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1. Introduction.This paper is concerned with estimation for continuous-time Gaussian autoregressions,both linear and non-linear, based on observations made at closely-spaced times. Theidea is to use the exact conditional probability density of the (p � 1)st derivative of anautoregression of order p with respect to Wiener measure in order to �nd exact conditionalmaximum likelihood estimators of the parameters under the assumption that the processis observed continuously. The resulting estimates are expressed in terms of stochasticintegrals which are then approximated using the available discrete-time observations.In Section 2 we de�ne the continuous-time AR(p) (abbreviated to CAR(p)) processdriven by Gaussian white noise and briey indicate the relation between the CAR(p) pro-cess fY (t); t � 0g and the sampled process fY (h)n := Y (nh); n = 0; 1; 2; : : :g. The processfY (h)n g is a discrete-time ARMA process, a result employed by Phillips (1959) to obtainmaximum likelihood estimates of the parameters of the continuous-time process based onobservations of fY (h)n ; 0 � nh � Tg. From the state-space representation of the CAR(p)process it is also possible to express the likelihood of observations of fY (h)n g directly interms of the parameters of the CAR(p) process and thereby to compute maximum likeli-hood estimates of the parameters as in Jones (1981) and Bergstrom (1985). For a CAR(2)process we use the asymptotic distribution of the maximum likelihood estimators of thecoe�cients of the ARMA process fY (h)n g to derive the asymptotic distribution, as �rstT ! 1 and then h ! 0, of the estimators of the coe�cients of the underlying CARprocess.In Section 3 we derive the probability density with respect to Wiener measure ofthe (p � 1)st derivative of the (not-necessarily linear) autoregression of order p. Thisforms the basis for the inference illustrated in Sections 4, 5 and 6. In the non-linearexamples considered we restrict attention to continuous-time threshold autoregressive(CTAR) processes, which are continuous-time analogues of the discrete-time thresholdmodels of Tong (1983).In Section 4 we apply the results to (linear) CAR(p) processes, deriving explicit ex-pressions for the maximum likelihood estimators of the coe�cients and illustrating theperformance of the approximations when the results are applied to a discretely observedCAR(2) process. In Section 5 we consider applications to CTAR(1) and CTAR(2) pro-cesses with known threshold and in Section 6 we show how the technique can be adaptedto include estimation of the threshold itself. The technique is also applied to the analysisof the Canadian lynx trappings, 1821 - 1934,2. The Gaussian CAR(p) and corresponding sampled processes.2



A continuous-time Gaussian autoregressive process of order p > 0 is de�ned symboli-cally to be a stationary solution of the stochastic di�erential equation,(2:1) a(D)Y (t) = bDW (t);where a(D) = Dp+a1Dp�1+ � � �+ap, the operator D denotes di�erentiation with respectto t and fW (t); t � 0g is standard Brownian motion. Since DW (t) does not exist as arandom function, we give meaning to equation (2.1) by rewriting it in state-space form,(2:2) Y (t) = (b; 0; : : : ; 0)X(t);where the state vector X(t) = (X0(t); : : : ; Xp�1(t))T satis�es the Itô equation,(2:3) dX(t) = AX(t)dt+ edW (t);with A = 26666664 0 1 0 � � � 00 0 1 � � � 0... ... ... . . . ...0 0 0 � � � 1�ap �ap�1 �ap�2 � � � �a1
37777775 and e = 26666664 00...01

37777775 :From equation (2.3) we see that Xj(t) is the jth mean-square and pathwise deriva-tive DjX0(t); j = 0; : : : ; p � 1. We are concerned in this paper with inference for theautoregressive coe�cients, a1; : : : ; ap, based on observations of the process Y at times0; h; 2h; : : : ; h[T=h], where h is small and [x] denotes the integer part of x.One approach to this problem, due to Phillips (1959), is to estimate the coe�cientsof the discrete-time ARMA process fY (h)n := Y (nh); n = 0; 1; 2; : : :g and from theseestimates to obtain estimates of the coe�cients a1; : : : ; ap in equation (2.1). The sampledprocess fY (h)n g is a stationary solution of the Gaussian ARMA(p0; q0) equations,(2:4) �(B)Y (h)n = �(B)Zn; fZng �WN(0; �2);where �(B) and �(B) are polynomials in the backward shift operator B of orders p0 andq0 respectively, where p0 � p and q0 < p0. (For more details see, e.g., Brockwell (1995).)An alternative approach is to use equations (2.2) and (2.3) to express the likelihoodof observations of fY (h)n g directly in terms of the parameters of the CAR(p) process andthen to compute numerically the maximum likelihood estimates of the parameters as inJones (1981) and Bergstrom (1985).In this paper we take a di�erent point of view by assuming initially that the processY is observed continuously on the interval [0; T ]. Under this assumption it is possible to3



