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ABSTRACT

Carrier phase measurements are extremely accurate but
ambiguous. The estimation of the integer ambiguities is
in general split in two parts: A least-squares float soluti-
on, which is obtained by disregarding the integer proper-
ty, and the actual fixing. The latter one can be a simple
rounding, a sequential fixing (bootstrapping), or an integer
least-squares estimation, which typically includes an inte-

ger decorrelation and a search. All these fixing methods
suffer from a poor accuracy of the float solution due to the
small carrier wavelengths. Moreover, the optimal integer
least-squares estimation techniques are extremely sensitive
to unknown biases.

This paper provides a new group of multi-frequency li-
near combinations to overcome the previous shortcomings:
The combinations include both code and carrier phase mea-
surements, and allow an arbitrary scaling of the geometry,
an arbitrary scaling of the ionospheric delay, and any pre-
ferred wavelength. The maximization of the ambiguity dis-
crimination results in combinations with a wavelength of
several meters and a noise level of a few centimeters. These
combinations are recommended for any application where
reliability is more important than accuracy. Moreover, the
paper provides an efficient method for the computation of
the success rate of rounding.

INTRODUCTION

Real-time kinematic (RTK) positioning uses double dif-
ference carrier phase measurements. The double differen-
cing eliminates both receiver and satellite biases and clock
offsets, which simplifies the resolution of the carrier pha-
se integer ambiguities. Currently, there exist mainly three
error sources that limit the reliability of the integer resolu-
tion: First, there is the double difference ionospheric delay,
which only cancels for short baselines. Secondly, the dou-
ble difference tropospheric delay is often neglected, which
introduces some errors especially if there is a significant
difference in the height between both receivers. The third
and probably most challenging error source is multipath.

Fig. 1 shows the probability of wrong fixing for widela-
ne ambiguity resolution as a function of the baseline length.
We can observe a substantial increase in the failure rate if
there is an ionospheric gradient of1 mm/km between both
receivers. It causes a double difference ionospheric delay
which occurs as a bias in the ambiguity resolution. The
probability of wrong fixings are shown in Fig. 1 for boot-



strapping with and without integer decorrelation, whereas
the latter one enables a certain improvement over the first
one. Galileo double difference measurements on E1 and E5
were combined into an ionosphere-free code only combi-
nation and a phase-only combination with a wavelength of
78.2 cm. The latter combination amplifies the ionospheric
delay by a factor1.32. The failure rates significantly incre-
ase if the ionospheric gradient rises to5 mm/km, which is
still two orders of magnitude below the largest ionospheric
gradient that has been observed so far. This is the motiva-
tion for the derivation and analysis of a new set of linear
combinations, that enable an arbitrary scaling of the ionos-
pheric delay and any preferred wavelength.
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Fig. 1 Reliability of widelane ambiguity resolution with
double difference measurements.

MULTI-FREQUENCY CODE CARRIER LINEAR
COMBINATIONS

Multi-frequency linear combinations are an efficient ap-
proach to improve the reliability of carrier phase integer
ambiguity resolution. The linear combinations enable a si-
gnificant suppression of the ionospheric delay and an in-
crease in the wavelength, while the range information is
kept. A systematic search of all possible dual frequency
phase-only widelane combinations has been performed by
Cocard and Geiger in [1] and by Collins in [2]. An L1-
L2 linear combination with a wavelength of14.65 m was
found. However, the combination also amplifies the ionos-
pheric delay by more than25 dB. The generalization to
measurements on three and more frequencies enables much
more attractive linear combinations as shown by Henkel
and Günther in [3], by Wübbena in [4], or by Richert and
El-Sheimy in [5]. For example, a Galileo triple frequen-
cy E1-E5a-E5b linear combination with a wavelength of
3.285 m suppresses the ionospheric delay by17 dB. Howe-
ver, a complete elimination of the ionosphere is not achie-

vable with phase-only widelane combinations. Therefore,
the authors suggested the inclusion of code measurements
in the linear combination in [6]. The ambiguity discrimi-
nation was introduced as an optimization criterion for the
combinations: It was defined as the ratio between the wa-
velength and twice the standard deviation of noise, which
shall be maximized. The code measurements relax the in-
teger constraint and enable the computation of a dual fre-
quency geometry-preserving, ionosphere-free linear com-
bination with a wavelength of3.285 m and a noise level
of a few centimeters. In [7], Henkel, Gomez and Günther
presented multi-frequency code carrier linear combinations
including the Galileo signals on E1, E5 and E6. In [8], Hen-
kel gave a detailed derivation of code carrier combinations
of maximum discrimination for an arbitrary number of fre-
quencies.

