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Abstract

We estimate conditional and unconditional high quantiles for electricity spot prices based
on a linear model with stable innovations. This approach captures the impressive peaks in
such data and, as a four-parametric family captures also the assymmetry in the innovations.
Moreover, it allows for explicit formulas of quantiles, which can then be calculated recursively
from day to day. We also prove that conditional quantiles of step h ∈ N converge for h→∞
to the corresponding unconditional quantiles. The paper is motivated by the daily spot prices
from the Singapore New Electricity Market, which serves an example to show our method
at work.
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1 Introduction

The liberation of electricity markets requires new models and methods for risk management in
these highly volatile markets. The data exhibit certain features of commodity data as well as
financial data. We summarize the following stylized features of daily electricity prices (see for
example [8] or [13] and references therein).

(a) Seasonal behaviour in yearly, weekly and daily cycles.

(b) Stationary behaviour.

(c) Non-Gaussianity manifested for instance by high kurtosis.

(d) Extreme spikes.

In this paper we shall present statistical estimation of high quantiles, unconditional and
conditional ones. Whereas in [7] we discussed the fit of a continuous-time model aiming at
pricing of electricity spot price derviatives, in this paper we fit a simple discrete-time ARMA
model enriched by a trend and seasonality component. We propose an ARMA-model with stable
innovations, which is able to capture in particular the impressive spikes. Such a model seems to
be appropriate for the estimation of high quantiles aiming at risk management. In this model it
is also straightforward how to estimate high quantiles, conditional as well as unconditional ones.
For the conditional quantiles we present not only the one-step, but also multi-step predicted
quantiles. We also show that when the number of steps increases, the conditional quantiles
converge to the unconditional ones.

Our analysis is motivated by daily spot prices from the Singapore New Electricity Market
available at www.ema.gov.sg as depicted in Figure 1. The data are measured in Singapore-Dollar
per MegaWatthour (SGD/MWh) and run from January 1, 2005 to April 11, 2007, resulting in
n = 831 data points.

Figure 1: Time series plot of the Singapore data (January 2005 - April 2007) (Xt)t=1,...,n for n = 831 data points

with estimated seasonality function bΛt (in red) as modeled in Section 2.
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Our paper is organised as follows. In Section 2 we present the data, which we model by a
deterministic component (capturing trend and seasonality) and a stationary time series. Invoking
classical model selection procedures for linear models we find that a pure AR model does not
capture the features of the data, but an ARMA(1,2) model is suggested. As expected, the
estimated residuals are assymmetric with high positive peaks, and we use a four-parametric
stable model for the innovations. Section 3 is devoted to the quantile estimation, where we
use that the estimated parameters correspond to a causal and invertible model. In Section 3.1
we apply well-known results from stable linear models to estimate the unconditional quantiles,
whereas in Section 3.2 we derive formulas for conditional quantiles, the recursion formulas and
the almost sure convergence result of conditional quantiles to the unconditional ones. Throughout
we use the spot price data for illustration.

2 Data and Model

We model our data as

Xt = Λt + Yt , t ∈ Z , (2.1)

where Λt combines trend and saisonality (yearly and weekly) in the following deterministic model

Λt = β0 + β1 cos
(
τ1 + 2πt

365

)
+ β2 cos

(
τ2 + 2πt

7

)
+ β3t , t ∈ Z , (2.2)

and (Yt)t∈Z is a stationary ARMA model, which has to be further specified later. We estimate Λ
by a robust least squares method (see [6], Ch. 1) and obtain the following estimated parameters.

β̂0 β̂1 τ̂1 β̂2 τ̂2 β̂3

103.66 -13.13 2136.16 -0.7686 32.04 0.04597

Table 2.1: Estimates of the parameters of (2.2)

Figures 1 and 2 show the original time series with estimated seasonality function and the
deseasonalised series, respectively.