calculate exact (conditional on X(0)) maximum likelihood estimators of a1; : : : ; ap. Todeal with the fact that observations are made only at times 0; h; 2h; : : : , we approximatethe exact solution based on continuous observations using the available discrete-timeobservations. This approach has the advantage that for very closely spaced observationsit performs well and is extremely simple to implement.This idea can be extended to non-linear (in particular threshold) continuous-timeautoregressions. We illustrate this in Sections 4, 5 and 6. The assumption of uniformspacing, which we make in all our examples, can also be relaxed providing the maximumspacing between observations is small.Before considering this alternative approach, we �rst examine the method of Phillips asapplied to CAR(2) processes. This method has the advantage of requiring only the �ttingof a discrete-time ARMA process to the discretely observed data and the subsequenttransformation of the estimated coe�cients to continuous-time equivalents. We derive theasymptotic distribution of these estimators as �rst T !1 and then h! 0.Example 1. For the CAR(2) process de�ned by(D2 + a1D + a2)Y (t) = bDW (t);the sampled process fY (h)n = Y (nh); n = 0; 1; : : :g satis�esY (h)n � �(h)1 Y (h)n�1 � �(h)2 Y (h)n�2 = Zn + �(h)Zn�1; fZtg �WN(0; �2(h)):For �xed h, as T !1, the maximum likelihood estimator of � = (�(h)1 ; �(h)2 ; �(h))T basedon observations Y (h)1 ; : : : ; Y (h)[T=h] satis�es (see Brockwell and Davis (1991), p.258)(2:5) pT=h(�̂ � �)) N(0;M(�)):where(2:6) M(�) = �2 " EUtUTt EVtUTtEUtVTt EVtVTt #�1 ;and the random vectors Ut and Vt are de�ned as Ut = (Ut; : : : ; Ut+1�p)T and Vt =(Vt; : : : ; Vt+1�q)T , where fUtg and fVtg are stationary solutions of the autoregressive equa-tions,(2:7) �(B)Ut = Zt and �(B)Vt = Zt:In order to determine the asymptotic behaviour as T !1 of the maximum likelihoodestimators (�̂1(h); �̂2(h)), we consider the top left 2�2 submatrix M2 of the matrix M .For small h we �nd that M2 has the representation,(2:8) M2 = " 1 �1�1 1 # (2a1h+ 2p3(2�p3)a21h2 + 43(2�p3)a31h3)4



+" 0 11 0 # a1a2h3 +O(h4) as h! 0:The mapping from (�1; �2) to (a1; a2) is as follows:a1 = � log(��2)=h;a2 = 1h2 log �12 +r�214 + �2! log �12 �r�214 + �2! :The matrix C = " @a1@�1 @a1@�2@a2@�1 @a2@�2 #therefore has the asymptotic expansion(2:9) C = 24 0 1h �1 + a1h+ a212 h2 + � � ��� 1h2 �1 + a12 h+ a21+2a212 h2 + � � �� � 1h2 �1 + a12 h + a21�4a212 h2 + � � �� 35 :From (2.8) and (2.9) we �nd that(2:10) CM2CT = 1h " 2a1 00 2a1a2 # (1 + o(1)) as h! 0:and hence, from (2.5) that the maximum likelihood estimator â of a = (a1; a2)T based onobservations of Y at times 0; h; 2h; : : : ; h[T=h], satis�espT (â� a)) N(0; V ); as T !1;where(2:11) V = " 2a1 00 2a1a2 # (1 + o(1)) as h! 0:Remark 1. Since the moving average coe�cient �(h) of the sampled process is also afunction of the parameters a1 and a2, and hence of �(h)1 and �(h)2 , the question arises as towhether the discrete-time likelihood maximization should be carried out subject to theconstraint imposed by the functional relationship between �(h)1 ; �(h)2 and �(h). However,as we shall see, the unconstrained estimation which we have considered in the precedingexample leads to an asymptotic distribution of the estimators which, as h! 0, convergesto that of the maximum likelihood estimators based on the process observed continuouslyon the interval [0; T ]. This indicates, at least asymptotically, that there is no gain in usingthe more complicated constrained maximization of the likelihood, so that widely availablestandard ARMA �tting techniques can be used.5