In this section, the class of linear code carrier combina-
tions is further generalized such that an arbitrary scalingof
the geometry, an arbitrary scaling of the ionospheric delay,
and any preferred wavelength are feasible. The code mea-
surements from satellitek observed at useru on frequency
m are modeled as

ρku,m = ‖xu − xk‖+ (ek
u)

T δxk + c(δτu − δτk)

+T k
u + q21mI ′ku,1 + q31mI ′′ku,1 + bρu,m

+ bρk
m

+öρk
u,m

+ ǫρk
u,m

, (1)

with the user positionxu, the satellite positionxk, the unit
vectoreku pointing from the satellite to the receiver, the sa-
tellite position errorδxk due to imperfect knowledge of the
orbit, the receiver clock offsetδτu, the satellite clock offset
δτk, the speed of lightc, the tropospheric delayT k

u , the ra-
tio of frequenciesq1m = f1/fm, the first and second order
ionospheric delays{I ′ku,1, I ′′ku,1} on L1/E1, the receiver co-
de biasbρu,m

, the satellite code biasbρk
m

, the delayöρk
u,m

due to code multipath, and the code noiseǫρk
u,m

. A similar
model is used for the carrier phase measurements:

λmφk
u,m = ‖xu − xk‖+ (ek

u)
T δxk + c(δτu − δτk)

+T k
u − q21mI ′ku − 1

2
q31mI ′′ku + bφu,m

+ bφk
m

+öφk
u,m

+ λmNk
u,m + εφk

u,m
, (2)

with the wavelengthλm and the carrier phase integer am-
biguity Nk

u,m. The code and carrier phase measurements
of (1) and (2) are linearly combined in (4) with the phase
weightαm and the code weightβm. The choice of these
weights is obtained from some constraints on the geome-
try, ionospheric delay, combined multipath and biases, and
a further optimization that shall be described later in this
section. The first term on the right side of (4) describes the
geometry term which can be scaled to any arbitrary value
h1, i.e.

M∑

m=1

(αm + βm) = h1. (3)



M∑

m=1

(αmλmφk
u,m + βmρku,m) =

(
M∑

m=1

(αm + βm)

)

·
(
‖xu − xk‖+ (eku)

T δxk + c(δτu − δτk) + T k
u

)

+

(
M∑

m=1

(αm − βm)q21m

)

· I ′ku,1 +
(

M∑

m=1

(
1

2
αm − βm)q31m

)

· I ′′ku,1

+

(
M∑

m=1

αmλmNk
u,m

)

+

(
M∑

m=1

αm(bφu,m
+ bφk

m
) + βm(bρu,m

+ bρk
m
)

)

+

(
M∑

m=1

(αmöφk
u,m

+ βmöρk
u,m

)

)

+

(
M∑

m=1

(αmεφk
u,m

+ βmερk
u,m

)

)

(4)

A geometry-free combination is obtained ifh1 = 0 and a
geometry-preserving one ifh1 = 1. Note that the scaling
of the geometry also affects the orbital error, the clock off-
sets and the tropospheric delay. The first order ionospheric
delayI ′ku,1 can also be scaled by any arbitrary valueh2, i.e.

M∑

m=1

(αm − βm)q21m = h2, (5)

where h2 = 0 corresponds to an ionosphere-free and
h2 = −1 to an ionosphere-preserving combination. Howe-
ver, a scaling factor in between−1 and0 could be intere-
sting if a certain ionospheric suppression is already achie-
ved by double differencing. Similarly, the second order io-
nospheric delay can also be scaled by any valueh3, i.e.

M∑

m=1

(
1

2
αm − βm)q31m = h3. (6)

The next term on the right side of (4) describes the linear
combination of integer ambiguities which shall be a com-
mon wavelengthλ times a single integer ambiguityNk

u , i.e.

M∑

m=1

αmλmNk
u,m = λNk

u , (7)

which can be easily solved forNk
u :

Nk
u =

M∑

m=1

αmλm

λ
︸ ︷︷ ︸

=jm

Nk
u,m. (8)

AsNk
u,m is an unknown integer,jm has to be integer to ob-

tain an integerNk
u . Rearranging (8) gives the phase weight

αm =
jmλ

λm

, (9)

which depends on the integer weightjm and the combi-
ned wavelengthλ. The next term on the right side of (4)
includes the linear combination of code and carrier phase

biases. It can also be considered in the combination design,
e.g. by a pre-defined upper boundbmax on the worst-case
combined bias, i.e.

M∑

m=1

|αm|(|bφu,m
|+|bφk

m
|)+|βm|(|bρu,m

|+|bρk
m
|) ≤ bmax,

(10)
which requires some assumptions on the measurement bia-
ses. The superposition of multipath delays can also be in-
cluded in the combination design, e.g. by

M∑

m=1

|αm| · |öφk
u,m

|+ |βm| · |öρk
u,m

| ≤ ömax, (11)

with some pre-defined upper boundömax on the worst-case
superposition of multipath-delays. These could be chosen
from an elevation-dependant exponential function, i.e.