Define now Ŷt = Xt − Λ̂t for t = 1, . . . , n. Then we test (Ŷt)t=1,...,n for stationarity by an
augmented Dickey-Fuller test and a Phillips-Perron test (cf. [1], Ch. 4, for details). Both tests
result in a p-value less than 0.01. We want, however, remark that our data are heavy-tailed,
in particular, as we shall see below, they have infinite variance. Consequently, variance and
autocorrelation function do not exist. It has, however, been shown in [4] that empirical variance
and autocorrelations converge to a stable vector. This means that the empirical quantities make
still sense, but the confidence bands are much wider. See also [5], Section 7.3. Having clarified
this, we assume stationarity for (Yt)t∈Z in (2.1).

In the same spirit we fit an ARMA model of appropriate order based on the empirical
autocorrelation and partial autocorrelation function in Figure 3; cf. [2], Ch. 3.
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Figure 2: Deseasonalised series (bYt)t=1,...,n.

Figure 3: Empirical autocorrelation function and empirical partial autocorrelation function of the desaisonalised

time series (bYt)t=1,...,n.

Moreover, we use the AICC and BIC criterions for all ARMA(p, q) models with p + q ≤ 3;
the result is depicted in Figure 4; cf. [3], Section 5.5 for such criterions. From this it is obvious
that a simple AR model is not sufficient to model the data properly. The best model with
respect to both criterions was an ARMA(1, 2) for (Yt)t∈Z; i.e. with Y0 = 0 and iid (Zt)t∈Z whose
distribution we will specify later,

Yt = φ1Yt−1 + Zt + θ1Zt−1 + θ2Zt−2 , t ∈ Z . (2.3)

An explorative analysis of the residuals (Ẑt)t=1,...,n clarifies two points.

(1) The empirical autocorrelation function of the residuals and of the squared residuals shows
no significant dependence; cf. Figure 5. This implies that a linear model is appropriate for
these data and more sophisticated models as suggested in Swider and Weber [12] are not
necessary.

(2) Figure 6 shows that the distribution of the residuals is highly non-symmetric and has a
heavy right tail. The empirical distribution function of (Ẑt)t=1,...,n is shown in the left plot
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Figure 4: Values of the AICC and BIC criterions for the ARMA(p, q) model with p+ q ≤ 3 for the deseasonalised

time series (bYt)t=1,...,n

φ̂1 θ̂1 θ̂2

ARMA(1, 2) 0.930 -0.689 -0.123
(0.879 , 0.980) (-0.776 , -0.602) (-0.197 , -0.0489)

Table 2.2: MLEs of the ARMA(1, 2) coefficients with 95%-confidence intervals for the deseasonalised time series

(bYt)t=1,...,n

of Figure 7. The right plot shows the mean excess plot; i.e. the empirical counterpart of

e(u) = E(X − u | X > u) , u ≥ 0 .

The increase of the estimated mean excess function shows clearly that the right tail is
Pareto like. As is confirmed by a Hill plot, the corresponding tail index is clearly smaller
than 2.

For definitions and notation we refer to Embrechts et al. [5], Ch. 6 and Resnick [11], Section 4.
This tail pattern, in combination with the asymmetry, indicates that a four-parameter stable

distribution is an appropriate model for the residuals (Zt)t∈Z. It is defined as follows.

Definition 2.1 (Stable random variable, stable distribution). A random variable Z has an
α-stable distribution with index of stability α ∈ (0, 2], skewness parameter β ∈ [−1, 1], scale

Figure 5: Plot of the autocorrelation functions of the residuals ( bZt)t=1,...,n and the squared residuals ( bZ2
t )t=1,...,n.
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Figure 6: Plot of the residuals ( bZt)t=1,...,n.

Figure 7: Left: Plot of the histogram of the residuals ( bZt)t=1,...,n. Right: Mean excess plot of the positive residuals.

parameter γ > 0, and location parameter δ ∈ R, if

Z
d=

γ
(
V − β tan

(
πα
2

))
+ δ, α 6= 1,

γV + δ, α = 1,

where V is a random variable with characteristic function

ϕV (t) = EeitV =

exp
{
−|t|α

(
1− iβ tan

(
πα
2 (sign t)

))}
, α 6= 1,

exp
{
−|t|

(
1 + iβ 2

π (sign t)
)
log (|t|)

}
, α = 1.