Remark 2. As the spacing h converges to zero, the autoregressive roots exp(��jh)converge to 1, leading to numerical di�culties in carrying out the discrete-time maxi-mization. For this reason we consider next an approach which uses exact results for thecontinuously observed process to develop approximate maximum likelihood estimatorsfor closely-spaced discrete-time observations. The same approach can be used not onlyfor linear continuous-time autoregressions, but also for non-linear autoregressions such ascontinuous-time analogues of the threshold models of Tong (1983).3. Inference for Continuously Observed AutoregressionsWe now consider a more general form of (2.1), i.e.(3:1) (Dp + a1Dp�1 + � � �+ ap)Y (t) = b(DW (t) + c);in which we allow the parameters a1; : : : ; ap and c to be bounded measurable functionsof Y (t) and assume that b is constant. In particular if we partition the real line intosubintervals, (�1; y1], (y1; y2]; : : : , (ym;1), on each of which the parameter values areconstant, then we obtain a continuous-time analogue of the threshold models of Tong(1983) which we shall refer to as a CTAR(p) process. Continuous-time threshold modelshave been used by a number of authors (e.g. Tong and Yeung (1991), Brockwell andWilliams (1997)) for the modelling of �nancial and other time series).The equation (3.1) has a state space representation analogous to (2.2) and (2.3),namely(3:2) Y (t) = bX0(t);where(3:3) dX0 = X1(t)dt;dX1 = X2(t)dt;...dXp�2 = Xp�1(t)dt;dXp�1 = [�apX0(t)� � � � � a1Xp�1(t) + c]dt+ dW (t);and we have abbreviated ai(Y (t)) and c(Y (t)) to ai and c respectively. We show next that(3.3) with initial condition X(0) = x = (x0; x1; � � � ; xp�1)T has a unique (in law) weaksolution X = (X(t); 0 � t � T ) and determine the probability density of the randomfunction Xp�1 = (Xp�1(t); 0 � t � T ) with respect to Wiener measure. For parameterizedfunctions ai and c, this allows the possibility of maximization of the likelihood, condi-tional on X(0) = x, of fXp�1(t); 0 � t � Tg. Of course a complete set of observations6



of fXp�1(t); 0 � t � Tg is not generally available unless X0 is observed continuously.Nevertheless the parameter values which maximize the likelihood of fXp�1(t); 0 � t � Tgcan be expressed in terms of observations of fY (t); 0 � t � Tg as described in subse-quent sections. If Y is observed at discrete times, the stochastic integrals appearing in thesolution for continuously observed autoregressions will be approximated by correspond-ing approximating sums. Other methods for dealing with the problem of estimation forcontinuous-time autoregressions based on discrete-time observations are considered byStramer and Roberts (2004) and by Tsai and Chan (1999, 2000).Assuming that X(0) = x, we can write X(t) in terms of fXp�1(s); 0 � s � tg usingthe relations, Xp�2(t) = xp�2 + R t0 Xp�1(s)ds, : : : , X0(t) = x0 + R t0 X1(s)ds. The resultingfunctional relationship will be denoted by(3:4) X(t) = F(Xp�1; t):Substituting from (3.4) into the last equation in (3.3), we see that it can be written inthe form,(3:5) dXp�1 = G(Xp�1; t)dt+ dW (t);where G(Xp�1; t), like F(Xp�1; t), depends on fXp�1(s); 0 � s � tg.Now let B be standard Brownian motion (with B(0) = xp�1) de�ned on the probabilityspace (C[0; T ];B[0; T ]; Pxp�1) and, for t � T , let Ft = �fB(s); s � tg_N , where N is thesigma-algebra of Pxp�1-null sets of B[0; T ]. The equations(3:6) dZ0 = Z1dt;dZ1 = Z2dt;...dZp�2 = Zp�1dt;dZp�1 = dB(t);with Z(0) = x = (x0; x1; � � � ; xp�1)T , clearly have the unique strong solution, Z(t) =F(B; t); where F is de�ned as in (3.4). Let G be the functional appearing in (3.5) andsuppose that Ŵ is the Ito integral de�ned by Ŵ (0) = xp�1 and(3:7) dŴ (t) = �G(B; t)dt+ dB(t) = �G(Zp�1; t)dt+ dZp�1(t):For each T , we now de�ne a new measure P̂x on FT by(3:8) dP̂x = M(B; T )dPxp�1;where(3:9) M(B; T ) = exp ��12 Z T0 G2(B; s)ds+ Z T0 G(B; s)dW (s)� :7