öφk
u,m

= ö0 · e−
E
γ , (12)

with the decay constantγ and elevation angleE. Finally,
the last term on the right side of (4) describes the linear
combination of phase and code noises. Its variance is given
by

σ2 =

M∑

m=1

(

α2
mσ2

ε
φk
u,m

+ β2
mσ2

ε
ρku,m

)

, (13)

and can be minimized under the consideration of all other
constraints. Alternatively, the ambiguity discrimination can
be maximized. It was first introduced by Henkel and
Günther in [6] as

D =
λ

2σ
. (14)

Its maximization corresponds to the minimization of
the probability of wrong fixing for a geometry-free,
ionosphere-free linear combination. As this paper is focus-
sing more on the reliability than on the accuracy, the further
analysis is restricted to the class of linear combinations that
maximizeD.



Let us start the derivation of the optimumαm andβm by
introducing the total phase weight

wφ =

M∑

m=1

αm = λ

M∑

m=1

jm
λm

, (15)

which can be solved for the combined wavelengthλ, i.e.

λ =
wφ

M∑

m=1

jm
λm

. (16)

Replacingλ in (9) by (16) gives

αm =
jm
λm

λ =
jm
λm

1
M∑

m=1

jm
λm

wφ. (17)

The constraints on the geometry and first order ionospheric
delay are written in matrix-vector notation using (3), (5)
and (17), i.e.

Ψ1

[
β1

β2

]

+Ψ2








wφ

β3

...
βM







=

[
h1

h2

]

, (18)

with

Ψ1 =

[
1 1

−1 −q212

]

(19)

and

Ψ2 =






1 1 . . . 1
M∑

m=1

jm
λm

1
M∑

m=1

jm
λm

q21m −q213 . . . q21M




 .

(20)
Note that the second order ionospheric delay has not been
included in (18) as it is often negligible. Eq. (18) can be
solved for the code weightsβ1 andβ2:

[
β1

β2

]

= Ψ
−1
1








[
h1

h2

]

−Ψ2








wφ

β3

...
βM















=







s1 + s2wφ +
M∑

m=3
smβm

t1 + t2wφ +
M∑

m=3
tmβm






, (21)

where thesm andtm, m ∈ {1, . . . ,M} are implicitly de-
fined by the last equality. Equation (21) leaves the integer
coefficientsjm, m ≥ 1, the code weightsβm, m ≥ 3, and
the total phase weightwφ as unknowns. The maximization
of D over these variables shall be performed in two steps
as shown in Fig. 2.

and multipath
Constraints on biases

order ionospheric delays
Constraints on 1st and 2nd

Frequencies and
noise assumptions:

Constraint on geometry:
a.) Analytical computation

b.) Numerical search

ambiguity discrimination
Maximization of

f1, . . . , fM
σρ1 , . . . , σρM

σφ1 , . . . , σφM

h1

h2, h3

bmax, ömax

max
wφ,β

D(j, wφ,β)

max
j

D(j, wφ,β)

Fig. 2 Computation of multi-frequency code carrier linear
combinations of maximum ambiguity discrimination

First, a numerical search is performed with a maximi-
zation overjm and, secondly, an analytical computation is
performed with a maximization overwφ andβm. Equation
(28) provides an expression of the ambiguity discriminati-
on that is obtained from (14) using (16), (17), (21) and (13),
and only depends onwφ andβ. Some abbreviations were
introduced to simplify the notation:

η̃2 =

M∑

m=1

j2m
λ2
m

1
(

M∑

m=1

jm
λm

)2 σ
2
φm

, (22)

Σ =






σ2
ρ3

. . . σρ3ρM

...
. . .

...
σρ3ρM

. . . σ2
ρM




 , (23)

as well asβ = [β3, . . . , βM ]T , s = [s3, . . . , sM ]T , and
t = [t3, . . . , tM ]T . The maximization with respect towφ

results in the constraint

∂D

∂wφ

!
= 0, (24)

and the maximization with respect toβ gives

∂D

∂β

!
= 0. (25)

The latter constraint can be developed as

(s1 + s2wφ + sTβ)s · σ2
ρ1

(26)

+ (t1 + t2wφ + tTβ)t · σ2
ρ2

+Σβ

= σ2
ρ1
s(s1 + s2wφ + sTβ) + σ2

ρ2
t(t1 + t2wφ + tTβ)

+Σβ

=
[
σ2
ρ1
ssT + σ2

ρ2
ttT +Σ

]

︸ ︷︷ ︸

A

β

+
[
s2σ

2
ρ1
s+ t2σ

2
ρ2
t
]

︸ ︷︷ ︸

b

wφ +
[
s1σ

2
ρ1
s+ t1σ

2
ρ2
t
]

︸ ︷︷ ︸

c

= 0,

(27)