The sign function sign t is defined as usual: sign t = −1, 0, 1 according as t < 0, t = 0, t > 0,
respectively.
We denote the class of stable distributions by S(α, β, γ, δ). A random variable Z ∼ S(α, β, γ, δ)
is also referred to as α-stable.
If δ = 0 and γ = 1 the distribution is called standardized α-stable.
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For more information on stable distributions we refer to [10] or any other monograph on
stable distributions. The advantage of choosing a stable model lies in the fact that stable distri-
butions are closed with respect to linear transformations. The following result can be found in
[10], Section 1.6.

Theorem 2.2. Let (Xj)j∈N0 be iid S(α, β, γ, δ) distributed random variables and (ψj)j∈N0
a

real-valued sequence with
∑

j |ψj |α <∞. Then

∞∑
j=0

ψjXj ∼ S
(
α, β, γ, δ

)
,

with

β = β

∞∑
j=0

|ψj |αsign (ψj)
( ∞∑
j=0

|ψj |α
)−1

,

γ = γ
( ∞∑
j=0

|ψj |α
) 1

α
,

δ =


δ
∞∑
j=0

ψj + tan
(
πα
2

) (
β γ − βγ

∞∑
j=0

ψj

)
, α 6= 1,

δ
∞∑
j=0

ψj +
2
π

(
β γ log (γ)− βγ

∞∑
j=0

ψj log |ψjγ|
)
, α = 1.

Various estimation procedures have been proposed in the literature. In this paper we use
MLE, which gives the following parameter estimates for the residuals (Ẑt)t=1,...,n.

α̂ β̂ γ̂ δ̂

ML-estimators 1.282650 0.442722 7.012304 -7.610320

Table 2.3: MLEs of the parameters α, β, γ and δ of the stable distribution for the residuals ( bZt)t=1,...,n.

Again one may ask for asymptotic properties of these estimators as the usual regularity
conditions on the model to guarantee asymptotic normality are not satisfied. It has, however,
been shown in [9] that MLEs for heavy-tailed models have even better rate of convergence than
models with finite variance.

3 Estimating high quantiles

After having fitted an appropriate model to our data we now turn to the estimation of high
quantiles, where we present unconditional as well as conditional ones. Recall the model from
(2.3)

Yt = φ1Yt−1 + Zt + θ1Zt−1 + θ2Zt−2 , t ∈ Z , (3.1)

where (Zt)t∈Z are iid S(α, β, γ, δ) with estimators α̂, β̂, γ̂ and δ̂ given in Table 2.3.
We shall invoke the following result.
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Proposition 3.1 ([2], Proposition 12.5.2). Let (Zt)t∈Z be iid S(α, β, γ, δ) distributed. Denote
by θ(z) = 1 + θ1z + · · · + θ1z

q and by φ(z) = 1 − φ1z − · · · − φpz
p, and assume that φ(z) 6= 0

for |z| ≤ 1. Then the difference equations φ (B)Yt = θ (B)Zt for t ∈ Z (B denotes the backshift
operator) have the unique strictly stationary and causal solution

Yt =
∞∑
j=0

ψjZt−j , t ∈ Z , (3.2)

where the coefficients (ψj)j∈Z are chosen so that ψj = 0 for j < 0 and

∞∑
j=0

ψjz
j =

θ(z)
φ(z)

, |z| ≤ 1 . (3.3)

If in addition φ(z) and φ(z) have no common zeroes, then the process (Yt)t∈Z is invertible if and
only if θ(z) 6= 0 for |z| ≤ 1. In that case

Zt =
∞∑
j=0

πjYt−j , t ∈ Z , (3.4)

where the coefficients (πj)j∈Z are chosen so that ψj = 0 for j < 0 and

∞∑
j=0

πjz
j =

φ(z)
θ(z)

, |z| ≤ 1 . (3.5)

Note that with the estimated coefficients of Table 2.2 the model (3.1) is causal and invertible.
Invoking (3.3) and (3.5) gives the following parameters ψ and π for an ARMA(1,2) model as
functions of the model parameters φ1, θ1, θ2

ψj =


1 for j = 0,

θ1 + φ1 for j = 1,

θ2φ
j−2
1 + θ1φ

j−1
1 + φj1 for j ≥ 2 ,

(3.6)

πj =


1 for j = 0,

−θ1 − φ1 for j = 1,

−θ2πj−2 − θ1πj−1 for j ≥ 2 .

