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Abstract

Hosted applications, operated by independent service providers and accessed via the In-
ternet, commonly implement multi-tenancy to leverage economy of scale by consolidating
multiple businesses onto the same operational system to lower Total Cost of Ownership
(TCO). Traditionally, Soware as a Service (SasS) applications are built on a soware plat-
form to allow tenants to customize the application. ese platforms use traditional da-
tabase systems as storage back-end, but implement an intermediate layer that maps the
application data to generic structures inside the DBMS. We discuss these mapping tech-
niques in the context of schema Ęexibility, such as schema extensibility and schema evo-
lution. However, as the schema mapping has to be handled by the application layer, the
DBMS degenerates to be a “dumb” data repository. us, a multi-tenant database system
for SaaS should offer explicit support for schema Ęexibility. at implies that schemas can
be extended for different versions of the application and dynamically modiĕed while the
system is on-line. Furthermore, when co-locating tenants, there is a potential for sharing
certain data across tenants, such as master data and conĕguration data of the application.
We present FlexScheme, a meta-data model that is specially designed for multi-tenancy.

It enables data sharing and schema Ęexibility by adding explicit support for schema exten-
sibility and “Lights-out” Online Schema Evolution. We employ meta-data sharing where
each tenant inherits the schema of the base application that can be extended to satisfy the
individual tenant’s needs. e meta-data sharing is complemented by master data sharing
where the global data set is overridden by the individual changes of a tenant. We develop
a light-weight schema evolution mechanism that, rather than carrying out costly data re-
organizations immediately, lets the DBMS adaptively schedule the reorganization to not
impact co-located tenants.
We implement a main-memory-based DBMS prototype that has specialized operators

for data sharing and lights-out schema evolution. We show that, in the multi-tenancy con-
text, both techniques effectively lower TCO by allowing a higher tenant packaging as well
as better resource utilization. Furthermore, we focus on efficient storage mechanisms for
FlexScheme and present a novel approach, called XOR Delta, which is based on XOR en-
coding and is optimized for main-memory DBMS.
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.. 
Introduction

“Cloud computing is a model for enabling convenient, on-demand network access to a
shared pool of conĕgurable computing resources (e.g., networks, servers, storage, appli-
cations, and services) that can be rapidly provisioned and released with minimal man-
agement effort or service provider interaction.”

(Mell and Grance, )

With the advent of theUbiquitous Internet a new trend has emerged: Cloud Computing.
Cheap and reliable broadband Internet access allows businesses and individuals to commu-
nicate and collaborate in real-time across countries and even continents. Internet-based
applications likeGoogle Apps andMicroso Office Live! gain popularity, as they enable easy
collaboration and sharing of data around the globe, without the need for installing any so-
ware on the PC. us, applications and data are no longer maintained on individual PCs,
but rather reside inside the Cloud of the Internet.

.. Cloud Computing

According to theNISTDeĕnition ofCloudComputing (Mell andGrance, , see above),
Cloud Computing offers customers an on-demand self-service for accessing resources re-
motely. Depending on the service model, these are either hardware or soware resources
which are accessed via the Internet. e resources are allocated on demand, once a cus-
tomer requests them, and are freed automatically aer the user closes the session, without
any human intervention from a service provider. Currently, three different models for
Cloud Computing services are available.

Infrastructure as a Service (IaaS) Aservice provider pursuing thismodel offers on-demand
access to infrastructural services, such as processing resources (e.g. virtualmachines),
storage, or other computing resources. An IaaS customer is able to deploy any ap-
plication and run it without modiĕcation on the service provider’s infrastructure.
Within its designated environment, the customer has full control of all resources.
Amazon EC () is a typical representative of this service model.

Platform as a Service (PaaS) One abstraction level above of IaaS is the PaaS. A service pro-
vider offers a soware development and runtime platform, where customers and/or
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soware vendors can develop and deploy applications. e development environ-
ment, including the programming language, is offered by the service provider. In
the PaaS model, the consumers do not have any possibility to access underlying
hardware resources. Instead, the service provider offers high-level APIs to inter-
face with the infrastructure. As an example, the force.com Platform (Weissman and
Bobrowski, ) offers a data persistence module for accessing a relational DBMS.

Software as a Service (SaaS) In this model, the service provider owns and operates an ap-
plication that is accessed by the customers via Internet browser and/orWeb Services.
e customer can only access the application itself; all access to the underlying in-
frastructure is prohibited by the service provider. However, depending on the ap-
plication, individual customizations may be possible.

All of themodels have in common that the pricing of the services is on a Pay-per-Use ba-
sis, where service charges are due for only those resources that really have been consumed.

.. Software as a Service

From an enterprise perspective, accessing applications which are installed and maintained
off-site is a well known practice. An Application Hosting Provider maintains a data-center
where complex applications like ERP systems are installed. is way their customers do
not need the technical expertise in their own staff, rather they pay the hosting provider a
monthly fee based on the amount of consumed resources for administering the application.
As the hosting provider only operates the infrastructure, the hosted application has to be
licensed independently.
A very modern form of application hosting is Soware as a Service (SaaS). Compared

to traditional application hosting, where the service provider only maintains the infras-
tructure, the SaaS provider owns and maintains the application as well. SaaS customers
typically access the service using standard Internet browsers or Web Services. SaaS ser-
vices have appeared for a wide variety of business applications, including Customer Rela-
tionshipManagement (CRM), Supplier RelationshipManagement (SRM), Human Capital
Management (HCM), and Business Intelligence (BI).
Design and development priorities for SaaS differ greatly from those for on-premises

soware, as illustrated in Figure .. e focus of on-premises soware is generally on
adding features, oen at the expense of reducing Total Cost of Ownership. In contrast, the
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focus of SaaS is generally on reducing Total Cost of Ownership (TCO), oen at the expense
of adding features. eprimary reason for this is, of course, that the service provider, rather
than the customer has to bear the cost of operating the system. In addition, the recurring
revenue model of SaaS makes it unnecessary to add features in order to drive purchases of
upgrades.
A well-designed hosted service reduces TCO by leveraging economy of scale. e great-

est improvements in this regard are provided by amulti-tenant architecture, wheremultiple
businesses are consolidated onto the same operational system. Multi-tenancy invariably
occurs at the database layer of a service; indeed thismay be the only place it occurs since ap-
plication servers for highly-scalable Web applications are oen stateless (Hamilton, ).
e amount of consolidation that can be achieved in a multi-tenant database depends

on the complexity of the application and the size of the host machine, as illustrated in
Figure .. In this context, a tenant denotes an organizationwithmultiple users, commonly
around  for a small to mid-sized business. For simple Web applications like business
email, a single blade server can support up to , tenants. For mid-sized enterprise
applications like CRM, a blade server can support  tenants while a large cluster database
can go up to ,. While the TCOof a databasemay vary greatly, consolidating hundreds
of databases into one will save millions of dollars per year.
One downside of multi-tenancy is that it can introduce contention for shared resources

(MediaTemple, ), which is oen alleviated by forbidding long-running operations.
Another downside is that it can weaken security, since access control must be performed
at the application level rather than the infrastructure level. Finally, multi-tenancy makes it
harder to support application extensibility, since shared structures are harder to individ-
ually modify. Extensibility is required to build specialized versions of enterprise applica-
tions, e.g., for particular vertical industries or geographic regions. Many hosted business
services offer platforms for building and sharing such extensions (SalesforceAppExchange,
).
In general, multi-tenancy becomes less attractive as application complexity increases.

More complex applications like Enterprise Resource Planning (ERP) and Financials re-
quire more computational resources, as illustrated in Figure ., have longer-running op-
erations, requiremore sophisticated extensibility, andmaintainmore sensitive data. More-
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over, businesses generally prefer to maintain more administrative control over such appli-
cations, e.g., determining when backups, restores, and upgrades occur. More complex
applications are of course suitable for single-tenant hosting.

.. The Impact of Massive Multi-Tenancy

Multi-tenancy makes it harder to implement several essential features of enterprise appli-
cations. e ĕrst is support for master data, which should be shared rather than replicated
for each tenant to reduce costs. Examples of such data include public information about
business entities, such as DUNS numbers, and private data about supplier performance.
Data may be shared across organizations or between the subsidiaries and branches of a
hierarchically-structured organization. In either case, the shared data may be modiĕed by
individual tenants for their own purpose and the DBMS must offer a mechanism to make
those changes private to the tenant.
e second problematic feature is applicationmodiĕcation and extension, which applies

both to the database schema and the master data it contains. Such extensibility is essential
to tailor the application to individual business needs, which may vary based on industries
and geographical regions. An extension may be private to an individual tenant or shared
between multiple tenants. In the latter case, an extension may be developed by an Inde-
pendent Soware Vendor (ISV) and sold to the tenant as an add-on to the base applica-
tion. While a limited form of customization can be provided by conĕguration switches and
wizards, more complex applications require the ability to modify the underlying database
schema of the application.
e third problematic feature is evolution of the schema and master data, which occurs

as the application and its extensions are upgraded. In contrast to most on-premise up-
grades, on-demand upgrades should occur while the system is in operation. Moreover, to
contain operational costs, upgrades should be “self-service” in the sense that they require
the minimum amount of interaction between the service provider, the ISVs who offer ex-
tensions, and the tenants. Finally, it is desirable for ISVs and tenants to delay upgrades
until a convenient time in the future. It should be possible to run at least two simultane-
ous versions of the application, to support rolling upgrades, however ideally more versions
should be provided.

.. Schema Flexibility of SaaS Applications

Service providers make their SaaS applications more attractive by allowing a high level
of customization. Besides very simple mechanisms like conĕguration switches, there are
more complex mechanisms like adapting predeĕned entities or even adding new entities.
ose modiĕcations result in a high number of application variants, each individually cus-
tomized for a particular tenant. Although most of the customizations may be small, man-
aging the huge number of variants is a big challenge.
Furthermore, the service provider has to release new versions of the application on a

regular basis. Tenants are then forced to upgrade on-the-Ęy to the most recent version
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Figure ..: Extensibility and Evolution for a Single Tenant

of the application. However, depending on the customizations performed by a particular
tenant, that may not be possible. Currently, many service providers avoid this issue by
simply limiting the customization possibilities.
In a nutshell, SaaS applications develop in at least two dimensions: extensibility and

evolution. e extensibility dimension is made up of extensions to the common base ap-
plication. ese extensions may be developed individually by tenants themselves or by
ISVs, and thus be shared between tenants. e evolution dimension tracks changes to the
SaaS applications which are necessary to either ĕx issues with the application or to inte-
grate new features. Evolution is not only required for the base application itself, but also
for extensions.

Example .: Figure . shows a SaaS application for a single tenant which is made up
of the following components: the base application Base in version vm, an extension Ext of
an ISV in version vn, and the tenant-speciĕc extension T in version vk. e components
are developed and maintained separately from each other, therefore the releases of new
versions are not synchronized. eremay be dependencies between the components as an
extension may depend on a speciĕc version of the base application or another extension.
In the example,T in version vk depends onExt in version vn and Ext in version vn depends
on Base in version vm.

Managing such a setup becomes challenging, asmore tenants lead tomore dependencies.
Currently, SaaS applications avoid these issues by restricting the number of concurrently
available versions: the service provider forces its customers to upgrade to the most recent
application version as soon as it is released. However, for some tenants such a behavior
may not be acceptable, because tenant-speciĕc and ISVs’ extensions have to be checked
for compatibility. Before migration can take place, changes to extensions may be required.
Affected tenants may accept to pay a higher service fee if they do not have to upgrade
right away and can stay on a given version of the base application with which all their
extensions work. Managing each tenant’s application instance separately is not feasible for
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Figure ..: Extensibility and Evolution for Multiple Tenants

the service provider, as the administration and maintenance costs would be similar to on-
premise solutions multiplied by the number of customers of the service provider. As a
consequence, a multi-tenant DBMS has to explicitly model evolution and extensibility of
SaaS applications.

Example .: Figure . depicts a SaaS application used by three tenants. It shows how
the SaaS application and its extensions develop according to the dimensions extensibility
and evolution. In this example, the base application has evolved from version vm− to
version vm and the extension has evolved from version vn− to version vn. Tenants T and
T have alreadymigrated to the new version of the base application and the extension, but
Tenant T is still using the old version of the base application and the extension, because
the tenant-speciĕc extension of T has not been checked for compatibility with the new
version of the extension and the base application yet.

Even with a high degree of customization, big parts of the SaaS application and the ISV
extensions can be shared across tenants. As the previous example shows, there is a high
potential for data sharing as certain data can be shared across tenants. Such data may
include master data or catalogs. By applying data sharing techniques, more tenants can be
packed onto the existing infrastructure.

Example .: In Figure ., Tenants T and T share version vm of the base application
Base. If the application would be managed separately for each tenant, the version vm of
the base application Base would require double amount of resources, as it would be part
of the application instance of Tenant T and part of the application instance of Tenant T.
Once the tenant-speciĕc extensions of Tenant T have been checked for compatibility with
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the new version of the base application and the extension, Tenant T can migrate to the
new version of the base application and the extension. Aer thismigration has happened,
there is even more potential for data sharing, as all three tenants share the common base
application in version vm and Tenants T and T share the common third-party extension
Ext in version vn.

Moreover, shared data needs to be update-able, as already existing entries may have to
be overwritten by tenants. Instead of replicating all data for each tenant, a small delta per
tenant can be used if only a low percentage of the shared data is modiĕed by the tenant.
From time to time, new common data becomes available, e.g., when new catalog data

is released or in case of application upgrades. For a tenant, it is important to always have
a consistent snapshot of the shared data. If shared data could change over time without
the knowledge of the tenants, they would get unpredictable results. erefore, there must
be a migration path for each individual tenant when common data changes. Tenants are
allowed to either follow the service provider’s upgrade cycle or follow their own migration
path by staying on a certain version.
e bottom line is that the multi-tenancy features—extensibility, evolution and data

sharing—are closely related. A multi-tenant DBMS needs an integrated model to cap-
ture these features. ere already exist models which capture extensibility, like the object-
oriented concept of inheritance (Khoshaĕan and Abnous, ), and there are models for
capturing the evolution of an application (Curino et al., ), but there is currently no
integrated model that captures both dimensions and data sharing together. In this thesis,
we therefore propose such a model, called FlexScheme.

.. Problem Statement

e previous sections show that there are two important design goals for multi-tenant
databases. On the one hand, a high level of consolidation must be achieved in order to
signiĕcantly lower TCO; on the other hand, the SaaS application must be attractive to the
customer, and thus schema Ęexibility mechanisms have to be available to allow customiz-
ability of the application.
ese features cannot be easily implemented in a traditional DBMS and, to the extent

that they are currently offered at all, they are generally implemented within the application
layer. Traditional DBMSs do not offer mechanisms for schema Ęexibility, even worse, they
prohibit continuously evolving schemas, as schema-modifying DDL operations may neg-
atively affect service availability due to expensive data redeĕnition phases. As an example,
force.com does its ownmapping from logical tenant schemas to one universal physical da-
tabase schema (Weissman and Bobrowski, ) to overcome the limitations of traditional
DBMSs. However, this approach reduces the DBMS to a ‘dumb data repository’ that only
stores data rather than managing it. In addition, it complicates development of the appli-
cation since many DBMS features, such as query optimization, have to be re-implemented
from the outside. Instead, a next-generation multi-tenant DBMS should provide explicit
support for extensibility, data sharing and evolution.


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.. Contributions and Outline

is thesis addresses schema Ęexibility and data sharing in the context of multi-tenant ap-
plications. Due to the high level of consolidation in the SaaS context, combined with a
constantly evolving database schema, the database workload of a multi-tenant SaaS appli-
cation can fundamentally differ from traditional on-premise application workloads.
In Chapter  we discuss the basic setup of traditional DBMSs without schema Ęexibil-

ity when used as a back-end for multi-tenant SaaS services. Based on the results of ex-
periments with our multi-tenant CRM Testbed which simulates a typical SaaS application
workload, we argue that traditional DBMSs suffer from performance degradation in a typ-
ical SaaS setup with a high consolidation level. Parts of this chapter have been presented
at BTW Conference  (Jacobs and Aulbach, ) and at SIGMOD Conference 
(Aulbach, Grust, Jacobs, Kemper, and Rittinger, ).
Chapter  presents sophisticated schema mapping techniques to allow schema exten-

sibility on traditional DBMSs. Our novel approach called Chunk Folding is compared to
already existing schemamapping techniques. Our performance analysis measures the im-
pact of schema mapping on request processing. Furthermore, we evaluate vendor-speciĕc
mechanisms of someDBMSproducts which allow for limited support of schema evolution.
e results have been presented at SIGMOD Conference  (Aulbach, Grust, Jacobs,
Kemper, and Rittinger, ) and SIGMOD Conference  (Aulbach, Jacobs, Kemper,
and Seibold, a).
In Chapter  we propose our special-purpose DBMS which is optimized for a multi-

tenant workload, as it is typically expected in a Cloud Computing environment. We in-
troduce features like native schema Ęexibility which is handled by our data model called
FlexScheme. Our prototype is optimized for a low TCO by leveraging the advantages of
scaling-out on a cluster of commodity hardware servers. e prototype concept has been
presented at BTW Conference  (Aulbach, Jacobs, Primsch, and Kemper, b) and
FlexScheme was presented at ICDE Conference  (Aulbach, Seibold, Jacobs, and Kem-
per, ).
e data sharing component of our prototype is presented inChapter . We describe our

approach of accessing shared data which has been overridden by individual tenants. When
accessing shared data, our specialized Overlay operator merges the shared data with the
tenant’s additions on-the-Ęy. Furthermore, we discuss various physical representations for
shared data which support data versioning as well. Parts of this work have been presented
at ICDE Conference  (Aulbach, Seibold, Jacobs, and Kemper, ).
A specialized query plan operator for Schema Evolution is presented in Chapter . We

propose a method for graceful on-line schema evolution, where the data is evolved on-
access, rather than pre-emptive as in current DBMSs. Our approach enables schema evo-
lution without service outages, by deferring the costly physical data redeĕnition. Finally,
we evaluate several strategies for our lazy schema evolution approach.
Chapter  concludes this thesis and outlines future challenges.
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Fundamental Implementation of Multi-Tenancy

For SaaS applications, the implementation of multi-tenancy is an inherent requirement as
discussed in the previous section. Database vendors give a lot of recommendations on
how to implement multi-tenancy atop of their products, but the concrete implementation
decision depends on the application domain.
is chapter presents a set of fundamental implementation techniques for the database

layer of a SaaS application, which do not per se offer schema Ęexibility. ey serve as a
basis for more sophisticated approaches, which support schema Ęexibility as well.

.. Basic Database Layouts for Multi-Tenancy

At ĕrst glance, we introduce three different approaches for implementing multi-tenancy
atop of existing DBMSs: SharedMachine, Shared Process, and Shared Table. Each of these
approaches differently affects TCO, as they directly inĘuence the level of tenant consoli-
dation. e approaches are increasingly better at resource pooling, but they increasingly
break down the isolation between tenants, weaken security and affect resource contention.

... SharedMachine

e Shared Machine approach as shown in Figure .a is the easiest way to implement
multi-tenancy atop of existing database systems. With this approach, each tenant gets its
own DBMS instance. ere are two implementation variants, depending on the usage of
hardware virtualization techniques. When not using virtualization, there is one DBMS
process per tenant running on a shared Operating System (OS) instance on a shared host.
In the other case, the host runs a hypervisor that virtualizes the hardware resources. Above
this hypervisor, each tenant has its own OS instance running the DBMS process. Fig-
ure .a shows the variant without virtualization.
is approach is popular in practice because it does not require modifying the imple-

mentation of the DBMS. Furthermore, it does not reduce tenant isolation, especially if
each DBMS instance is run in its own virtual machine.
However, the lack of resource pooling is the major drawback of this approach. Recent

DBMS instances have amemory footprint of MB to MB, depending on the database
cf. Jacobs and Aulbach ()
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Figure ..: Basic Database Layouts

system used. In combination with virtualization, the size of the footprint increases by the
amount of resources needed by the hypervisor and the OS. Even for large scale hardware,
this approach cannot handle more than tens of active tenants per server. In addition, each
DBMS instance requires its own connection pool on each application server, so database
connections will not be shared among tenants. To improve this situation, the operating
system might offer mechanisms to share connections among co-located DBMS instances.
Since each tenant has either its own DBMS instance or even its own OS instance, there

is a high level of isolation between tenants. Tenant data is placed in one or more table-
spaces which are exclusively allocated to the appropriate DBMS instance. Unauthorized
data access across tenants is prohibited by the OS or the hypervisor. Furthermore, individ-
ual DBMS instances allow for I/O load balancing by distributing tenants across different
backing disks. With this approach, each tenant is visible to the OS as a process, or as a vir-
tual machine to the hypervisor, respectively, thus the scheduler of the OS or the hypervisor
can be leveraged for avoiding resource contention.
Collocating data in a table-space on a per-tenant basis allows for easy migration from

one host to another. While a tenant is off-line, the DBMS instance can be migrated by
simply moving the data to the new host; for online migration, modern database systems
provide mechanisms for data migration like Oracle Streams (Oracle Corporation, ).
For upgrading the application, each tenant has to be processed individually. is intro-

duces a high administrative overhead during the upgrade process but allows for having
different application revisions for different tenants. Furthermore, the individual upgrade
process places downtime only on single tenants, whereas the application remains available
for the other tenants.
Sharing of common data can be added by having a separated DBMS instance for shared

data which is accessed by the application via a separate connection pool. Tenant-speciĕc
overwriting or adding common data with such a solutionmust be handled inside the appli-
cation. Since each tenant has its own DBMS process, there is no possibility for meta-data
sharing.
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... Shared Process

In order to get better resource utilization, the Shared Process approach can be used. As
Figure .b shows, each tenant gets its own set of tables within a DBMS instance which
is shared across multiple tenants. For most DBMSs, there is no difference whether a ten-
ant gets its own schema or not, since database schemas are usually implemented using a
lightweight preĕxing mechanism.
All tenants using the same DBMS instance share the resources of that instance. In this

setup, the resource allocation to the tenants has to be controlled by the DBMS instance,
which weakens the resource contention compared to the shared machine approach. is
also affects tenant isolation, since the DBMS instance is responsible for guaranteeing ten-
ant isolation. User rights and authorization rules have to be maintained carefully so that
tenants can access only their individual data.
For better isolation, it is useful to place each tenant in its individual physical table-space.

Doing so allows for easymigration as in the sharedmachine case, aswell as the possibility of
doing I/O load balancing across different storage back-ends. For tenant migration, similar
mechanisms as in the shared machine scenario can be used.
e shared process approach increases resource sharing across tenants. One of the pre-

eminent factors is the reduced memory consumption per tenant due to co-locating mul-
tiple tenants into one single DBMS instance. Furthermore, the connections from the ap-
plication server to the DBMS can be pooled across tenants. However, in such a setup, the
DBMS looses control about access permissions: the application server has to connect as
super-user in order to access the data of all co-located tenants, thus weakening the secu-
rity mechanisms of the DBMS. Additionally, resource contention increases, because the
shared process approach suffers from a bad buffer-pool utilization if lots of tables are used
simultaneously. We discuss this issue in detail in Section ...
As with the shared machine approach, application upgrades have to process each tenant

individually. However, the administrative overhead is lower since only oneDBMS instance
has to be managed.
Common data can be shared by placing the data in a separate schema of the DBMS

instance. As with the previous approach, tenant-speciĕc changes to the common datamust
be handled inside the application. Although no DBMS supports this at the moment, there
is a high potential of sharing themeta-data across tenants. Since the schemas of tenants are
very similar to each other, there is a high level of redundancy in the schema description.

... Shared Table

Figure .c shows the Shared Table approachwhere all co-located tenants not only share the
same DBMS instance, but also the same set of tables. To distinguish entries from various
tenants, each table has to be augmented by an additional column Tenant which identiĕes
the owner of a particular tuple. An example of such an augmentation can be found in
Figure .. Every application query is expected to specify a single value for this column.
From a resource pooling perspective, this approach is clearly the best of the three ap-

proaches. Its ability to scale-up is only limited by the number of tuples a DBMS instance
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Figure ..: Shared Table Example

can hold. As with the shared process approach, the connection pool can be shared across
tenants, but then the application server needs to connect as super-user, again.
However, there are several signiĕcant problems with this approach. Since the data of all

tenants are intermingled inside the DBMS instance, several issues arise with such a setup.
First, tenant migration requires queries against the operational system instead of simply
copying table-spaces. Second, for an application upgrade, all tenants have to migrate to
the new version at the same time. ird, the isolation between tenants is further weak-
ened. From a security perspective, there is a need for row-based access control if security
should be pushed down into theDBMS instance, but not all available DBMSs support these
mechanisms. e fourth and biggest problem with this approach is that queries intended
for a single tenant have to contend with data from all tenants, which compromises query
optimization. In particular, optimization statistics aggregate across all tenants and table
scans go across all tenants. Moreover, if one tenant requires an index on a column, then
all tenants have to have that index as well.
Since all tenants are packed in one single set of tables, there is no need for meta-data

sharing at all, however access to common data can be enabled by putting these data in a
separate schema. Write access to common data still has to be handled inside the applica-
tion. As only one DBMS instance has to bemanaged, the administrative overhead is as low
as in the shared process approach.

