL1T(δ′ − 1)

80: δ′ ← δ′ − 1

81: end while

82: ζL1T(1)← $a(ma,ιzi,ja)

83: if δ ≤ KL1T then

84: # ——— L1 TLB hit ———

85: ta,ιzi ← ta,ιzi + tL1T

86: else

87: # ——— L1 TLB miss ⇒ L2 TLB access ———

88: δ ← ζL2T{$a(ma,ιzi,ja)}
89: δ′ ← δ > KL2T ? KL2T : δ

3.1 Evaluation framework 107

90: while δ′ > 1 do

91: ζL2T(δ′)← ζL2T(δ′ − 1)

92: δ′ ← δ′ − 1

93: end while

94: ζL2T(1)← $a(ma,ιzi,ja)

95: if δ ≤ KL2T then

96: # ——— L2 TLB hit ———

97: ta,ιzi ← ta,ιzi + tL1T + tL2T

98: else

99: # ——— L2 TLB miss ⇒ Read page address from memory ———

100: ta,ιzi ← ta,ιzi + tL1T + tL2T + tMem

101: end if

102: end if

103: end if

104: # ——— Read page ———

105: δ ← ζMem{$a(ma,ιzi,ja)}
106: if δ ≤ ψ · 2|m|−ld(|$|) then

107: # ——— Page is in memory ———

108: ta,ιzi ← ta,ιzi + tMem

109: else

110: # ——— Page is not in memory ⇒ fetch from disk ———

111: ζMem(ζMem{−1})← $a(ma,ιzi,ja)

112: ta,ιzi ← ta,ιzi + tMem + tDisk

113: end if

114: end if

115: end if

116: ja ← ja + 1

117: end while

118: end for

108 3 Evaluating the Prediction of Cache Contention

3.2 General Ranking Performance

In this section, I evaluate the cache contention prediction techniques presented in chapter 2

by means of so-called general ranking performance. As general ranking performance, I

define the ability of a cache contention prediction method to rank candidate co-schedules

Ca ∈ Cψ
a = {Cψa,1, Cψa,2, . . . } of an application a by the contention they introduce to a.

NMRD - Normalized Mean Ranking Difference

NMRD (normalized mean ranking difference) is one of the evaluation functions 13 refer-

enced in figure 17. The NMRD evaluation function calculates the normalized mean ranking

difference by comparing rankings ρpred
Ca,ιzi

that are estimated by a prediction method (cf.

equation 70) to actual rankings ρsim
Ca,ιzi (cf. equation 71) determined by MCCCSim.

Given both ρpred
Ca,ιzi

and ρsim
Ca,ιzi for all Ca ∈ Cψ

a = C(A\{a}, ψ − 1), I calculate differences

∆ρCa,ιzi =
∣∣∣ρpred
Ca,ιzi

− ρsim
Ca,ιzi

∣∣∣ (72)

between predicted and actual ranking positions for each Ca ∈ Cψ
a . Then, I add all ∆ρCa,ιzi

and divide it by |Cψ
a | to calculate so-called mean ranking difference MRD, i.e. the number

of positions that predicted rankings differ from actual rankings on average:

MRD
Cψ
a ,ιzi

=
1

|Cψ
a |

∑

Ca∈Cψ
a

∆ρCa,ιzi (73)

As an example, figure 22 shows how MRD is calculated for ψ = 2 and a = astar. As you

might suggest, the MRD value depends on the number of candidate co-schedules |Cψ
a |,

rendering it difficult to compare MRD values of various ψ to one another. To overcome

this, I normalize MRD values by the maximum MRD value possible.

Without proof, I specify that the maximum MRD value can be observed at co-schedule

rankings presented in figure 23 a) for an even number of co-schedules, and in figure 23 b)

for an odd number of co-schedules. With this assumption, maximum MRD calculates as

follows:

MRDmax
Cψ
a

=

⌈ |Cψ
a |

2

⌉
·
⌊ |Cψ

a |
2

⌋
· 2

|Cψ
a |

(74)

3.2 General Ranking Performance 109

{hmmer}{povray}{h264ref} {gcc} {bzip2} {mcf} {gobmk} {milc} {lbm}

2.3 2.4 2.7 23.0 33.9 65.3 95.2 101.6 134.7
astar

1 2 3 4 5 6 7 8 9

{bzip2} {milc} {gcc} {gobmk}{hmmer}{h264ref} {lbm} {mcf} {povray}

202 252 300 623 652 662 808 1054 1071
astar

|1 - 5| =
 4

|2 - 9| =
 7

|3 - 6| =
 3

...

4 + 7 + 3 + ...

9
...

Actual
penalty:

Prediction:

Ranking:

ρsim
astar@{hmmer},ι�i

ρpred
astar@{hmmer},ι�i

∆ρastar@{hmmer},ι�i

MRDastar,ι�i =
37
9
≈ 4.11

Figure 22: Determination of the MRD mean ranking distance value.

1 2 3 4 5 6 7 8

a

a

1 2 3 4 5 6 7 8 9

a

a

a)

b)

ρpred
Ca,ι�i

ρsim
Ca,ι�i

ρpred
Ca,ι�i

ρsim
Ca,ι�i

Figure 23: Determination of the maximum MRD mean ranking distance value for
a) an even number of candidate co-schedules, and b) an odd number of candidate co-
schedules. Identical co-schedules in both simulated and predicted rankings are indicated
by connecting lines.

110 3 Evaluating the Prediction of Cache Contention

In equation 74, term
⌈
|Cψ
a |

2

⌉
refers to the differences and

⌊
|Cψ
a |

2

⌋
· 2 to the number of

occurrences of these differences. For ψ ∈ ψψψ = {2, 4, 8}, MRDmax
Cψ
a

calculates to

• ψ = 2⇒ |Cψ
a | = 9⇒ MRDmax

Cψ
a

= 4.44,

• ψ = 4⇒ |Cψ
a | = 84⇒ MRDmax

Cψ
a

= 42,

• ψ = 8⇒ |Cψ
a | = 36⇒ MRDmax

Cψ
a

= 18.

Note that I verified MRDmax for ψ = 2 by simulation. For ψ = 4 and ψ = 8 however,

simulation would be too time consuming due to the high number of permutations (36! and

84! respectively) that would have to be calculated and analyzed.

Given the maximum MRD value, I perform normalization on MRD according to

NMRD
Cψ
a ,ιzi

=
MRD

Cψ
a

MRDmax
Cψ
a

=

∑

Ca∈Cψ
a

∆ρCa,ιzi

⌈ |Cψ
a |

2

⌉
·
⌊ |Cψ

a |
2

⌋
· 2
. (75)

Up to now, I only presented the way I calculate the normalized mean ranking difference

for one application a and one interval ιzi. To get an overall normalized mean ranking

difference that can be applied to evaluate cache contention prediction techniques, I average

ranking distances ∆ρCa,ιzi over all applications a ∈ A, over all possible candidate co-

schedules Ca ∈ Cψ
a = C(A\{a}, ψ − 1) for each such a, and over all intervals ιzi ∈ ιz.

I calculate NMRD(ψ,z) for a given number of parallel processor cores ψ and a given

window size z according to

NMRD(ψ,z) =
1
|A| ·

∑

a∈A

1
|ιz|
·
∑

ιzi∈ιz

NMRD
Cψ
a ,ιzi

=
1
|A| ·

∑

a∈A

1
|ιz|
·
∑

ιzi∈ιz

∑

Ca∈Cψ
a

∆ρCa,ιzi

⌈ |Cψ
a |

2

⌉
·
⌊ |Cψ

a |
2

⌋
· 2
.

(76)

Figure 24 shows the results of my evaluation calculating NMRD(ψ,z) for the number of

parallel processor cores ψ ∈ ψψψ = {2, 4, 8} and interval sizes z∈ zz = {220, 221, 222, 223,

224, 225, 226, 227, 228, 229} instructions. Note that the results presented in figure 24 are

3.2 General Ranking Performance 111

NMRD
2 cores

0.0 0.2 0.4 0.6 0.8

NMRD
2 cores

NMRD
4 cores

0.0 0.2 0.4 0.6 0.8

NMRD
4 cores

NMRD
8 cores

0.0 0.2 0.4 0.6 0.8

NMRD
8 cores

NMRD
8 cores

DMiss (set, sens38)

DMiss (one, sens38)

DMiss (one)

Diff (one, two)

Diff (one, set, acc)

Diff (one, missrate)

Diff (set, mask)

Diff (one)

DMax (set, exp, acc, mask)

DMax (set, acc, mask)

DMax (one, set, acc)

DMax (set, mask)

DMax (one, set, inf)

DMax (one, set)

DMax (one)

Activity (set, mask)

Activity (set)

Activity (superset)

Miss rate

Misses (set, mask)

Misses (one)

Pain (set, sens38, misses)

Pain (set, misses)

Pain (set)

Pain (one, sens38, misses)

Pain (one, misses)

Pain (one, sens38)

Pain (one)

Width (set, mask, exp delta)

Width (set, mask)

Width (one)

Prob

SDC (lru set group)

SDC (set)

SDC (one)

FOA (set, mask)

FOA (set)

FOA (one)

1 2 4 8 16 32 64 128 256 512Interval width [million instr.]:

Figure 24: NMRD performance of cache contention prediction methods for ψ ∈ ψψψ =
{2, 4, 8} processor cores and interval sizes z ∈ zz = {220, 221, 222, 223, 224, 225, 226,
227, 228, 229} instructions, averaged over all intervals ιzi ∈ ιz and all applications
a ∈ A = {astar, bzip2, gcc, gobmk, h264ref, hmmer, lbm, mcf, milc and povray}.

112 3 Evaluating the Prediction of Cache Contention

averaged over all |A| ·
(|A|−1
ψ−1

)
· 229

z combinations. For example, bars in figure 24 that depict

NMRD for an interval width of z = 220 instructions and ψ = 4 processor cores are averaged

over 10 ·
(

9
3

)
· 512 = 430080 values each. For an example of the distribution of NMRD

values, see section ‘Distributions’ in the appendix. Note that a comprehensive collection

of distributions is presented in [Zwick, 2010a]. In the following, I discuss figure 24.

Good scalability regarding the number of cores ψ

At first sight, the three columns in figure 24 that represent NMRD performance for ψ =

2, 4 or 8 processor cores sharing the L2 cache look quite similar. Although there are

differences, methods that perform ‘good’ (low NMRD values) when predicting contention

for a given number of processor cores ψ do not suddenly perform ‘bad’ (high NMRD

values) for different ψ and vice versa. For example, the Activity vector based methods

as well as the FOA methods show poor prediction accuracy for all ψ ∈ ψψψ = {2, 4, 8};
on the contrary, the Prob method, methods that rely on cache misses as predictor (e.g.

Misses, Pain (..., misses), DMiss), as well as methods that are based on the number of

different keys that map to the same cache set (Diff) show good prediction accuracy for

all ψ ∈ ψψψ. This means that all methods generally show good scalability regarding the

number of processor cores ψ: There is no method that is solely applicable for a high or a

low number of processor cores.

Note that I chose the maximum number of processor cores ψ = 8 in order to match associa-

tivity α of the L2 data cache: In per-cache-set stack distance histograms Hsd,S
a,ιzi,s, entries

1 . . . α often incorporate none or just a single entry being different from 0 (cf. figure 43 in

the appendix). As a consequence, there is only little cache interference if ψ = 2. For ψ = 8,

however, cache sets get filled up to a much larger extent and threads interfere much more

than for ψ = 2. Therefore, values of ψ ∈ {2, 4, 8} cover a broad range of cache interference

and allow for a more thoroughly evaluation of cache contention prediction methods than

it has been performed in the past. Such an evaluation seems to be important, as Chen

and Aamodt reported that the Prob method “becomes inaccurate for systems with a large

number of threads, particularly once the number of threads sharing a cache approaches or

exceeds the associativity of the cache” [Chen and Aamodt, 2009], and I wanted to inves-

tigate this statement for other methods than the Prob method as well. According to my

3.2 General Ranking Performance 113

results, however, neither the Prob method, nor any other method shows a severe perfor-

mance degradation in case that the number of processor cores approaches associativity α.

Note, however, that for ψ = 2 processor cores, as applied in [Chandra et al., 2005], my

evaluation ranks accuracy of the FOA (one), SDC (one) and Prob techniques just the way

as it has been reported by Chandra et al.: The Prob technique is the most accurate one,

followed by SDC (one) and FOA (one).

Poor performance of access or hit based methods

As you can see from figure 24, methods that are primarily based on the number of cache

accesses generally show poor prediction performance only (FOA, SDC, Activity vector,

Pain (one), Pain (one, sens38), Pain (set) and DMax (..., acc, ...) methods). Note

that expression ‘primarily based on the number of cache accesses’ also includes methods

that are based on stand-alone cache hits or the distribution of entries in stack distance

histograms, as Hsd
a,ιzi(1) ≈∑α

δ=1H
sd
a,ιzi(δ) ≈

∑α+1
δ=1 H

sd
a,ιzi(δ) (cf. figures 41 and 42 in the

appendix). Therefore, nearly all state-of-the-art cache contention prediction methods are

actually based on the number of memory accesses, which is about the same as Hsd
a,ιzi(1).