D(wφ,β) =
λ

2σ
=

wφ

M∑

m=1

jm
λm

1

2
√

η̃2w2
φ + (s1 + s2wφ + sTβ)2σ2

ρ1
+ (t1 + t2wφ + tTβ)2σ2

ρ2
+ βT

Σβ
(28)

which shows a linear relationship betweenwφ andβ. Sol-
ving (26) forβ yields

β = −A−1(c+ b · wφ). (29)

The first constraint in (24) can also be further developed as

(
s1 + s2wφ + sTβ

) (
s1 + sTβ

)
σ2
ρ1

+
(
t1 + t2wφ + tTβ

) (
t1 + tTβ

)
σ2
ρ2

+ βT
Σβ = 0,

and replacingβ by (29) gives

(
s1 + s2wφ − sTA−1(c+ bwφ)

)

·
(
s1 − sTA−1(c+ bwφ)

)
· σ2

ρ1

+
(
t1 + t2wφ − tTA−1(c + bwφ)

)

·
(
t1 − tTA−1(c + bwφ)

)
· σ2

ρ2

+ (c + bwφ)
T (A−1)TΣA−1(c + bwφ) = 0, (30)

which only includeswφ (andjm, hidden inA, b, c, s and
t) as unknowns. Equation (30) is a quadratic equation in
wφ, i.e.

r0 + r1 · wφ + r2 · w2
φ = 0, (31)

with

r0 =
(
s1 − sTA−1c

)2
σ2
ρ1

+
(
t1 − tTA−1c

)2
σ2
ρ2

+cT (A−1)TΣA−1c

r1 =
(
(s1 − sTA−1c)(−sTA−1b)

+(s2 − sTA−1b)(s1 − sTA−1c)
)
· σ2

ρ1

+
(
(t1 − tTA−1c)(−tTA−1b)

+(t2 − tTA−1b)(t1 − tTA−1c)
)
· σ2

ρ2

+
(

cT (A−1)TΣA−1b+ bT (A−1)TΣA−1c
)

r2 = (s2 − sTA−1b)(−sTA−1b) · σ2
ρ1

+(t2 − tTA−1b)(−tTA−1b) · σ2
ρ2

+bT (A−1)TΣA−1b. (32)

The latter termr2 always vanishes which can be proven by
replacingA, b, c, s and t by their definitions. Thus, the
optimal total phase weight is given by

wφopt = −r0
r1

. (33)

The optimal phase and code weightsαm andβm are then
obtained from (29), (21), and (17). Theαm andβm can be
optimized for any standard deviationσρm

. In this paper, the

σρm
are chosen according to the Cramer Rao bound, which

is given by

Γm =

√
√
√
√

c2

C
N0

Ti ·
∫
(2πf)2|Sm(f)|2df∫

|Sm(f)|2df

, (34)

with the speed of lightc, the carrier to noise power ratioC
N0

,
the pre-detection integration timeTi, and the power spec-
tral densitySm(f). The latter one has been derived by Betz
in [9] for binary offset carrier (BOC) modulated signals.
Tab. 1 shows the Cramer Rao bounds of the wideband Ga-
lileo signals, which are used in the further analysis.

Tab. 1 Cramer Rao Bounds forC/N0 = 45dB-Hz and
Ti = 1s

Signal BW [MHz] Γ [cm]
E1 MBOC 20 11.14
E5 AltBOC(15,10) 51 1.95
E5a BPSK(10) 20 7.83
E5b BPSK(10) 20 7.83
E6 BPSK(5) 20 11.36

Tab. 2, 3 and 4 show the optimized dual, triple and four
frequency code carrier widelane combinations of maxi-
mum discrimination forσφ = 1mm andσρm

= Γm. The
first line in each table represents a geometry-preserving
(GP) ionosphere-free (IF) combination, followed by a GP
reduced ionosphere (IR, 10 dB suppression) combination
that can be used for positioning. The next linear combi-
nation is a geometry-free (GF), ionosphere-preserving (IP)
one, which could be applied for the estimation of the ionos-
pheric delay. The last combination is both GF and IF, which
makes it a candidate for ambiguity resolution, or multipath
analysis. The linear combinations are characterized by a
wavelength of a few meters and a noise level of several cen-
timeters, which results in a large ambiguity discrimination
D. The GP-IF combination tends to a slightly largerD than
the GF-IP one but both discriminations are large enough to
enable a reliable integer ambiguity resolution if multipath
and biases can be estimated. A comparison of Tab. 2 and
Tab. 3 shows that the processing of the E5 signal as a sin-
gle wideband signal is preferred over the processing of two
subbands, i.e. the lower code noise of the AltBOC signal
more than compensates for the slightly reduced number of
degrees of freedom. The inclusion of E6 measurements fur-
ther increases the ambiguity discrimination, which achie-
ves its highest value for the E5a-E5b widelane ambigui-
ty combination. Note also that all code coefficientsβm of
the triple and four frequency GF-IF combinations are quite