Then by the Cameron-Martin-Girsanov formula (see e.g. O= ksendal (1998), p.152), fŴ (t);0 � t � Tg is standard Brownian motion under P̂x. Hence we see from (3.7) that theequations (3.5) and (2.3) with initial condition X(0) = x have, for t 2 [0; T ], the weaksolutions (Zp�1(t); Ŵ (t)) and (Z(t); Ŵ (t)) respectively. Moreover, by Proposition 5.3.10of Karatzas and Shreve (1991), the weak solution is unique in law, and by Theorem 10.2.2of Stroock and Varadhan (1979) it is non-explosive.If f is a bounded measurable functional on C[0; T ],Êxf(Zp�1) = Exp�1(M(B; T )f(B))= Z f(�)M(�; T )dPxp�1(�):In other words, M(�; T ) is the density at � 2 C[0; T ], conditional on X(0) = x, ofthe distribution of Xp�1 with respect to the Wiener measure Pxp�1 and, if we observedXp�1 = �, we could compute conditional maximum likelihood estimators of the unknownparameters by maximizing M(�; T ).4. Estimation for CAR(p) ProcessesFor the CAR(p) process de�ned by (2.1), if fx(s) = (x0(s); x1(s); : : : ; xp�1(s))T ; 0 �s � Tg denotes the realized state process on the interval [0; T ], we have, in the notationof Section 3,(4:1) �2 logM(xp�1; s) = Z T0 G2ds� 2 Z T0 Gdxp�1(s);where(4:2) G = �a1xp�1(s)� a2xp�2(s)� � � � � apx0(s):Di�erentiating logM partially with respect to a1; : : : ; ap and setting the derivatives equalto zero gives the maximum likelihood estimators, conditional on X(0) = x(0),(4:3) 264 â1...̂ap 375 = �264 R T0 x2p�1ds � � � R T0 xp�1x0ds... . . . ...R T0 xp�1x0ds � � � R T0 x20ds 375�1 264 R T0 xp�1dxp�1...R T0 x0dxp�1 375 :Note that this expression for the maximum likelihood estimators is unchanged if x isreplaced throughout by y, where y0 denotes the observed CAR(p) process and yj denotesits jth derivative. 8



Di�erentiating logM twice with respect to the parameters a1; : : : ; ap, taking expectedvalues and assuming that the zeroes of the autoregressive polynomial a all have negativereal parts, we �nd that(4:4) �E@2 logM@a2 � T� as T !1;where � is the covariance matrix of the limit distribution as T !1 of the random vector(Xp�1(t); Xp�2(t); : : : ; X0(t))T . It is known (see Arat�o (1982)) that(4:5) ��1 = 2 [mij]pi;j=1 ;where mij = mji and for j � i,mij = 8<:0 if j � i is odd;P1k=0(�1)kai�1�kaj+k otherwise;where a0 := 1 and aj := 0 if j > p or j < 0, and that the estimators given by (4.3) satisfy(4:6) pT (â� a)) N(0;��1);where ��1 is given by (4.5). The asymptotic result (4.6) also holds for the Yule-Walkerestimates of a as found by Hyndman (1993).In the case p = 1, ��1 = 2a1 and when p = 2, ��1 is the same as the leading term inthe expansion of the covariance matrix V in (2.11).In order to derive approximate maximum likelihood estimators for closely-spaced ob-servations of the CAR(p) process de�ned by (2.1) we shall use the result (4.3) with thestochastic integrals replaced by approximating sums. Thus if observations are made attimes 0; h; 2h; : : : , we replace, for example,Z T0 x0(s)2ds by 1h [T=h]�1Xi=0 (x((i + 1)h)� x(ih))2;Z T0 x0(s)dx0(s) by 1h2 [T=h]�3Xi=0 (x((i+ 1)h)� x(ih))�(x((i + 3)h)� 2x((i+ 2)h) + x((i + 1)h));taking care, as in the latter example, to preserve the non-anticipating property of theintegrand in the corresponding approximating sum.Example 2. For the CAR(2) process de�ned by(D2 + a1D + a2)Y (t) = bDW (t);9