For example, the FOA method calculates an effective associativity α′Ca,ιzi by relating the

number of accesses of application a to the number of accesses of applications {a}∪Ca. The

recently proposed Pain (one) method ([Zhuravlev et al., 2010], [Fedorova et al., 2010]),

that introduces the concept of application intensity and application sensitivity, relates

intensity to the number of cache accesses (cf. equation 29), and sensitivity to stack dis-

tance histogram entries, weighted by their stack distance (cf. equation 28). Applying the

weighted number of stack distance entries as sensitivity measure actually makes sense, as

only a memory reference that is a hit on stand-alone execution can turn into a contention

miss. However, due to the domination of Hsd
a,ιzi(1) (cf. figures 41 and 42 in the appendix)

scaling Hsd
a,ιzi(δ) linearly by δ often does not have a big enough effect; therefore, sensitivity

is still dominated by Hsd
a,ιzi(1), which does not seem to be a favorable selection for reasons

discussed in section 2.6, i.e. Pain variation ‘one, misses’. If you compare the results of

Pain variation ‘one’ to those of Pain variation ‘one, misses’ in figure 24, my considerations

in section 2.6 seem to prove true: The number of stand-alone cache misses definitely is

a much better intensity measure than the total number of memory references, and val-

114 3 Evaluating the Prediction of Cache Contention

ues obtained from a combination of stack distance entries 1 . . . α or stack distance entries

1 . . . α+ 1 are often too strongly dominated by Hsd
a,ιzi(1).

Good performance of miss based and related methods

From figure 24 you can see that it is not only Pain variation ‘one, misses’ that shows

good prediction performance, but all prediction methods that apply cache misses or a

related measure as predictor in general: Pain (..., misses), Misses, Miss rate, and DMiss

all show comparable prediction performance — and it does not seem to be an easy task

to significantly improve prediction performance of miss based methods.

Besides miss based methods, the Diff and the Prob methods show good prediction per-

formance as well. Note that I actually introduced Diff variation ‘one, two’ as an improve-

ment to Diff variation ‘one’ in order to ‘exclude memory references that are referenced

only once and therefore do contribute to cold misses only’. However, variation ‘one, two’

turns out not to be an improvement to variation ‘one’; it has rather a degradational ef-

fect. Thinking it over, however, the simulation results indeed make sense: If you adopt

the sensitivity/intensity model applied in the Pain method, cold misses do not contribute

to the sensitivity part, but they do contribute to the intensity part. The intensity part,

however, seems to be the significant part, as Pain (one, misses) and Misses (one) show

exactly the same shape for all window sizes z and all number of cores ψ ∈ {2, 4, 8}. The

high domination of the intensity part further points out when comparing the results of

Pain (one, misses) to those of Pain (one, sens38, misses): Both variations show almost

the same performance, although the sensitivity applied in both variations varies by mul-

tiple orders of magnitude. Contrary, the difference in performance between Pain (one)

and Pain (one, sens38) is much larger, in particular for small window sizes z and a high

number of processor cores.

Regarding miss based and related methods, you can observe that there is a significant

performance degradation if the number of cores and the interval width limits the number

of memory references included in the prediction, as it is the case for ψ = 2 and low values

of z. Regarding ψ = 2 only, a reason for this observation might be that predictors are

generally calculated on a per-interval basis, i.e. they incorporate address information from

a single interval ιzi only, while the actual memory access time determined by MCCC-

3.2 General Ranking Performance 115

Sim incorporates effects from all previously executed intervals; and the longer the interval

width, the more memory references occur, which renders the error small. Arguing this

way, however, the same effect would have to occur for ψ = 4 and ψ = 8, which is not the

case. A more reasonable explanation for this behavior might be a method’s sensitivity to

cache contention: Generally, a small interval width and a low number of processor cores

will introduce less cache contention than a large interval width and a high number of pro-

cessor cores. This statement seems to be obvious, as a larger interval width increases the

probability that co-scheduled applications provide memory access patterns that displace

LRU stack entries. Similarly, a higher number of processor cores ψ introduces more co-

scheduled applications that compete for a cache of constant size. If there is only a small

amount of cache contention introduced, a prediction method has to be very sensitive to

differentiate between cases where cache contention actually turns into additional cache

misses, and where not. As figure 24 suggests, most methods perform better if contention

is more obvious, and degrade in performance if cache contention is low.

But the main reason might be as follows: A stand-alone cache miss implies that an address

key is pushed onto the LRU stack. To predict cache contention exploiting this observation,

a key that is pushed onto the LRU stack actually has to replace an LRU stack entry that

has to be re-fetched later on. If ψ and z are small, it is less likely that pushing a key

onto the LRU stack actually replaces an entry that has to be re-fetched. For higher values

of z, this probability increases, but not linearly: If you assume that an application a

will reference κa,ιzi different cache lines in an interval of size z, then a will, on average,

reference much less than n · κa,ιz′i different cache lines in intervals of width z′ = n · z.

However, the number of different cache lines per set that are accessed increases linearly

with the number of applications ψ that concurrently access the cache (assuming low spatial

locality and comparable applications), if the applications do not share any data, what is

assumed. If the number of applications ψ results in enough references to different cache

lines to fill up the LRU stack, then every stand-alone cache miss will displace an already

fetched entry from the LRU stack and a contention miss occurs if the displaced key is

re-fetched.

116 3 Evaluating the Prediction of Cache Contention

Per-cache-set calculation not beneficial

Analyzing figure 24 reveals that predicting cache contention on a per-cache-set-basis does

not have the big positive effect one might expect: While some methods benefit from per-

cache-set based prediction, like the SDC method for example, others do not show any

significant performance change or even show performance degradation, as it is the case

for the FOA method. Figure 25 qualitatively summarizes figure 24 regarding performance

gain achieved by per-cache-set calculation. I apply ‘+’ to indicate a positive and ‘−’ to

indicate a negative effect on NMRD performance; ‘=’ means that there is no significant

effect.

Compared Methods/Variations
Access or

Gain
Miss based

FOA (one) ↔ FOA (set) Access −
SDC (one) ↔ SDC (set) Access +

Pain (one) ↔ Pain (set) Access +

Pain (one, misses) ↔ Pain (set, misses) Miss =

Pain (one, sens38, misses) ↔ Pain (set, sens38, misses) Miss =

Activity (superset) ↔ Activity (set) Access −
DMax (one) ↔ DMax (one, set) n/a +

DMiss (one, sens38) ↔ DMiss (set, sens38) Miss =

Figure 25: Qualitative evaluation of prediction on per-cache-set basis.

Applying per-cache-set prediction, methods that predict cache contention primarily by

the number of cache accesses or by the number of cache hits respectively, achieve either a

performance gain, or they suffer a degradation. But even those access/hit based methods

that benefit from per-cache-set calculation do not even approach the performance of miss

based methods. Methods that rely on the number of cache misses to predict cache con-

tention, however, do not show any significant change in performance when calculated per

cache set; the only significant effect is an increased execution time (cf. section 3.4). There-

fore, per-cache-set prediction does not seem to be a reasonable approach, which might be

3.2 General Ranking Performance 117

caused by a limited amount of spatial locality available in applications A.

Note that I classify Pain variation ‘one, misses’ to rely rather on cache misses than on

cache accesses, although the number of cache accesses in χsensa,ιzi exceeds the number of

cache misses Hsd
a,ιzi(α + 1) by several orders of magnitude. However, if you compare the

results of Pain (one, misses) to the results of Pain (one) and Misses (one) (cf. figure 24),

you can see that it is the misses and not the number of accesses that causes prediction

results.

Similarly, I classify the Activity vector method to be access based rather than miss based.

Although the Activity vector method relies on both the number of accesses and the number

of misses, its performance suggests that the number of accesses is the dominating factor:

The Activity vector method rather performs like the FOA method than like the Misses

method, which might be caused by an improper selection of Ωmiss
z .

Limited gain of masking

In figure 26, I qualitatively summarize the results presented in figure 24 regarding masking

performance, i.e. gain in NMRD performance when selecting only those cache sets s ∈ S
with

∑
a′∈{a}∪Ca δ

max,S
a′,ιzi,s

> α.

Figure 26 shows that masking has quite different effects on the various methods/variations:

While four methods benefit from masking, one method does not show any significant per-

formance change, while two other methods even show a performance degradation. Inter-

estingly, there seems to be a correlation between masking performance and the exploited

resource the corresponding prediction technique is primarily based on: Methods that ben-

efit from masking primarily rely on the number of memory accesses as predictor, while

methods that degrade in performance when applying masking are based on the number of

cache misses or a related measure. Note that I classify the Activity vector method to be

an access based method, as I already did in the previous section.

118 3 Evaluating the Prediction of Cache Contention

Compared Methods/Variations
Access or

Gain
Miss based

FOA (set) ↔ FOA (set, mask) Access +

Width (one) ↔ Width (set, mask) Access +

Misses (one) ↔ Misses (set, mask) Miss −
Activity (set) ↔ Activity (set, mask) Access +

DMax (one, set) ↔ DMax (set, mask) n/a =

DMax (one, set, acc) ↔ DMax (set, acc, mask) rather Access +

Diff (one) ↔ Diff (set, mask) rather Miss −

Figure 26: Qualitative evaluation of masking performance shown in figure 24.

If a method primarily relies on the number of misses, its predictor is related to Hsd(α+1).

But masking does not consider Hsd(α + 1), but Hsd(1 . . . α). If a method relies on the

number of accesses, it applies the whole stack distance histogram Hsd(1 . . . α + 1) for

prediction. However, as
∑α

δ=1H
sd(δ)� Hsd(α+ 1), such methods are actually based on

the number of hits. If a method predicts cache contention primarily by the number of hits,

masking will generally have a positive influence on the prediction, as it masks out those

cases in which stand-alone cache hits are not able to displace a stand-alone cache hit from

the LRU stack.

In a nutshell: Masking has high potential to improve NMRD performance of cache con-

tention prediction methods that primarily apply the number of cache hits/accesses as

predictor. However, such prediction methods generally show poor prediction performance

and the effect of masking is not big enough to make those methods a serious competitor

to miss based methods. Applied on miss based methods, however, masking has a rather

degrading effect and cannot be recommended.

Further note that a higher number of processor cores reduces the effect of masking (cf. fig-

ure 24), as a high number of applications that are executed in parallel introduce additional

references to each cache set, which reduces the number of cache sets that get masked.

3.2 General Ranking Performance 119

Weighting stack distance entries

Giving more weight to stack distance entries with higher values of δ than to those with

lower values of δ achieves varying results. There is a definite performance gain in some

cases: Pain (one) ↔ Pain (one, sens38); DMax (set, acc, mask) ↔ DMax (set, exp,

acc, mask). But there are also many cases that show both a performance gain and a

performance degradation, depending on the interval width z and the number of processor

cores ψ: Width (set, mask) ↔ Width (set, mask, exp delta); Pain (one, misses) ↔ Pain

(one, sens38, misses); Pain (set, misses) ↔ Pain (set, sens38, misses); DMiss (one) ↔
DMiss (one, sens38). For small interval sizes and a small number of processor cores,

giving more weight to stack distance entries with higher δ and less weight to those with

lower δ seems to be a good choice.

Wider stack distance histograms

Comparing SDC (one) to SDC (lru set group) suggests that performance of the SDC

method can slightly be improved by increasing the number of stack distance histogram

entries from α (+1) to a larger value α · |G| (+1), partitioning the cache set into |G| groups

and tracking LRU information of group accesses. However, the obtained gain is focused

on cases with a higher number of cores (e.g. ψ ∈ {4, 8}) only and is rather small. In some

cases of ψ and z, however, performance slightly degrades.

Infinite LRU stack

Comparing DMax (one, set) to DMax (one, set, inf), performance degradation of DMax

(one, set) for higher values of ψ and higher values of z obviously originates from the

limited capacity of the LRU stack: For high ψ and especially for high z, many elements

that have already been fetched to LRU stacks get displaced; as δmax,Sa,ιzi,s is limited to α for

DMax variation ‘one, set’, values of δmax,Sa,ιzi,s > α cannot be distinguished and prediction

performance degrades. If δmax,Sa,ιzi,s, however, is calculated applying an LRU stack of infinite

size, then δmax,Sa,ιzi,s is not limited to α and values of δmax,Sa,ιzi,s beyond α can be distinguished,

achieving acceptable prediction performance.

120 3 Evaluating the Prediction of Cache Contention

TLB effects

With figures 27 and 28 on the next doublepage, I show that effects from memory address

translation, such as TLB misses, hardly have any impact on NMRD performance. Fig-

ure 27 is identical to figure 24 and represents NMRD performance in case that algorithm 13

is executed with tlb = true, i.e. ground truth reference includes TLB backed memory

address translation, as it is common in processor systems. Figure 28 represents NMRD

performance in case that algorithm 13 is executed with tlb = false, which corresponds to

a processor architecture that does not incorporate address translation and therefore can-

not suffer from additional effects introduced from TLB misses. As both figures are almost

identical, additional TLB misses do not seem to have any significant effect on prediction

performance, not even if ψ = 8, when TLBs are shared amongst many applications.