Tab. 2 Dual-frequency code carrier widelane combinations of maximum discrimination forσφ = 1mm andσρm
= Γm

h1 h2 E1 E5 λ σ D
1 0 j1 1 j2 −1

α1 17.2629 α2 −13.0593 3.285 m 6.5 cm 25.12
β1 −0.0552 β2 −3.1484

1 −0.1 j1 1 j2 −1
α1 16.2508 α2 −12.2936 3.092 m 6.1 cm 25.55
β1 −0.0487 β2 −2.9085

0 −1 j1 −1 j2 1
α1 −10.1831 α2 7.7035 1.938 m 4.9 cm 19.65
β1 0.0737 β2 2.4059

0 0 j1 −1 j2 1
α1 −5.2550 α2 3.9754 1 m 8.2 cm 6.09
β1 0.7285 β2 0.5511

h1 h2 E1 E5a λ σ D
1 0 j1 1 j2 −1

α1 22.6467 α2 −16.9115 4.309 m 31.4 cm 6.87
β1 −1.0227 β2 −3.7125

Tab. 3 Triple-frequency code carrier widelane combinations of maximum discrimination forσφ = 1mm andσρm
= Γm

h1 h2 E1 E5b E5a λ σ D
1 0 j1 1 j2 −4 j3 3

α1 18.9326 α2 −58.0271 α3 42.4139 3.603 m 13.9 cm 12.99
β1 −0.2871 β2 −0.9899 β3 −1.0423

1 −0.1 j1 1 j2 −4 j3 3
α1 17.6991 α2 −54.2465 α3 39.6505 3.368 m 12.7 cm 13.26
β1 −0.2499 β2 −0.9013 β3 −0.9519

0 −1 j1 1 j2 −4 j3 3
α1 −12.8901 α2 39.5074 α3 −28.8772 2.543 m 12.3 cm 9.98
β1 0.4477 β2 0.9061 β3 0.9061

0 0 j1 0 j2 −1 j3 1
α1 0 α2 −4.0266 α3 3.9242 1 m 0.8 cm 62.71
β1 0.0004 β2 0.0480 β3 0.0540

Tab. 4 Four-frequency code carrier widelane combinations of maximum discrimination forσφ = 1mm andσρm
= Γm

h1 h2 E1 E6 E5b E5a λ σ D
1 0 j1 1 j2 −3 j3 0 j4 2

α1 21.0108 α2 −51.1627 α3 0 α4 31.3798 3.998 m 6.5 cm 31.02
β1 −0.0239 β2 −0.0349 β3 −0.0824 β4 −0.0867

1 −0.1 j1 1 j2 −3 j3 0 j4 2
α1 19.7197 α2 −48.0187 α3 0 α4 29.4514 3.753 m 6.0 cm 31.22
β1 −0.0154 β2 −0.0233 β3 −0.0554 β4 −0.0585

0 −1 j1 −1 j2 4 j3 −1 j4 −2
α1 −13.1658 α2 42.7460 α3 −10.0881 α4 −19.6632 2.505 m 5.1 cm 24.81
β1 0.0285 β2 0.0274 β3 0.0576 β4 0.0576

0 0 j1 0 j2 0 j3 −1 j4 1
α1 0 α2 0 α3 −4.0266 α4 3.9242 1 m 0.8 cm 64.27
β1 −0.0038 β2 0.0140 β3 0.0429 β4 0.0493



small, which indicates a large robustness over code multi-
path.

The search of the optimal integer coefficientsjm was
performed over|jm| ≤ 4, and further constrained by
σ < 0.4m to prevent combinations of extremely large wa-
velengths, that result in a large noise level. The wavelength
of the GF, IF linear combination was set to1 m as the-
se type of combinations leave one degree of freedom: The
discrimination is independent ofλ and both the GF and IF
constraints are fulfilled for anyλ.

RELIABLE INTEGER AMBIGUITY RESOLUTION

In this section, the linear combinations of the previous
section are used for reliable integer ambiguity resolution.
The following model is used for the code and carrier phase
measurements from all visible satellites:

Ψ = Hξ +AN + η, (35)

whereH denotes the geometry matrix,ξ includes all un-
known real-valued parameters,A is the wavelength matrix,
N are the integer ambiguities andη ∼ N (0,Σ) is the
white Gaussian measurement noise. Note thatΨ can eit-
her consist of uncombined code and carrier phase measure-
ments (traditional approach), or of two optimized GP linear
combinations (our approach): a code carrier combination of
maximum discrimination and a code-only combination of
minimum noise amplification. In both cases, the estimation
of ξ can be separated from the integer ambiguity resolution
by an orthogonal projection, i.e.