.. Scalability and Efficiency

From a scalability perspective, the shared machine approach has severe drawbacks com-
pared to the other two approaches. A typical DBMS has a memory footprint of several
 MB, so even big machines can accommodate only a few tenants. However, due to its
high level of tenant isolation, it may be useful in circumstances where security concerns
are paramount. For better multi-tenant efficiency the latter two approaches look more
promising. We therefore analyse the performance of currently available database systems
as a back-end for multi-tenant applications when either the shared process or the shared
table approach is used. Our multi-tenancy testbed, that simulates a multi-tenant CRM
application, serves as a benchmark for the behavior of the DBMS instance as it handles
more and more tables. Conventional on-line benchmarks such as TPC-C (Transaction
Processing Performance Council, ) increase the load on the database until response
time goals for various request classes are violated. In the same spirit, our experiment varies
the number of tables in the database and measures the response time for various request
classes.
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... Multi-Tenancy Testbed

Many SaaS applications have been developed leveraging already existing DBMS technol-
ogy by introducing an intermediate layer enabling multi-tenancy and schema Ęexibility.
Furthermore, some DBMS vendors provide integrated mechanisms for facilitating the de-
ployment of multi-tenancy applications on their products.
For experimenting with various multi-tenant database implementations, we developed

a conĕgurable testbed with a well-deĕned workload simulating the OLTP component of
a hosted CRM service. Conceptually, users interact with the service through browser and
Web Service clients.
e testbed does not actually include the associated application servers, rather the clients

simulate the behavior of those servers. e application is itself of interest because it char-
acterizes a standard multi-tenant workload and thus could be used as the basis for a multi-
tenant database benchmark.

Components

e testbed is composed of several processes as shown in Figure .. e system under
test is a multi-tenant database running on a private host. It can be conĕgured for various
schema layouts and usage scenarios. A worker process engages in multiple client sessions,
each of which simulates the activities of a single connection from an application server’s
database connection pool. Each session runs in its own thread and gets its own connec-
tion to the target database. Per request the response time of the database is measured and
reported to the controller. Multiple workers are distributed over multiple hosts.
e controller task assigns actions and tenants to workers. Following the TPC-C bench-

mark (Transaction Processing Performance Council, ), the controller creates a deck
of action cards with a particular distribution, shuffles it, and deals cards to the workers.
e controller also randomly selects tenants, with an equal distribution, and assigns one
to each card. Finally, the controller collects response times and stores them in a result da-





Chapter . Fundamental Implementation of Multi-Tenancy

..LineItem. Product. Case. Contract.

Lead

.

Opportunity

.

Asset

.

Contact

.

Campaign

.

Account

Figure ..: CRM Application Schema

tabase. e timing of an action starts when a worker sends the ĕrst request and ends when
it receives the last response.

Database Layout

e base schema for the CRM application contains ten tables as depicted in Figure .. It
is a classic DAG-structured OLTP schema with one-to-many relationships from child to
parent. Individual users within a business (a tenant) are not modeled, but the same tenant
may engage in several simultaneous sessions so data may be concurrently accessed. Every
table in the schema has a tenant-id column so that it can be shared by multiple tenants.
Each of the tables contains about  columns, one of which is the entity’s ID. Every table

has a primary index on the entity ID and a unique compound index on the tenant ID
and the entity ID. In addition, there are twelve indexes on selected columns for reporting
queries and update tasks. All data for the testbed is synthetically generated.

Worker Actions

Worker actions include CRUD operations and reporting tasks that simulate the daily ac-
tivities of individual users. e reporting tasks model ĕxed business activity monitoring
queries, as they may be found on an application dashboard, rather than ad-hoc business
intelligence queries, and are simple enough to run against an operational OLTP system.
ese ad-hoc reports perform queries with value aggregation and parent-child roll-ups.
Worker actions also include administrative operations for the business as a whole, in par-
ticular, adding and deleting tenants. Depending on the conĕguration, such operations
may entail executing DDL statements while the system is on-line, which may result in de-
creased performance or even deadlocks for some databases. e testbed does not model
long-running operations because they should not occur in an OLTP system, particularly
one that is multi-tenant.
To facilitate the analysis of the experimental results, the worker actions are grouped into

classes with particular access characteristics and expected response times. Lightweight
actions perform simple operations on a single entity or a small set of entities. Heavyweight
actions perform more complex operations, such as those involving grouping, sorting, or
aggregation, on larger sets of entities. e list of action classes (see Figure .) speciĕes the
distribution of actions in the controller’s card deck. In contrast to TPC-C, the testbed does
not model client think times.
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Select Light (): Selects all attributes of a single entity or a small set of entities as if
they were to be displayed on an entity detail page in the browser.

Select Heavy (): Runs one of ĕve reporting queries that perform aggregation and/or
parent-child-roll-up.

Insert Light (.): Inserts one new entity instance into the database as if it had been
manually entered into the browser.

Insert Heavy (.): Inserts several hundred entity instances into the database in a batch
as if they had been imported via a Web Service interface.

Update Light (.): Updates a single entity or a small set of entities as if they had been
modiĕed in an edit page in the browser. e set of entities is speciĕed by a ĕlter
condition that relies on a database index.

Update Heavy (.): Updates several hundred entity instances that are selected by the
entity ID using the primary key index.

Administrative Tasks (.): Creates a new instance of the -table CRM schema by
issuing DDL statements.

Figure ..:Worker Action Classes

e testbed adopts a strategy for transactions that is consistent with best practices for
highly-scalable Web applications (Kemper et al., ; Jacobs, ). e testbed assumes
that neither browser norWeb Service clients can demarcate transactions and that themax-
imum granularity for a transaction is therefore the duration of a single user request. Fur-
thermore, since long-running operations are not permitted, large write requests such as
cascading deletes are broken up into smaller independent operations. Any temporary in-
consistencies that result from the visibility of intermediate states must be eliminated at the
application level. Finally, read requests are always performed with a weak isolation level
that permits unrepeatable reads.

Database Drivers

To adapt the testbed to a variety of possible DBMS back-ends, the access to the database
is handled by database drivers. ese DBMS-speciĕc drivers transform a request for a
speciĕc worker action into proprietary code. e database drivers access the DBMS by
either a JDBC request or by calling the API of the product-speciĕc library. For each worker
session, one separate driver is instantiated. Each request which has been received by the
worker triggers a database action by the driver.
Each driver is optimized for the supportedDBMS and can thus leverage specialized tech-

niques and features of the DBMS. is is necessary to exploit vendor-speciĕc extensions
to the standard feature set of a DBMS, such as XML features or special optimizations for
sparse data.
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Schema
Variability

Number of
instances

Tenants per
instance

Total tables

.  , 
. ,   ,
. ,   −  ,
. ,   −  ,
. ,   ,

Table ..: Schema Variability and Data Distribution

... Experiment: DBMS Performance with Many Tables

With the multi-tenancy testbed we measured the performance of traditional relational
DBMSs as they handle more and more tables. In order to programmatically increase the
overall number of tables without making them too synthetic, multiple copies of the -
table CRM schema are created. Each copy should be viewed as representing a logically
different set of entities. us, the more instances of the schema there are in the database,
the more schema variability there is for a given amount of data. e testbed is conĕgured
with a ĕxed number of tenants—,—, a ĕxed amount of data per tenant—about .
MB—, and a ĕxed workload— client sessions.
e schema variability takes values from  (least variability) to  (highest variability) as

shown in Table .. For the value , there is only one schema instance and it is shared
by all tenants, resulting in  total tables. At the other extreme, the value  denotes a
setup where all tenants have their own private instance of the schema, resulting in ,
tables. Between these two extremes, tenants are distributed as evenly as possible among
the schema instances. For example, with schema variability ., the ĕrst , schema
instances have two tenants while the remaining ones have only one.

Testbed Conöguration

For this experiment, the multi-tenancy testbed was conĕgured as follows.

. Each run has a duration of one hour, where the ĕrst minutes (ramp-up phase) and
the last  minutes (ramp-down phase) have been stripped. us, the performance is
reported within a  minute steady-state interval.

. e action classes are distributed as stated in Figure ..

. Each worker has a set of sessions, where each sessionmanages a physical connection
to the database. In our setup we used  workers with  sessions each. is simulates
an application server with  connections within a connection pool. Since some
JDBC drivers have optimizations when opening a lot of concurrent connections to
the same database, we distributed the load across  workers. Furthermore, with this
setup, we were able to stress the DBMS optimally.
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Wemeasured the response time of each query. Eachworker uses an internal stopwatch to
determine the runtime of a request. e response time is end-to-end, thus it contains sub-
mitting the request across the network, request processing within the DBMS, data transfer
across the network, and data output at the client. We accessed all attributes of each result
set entry to avoid unpredictable results if the DBMS-speciĕc JDBC driver implements lazy
fetching, where the driver avoids unnecessary network operations.

Results

eexperiment was run on an IBMDB database server with a . GHz Intel Xeon proces-
sor and  GB ofmemory. e database server was running a recent enterprise-grade Linux
operating system. e data was stored on an NFS appliance that was connected with ded-
icated  GBit/s Ethernet trunks. e workers were placed on blade servers with a  GBit/s
private interconnect.
IBM DB allocates  KB of main memory per table within the database heap, as soon as

the table is accessed for the ĕrst time. is memory is never freed. Additionally, there are
references to ĕle descriptors, etc. which are not part of that memory. e experiment was
designed to exploit this issue. Increasing the schema variability beyond . taxes the ability
of the database to keep the primary key index root nodes inmemory. Schema variability .
has , tables, which at  KB per table for DB consumes about  MB of memory.
e operating system consumes about  MB, leaving about  MB for the database
buffer pool. e page size for all user data, including indexes, is  KB. e root nodes of
the , primary key indexes therefore require  MB of buffer pool space. e buffer
pool must also accommodate the actual user data and any additional index pages, and the
dataset for a tenant was chosen so that most of the tables need more than one index page.
e raw data collected by the controller was processed as follows. First, the ramp-up

phase during which the system reached steady state was stripped off. en roll-ups of
the results were taken across  minute periods for an hour, producing two runs. is
process was repeated three times, resulting in a total of six runs. e results of the runs
were consistent and so only the ĕrst run is reported for each value of the schema variability;
see Table ..
e ĕrst line of this table shows the Baseline Compliance, which was computed as fol-

lows. e  quantiles were computed for each query class of the schema variability .
conĕguration: this is the baseline. en for each conĕguration, the percentage of queries
within the baseline were computed. e lower the baseline compliance, the higher the per-
centage of queries whose response time is above the baseline. Per deĕnition, the baseline
compliance of the schema variability . conĕguration is . Starting around schema
variability . the high response times are no longer tolerable. e baseline compliance
is also depicted in Figure .a. e second line of Table . is the database throughput in
actions per minute, computed as an average over the  minute period. e throughput is
also depicted in Figure .a.
e middle part of Table . shows the  quantiles for each query class. For the most

part, the response times grow with increasing schema variability. We hypothesize that the
exceptions occur for the following reasons. First, for low schema variability, there is more
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Metric Schema Variability

0.0 0.5 0.65 0.8 1.0

Baseline Compliance [%] 95.0 81.5 79.2 75.5 71.8
roughput [1/min] 7,325.60 5,162.30 4,225.17 3,852.70 3,829.40

95% Response Time Select Light [ms] 370 766 747 846 1,000
Select Heavy [ms] 2,226 1,677 1,665 1,959 2,375
Insert Light [ms] 4,508 2,031 2,620 3,020 2,005
Insert Heavy [ms] 8,530 10,128 13,383 16,681 9,718
Update Light [ms] 428 1,160 1,403 1,719 2,049
Update Heavy [ms] 679 1,393 1,524 1,777 2,096

Bufferpool Hit Ratio Data [%] 95.53 93.89 94.58 94.54 94.12
Index [%] 97.46 89.13 88.57 86.69 83.07

Table ..: Experimental Results
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sharing among tenants and thereforemore contention for longer running queries and tuple
inserts. Since the heavyweight select queries do aggregation, sorting, or grouping, multiple
parallel query instances have impact on each other. e query execution plans show that
these queries do a partial table scan with some locking, so the performance for this class
degrades. For insert operations, the database locks the pages where the tuples are inserted,
so concurrently running insert operations have to wait for the release of these locks. is
effect can be seen especially for the lightweight insert operations. Second, there is a visible
performance improvement for the insert operations at schema variability ., where the
database outperforms all previous conĕgurations. We hypothesize that this behavior is
due to the fact that DB is switching between the two insert methods it provides. e
ĕrst method ĕnds the most suitable page for the new tuple, producing a compactly stored
relation. e second method just appends the tuple to the end of the last page, producing
a sparsely stored relation.
e last two lines of Table . show the buffer pool hit ratio for the data and the indexes.

As the schema variability increases, the hit ratio for indexes decreases while the hit ratio for
data remains fairly constant. Inspection of the query plans shows that the queries primarily
use the indexes for processing. e hit ratios are also depicted in Figure .b.

.. Multi-Tenancy Issues with Current DBMS

As the previous experiment shows, there are two main factors which affect the scalabil-
ity of traditional DBMSs when sharing a DBMS instance across tenants: buffer pool uti-
lization and meta-data management. Furthermore, there is a third issue—online schema
changes—which negatively affects the DBMS scalability. In the following we elaborate
these issues and present short-term and long-term solutions.

... Buffer Pool Utilization

Typically, the physical storage of a modern DBMS consists of several data segments which
are slotted into pages. Each segment contains a headerwith information about the segment,
such as high-watermarks and free-space information of the pages. A relation is usually
stored across a set of such data segments, making a segment uniquely belonging to one
particular relation. us, each page in a segment stores the tuples belonging to exactly one
single relation.
With an increasing number of tables, the number of underutilized pages increase as well,

leading to a lower buffer hit ratio for data pages. e previous experiment is very index-
centric and therefore does not have a low buffer utilization for the data pages. However,
other scenarios, where the workload is more data-centric, may show a different behavior.
Tree-based indexes are stored using the samemechanisms as described above. e pages

do not contain data tuples, instead they contain one single node of the B-Tree. A very
important property of a B-Tree is its balanced architecture combined with its high fan-
out keeping the height of the tree very small. For guaranteeing fast index look-ups most
DBMSs keep the root node of the B-Tree in the buffer pool, as soon as it has been accessed
once. If the root node is kept in the buffer pool, the look-up costs are dramatically reduced
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for subsequent look-ups in the same index. In the previous experiment, this effect becomes
visible with a schema variability factor greater than .. At this point, the DBMS is no
longer able to keep all root pages of the primary key index in the buffer pool, thus leading
to a severe performance degradation.
For the short term, the problem of underutilized buffer pools can be ameliorated by shar-

ing tables across tenants. However, as discussed before, this lowers tenant isolation and
simultaneously increases the risk of resource contention. For the long term, it should be
possible to have tuples of various relations in the same page. However, this may negatively
affect the paging behavior of current DBMSs and thus decreases the overall query perfor-
mance. With the advent of terabyte-scale main-memories, this issue can be addressed by
replacing disk-based DBMSs with main-memory-based DBMSs.

... Meta-Data Management

As discussed above, each table which is known to the database system consumes at least
 KB of main memory, as soon as it has been accessed once. is memory block contains
the structural description of the table as well as the information for the physical access
like ĕle descriptors. Furthermore, since DB allocates this memory not inside the buffer
pool, but inside the database heap, these per-table memory blocks are not affected by the
DBMS’s pagingmechanism. us, once a table has been opened, its memory block is never
removed until the whole database has been closed. For example, if , tenants are co-
located on one DBMS instance and each tenant has  tables, then  GB of main memory
are occupied by these memory blocks.
As a short term solution, the application of the shared table approach decreases the num-

ber of tables and thus decreases thememory requirements. However, this will lower tenant
isolation. For the long term, there should be a schema inheritance mechanism, where the
same structural description can be used by multiple table instances. As co-located tenants
share the same application, this way, common parts of the schema can be factored out.
A second aspect is the way how schema redeĕnitions are handled. If an ALTER TABLE

statement changes the data type of a particular attribute, the DBMS may need to perform
data reorganizations or at least checks if all values in the affected column are compliant
with the new data type. Such an operation may have severe effects on the query perfor-
mance: during the reorganization, the table becomes unavailable, thus lowering the SaaS
application’s availability. In the SaaS world this is crucial, as schema modiĕcation opera-
tions are part of the tenants’ self-service and may be quite frequent.
Some DBMSs already address these issues. In the simplest form, checks and reorgani-

zations can be avoided if “compatible” changes are speciĕed in the ALTER TABLE state-
ment. Such compatible changes are, for example, adding attributes, renaming attributes,
or changing the data type of an attribute to a more generic data type, such as VARCHAR(50)
to VARCHAR(100). In such a scenario, the ALTER TABLE statement only changes the meta-
data. However, the ALTER TABLE statement may gain an exclusive lock on the data dictio-
nary, thus preventing concurrent requests from reading data dictionary entries.

A detailed discussion of this issue can be found in Chapter .





.. Multi-Tenancy Issues with Current DBMS

Other mechanisms, like Oracle’s Online Data Reorganization and Redeĕnition feature
(Oracle Corporation, ), keep the affected table online: at ĕrst, a delta table is created
in the same shape as the source table. During the reorganization process, all updates to the
source table are redirected to the delta table. en a target table is created that reĘects the
structural changes to the source table made by the ALTER TABLE statement. Next, the data
is copied from the source table to the target table. Finally, the delta table is merged into
the target table and source and delta tables are deleted. is procedure does not guarantee
non-interruptible availability, but it reduces the downtime to a sub-second time window.
However, it cannot be performed without the intervention of a DBMS administrator and
are thus not suitable for SaaS setups.
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.. 
Extensible Schemas for Traditional DBMS

e previous chapter shows that traditional DBMSs are not able to handle a multi-tenant
workload out of the box. Besides the issues with buffer pool utilization and meta-data
management, the DBMSs do not have the notion of tenants, thus they cannot leverage this
knowledge for, e.g., query optimization.
Up to now, the fundamental implementation techniques as presented in the previous

chapter do not offer anymechanisms for schema Ęexibility. In this chapter, we extend them
with mechanisms for extensibility and evaluate, to what extent these implementations are
suitable for schema evolution.
Currently available SaaS applications are composed of sophisticated persistence layers

in the application to map the multi-tenant application to the relational world. us, the
persistence layer needs to be built to overcome the issues with buffer pool utilization and
meta-data management. We present schema mapping techniques which address this issue
by mapping multiple single-tenant logical schemas in the SaaS application to one multi-
tenant physical schema.
e presented schema mapping techniques are suitable for schema extensibility. Fur-

thermore, some of them natively store semi-structured data inside the DBMS and thus
have limited support for schema evolution.

.. SchemaMappings

We introduce the schema mapping techniques for multi-tenancy with a running example
that shows various layouts for Account tables of three tenants with IDs , , and .
Tenant  has an extension for the health care industry, while tenant  has an extension
for the automotive industry; tenant  has no extension.
e most basic technique for implementing multi-tenancy is to add a tenant ID column

(Tenant) to each table and share tables among tenants (cf. Section ..). is approach
provides very good consolidation, but nevertheless, it does not support schema extensi-
bility. As a result of the latter, it cannot represent the schema of our running example
and is not further discussed here. is approach is generally taken by conventional Web
applications, which view the data as being owned by the service provider rather than the
individual tenants. As this approach is very limited, only simpler services on the le side
of Figure . without the need for schema Ęexibility make use of it.





Chapter . Extensible Schemas for Traditional DBMS

...Account
Aid Name Hospital Beds
 Acme St. Mary 
 Gump State 

...Account
Aid Name
 Ball

...Account
Aid Name Dealers
 Big 

Figure ..: Private Table Layout

We discuss several categories of schemamapping techniques, depending on the physical
storage layout. All of these have in common that they support some aspects of schema
Ęexibility. However, the experimental evaluation of these approaches shows, that some of
them are more suitable for schema evolution than others. Furthermore, the approaches
try to avoid stressing the meta-data budget of the DBMS by transferring actual meta-data
into stored meta-data. is means that some of the meta-data has to be stored outside the
DBMS to actually interpret the data tuple. In the example ĕgures, gray columns denote
such stored meta-data.

... Schema Based Approaches

e ĕrst category of schemamapping techniques store the data in fully structured physical
relations. at means, that the logical single-tenant schemas of the SaaS applications are
mapped to fully-structured physical relations in the DBMS. As a consequence, the DBMS
has the full schema information of the stored data.

Private Table Layout

emost basic way to support extensibility is to give each tenant their own private tables,
as shown in Figure .. Since the meta-data is entirely managed by the database, there is
no overhead for meta-data in the data itself (i.e., gray columns are missing in the ĕgure).
However only moderate consolidation is provided since many tables are required. is
approach is used by some larger services on the right side of Figure . where a small
number of tenants can produce sufficient load to fully utilize the host machine.

Extension Table Layout

Figure . shows how the above layout evolves to the Extension Table Layout by splitting off
the extensions into separate tables. Because multiple tenants may use the same extensions,
the extension tables as well as the base tables should be given a Tenant column. A Row
columnmust also be added so the logical source tables can be reconstructed. e two gray
columns in Figure . represent the overhead for meta-data in the data itself, the stored
meta-data.
At run-time, reconstructing the logical source tables carries the overhead of additional

joins as well as additional I/O if the row fragments are not clustered together. On the other
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...AccountExt
Tenant Row Aid Name
   Acme
   Gump
   Ball
   Big

...HealthcareAccount
Tenant Row Hospital Beds
  St. Mary 
  State 

...AutomotiveAccount
Tenant Row Dealers
  

Figure ..: Extension Table Layout

...Universal
Tenant Table Col Col Col Col Col Col
   Acme St. Mary  − −
   Gump State  − −
   Ball − − − −
   Big  − − −

Figure ..:Universal Table Layout

hand, if a query does not reference one of the tables, then there is no need to read it in,
which can improve performance. is approach provides better consolidation than the
Private Table Layout, however the number of tables will still grow in proportion to the
number of tenants since more tenants will have a wider variety of basic requirements.
is approach has its origins in the Decomposed Storage Model, proposed by Copeland

and Khoshaĕan (), where an n-column table is broken up into n -column tables
that are joined through surrogate values. is model has then been adopted by column-
oriented databases, for example MonetDB (Boncz, ), which leverage the ability to se-
lectively read in columns to improve the performance of analytics (Stonebraker et al., )
and RDF data (Abadi et al., ). e Extension Table Layout does not partition tables all
the way down to individual columns, but rather leaves them in naturally-occurring groups.
is approach has been used to map object-oriented schemas with inheritance into the re-
lational model (Elmasri and Navathe, ).

... Generic Structures

In contrast to the previous category, the following schemamapping techniques do not store
fully-structured data. Instead, the logical single-tenant schema gets shredded into generic
structures which allow the creation of an arbitrary number of tables with arbitrary shapes.
e schema information that is necessary to transform the fully structured logical scheme
to the generic structure is available in the persistence layer of the SaaS application only and
cannot be used for query optimization by the DBMS, though.
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Universal Table Layout

A Universal Table, as depicted in Figure ., is a generic structure with a Tenant column,
a Table column, and a large number of generic data columns. e data columns have a
Ęexible type, such as VARCHAR, into which other types can be converted. e n-th column
of each logical source table for each tenant is mapped into the n-th data column of the Uni-
versal Table. As a result, different tenants can extend the same table in different ways. By
keeping all of the values for a row together, this approach obviates the need to reconstruct
the logical source tables. However it has the obvious disadvantage that the rows need to
be very wide, even for narrow source tables, and the database has to handle many NULL
values. While DBMSs handle NULL values fairly efficiently, they nevertheless occupy some
additional memory. Perhaps more signiĕcantly, ĕne-grained support for indexing is not
possible: either all tenants get an index on a column or none of them do. Furthermore,
indexes have to cope with various data types in the Universal Table. Consider the Col at-
tribute in the Universal Table depicted in Figure .. As the application’s persistence layer
maps the String attribute Hospital of the healthcare extension to the same physical attribute
as the Integer attribute Dealers of the automotive extension, the indexing mechanismmust
be enhanced to support such a setup. As a result of these issues, additional structures must
be added to this approach to make it feasible.
is approach has its origins in the Universal Relation presented by Maier and Ullman

(), which holds the data for all tables and has every column of every table. e Uni-
versal Relation was proposed as a conceptual tool for developing queries and was not in-
tended to be directly implemented. e Universal Table described here is narrower, and
thus feasible to implement, because it circumvents typing and uses each physical column
to represent multiple logical columns.
ere have been extensive studies of the use of generic structures to represent semi-

structured data. Florescu and Kossmann () describe a variety of relational representa-
tions for XML data includingUniversal and Pivot Tables. Our work uses generic structures
to represent irregularities between pieces of schema rather than pieces of data.

Pivot Table Layout

A Pivot Table is a generic structure in which each ĕeld of each row in a logical source table
is given its own row. Figure . shows that, in addition to Tenant, Table, and Row columns
as described above, a Pivot Table has a Col attribute that speciĕes which source ĕeld a row
represents and a single data-bearing column for the value of that ĕeld. e data column
can be given a Ęexible type, such as VARCHAR, into which other types are converted. In such
a case the Pivot Table becomes a Universal Table for the Decomposed Storage Model. A
better approach however, in that it does not circumvent typing, is to have multiple Pivot
Tables with different types for the data column. To efficiently support indexing, two Pivot
Tables can be created for each type: one with indexes and one without. Each value is placed
in exactly one of these tables depending on whether it needs to be indexed.
is approach eliminates the need to handle many NULL values. However it has more

columns of meta-data than actual data and reconstructing an n-column logical source ta-
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...Pivotint
Tenant Table Col Row Int
    
    
    
    
    
    
    

...Pivotstr
Tenant Table Col Row Str
    Acme
    St. Mary
    Gump
    State
    Ball
    Big

Figure ..: Pivot Table Layout

ble requires (n − ) aligning joins along the Row column. is leads to a much higher
runtime overhead for interpreting the meta-data than the relatively small number of joins
needed in the Extension Table Layout. Of course, like the Decomposed StorageModel, the
performance can beneĕt from selectively reading in a small number of columns.
Grust et al. () use Pivot-like Tables in their Pathĕnder query compiler to map XML

into relations. Closer to our work is the research on sparse relational data sets, which
have thousands of attributes, only a few of which are used by any object. Agrawal et al.
() compare the performance of Pivot Tables (called vertical tables) and conventional
horizontal tables in this context and conclude that the former perform better because they
allow columns to be selectively read in. Our use case differs in that the data is partitioned
by tenant into well-known dense subsets, which provides both amore challenging baseline
for comparison aswell asmore opportunities for optimization. Beckmann et al. () also
present a technique for handling sparse data sets using a Pivot Table Layout. In comparison
to our explicit storage of meta-data columns, they chose an “intrusive” approach which
manages the additional runtime operations in the database kernel. Cunningham et al.
() present an “intrusive” technique for supporting general-purpose pivot and unpivot
operations.