Comparing results to others

Given ψ = 2, as it is the case in [Chandra et al., 2005], figure 24 shows that the Prob

method performs much better than the SDC (one) method, and SDC (one) outperforms

FOA (one). These results exactly match Chandra et al.’s observations.

Chen and Aamondt’s observation, however, that the Prob method becomes inaccurate

if the number of threads approaches associativity α cannot be affirmed. According to

figure 24, NMRD performance of the Prob method is nearly independet of ψ and the

minor differences that can be observed indicate a rather better performance for higher

ψ than for lower ψ. For ψ ∈ {4, 8}, the Prob method turns out to be the best cache

contention prediction technique regarding NMRD accuracy.

In [Fedorova et al., 2010] however, the authors demonstrate that Pain (one) achieves better

performance than the Miss rate method, and that the Miss rate method outperforms the

SDC method. The authors perform their evaluation applying a real hardware system

and explain poor SDC performance by the assumption that “contention for the shared

cache [...] is not the main cause of performance degradation experienced by competing

applications on multicore systems. Contention for other shared resources, such as the

front-side bus, prefetching resources and the memory controller are the dominant causes

for performance degradation” [Fedorova et al., 2010].

3.2 General Ranking Performance 121

In my evaluation, however, the SDC method shows same poor performance as presented

in [Fedorova et al., 2010]. Note, however, that the MCCCSim simulator I apply as ground

truth reference does not model contention effects on busses, prefetching resources and

memory controller. As a consequence, poor performance of the SDC method cannot be

explained by contention of other resources than caches. Anyway, contention regarding the

front-side bus and the memory controller should be highly correlated to last level cache

contention, as only those references can contend for the bus that turn out to be contention

misses at all.

According to my evaluation and the discussion regarding hit/access based vs. miss based

methods in previous sections, the SDC method seems to achieve poor performance due to

its addiction to cache hits/accesses as predictor. And I already demonstrated that this is

an inappropriate way to predict cache contention due to high temporal program locality

that can be observed from the high concentration of stack distance histograms.

So, the poor performance of the SDC method can be explained, just as the excellent

applicability of stand-alone cache misses or cache miss rates to predict cache contention.

Given the MCCCSim simulator as ground truth measure, however, I cannot reproduce the

good prediction results of Pain (one) that have been presented in [Fedorova et al., 2010].

And I cannot explain why Pain (one) should achieve good prediction results at all, as it

primarily relies on the number of cache hits/accesses as predictor. Applying cache misses

as measure of intensity, however, dramatically improves performance of the Pain method

— and it seems to be obvious that the number of cache accesses is an inappropriate

intensity measure. Possibly, the apparent performance difference between Pain (one) in

this thesis and the Pain method presented in [Fedorova et al., 2010] are caused by different

distributions of memory references of the applied applications.

122 3 Evaluating the Prediction of Cache Contention

NMRD
2 cores

0.0 0.2 0.4 0.6 0.8

NMRD
2 cores

NMRD
4 cores

0.0 0.2 0.4 0.6 0.8

NMRD
4 cores

NMRD
8 cores

0.0 0.2 0.4 0.6 0.8

NMRD
8 cores

NMRD
8 cores

DMiss (set, sens38)

DMiss (one, sens38)

DMiss (one)

Diff (one, two)

Diff (one, set, acc)

Diff (one, missrate)

Diff (set, mask)

Diff (one)

DMax (set, exp, acc, mask)

DMax (set, acc, mask)

DMax (one, set, acc)

DMax (set, mask)

DMax (one, set, inf)

DMax (one, set)

DMax (one)

Activity (set, mask)

Activity (set)

Activity (superset)

Miss rate

Misses (set, mask)

Misses (one)

Pain (set, sens38, misses)

Pain (set, misses)

Pain (set)

Pain (one, sens38, misses)

Pain (one, misses)

Pain (one, sens38)

Pain (one)

Width (set, mask, exp delta)

Width (set, mask)

Width (one)

Prob

SDC (lru set group)

SDC (set)

SDC (one)

FOA (set, mask)

FOA (set)

FOA (one)

1 2 4 8 16 32 64 128 256 512Interval width [million instr.]:

Figure 27: NMRD performance as presented in figure 24, i.e. with address translation
enabled in the MCCCSim simulator, considering additional penalties from TLB misses.

3.2 General Ranking Performance 123

NMRD
2 cores

0.0 0.2 0.4 0.6 0.8

NMRD
2 cores

NMRD
4 cores

0.0 0.2 0.4 0.6 0.8

NMRD
4 cores

NMRD
8 cores

0.0 0.2 0.4 0.6 0.8

NMRD
8 cores

NMRD
8 cores

DMiss (set, sens38)

DMiss (one, sens38)

DMiss (one)

Diff (one, two)

Diff (one, set, acc)

Diff (one, missrate)

Diff (set, mask)

Diff (one)

DMax (set, exp, acc, mask)

DMax (set, acc, mask)

DMax (one, set, acc)

DMax (set, mask)

DMax (one, set, inf)

DMax (one, set)

DMax (one)

Activity (set, mask)

Activity (set)

Activity (superset)

Miss rate

Misses (set, mask)

Misses (one)

Pain (set, sens38, misses)

Pain (set, misses)

Pain (set)

Pain (one, sens38, misses)

Pain (one, misses)

Pain (one, sens38)

Pain (one)

Width (set, mask, exp delta)

Width (set, mask)

Width (one)

Prob

SDC (lru set group)

SDC (set)

SDC (one)

FOA (set, mask)

FOA (set)

FOA (one)

1 2 4 8 16 32 64 128 256 512Interval width [million instr.]:

Figure 28: NMRD performance if effects from address translation, such as TLB misses,
are not considered.

124 3 Evaluating the Prediction of Cache Contention

MP - Mean Penalty

While NMRD evaluates cache contention prediction techniques regarding the difference

between predicted and actual ranking positions of a set of candidate co-schedules, the MP

(mean penalty) measure performs its evaluation regarding the time predicted rankings are

off actual rankings. Figure 29 presents the key principle of the MP evaluation function for

a = astar and co-schedules Ca =
{
{bzip}, {gcc}, {gobmk}, {h264ref}, {hmmer}, {lbm},

{mcf}, {milc}, {povray}
}

.

{hmmer}{povray}{h264ref} {gcc} {bzip2} {mcf} {gobmk} {milc} {lbm}

2.3 2.4 2.7 23.0 33.9 65.3 95.2 101.6 134.7
astar

1 2 3 4 5 6 7 8 9

{bzip2} {milc} {gcc} {gobmk}{hmmer}{h264ref} {lbm} {mcf} {povray}

202 252 300 623 652 662 808 1054 1071
astar

Actual
penalty:

Prediction:

Ranking:

|2.3− 33.0| + |2.4− 134.7| + |2.7− 65.3| + · · ·
9

a b

ρsim
astar@{hmmer},ι�i

ρpred
astar@{hmmer},ι�i

πCa,ι�i
(ρpred

astar@{hmmer},ι�i
)

∆πastar@{hmmer},ι�i

πCa,ι�i
(ρsim

astar@{hmmer},ι�i
)

c

Figure 29: Principal idea of the MP (Mean Penalty) method applied to evaluate cache
contention prediction techniques.

As you can see from figure 29, I calculate, for each candidate co-schedule Ca ∈ Ca, the

difference between actual penalty πCa,ιzi , e.g. a , and the penalty at predicted ranking

position ρpred
Ca,ιzi

, e.g. b . Then, differences are averaged c .

Let πCa,ιzi
= (πCa,1,ιzi , πCa,2,ιzi , . . .) be the tuple of sorted penalties as presented in fig-

ure 17, part D and part ‘ D Generation of Ground Truth Reference’ of section 3.1; let

πCa,ιzi
(ρ) be the operation that returns penalty πCa,j ,ιzi stored at ranking position ρ.

Given πCa,ιzi
, ρpred

Ca,ιzi
, and ρsim

Ca,ιzi , I calculate penalty differences

∆πCa,ιzi =
∣∣∣πCa,ιzi

(ρsim
Ca,ιzi)− πCa,ιzi

(ρpred
Ca,ιzi

)
∣∣∣ (77)

for all a ∈ A, all ψ ∈ ψψψ, all Ca ∈ Cψ
a = C(A\{a}, ψ − 1), all z ∈ zz, and all ιzi ∈ ιz.

3.2 General Ranking Performance 125

Then, I calculate mean penalty MP(ψ,z) by

MP(ψ,z) =
1
z

1
|ιz|

∑

ιzi∈ιz

1
|A| ·

∑

a∈A

1

|Cψ
a |

∑

Ca∈Cψ
a

∆πCa,ιzi . (78)

Note that I apply 1
z in order to normalize MP to ‘penalty per instruction’. This way,

values of MP(ψ,z) can be plotted side by side in the same diagram for all z ∈ zz without

suffering a reduced resolution.

Besides the idea that MP represents time and NMRD represents ranking positions, there is

a further aspect to evaluate prediction performance by mean penalty MP: In the NMRD

method, ranking positions are evaluated as if they were equipollent, since the NMRD

method only evaluates differences in ranking positions, what actually is a good measure

to get an idea of the average performance of a prediction method. However, as you can

see from figure 29, ranking positions relate to penalties that heavily differ from each

other: If a prediction method, for example, gets all but the first two ranking positions in

figure 29 right, the overall penalty would be |2.3− 2.4|+ |2.4− 2.3| = 0.2 µs. If, however,

all but the last two ranking positions were predicted correctly, overall penalty would be

|101.6− 134.7|+ |134.7− 101.6| = 66.2 µs.

Figure 31 presents my evaluation results regarding MP performance for the methods intro-

duced in chapter 2, measured in picoseconds per instruction (ps/instr.). Comparing MP

performance to NMRD performance (figure 30), you will realize that evaluation results

regarding MP performance are very similar to the already discussed NMRD performance

results; therefore, the same obervations and findings that have been discussed in the pre-

vious section apply for this section as well. Relative performance difference between well

and poor performing methods, however, seems to be a bit larger for MP based evaluation

than for NMRD based evaluation.

Also when applying the time based MP evaluation function, miss based cache contention

prediction methods perform superior compared to methods that rely on stand-alone cache

hits or the total number of memory references as predictor. The Prob method turns out

to be the most accurate prediction method for larger values of ψ.

126 3 Evaluating the Prediction of Cache Contention

NMRD
2 cores

0.0 0.2 0.4 0.6 0.8

NMRD
2 cores

NMRD
4 cores

0.0 0.2 0.4 0.6 0.8

NMRD
4 cores

NMRD
8 cores

0.0 0.2 0.4 0.6 0.8

NMRD
8 cores

NMRD
8 cores

DMiss (set, sens38)

DMiss (one, sens38)

DMiss (one)

Diff (one, two)

Diff (one, set, acc)

Diff (one, missrate)

Diff (set, mask)

Diff (one)

DMax (set, exp, acc, mask)

DMax (set, acc, mask)

DMax (one, set, acc)

DMax (set, mask)

DMax (one, set, inf)

DMax (one, set)

DMax (one)

Activity (set, mask)

Activity (set)

Activity (superset)

Miss rate

Misses (set, mask)

Misses (one)

Pain (set, sens38, misses)

Pain (set, misses)

Pain (set)

Pain (one, sens38, misses)

Pain (one, misses)

Pain (one, sens38)

Pain (one)

Width (set, mask, exp delta)

Width (set, mask)

Width (one)

Prob

SDC (lru set group)

SDC (set)

SDC (one)

FOA (set, mask)

FOA (set)

FOA (one)

1 2 4 8 16 32 64 128 256 512Interval width [million instr.]:

Figure 30: NMRD performance of cache contention prediction methods; figure is iden-
tical to figure 24.

3.2 General Ranking Performance 127

 Mean Penalty [ps/instr.]

 2 cores

0 20 40 60
 Mean Penalty [ps/instr.]

 2 cores

 Mean Penalty [ps/instr.]

 4 cores

0 20 40 60
 Mean Penalty [ps/instr.]

 4 cores

 Mean Penalty [ps/instr.]

 8 cores

0 10 20 30 40
 Mean Penalty [ps/instr.]

 8 cores

 Mean Penalty [ps/instr.]

 8 cores

DMiss (set, sens38)

DMiss (one, sens38)

DMiss (one)

Diff (one, two)

Diff (one, set, acc)

Diff (one, missrate)

Diff (set, mask)

Diff (one)

DMax (set, exp, acc, mask)

DMax (set, acc, mask)

DMax (one, set, acc)

DMax (set, mask)

DMax (one, set, inf)

DMax (one, set)

DMax (one)

Activity (set, mask)

Activity (set)

Activity (superset)

Miss rate

Misses (set, mask)

Misses (one)

Pain (set, sens38, misses)

Pain (set, misses)

Pain (set)

Pain (one, sens38, misses)

Pain (one, misses)

Pain (one, sens38)

Pain (one)

Width (set, mask, exp delta)

Width (set, mask)

Width (one)

Prob

SDC (lru set group)

SDC (set)

SDC (one)

FOA (set, mask)

FOA (set)

FOA (one)

1 2 4 8 16 32 64 128 256 512Interval width [million instr.]:

Figure 31: MP performance of cache contention prediction methods for ψ ∈ ψψψ =
{2, 4, 8} processor cores and interval sizes z ∈ zz = {220, 221, 222, 223, 224, 225, 226,
227, 228, 229} instructions, averaged over all intervals ιzi ∈ ιz and all applications
a ∈ A = {astar, bzip2, gcc, gobmk, h264ref, hmmer, lbm, mcf, milc and povray}.