P⊥
HΨ = P⊥

HA
︸ ︷︷ ︸

Ā

N + P⊥
Hη, (36)

with P⊥
H = 1 − H(HT

Σ
−1H)−1HT

Σ
−1. The least-

squares float ambiguity solution follows from (36) as

N̂ =
(
ĀΣ

−1Ā
)−1

Ā
T
Σ

−1
Ψ (37)

with the covariance

Σ
N̂

=
(
ĀΣ

−1Ā
)−1

. (38)

The most simple integer estimation technique is rounding
of the float solution of (37). The success rate heavily de-
pends on the conditioning of the equation system. It is cha-
racterized by the condition number which is defined as the
ratio between the largest and smallest eigenvalue ofΣ

N̂
.

The success rate can be increased by a sequential integer
estimation which also takes the correlation between the
float estimates into account. It was introduced by Blewitt
in [11] and is given by

N̂k|1,...,k−1 = N̂k −
k−1∑

j=1

σ
N̂kN̂j|1,...,j−1

σ−2

N̂j|1,...,j−1

·(N̂j|1,...,j−1 − [N̂j|1,...,j−1]), (39)

with the conditional variance

σ2
N̂k|1,...,k−1

= σ2
N̂k

−
k−1∑

j=1

σ2
N̂kN̂j|1,...,j−1

σ−2

N̂j|1,...,j−1
, (40)

and the covariance between the unconditional and condi-
tional float ambiguities

σ
N̂kN̂j|1,...,j−1

= σ
N̂kN̂j

−
j−1
∑

i=1

σ
N̂jN̂i|1,...,i−1

·σ−2

N̂i|1,...,i−1
σ
N̂kN̂i|1,...,i−1

. (41)

Clearly, both the conditional variances and the covariances
depend on the order of fixings. It can be easily shown that
the conditional ambiguity estimates are uncorrelated, i.e.

σ
N̂k|1,...,k−1,N̂l|1,...,l−1

= 0 ∀ k 6= l. (42)

Thus, the success rate of sequential ambiguity fixing can be
efficiently computed from the product of one-dimensional
cumulative Gaussian distributions, i.e.

Ps =

K∏

k=1

∫ +0.5

−0.5

1
√

2πσ2
N̂k|1,...,k−1

· exp



−
(ε

N̂k|1,...,k−1
− b

N̂k|1,...,k−1
)2

2σ2
N̂k|1,...,k−1



 dε
N̂k|1,...,k−1

.

(43)

Bootstrapping as well as any other integer ambiguity re-
solution technique can be fully described by so called pull-
in regions [13]. A pull-in region represents the set of all
float ambiguitiesN̂ that are mapped to the same integer
vectorŇk. The mapSŇk

is given by

SŇk
= {N̂ ∈ R

K×1|Ňk = S(N̂)}, Ňk = Z
K×1.

(44)
These pull-in regions shall now be analyzed for the optimal
integer least-squares estimator, which is defined as

Ň = argmin
N

‖N̂ −N‖2
Σ

−1

N̂

. (45)

Fig. 3 shows these regions for a double difference carrier
phase positioning over a large baseline with a good satellite
geometry. Subfigure (a) refers to the estimation of the E1
integers and subfigure (b) to the widelane ambiguities.

Obviously, the increase in the wavelength from19.0 cm
to 3.285m substantially increases the size of the pull-in re-
gions. Both figures also the include the error ellipse given
by ‖N̂ − N‖2

Σ
N̂

= c with c = 3. Its size is larger than
the size of the pull-in region for uncombined ambiguities
but significantly smaller than the size of the widelane pull-
in regions. This is another indication for extremely relia-
ble ambiguity resolution with our linear combinations. The
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Fig. 3 Increase of pull-in regions with multi-frequency li-
near combinations

integer least-squares estimation can be efficiently perfor-
med with the Least-squares Ambiguity Decorrelation Ad-
justment (LAMBDA) method of Teunissen [12]. The size
of the error ellipse in Fig. 3 is typical for a long-baseline
kinematic positioning with a good satellite geometry and
measurements from only a few epochs.

Fig. 4 shows the benefit of geometry-preserving (h1 =
1), ionosphere-free (h2 = 0) linear combinations for Wide-
Area Real-Time Kinematics (WA-RTK). If no linear com-
binations are used, the baseline (once per epoch), the in-
teger ambiguities (using bootstrapping with integer decor-
relation), the tropospheric wet zenith delay and its rate,
the ionospheric slant delays for all satellites and their ra-
tes have to be estimated from double difference measure-
ments on at least two frequencies. Here, the wideband Ga-
lileo signals on E1 (CBOC modulation) and E5 (AltBOC
modulated) were considered at a carrier to noise power of
45 dB-Hz. The small wavelength and the large number of

unknown parameters result in a rather poor probability of
wrong fixing, which varies between10−4 and1 depending
on the satellite geometry. This is far too much for Safety-
of-Life critical applications where a failure rate of at most
10−9 is required. Therefore, the use of an optimized multi-
frequency code carrier combination of maximum discrimi-
nation and of a code-only combination of minimum noise
amplification is analyzed. As both linear combinations are
ionosphere-free, the latter two parameter sets do not have
to be estimated. Fig. 4 shows that the probability of wrong
fixing can be reduced by several orders of magnitude due
to the large wavelength of3.285 m. The10−9 requirement
is fulfilled for any satellite geometry.
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Fig. 4 Benefit of E1-E5 mixed code carrier linear combi-
nation for reliable integer ambiguity resolution