Table 1. Estimated coe�cients based on 1000 replicates on [0; T ] of the linear CAR(2)process with a1 = 1:8 and a2 = 0:5T=100 T=500h Sample mean Estimated variance Sample mean Estimated varianceof estimators of estimators of estimators of estimators0.001 a1 1.8120 0.03585 1.7979 0.006730a2 0.5405 0.02318 0.5048 0.0038600.01 a1 1.7864 0.03404 1.7727 0.006484a2 0.5362 0.02282 0.5007 0.0037990.1 a1 1.5567 0.02447 1.5465 0.004781a2 0.4915 0.01902 0.4588 0.003217Table 1 shows the result of using approximating sums for the estimators de�ned by (4.3)in order to estimate the coe�cients a1 and a2.As expected, the variances of the estimators are reduced by a factor of approximately5 as T increases from 100 to 500 with h �xed. As h increases with T �xed, the variancesactually decrease while the bias has a tendency to increase. This leads to mean squarederrors which are quite close for h = :001 and h = :01. The asymptotic covariance matrix��1 in (4.6), based on continuously observed data, is diagonal with entries 3:6 and 1:8. Forh = :001 and h = :01, the variances 3:6=T and 1:8=T agree well with the correspondingentries in the table.5. Estimation for CTAR(p) ProcessesThe density derived in Section 3 is not restricted to linear continuous-time autoregres-sions as considered in the previous section. It applies also to non-linear autoregressions andin particular to CTAR models as de�ned by (3.2) and (3.3). In this section we illustratethe application of the continuous-time maximum likelihood estimators and correspondingapproximating sums to the estimation of coe�cients in CTAR(1) and CTAR(2) models.Example 3. Consider the CTAR(1) process de�ned byDY (t) + a(1)1 Y (t) = bDW (t); if Y (t) < 0;DY (t) + a(2)1 Y (t) = bDW (t); if Y (t) � 0;with b > 0 and a(1)1 6= a(2)1 . We can writeY (t) = b X(t);10



where dX(t) + a(X(t))X(t)dt = dW (t);and a(x) = a(1)1 if x < 0 and a(x) = a(2)1 if x � 0. Proceeding as in Section 4, �2 logM isas in (4.1) with(5:1) G = �a(1)1 x(s)Ix(s)<0 � a(2)1 x(s)Ix(s)�0:Maximizing logM as in Section 4, we �nd thatâ(1)1 = �R T0 Ix(s)<0x(s)dx(s)R T0 Ix(s)<0x(s)2dsand â(2)1 = �R T0 Ix(s)�0x(s)dx(s)R T0 Ix(s)�0x(s)2ds ;where, as in Section 4, x can be replaced by y in these expressions. For observationsat times 0; h; 2h; : : : ; with h small the integrals in these expressions were replaced bycorresponding approximating sums and the resulting estimates are shown in Table 2.Table 2. Estimated coe�cients based on 1000 replicates on [0; T ] of the thresholdAR(1) with threshold r = 0, a(1)1 = 6, a(2)1 = 1:5T=100 T=500h Sample mean Estimated variance Sample mean Estimated varianceof estimators of estimators of estimators of estimators0.001 a(1)1 6.0450 0.41207 5.9965 0.07185a(2)1 1.5240 0.04824 1.4986 0.008910.01 a(1)1 5.8978 0.39427 5.8472 0.06785a(2)1 1.5135 0.04771 1.4875 0.008830.1 a(1)1 4.7556 0.27969 4.7085 0.04506a(2)1 1.3891 0.03840 1.3682 0.00711Again we see that as T increases from 100 to 500, the variances of the estimators arereduced by a factor of approximately 5. As h increases with T �xed, the variances decreasewhile the bias tends to increase, the net e�ect being (as expected) an increase in meansquared error with increasing h.Example 4. Consider the CTAR(2) process de�ned byD2Y (t) + a(1)1 DY (t) + a(1)2 Y (t) = bDW (t); if Y (t) < 0;D2Y (t) + a(2)1 DY (t) + a(2)2 Y (t) = bDW (t); if Y (t) � 0;11