128 3 Evaluating the Prediction of Cache Contention

Big Picture

Most state-of-the-art cache contention prediction methods rely on memory reuse patterns,

i.e. the distribution of elements in a stack distance histogram, to perform cache contention

prediction. In most cases, state-of-the-art prediction method apply (the distribution of)

elements 1 . . . associativity α, i.e. the stand-alone cache hits, or the sum of all elements

1 . . . α+ 1, i.e. the total number of cache accesses, to perform a prediction. Single element

α + 1 of stack distance histograms, i.e. the number of cache misses, is rarely used. The

motivation is that “if a thread hardly ever reuses its cached data – as would be the case

with a video-streaming application that touches that data only once – it will not suffer

from contention even if it brings lots of data into the cache” [Fedorova et al., 2010]. This

means that the number of cache misses has not been regarded as a measure for cache

contention, as a stand-alone cache miss cannot turn into a contention miss: It already is a

miss. It has been argued that only stand-alone cache hits can turn into contention misses;

therefore, it is primarily stand-alone cache hits that have been applied as a measure of

cache contention in the past. [Chandra et al., 2005, Fedorova et al., 2010]

But there is one point that has generally been ignored: Stack distance histograms are pri-

marily dominated by entries Hsd
a,ιzi(1), and Hsd

a,ιzi(1) ≈∑α
δ=1H

sd
a,ιzi(δ) ≈

∑α+1
δ=1 H

sd
a,ιzi(δ)

for most applications a (cf. section ‘Stack Distance Histograms’ in the appendix). There-

fore, state-of-the-art methods primarily rely on Hsd
a,ιzi(1) to perform their prediction. But

this is the worst choice they actually can make: Given an application a and a set of

co-scheduled applications Ca, then those methods primarily base on estimating the prob-

ability to make entries Hsd
a,ιzi(1) become misses; and they estimate it by entries Hsd

a′,ιzi
(1)

for all a′ ∈ Ca. In order to turn an entry Hsd
a,ιzi(1) into a miss, however, the applications

in Ca have to perform many accesses to different cache lines of the same cache set; this is

unlikely, however, as applications primarily access cache lines with δ = 1, i.e. they nearly

always reference the cache line that has just been referenced before; and references to

such lines are generally hits, and are therefore not suddenly pushed onto the LRU stack

to displace an already fetched entry. But it even gets worse: In order to replace an LRU

stack entry of a, the accesses of the applications in Ca also have to be performed between

two references of a to the same cache line. This means that the probability to replace a

3.2 General Ranking Performance 129

cache line of a from the LRU stack is high, if there is much time between two references of

a to the same cache line, and low, if a references the same cache line with every memory

access. However, Hsd
a,ιzi(1) ≈ ∑α

δ=1H
sd
a,ιzi(δ) ≈

∑α+1
δ=1 H

sd
a,ιzi(δ) directly implies the last

point: If almost all accesses of a are performed with distance δ = 1, then there is actually

no time for other applications to replace those entries.

Further, Hsd
a′,ιzi

(1),
∑α

δ=1H
sd
a′,ιzi

(δ) and
∑α+1

δ=1 H
sd
a′,ιzi

(δ) all have similar values for all

a′ ∈ A: They differ by a maximum factor of 2. Compared to a factor of up to about 1300

that can be observed regarding the number of stand-alone cache misses, i.e. Hsd
a′,ιzi

(α+1),

a′ ∈ A, there seems to be no significant variance in the number of stand-alone cache hits

or cache accesses.

A much better predictor for cache contention is the number of cache misses, i.e. stack

distance entries with δ = α+ 1. First, there is much variance in these data, regarding the

applications a′ ∈ A. Secondly, each reference to an entry in Hsd
a,ιzi definitely pushes a new

address key onto the LRU stack. This means that there will definitely be a displacement,

if the LRU stack is already full (very likely for high values of z and ψ).

Although stand-alone cache misses cannot be turned into contention misses, they cause

stand-alone hits of other applications to turn into contention misses.

This makes the Pain method also a good choice, if you apply misses rather than cache

accesses as intensity measure; further, applying stack distance histogram entries 3 . . . α

rather than 1 . . . α as sensitivity measure can slightly increase performance.

The Prob method shows best NMRD performance in many cases. But it is quite complex,

as you can see from the timing and the cost-gain analysis performed in the following

sections.

In the past, stand-alone cache misses have gained only limited attention predicting cache

contention. In [Knauerhase et al., 2008], the autors focused on improving operating sys-

tem scheduling decisions in order to reduce interference of processes that share a last level

cache. They applied the number of last level cache misses per cycle as a predictor for

cache contention. Note that the applied misses per cycle were not stand-alone misses, but

misses measured with performance counters when already sharing the last level cache. To

predict cache contention for an interval ιzi, Knauerhase et al. applied cache misses that

were measured under cache sharing in interval ιzi−1.

130 3 Evaluating the Prediction of Cache Contention

Fedorova et al. refer to Knauerhase et al.’s work and investigate cache contention prediction

applying cache miss rates as predictor; they discover that “cache-miss rate turned out to

be an excellent predictor for contention for the memory controller, prefetching hardware

and the front-side bus” [Fedorova et al., 2010].

Fedorova et al. find the good performance of the misses method very surprising: “Who

could have imagined that the best way to approximate the Pain metric would be to use

the LLC miss rate?” [Fedorova et al., 2010]

The high concentration of stack distance histograms, however, i.e. the dominating effect

of Hsd
a,ιzi(1) can explain this observation.

3.3 Best-Selection Performance

In this section, I present two evaluation functions (cf. 13 in figure 17) to evaluate pre-

diction methods regarding their ability to select the co-schedule Ca from a given set of

candidate co-schedules Ca = {Ca,1, Ca,2, . . . } that minimizes cache contention for a given

application a.

PPBAB - Penalty Predicted Best vs. Actual Best

The PPBAB (Penalty Predicted Best vs. Actual Best) evaluation function determines the

amount of time cache contention penalty of the actual best co-schedule differs from the

penalty of a co-schedule that is predicted to achieve the least penalty, as it is exemplarily

shown in figure 32.

Given an application a, the set of all candidate co-schedules of a for a given number of

processor cores ψ, i.e. Cψ
a = C(A\{a}, ψ − 1), and an interval size z, I calculate penalty

difference ∆πPPBAB
Ca,ιzi for interval ιzi according to

∆πPPBAB
Cψ
a ,ιzi

=
∣∣π

Cψ
a ,ιzi

(1)−
∑

Ca∈Cψ
a

∣∣ρpred
Ca,ιzi

=1

π
Cψ
a ,ιzi

(ρsim
Ca,ιzi)

∣∣. (79)

Note that I apply the sum in equation 79 just to select the candidate co-schedule that is

predicted to minimize cache contention; there is no addition performed.

Given ∆πPPBAB
Ca,ιzi , a number of processor cores ψ, and an interval size z, I calculate

3.3 Best-Selection Performance 131

{hmmer}{povray}{h264ref} {gcc} {bzip2} {mcf} {gobmk} {milc} {lbm}

2.3 2.4 2.7 23.0 33.9 65.3 95.2 101.6 134.7
astar

1 2 3 4 5 6 7 8 9

{bzip2} {milc} {gcc} {gobmk {hmmer}{h264ref} {lbm} {mcf} {povray}

202 252 300 623 652 662 808 1054 1071
astar

Actual
penalty:

Prediction:

Ranking:

∆πPPBAB
Cψa ,ι�i

= |2.3− 33.9|

Figure 32: Calculating penalty difference ∆πCψa ,ιzi
for the actual and the pre-

dicted best co-schedule.

PPBAB(ψ,z) by

PPBAB(ψ,z) =
1
z
· 1
|ιz|

∑

ιzi∈ιz

1
|A| ·

∑

a∈A
∆πPPBAB

Cψ
a ,ιzi

. (80)

As I did in the last section, I normalize PPBAB values to ‘penalty per instruction’.

In figure 34, I present my evaluation regarding the PPBAB evaluation function. If you

compare PPBAB results in figure 34 (logarithmic scale) to the MP results presented in

figure 33 (linear scale), you will observe that an evaluation of the methods in relation to

one another yields about the same results for the PPBAB evaluation function as it is the

case for the MP evaluation function. There are, however, some minor differences, such as

FOA (set) performs slightly better than FOA (one) for some z when ψ = 2. But such

minor results are not discussed any further.

Note that the range of results for PPBAB is much larger than for MP, as MP results are

averaged over all candidate co-schedules, while PPBAB results are not.

As it has been the case with the MP evaluation function, miss based methods perform far

better than hit or access based prediction methods due to the high concentration of stack

distance histograms (cf. section ‘Stack Distance Histograms’ in the appendix).

132 3 Evaluating the Prediction of Cache Contention

 Mean Penalty [ps/instr.]

 2 cores

0 20 40 60
 Mean Penalty [ps/instr.]

 2 cores

 Mean Penalty [ps/instr.]

 4 cores

0 20 40 60
 Mean Penalty [ps/instr.]

 4 cores

 Mean Penalty [ps/instr.]

 8 cores

0 10 20 30 40
 Mean Penalty [ps/instr.]

 8 cores

 Mean Penalty [ps/instr.]

 8 cores

DMiss (set, sens38)

DMiss (one, sens38)

DMiss (one)

Diff (one, two)

Diff (one, set, acc)

Diff (one, missrate)

Diff (set, mask)

Diff (one)

DMax (set, exp, acc, mask)

DMax (set, acc, mask)

DMax (one, set, acc)

DMax (set, mask)

DMax (one, set, inf)

DMax (one, set)

DMax (one)

Activity (set, mask)

Activity (set)

Activity (superset)

Miss rate

Misses (set, mask)

Misses (one)

Pain (set, sens38, misses)

Pain (set, misses)

Pain (set)

Pain (one, sens38, misses)

Pain (one, misses)

Pain (one, sens38)

Pain (one)

Width (set, mask, exp delta)

Width (set, mask)

Width (one)

Prob

SDC (lru set group)

SDC (set)

SDC (one)

FOA (set, mask)

FOA (set)

FOA (one)

1 2 4 8 16 32 64 128 256 512Interval width [million instr.]:

Figure 33: MP performance of cache contention prediction methods; figure is identical
to figure 31.

3.3 Best-Selection Performance 133

PPBAB [ps/instr.]

 2 cores

0.1 1 10 100
PPBAB [ps/instr.]

 2 cores

PPBAB [ps/instr.]

 4 cores

0.1 1 10 100
PPBAB [ps/instr.]

 4 cores

PPBAB [ps/instr.]

 8 cores

0.1 1 10 100
PPBAB [ps/instr.]

 8 cores

PPBAB [ps/instr.]

 8 cores

DMiss (set, sens38)

DMiss (one, sens38)

DMiss (one)

Diff (one, two)

Diff (one, set, acc)

Diff (one, missrate)

Diff (set, mask)

Diff (one)

DMax (set, exp, acc, mask)

DMax (set, acc, mask)

DMax (one, set, acc)

DMax (set, mask)

DMax (one, set, inf)

DMax (one, set)

DMax (one)

Activity (set, mask)

Activity (set)

Activity (superset)

Miss rate

Misses (set, mask)

Misses (one)

Pain (set, sens38, misses)

Pain (set, misses)

Pain (set)

Pain (one, sens38, misses)

Pain (one, misses)

Pain (one, sens38)

Pain (one)

Width (set, mask, exp delta)

Width (set, mask)

Width (one)

Prob

SDC (lru set group)

SDC (set)

SDC (one)

FOA (set, mask)

FOA (set)

FOA (one)

1 2 4 8 16 32 64 128 256 512Interval width [million instr]:

Figure 34: Evaluation of cache contention prediction methods applying the
PPBAB(ψ,z) evaluation function for ψ ∈ ψψψ processor cores and interval sizes z ∈ zz;
results are averaged over all intervals ιzi ∈ ιz and all applications a ∈ A. Note the
logarithmic scale.

134 3 Evaluating the Prediction of Cache Contention

PPBRS - Penalty Predicted Best vs. Random Selection (Gain)

With the PPBRS (Penalty Predicted Best vs. Random Selection) evaluation function, I

determine the performance gain (units of time) a cache contention prediction method can

achieve: I compare the penalty of the co-schedule that a prediction technique selects as

best co-schedule to the penalty achieved on average when chosing candidate co-schedules

randomly. Although state-of-the-art schedulers operate according to specific rules and

characteristics, I assume them to co-schedule applications randomly with respect to cache

contention.