Fig. 5 shows the benefit of a different class of linear com-
binations: the geometry-free (h1 = 0) ones, which elimina-
te also the clock offsets, orbital errors and tropospheric de-
lay. The benefit is analyzed for differential positioning with
triple frequency (E1, E5a, E5b) receiver-receiver single dif-
ference measurements of20 s. If no linear combinations
are used, the carrier phase integer ambiguities, the baseline
(once/ epoch), the differential receiver clock offset (once/
epoch), the ionospheric slant delays and their rates, as well
as the tropospheric wet zenith delay and its rate have to be
estimated. In this traditional approach, the ambiguities we-
re resolved sequentially according to (39) with integer de-
correlation based on uncombined measurements. The use
of the linear combinations significantly simplifies the am-
biguity resolution: It directly provides an integer estimate
that only has to be averaged overT epochs, i.e.

N̂k =
1

T

T∑

t=1

(

1

λ

M∑

m=1

(
αmλmφk

m(t) + βmρkm(t)
)

)

∼ N
(
Nk + bku, σ

2
N̂k

)
, (46)

with

σ
N̂k =

σ

λ
√
T

=
1

2D
√
T
, (47)



and thus justifies also the maximization of the ambigui-
ty discriminationD. As geometry-free linear combinations
imply an independant fixing of the ambiguities from all sa-
tellites, the probability of wrong fixing can be efficiently
computed from

Ps =

K∏

k=1

∫ +0.5

−0.5

1
√

2πσ2
N̂k

· e
−

(ε
N̂k

−b
N̂k

)2

2σ2
N̂k dε

N̂k
. (48)

Fig. 5 shows that this probability of wrong fixing is almost
constant over time and enables a substantial improvement
over the traditional approach especially for poor satellite
geometries.
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Fig. 5 Benefit of geometry-free, ionosphere-free linear
combinations for integer ambiguity resolution

SUCCESS RATE DETERMINATION FOR ROUN-
DING OF FLOAT SOLUTION

Simple rounding of the float solution has recently recei-
ved little attention mainly for two reasons: First, it provides
a lower success rate than sequential bootstrapping and in-
teger least-squares estimation for unbiased measurements.
Secondly, there does not exist a closed-form expression for
the evaluation of the success rate of rounding. Therefore,
the easily computable success rate of bootstrapping beca-
me the de-facto standard, either used as a lower bound for
integer least-squares estimation or directly used to charac-
terize bootstrapping.

However, the simple rounding could be an interesting
candidate for precise point positioning as it is less sensi-
tive with respect to unknown biases than sequential ambi-
guity fixing and integer least-squares estimation. The se-
quential estimation accumulates the biases of various satel-
lites, the integer decorrelation further amplifies them, and
the search might additionally reduce the success rate due
to the negligence of biases. The simple rounding prevents

all these disadvantages. Consequently, there is a need for
an efficient computation of the success rate of rounding as
Monte-Carlo simulations are practically unacceptable for
error rates in the order of magnitude of10−9. Genz sug-
gested in [10] an efficient method for the evaluation of the
multivariate cumulative normal distribution. This method
uses three integral transformations and shall be applied for
the evaluation of the success rate which is given by

Ps = P ([N̂ ] = N ) =
1

√
|Σ

N̂
|(2π)K

·
∫ +0.5−b1

−0.5−b1

. . .

∫ +0.5−bK

−0.5−bK

e−
1
2 ε

T

N̂
Σ

−1

N̂
ε
N̂ dε

N̂1
. . . dε

N̂K
,

(49)

whereε
N̂

= N̂ −N denotes the error of the float solution
N̂ . It is normal distributed, i.e.

ε
N̂

∼ N
(
0,Σ

N̂

)
, (50)

with the float ambiguity covariance matrixΣ
N̂

. The Cho-
leskey decomposition is used to diagonalize the error vec-
tor, i.e.

e
N̂

= C−1ε
N̂
, (51)

with
Σ

N̂
= CCT . (52)

Thus, the success rate of (49) can be rewritten as

Ps =
1

√

(2π)K

∫ u1

l1

e−
e2
N̂1
2

∫ u2(eN̂1
)

l2(eN̂1
)

e−
e2
N̂2
2 . . .