Chunk Table Layout

Wepropose a third generic structure, calledChunkTable, that is particularly effectivewhen
the base data can be partitioned into well-known dense subsets. A Chunk Table, as shown
in Figure ., is like a Pivot Table except that it has a set of data columns of various types,
with and without indexes, and the Col column is replaced by a Chunk column. A logical
source table is partitioned into groups of columns, each ofwhich is assigned a chunk ID and
mapped into an appropriate Chunk Table. In comparison to Pivot Tables, this approach
reduces the ratio of stored meta-data to actual data as well as the overhead for reconstruct-
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...Chunkint|str
Tenant Table Chunk Row Int Str
     Acme
     St. Mary
     Gump
     State
     Ball
     Big
     −

Figure ..: Chunk Table Layout

...AccountRow
Tenant Row Aid Name
   Acme
   Gump
   Ball
   Big

...ChunkRow
Tenant Table Chunk Row Int Str
     St. Mary
     State
     −

Figure ..: Chunk Folding Layout

ing the logical source tables. In comparison to Universal Tables, this approach provides
a well-deĕned way of adding indexes, breaking up overly-wide columns, and supporting
typing. By varying the width of the Chunk Tables, it is possible to ĕnd a middle ground
between these extremes. On the other hand, this Ęexibility comes at the price of a more
complex query transformation layer.

Chunk Folding

Wepropose a technique called Chunk Folding where the logical source tables are vertically
partitioned into chunks that are folded together into different physical multi-tenant tables
and joined as needed. e database’s “meta-data budget” is divided between application-
speciĕc conventional tables and a large ĕxed set of Chunk Tables. For example, Figure .
illustrates a case where base attributes of the Account table are stored in a conventional
table and all its extension attributes are placed in a single Chunk Table. In contrast to
generic structures that use only a small, ĕxed number of tables, Chunk Folding attempts
to exploit the database’s entire meta-data budget in as effective a way as possible. Good
performance is obtained bymapping the most heavily-utilized parts of the logical schemas
into the conventional tables and the remaining parts into Chunk Tables that match their
structure as closely as possible.
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...Account
Tenant Aid Name SPARSE
  Acme ..Hospital St. Mary ..Bed 
  Gump ..Hospital State ..Bed 
  Ball
  Big ..Dealer 

Figure ..: Sparse Columns Layout

... Semistructured Approaches

Although each individual logical single-tenant schema is fully-structured, the aggregate
schema of all tenants is semi-structured due to the heterogeneity of extensions the tenants
have subscribed. e following two approaches exploit this property by storing a fully-
structured version of the common parts and a semi-structured version of each tenants’
extensions.

Sparse Columns

Sparse Columns were originally developed to manage data such as parts catalogs where
each item has only a few out of thousands of possible attributes. Storing such data in con-
ventional tables with NULL values can decrease performance even with advanced optimiza-
tions for NULL handling. To implement Sparse Columns, SQL Server  uses a variant
of the Interpreted Storage Format (Beckmann et al., ; Chu et al., ), where a value
is stored in the row together with an identiĕer for its column.
In our mapping for SaaS, the base tables are shared by all tenants and every extension

ĕeld of every tenant is added to the corresponding base table as a Sparse Column, as illus-
trated in Figure .. Sparse columns must be explicitly deĕned by a CREATE/ALTER TABLE
statement in the DDL and, in this sense, are owned by the database. Nevertheless, the
application must maintain its own description of the extensions, since the column names
cannot be statically embedded in the code. e implementation of Sparse Columns in SQL
Server  requires special handling when accessing the data. For writes, the application
must ensure that each tenant uses only those columns that they have declared, since the
name-space is global to all tenants. For reads, the application must do an explicit projec-
tion on the columns of interest, rather than doing a SELECT *, to ensure that NULL values
are treated correctly. In all other cases, the Sparse Columns approach is fully transparent
to the SaaS application; no special care has to be taken when generating the SQL queries.
Sparse Columns requires only a small, ĕxed number of tables, which gives it a perfor-

mance advantage over Private Tables; the experiment in the previous chapter shows that
having many tables negatively impacts performance. On the other hand, there is some
overhead for managing Sparse Columns. As an example, the SQL Server  documen-
tation recommends using a Sparse Column for an INTĕeld only if at least  of the values
are NULL (Microso Corporation, ).
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...Account
Tenant Aid Name Ext_XML
  Acme <ext>¾

<hospital>St. Mary</hospital>¾
<beds>135</beds>¾

</ext>
  Gump <ext>¾

<hospital>State</hospital>¾
<beds>1042</beds>¾

</ext>
  Ball
  Big <ext>¾

<dealers>65</dealers>¾
</ext>

Figure ..: pureXML Columns Layout

IBM pureXML

According to Saracco et al. (), IBM pureXML was designed to allow processing of
semi-structured data alongside of structured relational data. Although the extension sche-
ma is fully-structured for each individual tenant, the global schema across all tenants is
semi-structured. erefore, Taylor and Guo () give recommendations on how to use
pureXML for extensible SaaS applications. Traditionally, XML documents have either
been shredded into multiple relations or have been stored as CLOB attributes. When the
XML document has been stored as CLOB, it has to be fully retrieved from the DBMS as a
single object and then processed in the application, without any ability to fetch only the
substantial parts of the document. IBM pureXML provides server-side XQuery mecha-
nisms which allows for extracting the relevant part of an XML document. Furthermore,
indexes on XML documents are not possible. is limitation is exploited by introducing
XML shredding, however, a shredded XML document cannot be stored alongside the base
tables and thus make querying the data more error-prone.
With pureXML, the XML documents are stored in a single attribute of any table, thus

the base tables are shared by all tenants and each base table is augmented by a column
(Ext_XML) that stores all extension ĕelds for a tenant in a Ęat XML document, as illustrated
in Figure .. Since these documents necessarily vary by tenant, they are untyped. is
representation keeps the documents as small as possible, which is an important consider-
ation for performance (Nicola, ).

HBase

HBase (), which is an open source version of Google BigTable (Chang et al., ),
was originally designed to support the exploration of massive web data sets. ese systems
are increasingly being used to support enterprise applications in a SaaS setting (Bernstein,
).
In an HBase table, columns are grouped into column families. Column families must be

explicitly deĕned in advance in the HBase “DDL”; for this reason they are owned by the
database. ere should not bemore than tens of column families in a table and they should
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.. Case Study: e force.com Platform

Row Key Account Contact
Act [name:Acme, hospital:St. Mary, beds:]
Act [name:Gump, hospital:State, beds:]
Ctc [⋯]
Ctc [⋯]
Act [name:Ball]
Ctc [⋯]
Act [name:Big, dealers:]

Figure ..:HBase Pivot Columns Layout

rarely be changed while the system is in operation. Columns within a column family may
be created on-the-Ęy, hence they are owned by the application. Different rows in a table
may use the same column family in different ways. All values in a column are stored as
Strings. ere may be an unbounded number of columns within a column family.
Data in a column family is stored together on disk and inmemory. us, a column family

is essentially a Pivot Table; each value is stored along with an identiĕer for its column in a
tall narrow table (Agrawal et al., ).
HBasewas designed to scale out across a large farmof servers. Rows are range-partitioned

across the servers by key. Applications deĕne the key structure, therefore implicitly con-
trol the distribution of data. Rows with the same key preĕx will be adjacent but, in general,
may end up on different servers. e rows on each server are physically broken up into
their column families.
e mapping we use for SaaS is illustrated in Figure .. In keeping with best practices

for HBase, this mapping ensures that data that is likely to be accessed within one query
is clustered together. A single HBase table is used to store all tables for all tenants. e
physical row key in HBase consists of the concatenation of the tenant ID, the name of the
logical table, and the key of the row in the logical table. Each logical table is packed into its
own column family, thus each row has values in only one column family. Within a column
family, each column in the logical table is mapped into its own physical HBase column.
us, since columns are dynamic, tenants may individually extend the base tables.

.. Case Study: The force.comMulti-Tenant Application Platform

e application development platform force.com uses some of the above schema mapping
techniques in their product. Rather than being a SaaS application, force.com offers Plat-
form as a Service (PaaS) to ISVs for developing and hosting multi-tenant SaaS applica-
tions. e force.com platform emerged from the CRM application salesforce.com which
offers interfaces to ISVs for extending the CRM application. e extensions are available
via AppExchange where individual tenants can subscribe to the extensions. In order to
develop other applications than CRM extensions, ISVs can use the PaaS force.com.
Weissman and Bobrowski () describe the full architecture of force.com, including

application development and query optimization. In this section, we present a summary
of their work, focussed on meta-data, schema mapping, and data persistence. It serves as
an example on how to apply schema mapping techniques to a real world application.
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... Meta-Data-Driven Applications

eforce.complatformpursues ameta-data-driven approach for application development.
us, each component, like forms, reports, work Ęows, privileges, customizations, business
rules, data tables, and indexes, is meta-data. e platform itself separates these meta-data
describing either the base functionality of the ISV’s application or the tenant’s data and
customizations, from the compiled runtime environment (kernel) and the application data.
is separation allows for updating the system kernel, the base application, and the tenants’
customizations independently.
All objects that are known to the force.com platform only exist virtually in the runtime

environment. Virtual data tables containing tenants’ data and indexes are mapped to the
underlying DBMS’ physical tables by a sophisticated schema mapping which combines
multiple of the above discussed techniques. e meta-data is not available to the DBMS,
so rather than managing the data, the DBMS simply stores the data, degenerating to a
‘dumb data repository’. To reduce the I/O load, the meta-data is cached in main memory.
For each access to a virtual table, the runtime environment has to retrieve the appro-

priate meta-data and then transform the physical representation to a virtual table. is
transformation is done by generating a query which accesses the underlying DBMS and
casts the physical representation into the logical representation. e runtime environ-
ment has an internal multi-tenant-aware query optimizer that leverages the knowledge of
the meta-data for generating optimal queries to the DBMS. Statistics for this cost-based
optimizer are collected internally. is way, the optimizer and the statistic component of
the DBMS is no longer used.

... Data Persistence

For data persistence, the force.com platform uses several schema mapping techniques in
combination. ere are two kinds of physical tables. First there are data tables which serve
as “data heap” for storing tenants’ data, either structured data or CLOBs. Second, there
are index tables for storing data which have a tenant-deĕned index on it. Beside these two
kinds, there are specialized tables for storing the meta-data of the application. Although
these meta-data is stored inside the database, the DBMS is not able to make use of it since
they are application-speciĕc and not database-speciĕc. Changes on the tenants’ virtual
schema, such as creating new tables or changing attributes, modiĕes the meta-data only.
e physical representation in theDBMS is not touchedwhen performing such operations.
e data table is a Universal Table which stores data accessible by the application. ere

is only one big data table storing all entities of various types. e force.com variant of the
Universal Table differs from the one in Section .. in the following way. e objects are
identiĕed by a Global Unique Identiĕer (GUID) which serves as primary key. A unique
compound key containing the tenant ID, the object ID and the virtual table’s name serves
as secondary key. e compound key contains the natural name of the entity, like “Ac-
count”. Actual data is stored in variable length columns with generic names Val,...,Val.
Mapping between the logical name and the ValN column is done within themeta-data. e
ValN columns are of type VARCHAR, so arbitrary types have to be cast to store/retrieve data
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in/from VARCHAR. A single ValN column can manage information from multiple ĕelds, as
long as the ĕeld stems from a different object. Customizations only change meta-data,
that maps the virtual attribute to physical ValN columns. ere is no online DDL when a
customization is performed. Everything is handled within the meta-data.
Besides the data table, there are specialized pivot tables for storing unstructured data as

CLOBs. In contrast to theChunk Folding approach, the alignment is done using theGUID.
Additional pivot tables simulate indexes, unique constraints and foreign keys. Native in-
dexes for ValN columns are not practical since they may contain data of various virtual
tables in various data types. force.com manages indexes by synchronously copying ĕeld
data, that have been selected for indexing within the meta-data, to a pivot table. us,
the index pivot table contains strongly typed, natively indexed columns. It contains one
column per supported native type. When a virtual table is accessed, the internal query
generator ĕrst queries the pivot table for each indexed attribute, and then aligns the result
with the appropriate tuples from the data table. As an optimization, the force.com plat-
form employs native DBMS partitioning mechanisms to physically partition the data and
pivot tables by tenant.

.. Request Processing

eemployment of schemamapping techniques leads tomore complex request processing
as data is now represented using two different schemas. Inside the SaaS application, ten-
ants’ data is represented using the logical, tenant-speciĕc schema, while inside the DBMS
back-end, the physical schema is used. us, the query generation inside the SaaS persis-
tence layer must generate queries against the physical layer of the DBMS which reassem-
bles the tuple in the logical schema. is section presents how data can be accessed when
certain schema mappings are used.

... Chunk Tables

Instead of presenting the request processing steps for all generic approaches from Sec-
tion .., we mainly consider Chunk Tables in this section. Depending on the width w
of a Chunk Table, where w denotes the number of attributes, it may mimic a Pivot Table
(w = ) or a Universal Table (w → ∞). us, the usage of the presented processing steps
together with the Pivot Table and the Universal Table approaches is straight-forward.
Depending on the implementation, data casts may be necessary—especially when using

the Universal Table layout. However, the data query process, as described in the following,
is independent of using data casts.
Chunk Folding mixes Extension and Chunk Tables. e inclusion of Extension Tables

does not affect the query part of the following section at all. e reason is that the only
interface between the different tables is the meta-column Row, which is also available in
the Extension Table Layout.
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Transforming Queries

Consider the following query from Tenant  over the Private Table Layout as shown in
Figure .:

SELECT Beds
FROM Account17
WHERE Hospital = 'State'

(Q)

e most generic approach to formulating this query over the Pivot Tables Pivotint and
Pivotstr is to reconstruct the original Account table in the FROM clause and then patch it into
the selection. Such table reconstruction queries generally consists of multiple equi-joins
on the column Row. In the case of Account, three aligning self-joins on the Pivot table are
needed to construct the four-column wide relation. However in Query Q, the columns
Aid and Name do not appear and evaluation of two of the three mapping joins would be
wasted effort.
We therefore devise the following systematic compilation scheme that proceeds in four

steps.

. Collect all table names and their corresponding columns in the logical source query.

. For each table name, obtain the Chunk Tables and the meta-data identiĕers that
represent the used columns.

. For each table, generate a query that ĕlters the correct columns (based on the meta-
data identiĕers from the previous step) and aligns the different chunk relations on
their Row columns. e resulting queries are all Ęat and consist of conjunctive pred-
icates only.

. Extend each table reference in the logical source query by its generated table deĕni-
tion query.

QueryQ uses the columnsHospital and Beds of table Account. e two columns can be
found in relations Pivotstr and Pivotint, respectively. For both columns, we know the values
of the Tenant, Table, and Col columns. e query to reconstruct Account checks all these
constraints and aligns the two columns on their rows:

(SELECT s.Str as Hospital, i.Int as Beds
FROM Pivotstr s, Pivotint i
WHERE s.Tenant = 17
AND i.Tenant = 17
AND s.Table = 0 AND s.Col = 2
AND i.Table = 0 AND i.Col = 3
AND s.Row = i.Row)

(QAccount(P))

To make Chunk Folding work, also the meta-data look-up for Extension Tables has to be performed.
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WhenusingChunkTables instead of PivotTables, the reconstruction of the logicalAccount
table is nearly identical to the Pivot Table case. In our example, the resulting reconstruc-
tion query is particularly simple because both requested columns reside in the same chunk
(Chunk = 1):

(SELECT Str1 as Hospital,
Int1 as Beds

FROM Chunkint|str
WHERE Tenant = 17

AND Table = 0
AND Chunk = 1)

(QAccount(C))

To complete the transformation, QueryQAccount(C) is then patched into the FROM clause
of Query Q as a nested sub-query:

SELECT Beds
FROM (SELECT Str1 as Hospital,

Int1 as Beds
FROM Chunkint|str
WHERE Tenant = 17
AND Table = 0
AND Chunk = 1) AS Account17

WHERE Hospital = 'State'

(QChunk)

e structural changes to the original query can be summarized as follows.

• An additional nesting due to the expansion of the table deĕnitions is introduced.

• All table references are expanded into join chains on the base tables to construct the
references.

• All base table accesses refer to the columns Tenant, Table, Chunk, and in case of align-
ing joins, to column Row.

We argue in the following that these changes do not necessarily need to affect the query
response time.

Additional Nesting Fegaras and Maier (, Rule N) proved that the nesting we intro-
duced in the FROM clause—queries with only conjunctive predicates—can always be Ęat-
tened by a query optimizer. If a query optimizer does not implement such a rewrite it
will ĕrst generate the full relation before applying any ĕltering predicates—a clear perfor-
mance penalty. For such databases, we must directly generate the Ęattened queries. For
more complex queries (with e.g., GROUP BY clauses) the transformation is however not as
clean as the technique described above.
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Join Chains Replacing the table references by chains of joins on base tables may be ben-
eĕcial as long as the costs for loading the chunks and applying the index-supported (see
below) join are cheaper than reading the wider conventional relations. e observation
that different chunks are oen stored in the same relation (as in Figure .) makes this
scenario even more likely as the joins would then turn into self-joins and we may beneĕt
from a higher buffer pool hit ratio.

Base Table Access As all table accesses refer to the meta-data columns Tenant, Table,
Chunk, and Row we should construct indexes on these columns. is turns every data
access into an index-supported one. Note that a B-Tree index look-up in a (Tenant, Table,
Chunk, Row) index is basically a partitioned B-Tree look-up (Graefe, ). e leading
B-Tree columns (here Tenant and Table) are highly redundant and only partition the B-
Tree into separate smaller B-Trees (partitions). Preĕx compression makes sure that these
indexes stay small despite the redundant values.

Transforming Statements

e presented compilation scheme only covers the generation of queries over Chunk Ta-
bles. us, this section brieĘy describes how to cope with UPDATE, DELETE, and INSERT
statements.
In SQL, data manipulation operations are restricted to single tables or update-able selec-

tions/views which the SQL query compiler can break into separate DML statements. For
update and delete statements, predicates can ĕlter the tuples affected by the manipulation.
As insert and delete operations also require themodiĕcation of storedmeta-data values, we
devised a consistent DML query transformation logic based on single table manipulations.
Since multiple chunked tables are required for a single source table, a single source DML

statement generally has to bemapped intomultiple statements over Chunk Tables. Follow-
ing common practice (Hamilton, ), we transform delete operations into updates that
mark the tuples as invisible instead of physically deleting them, in order to provide a so-
delete mechanism. Such an update naturally has to mark all Chunk Tables as deleted in
comparison to normal updates that only have to manipulate the chunks where at least one
cell is affected.
OurDML transformation logic for updates (and thus also for deletes) divides themanip-

ulation into two phases: (a) a query phase that collects all physical rows that are affected
by an update and (b) an update phase that applies the update for each affected chunk with
local conditions on the meta-data columns and especially column Row only. Phase (a)
transforms the incoming query with the presented query transformation scheme into a
query that collects the set of affected Row values. One possibility to implement the updates
in Phase (b) is to nest the transformed query from Phase (a) into a nested sub-query using
an IN predicate on column Row. is approach lets the database execute all the work. For
updates with multiple affected chunks (e.g., deletes) the database however has to evalu-
ate the query from Phase (a) for each chunk relation. An alternative approach would be
to ĕrst evaluate the transformed predicate query, let the application then buffer the result
and issue an atomic update for each resulted row value and every affected Chunk Table.
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We now consider insert statements. For any insert, the application logic has to look up
all related chunks, collect the meta-data for tables and chunks, and assign each inserted
new row a unique row identiĕer. With the complete set of meta-data in hand, an insert
statement for any chunk can be issued.
Other operations like DROP or ALTER statements can be evaluated on-line as well. ey

however require no access to the database. Instead only the application logic has to do the
respective bookkeeping.

... IBM pureXML

IBM pureXML offers SQL/XML, a hybrid query language that provides native access to
both the structured and semi-structured representations. As the SaaS application manip-
ulates data in the structured format, accessing extension data requires a correlated sub-
query to manage the XML. is sub-query extracts the relevant extension ĕelds using the
XMLTABLE function which converts an XML document into a tabular format using XQuery.
e query with the XMLTABLE function has to be generated client- and query-speciĕc to ac-
cess clients’ extension ĕelds relevant in the particular query.
Since predicate handling in SQL/XML is different for predicates on relational attributes

and XML attributes, we defer the transformation of Query Q into SQL/XML. Instead, we
introduce Query Q which retrieves a particular entry from Tenant ’s Account table.

SELECT Aid, Name, Dealers
FROM Account42
WHERE Aid = 1

(Q)

is query has the selection predicate Aid = 1 which can be evaluated using the re-
lational base attribute Aid of the Account table’s pureXML representation (cf. Figure .).
e transformed query QpureXML is as follows:

SELECT Aid, Name, Dealers
FROM Account,

XMLTABLE('$i/ext'
PASSING Ext_XML AS "i"
COLUMNS
Dealers INTEGER PATH 'dealers'

)
WHERE Tenant = 42 AND Aid = 1

(QpureXML)

For each tuple from theAccount tablematching the relational predicate Tenant = 42 AND
Aid = 1, the Ext_XML attribute is passed to XMLTABLE table function. Inside this function,
the XML document is bound to the variable $i. e COLUMNS stanza then maps relative
XPath expressions (e.g., PATH 'dealers') to typed attributes (e.g., Dealers INTEGER).
Finally, the XMLTABLE function returns a relational view on the XML document, projected
to the attributes in the COLUMNS stanza.
Figure . shows the associated query plan. Since rows are mostly accessed through

relational base ĕelds, there is no need to use the special XML indexes offered by pureXML
as described by Saracco et al. ().





Chapter . Extensible Schemas for Traditional DBMS

.. ..accounts.

...tid, aid

.

...IXSCAN

.

...XSCAN

.

...FETCH

.

...NLJOIN

.

..accounts

.

...RETURN

Figure ..:Query Execution Plan for Query QpureXML

However, the ĕlter predicate of Query Q is comprised of an attribute stored in the XML
document associated with each tuple, rather than a relational attribute. For the sake of
convenience, Query Q is repeated below.

SELECT Beds
FROM Account17
WHERE Hospital = 'State'

(Q)

Although an XML ĕlter attribute can be evaluated by either specifying an appropri-
ate XQuery expression within the XMLTABLE function or by adding a predicate on the
XML view columns, Nicola () recommends to use the XMLEXISTS predicate function
instead for performance reasons. e XMLEXISTS predicate function returns true, if an
XQuery expression returns a sequence of one or more items; otherwise, false is returned.
us, the transformed Query QpureXML is as follows:

SELECT Beds
FROM Account,

XMLTABLE('$i/ext'
PASSING Ext_XML AS "i"
COLUMNS

Beds INTEGER PATH 'beds'
)

WHERE Tenant = 17
AND XMLEXISTS('$i/ext[hospital = "State"]'

PASSING Ext_XML AS "i"
)

(QpureXML)

Hence, for transforming arbitrary queries to SQL/XML queries, the following steps have
to be performed:

. Collect all table names and their corresponding columns, i.e. relational attributes as
well as attributes in the XML document, in the logical source query.

For example, $i/ext[Hospital = "State"]
For example, ... AND Hospital = 'State'
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...Parent
Id Col Col … Col

...Child
Id Parent Col Col … Col

Figure ..: Test Layout: Conventional

. For each table, generate an XMLTABLE call which binds the Ext_XML attribute and
extracts the XML attributes out of it.

. If a ĕlter predicate contains XML columns, transform the predicate to an XML pred-
icate using the XMLEXISTS predicate function.

To insert a new tuple with extension data, the application has to generate the appropriate
XML document. Updates to extension ĕelds are implemented using XQuery . features
to modify documents in place.

.. Chunk Table Performance

To assess the query performance of standard databases on queries over Chunk Tables, we
devise a simple experiment that compares a conventional layout with equivalent Chunk
Table layouts of various widths. e ĕrst part of this section will describe the schema and
the query we use, the second part outlines the individual experiments.

... Test Schema

e schema for the conventional layout consists of two tables Parent and Child, as shown in
Figure .. Both tables have an Id column and  data columns that are evenly distributed
between the types INTEGER, DATE, and VARCHAR(100). In addition, table Child has a foreign
key reference to Parent in column Parent.
e Chunk Table layouts each have two chunk tables: ChunkData storing the grouped data

columns and ChunkIndex storing the key Id and foreign key Parent columns of the conven-
tional tables. In the different Chunk Table layouts, the ChunkData table varied in width
from  data columns (resulting in  groups) to  data columns (resulting in a single
group) in  column increments. Each set of three columns has types INTEGER, DATE, and
VARCHAR(100) allowing groups from the conventional table to be tightly packed into the
Chunk Table. In general, the packing may not be this tight and a Chunk Table may have
NULL values, although not as many as a Universal Table. e ChunkIndex table always had a
single INTEGER column.
As an example, Figure . shows a Chunk Table instance of width  where each row of

a conventional table is split into  rows in ChunkData and  (for parents) or  (for children)
rows in ChunkIndex.
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...ChunkData
Table Chunk Row Int Int Date Date Str Str

...ChunkIndex
Table Chunk Row Int

Figure ..: Test Layout: Chunk

For the conventional tables, we create indexes on the primary keys (Id) and the foreign
key (Parent, Id) in the Child table. For the chunked tables, we create (Table, Chunk, Row)
indexes on all tables as well as an (Int, Table, Chunk, Row) index on ChunkIndex to mimic
the foreign key index on the Child table.
e tests use synthetically generated data for the individual schema layouts. For the

conventional layout, the Parent table is loaded with , tuples and the Child table is
loaded with  tuples per parent (,, tuples in total). e Chunk Table Layouts are
loaded with equivalent data in fragmented form.

... Test Query

Our experiments use the following simple selection query.

SELECT p.Id, ...
FROM Parent p, Child c
WHERE p.Id = c.Parent

AND p.Id = ?