(3.7)

In our situation, the parameters ψ are given by (3.6). In order to compute the unconditional
quantiles, we then plug in the MLEs for φ1, θ1, θ2, which results in ψ̂j as presented in Table 3.4.

3.1 Unconditional quantiles

For q ∈ (0, 1) and t ∈ Z the unconditional q-quantile of Xt is defined as the generalised inverse
of its distribution function; i.e.

xq(t) := inf{x ∈ R : P (Xt ≤ x) ≥ q} .
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ψ̂0 ψ̂1 ψ̂2 ψ̂3 ψ̂4 ψ̂5 ψ̂6

1 0.241 0.101 0.094 0.087 0.081 0.081 × 0.930

Table 3.4: Estimates for ψj for 0 ≤ j ≤ 5; their rate of decrease is given by bφ1 = 0.930 (cf. Table 2.2).

The unconditional quantiles of Yt and Zt are defined analogously, and denoted by yq(t) and
zq(t). First note that, by definition (2.1) of the model, the quantiles of Xt and Yt are linked by

xq(t) = Λt + yq(t) , for q ∈ (0, 1) , t ∈ Z .

In order to estimate the quantile of Xt, it suffices thus to estimate the quantile of Yt. By
stationarity and causality of Y , the unconditional quantile yq(t) = yq becomes independent of t
and can be expressed as

yq := inf
{
y ∈ R : P

( ∞∑
j=0

ψjZt−j ≤ y
)
≥ q

}
, q ∈ (0, 1) .

Theorem 3.2. Assume model (3.2) with (Zj)j∈N0 iid S(α, β, γ, δ) distributed. For q ∈ (0, 1)
denote by sq the q-quantile of an S

(
α, β, 1, 0

)
distributed random variable. Then the q-quantile

yq is given by
yq = γ sq + δ , q ∈ (0, 1) . (3.8)

The parameters β, γ und δ are given by

β = β

∞∑
j=0

ψαj sign(ψj)
( ∞∑
j=0

|ψj |α
)−1

,

γ = γ
( ∞∑
j=0

|ψj |α
)1/α

,

δ =


δ
∑∞

j=0 ψj + tan
(
πα
2

) (
β γ − βγ

∞∑
j=0

ψj

)
, α 6= 1 ,

δ
∞∑
j=0

ψj +
2
π

(
β γ log (γ)− βγ

∞∑
j=0

ψj log |ψjγ|
)
, α = 1 .

α̂ β̂ γ̂ δ̂

1.282650 0.442722 13.20421 -15.19818

Table 3.5: Estimates for α, β, γ and δ as in Theorem 3.2 (for the residuals ( bZt)t=1,...,n.)

The quantiles of the corresponding stable distribution for appropriate high levels are pre-
sented in Table 3.6.

From this and (3.8) we obtain the corresponding estimated unconditional quantiles ŷq of the
stationary random variable Ŷt as given in Table 3.7.
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q 0.95 0.99 0.999

ŝq 5.309276 17.50723 102.0260

Table 3.6: 95%-, 99%- and 99.9% quantiles of a S(bα, bβ, 1, 0) distributed random variable.

q 0.95 0.99 0.999

ŷq 54.9066 215.9709 1331.974

number of exceedances 44 5 0

Table 3.7: 95%-, 99%- and 99.9% quantiles of the stationary time series (bYt)t=1,...,n with simple backtesting

procedure, counting the number of exceedances of the estimated quantiles (44=5.3%, 5=0.6% of data).

Figure 8: Time series (bYt)t=1,...,n with 95%- and 99% quantile (the 99.9% quantile is outside of the figure).

Figure 9: Data (Xt)t=1,...,n with 95%- and 99% quantile (the 99.9% quantile is outside of the figure).
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3.2 Conditional quantiles

For q ∈ (0, 1) the conditional q-quantile of Xt of step h, where t ∈ Z and h ∈ N, is defined as
the generalised inverse of its conditional distribution function, conditioned on the observation
of the time series (Xt)t∈Z up to time t− h:

xhq (t) := inf
{
x ∈ R : P

(
Xt ≤ x | Xs , s ≤ t− h

)
≥ q

}
.