Figure 35 exemplarily shows the way the PPBRS method determines gain ∆πPPBRS
Cψ
a,ιzi

:

{hmmer}{povray}{h264ref} {gcc} {bzip2} {mcf} {gobmk} {milc} {lbm}

2.3 2.4 2.7 23.0 33.9 65.3 95.2 101.6 134.7
astar

1 2 3 4 5 6 7 8 9

{bzip2} {milc} {gcc} {gobmk {hmmer}{h264ref} {lbm} {mcf} {povray}

202 252 300 623 652 662 808 1054 1071
astar

Actual
penalty:

Prediction:

Ranking:

∆πPPBRS
Cψa ,ι�i

=
2.3 + 2.4 + 2.7 + 23.0 + 33.9 + 65.3 + 95.2 + 101.6 + 134.7

9
− 33.9

Figure 35: Calculation of gain, i.e. the difference between expected penalty and
the penalty of the candidate co-schedule that is predicted to be the best co-schedule.

Given an application a, the set of all candidate co-schedules of a for a given number of

processor cores ψ, i.e. Cψ
a = C(A\{a}, ψ − 1), and an interval size z, I calculate penalty

difference ∆πPPBRS
Cψ
a ,ιzi

for interval ιzi by

∆πPPBRS
Cψ
a ,ιzi

=
1

|Cψ
a |

∑

Ca∈Cψ
a

π
Cψ
a ,ιzi

(ρsim
Ca,ιzi) −

∑

Ca∈Cψ
a

∣∣ρpred
Ca,ιzi

=1

π
Cψ
a ,ιzi

(ρsim
Ca,ιzi). (81)

Given ∆πPPBRS
Ca,ιzi , I calculate PPBRS (ψ,z) by

PPBRS (ψ,z) =
1
z
· 1
|ιz|

∑

ιzi∈ιz

1
|A|

∑

a∈A
∆πPPBRS

Cψ
a ,ιzi

. (82)

Figure 36 shows evaluation results for the PPBRS evaluation function. A positive value

indicates that the corresponding prediction method performs better than selecting a

co-schedule randomly; a negative value indicates that selecting co-schedules randomly

achieves better results than applying the prediction method.

3.3 Best-Selection Performance 135

PPBRS [ps/instr.]

 2 cores

−50 0 50
PPBRS [ps/instr.]

 2 cores

PPBRS [ps/instr.]

 4 cores

−50 0 50 100
PPBRS [ps/instr.]

 4 cores

PPBRS [ps/instr.]

 8 cores

0 50 100
PPBRS [ps/instr.]

 8 cores

PPBRS [ps/instr.]

 8 cores

DMiss (set, sens38)

DMiss (one, sens38)

DMiss (one)

Diff (one, two)

Diff (one, set, acc)

Diff (one, missrate)

Diff (set, mask)

Diff (one)

DMax (set, exp, acc, mask)

DMax (set, acc, mask)

DMax (one, set, acc)

DMax (set, mask)

DMax (one, set, inf)

DMax (one, set)

DMax (one)

Activity (set, mask)

Activity (set)

Activity (superset)

Miss rate

Misses (set, mask)

Misses (one)

Pain (set, sens38, misses)

Pain (set, misses)

Pain (set)

Pain (one, sens38, misses)

Pain (one, misses)

Pain (one, sens38)

Pain (one)

Width (set, mask, exp delta)

Width (set, mask)

Width (one)

Prob

SDC (lru set group)

SDC (set)

SDC (one)

FOA (set, mask)

FOA (set)

FOA (one)

1 2 4 8 16 32 64 128 256 512Interval width [million instr]:

Figure 36: Evaluation of cache contention prediction techniques applying the
PPBRS (ψ,z) evaluation function for ψ ∈ ψψψ processor cores and interval sizes z ∈ zz;
results are averaged over all intervals ιzi ∈ ιz and all applications a ∈ A.

136 3 Evaluating the Prediction of Cache Contention

3.4 Timing Performance (Cost)

Besides accuracy, prediction time is a fundamental quality measure for prediction meth-

ods and has to be considered in the evaluation: Applying cache contention prediction

techniques in order to benefit from better co-schedules, even the best accuracy will be

worthless if the time to perform a prediction (i.e. cost) is not acceptable.

In section 3.1, part ‘ C Calculation of Prediction Rankings’, I already presented the way

I determine τuser
Ca

, τ syst
Ca

and τ elap
Ca

for all intervals ιzi ∈ ιz (cf. algorithm 12). Note that

each τCa represents timing information for all |ιz| intervals, i.e. 229 instructions.

I determine execution times for each z ∈ zz and each ψ ∈ ψψψ, as it is exemplarily shown in

figure 37 for FOA (one) and the Prob method. See [Zwick, 2011] for the execution times

of all methods presented in this thesis. In figure 37, ‘U’ depicts user time τuser(ψ,z), ‘S’

depicts system time τ syst(ψ,z), and ‘E’ represents elapsed time τ elap(ψ,z). Note that the

presented values are averaged over all applications a ∈ A, Ca ∈ Cψ
a = C(A\{a}, ψ−1) and

all intervals ιzi ∈ ιz. Hereby, τ is calculated from τCa as it is exemplarily shown for τ elap:

τ elap(ψ,z) =
1
z
· 1
|A| ·

∑

a∈A

1

|Cψ
a |

∑

Ca∈Cψ
a

τ elap
Ca

(83)

User time τuser(ψ,z) and system time τ syst(ψ,z) calculate accordingly.

Figure 37 shows that, besides some measuring inaccuracies, higher values of window size

z imply a higher execution time; for lower values of z, execution time is nearly constant.

The reason for this behavior is as follows:

Predictions are performed per interval ιzi (see algorithm 12). For z = 229 (column ‘512

million instructions’ in figure 37), there is only 1 set of predictors that has to be fetched

from disk. Although most predictors are only some byte in size, the operating system has

to fetch a full 4 k memory page from disk. The page then resides in memory and can

be accessed much faster for subsequent references; however, in case z = 229, it is only

accessed once, as only |ιz| = 1 prediction is performed.

For z = 220 (column ‘1 million instructions’ in figure 37), however, a single page fetch

reads many predictors at the same time and makes them reside in main memory or even

in the processor cache. As a consequence, predictors of subsequent intervals ιzi, i > 1, can

3.4 Timing Performance (Cost) 137

be accessed much faster; note that in case z = 220, |ιz| = 512 predictions are performed.

If predictor size is small enough to make all |ιz| predictors fit a single page, then

• z = 1⇒ average predictor access time is composed of 1
512 parts disk access time

and 511
512 parts memory/cache access time, while

• z = 512⇒ average predictor access time is composed of 1 disk access time only.
�

Type Window size [million instructions]

[unit] 1 2 4 8 16 32 64 128 256 512

FOA

(one, 2 cores)

U [µs] 5.95 5.96 6.02 6.01 6.23 6.47 7.09 8.31 10.6 14.3

S [µs] 10.4 10.3 10.5 10.1 10.7 11.6 13.8 18.0 26.1 43.1

E [µs] 16.9 16.9 17.3 17.0 19.4 23.7 30.8 47.3 77.7 125

FOA

(one, 4 cores)

U [µs] 11.8 11.8 11.9 11.8 11.9 12.1 12.7 13.5 15.2 18.2

S [µs] 21.0 20.7 20.7 19.8 20.0 20.9 22.7 26.0 32.9 45.4

E [µs] 33.1 32.8 32.9 31.8 32.1 33.6 36.9 40.1 49.1 65.2

FOA

(one, 8 cores)

U [µs] 23.5 23.5 23.5 23.4 23.5 23.8 24.3 25.4 27.3 30.7

S [µs] 41.8 41.5 41.3 39.5 39.7 40.9 43.5 48.5 58.0 77.4

E [µs] 65.5 65.6 65.6 63.2 63.4 65.2 68.8 74.7 86.8 110

Prob

(one, 2 cores)

U [µs] 30.8 30.8 30.8 30.7 30.8 31.0 31.5 32.7 34.8 38.5

S [µs] 16.2 16.3 16.4 15.4 15.7 16.5 18.3 22.8 30.5 46.7

E [µs] 47.4 47.6 47.7 46.4 46.7 47.8 50.1 56.5 66.1 86.5

Prob

(one, 4 cores)

U [µs] 82.7 82.7 82.6 82.5 82.5 82.9 83.3 84.3 86.5 90.2

S [µs] 32.9 32.7 32.5 30.9 31.1 32.2 34.9 40.1 50.5 70.5

E [µs] 119 118 117 116 115 116 120 126 140 162

Prob

(one, 8 cores)

U [µs] 187 187 187 186 186 187 187 189 192 196

S [µs] 65.1 64.9 64.4 61.3 62.0 62.8 66.5 73.0 87.9 115

E [µs] 255 254 253 252 253 252 259 264 284 318

Figure 37: Execution times (excerpt).

138 3 Evaluating the Prediction of Cache Contention

In order to

• make execution time reflect predictor access time linearly regarding its size (and

not quantized to 4 k, i.e. page size, steps),

• avoid the time necessary for calculations to be masked out by the time waiting

for disk fetches, but still

• incorporate both predictor access time and the time to calculate predictions from

predictors in the evaluation,

I choose τ elap(ψ,z) with z = 1 to represent the time a specific prediction methods applies

to perform one prediction. Figure 38 summarizes the results. Note that the time to create

predictors is not included, as it can be calculated offline in advance of the prediction.

Figure 38 shows that the fastest methods take about 8µs per prediction in case ψ = 2.

Note that predictions that are performed per-cache-set (variations ‘set’) do not take |S|
times as long as variations that summarize all cache sets in a single predictor (variations

‘one’); this is caused by paging and caching effects (see above). Therefore, computationally

more intensive methods have a less favorable timing ratio of variations ‘set’ to ‘one’, e.g.

• τ elap
SDC (set)(ψ = 2,z = 1) : τ elap

SDC (one)(ψ = 2,z = 1) ≈ 121

• τ elap
DMiss (one, sens38)(ψ = 2,z = 1) : τ elap

DMiss (set, sens38)(ψ = 2,z = 1) ≈ 8.5.

Note that miss based methods such as Misses (one) do not only provide accurate prediction

results, but also perform their predictions in a minimum amount of time. Contrarily, the

Prob method, which showed, for many cases of ψ and z, even better prediction accuracy

than miss based methods, takes much more time to perform a prediction.

3.4 Timing Performance (Cost) 139

Microseconds

1 10 100 1000 10000

MicrosecondsMicroseconds

DMiss (set, sens38)
DMiss (one, sens38)
DMiss (one)
Diff (one, two)
Diff (one, set, acc)
Diff (one, missrate)
Diff (set, mask)
Diff (one)
DMax (set, exp, acc, mask)
DMax (set, acc, mask)
DMax (one, set, acc)
DMax (set, mask)
DMax (one, set, inf)
DMax (one, set)
DMax (one)
Activity (set, mask)
Activity (set)
Activity (superset)
Miss rate

Misses (set, mask)
Misses (one)
Pain (set, sens38, misses)
Pain (set, misses)
Pain (set)
Pain (one, sens38, misses)
Pain (one, misses)
Pain (one, sens38)
Pain (one)
Width (set, mask, exp delta)
Width (set, mask)
Width (one)
Prob

SDC (lru set group)
SDC (set)
SDC (one)
FOA (set, mask)
FOA (set)
FOA (one)

2 4 8Number of processor cores:

Figure 38: Elapsed time to calculate predictions.

140 3 Evaluating the Prediction of Cache Contention

3.5 Gain vs. Cost Analysis

There might be situations where gain must outweigh cost in order to make the application

of cache contention prediction techniques reasonable. In other situations, there might

be less rigid requirements, for example, if there is a lot of computational performance

available, but the memory system is heavily overloaded.

In this section, I perform a gain vs. cost analysis by calculating the ratio of PPBRS gain

to cost τ elap(ψ,z = 1) according to

CG(ψ,z) =
PPBRS (ψ,z) ·z

τ elap(ψ, 1)
. (84)

Note that multiplicative term z is introduced to compensate for 1
z in equation 82. Fig-

ure 39 presents the gain vs. cost analysis. Values < 0.1 are cut off. Note that the figure

lets you estimate how many predictions can be performed until CG(ψ,z) gets ≤ 1. As

an example, for ψ = 2, Misses (one) allows for 2350 predictions if z = 229 (512 million

instructions), but only for 4 predictions in case z = 220 (1 million instructions).

As you can observe from figure 39, miss based methods such as Misses (one), Miss rate,

Pain (.., misses) as well as many variations of the Diff and DMiss methods show best

gain vs. cost ratio. The Prob method that achieved best prediction accuracy for many ψ

and z suffers from its complexity.