(Q)

QueryQhas twoparameters: (a) the ellipsis (...) representing a choice of data columns
and (b) the questionmark (?) representing a random parent id. Parameter (b) ensures that
a test run touches different parts of the data. Parameter (a)—theQ scale factor—speciĕes
the width of the result. e number of the ColN attributes chosen from the parent ta-
ble is equal to the number of the attributes chosen from the child table. As an example,
Query Q is Query Q with a scale factor of : the ellipsis is replaced by  data columns
each for parent and child.

SELECT p.Id, p.Col1, p.Col2, p.Col3,
c.Col1, c.Col2, c.Col3

FROM Parent p, Child c
WHERE p.Id = c.Parent
AND p.Id = ?

(Q)

Higher Q scale factors (ranging up to ) are more challenging for the chunked repre-
sentation because they require more aligning joins.

cf. Base Table Access on page 
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Figure ..:Query Execution Plan for Simple Fragment Query

... Transformation and Nesting

In our ĕrst test, we transformed Query Q using the methods described in Section ..
and fed the resulting queries into the open-source databaseMySQL (mysql.com, ) and
the commercial database IBM DB. We then used the database debug/explain facilities to
look at the compiled query plans. e MySQL optimizer was unable to Ęatten the nest-
ing introduced by our query transformation. DB on the other hand presented a totally
unnested plan where the selection predicate on p.Id was even pushed into the chunk rep-
resenting the foreign key of the child relation. DB’s evaluation plan is discussed in more
detail in the next test.
We then Ęattened the queries in advance and studied whether the predicate order on

the SQL level would inĘuence the query evaluation time. We produced an ordering where
all predicates on the meta-data columns preceded the predicates of the original query and
compared it with the ordering that mimics DB’s evaluation plan. For MySQL, the latter
ordering outperformed the former ordering by a factor of .
Aer adjusting the query transformation to produce Ęattened queries with predicates in

the optimal order, we reran the experiment on both database systems. DB produced the
same execution plan as before andMySQL was able to produce a plan that started with the
most selective predicate (p.Id = ?). As one would expect, the query evaluation times for
MySQL showed an improvement.

... Transformation and Scaling

Tounderstandhowqueries onChunkTables behavewith an increasing number of columns
(output columns as well as columns used in predicates) we analyzed the plans for a number
of queries. e pattern is similar for most queries and we will discuss the characteristics
based on Query Q, which was designed for the Chunk Table Layout in Figure ..
e query plan is shown in Figure .. e leaf operators all access base tables. If the

base tables are accessed via an index, an IXSCAN operator sits on top of the base table
We chose to present IBM DB’s plan. MySQL’s query plan has the same characteristics
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with a node in between that refers to the used index. Here, the meta-data index is called
tcr (abbreviating the columns Table, Chunk, and Row) and the value index is called itcr. If
a base table access cannot be completely answered by an index (e.g., if data columns are
accessed) an additional FETCH operator (with a link to the base table) is added to the
plan. Figure . contains two different join operators: a hash join (HSJOIN) and an index
nested-loop join (NLJOIN).
e plan in Figure . can be grouped into  regions. In region .. , the foreign key for

the child relation is looked up. e index access furthermore applies the aforementioned
selection on the ? parameter. In region .. , the Id column of the parent relation is accessed
and the same selection as for the foreign key is applied. e hash join in region .. imple-
ments the foreign key join p.Id = c.Parent. But before this value-based join is applied in
region .. , all data columns for the parent table are looked up. Note that region .. expands
to a chain of aligning joins where the join column Row is looked up using the meta-data
index tcr if parent columns in different chunks are accessed in the query. A similar join
chain is built for the columns of the child table in region .. .

... Response Times withWarm Cache

Figure . shows the average execution timeswith warm caches onDBV. on a .GHz
Intel Xeon processor with  GB RAM. We conducted  runs; for all of them, we used the
same values for parameter ? so the data was in memory. In this setting, the overhead com-
pared to conventional tables is entirely due to computing the aligning joins. e queries
based on narrow chunks have to perform up to  more joins (layout Chunk with Q
scale factor ) than the queries on the conventional tables which results in a  ms slower
response time. Another important observation is that already for -columnwide chunks,
the response time is cut in half in comparison to -column wide chunks and is at most 
ms slower than conventional tables.

... Logical Page Reads

Figure . shows the number of logical data and index page reads requested when exe-
cuting Query Q. For all chunked representations,  to  of the reads were issued
by index accesses. Figure . clearly shows that every join with an additional base table
increases the number of logical page reads. us this graph shows the trade-off between
conventional tables, where most meta-data is interpreted at compile time, and Chunk Ta-
bles, where the meta-data must be interpreted at runtime.

... Response Times with Cold Cache

Figure . shows the average execution times with cold caches. For this test, the database
buffer pool and the disk cache were Ęushed between every run. For wider Chunk Tables,
i.e.  to  columns, the response times look similar to the page read graph (Figure .).
For narrower Chunk Tables, cache locality starts to have an effect. For example, a single
physical page access reads in   column-wide tuples and   column-wide tuples. us
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Figure ..: Response Times with Warm Cache
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Figure ..: Response Times with Cold Cache

the response times for the narrower Chunk Tables are lower than for some of the wider
Chunk Tables. For a realistic application, the response times would fall between the cold
cache case and the warm cache case.

... Cache Locality Beneöts

e effects of cache locality are further clariĕed in Figure ., which shows the relative
difference in response times between Chunk Folding and more conventional vertical par-
titioning. In the latter case, the source tables are partitioned as before, but the chunks are
kept in separate tables rather than being folded into the same tables. For conĕgurations
with  and  columns, Chunk Folding exhibits a response time improvement of more than
 percent. In the conĕguration with  columns, Chunk Folding and vertical partition-
ing have nearly identical physical layouts. e only difference is that Chunk Folding has
an additional column Chunk to identify the chunk for realigning the rows, whereas in the
vertical partitioning case, this identiĕcation is done via the physical table name. Since the
Chunk column is part of the primary index in the Chunk Folding case, there is overhead
for fetching this column into the index buffer pools. is overhead produces up to 
more physical data reads and a response time degradation of .

... Additional Tests

We also ran some initial experiments onmore complex queries (such as grouping queries).
In this case, queries on the narrowest chunks could be as much as an order of magnitude
slower than queries on the conventional tables, with queries on the wider chunks ĕlling
the range in between.
e overall result of these experiments is that very narrow Chunk Tables, such as Pivot

Tables, carry considerable overhead for reconstruction of rows. As Chunk Tables get wider
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Figure ..: Response Time Improvements for Chunk Tables Compared to Vertical Partitioning

however, the performance improves considerably and becomes competitive with conven-
tional tables well before the width of the Universal Table is reached.

.. Schema Evolution on Semistructured SchemaMappings

In a second set of experiments, we evaluate the performance of the semi-structured ap-
proaches, especially in combination with schema evolution. e experiments have been
run against our Multi-Tenancy CRM testbed. To better study schema evolution, we issued
a series of schema alteration statements during a run of the testbed andmeasured the drop
in throughput. As a second enhancement, we introduced differently sized tenants, where
tenants with more data have more extension ĕelds, ranging from  to . e character-
istics of the dataset are modeled on salesforce.com’s published statistics (McKinnon, ).
For getting ĕner-grained results, we split the existing request classes, thus resulting in

nine request classes as shown in Figure ..
e experiments were run on Microso SQL Server  and IBM DB V.. on Win-

dows . e database host was a Virtual Machine on VMWare ESXi with  . GHz
vCPUs and  GB of RAM.

... Microsoft SQL Server

Figure .a shows the results of running our testbed onMicroso SQL Server using three
different mappings: Private Tables, Extension Tables, and Sparse Columns. e horizontal
axis shows the different request classes from Figure ., and the vertical axis shows the
response time in milliseconds on a log scale.
In comparison to Private Tables, Extension Tables clearly exhibit the effects of vertical

partitioning: wide reads (Sel , Sel , Sel ) are slower because an additional join is
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Select : Select all attributes of a single entity as if it was being displayed in a detail page
in the browser.

Select : Select all attributes of  entities as if they were being displayed in a list in the
browser.

Select : Select all attributes of the ĕrst  entities as if they were being exported
through a Web Services interface.

Reporting: Run one of ĕve reporting queries that perform aggregation and/or parent-
child-roll-ups.

Insert : Insert one new entity instance as if it was being manually entered into the
browser.

Insert : Insert  new entity instances as if data were being synchronized through a
Web Services interface.

Insert : Insert  new entity instances as if data were being imported through a
Web Services interface.

Update : Update a single entity as if it was beingmodiĕed in an edit page in the browser.

Update : Update  entity instances as if data were being synchronized through a
Web Services interface.

Figure ..: Reĕned Worker Action Classes
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required, while narrow reads (Report) are faster because some unnecessary loading of data
is avoided. Updates (Upd , Upd ) perform similarly to wide reads because our tests
modify both base and extension ĕelds. ExtensionTables are faster for inserts because tables
are shared among tenants so there is a greater likelihood of ĕnding a page in the buffer pool
with free space.
Sparse Columns perform as well or better than Private Tables in most cases. e addi-

tional overhead for managing the Interpreted Storage Format appears to be offset by the
fact that there are fewer tables. Sparse Columns performworse for large inserts (Ins ),
presumably because the implementation of the Interpreted Storage Format is tuned to fa-
vor reads over writes.
Figure .b shows a break down of the Private Table and Sparse Column results by

tenant size. Recall that larger tenants have more extension ĕelds, ranging from  to .
e results show that the performance of both mappings decreases to some degree as the
number of extension ĕelds goes up.
SQL Server permits up to , Sparse Columns per table. Our standard conĕguration

of the testbed has  tenants, which requires about , columns per table. We also
tried a conĕguration with  tenants and about , columns per table and there was
little performance degradation. e number of extension ĕelds per tenant in our testbed
is drawn from actual usage, so SQL Server is unlikely to be able to scale much beyond
 tenants. As a point of comparison, salesforce.com maintains about , tenants in
one (very large) database (McKinnon, ).
Figure . shows the impact of schema evolution on throughput in SQL Server. In

these graphs, the horizontal axis is time in minutes and the vertical axis is transactions per
minute. e overall trend of the lines is downward because data is inserted but not deleted
during a run. Part way through each run, the structure of ĕve base tables are changed. For
Private Tables, this results in  ALTER TABLE statements, as each tenant has its own set of
base tables. However, with Sparse Columns, the base tables are shared, thus only  ALTER
TABLE statements must be performed.
e ĕrst two lines in each graph show schema-only DDL statements: add a new column

and increase the size of a VARCHAR column. e third line in each graph shows a DDL
statement that affects existing data: decrease the size of a VARCHAR column. To implement
this statement, SQL Server scans through the table and ensures that all values ĕt in the
reduced size. Amore realistic alteration would performmore work than this, so the results
indicate a lower bound on the impact of evolution. e gray area on each graph indicates
the period during which this third operation took place.
In the Private Tables case (Figure .a),  ALTER TABLE statements were submitted, 

for each of the  tenants. Individual schema-only alterations completed very rapidly, but
nevertheless had an impact on throughput because there were so many of them. Adding a
new column took about  minute to complete while increasing the size of a VARCHAR col-
umn took about minutes. Decreasing the size of a VARCHAR column took about minutes
and produced a signiĕcant decrease in throughput. e overall loss of throughput in each
case is indicated by the amount of time it took to complete the run.
In the Sparse Columns case (Figure .b), the tables are shared and  ALTER TABLE

statements were submitted. e schema-only changes completed almost immediately and
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Figure ..:DB Performance

had no impact on throughput. Decreasing the size of a VARCHAR column took about min-
utes, during which throughput dropped almost to zero. e overall loss of throughput was
greater for Private Tables, as indicated by the amount of time it took to complete the runs.
However, the behavior of Private Tables is probably preferable in the SaaS setting because
the throughput drop is never as deep, thus the servers don’t need to be over-provisioned
as much. In any case, neither of these mappings is ideal in that the application should have
more control over when such resource-intensive operations occur.

... IBMDB

Figure .a shows the results of running our testbed on IBM DB using three different
mappings: Private Tables, Extension Tables, and XML using pureXML. e axes are the
same as in Figure ..
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In comparison to Private Tables, Extension Tables exhibits the same performance varia-
tions as in SQL Server. However XML produces a decrease in performance in most cases.
e decrease is particularly severe for reads, which require executing a correlated sub-
query containing an XQuery statement embedded in a call to the XMLTABLE table function,
as described in Section ... Figure .b shows a break down of the Private Table and
XML results by tenant size. Recall that larger tenants have more extension ĕelds, ranging
from  to . e results show that for reads, the performance decrease of XML is pro-
portional to the number of extension ĕelds. Note that in the Insert  case, the results
do not include the time to construct the XML document and there is no variation based
on tenant size.
XML gives the application complete control over schema evolution. In this setting, the

application is responsible for performing any bulk transformations associated with schema
alterations that impact existing data. To study the efficiency of such transformations, we
ran our schema evolution throughput experiment onDB using pureXML. To simulate the
decrease-VARCHAR case, we submitted a query for each of the ĕve base tables that selects
one ĕeld from all documents. ese queries were run on the database server so no data
transfer costs were incurred. e results were almost identical to the SQL Server Sparse
Columns case shown in Figure .b. e ĕve queries took about  minutes to complete,
during which time throughput dropped to a very low level. Of course, the advantage of the
XML mapping is that the application need not perform such transformations all at once.

eXMLdocument keeping the extension data has been generated outside. us, inserting a tuple with an
XML document attached is fairly cheap as we conĕgured the DBMS to not validate the XML document
against a XML schema
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.. 
Next GenerationMulti-Tenant DBMS

e discussion in the previous chapters shows that traditional DBMSs are not well-suited
for massive multi-tenancy. e simpler approaches “Shared Machine” and “Shared Pro-
cess” do not offer any support for schema Ęexibility. Simultaneously, they cope with poor
buffer pool utilization and a high memory overhead due to inefficient meta-data handling.
Furthermore, multi-tenancy requires features like schema Ęexibility which are typically
not supported by currently available DBMSs.
Due to high level of consolidation, there is a high probability that one of the co-located

tenants performs schema modiĕcations. However, the evaluation in the previous chapter
shows that, for traditional DBMSs, allowing on-line schema changes may heavily impact
the overall system response time and thus must be prevented in a multi-tenant scenario.
Many database vendors circumvent these issues by recommending proprietary tech-

niques for extensible schemas. However, as soon as schemas must be extensible, a schema
mapping must be employed to ensure a consistent transformation of the logical tenant-
speciĕc schema to the physical schema inside the DBMS. In such a setup, the DBMS no
longer maintains the meta-data of the tenants’ schemas, rather the application is now re-
sponsible for dealing with the tenant-speciĕc meta-data. e DBMS is then degraded to a
‘dumb data repository’ which only maintains the physical layout of the schema mapping
strategy. us, more andmore core functionalities of a DBMS, such as query optimization,
statistics, and data management, have to be rebuilt inside the application, making further
application development more costly.
Most SaaS applications combine the shared schema approach with schema mappings to

circumvent the issues with bad resource utilization. However, support for schema Ęexibil-
ity is still lacking and the shared schema approach weakens the tenant isolation, as all ten-
ants’ data is stored inter-weaved with each other. A physically separated schema for each
tenant would therefore offer a better data isolation and facilitate tenant migration. More-
over, with separated schemas, tenants can be distributed across a shared-nothing system
by simply copying the data from one machine to another.
In this chapter, we describe our approach of addressing this issue with a specialized

multi-tenant DBMS with native support for schema Ęexibility. Our approach provides the
same level of tenant isolation as the shared process approach while simultaneously allow-
ing schema Ęexibility with resource utilization similar to the shared table approach. We
describe the key concepts and the architecture of the DBMS and present the underlying
data model FlexScheme which serves as an integrated model for schema Ęexibility.
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.. EstimatedWorkload

Before presenting the conceptual changes for a multi-tenant DBMS compared to tradi-
tional DBMSs, we estimate the typical DBMS workload of a SaaS application. Our estima-
tions are based on the work of Harizopoulos et al. () who present an in-depth analysis
of OLTP applications.
SaaS applications tend to be light to medium complexity applications, as already dis-

cussed in Chapter . High complexity applications, such as Enterprise Resource Planning
(ERP), are not suitable for SaaS, because such applications need heavy customizations to
adapt the tenants’ requirements and may have long running transactions.
Furthermore, the workload of SaaS applications is mostly OLTP-style and optimized for

high throughput, which means that most of the requests are look-ups by primary key or
other short running queries. When performing scans across a set of tuples, only small
scans are allowed, e.g., for paginating lists; large scans should be avoided at all. Application
developers have to ensure this workload during the design of the SaaS application’s data
model, for example, by only allowing parent-child relationships. Hamilton () presents
other recommendations for an optimized workload for highly-scalable services.
For enabling features like a “Dashboard”, there may be the need for Ad-Hoc Reports.

ose reports do lightweight analytical processing by running pre-deĕned reports, either
synchronously or asynchronously as batch jobs. In this context, “Ad-Hoc Reports” are run
on the transactional data, rather than on a dedicated data ware-house.
Typically, SaaS applications are accessed via Internet Browser. is circumstance can

be exploited when choosing the DBMS’s consistency level. As HTTP requests are stateless
and thus do not allow for “real” cross-request sessions, the consistency level can be low-
ered. is way, the number of concurrent locks inside the DBMS can be reduced and thus
throughput increases. However, due to the nature of HTTP requests, mechanisms likeOp-
timistic Locking must be implemented in the application server to avoid update anomalies.
Besides the data-centric workload, the SaaS context also has a meta data-centric work-

load. e DBMS has to handle ALTER TABLE statements quite oen, not for individual
tenants, but due to the high number of co-located tenants.
A SaaS application is updated on a regular basis by the service provider and hence may

be available in multiple versions. For our workload, we assume that the majority of tenants
access the most recent version of the application. As a single tenant may have extensions,
either developed by himself or by an ISV, updates to the base application may break the
application for that tenant until a new version of these extensions is released. To guar-
antee application availability, the tenant may defer these update to the new version of the
base application and the extensions, respectively. erefore it might be possible, that a few
tenants lag marginally behind the most recent version of the application.

.. Multi-Tenant DBMS Concepts

In the following, we illustrate the concepts of our multi-tenant DBMS prototype which
leverage the previously introduced workload characteristics.
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Figure ..:Multi-Tenant DBMS Cluster Architecture

... Native Schema Flexibility

e predominant requirement for our prototype is to Ęexibly handle a large number of
tenants while allowing for schema Ęexibility. us, one of our key concepts is Integrated
Schema Flexibility which is reĘected in both the meta-data as well as the data handling. In
the course of this chapter, we propose FlexScheme, an integrated data management model
which captures the aspects of schema extensibility and schema evolution. Furthermore, it
enables data sharing capabilities for cross-tenant data and meta-data, and is tightly inte-
grated into the DBMS kernel. We postpone the discussion of native schema Ęexibility to
Section ..

... Tenant Virtualization

Another concept of our multi-tenant DBMS is Tenant Virtualization. From a high level
perspective, we treat each individual tenant as a “Virtual Machine” which is running on a
hypervisor, the multi-tenant DBMS.is approach pushes the classical virtualization idea
one step further: instead of virtualization at operating system level, we do virtualization at
tenant level inside the DBMS.
For better scalability, multiple multi-tenant database systems are combined to a shared-

nothing cluster for serving the individual tenants. As with traditional virtualization tech-
niques, the multi-tenant infrastructure must support migrating tenants between cluster
nodes and suspending off-line tenants to release cluster resources. In addition to the nodes,
the cluster needs a storage back-end for storing currently inactive tenants.
Figure . shows the overall architecture of our approach. e shared-nothing nodes

have access to a common storage back-endwhich solely stores inactive tenants’ data. Active
tenants are mounted on nodes of the cluster and do not use the common storage back-end.
Hence, for this storage back-end a high-performant, and thus expensive Storage Area Net-
work (SAN) is not necessary; cheap near-line storage or cloud-based storage like Amazon
S () is sufficient.
If a tenant becomes active, a target node for this tenant is selected and the tenant’s data is

transferred to this data node. Once this transformation is completed, the tenant is on-line.
As soon as the tenant does not perform any operations, the tenant can be suspended by
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transferring the active data of the tenant back to the storage system, and thus the tenant
becomes off-line. is way, inactive tenants do not occupy expensive cluster capacities,
like main-memory and CPU cycles.

... Grid-like Technologies

e virtualization of tenants furthermore allows the usage of grid technologies, like dis-
tribution and replication, especially on low-complexity hardware. Projects like Google
BigTable (Chang et al., ) use similar techniques for the same reason. BigTable serves as
highly scalable data storage which is distributed and replicated on a cluster of commodity
hardware, but relinquishes the relational model. BigTable stores each datum in a speciĕc
cell which can be addressed by the dimensions row, column, and time stamp. Cells of
semantically adjacent data based on the dimensions are physically co-located. Amazon
Dynamo (DeCandia et al., ) and SimpleDB (Amazon SimpleDB, ) pursue sim-
ilar approaches, but with weakened guarantees on data consistency. In contrast to these
simple key-value stores, PNUTS (Cooper et al., ) offers a relational datamodel. Key re-
quirements of PNUTS are scalability, distribution, and high availability, but with restricted
access possibilities and weakened consistency compared to traditional database systems.
ese projects heavily rely on distribution and replication, and thus align their datamod-

els. Depending on the requirements on replication, e.g., how oen data is replicated, and
on data consistency the data model and the consistency guarantees are chosen, either un-
restricted as in traditional DBMSs or restricted to satisfy special application needs.
For better availability, a master/slave replication at tenant level can be used. However,

two tenants whose master instances are co-located need not necessarily have co-located
slave instances. During tenant activation, multiple cluster nodes are selected to host one
master instance and one or more slave instances of the same tenant.
As long as a tenant is suspended, any node from the cluster can be selected to host the

tenant’s replicas. is way a static load balancing can be achieved. For active tenants, a
dynamic load balancing strategy might be to switch the master role of a particular tenant
from an overloaded host to a not so heavy loaded slave replica. However, this strategy
restricts the target nodes for the master role to those nodes already hosting the affected
tenant’s replica. An enhanced strategy would be to create a new slave replica at one par-
ticular node, either by loading the tenant’s data from the archive and rolling forward the
transaction logs, or by snapshotting and cloning an existing slave, and as soon as the new
slave is available, switch the master role to this host. Aerwards, the number of replicas
can be decreased again—if desired. is enhancement not only allows for dynamic load
balancing, but also for migrating tenants seamlessly from one node to another in the clus-
ter. Furthermore, the cluster can grow by simply adding more nodes which can be used
immediately.

... MainMemory DBMS

Our prototype is heavily inĘuenced bymain-memory database systems like H-Store (Kall-
man et al., ) or HyPer (Kemper and Neumann, ). H-Store and HyPer take advan-
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tage of keeping all data inmain-memory. We follow the approach proposed by Stonebraker
et al. () for the H-Store system and use a single-threaded execution model. ereby
locking and deadlock detection overhead is completely eliminated. is approach seems
very suitable for processing many short-running queries in main-memory, where perfor-
mance is limited by main-memory bandwidth only. I/O operations to disk-based storage
systems are not required, as durability can be achieved without disk-based storage systems
by replication to physically distant server nodes. Alternatively, log records can be written
to disk to ensure durability.
Main-memory DBMS technology is very suitable for multi-tenant SaaS. Jim Gray’s dic-

tum Tape is Dead, Disk is Tape, Flash is Disk, RAM Locality is King (Gray, ) antici-
pates the trend towards main-memory based DBMS. Plattner () shows that a single
off-the-shelf server that is available today provides enoughmain-memory to accommodate
the entire data volume of even large-sized businesses. For even larger deployments, new
techniques like RAMCloud (Ousterhout et al., ) may be used. RAMCloud provides
a general-purpose storage system that aggregates the main-memories of lots of commod-
ity servers and keeps all information in main-memory. Besides the superior performance
for OLTP workloads, Poess and Nambiar () show that there are other interesting fac-
tors, such as a low energy consumption of main-memory compared to disks. is further
reduces the TCO.
Our prototype does not interfere with special optimizations for main-memory DBMS,

such as second-level cache optimizations. We propose special query plan operators for en-
abling schema Ęexibility. ese operators rely on standard access operators, so techniques
like Cache-Conscious B-Trees (Rao and Ross, ) and cache-optimized compact data
representations, e.g. PAX (Ailamaki et al., ), are fully transparent to our approach.
Moreover, data compression to further reduce the space requirements can be applied to
our approach as well.

... ExecutionModel

Figure . shows the architecture of one single multi-tenant DBMS instance. One query
processing thread per tenant takes requests from the tenant-speciĕc input queue and pro-
cesses these requests one by one. For each individual tenant, the H-Store-like execution
model is applied, thus deadlocks and locking overhead are completely eliminated. Since
there are no cross-tenant transactions, there is no need for cross-thread synchronization.
Furthermore, due to this execution model, the tenant isolation is increased.
Requests by tenants can span across their private data and the common data, but tenant-

speciĕc data is completely separated from common data. However, there is still no need for
synchronization, as tenant-speciĕc updates to common data are redirected to the private
data segment. Common data is read-only, so locks on common data are not necessary.
However, the shared data can be updated by the service provider or ISVs, for example, in
the context of application upgrades. We assume that the frequency of such updates ismuch
lower than the frequency of tenant-speciĕc updates.
During a tenant’s thread lifetime, it has to perform various I/O operations. At initial-

ization, the thread must retrieve the tenant’s data from the archive store, and at the end it
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Figure ..:read Model of the Multi-Tenant DBMS Instance

must write them back. In between, the thread has to perform either logging or replication
to guarantee durability. e I/O induced by logging can be signiĕcantly reduced, if logging
is implemented as described by Kemper and Neumann () for the HyPer project.