with a(1)1 6= a(2)1 or a(1)2 6= a(2)2 , and b > 0. We can writeY (t) = (b; 0)X(t);where dX(t) = AX(t)dt+ e dW (t);and A = A(1) if x < 0 and A = A(2) if x � 0, whereA(1) = " 0 1�a(1)2 �a(1)1 # ; A(2) = " 0 1�a(2)2 �a(2)1 # ; e = " 01 # :Proceeding as in Section 4, �2 logM is as in (4.1) with(5:2) G = ��a(1)1 x1(s)� a(1)2 x(s)� Ix(s)<0 + ��a(2)1 x1(s)� a(2)2 x(s)� Ix(s)�0:Maximizing logM as in Section 4, we �nd that" â(1)1â(1)2 # = �" R T0 Ix(s)<0x21(s)ds R T0 Ix(s)<0x1(s)x0(s)dsR T0 Ix(s)<0x1(s)x0(s)ds R T0 Ix(s)<0x20(s)ds #�1 " R T0 Ix(s)<0x1(s)dx1(s)R T0 Ix(s)<0x0(s)dx1(s) # ;while [â(2)1 ; â(2)2 ]T satis�es the same equation with Ix(s)<0 replaced throughout by Ix(s)�0.As in Section 4, x can be replaced by y in these expressions. For observations at times0; h; 2h; : : : ; with h small, the integrals in these expressions were replaced by correspond-ing approximating sums and the resulting estimates are shown in Table 3.The pattern of results is more complicated in this case. As T is increased from 100to 500 with h �xed, the sample variances all decrease, but in a less regular fashion thanin Tables 1 and 2. As h increases with T �xed, the variances also decrease. The meansquared errors for h = :001 and h = :01 are again quite close.
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Table 3. Estimated coe�cients based on 1000 replicates on [0; T ] of the thresholdAR(2) with threshold r = 0, a(1)1 = 1:5, a(1)2 = 0:4, a(2)1 = 4:6, a(2)2 = 2T=100 T=500h Sample mean Estimated variance Sample mean Estimated varianceof estimators of estimators of estimators of estimators0.001 a(1)1 1.5187 0.05441 1.5071 0.01128a(1)2 0.4763 0.04119 0.4163 0.00480a(2)1 4.6084 0.21224 4.5755 0.03995a(2)2 2.3186 0.72069 2.0456 0.088810.01 a(1)1 1.5262 0.05234 1.5163 0.01095a(1)2 0.4729 0.04056 0.4135 0.00473a(2)1 4.3819 0.19823 4.3480 0.03746a(2)2 2.2697 0.68915 2.0025 0.085090.1 a(1)1 1.5091 0.04177 1.4928 0.00805a(1)2 0.4402 0.03489 0.3851 0.00411a(2)1 2.7053 0.11312 2.7014 0.01874a(2)2 1.7654 0.41380 1.5599 0.052216. Estimation when the threshold is unknownIn the previous section we considered the estimation of the autoregressive coe�cientsonly, under the assumption that the threshold r is known. In this section we consider thecorresponding problem when the threshold also is to be estimated. The idea is the same,that is to maximize the (conditional) likelihood of the continuously-observed process, usingthe closely spaced discrete observations to approximate what would be the exact maximumlikelihood estimators if the continuously-observed data were available. We illustrate �rstwith a CTAR(1) process. The goal is to use observations fy(kh); k = 1; 2; : : : ; 0 < kh �Tg, with h small, to estimate the parameters a(1)1 ; a(2)1 ; c(1)1 ; c(2)1 ; b and r in the followingmodel.(6:1) D (Y (t)� r) + a(1)1 (Y (t)� r) + c(1)1 = bDWt; Y (t) < r;D (Y (t)� r) + a(2)1 (Y (t)� r) + c(2)1 = bDWt; Y (t) � r:The process Y � = Y � r, satis�es the threshold autoregressive equations,DY �(t) + a(1)1 Y �(t) + c(1)1 = bDWt; Y �(t) < 0;DY �(t) + a(2)1 Y �(t) + c(2)1 = bDWt; Y �(t) � 0;13