3.5 Gain vs. Cost Analysis 141

2 cores

0.1 1 10 1000

2 cores

4 cores

0.1 1 10 1000

4 cores 8 cores

0.1 1 10 1000

8 cores

8 cores

DMiss (set, sens38)

DMiss (one, sens38)

DMiss (one)

Diff (one, two)

Diff (one, set, acc)

Diff (one, missrate)

Diff (set, mask)

Diff (one)

DMax (set, exp, acc, mask)

DMax (set, acc, mask)

DMax (one, set, acc)

DMax (set, mask)

DMax (one, set, inf)

DMax (one, set)

DMax (one)

Activity (set, mask)

Activity (set)

Activity (superset)

Miss rate

Misses (set, mask)

Misses (one)

Pain (set, sens38, misses)

Pain (set, misses)

Pain (set)

Pain (one, sens38, misses)

Pain (one, misses)

Pain (one, sens38)

Pain (one)

Width (set, mask, exp delta)

Width (set, mask)

Width (one)

Prob

SDC (lru set group)

SDC (set)

SDC (one)

FOA (set, mask)

FOA (set)

FOA (one)

1 2 4 8 16 32 64 128 256 512Interval width [million instr.]:

Figure 39: Gain vs. cost analysis.

142 3 Evaluating the Prediction of Cache Contention

143

4 Conclusion

In this thesis, I evaluated cache contention prediction methods according to prediction

accuracy, the time necessary to perform a prediction, and a gain vs. cost analysis.

Applying a stack distance based notation on cache contention prediction techniques, I

showed that

• most state-of-the-art methods primarily rely on the number of cache accesses,

cache hits, or on the distribution of references to cache LRU stack positions as

predictor. This thesis revealed, however, that

• cache accesses, stand-alone cache hits and even distributions of cache LRU stack

reference distances are often inappropriate measures to predict cache contention,

as they primarily represent those memory references that are most recently used

and are therefore poor candidates to either be displaced from a cache or displace

any other cached data (cf. section 3.2, ‘Big Picture’). I discovered that

• a much better predictor for cache contention is the amount of stand-alone cache

misses. This applies to both the prediction of a candidate co-schedule ranking

with respect to the amount of cache contention candidate co-schedules intro-

duces to other applications, as well as to the selection of the co-schedule from a

given set of candidate co-schedules that minimizes cache contention. The high

prediction accuracy results from the high probability that stand-alone cache

misses displace cache LRU stack entries of other applications (cf. section 3.2,

‘Big Picture’). Additionally, my evaluation pointed out that

• most miss based methods do not only show superior prediction accuracy, but

are also very fast in execution and therefore achieve a good cost vs. gain ratio.

Based on these observations, I further showed that

• prediction on a per-cache-set basis does not achieve significantly better predic-

tion results than a prediction that uses a single predictor for all cache sets.

Additionally, I showed that

• an enhanced weighting of stack distance histogram entries does not achieve any

significant performance improvements.

144 4 Conclusion

145

Bibliography

[Baer and Wang, 1988] Baer, J.-L. and Wang, W.-H. (1988). On the inclusion properties for

multi-level cache hierarchies. In Proceedings of the 15th Annual International Symposium

on Computer Architecture, 1988, pages 73–80.

[Chandra et al., 2005] Chandra, D., Guo, F., Kim, S., and Solihin, Y. (2005). Predicting

inter-thread cache contention on a chip multi-processor architecture. Proceedings of the

11th International Symposium on High-Performance Computer Architecture, 2005, pages

340–351.

[Chen and Aamodt, 2009] Chen, X. E. and Aamodt, T. M. (2009). A first-order fine-

grained multithreaded throughput model. In Proceedings of the 15th Annual IEEE In-

ternational Symposium on High Performance Computing and Applications, 2009, pages

329–340.

[El-Moursy et al., 2006] El-Moursy, A., Garg, R., Albonesi, D., and Dwarkadas, S. (2006).

Compatible phase co-scheduling on a CMP on multi-threaded processors. In Proceedings

of the 20th International Parallel and Distributed Processing Symposium, 2006.

[Fedorova et al., 2010] Fedorova, A., Blagodurov, S., and Zhuravlev, S. (2010). Managing

contention for shared resources on multicore processors. Communications of the ACM,

53(2):49–57.

[Hammond et al., 1997] Hammond, L., Nayfeh, B. A., and Olukotun, K. (1997). A single-

chip multiprocessor. IEEE Computer, 30(9):79–85.

[Hill and Smith, 1989] Hill, M. D. and Smith, A. J. (1989). Evaluating associativity in

CPU caches. In IEEE Transactions on Computers, volume 38, pages 1612–1630.

[Huffmire and Sherwood, 2006] Huffmire, T. and Sherwood, T. (2006). Wavelet-based

phase classification. In Proceedings of the 15th International Conference on Parallel

Architectures and Compilation Techniques, 2006, pages 95–104.

[Kihm and Connors, 2004] Kihm, J. L. and Connors, D. A. (2004). Implementation of

fine-grained cache monitoring for improved SMT scheduling. In Proceedings of the IEEE

146 Bibliography

International Conference on Computer Design: VLSI in Computers & Processors, 2004,

pages 326–331.

[Kihm et al., 2005] Kihm, J. L., Settle, A., Janiszewski, A., and Connors, D. A. (2005).

Understanding the impact of inter-thread cache interference on ILP in modern SMT

processors. The Journal of Instruction-Level Parallelism, 7:1–28.

[Knauerhase et al., 2008] Knauerhase, R., Brett, P., Hohlt, B., Li, T., and Hahn, S. (2008).

Using OS observations to improve performance in multicore systems. IEEE Micro,

28(3):54–66.

[Luk et al., 2005] Luk, C.-K., Cohn, R., Muth, R., Patil, H., Klausner, A., Lowney, G.,

Wallace, S., Reddi, V. J., and Hazelwood, K. (2005). Pin: Building customized program

analysis tools with dynamic instrumentation. In Proceedings of the ACM SIGPLAN

Conference on Programming Language Design and Implementation, 2005, pages 190–

200.

[Mattson et al., 1970] Mattson, R. L., Gecsei, J., Slutz, D. R., and Traiger, I. L. (1970).

Evaluation techniques for storage hierarchies. IBM Systems Journal, 9(2):78–117.

[Olukotun et al., 1996] Olukotun, K., Nayfeh, B. A., Hammond, L., Wilson, K., and Chang,

K. (1996). The case for a single-chip multiprocessor. In Proceedings of the 7th Interna-

tional Conference on Architectural Support for Programming Languages and Operating

Systems, volume 30, pages 2–11.

[Otellini, 2006] Otellini, P. (2006). Keynote at Intel Developer Forum, Sept. 26, 2006.

[Settle et al., 2004] Settle, A., Kihm, J. L., Janiszewski, A., and Connors, D. A. (2004).

Architectural support for enhanced SMT job scheduling. In Proceedings of the 13th

International Conference of Parallel Architectures and Compilation Techniques, 2004,

pages 63 – 73.

[Sherwood et al., 2003] Sherwood, T., Perelman, E., Hamerly, G., Sair, S., and Calder, B.

(2003). Discovering and exploiting program phases. IEEE Micro: Micro’s Top Picks

from Microarchitecture Conferences, 23(6):84–93.

147

[Snavely and Tullsen, 2000] Snavely, A. and Tullsen, D. (2000). Symbiotic jobscheduling

for a simultaneous multithreading processor. In Proceedings of the 9th International

Conference on Architectural Support for Programming Languages and Operating Systems,

2000, pages 234–244.

[Song et al., 2007] Song, F., Moore, S., and Dongarra, J. (2007). L2 cache modeling for

scientific applications on chip multi-processors. In Proceedings of the 2007 International

Conference on Parallel Processing, pages 51–58.

[Suh et al., 2002] Suh, G., Devadas, S., and Rudolph, L. (2002). A new memory monitoring

scheme for memory-aware scheduling and partitioning. In Proceedings of the 8th Inter-

national Symposium on High-Performance Computer Architecture, 2002, pages 117–128.

[Tang et al., 2005] Tang, Y., Deng, K., and Zhou, X. (2005). The design space of CMP vs.

SMT for high performance embedded processor. In Yang, L., editor, Embedded Software

and Systems, volume 3820/2005 of Lecture Notes in Computer Science, pages 30–38.

Springer-Verlag, Berlin.

[Tullsen et al., 1995] Tullsen, D., Eggers, S., and Levy, H. (1995). Simultaneous multi-

threading: Maximizing on-chip parallelism. In Proceedings of the 22nd Annual Interna-

tional Symposium on Computer Architecture, pages 392–403.

[Wulf and McKee, 1995] Wulf, W. A. and McKee, S. A. (1995). Hitting the memory wall:

Implications of the obvious. ACM SIGARCH Computer Architecture News, 23(1):20–24.

[Zhuravlev et al., 2010] Zhuravlev, S., Blagodurov, S., and Fedorova, A. (2010). Addressing

shared resource contention in multicore processors via scheduling. In Proceedings of

the 15th Edition on Architectural Support for Programming Languages and Operating

Systems 2010, pages 129–141.

[Zwick, 2010a] Zwick, M. (2010a). Evaluation of cache contention prediction techniques:

Further results and plots. Technical report, Technische Universität München.

[Zwick, 2010b] Zwick, M. (2010b). Predicting memory phases. In Ao, S.-I., Rieger, B., and

Amouzegar, M. A., editors, Machine Learning and Systems Engineering, volume 68 of

Lecture Notes in Electrical Engineering, pages 411–421. Springer-Verlag, Berlin.

148 4 Conclusion

[Zwick, 2011] Zwick, M. (2011). Setvectors - an efficient method to predict cache contention.

In Ao, S.-I., Castillo, O., and Huang, X., editors, Intelligent Control and Computer En-

gineering, volume 70 of Lecture Notes in Electrical Engineering. Springer-Verlag, Berlin.

[Zwick et al., 2009a] Zwick, M., Durkovic, M., Obermeier, F., Bamberger, W., and Diepold,

K. (2009a). MCCCSim - A highly configurable multi core cache contention simulator.

Technical report, Technische Universität München.

[Zwick et al., 2009b] Zwick, M., Durkovic, M., Obermeier, F., and Diepold, K. (2009b).

Setvectors for memory phase classification. In Ao, S. I., Douglas, C., Grundfest, W. S.,

and Burgstone, J., editors, Proceedings of the World Congress on Engineering and Com-

puter Science 2009, volume I, pages 322–327. Newswood Limited, Hong Kong.

[Zwick et al., 2010] Zwick, M., Obermeier, F., and Diepold, K. (2010). Predicting cache

contention with Setvectors. In Ao, S. I., Castillo, O., Douglas, C., Dagan Feng, D., and

Lee, J.-A., editors, Proceedings of the International MultiConference of Engineers and

Computer Scientists 2010, volume I, pages 244–251. Newswood Limited, Hong Kong.

Cache Glossary 149

Appendix

Cache Glossary

byte offset

Memory reference m

.
.
.

SRAMTag-RAM

MSB LSB

. . .

. . .

. . .

. . .

. . .

. . .

. . .

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

ς(m)κ(m)

Starting point
cache way w

End point cache way

Cache line λ. . .
Line size |λ|Cache set s1

Cache set s2

Cache set s|S| Associativity α

Way size

.
.
.

|m| − ld|S| − ld|λ| Bit ld|S| Bit ld|λ| Bit

|m| Bit

A

B

C

D

Operations:

Example LRU Stack ζS
sj

for cache set sj if α = 4 :

|w| = |λ| · |S|

ζS
sj

(4)

ζS
sj

(3)

ζS
sj

(2)

ζS
sj

(1)

ζS
sj

(3) = C

ζS
sj
{C} = 3

Figure 40: Cache glossary.

150 Appendix

Stack Distance Histograms

Figure 41 shows stack distance histograms Hsd
a,ιzi for all a ∈ A; z = 229, i = 1, α = 8.

Note that these histograms represent all memory references I apply in my evaluation.

bzip2 gcc gobmk

astar

h264ref hmmer lbm

mcf milc povray

109

106

103

100

0

109

106

103

100

0

109

106

103

100

0

109

106

103

100

0

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

0
1

10
100
1 k

10 k
100 k

1 M
10 M

100 M
1 G

0
1

10
100
1 k

10 k
100 k

1 M
10 M

100 M
1 G

0
1

10
100
1 k

10 k
100 k

1 M
10 M

100 M
1 G

0
1

10
100
1 k

10 k
100 k

1 M
10 M

100 M
1 G

Hsd
a,ι�i

, � = 229, i = 1

High concentration: Hsd
a,ι�i

(1)�
α+1�

δ=2

Hsd
a,ι�i

(δ)

Figure 41: Stack distance histograms Hsd
a,ιzi for all a ∈ A; z = 229, i = 1.

Stack Distance Histograms 151

For smaller interval sizes z, stack distance histogram entries get thinned out and many

entries become 0. Note the high concentration of the histograms that makes hit and access

based methods perform poorly, while miss based methods generally show good prediction

performance.

bzip2 gcc gobmk

astar

h264ref hmmer lbm

mcf milc povray

109

106

103

100

0

109

106

103

100

0

109

106

103

100

0

109

106

103

100

0

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

0
1

10
100
1 k

10 k
100 k

1 M
10 M

100 M
1 G

0
1

10
100
1 k

10 k
100 k

1 M
10 M

100 M
1 G

0
1

10
100
1 k

10 k
100 k

1 M
10 M

100 M
1 G

0
1

10
100
1 k

10 k
100 k

1 M
10 M

100 M
1 G

Hsd
a,ι�i

, � = 220, i = 1

High concentration: Hsd
a,ι�i

(1)�
α+1�

δ=2

Hsd
a,ι�i

(δ)

Figure 42: Stack distance histograms Hsd
a,ιzi for all a ∈ A; z = 220, i = 1.