Note that by definition (2.1), the observation sigma algebra generated by {Xs , s ≤ t−h} is the
same as the one generated by {Ys , s ≤ t− h}. Therefore, provided we know Λt we can express
the conditional q-quantile of Xt as

xhq (t) = Λt + yhq (t) ,

where
yhq (t) := inf

{
y ∈ R : P

(
Yt ≤ y | Ys , s ≤ t− h

)
≥ q

}
is the conditional q-quantile of Yt of step h, conditioned on the evolution of the time series
(Yt)t∈Z up to time t− h.

Theorem 3.3. Assume a causal and invertible model of the form (3.2) with (Zj)j∈N0 iid
S(α, β, γ, δ) distributed. For q ∈ (0, 1) and h ∈ N denote by shq the q-quantile of an S

(
α, βh, 1, 0

)
distributed random variable. Then the conditional q-quantile yhq (t) of step h is given by

yhq (t) = γh shq + δh +
∞∑
j=h

ψjZt−j , q ∈ (0, 1) , h ∈ N . (3.9)

The parameters βh, γh und δh are given by

βh = β

h−1∑
j=0

ψαj sign(ψj)
( h−1∑
j=0

|ψj |α
)−1

,

γh = γ
( h−1∑
j=0

|ψj |α
)1/α

,

δh =


δ
h−1∑
j=0

ψj + tan
(
πα
2

) (
β γ − βγ

h−1∑
j=0

ψj

)
, α 6= 1 ,

δ
h−1∑
j=0

ψj +
2
π

(
β γ log (γ)− βγ

h−1∑
j=0

ψj log |ψjγ|
)
, α = 1 .

Note that by the invertibility of the model, the term
∞∑
j=h

ψjZt−j in (3.9) is known in the

sense that it is measurable with respect to the sigma algebra generated by {Ys , s ≤ t− h}.
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Proof. Using the causality and invertibility of the model, we get

P (Yt ≤ y |Ys , s ≤ t− h) = P (
∞∑
j=0

ψjZt−j ≤ y |Ys , s ≤ t− h)

= P (
h−1∑
j=0

ψjZt−j ≤ y −
∞∑
j=h

ψjZt−j |Zs , s ≤ t− h)

= P (
h−1∑
j=0

ψjZt−j ≤ y − u)
∣∣
u=

∞P
j=h

ψjZt−j

,

where we have used the independence of the innovations Zt in the last equality. We thus have

to compute the unconditional q-quantile of
h−1∑
j=0

ψjZt−j , which as in Theorem 3.2 with ψj = 0 for

all j ≥ h is given by γh shq + δh. The conditional quantile (3.9) then follows and the theorem is
proved.

The following result is a contribution to the discussion about conditional versus unconditional
quantiles.

Corollary 3.4. For every t ∈ Z, the following almost sure convergence holds

yhq (t)
h→∞−→ yq a.s..

Proof. Comparing Theorems 3.2 and 3.3, from the definition of the parameters we have for
h → ∞ the following convergence: γh → γ, δh → δ, and βh → β. From the characteristic
function (2.4) one then easily infers that shq → sq and, consequently, (γh shq +δh) → (γ sq+δ) for

h→∞. Further, by assumption of causality of the model as in (3.2), the sum
∞∑
j=h

ψjZt−j
h→∞−→ 0

almost surely. This proves the corollary.

For computational purposes, in the relevant situation of our ARMA(1,2) model, it is useful
to note the following formulation of the conditional quantile.

Corollary 3.5. Let (Yt)t∈Z be the solution of a causal and invertible ARMA(1, 2) model as given
in (3.1), whose innovations (Zt)t∈Z are iid S(α, β, γ, δ) distributed. Then yhq (t), the conditional
q-quantile of step h at time t, is given byy1

q (t) = γh s1q + δh + φ1Yt−1 + θ1Zt−1 + θ2Zt−2 for q ∈ (0, 1) , h = 1 ,

yhq (t) = γh shq + δh + φh1Yt−h + (φh−1
1 θ1 + φh−2

1 θ2)Zt−h + φh−1
1 θ2Zt−h−1 for q ∈ (0, 1) , h ≥ 2 .