.. Native Support for Schema Flexibility

Instead of using schemamappings from the outside, a multi-tenant DBMS for SaaS should
offer inherent support for schemas that are Ęexible in the following two respects. First, it
should be possible to extend the base schema to supportmultiple specialized variants of the
application, e.g., for particular vertical industries or geographic regions. An extensionmay
be private to an individual tenant or shared betweenmultiple tenants. Second, it should be
possible to evolve the base schema and its extensions while the database is on-line, includ-
ing changing existing attributes. Evolution of a tenant-owned extension should be totally
“self-service”. e service provider should not be involved, otherwise operational costs
would be too high. Furthermore, it may not be acceptable for some tenants to instantly
upgrade their extensions whenever the service provider updates the base schema.
Extensions form a hierarchy, which can be used to share data among tenants, such as

master data and default conĕguration data. is hierarchy is made up of instances which
combine schema and shared data. Data sharing allows to co-locate evenmore tenants, and
thus improves resource utilization and enables economy of scale. From a tenant’s perspec-
tive, the shared data has to be update-able, but updates from one tenant might interfere
with other tenants. erefore, write access to shared data has to be redirected to a private
storage segment of the updating tenant. If data sharing is employed, evolution affects not
only the schema but also the shared data. is can be addressed by versioning the schema
and the shared data. Base and extension instances may evolve independently from each
other, therefore versioning has to be employed on the level of individual instances. is
mechanism also allows tenants to stay with certain versions of instances.
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Since versioning is handled at the level of individual instances, the target version number
is not sufficient to reconstruct a relation from the instance hierarchy. erefore, additional
information about dependencies between instance versions is needed to derive a certain
relation for a particular tenant. We call such a derived relation aVirtual Private Table, since
this relation is speciĕc to a particular tenant.

.. FlexScheme – DataManagement Model for Flexibility

Traditional DBMSs do not offer mechanisms for Ęexible schemas and data sharing. us,
we propose FlexScheme, a model for handling meta-data and shared data in multi-tenant
DBMS, which captures extensibility, evolution and data sharing in one integrated model.
Our prototype keeps the tenants’ data in main-memory, which is an expensive resource

that has to be used efficiently: data that is not needed anymore has to be removed from
main-memory as soon as possible. is is a big challenge, especially in the multi-tenancy
context, when data is shared between tenants. FlexScheme allows to identify which ver-
sions of the instances are currently used by a given set of tenants, andwhich can be removed
from main-memory.

... Data Structures

is section introduces the data structures of our data management model based on the
example in Figure .. e upper part of the ĕgure (Fig. .a) shows the global view of a
particular relation, from which the local views for the individual tenants are derived; the
lower part of the ĕgure (Fig. .b) shows such a local view for the Tenant T.
FlexSchememodels schema information and data in separate data structures to allow for

schema Ęexibility. Fragments store schema information, and segments store actual data. In
the following, we introduce the data structures in detail.

Deĕnition . (Fragment):
A fragment f (v) is a set of n typed attributes, forming a schema deĕnition. Some of
the attributes form the primary key attributes of the fragment. v denotes a version
number.

During application lifetime, the deĕnition of a fragment may change, so we combine
multiple fragments to a fragment sequence. For guaranteeing proper primary key access,
the deĕnition of the primary key attributes must not change across versions.

Deĕnition . (Fragment Sequence):
A fragment sequence f = ⟨ f (), . . . , f (z)⟩ is a sequence of fragments f (v). Within
one fragment sequence f , the primary key attributes of each fragment are identical:
pk ( f) ∶= pk ( f ()) = . . . = pk ( f (z)).
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Consider the example of the polymorphic relation in Figure .a. For a ĕrst understand-
ing, a polymorphic relation is the global, hierarchical view from which tenant-speciĕc
views are derived. We introduce the concept of polymorphic relations more formally in
the course of this section.

Example .: Figure .a shows the fragment sequence f Base at the top of the polymor-
phic relation R. Suppose f Base has two fragments f ()Base and f ()Base. Figure .b shows the
deĕnition of f ()Base.

Deĕnition . (Segment):
A segment s(v) ( f (w)) contains tuples that have the schema f (w). Again, v andw denote
version numbers.

Segments may be required in various versions, therefore we combine multiple segments
in a segment sequence. Entries in the segment sequence may be independent from each
other, however, the schemas of all segments within a segment sequence have to be deĕned
by fragments of the same fragment sequence.

Deĕnition . (Segment Sequence):
A segment sequence s ( f) is a sequence of segments s() ( f (i)) , . . . , s(z) ( f ( j)). e
fragments f (i), . . . , f ( j) form part of the same fragment sequence f.

Example .: Figure .b shows s()Ext ( f
()
Base) which is part of the segment sequence

sExt ( f Base). e schema of tuples in this segment is deĕned by the fragment f ()Base.

As discussed before, modern SaaS applications need extensibility. e schema deĕni-
tions of the base application can be extended by ISVs or the tenants themselves, thus in-
heriting the deĕnitions from the base application. In this context, we have two types of
inheritance: schema inheritance, where fragment deĕnitions are inherited, and data inher-
itance, where segments are inherited.

Deĕnition . (Instance):
An instance i combines fragment sequences and segment sequences. Each instance
contains zero or one fragment sequences, as well as a set of segment sequences. Each
segment has either a local fragment as schema or inherits the schema deĕnition from
other instances.
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Descriptively, instances contain sequences of fragments and segments, for representing
schema and data evolution. e dependencies between instance versions are managed
separately on a per-tenant basis.

Example .: e instance iExt in Figure .a deĕnes a local fragment sequence f Ext
and inherits f Base. Furthermore, the instance holds two segment sequences, sExt ( f Base)
and sExt ( f Ext), which store the tuples. sExt ( f Base) corresponds to the inherited fragment
sequence f Base, while sExt ( f Ext) corresponds to the locally deĕned fragment sequence.

e individual instances together with the inheritance relationships are forming a poly-
morphic relation. Multiple polymorphic relations form a polymorphic database.

Deĕnition . (Polymorphic Relation):
A polymorphic relation R = (I, E, r) can be represented as a rooted tree. Its vertices
are the instances I, and its edges E the inheritance relationships. Furthermore, there is
one distinguished instance r ∈ I, that forms the root of the polymorphic relation.

Deĕnition . (Polymorphic Database):
A polymorphic database D is a set of polymorphic relations.

... Deriving Virtual Private Tables

e process of deriving a Virtual Private Table (VPT) for a particular tenant is comprised
of several steps:

Step 
At ĕrst, the instances on the path from the tenant’s leaf node to the root node of the poly-
morphic relation has to be determined. For each instance on this path, a fragment has to
be selected from the fragment sequence of each instance. e selection is based on the
dependency information of the tenant. e selected fragments are then concatenated. e
concatenated fragments form the virtual schema of that tenant’s VPT.

Example .: In Figure .a the Instances iT, iExt, and iBase are on the path of Tenant T.
e selected Fragments to be concatenated are f ()Base, f

()
Ext , and f ()T , as seen in Figure .b.

Step 
In a second step, for each fragment from the previous step, a virtual segment containing the
data has to be built. For each instance on the tenant’s path to the root node, one segment
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has to be selected from the segment sequences of each instance. Again, the selection is
based on the dependency information of the tenant. For one particular fragment there
may be multiple segments available which have to be overlaid. Since our model allows
write access to shared data by redirecting the access to a tenant-speciĕc segment, a data
overlay precedence has to be deĕned: the lower the segment is deĕned in the polymorphic
relation, the higher is the precedence over other segments on the path. We refer to this
concept as data overriding.
e overlay of two segments s and t, where s has precedence over t, can be deĕned as

follows. e term t . s denotes the anti-join of t and s.

overlay (s, t) = s ∪

t . pk(t)=pk(s) s
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(t ∖ (t . pk(t)=pk(s) s))

= s ∪ (t . pk(t)=pk(s) s)

is function is then applied iteratively from the leaf node to the root node to collapse
all selected segments per fragment into one virtual segment.

Example .: In Figure .a for Tenant T there are two segment sequences sExt ( f Base)
and sT ( f Base) available for the fragment sequence f Base. e previous step selected the
fragment f ()Base. As seen in Figure .b the selected segments are s()Ext ( f

()
Base) and s

()
T ( f

()
Base).

Since s()T ( f
()
Base) takes precedence over s

()
Ext ( f

()
Base), the tuplewithCID= from s()Ext ( f

()
Base)

is overwritten by the tuple from s()T ( f
()
Base) with the same CID.

Step 
Finally, the virtual segments from the previous step have to be aligned. is is similar
to vertical partitioning, therefore well known defragmentation techniques can be applied.
For proper alignment, each tuple in any segment has to replicate the primary key value.
e result of this last step is the VPT which contains the tenant-speciĕc data as well as the
shared data with respect to data overriding.

Example .: Figure .b shows the full VPT of Tenant T.

... Comparison to Other Models

FlexScheme extends the traditional relational data model with concepts known from the
object-oriented world. Object-oriented systems are characterized by support for abstract
data types, object identity, and inheritance as well as polymorphism andmethod overload-
ing (Khoshaĕan and Abnous, ; Nierstrasz, ). e object-oriented programming
paradigm states that a program is a set of interacting objects telling each other what to do
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by sending messages. Each object has a type and all objects of a particular type can receive
the same messages (Eckel, ).
In contrast to the object-oriented model, FlexScheme does not have facilities for meth-

ods. us, an instance can be seen as an abstract data type, which only has attributes, as
well as a set of objects. e instance hierarchy is similar to a class hierarchy, but the seman-
tics are different: in the object-oriented model, the inclusion polymorphism is speciĕed by
sub-typing, i.e. each sub-type can be treated as its super-type. However, in FlexScheme this
is not the case: the inclusion polymorphism goes from the leaf node to the root node. To
enable data sharing in themulti-tenancy scenario, the ability to override commondatawith
tenant-speciĕc data is needed. We call this concept data overriding. ere is some simi-
larity to the object-oriented concept of method overloading, but currently neither object-
oriented DBMSs (OODBMSs) nor object-oriented programming languages support the
functionality of data overriding. e reason may be, that data overriding conĘicts with
object identity, as a tuple of a tenant overrides a tuple of the base relation or an extension
by using the same primary key.
e object-relational model transfers the object-orientedmodel to relational DBMS. For

example, SQL: differentiates between type and relation (Melton, ). is is similar
to the differentiation between fragments and segments in FlexScheme. eoretically, this
mechanism could be used to implement data sharing, but SQL: does not allow this: if
two sub-tables reference a common super-table, changes to common attributes within the
ĕrst sub-table would be reĘected in the second sub-table as well.
e fundamental difference to the object-oriented and the object-relationalmodel is that

FlexScheme provides extensibility, evolution, and data sharing with data overriding in one
integrated model. Schema evolution has been well studied in the relational database com-
munity (Roddick, ), as well as in the object-oriented database world (Moerkotte and
Zachmann, ; Kemper and Moerkotte, ). Recent work (Curino et al., ; Moon
et al., ; Curino et al., ; Moon et al., ) shows that schema evolution is still an
important topic, especially in archiving scenarios or in combination with automatic infor-
mation system upgrades. Schema extensibility has been studied separately in the context
of OODBMSs in the form of class hierarchies (Moerkotte and Zachmann, ; Kemper
and Moerkotte, ).

.. Applying FlexScheme toMulti-Tenant DBMS

Our objective is to give the knowledge on how tomanage the SaaS application’s data back to
the database, rather than letting the application manage the data. us, when FlexScheme
is applied to amulti-tenantDBMS, theDBMShas explicit knowledge of the tenants’Virtual
Private Tables, which are dynamically derived from the polymorphic relation. FlexScheme
integrates extensibility on both schema and data.
Amulti-tenant DBMS based on FlexScheme enables sharing of meta-data as well as data

between tenants by introducing fragments and segments. FlexScheme introduces version-
ing by the notion of fragment sequences and segment sequences. is is required because
both, shared schema and data, can be part of an evolution process. e concepts for schema
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versioning have been extensively studied in the context of schema evolution (Curino et al.,
; Moon et al., ).
We implemented amulti-tenantMain-MemoryDBMSprototypewhich leverages all fea-

tures of FlexScheme. e details of this implementation are discussed in the following
chapters. Extensibility is realized by decomposition of relations and data overlay. For this,
our prototype has specialized query plan operators for data overlaywhich are optimized for
different access patterns on tenant-speciĕc and shared data. Moreover, it supports updat-
ing shared data by individual tenants; write access to shared data is redirected to a private
data segment per tenant, thus resulting in a “Copy-on-Write” shadow copy. e imple-
mentation of data sharing is further discussed in Chapter , including the physical data
representation and the data overlay mechanism for retrieving common data. Support for
schema evolution is based on Schema Modiĕcation Operators (Curino et al., ). We
implemented query plan operators that allow for graceful on-line schema evolution by de-
ferring the physical data reorganization until the ĕrst read access to a tuple. Chapter 
outlines the details.
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Data Sharing Across Tenants

For better TCO, the level of consolidation can be further increased by sharing data across
tenants, like conĕguration variables or catalogs. However, for some of the shared data, it
may be necessary to allow changes by individual tenants. In this chapter, we present the
data sharing component of ourMulti-TenancyDBMSprototype. Based on the FlexScheme
model, we allow write access to shared data by individual tenants. Our approach provides
an overlaymechanism, such that changes of one particular tenant to the shared data do not
interfere with changes of other co-located tenants.

.. Data Overlay

Generally, shared data is physically read-only in our prototype. However, we allow logical
write access to the shared data employing the following mechanism: if a tenant issues a
write operation on the shared data, the actual request is performed by copying the origi-
nal data from the shared segment to the private segment of the tenant. e issued write
operation is then performed on the tenant’s private segment. As the shared data remains
read-only at all the time, we avoid synchronization issues during access to the shared data.
is mechanism is inspired by techniques used in modern ĕle systems to provide snap-
shots (e.g., Hitz et al., ). Some database systems offer similar mechanisms to provide
read-only access to historical data, e.g., Oracle Flashback Technology. Our approach pro-
vides Copy-on-Write (CoW) semantics, where shared data that has to be updated is copied
to the private segment of the tenant. In contrast to previous mechanisms which work at
the page level, our approach allows per tuple granularity which is enabled by our main-
memory-centric architecture. We refer to this process as Data Overlay and use a special
operator called Overlay Operator to perform this action.
e basic functionality of this operator is to weave two inputs, the shared data and the

tenant-speciĕc data. Both inputs have to be segments of the same fragment. Despite the
support for multiple fragment versions, the logical identiĕer (primary key, PK) of a tuple
is independent of the fragment version. One of the following two cases applies.

. If the PK is contained in the shared input, but not in the tenant-speciĕc input, then
the tuple from the shared input is returned.

A in-depth discussion of the physical tuple layout of our prototype can be found in Section ..
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(SELECT pk, ... FROM tenant-specific)
UNION
(SELECT pk, ... FROM shared
WHERE pk NOT IN
(SELECT pk FROM tenant-specific)

)

Figure ..:Data Overlay in SQL
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Figure ..:Query Execution Plan Example

. If the PK is contained in the tenant-speciĕc input, always this tuple is returned, no
matter if there is a corresponding tuple in the shared input or not.

Figure . shows how an overlay could be formulated in a conventional relational DBMS.
is implementation has twomajor drawbacks. First, the overlay has to be handled explic-
itly, either with a view or within a middleware layer. However, this would interfere with
our approach to give as much knowledge about the data as possible to the DBMS. Second,
the database system has to process both selects and compute the union of the intermediate
results. For the calculation of the union, the DBMS has to process both inputs entirely,
which causes certain overhead. In the next section we propose our new data overlay oper-
ator that is able to process this query much more efficiently by leveraging the knowledge
that FlexScheme provides.

.. Accessing Overridden Data

We implemented a family of pipelining overlay operators which can be placed in the query
execution plan by the query optimizer. Depending on the implementation, they support
efficient full table scans or point-wise look-ups by leveraging specialized indexes. A query
execution plan may contain several overlay operators, as a table of a given tenant may con-
sist of several fragments. ese operators can be chained together or may be replaced by
one N-ary overlay operator that can process multiple inputs at the same time. e correct
alignment of overwritten tuples is guaranteed by the PKs that are stored inside each tuple.
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A very basic strategy of request processing with common data is to substitute the log-
ical table reference in the query by a sub-plan as shown in Figure . that overlays and
aligns data. e query optimizer might then re-arrange operators to allow for early or late
alignment.
We implemented two different types of overlay operators. e ĕrst type uses already ex-

isting indexing techniques—we refer to them as basic implementations—, while the second
type uses specialized data overlay indexing mechanisms.

... Basic Implementations

Basic implementations do not require special index support. For example a Hash-Join-
based implementation only uses a transient index. In the build phase, the PKs for the
tenant-speciĕc segment are hashed into a temporary hash set. All tuples of this segment are
passed through to the operator above the overlay. In the probe phase, the shared segment
is opened. Only those tuples, which do not have an entry in the temporary hash table are
passed to the operator above. is implementation needs enoughmainmemory resources
for the temporary hash set.
Another basic implementation without the need for a specialized index is Merge-Join-

based. For this operator, the inputs have to be sorted on the primary keys. If there are tuples
with identical PKs from both inputs, only the tuples from the overlay input are returned.
An interesting property of this operator is that the result is implicitly sorted on the primary
key.

... Special Index-Supported Variants

Special index support can be used by overlay operators to look up tuples by primary key.
We implemented two different variants, both supporting pipelined execution.

Separate Indexes for Shared and Private Data

e ĕrst approach uses two separate indexes—one for the common data and one for the
tenant-speciĕc data. e index for the common data can be shared across tenants. For
this ĕrst approach, two different strategies may be employed: tenant ĕrst or common ĕrst
access.

Tenant-FirstAccess is strategy ĕrst accesses a tenant’s data before the shared data. When
accessing a tuple by its key, at ĕrst the tenant-speciĕc index is queried. If an entry is found
there, the tuple is retrieved immediately. If there is an index miss on the tenant-speciĕc
index, the shared index is queried for an index hit. Only if both indexes do not return a
match, a tuple with the requested key does not exist.

e shown sub-plan reconstructs the VPT of Tenant T from the polymorphic relation in Figure ..
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Example .: Figure .a shows data segments and indexes for two tenants T and T.
Furthermore, a shared segmentwith an index exists. e queriesQT andQT of tenant T
and tenant T, respectively, request a tuple with the same key. Tenant T has overwritten
the tuple, tenant T not.
Request QT ĕrst accesses the index IdxT. As this access results in a miss (☇), the tuple

has to be requested via the shared index. For request QT, the index IdxT immediately
returns the requested entry.

Common-First Access In contrast, the common ĕrst strategy always looks up the key in
the shared index ĕrst and then does a subsequent look-up in the tenant-speciĕc index, if
necessary. For increasing look-up efficiency, we added an additional data structure per
tenant to minimize the number of secondary look-ups: a bit-set stores the information
whether the tuple has been overwritten by that tenant or not. us, the bit-set allows to
skip the second index access if the tuple is not overwritten by the tenant. e shared index
is enhanced to store a bit-set position together with the physical position, thus for each
tenant, the bit-set has the same number of entries, as it is aligned with the shared index.
If a tuple with the requested key exists in the shared data, the look-up in the shared

index returns its physical location in the shared data segment together with the bit-set
position for the tenant index. en the bit-set of the given tenant is queried for the position
obtained from the shared index. If the bit-set has a zero at that position, the tenant has
not overwritten the tuple. In this case, the tuple is looked up by the previously retrieved
physical location within the shared segment. If the bit-set has a one at that position, the
tuple has to be looked up using the tenant index. e look-up key for the tenant-speciĕc
index is the same as that for the shared one.
If the key is not found in the shared index, there has to be a second index look-up in the

tenant-speciĕc index. Only if both indexes do not contain an entry, the key is not present.

Example .: Consider Figure .b. e setup is identical to the previous example.
Again, both tenants request the same key.
Both requests ĕrst access the shared index. e shared index look-up retrieves the po-

sition of the tuple in the shared segment, as well as the position in the tenant-speciĕc
bit-set. e bit-set of tenant T does not have an entry at that position, thus QT retrieves
the tuple stored from the shared data segment. As the physical position of the tuple is
already known, no further index access is necessary.
In contrast, tenant T has an entry in its bit-set. us a subsequent look-up in its

private index must be performed to retrieve the tuple from T’s data segment.

Single Combo Index

e second approach employs a tenant-speciĕc combo index which actually indexes the
result of the overlay operator, and therefore contains the keys for the shared data as well as
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Figure ..:Overlay with Single Combo Index per Tenant

the tenant-speciĕc data. For each key, the reference to the segment (a single bit—shared
or tenant-speciĕc) is stored together with the physical tuple identiĕer. When looking up a
key, the operator has to select either the shared or the tenant-speciĕc segment, depending
on the segment reference from the index look-up result. Since this type of index cannot
be shared, it affects tenant packaging. In a polymorphic relation, combo indexes are only
associated with instances at the leaf level.

Example .: Figure . shows the usage of combo indexes for the two tenants T and T
already known from the previous examples. e request is directed against the tenant-
speciĕc combo index. If there is an index hit, the index entry contains a reference to the
data segment where the tuple resides. QT accesses a tuple that resides on the shared data
segment, while QT accesses a tuple from the T’s private data segment.

... Data Maintenance

In our prototype, the segment containing the shared data is read-only and thus each tenant
has tomaintain an individual segment for storing the tenant-speciĕc changes to the shared
data. As the data is spanning across multiple segments, data maintenance operations are
different for changing shared data or private data.

Tenant-speciöc Data Update

Besides maintaining the actual data segments, the additional structures like indexes and
bit-sets have to bemaintained. Before inserting a new tuple in the tenant-speciĕc segment,
a look-up in the shared data index must be performed to retrieve the bit-set position. If
this look-up does not return a result, the new tuple does not overwrite a shared tuple and





.. Accessing Overridden Data

thus the tenant-speciĕc data segment and its index can be updated. Otherwise, besides
updating the segment and its index, the appropriate position in the bit-set has to be set.
Updating an already existing tuple incurs a check if the tuple is still only in the shared

data segment or if it has been updated some time before. If the tuple has been updated
previously, a corresponding entry in the tenant-speciĕc index and the bit-set is already
present, so only the private data segment must be updated. Otherwise, the tuple and its
bit-set position has to be retrieved. e tuple is then modiĕed and inserted in the tenant-
speciĕc data segment and its index. Finally, the bit-set position has to be set.
For deleting a tuple, a compensation record may be necessary: if a shared tuple should

be deleted, the private segment must contain a record to mark such a tuple as deleted.
e procedure is similar to the updating procedure. If the tuple is deĕned in the private
segment without overwriting an existing record, it can be simply deleted from the tenant’s
segment and its index.

Globally Shared Data Update

In our prototype, the segment containing the shared data is read-only. However, there
might be situations where the shared data has to be updated globally, although we assume
that this is rarely the case.
ose global changes on shared data may affect the tenant-speciĕc data structures. If a

globally shared tuple gets updated, its physical location must not change. All traditional
DBMSs can already handle this. If a global tuple gets deleted, it only disappears for those
tenants who did not overwrite the tuple. Furthermore, if the bit-set position number is not
recycled, the tenant-speciĕc bit-sets are still valid. When inserting a tuple, it is only visible
to those tenants that do not have a private tuple with the same primary key. What is more,
the tenant-speciĕc bit-sets become invalid, so they have to be recreated. For the combo
index approach, all insert and delete operations on shared segments result in maintaining
all existing combo indexes.

... Secondary Indexes

For some setups, it might be interesting to have secondary indexes on shared data, e.g. for
performance reasons or for ensuring constraints. For these secondary indexes, the same
mechanisms as discussed above can be used. However, as our prototype is main-memory-
centric, it may be sufficient for someworkloads to do full scans of the table. Our evaluation
in Chapter . shows that scanning data with the overlay operator only places a little higher
load on the system as scanning conventional data segments.

... Overlay Hierarchies

e previous sections only describe overlaying an existing shared data segment with a sin-
gle tenant-speciĕc data segment. However, there may be scenarios where this single-level
We assume the classic slotted pages layout, where a tuple never changes its initially assigned physical tuple
identiĕer.
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Figure ..:Overlay Hierarchy

overlay is not sufficient, for example, if a tenant subscribed for an extension already over-
riding shared data. us, the overlay mechanism has to support Overlay Hierarchies by
allowing multi-level overlays.

Example .: Figure . shows an excerpt of a Polymorphic Relation on the le, where a
tenant T overrides data from a extension Ext that in turn overrides shared data in Base.
For each level of the hierarchy, our prototype maintains an index (the triangles in the

ĕgure), the segment, and bit-sets (densely printed) for invalidating tuples from upper
segments, e.g., at level Ext one bit-set for the Base level is present.
As the bit-sets affect above-laying segments, they have been duplicated (lightly printed)

and raised in the ĕgure for better readability. For example, the marked bit-set-entry at
level T invalidates the tuple  in level Ext.

Within an hierarchy, the lowest level overrides the data from all upper levels, thus the
overlay hierarchy has to be evaluated top-down. For example, let the hierarchy be Base −
Ext − T, then building the hierarchy is evaluated as following:

overlay (T, overlay (Ext,Base))

e top-down evaluation of the overlay hierarchy may be applicable, if the overlay of
Ext with Base has a lower cardinality than T, i.e. the local changes are dominant within
the hierarchy. However, there may be situations where a bottom-up evaluation may be the
better choice, e.g., if the globally shared data are predominant in the hierarchy, and thus
the overlay of T with Ext has a lower cardinality than the global data.
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As the overlay operator is associative, any overlay hierarchy can be either evaluated top-
down or bottom-up. us the above hierarchy from the example can also be evaluated as
follows:

overlay (overlay (T,Ext) ,Base)

Impact of Overlay Hierarchies on Data Structures

e associativity of the logical overlay operator affects those physical implementations of
the operator which maintain external structures for performance reasons. e changes
affect the combo indexes and the bit-sets.