152 Appendix

Note that on per-cache-set stack distance histograms Hsd,S
a,ιzi,s, entries 2 . . . α are 0 for most

histograms. Due to spatial locality, there are even histograms that do not have a single

entry different from 0. Figure 43 shows per-cache-set stack distance histograms Hsd,S
a,ιzi,s

for all a ∈ A and z = 220, i = 1, s = 1.

bzip2 gcc gobmk

astar

h264ref hmmer lbm

mcf milc povray

109

106

103

100

0

109

106

103

100

0

109

106

103

100

0

109

106

103

100

0

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

0
1

10
100
1 k

10 k
100 k

1 M
10 M

100 M
1 G

0
1

10
100
1 k

10 k
100 k

1 M
10 M

100 M
1 G

0
1

10
100
1 k

10 k
100 k

1 M
10 M

100 M
1 G

0
1

10
100
1 k

10 k
100 k

1 M
10 M

100 M
1 G

Hsd,S
a,ι�i,s, � = 220, i = 1, s = 1

High concentration: Hsd,S
a,ι�i,s(1)�

α+1�

δ=2

Hsd,S
a,ι�i,s(δ)

Figure 43: Per-cache-set stack distance histograms Hsd,S
a,ιzi,s.

Distributions 153

Distributions

NMRD - Normalized Mean Ranking Difference

Figure 44 exemplarily shows NMRD distribution for FOA (one), a cache contention predic-

tion technique of rather poor accuracy, and Prob, a prediction technique of high accuracy.

You can see that Prob drops off much faster than FOA (one), i.e. there are much more

high (=poor) NMRD values for FOA (one) than for Prob.

0
1

10

100

1000

10000

Pain (set, sens38, misses)
2 cores

Pain (set, sens38, misses)
4 cores

Pain (set, sens38, misses)
8 cores

0
1

10

100

1000

10000

Prob
2 cores

Prob
4 cores

Prob
8 cores

0
1

10

100

1000

10000

SDC (lru set group)
2 cores

SDC (lru set group)
4 cores

SDC (lru set group)
8 cores

0
1

10

100

1000

10000

SDC (one)
2 cores

SDC (one)
4 cores

SDC (one)
8 cores

0.0 0.2 0.4 0.6 0.8 1.0

0
1

10

100

1000

10000

SDC (set)
2 cores

0.0 0.2 0.4 0.6 0.8 1.0

SDC (set)
4 cores

0.0 0.2 0.4 0.6 0.8 1.0

SDC (set)
8 cores

1 2 4 8 16 32 64 128 256 512Window_size:

NMRD [normalized differences per 1 M instructions]

Fr
eq

ue
nc

y

0
1

10

100

1000

10000

DMiss (one)
2 cores

DMiss (one)
4 cores

DMiss (one)
8 cores

0
1

10

100

1000

10000

DMiss (one, sens38)
2 cores

DMiss (one, sens38)
4 cores

DMiss (one, sens38)
8 cores

0
1

10

100

1000

10000

DMiss (set, sens38)
2 cores

DMiss (set, sens38)
4 cores

DMiss (set, sens38)
8 cores

0
1

10

100

1000

10000

FOA (one)
2 cores

FOA (one)
4 cores

FOA (one)
8 cores

0.0 0.2 0.4 0.6 0.8 1.0

0
1

10

100

1000

10000

FOA (set)
2 cores

0.0 0.2 0.4 0.6 0.8 1.0

FOA (set)
4 cores

0.0 0.2 0.4 0.6 0.8 1.0

FOA (set)
8 cores

1 2 4 8 16 32 64 128 256 512Window_size:

NMRD [normalized differences per 1 M instructions]

Fr
eq

ue
nc

y

0
1

10

100

1000

10000

Pain (set, sens38, misses)
2 cores

Pain (set, sens38, misses)
4 cores

Pain (set, sens38, misses)
8 cores

0
1

10

100

1000

10000

Prob
2 cores

Prob
4 cores

Prob
8 cores

0
1

10

100

1000

10000

SDC (lru set group)
2 cores

SDC (lru set group)
4 cores

SDC (lru set group)
8 cores

0
1

10

100

1000

10000

SDC (one)
2 cores

SDC (one)
4 cores

SDC (one)
8 cores

0.0 0.2 0.4 0.6 0.8 1.0

0
1

10

100

1000

10000

SDC (set)
2 cores

0.0 0.2 0.4 0.6 0.8 1.0

SDC (set)
4 cores

0.0 0.2 0.4 0.6 0.8 1.0

SDC (set)
8 cores

1 2 4 8 16 32 64 128 256 512Window_size:

NMRD [normalized differences per 1 M instructions]

Fr
eq

ue
nc

y

NMRD performance

F
re

q
u
e
n
c
y

Interval size [220 instructions]:

0
1

10

100

1000

10000

Pain (set, sens38, misses)
2 cores

Pain (set, sens38, misses)
4 cores

Pain (set, sens38, misses)
8 cores

0
1

10

100

1000

10000

Prob
2 cores

Prob
4 cores

Prob
8 cores

0
1

10

100

1000

10000

SDC (lru set group)
2 cores

SDC (lru set group)
4 cores

SDC (lru set group)
8 cores

0
1

10

100

1000

10000

SDC (one)
2 cores

SDC (one)
4 cores

SDC (one)
8 cores

0.0 0.2 0.4 0.6 0.8 1.0

0
1

10

100

1000

10000

SDC (set)
2 cores

0.0 0.2 0.4 0.6 0.8 1.0

SDC (set)
4 cores

0.0 0.2 0.4 0.6 0.8 1.0

SDC (set)
8 cores

1 2 4 8 16 32 64 128 256 512Window_size:

NMRD [normalized differences per 1 M instructions]

Fr
eq

ue
nc

y

Figure 44: NMRD distribution for the FOA (one) and the Prob techniques.

Note that I calculate NMRD values for NMRD distribution per co-schedule, i.e. per Ca,

and not per set of co-schedules, i.e. Ca, as it is performed in equation 75. Therefore,

I apply MRDmax = |Cψ
a | − 1. See [Zwick, 2010a] for NMRD distributions of all other

prediction methods.

154 Appendix

MP - Mean Penalty

Figure 45 exemplarily shows MP distribution for the low performing FOA (one) technique

and the high performing Prob technique. As it has been the case in NMRD distribution,

Prob drops off much faster than FOA (one).

0
1

10

100

1000

10000

100000

DMiss (one)
2 cores

DMiss (one)
4 cores

DMiss (one)
8 cores

0
1

10

100

1000

10000

100000

DMiss (one, sens38)
2 cores

DMiss (one, sens38)
4 cores

DMiss (one, sens38)
8 cores

0
1

10

100

1000

10000

100000

DMiss (set, sens38)
2 cores

DMiss (set, sens38)
4 cores

DMiss (set, sens38)
8 cores

0
1

10

100

1000

10000

100000

FOA (one)
2 cores

FOA (one)
4 cores

FOA (one)
8 cores

0 1 10 100 1000

0
1

10

100

1000

10000

100000

FOA (set)
2 cores

0 1 10 100 1000

FOA (set)
4 cores

0 1 10 100 1000

FOA (set)
8 cores

1 2 4 8 16 32 64 128 256 512Window size [M instr.]:

Mean Penalty [microseconds per 1 M instructions]

Fr
eq

ue
nc

y

0
1

10

100

1000

10000

100000

Pain (set, sens38, misses)
2 cores

Pain (set, sens38, misses)
4 cores

Pain (set, sens38, misses)
8 cores

0
1

10

100

1000

10000

100000

Prob
2 cores

Prob
4 cores

Prob
8 cores

0
1

10

100

1000

10000

100000

SDC (lru set group)
2 cores

SDC (lru set group)
4 cores

SDC (lru set group)
8 cores

0
1

10

100

1000

10000

100000

SDC (one)
2 cores

SDC (one)
4 cores

SDC (one)
8 cores

0 1 10 100 1000

0
1

10

100

1000

10000

100000

SDC (set)
2 cores

0 1 10 100 1000

SDC (set)
4 cores

0 1 10 100 1000

SDC (set)
8 cores

1 2 4 8 16 32 64 128 256 512Window size [M instr.]:

Mean Penalty [microseconds per 1 M instructions]

Fr
eq

ue
nc

y

0
1

10

100

1000

10000

100000

Pain (set, sens38, misses)
2 cores

Pain (set, sens38, misses)
4 cores

Pain (set, sens38, misses)
8 cores

0
1

10

100

1000

10000

100000

Prob
2 cores

Prob
4 cores

Prob
8 cores

0
1

10

100

1000

10000

100000

SDC (lru set group)
2 cores

SDC (lru set group)
4 cores

SDC (lru set group)
8 cores

0
1

10

100

1000

10000

100000

SDC (one)
2 cores

SDC (one)
4 cores

SDC (one)
8 cores

0 1 10 100 1000

0
1

10

100

1000

10000

100000

SDC (set)
2 cores

0 1 10 100 1000

SDC (set)
4 cores

0 1 10 100 1000

SDC (set)
8 cores

1 2 4 8 16 32 64 128 256 512Window size [M instr.]:

Mean Penalty [microseconds per 1 M instructions]

Fr
eq

ue
nc

y

0
1

10

100

1000

10000

100000

DMiss (one)
2 cores

DMiss (one)
4 cores

DMiss (one)
8 cores

0
1

10

100

1000

10000

100000

DMiss (one, sens38)
2 cores

DMiss (one, sens38)
4 cores

DMiss (one, sens38)
8 cores

0
1

10

100

1000

10000

100000

DMiss (set, sens38)
2 cores

DMiss (set, sens38)
4 cores

DMiss (set, sens38)
8 cores

0
1

10

100

1000

10000

100000

FOA (one)
2 cores

FOA (one)
4 cores

FOA (one)
8 cores

0 1 10 100 1000

0
1

10

100

1000

10000

100000

FOA (set)
2 cores

0 1 10 100 1000

FOA (set)
4 cores

0 1 10 100 1000

FOA (set)
8 cores

1 2 4 8 16 32 64 128 256 512Window size [M instr.]:

Mean Penalty [microseconds per 1 M instructions]

Fr
eq

ue
nc

y

Interval size [220 instructions]:

MP performance

F
re

q
u
e
n
c
y

Figure 45: MP distribution for the FOA (one) and the Prob techniques.

Figure 46 shows how values in figure 45 have to be interpreted. Beginning from 1, both

axis are of logarithmic scale. See [Zwick, 2010a] for further information and distributions.

0/1

10

100

1000

10000

100000

Setvector (dmax)
2 cores

Setvector (dmax)
4 cores

Setvector (dmax)
8 cores

0/1

10

100

1000

10000

100000

Setvector (dmax, mask)
2 cores

Setvector (dmax, mask)
4 cores

Setvector (dmax, mask)
8 cores

0/1

10

100

1000

10000

100000

Setvector (dmax x acc, mask)
2 cores

Setvector (dmax x acc, mask)
4 cores

Setvector (dmax x acc, mask)
8 cores

0/1

10

100

1000

10000

100000

Setvector (exp diff1)
2 cores

Setvector (exp diff1)
4 cores

Setvector (exp diff1)
8 cores

0 1 10 100 1000

0/1

10

100

1000

10000

100000

Setvector (exp dmax x acc, mask)
2 cores

0 1 10 100 1000

Setvector (exp dmax x acc, mask)
4 cores

0 1 10 100 1000

Setvector (exp dmax x acc, mask)
8 cores

1 2 4 8 16 32 64 128 256 512Window_size:

Penalty [microseconds per 1 M instructions]

Fr
eq

ue
nc

y

Values on this line,
like this point
represent
frequency in
this interval,
i.e.

This point
represents the
frequency in this interval

Values on
this line
represent
frequency in
this interval,
i.e. [0, 100). [103.3,∞).

Ticks indicate intervals

Figure 46: MP distribution glossary.