(3.10)
Here, the quantile shq and the parameters γh and δh are as in Theorem 3.3.

Proof. From (3.6) it follows that

ψh+1 =


φ1ψh + θ1 for h = 0 ,

φ1ψh + θ2 for h = 1 ,

φ1ψh for h ≥ 2 ,

(3.11)

12



and we get

∞∑
j=h

ψjZt−j =


φh1

∞∑
j=0

ψjZt−h−j + θ1Zt−h + θ2Zt−h−1 for h = 1 ,

φh1
∞∑
j=0

ψjZt−h−j + (φh−1
1 θ1 + φh−2

2 θ2)Zt−h + φh−1
1 θ2Zt−h−1 for h ≥ 2 .

By (3.2) we have
∞∑
j=0

ψjZt−h−j = Yt−h, which proves the Corollary.

Once we have computed the first conditional quantile, we can use the following recursive
relation for the computation of further quantiles.

Lemma 3.6. The conditional q-quantile yhq (t+1) at time t+1 can be expressed in terms of the
conditional q-quantile yhq (t) at time t as follows:y1

q (t+ 1) = (1− φ1)(γh s1q + δh) + φ1 y
1
q (t) + ψ1 Zt + θ2 Zt−1 for h = 1 ,

yhq (t+ 1) = (1− φ1)(γh shq + δh) + φ1 y
h
q (t) + ψh Zt+1−h for h ≥ 2 ,

where by the model specification (3.1), Zt+1−h is obtained recursively in terms of the observed
Yt+1−h, Yt−h and previous innovations Zt−h, Zt−1−h as

Zt+1−h = Yt+1−h − φ1Yt−h − θ1Zt−h − θ2Zt−1−h .

Proof. We have, using the form (3.9) of the conditional quantile, that

yhq (t+ 1) =γh shq + δh +
∞∑
j=h

ψjZt+1−j

=γh shq + δh +
∞∑
j=h

ψjZt−j +
∞∑
j=h

ψj(Zt+1−j − Zt−j)

=yhq (t) + ψhZt+1−h +
∞∑
j=h

(ψj+1 − ψj)Zt−j . (3.12)

Invoking (3.11) we get for h = 1

∞∑
j=1

(ψj+1 − ψj)Zt−j =(φ1 − 1)
∞∑
j=1

ψjZt−j + θ2Zt−1

=(φ1 − 1)(yhq (t)− γh s1q − δh) + θ2Zt−1 ,

and for h ≥ 2

∞∑
j=h

(ψj+1 − ψj)Zt−j =(φ1 − 1)
∞∑
j=h

ψjZt−j

=(φ1 − 1)(yhq (t)− γh shq − δh) .

Substituting in (3.12) yields the result.
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We now consider the estimated conditional quantiles ŷ1
q (t) of step h = 1 of our data, assuming

that Λ(t) is known for all t ≥ 0. To this end we plug in the estimated parameters φ̂1 , θ̂1 , θ̂2 and
residuals Ẑt in (3.10) and obtain

ŷ1
q (t) = s1q + φ̂1Yt−1 + θ̂1Ẑt−1 + θ̂2Ẑt−2 , (3.13)

where s1q is the q-quantile of a S(α̂, β̂, γ̂, δ̂) distributed random variable. The estimates Ẑt are
obtained via the invertibility of the model (cf. Proposition 3.1) and are given by

Ẑs :=
∞∑
j=0

π̂jYs−j , s ∈ Z .

Here the estimates π̂j are constructed by plugging in φ̂1 , θ̂1 , θ̂2 in (3.7). Note that after com-
puting (3.13) once, we can use Lemma 3.6 to determine the conditional quantiles recursively for
the next time steps.

The conditional quantiles for q = 0.95 and q = 0.99 can be seen in figure 10.

Figure 10: Conditional quantiles for q = 0.95 and q = 0.99. Top: stationary time series, bottom: original data.

For a simple backtesting procedure we count the number of exceedances of the estimated quantiles. There are 57

exceedances for the 95%-quantile and 11 for the 99%-quantile. Thus both quantiles are underestimated.
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