Combo Index e combo indexes are indexing the result of the overlay across the whole
hierarchy. us, each index entry has to refer to the appropriate level within the hierarchy
where the referenced tuple is actually stored. Write operations to the leaf associated with
the combo index result in index maintenance operations; write operations to upper levels
render all dependent combo indexes invalid. Either the index has to be rebuilt or theMulti-
Tenant DBMS has to offer mechanisms to update multiple dependent combo indexes if
shared data changes.

Bit-Sets As Figure . shows, each segment has one bit-set for all inherited segments.
us, when writing tenant-speciĕc data, the write mechanism has to determine if () a
new tuple is inserted, or () an existing tuple is overwritten, and if so, at which level of
the hierarchy the tuple has been deĕned before. Modifying the bit-set associated with the
deĕnition level of the tuple allows for bottom-up or top-down overlay, as described in the
next section.

Example .: Consider Figure .. Tenant T wants to update the tuple with key .
Right before this update, a query for the key would return the value from the segment
sExt, at whose level the tuple  has been deĕned before. us, the update mechanism
has to insert the new value with key  at segment sT and modify the appropriate bit
in the tenants bit-set associated with the segment sExt.

Lookup and Scan

When using overlay operators without index support, such as merge-based overlay, there
is no specialization necessary. e placement of these operators in query execution plans
is similar to join operators, such that they result in either deep trees or bushy trees. Fur-
thermore, the associativity of the overlay operator can be exploited. As the schema of the
individual inputs and interim results are identical, one possible optimization is the intro-
duction of N-ary overlay operators, that allow multiple overlays for one base segment.
e proof can be found in Section A.
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As the combo index acts as a tenant-speciĕc index for the result of the overlay across the
hierarchy, the only difference to two-level overlays is the fact that the combo index has to
distinguish multiple overlay levels.
Due to multi-level overlays, the tenant-ĕrst and the common-ĕrst access strategies be-

come the bottom-up and the top-down strategies, respectively. With the bottom-up strat-
egy, point-wise look-ups do not need bit-set support, and thus the bit-sets are used for
scans only. With the top-down strategy, the bit-sets are further necessary for point-wise
look-ups.
For ĕltering out the overwritten tuples from upper levels in the hierarchy, all bit-sets

across the hierarchy corresponding to the same segment, are bit-wise ORed to form one
single bit-set. is single bit-set is then applied to the segment, thus ĕltering out tuples
that are overwritten at lower levels in the hierarchy.

Example .: Again, consider Figure .. For ĕltering overwritten tuples from segment
sBase, the appropriate bit-sets at Level sExt and sT are bit-wise ORed. e resulting bit-set
is then used to ĕlter the tuples with keys , , and .

is mechanism collapses multiple bit-sets for one particular segment. ese resulting
bit-sets are then applied to the corresponding segments. Finally, the result of the overlay
can be retrieved by combining the ĕltered segments across the hierarchy, either bottom-up
or top-down.

... Comparison to Other Delta Mechanisms

Very similar to the overlay mechanism as described above are those mechanisms that are
used in read-optimized database systems. ose systems offer a read-optimized store in
which the data is specially organized to exploit performance optimizations. A very popu-
lar example of such a specialized optimization are column-oriented databases where each
column of a table is stored in its own container. Tuples are reconstructed by aligning the
columns of one particular table which is done using offsets. As each column is sorted by the
same sort key, a particular tuple can be identiĕed by its offset. In such column databases,
scans and aggregations across one single column can be processed very fast, thus exploit-
ing the low amount of cache misses (Boncz, ). However, as updates and inserts have
to be performed in compliance with the organization of the table, such operations become
costly. Write operations are collected in a write-optimized store and are regularly prop-
agated into the read-optimized store, thus transforming single write operations into one
batch operation. Representative implementations of this mechanism are C-Store (Stone-
braker et al., ) and its commercial offspring Vertica (Vertica Systems, ). As in
these setups data is spanning across two different storage areas, a query has to access both
of them and merge them on-the-Ęy to guarantee up-to-date results.
For managing the write-optimized store—the so-called delta—there are two strategies:

the value-based delta and the positional delta. In both setups, the delta keeps track ofwhich
tuples were inserted, deleted, or modiĕed.
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e value-based delta uses a RAM-resident data structure whose sorting is based on
the sort key of the underlying read-optimized store. us, when merging the delta with
the read-optimized store, the tuples of the two storage areas are aligned by the common
sort key attributes. Typical implementations for value-based deltas are RAM-friendly B-
Trees. ey can efficiently be merged into the read-optimized store by simply scanning the
leaves of the B-Tree. Value-based deltas have a major drawback when used in read-mostly
databases: for queries, the delta has to be transparently merged into the read-optimized
store. However, if the sort key spans across multiple attributes, the scan has to include all
of them, which may reduce scan performance, e.g. if only a single column is requested.
Other techniques follow the rationales of Log Structured Merge Trees (O’Neil et al., ),
which also transform random write operations into a batch operation.

Positional deltas align the tuples by the position of the tuple instead of the sort key. Hé-
man et al. () propose a variant called Positional Delta Trees (PDT). e PDT con-
tains the same form of differences as in the value-based delta, but the data structure has
been optimized for a fast merge operation by providing the actual tuple positions of the
read-optimized store where the differences have to be applied. us, scans on the read-
optimized store can count down to the next position where a differential update has to be
handled. is way, the scan is independent of the sort key used for organizing the read-
optimized store.

Not only column-oriented database systems make use of deltas; there are also scenarios
outside the column-oriented world where deltas become reasonable: RDF-X (Neumann
and Weikum, ) is a specialized database system for RDF data. As it heavily relies on
indexing, a single update would incur write access to  compressed indexes. is ren-
ders direct updates unattractive. us, RDF-X uses a staging architecture, where write
access to the RDF store are redirected to differential indexes, that only contain the write
operations. ese differential indexes form the delta of the RDF-X system, and are regu-
larly merged into the RDF store, thus collapsing singular write accesses into one big batch
update operation. is procedure lowers the access costs, however, the differential deltas
have to be merged on-the-Ęy by the query processor during queries. erefore, the query
processor integrates additional merge joins into the query execution plan.

All the described systems merge the contents of the delta into the main stores, either
periodically or as soon as a certain threshold has been reached. is behavior is the main
difference between their and our approach. As globally shared data (i.e. “the main store”)
and the tenants’ data (i.e. “the delta”) must be completely separated, there is no merging
across the overlay hierarchy. Furthermore, all systems from above have been designed
for scan-intensive OLAP applications and are not well-suited as transactional systems. To
increase the overall performance in OLAP systems, it is evident that scan performance is
the critical factor. However, this is not the case in our prototype, where OLTP-style look-
ups and updates make up the majority of a typical SaaS workload. us, our approach
makes use of value-based deltas, in combination with specialized indexes to support fast
look-ups.
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.. Shared Data Versioning

As our Multi-Tenant DBMS prototype allows for schema Ęexibility, the mechanisms of
data sharing have to be highly integrated with the extensibility and evolution mechanisms.
FlexScheme allows for schema evolution by keeping multiple schema deĕnitions within
one fragment sequence. Furthermore, within one segment sequence multiple versions of
the data can exist to allow seamless application evolution.
ese mechanisms are useful when upgrading the SaaS application to a new revision.

Most service providers schedule a downtime on a regular basis where the application is
upgraded. Aer that downtime, all tenants use the new application revision. However,
this may not be desirable in every case: some tenants heavily rely on extensions developed
by themselveswhich require a particular application revision. ose tenantsmay bewilling
to pay an increased subscription fee if they can stick with a certain application revision, or
at least, if they can defer the upgrade.
As new application revisions may also lead to updates of the globally shared data, the

data sharing mechanism must be able to handle not yet updated tenants as well. We thus
extend the data sharing component of our Multi-Tenant DBMS prototype with a shared
data versioning component which is designed to exploit a typical SaaS application’s life-
cycle: a SaaS application is updated on a regular basis by the service provider. As a single
tenant may have extensions, either developed by himself or by an ISV, those updates may
break the application for that tenant. To guarantee application availability, the tenant may
defer the update to the new version of the base application and the extensions, respectively.
erefore it might be possible, that a few tenants lag marginally behind the most recent
version of the application. However, we assume that a majority of tenants is using the most
recent version of the application.

... Pruning of Unused Versions

FlexScheme keeps track of fragment and segment usage. Fragments and segments that are
no longer accessed by tenants can be pruned, thus improving space efficiency; this is very
important, especially for main-memory DBMSs, so pruning should be done as soon as
possible and as oen as possible, but without affecting the tenants’ performance.
e pruning of a segment from a segment sequence erases the segment. We refer to this

operation as the Purge operation. A purge operation can occur at any time, as it may be
a direct result of a particular tenant’s actions, for example, if the tenant is the last remain-
ing user of a speciĕc segment and migrates to a subsequent version within the segment
sequence. us, the purge operation has to be a light-weight operation, to be able to per-
form this operation whenever needed without affecting co-located tenants.

... Tenant-speciöc Reconciliation

As tenants can freely decidewhether they immediately follow application upgrades or post-
pone them, the application has to provide routines for individually pulling global changes
into the tenant’s workspace. is leads to three different scenarios that have to be handled:
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. A tenant wants to immediately update to the newest application revision, including
all dependent shared data.

. A tenant wants to defer the application upgrade, and temporarily stays with its cur-
rent application revision, including its dependent shared data.

. A tenant does not want to upgrade the application at all, and wants to stick at its
current application revision, including the dependent shared data.

e scenarios () and () from above are very closely related, as tenants—even if the
tenant decided to stick at some particular application revision—may want to roll forward
to the most recent version aer they kept their old revision for a very long time. As we
allow these different scenarios, there is no need for special treatment of off-line tenants.
However, depending on the above scenarios, theremay be synchronization conĘicts during
application upgrade if a tenant made changes to global data.

Example .: Suppose the initial segment s()Base (fBase) of the Base segment sequence con-
tains two tuples with keys  and . Tenant T’s overlay segment s()T (fBase) contains two
entries  and , thus overriding entry  and adding a new entry with key .
Now, the global Base segment gets updated by the service provider, by adding a new

segment s()Base (fBase) which contains an additional tuple with key . If tenant T moves
from the initial segment s()Base (fBase) to the new segment s()Base (fBase), the tuple with key
 has conĘicting changes which have to be resolved.

ConĘict resolution is highly application dependent, thus theMulti-TenantDBMS cannot
reconcile autonomously, but has to provide mechanisms to facilitate reconciliation. Typi-
cally, the reconciliation is based on a three-way merge algorithm, as frequently used by re-
vision control systems like Subversion (SVN). Such amerge algorithm takes the shared data
segment s(N)Base (f) in revisionN, the tenant-speciĕc changes s

(N)
T (f), and the new shared seg-

ment s(N+)Base (f). e merge algorithm then creates a new tenant-speciĕc overlay segment
s(N+)T (f)which is based on the new shared data segment. A three-waymerge can recognize
conĘicting changes. ese detected conĘicts are then used as input for application-speciĕc
conĘict resolution mechanisms inside the SaaS application.
In the Mobile DBMS world, such reconciliation processes occur frequently. Saito and

Shapiro () state that optimistic replication allows for efficient data sharing in mobile
environments and wide-area networks. In contrast to pessimistic algorithms that do syn-
chronous updates, the optimistic algorithms let data be accessed without a priori synchro-
nization.
Optimistic replication allows for sites and users to remain autonomous. However, as

optimistic replication is based on asynchronous operations, consistency may suffer in the
form of diverging replicas and conĘicts between concurrent operations. One of the promi-
nent usage scenarios for optimistic replication is Revision ControlManagement, like SVN.
Optimistic replication can be transfered to our usage scenario. In the shared data setup,
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the shared data segment forms the main site, whereas the tenants’ segments form remote
sites. When the main site gets updated, there may be conĘicting concurrent operations.
For shipping data between two replicas, optimistic replication has the notion of state

transfers and operation transfers. If two replicas are synchronized via state transfers, only
the ĕnal values for particular keys are shipped and then compared. us, the reconciliation
process can solely decide on the values of the entries which of the possible alternatives is
selected as the new value.

Example .: Suppose there are two replicas D and D of a database. In the initial
state, the value  has been stored for key k. e user of D increased the value of key k
to . During reconciliation, the state information D ∶ k ←  and D ∶ k ←  has to
be merged.

Operation transfers do not ship the ĕnal value for a particular key, but rather the opera-
tions that have led to the new value. is way, the reconciliation process can leverage the
semantics to ĕnd a reconciled value.

Example .: Let the initial setup be as in the previous example, and let the user of D
perform the identical operation as before. During reconciliation, the operation informa-
tion D ∶ k← k +  and D ∶ k← k has to be merged.

Our prototype makes use of both transfer methods. For fragment sequences, we exclu-
sively use operation transfers to connect subsequent fragment versions. For the segment
sequences, we offer different physical data representations, that offer either state or opera-
tion transfers. An in-depth discussion of the physical representations can be found in the
following section.

.. Physical Data Organization

In this chapter, we compare different physical data organization schemes. We discuss the
data structures, the access behavior of point-wise look-ups and scans, maintenance op-
erations on FlexScheme’s segment sequences as well as the space efficiency of these ap-
proaches.
emaintenance operations on segment sequences such as creating or deleting segments

should be lightweight operations to avoid performance impacts. A new segment is based
on the last segment of a segment sequence. Changes to the new segment become available
only aer the new segment is released. is way new segments can be prepared without
affecting co-located tenants. Purging a segment is only possible, if no tenant depends on
it any more.
is section covers versioning of data. Data versioning is only useful for shared data,

i.e. at base or extension level. However, there may be circumstances where data versioning
may be applicable for tenant-speciĕc data as well. However, the approaches presented in
this section are primarily optimized for shared data versioning.
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Figure ..: Snapshot Approach

... Snapshot Approach

e simplest data organization scheme for segment sequences is to materialize each seg-
ment. We refer to this approach as the snapshot data organization scheme. Figure .
shows the snapshot data organization scheme for one segment sequence. In the example,
there are four materialized segments which are all currently used by tenants.

DataStructures Eachmaterialized segment is stored within a separate storage area which
contains the data tuples and an index on the primary key of the corresponding fragment.
In the following, we refer to this primary key as the tuple identiĕer.

Point-Wise Access Data tuples of a materialized segment can be accessed point-wise by
looking up the tuple identiĕer in the index of the materialized segment.

Scan Access An index scan can be used to scan the data tuples of a materialized segment
sorted by tuple identiĕer.

Creation of New Segments A new segment in a segment sequence is created by copying
the data area and its index from the last segment in the segment sequence. e newly
created segment is then available for modiĕcations.

Purge Operation A materialized segment can be purged by deleting the corresponding
storage area and its index. Other segments are not affected by this operation as those are
stored in different storage areas. erefore the purge operation is a lightweight operation
in the snapshot data organization scheme.

Space Efficiency e big disadvantage of the snapshot approach is that redundancy be-
tween subsequent segments is not eliminated. ere is a high potential for redundancy
across segmentswithin a segment sequence, if there are only few changes fromone segment
to the next. Orthogonally, value-based compression can be applied to single segments to
further reduce space requirements.
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Figure ..:Dictionary Approach

... Dictionary Approach

e snapshot data organization scheme can be reĕned to eliminate redundancy across seg-
ments of the same segment sequence. e dictionary approach has one independent data
area for each segment to store the segment index and a separate storage area for the dictio-
nary of the whole segment sequence. Tuple values are stored in the dictionary; the segment
indexes then only reference the tuple values of the particular segment. Figure . shows
the dictionary data organization scheme.

Data Structures Besides the dictionary, each segment sequence has one index per seg-
ment. e indexes reference the values from the dictionary. A reference counter for each
entry in the dictionary keeps track of how oen an entry is referenced in segment indexes.

Point-Wise Access e data tuples of a segment can be accessed point-wise by looking up
the tuple identiĕer in the index and then retrieving the value from the dictionary.

Scan Access For a scan across a segment, an index scan across the segment’s index has to
be performed. For each entry in the index, the corresponding value from the dictionary
needs to be retrieved.

Creation of New Segments When creating a new segment, the index of the last segment
has to be copied. en, the new index has to be scanned, and, for all entries in the index,
the reference counter in the dictionary has to be increased.

PurgeOperation e purge operation has to delete the segment index and has to remove
obsolete values from the dictionary. For all tuples referenced in the index to purge, the
reference counter of that tuples must be decreased. Only then, the segment index can be
deleted. If the reference counter reaches zero, the tuple can be completely removed from
the dictionary. Since the purge operation modiĕes a shared data structure, which may
affect performance, we consider this operation as heavyweight.
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Figure ..: Temporal Approach

Space Efficiency With this approach, the redundancy in the data areas of the snapshot
approach is eliminated by introducing a shared dictionary. e size of the indexes remains
unchanged since the indexes of the dictionary approach are organized similarly to the in-
dexes of the snapshot approach. Further compression of the dictionary is orthogonal.

... Temporal Approach

Temporal databases (Stonebraker, ; Jensen and Snodgrass, , ) can manage
data in many different versions, which makes them an interesting candidate for managing
a segment sequence. e interesting feature of temporal databases is that only those ver-
sions of a tuple are stored in which the value of this tuple changes. However, the temporal
database allows to query any version of a tuple. When a segment sequence is stored in a
temporal database, a segment corresponds to a speciĕc version number. We refer to this
approach as the temporal data organization scheme. Figure . shows that approach.

Data Structures Temporal databases typically handle the versioning by a specialized in-
dex, the temporal index. e entries of such an index are augmented by versioning infor-
mation which can be comprised of, for example, validity timestamps or version numbers.
Our setup uses the latter. In comparison to the dictionary approach, there is only one
common index, the temporal index, instead of one index per segment. Figure . shows a
simpliĕed temporal index, since the data tuples are stored in the leaf nodes of the tempo-
ral index, rather than in the storage area. In our implementation the version numbers are
stored bit-wise inverted; this is useful if you want to query the temporal index for a par-
ticular key without specifying the version information. is way the index can perform a
lower bound access to retrieve the most recent version of the key.

Point-Wise Access e tuples of a segment can be accessed point-wise by performing a
lower bound look-up of the key. e version with the highest version number smaller or
equal to the desired version is returned.

Scan Access Temporal databases support to scan all tuples of a version sorted by tuple
identiĕer. As each segment corresponds to a speciĕc version number, all tuples of a seg-
ment can be scanned. However, to perform this operation, temporal databases have to
scan the whole temporal index which may be large, as it contains entries for all versions of
all tuples in which the value of a tuple changes.
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Figure ..:Differential Delta Data Approach

Creation of New Segments For the creation of new segments, only the internal informa-
tion referring to the most recent version number has to be updated.

PurgeOperation In contrast to the dictionary approach, the data of all segments is stored
within one common temporal database. e purge operation has to remove all tuples of
a given version from the temporal database. For a given version of a tuple, the temporal
database may not have an entry. is occurs if the tuple has not been changed in this
version. In this case nothing has to be done to purge the tuple from the temporal database.
However, if the temporal database contains an entry for the given version of a tuple, then
this entry cannot be removed right away, because it may be required for other versions of
the tuple. en, the entry has to be replaced by a new entry for the next higher or next
lower implicitly stored tuple. is process is performed on a common data structure, and
thus makes the purge operation heavyweight.

Space Efficiency As only those versions of a tuple are stored in which the value of this
tuple changes, the temporal database eliminates a lot of redundancy. For a further reduc-
tion of space requirements the data area containing the actual values can be compressed,
which is orthogonal.

... Differential Delta Approach

In the differential delta approach, the differences between two subsequent segments of a
segment sequence are stored in one storage area. We refer to these differences between two
segments as the delta. As the deltas of all preceding segments have to be overlaid to restore
the tuples of a given version, it is inefficient to perform operations on arbitrary segments of
a segment sequence only with deltas. As discussed above, we assume that the major part of
the workload is performed on the last segment of a sequence, and hence wematerialize the
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last segment. We refer to this approach as the differential delta data organization scheme.
Figure . shows this approach.

Data Structures e delta corresponding to a segment of a segment sequence is the set
of differences between the given segment and the preceding segment. Each delta is stored
as a B+-Tree. Each entry has the primary key of the affected tuple as key and a diff entry
as value. A diff entry stores two values of the affected tuple, the values before and aer the
change. erefore, the differential delta approach has the interesting property that a delta
can be used in both directions, forward and backward. We refer to this as random direction
property. e last segment in the segment sequence is materialized. e data is stored in a
separate data area and indexed by a separate index.

Point-WiseAccess Point-wise access behavior depends on the queried version. If the ma-
terialized segment is queried, the differential delta approach behaves like the snapshot ap-
proach. If other segments are queried, theremay be a series of look-ups in thematerialized
version as well as in deltas: in case the delta corresponding to the wanted segment contains
a diff entry for the given key, the aer value of that diff entry represents the value of the
tuple. Otherwise, the preceding deltas must be iteratively queried to ĕnd the correct value.
e iteration terminates as soon as a diff entry is found, or if the ĕrst segment of the seg-
ment sequence has been reached. If a diff entry is found, the aer value contains the tuple
data. Alternatively, the succeeding deltas can be iteratively queried. In this case, the itera-
tion terminates at the end of the sequence or as soon a diff entry has been found. e tuple
value is then retrieved from the before value of the found diff entry.

Scan Access Scans can be performed by overlaying the deltas and the materialization of
the last segment. is overlay operation can be implemented efficiently with an N-ary
merge join.

Creation of New Segments For creation of a new segment, a new B+-Tree has to be gen-
erated. We use the random direction property of the differential delta approach to prepare
a new delta in the newly allocated tree. As soon as the new segment is released, the new
delta is overlaid with the currently available materialization to form a newmaterialization.
e old materialization is then removed. is removal is lightweight, since the deltas do
not depend on a particular materialization.

PurgeOperation When purging a segment, it is not sufficient to simply delete the affected
delta. Rather, this delta has to be merged into the delta of the succeeding segment in the
segment sequence. e actual purge operation is based on a merge join. If only one of the
deltas contains an entry with the given key, the diff entry is simply copied. Otherwise, if
both deltas contain an entry with the given key, a new diff entry is created with the before
value of the affected segment and the aer value of the subsequent segment. An example
of a purge operation is shown in Figure .. Since this can be performed without affecting
shared data structures, we consider this a lightweight operation.
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Figure ..: XOR Delta Approach

Space Efficiency e differential delta data organization approach eliminates some re-
dundancy compared to the snapshot approach, as only the differences between subsequent
segments are stored. However, the diff entries may still contain redundancy if only a small
part of the tuple’s data changed. is can be addressed by employing an XOR encoding
scheme (see next section). Compression of a particular delta to further reduce space re-
quirements is orthogonal. Space consumption can be reduced even further by eliminating
redundancy across deltas of the same segment sequence. To eliminate this redundancy
some form of common data structure between segments would be required, e.g. a dic-
tionary. With such a common data structure, the data that corresponds to one segment is
spread all over the commondata structure. is turns operations on all data of one segment
into heavyweight operations, especially the purge operation. Since this is not desirable, we
do not eliminate this redundancy.

... XOR Delta Approach

e XOR delta approach is based on the previously discussed differential delta data orga-
nization scheme. e previous approach enables lightweight maintenance operations for
segment sequences. However, within a diff entry there is still potential of eliminating re-
dundancy. e XOR delta approach addresses this issue by XOR-encoding (Cha and Song,
) the diff entries of the differential delta approach. We refer to this optimization as
the XOR delta approach. Figure . shows the XOR delta data organization scheme.
e random direction property of the differential delta approach is retained in the XOR

delta approach. We make use of this property when creating, purging, or querying seg-
ments.

Data Structures e XOR delta data organization scheme is an enhancement of the dif-
ferential delta data organization scheme. e only difference is the implementation of diff
entries. Instead of storing the before and the aer value of the tuples in the diff entry, the
XOR-encoded value before⊕ aer is stored. Furthermore, each XOR entry denotes either
an insert, an update, or a delete operation. Again, the last segment of a segment sequence
is materialized.
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Algorithm  Lookup tuple with key k in version ver
: V← nearest materialized version to ver
: if ver ≤ V then
: data← retrieve data for key k from materialization V {datamight be NUL}
: for i = V to ver +  do
: xor← XOR entry for key k from delta (i − ↔ i)
: if xor is update then
: data← data⊕ xor
: else if xor is delete then
: data← xor
: else if xor is insert then
: data← NUL
: else
: continue {No XOR entry found, do nothing}
: end if
: end for
: return data
: else
: [. . .] {Symmetric to lines  to }
: end if

Point-Wise Access Algorithm  describes the point-wise access by primary key, which is
closely related to the point-wise access in the differential delta approach. Since the last
segment of a segment sequence is materialized, this segment is used as starting point. For
each delta between the target version and the materialized version, the XOR entries are
retrieved. e result is then calculated by XOR-ing the XOR entries with the materialized
segment.

Example .: To access the tuple with PK  in version ., cf. Figure ., the value c′′
of the tuple with PK  at the materialized version . has to be XOR-ed with the value
(c′⊕c′′) of XOR Entry  fromDelta (.→ .). Delta (.→ .) has no matching entry
for the PK , so it can be skipped. Since XOR is associative and commutative, the result
of this operation is c′′ ⊕ (c′ ⊕ c′′) = (c′′ ⊕ c′′)⊕ c′ = ⊕ c′ = c′.

As in the differential delta approach, a materialization of the last segment increases per-
formance. Otherwise, the tuple value has to be reconstructed starting at the delta of the ĕrst
segment in the segment sequence, which would be very inefficient for our SaaS workload.
For better performance, other segments than the last in the segment sequence can be

materialized as well. en the random direction property can be exploited for point-wise
look-ups by choosing the closest materialization to the desired segment as starting point
for the reconstruction of the tuple value. Algorithm  already resembles this optimization
as it allows to start at the nearest materialized version.
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Scan Access As in the differential delta data organization scheme, scans are performed
by overlaying the deltas with the materialization using an N-ary merge join.

Creation of New Segments e creation of new segments is identical to the differential
delta approach.