List of Symbols and Abbrevations 155

List of Symbols and Abbrevations

Symbol Meaning

← Assignment operator used in algorithms; a← b means that the value of b is

assigned to a

7→ Maps to; a 7→ b means that a is mapped to b; in the context of algorithm

description, a 7→ b means that variable a in the algorithm has to be

replaced by variable b

= Compare and assignment operator; in equations, I apply ‘=’ both as

assignment and compare operator, depending on the context; in algorithms,

I apply ‘=’ to compare two values; then, ‘=’ returns either true or false

b op c ? d : e Conditional value; op is any operation that returns a boolean value, for

example <,≥, . . . ; if b op c is true, then the whole expression is replaced

by the value of d; otherwise, it is replaced by the value of e

α Cache associativity, i.e. the number of cache lines per cache set

α′Ca,ιzi Effective cache associativity introduced to application a when sharing the

cache with applications Ca in interval ιzi

ℵGa,ιzi Activity vector of size 2 · |G| = 64 bit; ℵGa,ιzi =
[
ℵacc,Ga,ιzi ℵmiss,Ga,ιzi

]

ℵacc,Ga,ιzi Activity vector for cache accesses of size |G| = 32 bit

ℵmiss,Ga,ιzi Activity vector for cache misses of size |G| = 32 bit

ℵSa,ιzi Activity vector of size 2 · |S| = 4096 bit; ℵSa,ιzi =
[
ℵacc,Sa,ιzi ℵmiss,Sa,ιzi

]

ℵacc,Sa,ιzi Activity vector for cache accesses of size |S| = 2048 bit

ℵmiss,Sa,ιzi Activity vector for cache misses of size |S| = 2048 bit

a Application

A Set of SPEC 2006 test benchmark suite applications I employ for

evaluation; A = { astar, bzip2, gcc, gobmk, h264ref, hmmer, lbm, mcf,

milc, povray }
A\{a} Set of applications without application a

|A| Number of applications in set A

Continued on next page

156 Appendix

Symbol Meaning

A′ Set of applications ∈ A that are executed in parallel on the architecture

presented in figure 20. Note that each application ∈ A′ is executed on a

separate core and the number of cores equals the number of applications,

i.e. ψ = |A′|
API Application programming interface

β Base of an exponential function

ca, ca,j Application that gets co-scheduled with application a; ca,j ∈ Ca
Ca, Ca,j Set of applications Ca = {ca,1 . . . , ca,|Ca|} that get co-scheduled with

application a; in my evaluation, {a} ∪ Ca is the set of applications that

concurrently get co-scheduled and permanently contend for shared cache

Ca, Cψ
a Set of candidate co-schedules for application a;

Ca = Cψ
a = {Cψa,1, . . . Cψa,|Ca|}; C

ψ
a,j = {ca,1, . . . ca,ψ−1} refers to one of

several sets of applications that are co-scheduled with a; note that I refer

to Cψa,j and Ca interchangeably; generally, Cψ
a = C(A\{a}, ψ − 1)

C(A,ψ) Operator that returns all possible combinations of elements in set A that

have length ψ ≤ |A|; C(A,ψ) =
{
{a′1, a′2, . . . a′ψ}

∣∣ a′i ∈ A\{a′1, a′2, . . . a′i−1}
}

|C(A,ψ)| Number of all combinations of elements in set A of length ψ; ψ ≤ |A|
cseq(δ, ν) Circular sequence; a circular sequence cseq(δ, ν) is a sequence seq(δ, ν)

whose first and last reference map to the same cache line and there is no

other reference in the sequence that maps to that cache line

CMP Chip multiprocessor; chip multiprocessing

δ Distance in a stack distance histogram

δmax,Sa,ιzi,s Index of the last entry of a stack distance histogram Hsd,S
a,ιzi,s that is

different from 0; generally 1 ≤ δmax,Sa,ιzi,s ≤ α
z Window size, also named interval size or interval width; relates to the

number of instructions an application executes in an interval; z ∈ zz

zz Set of interval widths; zz = {220, 221, 222, 223, 224, 225, 226, 227, 228, 229}
DRAM Dynamic random access memory

Continued on next page

List of Symbols and Abbrevations 157

Symbol Meaning

E(νca,ιzi(δ)) Expected number of memory accesses that application ca performs in the

time that application a, on average, takes to refer to δ different cache lines

γ(s) Operation that transforms the address of a cache set to an address of a

cache group; γ(s) = (s− 1) · |G||S| + 1

G Set of groups; G = {g1, . . . g|G|}
|G| Number of groups; Activity vector method: |G| = 32; SDC method,

variation ‘lru set group’: |G| = 16

CG(ψ,z) Gain vs. cost evaluation function

Ha,ιzi Histogram representing any information related to application a, interval

ιzi; if it is said that histogram Ha,ιzi is of capacity D,D ∈ N+, then Ha,ιzi

can hold up to D elements ∈ N+
0 ; if Ha,ιzi is said to be a three dimensional

histogram of capacity D ×N,D ∈ N+, N ∈ N+, then Ha,ιzi can hold up to

D ·N elements ∈ N+
0

Ha,ιzi(δ) Operation that references histogram element at position δ;

Ha,ιzi(δ, ν) Operation that references histogram element at position δ, ν in a three

dimensional histogram;1 ≤ δ ≤ D and 1 ≤ ν ≤ N , unless otherwise noted

Hsd
a,ιzi Stack distance histogram of capacity α+ 1; entries δ ∈ {1, 2 . . . α} hold the

number of references of application a in execution interval ιzi that map to

the δ most recently used cache line of any cache set; Hsd
a,ιzi(α+ 1) holds the

number of misses of application a in ιzi

Hsd,S
a,ιzi,s Stack distance histogram of capacity α+ 1 that holds stack distance

information for application a, interval ιzi that relate to cache set s

Hsd,ext
a,ιzi Stack distance histogram of extended size α · |G| for application a,

execution interval ιzi

ιz Tuple of intervals of window size z each; ιz = (ιz1, . . . ιz|ιz|)

|ιz| Number of intervals in case interval size = z; |ιz| = 229

z

ιzi Interval i in the tuple of intervals ιz; ιzi ∈ ιz
Continued on next page

158 Appendix

Symbol Meaning

κL1C(m) Operation that extracts the key part of a memory address m for a private

L1 cache; given a cache of way size w, then κL1C(m) = m/w; generally,

κL1C(m) ≥ 0

κL2C
a (m) Operation that extracts the key part of a memory address m of an

application a for a shared L2 cache; given a cache of way size w, then

κL2C
a (m) = m/w+ h(a) · 2|λ|·αL2C·|SL2C|; h(a) ∈ {1, 2, . . . |A|} is the operation

that returns a unique hash for each a ∈ A; αL2C is the associativity of the

cache, |SL2C| the number of cache sets, and |λ| the size of a cache line; note

that ∀ai,aj ∈A, ai 6=aj : @mi,mj : κL2C
ai (mi) = κL2C

aj (mj) and ∀m : κL2C
a (m) ≥ 0

κa,ιzi Number of different keys of application a, interval ιzi that map to identical

cache set

κSa,ιzi,s Number of different keys of application a, interval ιzi that map to the

same cache set s

l Word length in byte; l = 4

λ Cache line

|λ| Size of a cache line in byte

Λ Set of cache lines {λ1, . . . λ|Λ|}
L1C Level 1 cache

L1T Level 1 TLB

L2C Level 2 cache

L2T Level 2 TLB

LRU Least recently used

LSB Least significant bit

µ Cache miss

m Memory reference, also named memory address or simply address or

reference

|m| Word length of an address in bits; |m| = 32

mod Modulo operation

Ma Tuple of memory references Ma = (ma,1,ma,2, . . .) of an application a

Continued on next page

List of Symbols and Abbrevations 159

Symbol Meaning

|Ma| Number of references in Ma

Ma,ιz Ma,ιz = (Ma,ιz1 , . . .Ma,ιz|Ma,ιz |) is the tuple that holds |Ma,ιz | tuples of

memory references Ma,ιzi , where each Ma,ιzi refers to memory references

that originate from z instructions; ∀z∈zz :
∑|Ma,ιz |

i=1 |Ma,ιzi | = |Ma|
|Ma,ιz | Number of intervals of window size z in Ma; generally, ∀a∈A : |Ma,ιz | = |ιz|
Ma,ιzi Tuple of memory references (ma,ιzi,1, . . . ,ma,ιzi,|Ma,ιzi |) of application a in

execution interval ιzi; holds memory references that originate from

instructions i ·z . . . (i+ 1) ·z− 1 of application a; Ma,ιzi ⊆Ma

|Ma,ιzi | Number of memory references of application a in interval ιzi; please note

the difference: While |ιzi| = z refers to the number of instructions in an

interval ιzi and is independent of any application, |Ma,ιzi | refers to the

number of memory references of an application a ∈ A in execution interval

ιzi and is specific to each a ∈ A
Mem Main memory (random access memory)

MMU Memory management unit

MP(ψ,z) Mean penalty evaluation metric; evaluates cache contention prediction

techniques

MRU Most recently used

MSB Most significant bit

NMRD(ψ,z) Normalized Mean Ranking Difference; measure to evaluate general ranking

performance

ν Number of references to a cache or a cache set in a sequence seq(δ, ν) or

circular sequence cseq(δ, ν);

νmax Maximum number of references that are considered in a sequence seq(δ, ν)

or circular sequence cseq(δ, ν)

νa,ιzi Average number of memory references of application a in interval ιzi that

occur when a accesses δ different cache lines per set

Ω Relative offset/threshold applied to distinguish between set/groups of high

activity and low activity respectively; Ω = 3
4

Continued on next page

160 Appendix

Symbol Meaning

Ωacc,G
z Threshold; number of references to a group of cache sets that are necessary

to tag a group as ‘highly active’ with respect to memory references

Ωacc,S
z Threshold; number of references to a cache set that are necessary to tag a

cache set as ‘highly active’ with respect to memory accesses

Ωmiss,G
z Threshold; number of stand-alone cache misses that have to occur in a

group of cache sets in order to tag that group of cache sets as ‘highly

active’ with respect to cache misses

Ωmiss,S
z Threshold; number of stand-alone cache misses that have to occur in a

cache set in order to tag that cache set as ‘highly active’ with respect to

cache misses

π Penalty

πCa,ιzi Penalty introduced from co-schedule Ca to application a in execution

interval ιzi; πCa,ιzi = tCa,ιzi − ta,ιzi
πCa,ιzi

(ρ) Penalty the candidate co-schedule in Ca that has ranking position ρ

introduces to application a in execution interval ιzi

$ Memory page

$a(m) Operation that returns the page address of a memory reference m of

application a; $a(m) = (m mod |$|) + h(a) · 2|m|−ld(|$|), where

h(a) ∈ {1, 2, . . . |A|} is the operation that returns a unique hash for each

a ∈ A and |$| is the page size; note that ∀ai,aj∈A : ai 6= aj ⇒ @mi,mj :

$ai(mi) = $aj (mj) and ∀a∈A,dld(|A|)e<ld($) : $a(m) ≥ 0

|$| Page size measured in byte; |$| = 212

ψ Parallelism applied when evaluating cache contention prediction methods;

ψ ∈ ψψψ = {2, 4, 8}; given ψ, the applied processor consists of ψ processor

cores, each featuring a privat L1 cache, while all ψ cores share a common

L2 cache, as it is demonstrated in figure 20

ψψψ Set of parallelisms applied in the evaluation; ψψψ = {2, 4, 8}
pCa,ιzi Prediction of cache contention the applications in Ca introduce to

application a in interval ιzi

Continued on next page

List of Symbols and Abbrevations 161

Symbol Meaning

PPBAB Penalty Predicted Best vs. Actual Best

PPBRS Penalty Predicted Best vs. Random Selection; equivalent to gain

ρ Ranking position; 1 ≤ ρ ≤ |Cψ
a |

ρsim
Ca,ιzi Simulated ranking position of candidate co-schedule Ca in interval ιzi

ρpred
Ca,ιzi

Predicted ranking position of candidate co-schedule Ca in interval ιzi

RAM Random access memory

s Cache set

S Set of cache sets; S = {s1 . . . s|S|}
|S| Number of cache sets of a processor cache

ς(m) Operation that extracts the set address s from a memory reference m;

given a cache of way size |w| and line size |λ|, then

ς(m) = ((m/|λ|) mod (|w|/|λ|)) + 1; note that 1 ≤ ς(m) ≤ |S|
seq(δ, ν) Sequence of memory references; δ represents the number of memory

references within the sequence that map to the same cache set, but to a

different cache line; ν represents the total number of memory references

within the sequence

SMT Simultaneous multithreading

ta,ιzi Time application a spends on memory accesses in execution interval ιzi,

when a is executed in absence of any other application (stand-alone)

tCa,ιzi Time application a spends on memory accesses in execution interval ιzi,

when a is co-scheduled with applications Ca

TLB Translation look-aside buffer

w Cache way

|w| Way size of a processor cache in byte

ξSCa,ιzi,s Masking element that indicates if the sum of the number of different keys

of applications {a} ∪ Ca that are mapped to cache set s exceed

associativity α of the cache (ξ = 1) or not (ξ = 0)

ζ Stack; if it is said that stack ζ is of capacity K,K ∈ N+, then ζ can hold

up to K elements

Continued on next page

162 Appendix

Symbol Meaning

ζ(δ) Operation that references the element at stack position δ; if K is the

capacity of the stack, then 1 ≤ δ ≤ K
ζ{x} Operation that returns the stack position of element x according to

ζ{x} =

{
δ, if ∃ δ, 1 ≤ δ ≤ K : ζ(δ) = x

K + 1, if @ δ, 1 ≤ δ ≤ K : ζ(δ) = x;
(85)

if there is more than one δ with ζ(δ) = x, then the δ with the least value is

returned; K is the capacity of the stack

ζS Set of LRU stacks; ζS = {ζS1 , . . . ζS|S|}; each ζSs is of capacity α