with state-space representation, Y �(t) = bX(t);where dX(t) = G(X; t)dt+ dW (t);as in equation (3.5), andG(x; s) = � a(1)1 x(s) + c(1)1b ! Ix(s)<0 � a(2)1 x(s) + c(2)1b ! Ix(s)�0:Substituting for G in the expression (4.1), we obtain�2 logM(x(s); s) = Z T0 G2ds� 2 Z T0 Gdx(s)= Z T0  a(1)1 x(s) + c(1)1b !2 Ix(s)<0ds+ Z T0  a(2)1 x(s) + c(2)1b !2 Ix(s)�0ds+2 Z T0  a(1)1 x(s) + c(1)1b ! Ix(s)<0dx(s) + 2 Z T0  a(2)1 x(s) + c(2)1b ! Ix(s)�0dx(s)= 1b2 �Z T0 �a(1)1 y� + c(1)1 �2 Iy�<0ds+ Z T0 �a(2)1 y� + c(2)1 �2 Iy��0ds+2 Z T0 �a(1)1 y� + c(1)1 � Iy�<0dy� + 2 Z T0 �a(2)1 y� + c(2)1 � Iy��0dy�� :Minimizing �2 logM(x(s); s) with respect to a(1)1 , a(2)1 , c(1)1 , and c(2)1 with b �xed gives,â(1)1 (r)"Z T0 y�2Iy�<0ds Z T0 Iy�<0ds� �Z T0 y�Iy�<0ds�2#
= � �Z T0 y�Iy�<0dy� Z T0 Iy�<0ds� Z T0 Iy�<0dy� Z T0 y�Iy�<0ds�(6:2) ĉ(1)1 (r)"Z T0 y�2Iy�<0ds Z T0 Iy�<0ds� �Z T0 y�Iy�<0ds�2#= � �Z T0 Iy�<0dy� Z T0 y�2Iy�<0ds� Z T0 y�Iy�<0dy� Z T0 y�Iy�<0ds� ;with analogous expressions for â(2)1 and ĉ(2)1 . An important feature of these equations isthat they involve only the values of y� = y � r and not b.14



For any �xed value of r and observations y, we can therefore compute the maximumlikelihood estimators â(1)1 (r); â(2)1 (r); ĉ(1)1 (r) and ĉ(2)1 (r) and the corresponding minimumvalue, m(r), of �2b2 logM . The maximum likelihood estimator r̂ of r is the value whichminimizes m(r) (this minimizing value also being independent of b). The maximum like-lihood estimators of a(1)1 ; a(2)1 ; c(1)1 and c(2)1 are the values obtained from (6.2) with r = r̂.Since the observed data are the discrete observations fy(h); y(2h); y(3h); : : :g, the calcula-tions just described are all carried out with the integrals in (6.2) replaced by approximatingsums as described in Section 4.If the data y are observed continuously, the quadratic variation of y on the interval[0; T ] is exactly equal to b2T . The discrete approximation to b based on fy(h); y(2h); : : :gis(6:3) b̂ =vuut[T=h]�1Xk=1 (y((k + 1)h)� y(kh))2=T :Example 5. Table 4 shows the results obtained when the foregoing estimation procedureis applied to a CTAR(1) process de�ned by (6.1) with a(1)1 = 6, c(1)1 = :5, a(2)1 = 1:5,c(2)1 = :4, b = 1 and r = 10.The pattern of results is again rather complicated. As expected however there is aclear reduction in sample variance of the estimators as T is increased with h �xed. ForT = 1000 the mean squared errors of the estimators all increase as h increases, with themean squared errors when h = :001 and h = :01 being rather close and substantiallybetter than those when h = :1.Example 6. Although the procedure described above is primarily intended for use in themodelling of very closely spaced data, in this example we illustrate its performance whenapplied to the natural logarithms of the annual Canadian lynx trappings, 1821 - 1934 (seee.g. Brockwell and Davis (1991), p.559). Linear and threshold autoregressions of ordertwo were �tted to this series by Tong and Yeung (1991) and a linear CAR(2) model usinga continuous-time version of the Yule-Walker equations by Hyndman (1993).The threshold AR(2) model �tted by Tong and Yeung (1991) to this series was(6:4) D2Y (t) + a(1)1 DY (t) + a(1)2 Y (t) = b1DW (t); if Y (t) < r;D2Y (t) + a(2)1 DY (t) + a(2)2 Y (t) = b2DW (t); if Y (t) � r;with a(1)1 = :354; a(2)1 = :521; b1 = :707;(6.5) 15