Purge Operation As in the differential delta data organization scheme, the purge opera-
tion involves themerge of two deltas corresponding to subsequent segments in the segment
sequence.
Two XOR entries can bemerged by XOR-ing the XOR values of the two entries. Suppose

the ĕrst XOR entry stores a ⊕ b and the second XOR entry stores b ⊕ c, where a is the
value of the affected tuple before the ĕrst change, b the value aer the ĕrst change and thus
before the second change, and c the value aer the second change. en the merged XOR
entry stores the XOR value (a ⊕ b) ⊕ (b ⊕ c). Since the XOR operation is associative and
commutative, this results in (a⊕ b)⊕ (b⊕ c) = a⊕ (c⊕ (b⊕ b)) = a⊕ (c⊕ ) = a⊕ c.
e XOR encoding of the XOR entries has no impact on the complexity of the purge

operation. erefore, the purge operation remains lightweight.

Space Efficiency e redundancy within the diff entries of the differential approach has
been eliminated by introducing XOR encoding. If only small parts of a tuple have changed
in subsequent segments, the XOR entry could be further compressed by run-length-en-
coding, since the unchanged bits are zero, but this is orthogonal to the XOR encoding.

.. Evaluation

In this section, we evaluate the impact of the overlay operator on the access behavior of our
Main-Memory DBMS prototype and compare the different data versioning approaches.
OurMain-MemoryDBMSprototype has been implemented in Java . Indexes anddeltas

use Oracle Berkeley DB Java Edition ., which offers a B+-Tree implementation. e fan-
out of the B+-Trees has been conĕgured to mimic Cache Conscious B+-Trees (Rao and
Ross, ). Segments are implemented as slotted pages of KB, and data is represented as
byte arrays only.
e runtime environment of the experiments is a Intel Xeon X Quad Core-based

system with two processors at . GHz and  GB of RAM, running a recent enterprise-
grade Linux.

... Overlay Operator

At ĕrst, we evaluate the performance impact of different overlay operator implementations.
For our evaluation we use B+-Trees as index implementation. Hashing based indexes show
similar relative behavior, but obviously with lower absolute access times.
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Point-Wise Access

Developers tend to optimize an application’s access behavior by using mostly point-wise
operations to achieve better performance. erefore it is crucial that the overlay operator
does not place much overhead on the access time for this kind of query.
In Figure .a, we compare the access times of our approach with access times of the

traditional approach when no data is shared. e overlay operator is only required when
common data is shared. We compare three different physical operators for the logical over-
lay operator: Tenant-First-Overlay using index sharing without bit-set support, Common-
First-Overlay using index sharingwith bit-set support, andTenant-Speciĕc-Combo-Index-
Overlay where each tenant has an index also containing references to shared data.
In this experiment the shared data segment contains , randomly generated tuples.

e number of overwritten tuples is increased in steps of , tuples. Each data point
represents the average value across  runs. Each run does , random point-wise
accesses. Aer each run the segment and the indexes are discarded and newly created.
e reported value is the average time for one point-wise access.
As baseline we selected a layout where no data sharing occurs. eNo CommonData re-

sult is an evaluation of a Private Table Layout with a single index on the table. Figure .a
shows that the Tenant-Speciĕc-Combo conĕguration with its single index has the same per-
formance characteristics as the baseline. is validates our assumption that the single bit,
which is stored in the index to denote fromwhich segment the tuple has to be fetched, does
not impact performance. e Tenant-Speciĕc-Combo approach does no index sharing.
In a next step, we compare the overhead of implementations with multiple indexes. e

Common-First-Overlay operator has a higher hit ratio for lower percentages of overwritten
keys, since it ĕrst queries the index on the shared data. With increasing percentage of
overwritten keys, the seek time increases due to the fact that most shared data has been
overwritten. For the Tenant-First-Overlay, the behavior is vice versa. e break-even point
of the Tenant-First-Overlay and the Common-First-Overlay operator is at around  of
overwritten data.
As a sanity check, we implemented point-wise overlay access in a classical DBMS. As a

baseline we took point-wise access to the shared table so that no overlay occurs. When
implementing overlay with a UNION operator as displayed in Figure ., the response times
increased up to . In contrast, the performance impact in our setup is limited to 
in the break-even point of the two multiple indexes implementation.

Scans

Second, we analyze the performance of the overlay operator for scan operations using the
same test scenario. e scan returns , tuples. e results are depicted in Figure .b;
each data point is an average across  scans. Again, the baseline (No Common Data) is a
scan against a Private Table Layout. Like in the point-wise access test, the Tenant-Speciĕc-
Combo implementation causes no additional overhead.
e Overlay Query result is an implementation based on the query plan of a SQL query

like Figure .; it performs similar to the pipelining Merge-Join-Based implementation.
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Figure ..: Rebuild Times for Bit-Set and Combo-Index Rebuild

Furthermore, the execution plan of the Overlay Query implements a Tenant-First strat-
egy, so we omitted reporting this result. As soon as  of the tuples are overwritten,
our specialized Common-First overlay operator performs better than the standard imple-
mentation. If more than  of the tuples are overwritten, the performance gain exceeds
.
ese results show that the overlay operator can be realized as a lightweight operation in

a main-memory DBMS.

Index Rebuild

An interesting aspect of indexmaintenance in this scenario are the rebuild costs for combo
indexes and bit-sets. As previously discussed, there are situations where these structures
become invalid, i.e., if shared data has been changed. In this section, we present the time
spent for fully rebuilding the structures.
Figure . shows the result of our experiment where we removed the existing tenant-

speciĕc structures and measured the raw time for rebuilding them. For recreating the
combo index of a tenant, a full scan across the shared segment and then the tenant-speciĕc
segment is performed. If no tuples are overwritten, the index rebuild lasts  ms, which is
the time to build the index across the shared data only. e more tuples are overwritten,
the more inĘuence is gained by the index updates during the scan of the tenant-speciĕc
segment. For each tuple in the tenant’s segment, a look-up for the update position in the
combo index has to be performed, followed by the actual index update. e setup of this
experiment where we only overwrite existing tuples avoids rebalancing the tree, as there
are no additional keys in the tenant’s segment. As an alternative, it may be possible to deep
clone an already existing index on the shared data which is then updated with a scan across
the tenant-speciĕc segment.
Much cheaper are the rebuilds of the bit-sets. For this test, we assume that the tenant-

speciĕc index already exists. us, if the shared data changes, the bit-set can be rebuilt by
performing a merge-join like operation on the tenant-speciĕc index and the shared data
index. As this operation can exploit the sorting of the data, the rebuild time decreases.


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SELECT account.id, account.name,
SUM(opportunity.probability

* opportunity.amount)
AS value

FROM accounts, opportunities
WHERE opportunities.account = account.id

GROUP BY account.id, account.name
ORDER BY value ASC

Figure ..: Roll-Up Query
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Figure ..: Effects of Data Overlay on Queries

For supporting off-line tenants, this experiment is of special interest: As the rebuild
times are fairly short, it might be interesting to drop all tenant-speciĕc indexes and bit-
sets, respectively, when a tenant is suspended, and recreate these structures during tenant
activation.

Inøuence on Queries

To analyze the effect of the overlay operator on on-going queries, we analyze a roll-up query
(cf. Figure .) from our multi-tenancy testbed. e query performs an aggregation and
a sort.
e test data set consists of two segments belonging to the Account and the Opportunities

polymorphic relations. e Account segment contains , tuples;  opportunities are
generated for each account. Overlay is performed on the account fragment only.
Figure . shows the query results of the test for a variable number of overwritten tu-

ples. e data points in the results are an average across  runs of the query. Aer each
run, the data set and the indexes are discarded and newly created. e reported value is the
execution time for the whole query in milliseconds. As expected, the customized imple-
mentations with overlay operator clearly out-perform the classical query-based approach
(Overlay Query) for overlaying the tenant-speciĕc and common data as long as there are
overwritten tuples.
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Figure ..:Query Execution Times

... Physical Data Organization

With our second set of experiments, we compare the different data versioning approaches
presented in the previous section. e criteria are () execution times of point-wise look-
ups and full table scans, () space requirements, and () execution times of maintenance
operations.

All experiments have been conĕgured as follows. A single segment sequence consists of
eight segments, each representing a particular version of the shared data. Version  is the
base version with , tuples. e average tuple size is  bytes, the primary key size
is  bytes, corresponding to the length of UUIDs. From one version to another,  new
tuples are added, and  of the existing tuples are updated.
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Data Access

Figure .a shows the behavior of the ĕve different implementations for point-wise ac-
cesses by primary key look-up. e snapshot implementationmarks the baseline. For each
version, an individual data segment and an individual index is used. e differential delta
and the XOR delta have competitive results for look-ups to the most recent version . e
dictionary and the temporal implementation have worse performance than the other ap-
proaches. e dictionary approach has tomaintain a reference counter, while the temporal
approach requires a more complex look-up operation, as described in Section ...
When accessing previous versions, the execution time for the snapshot, the dictionary,

and the temporal implementation do not differ from the access time to the most recent
version. However, the execution time of the differential delta and the XOR delta approach
depends on the number of deltas to process.
Figure .b shows the scan behavior of the approaches. For each version a sorted scan

has been performed. Since the number of tuples increases by  between two subsequent
versions, the scan times increase from version  to version  for the snapshot, dictionary,
and temporal approaches. For accessing the most recent version, differential delta and
XOR delta approaches have the same scan times as the snapshot approach because of the
materialization of the most recent version. e dictionary approach is a little bit slower
because the reference counter has to be stripped off before returning the tuple. However,
for the temporal approach the full temporal index has to be scanned. Since this index
contains all available versions, the scan takes longer.
When scanning previous versions, the snapshot, dictionary, and temporal approaches

have the same performance as scanning the most recent version, except from the fact that
the number of scanned tuples varies. As stated before, the differential delta and XOR delta
performance decreases due to the look-ups in the deltas.

Space Requirements

Figure . shows the space requirements of the approaches. e snapshot approach has
the highest space requirements. Since the dictionary approach has a common data seg-
ment across all versions, but an individual index for each version, the space requirement
of the indexes is identical to the snapshot variant, while the segment size is lower. A fur-
ther reduction can be achieved by the temporal approach. e differential delta and the
XOR delta approaches materialize and index the latest version and store the differences to
previous versions in deltas. ey require a lot less space than the snapshot approach and
are competitive with the dictionary approach. From a space requirement perspective, the
temporal approach seems very promising. e approaches dictionary, differential delta,
and XOR delta have comparable sizes, while the snapshot needs twice the amount of space
as the previous three approaches.
In our experimental evaluation, we do not consider intra-segment compression tech-

niques for the following reasons. First, compression efficiency depends on the data dis-
tribution, so we assumed the worst case in which there is no intra-segment redundancy,
i.e. tuples are pairwise totally distinct. e second—and more important—reason is that
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Figure ..: Space Requirements

shared data is accessed by all co-located tenants concurrently. erefore, we avoid the high
decompression overhead caused by the frequent accesses to the shared data.

Maintenance Operations

Figure .a shows the execution time for data maintenance operations. e results for
delete operations have been omitted in the chart; they are nearly identical to the update
operations.
Adding tuples to the latest snapshot results in an index update and a segment update.

e differential delta and the XOR delta only update the delta, so only one update opera-
tion is necessary. e dictionary approach has to maintain a reference counter, so there is
slightly higher execution time. For the temporal approach, the version information has to
be maintained, so there is a higher execution time as well.
Updating tuples in a snapshot results in an index look-up for the physical position of the

tuple and an update-in-place operation in the data segment. e dictionary approach can-
not do an update-in-place operation. Instead, the old tuple has to be retrieved to decrease
the reference counter, then a new tuple has to be added to the data segment and the index
has to be updated with the new physical position of the tuple. Updating a tuple when using
the temporal approach is identical to adding a new tuple. In the differential delta and XOR
delta approach, two look-ups are required to perform an update, as the before image has
to be retrieved either from the materialized version or the non-ĕnalized delta.
Figure .b shows maintenance operations on versions. When creating a new version,

the most recent snapshot together with its index has to be copied. For the dictionary ap-
proach, only the segment index has to be copied, but for all tuples in the index, the refer-
ence counter of that particular tuple, which is maintained in the data segment, has to be
increased. e temporal approach only increases its internal version number which cor-
responds to the next segment in the segment sequence. For the differential delta and XOR
delta approach, new empty B+-Trees have to be created.
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When ĕnalizing a version, all data structures that are not shared across multiple versions
are reorganized. For the dictionary approach, only the segment index can be reorganized,
while for the snapshot approach also the data segment can be reorganized. In the temporal
approach there is no reorganization possible without affecting the availability of the shared
data. e differential delta and XOR delta approaches use a merge-join variant to create a
new data segment with its index.
Purging a certain version which is no longer needed simply removes the data segment

and its index in the snapshot case. e dictionary and the temporal approach have to
perform amore complex purge operation which are discussed in the previous section. e
differential delta and XOR delta approaches use a merge-join variant to create a new delta
with the recalculated entries. Note that purging a version in the dictionary and temporal
approaches affects shared data structures and thus affects performance.

Summary

e XOR delta data organization scheme is a promising approach for implementing ver-
sioning of shared data in a Multi-Tenant DBMS. Its access and scan behavior at the most
recent version does not differ from the snapshot approach, which serves as baseline. How-
ever, access and scan performance on older versions is worse than in the snapshot ap-
proach, but this has no large impact for a typical SaaS workload, as only a few tenants lag
marginally behind the latest version. Maintenance operations on versions can be done
without affecting performance, since these operations do not affect shared data structures.
Furthermore, the space requirement is competitive to other approaches like the dictionary
approach. Although the temporal approach provides better space utilization, its drawbacks
regarding data access and maintenance operations prevail.
As an optimization, more than one version in the XOR delta approach could be ma-

terialized, as XOR deltas can be applied in a forward and a backward manner without
reorganization.
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Graceful On-Line Schema Evolution

Allowing tenants to tailor the application to their needs increases the success of typical
SaaS applications as a more Ęexible application can also target those customers who re-
quire special customizations. e individual schemas of the tenants inherit the majority
of deĕnitions from the base application and its extensions. However, even if tenants only
redeĕne small bits of the base application, there is a constant change over time, when con-
sidering not only one tenant, but all co-located tenants: An on-premise single-tenant ap-
plication typically evolves over time by changing the schema to adapt the application to
new requirements or processes, or to introduce new functionality. In the SaaS context, the
base application is evolved for the same reason. However, each tenant customizes the base
application independently, and thus—ĕguratively spoken—creates its own branch of the
application, which evolves over time as well. Furthermore, the ISVs’ extensions also evolve
over time.
ese constant changes stress currently available DBMSs. As each schema change has to

be performed with DDL statements, there is a lot of DDL as part of the workload. How-
ever, the majority of DDL statements involve heavyweight I/O operations as the affected
data has to either be checked, e.g. for type compliance, or reorganized, e.g. when the de-
fault value has changed. ese I/O operations typically consist of full table scans which
exclusively lock the whole affected table, thus rendering it unaccessible for concurrently
running operations.
DBMS vendors address this issues by providing specialized data migration tools like Or-

acle Online Table Redeĕnition, which lower the actual downtime by using a shadow copy
for performing the actual redeĕnition.
In a SaaS environment, changing schema information must not be heavyweight to guar-

antee service availability. ehighnumber of co-located tenants lead to continuous schema
changes in the Multi-Tenant DBMS. us, for multi-tenancy, schema changes have to be
lightweight in order to not affect system availability and performance.
We base our Multi-Tenant Schema Evolution mechanism on the following assumptions:

Extensibility Tenants make use of the base application. ey customize their application
with extensions, either developed by themselves or by ISVs.

Re-usability Between two subsequent changes, only small differences exist, somuch schema
information can be re-used across versions or extensions.
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FlexScheme offers mechanisms to track these changes and allows for efficiently storing
several versions of the same schema. us, if the history of schema changes is available, it
can be used for a lightweight schema evolution mechanism which—instead of performing
the necessary I/O operations immediately—defers these until the data needing checks or
reorganization is actually accessed.
is Lightweight Schema Evolution consists of two components: () schema versioning

and () lightweight physical data reorganization. e idea behind this approach is to sepa-
rate logical redeĕnition as performed by DDL statements from the physical reorganization
or checks of the actual data.
e schema versioning component is a fundamental part of the FlexScheme approach. It

allows for keeping the history of the schema information for a particular table by introduc-
ing the notion of fragment sequences and fragment versions. e physical reorganization
is performed by a special operator, the evolution operator, which is part of the query plan
and actually performs the physical reorganization on-demand. Once a tuple is accessed,
the evolution operator applies the scheduled schema changes to migrate the tuple to the
most recent schema version.
However, there is a trade-off: e reorganization must take place sometime since data

has to be consistent. Instead of performing one heavyweight reorganization process right
aer the schema change which negatively impacts the service availability, the costly reor-
ganization process is spread across lots of small requests which form the usual workload
of the DBMS.

.. Schema Versioning

To enable graceful schema evolution, themeta-data of theDBMShas to be aware of schema
versions. According toRoddick (), schema versioning is accommodatedwhen aDBMS
allows access of all data, both retrospectively and prospectively, through user deĕnable ver-
sion interfaces. However, in the SaaS context, this paradigm can be restricted to a simpler
variant of schema versioning. e following two restrictions are sufficient to make the
meta-data aware of versioning by simultaneously allowing lightweight table redeĕnition.

. Our prototype does not make the versioning interface publicly available, rather it
hides this layer by introducing transparent schema migration. Only the most recent
schema information is exposed to the application.

. Queries are formulated against the most recent schema versions. ese queries ac-
cess all tuples, even if some of them are stored in older schema versions.

In our prototype, schema versioning is tightly integrated into the FlexScheme approach.
In FlexScheme, a Virtual Private Table for a given tenant is decomposed into fragments.
Each fragment stores the history of schema changes by providing fragment versions which
provide a view of the fragment at a given version number. As discussed above, we assume
only small changes between subsequent fragment versions, thus our prototype leverages
the high degree of re-usability by sharing lots of information, such as data types and column
attributes, across different fragment versions.


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... Versioning Concepts

As multiple fragment versions have to be stored for a single fragment, the history of the
schema changes must be tracked. In the world of Object-Oriented DBMS (Roddick, )
and in the model-driven soware development (Kögel et al., ), two well-known tech-
niques are available for tracking history information: state-based and operation-based ver-
sioning. In this section, we discuss these two versioning concepts and show, how these are
applied to FlexScheme. Our focus in this section is on fragment versioning; the discussion
of segment versioning can be found in Section ...

State-Based Versioning

When using state-based versioning, only the individual states of a model are stored. Each
of these states consist of the materialization of the schema information, in our case the
fragment versions, containing the attribute names, data types and type attributes at a given
version.
However, for schema evolution the differences between subsequent fragment versions

must be derived, which involves an expensive two-step computation: in the ĕrst step, the
matching process identiĕes similarities between two subsequent versions; the second com-
parison step then identiĕes the changes.

Operation-Based Versioning

In contrast to the above approach, the operation-based versioning approach records the
differences between two subsequent fragment versions. At least one materialization is
necessary as starting point for iteratively applying the changes. Depending on the im-
plementation of operation-based versioning, changes can be applied only in one direction
(mostly forward) or in two directions. e latter allows for choosing any fragment version
as materialization to serve as starting point.
Operation-based versioning simpliĕes schema evolution as differences can be applied to

tuples without the need of an expensive computing step beforehand.
Each change is modeled as an atomic modiĕcation operation (MO) which describes a

transformation process for one particular component of a fragment version. For complex
changes, multiple atomicMOs are chained. e concept ofMOs is discussed inmore detail
in the following sections.

FlexScheme-Based Versioning

Each of the previous two concepts has major drawbacks when used in a SaaS context: As
different tenants may have different fragment versions active, theremight bemultiple frag-
ment versions active in one DBMS instance. us, as the operation-based versioning only
stores the differences between two versions, long chains of MOs must be processed for
schema evolution, beginning at a common starting point for all tenants. is is not the
case with state-based versioning, however the computational overhead might affect the
overall system performance.
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Hence, we propose a hybrid approach where we allow for multiple materializations in
combination with operation-based versioning. Each fragment version which is in use by
a particular tenant is materialized, as with the state-based versioning approach. Further-
more, we record the changes between two subsequent versions using atomicMOs as in the
operation-based versioning approach.
As active fragment versions are materialized, this hybrid approach enables fast access to

schema information as with the state-based approach, by simultaneously allowing for an
easier schema evolution, as the MO chains are shorter due to multiple potential starting
points.
However, this advantage is caused by the following trade-off: as two different versioning

concepts are combined, there is an increased memory footprint for the schema informa-
tion, as parts of them are kept redundantly. To lower the footprint, materializations of frag-
ment versions must be purged aer the last tenant using this fragment version switched to
another one.

... Atomic Modiöcation Operations

As alreadymentioned in the previous sections, our approach of schema versioning is based
on atomic modiĕcation operations, a well known approach for describing schema changes.
Shneiderman and omas () proposed a set of atomic schema changes, including

structural changes and changes on keys and dependencies. Bernstein et al. (, )
proposed schema modiĕcation operations for schema evolution using algebra-based con-
straints as primitives. Recent work of Curino et al. () uses modiĕcation operations to
describe differences between subsequent versions of schema deĕnitions. Modiĕcation op-
erations are atomic, that means, each MO transforms only one component of the schema.
For complex changes, MOs must be chained. Moreover, Curino et al. () introduce the
notion of compensation records which allows for rolling back schema changes.
Our prototype takes up the set of schema modiĕcation operations as deĕned by Curino

et al. (). In its current implementation, the prototype supports only the following
structuralMOs for tables: ADD COLUMN, DROP COLUMN, RENAME COLUMN, CHANGE DATATYPE,
SET DEFAULT VALUE, and SET NULLABLE. However, it can be extended to support other
MOs as well. Furthermore, it supports user-deĕned schema modiĕcation operations, for
example complex string operations. is can be used for application speciĕc schemamod-
iĕcations, such as splitting a NAME column into GIVENNAME and SURNAME using a given
delimiter.

ADD COLUMN

is operation adds a column at the end of the already existing fragment version. eMO
requires the speciĕcation of a name and type information consisting of the type name, the
type length, the default value, and the information whether this ĕeld is null-able. During
physical data redeĕnition, the tuple is extended to provide additional space for the new
attribute.





.. Schema Versioning

DROP COLUMN

e complementary action to the above one removes a column from a fragment version.
During physical redeĕnition, the DROP COLUMN operation should remove the data from
the tuple. However, our prototype implements a so-deletemechanism, where data is not
instantly deleted. us, it simply sets a Ęag inside the tuple which hides the attribute. is
way, backward compatibility to older fragment versions is maintained as the tuple can be
converted to an older version.

RENAME COLUMN

Renaming a column simply changes the information in the fragment versions. No physical
redeĕnition is necessary, as the physical access is based on offsets, not on mnemonics.

CHANGE DATATYPE

is operation changes the type of a given column to a new data type and/or type length.
Currently, our prototype only allows for changing to compatible data types, where the
domain is increased. During physical redeĕnition, the tuple format may have to be reor-
ganized to ĕt the new data type.
Changes to the data type where the domain will be limited cannot be made using this

MO, as this atomicMO cannot handle cases where the existing value conĘicts with the new
domain. For such changes, our prototype offers the possibility of custom MOs, where the
user can specify a callback to handle conĘicting changes automatically.

SET DEFAULT VALUE

Setting the default value of a column changes the data type attribute of the affected column.
Physical redeĕnition has to respect the history of the affected tuple. If a SET DEFAULT
VALUEMO has been issued before, the default value must not be changed: in conventional
DBMSs changing the default value only affects newly created tuples.

SET NULLABLE

is operation changes the type deĕnition of the column. During physical redeĕnition,
the tuple layout has to be redeĕned to accept NULL values. Depending on the history of
the tuple, two different redeĕnitions are necessary: () if a column was previously deĕned
as NOT NULL and now can accept NULL values, there is no need to change anything during
the reorganization phase, and () if a column description has changed to NOT NULL (which
can only happen if a default value has been deĕned) space for the new default value must
be allocated.

... ApplyingModiöcation Operations

As the physical reorganization of the tuples is spread over time, there might be situations
where tuples are accessed which have not been evolved to the most recent schema version.
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Figure ..: Pruning of Unused Fragment Versions

Such tuples are evolved immediately at table access by applying all scheduledMOs that are
necessary to move the tuple to the most recent schema version.
For a speciĕc tuple, the fragment version of the current materialization is extracted from

the physical representation. As FlexScheme stores the history of schema changes, for any
given fragment version, the path to the most recent version can be determined. Further-
more, for each successor relation between two subsequent fragment versions, the schema
MOs transforming the old version into the new version can be retrieved.
As each edge in the path is annotated with a chain of schema MOs, the tuple can be

evolved by sequentially applying the chains, starting at the current fragment version of the
current physical materialization. Aer the chain has been applied, the tuple conforms with
the most recent schema version and can be processed by the application.

... Version Pruning

To lower the overhead of administering a high number of fragment versions, FlexScheme
allows to purge versions which are no longer used by any tuple.
e DBMS keeps statistics on how many tenants are still referencing a certain fragment

version. As soon as a particular fragment version is no longer used, it can be pruned. Two
different scenarios can occur:

. e fragment version to be pruned does not have any predecessors. In this case,
the materialized state and the chain of MOs pointing to other versions can easily be
removed.

. In any other case—as there might be tuples which rely on even older fragment ver-
sions—, only the materialized state can be pruned. As Figure . shows, the MO
chain pointing to the pruned version and the MO chain pointing away from the
pruned version have to be linked together.

Aer re-chaining in the second case, the MO chain may contain operations on the same
target, for example, () ADD COLUMN CHAR(10) 'colx' and () CHANGE DATATYPE CHAR(20)
'colx'. Such operations may be collapsed into one single MO ADD COLUMN CHAR(20)
'colx' to reduce chain length.
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Figure ..: Evolution Operator Placement within Query Execution Plan

As a further enhancement, rarely used versions can be pruned by the same mechanism,
if the affected tuples are evolved to the most recent version. is process can be scheduled
on a regular basis to further reduce the number of concurrently active fragment versions.

.. Lightweight Physical Data Reorganization

e second important component of theGraceful Schema Evolutionmechanism is respon-
sible for actually performing the schema evolution on the physical tuples while they are
accessed. is on-the-Ęy reorganization allows for spreading the load across many small
accesses to avoid service unavailability.

... Objectives

We implemented a strategy-driven query plan operator which is placed in the access path
to perform the schema evolution on demand, before the tuple is processed by the upper
query plan operators. e strategy of the so-called evolution operator decides if the recently
evolved tuple is immediately written back to the background storage or if the write process
is deferred until the next user-requested update of the tuple.
When writing data, either by inserting new tuples or updating existing ones, the tuple

conforms with the latest schema version. us, reorganization only occurs on reading
tuples not conforming to the latest schema. Reorganization is only necessary if more than
one schema version is active per tenant.

... Evolution Operator

e evolution operator is placed in the access path of the query plan which retrieves the
tuples from the back-end. Figure . shows a excerpt of a query execution plan. Aer
the tuple has been accessed, the evolution operator transforms—if necessary—the physical
representation of the tuples based on the schema changes recordedwithin FlexScheme. e
transformation is done as follows.
Aer accessing the raw tuple, the current tuple version is determined. e evolution op-

erator uses the information from a fragment to determine the appropriate fragment ver-
sion. If the tuple conforms to the most recent fragment version, the tuple is pipelined to
the above-laying operators of the query plan. If the tuple does not conform with the most
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Figure ..: Physical Tuple Layout

recent fragment version, the tuple is evolved to the most recent fragment version, by ap-
plying the chain of schema modiĕcation operations in sequence. Aer that, an evolution
strategy decides whether to write back the data to the segment or not. Finally, the tuple is
pipelined to upper operators. Possible evolution strategies are discussed in Section ..
Although the granularity of the evolution is per-tuple, it might be possible to use the

same technique with a per-page granularity. However, the coarser the granularity, the
more heavyweight the physical reorganization gets. To mimic the behavior of traditional
DBMSs, the physical reorganization must be performed at segment granularity.

... Physical Tuple Format

AsGray and Reuter () point out, traditional DBMSs are using theN-ary StorageModel
(NSM) as the layout for physically storing tuples. e data segments containing the records
are slotted into equally-sized pages. e pages then contain the actual records. Using slot-
ted pages causes one more indirection during look-up, but simpliĕes free-space manage-
ment. However, our setup has some additional requirements on the physical tuple format:

Version Number For identifying the version a particular tuple conforms to, the physical
representation of the tuple has to be enhanced with an attribute for storing the ver-
sion number. e version information is stored inside the tuple header.

Tuple Visibility Flag Tuple deletion is implemented as so-deletes, thus a visibility Ęag is
needed.

Attribute Visibility Bit-Set As the DROP COLUMN MO would cause data loss if physically
dropping the column, we implemented so-delete on attribute level. is way, we
enable transforming the tuple to previous versions, although the evolution layer of
our prototype does not support this at the moment. So-delete at attribute level
requires a bit-set per tuple for storing the visibility of each individual attribute.

For our implementation, we enhanced NSM to satisfy the requirements from above.
However, the enhancements can be implemented to be fully transparent to other record
layouts, like PAX (Ailamaki et al., ), Interpreted Storage Layout (Beckmann et al.,
), or columnar storage (Stonebraker et al., ). e resulting layout is depicted in
Figure ..
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e header of an NSM-style tuple is extended by a ĕxed-length ĕeld storing the version
information. e ĕeld stores the version information of the particular tuple. e value is
accessed with every read operation, however, updates to this value only take place when
writing the tuple.
We keep the position of the primary key (PK) ĕxed. e PK is stored outside the ac-

tual data ĕeld to allow for fast PK access without the need for schema evolution operator.
However, this means that the type of the PK cannot be changed via graceful schema evo-
lution. us, if the type changes, a complete conversion of the affected segment has to be
performed.
Many databases, for example PostgreSQL (), have a bit-set in the tuple header for

storing Ęags, such as if the tuple contains NULL values or has variable-width attributes. We
add twomore Ęags TUPLE_INVALID and HAS_INACTIVE_ATTRIBUTES.eĕrst Ęag denotes
tuples that have been marked as deleted by the so-delete functionality. Tuples marked as
invalid are removed by a periodically running clean-up job. Instead of such a Ęag, it may
also be possible to store the time-stamp of the deletion operation. e second Ęag denotes
whether an inactivity bit-set is present. Similar to the NULL bit-set of PostgreSQL, where
attributes containing NULL values are marked, the inactivity bit-set marks attributes as in-
active. Attributes become inactive by a DROP COLUMN MO. Inactive attributes physically
contain a value, but do not show up during access. However, physically keeping the old
value allows virtually rolling back tuples to older schema versions without information
loss. is allows backward compatibility of queries.

... Access Behavior

ephysical transformation of tuples to conformwith the newest schema version has to be
applied right before other operators in the query plan access attributes of the tuple. us,
the table access operators immediately feed their results into the evolution operator. As the
tuple transformation is pipelined, the overall query runtime may depend on the time for
transforming tuples.
For each incoming tuple, the evolution operator determines the source and the target

version and then re-assembles the tuple. As a prerequisite for the transformation, themeta-
data have to be queried to determine the chain of MOs transforming the tuple from the
source to the target version. For fast access to the fragment versions, our prototype has
hash-indexes on the versioning information. Furthermore, the time for re-assembling the
tuple is dependent on the length of the MO chain. us, it is important that unnecessary
versions are pruned from the meta-data.
Each segment has a lightweight evolution strategy assigned, which is consulted aer tuple

transformation to decide, whether the tuple is written back to the segment or not.
Figure . shows one exception, where the evolution operator is not necessarily the ĕrst

operator above the table access operator. When data is overridden, the affected segments
may be overlaid before the actual evolution is done. is is possible, as the overlay operator
only relies on the PK, which is physically stored outside the data ĕeld.
Our prototype currently does not support this type of queries, but the physical tuple representation has
been designed to support this in the future.
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.. Evolution Strategies

e evolution operator delegates the decision whether to write physically reorganized tu-
ples back to the segment to an evolution strategy. is section discusses various evolution
strategies and their inĘuence on the schema evolution process.

... Immediate Evolution

Typical DBMSs perform an immediate physical reorganization. Aer receiving the AL-
TER TABLE statement, the DBMS immediately performs the requested changes to the table.
Depending on the request, the tuples in the table must either be restructured to conform
with the new schema (for example, if ĕxed-length attributes are modiĕed, CHAR(20) to
CHAR(25)), or at least checked, e.g. if the type-domain has been narrowed from (VAR-
CHAR(25) to VARCHAR(20)).
ese changes incur a full table scan, thus touching all tuples of the affected table. As the

full table scan needs exclusive access (X-Locks) on the table, it is not accessible for other
queries during the time of the full table scan. As a consequence, the response time for the
blocked queries increases. For some ALTER TABLE requests, there is no need to perform
a full table scan, e.g. if the length of variable-length attributes is increased. Most DBMSs
recognize such requests and omit the costly reorganization.
Some DBMS vendors offer solutions for keeping the relation accessible during the reor-

ganization process, for example Oracle Online Data Reorganization and Redeĕnition (Or-
acle Corporation, ). As already discussed in Section .., this mechanism keeps the
affected table available during the redeĕnition phase. However, according to the feature’s
documentation, there may still be impacts on the overall system performance.
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... Lightweight Evolution

Our approach of lightweight evolution optimizes the schema evolution process. It is not
desirable that database objects become unavailable during scheme evolution. us, com-
pared to the previous approaches, the lightweight evolution is intended to allow for schema
evolution without affecting service uptime and performance.
All the following strategies have in common that they are combined with our special

schema evolution operator. e evolution operator involves one of the following strategies
to decide whether the internally evolved tuple is written back to disk or not.

Eager Evolution

When using this strategy, the schema evolution operator immediately writes the tuple back
to the storage segment aer it has been evolved to the most recent schema version. us,
if this strategy has been selected, a tuple is evolved at the ĕrst read access aer the schema
evolution. However, in the worst case, the eager strategy turns each read into a write, so
this strategy might result in expensive write operations.
If a certain tuple is read and immediately updated, the tuple is written twice. erefore,

this strategy is suitable for workloads where a tuple is read several times before it gets
updated. An example for the usage of such a strategy is a phone book record, which is
displayed most oen in a list (e.g. in a directory listing), and rarely updated.

Lazy Evolution

In contrast to the previous strategy, the evolution operator never writes back the internally
evolved tuple when the lazy strategy is employed. e actual evolution is performed when
the tuple gets written by an update request.
As each read request has to evolve the tuples, this strategy is suitable for data which is

rarely read or if each read is immediately followed by an update request. However, the
worst case for this strategy are data whose schema is updated more oen than the actual
data. In this case, the length of theMO chain increases over time. In the long tail, this may
reduce the overall performance when accessing those tuples.
An example for a suitable usage of lazy evolution is an event ticket reservation system

where usually a ticket is reserved once (data is always written in the latest version), the data
is read only at the event once, changes occur rarely, for example change of the names of the
attending guests. Historical data is read only for OLAP queries and analyses. Since most
business intelligence applications nowadays apply an ETL process for the data preparation
and work on the generated copy lazy evolution is most suitable for such examples.

Snoozing Evolution

To overcome the drawbacks of the two previous strategies, the snoozing strategy combines
them by introducing a threshold for read operations. If the number of read access is below
the threshold, the tuple is not yet evolved. As soon as the read access is above the threshold,
the tuple is evolved and the read access counter is reset.
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e current implementationmaintains a data-structure inside the page formanaging the
number of read accesses to each individual tuple in the page. Furthermore, the threshold
is ĕxed across all pages of a segment. As an future enhancement, the threshold could be
adjusted adaptively depending on the access behavior of the workload.
As the snoozing strategy relies on an additional data structure for bookkeeping, applying

this strategy to a segment may change the overall access pattern as each read access has to
update the bookkeepings. To reduce the number of write accesses to the page for book-
keeping, the evolution might be performed on a per-page basis rather than on per-tuple
basis. However, as the evaluation shows, maintaining a read access counter per tuple does
not severely impact the performance of our main-memory-based prototype.

... Strategy Selection

Choosing the right strategy for on-line schema evolution is vital for the overall system
performance. As a rationale, unnecessary writes during read access must be avoided. Un-
necessary in this sense are those writes which are performed during an evolution step,
although the tuple would be updated in the next step by the application.
Besides manual selection of the strategy on a per-segment basis, our prototype imple-

ments a very simple form of an adaptive strategy selection based on the workload of a
particular segment. We keep statistics about the number of reads and writes per page,
and once an evolution step is necessary, the operator decides based on a certain threshold,
which of the three strategies from above is selected.

.. Evaluation

For evaluating our approach, we used the same execution environment as already pre-
sented in Section .. As baseline for our experiments we take the traditional behavior of
DBMSswhere no evolution takes place at runtime. For the baseline, we do notmeasure the
time for actually performing the necessary physical redeĕnition aer issuing a DDL state-
ment, thus we assume that the physical redeĕnition has been performed during a service
downtime window.

... Point-Wise Access

To analyze the effect of evolution on point-wise accesses we use a single data segment, con-
taining , randomly generated tuples. Before the run of the benchmark and aer the
initial data generation, schema modiĕcations consisting of costly operations such as ADD
COLUMN, DROP COLUMN, and CHANGE DATATYPE are performed, creating two new versions of
the fragment. We omitted using lightweight modiĕcation operations like RENAME COLUMN.
Each test run consists of , point-wise queries which randomly select tuples with a

/ distribution. According to the Pareto Principle,  of the queries (, queries)
access  of the tuples (, tuples). is means that each of these , tuples is ac-
cessed  times during a benchmark run. e remaining tuples (,) are accessed at least
once. Aer each run the data set and the indexes are discarded and newly created.
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We study two different scenarios: e ĕrst scenario consists of a read/write workload,
where tuples may be written by the application aer they have been read. e second
scenario is comprised of a read-only workload.
For our baseline, we mimic the behavior of current DBMSs. If the required reorganiza-

tion would be performed immediately aer a schemamodiĕcation, the fragment would be
blocked for around ms, as the reorganization involves a full table scan on , tuples
with tuple transformation on each item and write-back. Subsequent reads (see Fig. .a)
cost around  microseconds. With our single-threaded execution model, queries would
have to wait in queue during the immediate full scan and update. erefore they might
miss their response time goals. In order to overcome this problem, we defer the data con-
version until the tuple is ĕrst read and use the described write-back strategies.
With the eager strategy, for each tuple one evolution and a subsequent write-back step is

required. Aer that all subsequent reads of that tuple do not require conversion anymore.
With the lazy strategy,  evolution operations are required, but no write-back is needed.
With the snoozing strategy and a threshold of  reads, each tuple is converted  times before
it is written back. e following  reads do not require conversion.
e experimental results for the read/write workload (Figure .a) show that the eager

evolution strategy is the most time consuming, which is caused by the immediate write on
read. Lazy evolution is fastest because it only does the steps necessary for transforming
the tuple to conform to the newest version of the fragment. ese results underline that
evolution costs less than a write back, which stresses out that the use of ‘lights-out’ schema
evolution is a lightweight operation. Furthermore, we see that with the / workload the
snoozing strategy’s response times converge with those of lazy evolution in the long run.
erefore, the snoozing strategy can overcome the major drawback of the lazy strategy as
described in the previous sections.
Figure .b shows the results for the read-only workload. e X-axis shows the amount

of tuples which conform with the most recent schema version. Like in the previous sce-
nario, the costs for writing back evolved tuples heavily inĘuences the eager and the snooz-
ing strategy. However, as more tuples have been evolved, the different strategies converge.
When comparing graceful schema evolution with traditional access to the data without
evolution (“Static Evolution”), an overhead of about   becomes visible. is overhead
results from the meta-data look-up within FlexScheme as well as from reorganizing the
tuple within main-memory.

... Queries

A second experiment evaluates the impact on report-style queries. e query is the same as
in the evaluation of our data sharing component. As a reminder, the query (cf. Figure .)
performs a join of two relations with aggregation and grouping. e two relations are
accessed via a full table scan. In this experiment, we compare the two graceful strategies
“eager” and “lazy” with traditional query execution without schema evolution.
Figure . shows the result of the experiment. As the report query is read-only, we vary

the amount of already evolved tuples as in the previous experiment. e experiment shows
a very similar result as the previous one. If a high number of tuples have to be evolved, the
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Figure ..: Evolution Operator Performance for Point-Wise Accesses
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Figure ..: Computational Overhead of Query Processing with Evolution

eager strategy is dominated by the costs of the immediate write-back. However, as more
tuples are already evolved, the eager strategy converges with the lazy strategy. Comparing
the lazy strategy to query processing with static evolution, only a very small overhead be-
comes visible. is small overhead is owed to the meta-data requests and the in-memory
processing of the tuple.

... Modiöcation Operation Chain Length

In the previous experiments, the number of schemamodiĕcation operations was ĕxed. To
determine the trade-off point at which lazy and snoozing evolution are not efficient enough
to perform better than the eager strategy, we vary the number of schema modiĕcation
operations.
e setup remains identical to the previous experiments: we consider a single segment

with , tuples which are accessed in a point-wise fashion. A single version consists
of a chain of ĕve atomic modiĕcation operations. During the experiment, we periodically
“release” new schema versions. Aer a new version is available, a random set of tuples is
accessed.
When using the eager strategy, any access of a tuple aer the version release would auto-

matically convert the tuple to the new version. is means that every new version requires
ĕve MOs to be applied and a single write-back per accessed tuple. Remember the results
from the previous experiments, where the write-back costs dominate the reorganization
costs. As the lazy strategy evolves the accessed tuple only in main-memory, the MO chain
length to be processed increases with every released version. Although the tuples are ac-
cessed aer each version release, the chain length increases as no implicit write-back is
performed.
Figure . shows the results of the experiment. We see that the eager evolution result

is nearly constant during the test run. is is caused by the fact, that tuples are accessed
regularly during the test and thus the chain length does not grow much. Aer the release
of the sixth version (or aer MO) the lazy approach becomesmore costly than the eager
approach. Beginning at that point, the costs for applying a long chain ofMOs are increasing
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compared to the costs for writing back the evolved tuple. e snoozing strategy overcomes
this issue. We parameterized the threshold of the strategy, that aer three accesses per
tuple without write-back, the tuple is evolved and written back at the fourth access. As
Figure . shows, the snoozing strategy can save the costs for the write-back by avoiding
long MO chains.

... Summary

In a nutshell, graceful on-line schema evolution places only a very light overhead on the
query processing. For averageMO chain lengths there is an overhead of about  , which
is tolerable. Performing lazy evolution can have advantages as long as theMO chain length
does not explode, as the costs for transforming the tuples in the main memory are much
lower than writing back the tuple. However, with increasing chain length, the tuple should
be evolved as the costs of in-memory tuple transformation increase linearly with the MO
chain length. To avoid a regularly running ĕx-up job, we proposed the snoozing strategy
and our experiments show, that this strategy is able to provide a trade-off between the
costs of processing long MO chains and writing back the tuple. e snoozing strategy has
to be parameterized by a threshold, which denotes the number of evolution processes per
tuple, before the tuple evolution is forced to the background storage. is threshold can be
either set manually depending on the expected workload or by the query optimizer, whose
statistics are enhanced to consider MO chain length as well.

.. RelatedWork

In the past, schema evolution has been extensively studied in various contexts. Two re-
lated contexts are relational DBMSs (Roddick, ), Object-Oriented DBMSs (Banerjee
et al., ;Moerkotte and Zachmann, ; Kemper andMoerkotte, ; Claypool et al.,
), and temporal DBMSs (Roddick and Snodgrass, ). Furthermore, schema evo-
lution has gained signiĕcance in the research area of XML databases (Moro et al., ).
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.. Related Work

Recent work (Curino et al., ; Moon et al., ; Curino et al., ; Moon et al.,
) shows that schema evolution is still an important topic, especially in scenarios where
information systems must be upgraded with no or less human intervention.
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.. 
Outlook and Future Challenges

In this thesis, we introduced a special-purpose DBMS which has been optimized for the
requirements and specialities of a multi-tenant application. e typical use case for such
an application is Soware as a Service where multiple businesses are consolidated onto the
same operational system and access the service via Internet browsers.
Froma service provider’s perspective, the database back-end should be totally self-service.

ismeans, that tenants should be able to customize their application instance without any
human intervention from the service provider’s staff. From a tenant’s perspective, its data
should be well isolated from co-located tenants.
At ĕrst, we presentedmechanisms onhow to address these issues on conventionalDBMSs.

We discussed a set of schemamappings which transform the logical tenant-speciĕc schema
into a physical schema inside the database back-end. However, the evaluation of this ap-
proach shows that—even though the overall system performs well—not all of the require-
ments are met.
us, we introduced a next-generation DBMSwhich addresses these issues by providing

schema Ęexibility in two dimensions: schema extensibility and schema evolution. More-
over, it allows sharing of common data to further reduce the TCO. Our prototype is based
on FlexScheme, a hierarchical meta-datamodel supporting native schema Ęexibility in our
prototype.
e components responsible for applying schema Ęexibility to the physical data repre-

sentations have been implemented as operators that can be placed in the access path of a
query execution plan. e overlay operator is responsible for allowing read/write access to
shared data, where writes are redirected to the tenant’s private segment and thus do not in-
terfere with co-located tenants. e evolution operator allows for graceful on-line schema
evolution without affecting the system availability. Rather than performing a costly data
reorganization right aer receiving a schema change request, it uses the schema versioning
mechanism of FlexScheme to spread the actual physical reorganization across a lot of small
requests. is way, the availability of the overall system can be guaranteed.
Our evaluation shows, that our modiĕcations are lightweight in a sense that they do not

severely impact the system performance. We conclude, that—given the specialities of a
SaaS application’s workload—the overall Quality of Service (QoS) goals can be met.
At the moment, our prototype only provides a basic key/value-based interface. As a fu-

ture enhancement, SQL-based query mechanisms should be included. In this context, the
query optimizer should be able to handle specialities of the Multi-Tenant DBMS. Espe-
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cially, the selection of the best evolution strategy can be implemented as part of the opti-
mizer: instead of relying on a threshold-based selection, the optimizer can use a feedback
loop for observing the access behavior of the queries and then select the strategy adap-
tively. For example, IBM DB uses the feedback loop of LEO, the LEarning Optimizer,
to adaptively adjust the access cardinalities in the database statistics (Stillger et al., ;
Markl and Lohman, ).
When reconciling changes due to the migration from one version of the shared data to

another version, there might be conĘicts that have to be resolved. Our prototype currently
has a very rigid behavior as it has a ĕxed precedence by having a bias towards the most
local changes. However, this may not be sufficient in every case. us, the overlay mech-
anism has to be enhanced to reconcile such conĘicting changes autonomously by using a
application-speciĕc conĘict resolution strategy. e same mechanism can then be used
to process conĘicting changes due to schema evolution, which may occur when lowering
attribute domains, e.g. CHAR(20) to CHAR(10).
Furthermore, schema evolution can affect the usage of indexes on attributes other than

the PK attributes. As those attributes are located in an area of the physical representation
which is subjected to schema evolution, indexes on those attributes may become stale.
is issue is not yet addressed in our prototype and may be subject of further research.
Closely related to this issue is an even lazier schema evolution strategy. At themoment, the
complete tuple is evolved by the schema evolution operator. However, it might be sufficient
to evolve only a subset of the attributes, as the other attributes may not be considered.
To further lower the TCO, the whole Multi-Tenant DBMS cluster can be managed by

an adaptive controller (Gmach et al., ). Each tenant is treated as a service that has to
be placed optimally on a set of cluster nodes. Our support for off-line tenants and tenant
replication allows for migrating tenants, even if they are on-line.
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Appendix

A.. Associativity of Data Overlay

In Section .. we deĕned the semantics of the overlay operator as follows:

overlay (S,T) ∶= S ∪

T . pk(T)=pk(S) S
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(T ∖ (T . pk(T)=pk(S) S)) (A.)

= S ∪ (T . pk(T)=pk(S) S) (A.)

eorem A.:
e overlay operator as deĕned above is associative, thus

overlay (A, overlay (B,C)) = overlay (overlay (A, B) ,C) ♢

Proof by Contradiction

e join attributes of the anti-join R . pk S are the primary key attributes pk of the relations
R and S. e schema of R and S are identical as required by the deĕnition of the overlay
operator.
us for any primary key value x, the transformation

x ∈ πpk (R . pk S)⇔ (x ∈ πpk (R)) ∧ (x ∉ πpk (S)) (A.)
and its negation

x ∉ πpk (R . pk S)⇔ (x ∉ πpk (R)) ∨ (x ∈ πpk (S)) (A.)
can be performed. Furthermore,

(x ∈ πpk (R)) ∨ (x ∈ πpk (S . pk R))
⇔ (x ∈ πpk (R)) ∨ ((x ∈ πpk (S)) ∧ (x ∉ πpk (R)))
⇔ (x ∈ πpk (R)) ∨ (x ∈ πpk (S))

(A.)
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and its negation

(x ∉ πpk (R)) ∧ (x ∉ πpk (S . pk R))
⇔ (x ∉ πpk (R)) ∧ (x ∉ πpk (S))

(A.)

For the proof by contradiction, we assume

overlay (A, overlay (B,C)) ≠ overlay (overlay (A, B) ,C) (A.)

Case 
∃x ∶ [x ∈ πpk (overlay (A, overlay (B,C)))]

∧ [x ∉ πpk (overlay (overlay (A, B) ,C))]

With (A.):

⇒ ∃x ∶ [(x ∈ πpk (A)) ∨ (x ∈ πpk (overlay (B,C) . pk A))]
∧ [(x ∉ πpk (overlay (A, B))) ∧ (x ∉ πpk (C . pk overlay (A, B)))]

With (A.) and (A.):

⇒ ∃x ∶ [(x ∈ πpk (A)) ∨ (x ∈ πpk (overlay (B,C)))]
∧ [(x ∉ πpk (overlay (A, B))) ∧ (x ∉ πpk (C))]

Again, with (A.):

⇒ ∃x ∶ [(x ∈ πpk (A)) ∨ (x ∈ πpk (B)) ∨ (x ∈ πpk (C . pk B))]
∧ [(x ∉ πpk (A)) ∧ (x ∉ πpk (B . pk A)) ∧ (x ∉ πpk (C))]

Finally:

⇒ ∃x ∶ [(x ∈ πpk (A)) ∨ (x ∈ πpk (B)) ∨ (x ∈ πpk (C))]
∧ [(x ∉ πpk (A)) ∧ (x ∉ πpk (B)) ∧ (x ∉ πpk (C))]

is is a contradiction.

⇒ �

Case 
∃x ∶ [x ∉ πpk (overlay (A, overlay (B,C)))]

∧ [x ∈ πpk (overlay (overlay (A, B) ,C))]





A.. Associativity of Data Overlay

⇒ ∃x ∶ [(x ∉ πpk (A)) ∧ (x ∉ πpk (overlay (B,C) . pk A))]
∧ [(x ∈ πpk (overlay (A, B))) ∨ (x ∈ πpk (C . pk overlay (A, B)))]

⇒ ∃x ∶ [(x ∉ πpk (A)) ∧ (x ∉ πpk (overlay (B,C)))]
∧ [(x ∈ πpk (overlay (A, B))) ∨ (x ∈ πpk (C))]

⇒ ∃x ∶ [(x ∉ πpk (A)) ∧ (x ∉ πpk (B)) ∧ (x ∉ πpk (C . pk B))]
∧ [(x ∈ πpk (A)) ∨ (x ∈ πpk (B . pk A)) ∨ (x ∈ πpk (C))]

⇒ ∃x ∶ [(x ∉ πpk (A)) ∧ (x ∉ πpk (B)) ∧ (x ∉ πpk (C))]
∧ [(x ∈ πpk (A)) ∨ (x ∈ πpk (B)) ∨ (x ∈ πpk (C))]

⇒ �

Conclusion
e assumption (A.) is wrong. us, the overlay operator is associative.
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