Table 4. The sample mean and sample variance of the estimators of the parameters ofthe model (6.1) based on 1000 replicates of the process on [0; T ]. The parameters of thesimulated process are a(1)1 = 6, c(1)1 = :5, a(2)1 = 1:5, c(2)1 = :4, b = 1 and r = 10.T=100 T=500 T=1000h Sample Sample Sample Sample Sample Samplemean variance mean variance mean variance0.001 a(1)1 5.9179 1.5707 5.9758 0.1950 5.9835 0.0904c(1)1 0.3787 0.7780 0.3448 0.1561 0.3832 0.0753a(2)1 1.7149 0.4105 1.5370 0.0511 1.5178 0.0224c(2)1 0.2891 0.1476 0.3415 0.0273 0.3601 0.0133b 0.9996 5.00�10�6 0.9991 4.78�10�7 0.9991 4.84�10�7r 9.9963 0.0244 9.9769 0.0041 9.9818 0.00200.01 a(1)1 5.7201 1.3175 5.7507 0.1834 5.7614 0.0910c(1)1 0.4271 0.7524 0.3235 0.1699 0.3535 0.0705a(2)1 1.7373 0.4248 1.5567 0.0538 1.5360 0.0239c(2)1 0.2877 0.1598 0.3227 0.0357 0.3407 0.0162b 0.9914 4.82�10�5 0.9913 4.55�10�6 0.9907 4.91�10�6r 10.011 0.0278 9.9807 0.0058 9.984 0.00240.1 a(1)1 4.1166 0.7861 4.1087 0.1587 4.1115 0.0720c(1)1 0.3953 0.5638 0.2834 0.2287 0.2708 0.0944a(2)1 1.7308 0.5109 1.5924 0.0805 1.5851 0.0324c(2)1 0.2636 0.2391 0.2658 0.1003 0.2666 0.0472b 0.9191 5.00�10�4 0.9208 4.60�10�5 0.9160 4.79�10�5r 10.074 0.0425 10.038 0.0191 10.030 0.0086
a(2)1 = 1:877; a(2)2 = :247; b2 = :870;and threshold r = 0:857.An argument exactly parallel to that for the CTAR(1) process at the beginning ofthis section permits the estimation of the coe�cients and threshold of a CTAR(2) modelof this form with b1 = b2 = b, h = 1 and with time measured in years. It leads to thecoe�cient estimates, a(1)1 = :3163; a(2)1 = :1932; b1 = 1:150;(6.6) a(2)1 = 1:2215; a(2)2 = :9471; b2 = 1:150;16



with estimated threshold r = 0:478. (Because of the large spacing of the observationsin this case it is di�cult to obtain a good approximation to the quadratic variationof the derivative of the process. The coe�cient b was therefore estimated by a simpleone-dimensional maximization of the Gaussian likelihood (GL) of the original discreteobservations (computed as described by Brockwell(2001)), with the estimated coe�cients�xed at the values speci�ed above.)In terms of the Gaussian likelihood of the original data, the latter model (with�2 log(GL) = 220:15) is considerably better than the Tong and Yeung model (for which�2 log(GL) = 244:41). Using our model as an initial approximation for maximizing theGaussian likelihood of the original data, we obtain the followingmore general model, whichhas higher Gaussian likelihood than both of the preceding models (�2 log(GL) = 161:06).(6:7) D2Y (t) + 1:181DY (t) + 0:308Y (t)� 0:345 = 1:050DW (t); if Y (t) < �0:522;D2Y (t) + 0:0715DY (t) + 0:452Y (t) + 0:500 = 0:645DW (t); if Y (t) � �0:522;Simulations of the model (6.4) with parameters as in (6.5) and (6.6) and of the model(6.7) are shown together with the logged and mean-corrected lynx data in Figure 1. Asexpected, the resemblance between the sample paths and the data appears to improvewith increasing Gaussian likelihood.
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(d) Lynx data

Figure 1: Figures (a) and (b) show simulations of the CTAR model (6.4) for the logged and mean-correctedlynx data when the parameters are given by (6.5) and (6.6) respectively. Figure (c) shows a simulation(with the same driving noise as in Figures (a) and (b)) of the model (6.7). Figure (d) show the loggedand mean-corrected lynx series itself. 17
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