·
∫ uK(e

N̂1
,...,e

N̂K−1
)

lK(e
N̂1

,...,e
N̂K−1

)

e−
e2
N̂K
2 de

N̂1
de

N̂2
. . . de

N̂K−1
,

(53)

where the correlation between the float ambiguities is in-
cluded in the integration limitslk anduk. These limits are
obtained from the inequalities

−0.5− bk ≤ ε
N̂k

=

k∑

j=1

CkjeN̂j
≤ +0.5− bk, (54)

which can be solved fore
N̂k

:

lk ≤ e
N̂k

≤ uk (55)

with

lk =
−0.5− bk −

∑k−1
j=1 CkjeN̂j

Ckk

uk =
+0.5− bk −

∑k−1
j=1 CkjeN̂j

Ckk

. (56)

The second transformation uses the cumulative normal dis-
tribution to absorb the exponential functions of (53), i.e.

zk = Φ(e
N̂k

), (57)



with

Φ(ν) =
1√
2π

ν∫

−∞

e−
1
2 θ

2

dθ. (58)

Thus, (53) simplifies to

Ps =

∫ u′
1

l′1

∫ u′
2(z1)

l′2(z1)

. . .

∫ u′
K(z1,...,zK−1)

l′
K
(z1,...,zK−1)

dz1dz2 . . . dzK ,

(59)
with the transformed integration limits

l′k = Φ




1

Ckk



−0.5− bk −
k−1∑

j=1

CkjΦ
−1(zj)









u′
k = Φ




1

Ckk



+0.5− bk −
k−1∑

j=1

CkjΦ
−1(zj)







 .

Finally, Genz’s third transformation is given by

wk =
zk − l′k
u′
k − l′k

, (60)

which puts the integral into a constant limit form, i.e.

Ps = (u′
1 − l′1)

∫ 1

0

(u′
2 − l′2)

∫ 1

0

. . .

(u′
K − l′K)

∫ 1

0

dw1dw2 . . . dwK . (61)

Eq. (61) can be expanded to

Ps = (u′
1 − l′1)

∫ 1

0

(u′
2 − l′2)f(w1)

∫ 1

0

. . .

(u′
K − l′K)f(wK−1)

∫ 1

0

f(wK)dw1 . . . dwK ,

(62)

with

f(wk) =

{
1 if 0 ≤ wk ≤ 1
0 else.

(63)

The introduction off(wk) does not change the value ofPs

but it allows us to interpretwk as a uniformly distributed
random variable between0 and1. Thus, (62) can also be
written as

Ps =

Ew1,...,wK

{
K∏

k=1

(u′
k(w1, . . . , wK)− l′k(w1, . . . , wK))

}

(64)

with wk ∼ U(0, 1) for all k. The success rate of (64) can
be efficiently computed using Monte-Carlo simulation or
more advanced numerical integration techniques, e.g. the
subregion adaptive method as discussed by Genz in [10].

Fig. 6 shows the benefit of computing the expectation va-
lue w.r.t.wk in (64) instead of w.r.t.ε

N̂
in (49). The compu-

tational burden is measured by the time required to estima-
tePs with a dual core2.1 GHz CPU. The use of the three
integral transformations enables a substantial reductionin
the computation time. A realtime evaluation becomes also
feasible.
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Fig. 6 Efficient computation of success rate of rounding
with integral transformations.

Fig. 7 shows the probability of wrong fixing for various
integer estimation techniques. An ionosphere-free carrier
smoothing is applied to two GP-IF linear combinations (a
code carrier combination of maximum discrimination and a
code-only combination) of E1 and E5 measurements to im-
prove the reliability of widelane ambiguity resolution. Ob-
viously, a larger smoothing period results in a lower error
rate. For unbiased measurements, the integer least-squares
estimation achieves the lowest error rate of all fixing me-
thods. A slightly higher error rate can be observed for se-
quential fixing with integer decorrelation due to the lack of
an integer search. An additional degradation occurs if the
integer decorrelation is omitted, and the largest error rate is
obtained for rounding as it does not consider the correlati-
ons between the float ambiguity estimates. The ranking of
the fixing techniques completely changes in the presence
of biases. An elevation dependent exponential bias profile
was chosen to analyze the impact of multipath. A worst-
case accumulation over all visible satellites is considered
as described by Henkel et al. in [7]. The magnitude of the
code multipath was set to1 cm for a satellite in the zenith
and to10 cm for a satellite in the horizon. For the phase
multipath,0.01 cycles and0.1 cylces were assumed respec-
tively. In this case, rounding achieves the lowest error rate,
followed by sequential fixing without and with integer de-
correlation. The integer decorrelation amplifies the biases
and the search criterion is suboptimal which results in the
largest error rate. Consequently, the most simple method is
also the most robust one: the rounding of the float solution.
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Fig. 7 Comparison of various integer ambiguity resoluti-
on techniques for both unbiased and biased measurements
with worst-case accumulation of biases.

CONCLUSION

In this paper, a new group of linear combinations was
analyzed that include both code and carrier phase measu-
rements on two or more frequencies. An arbitrary scaling
of the geometry, an arbitrary scaling of the ionospheric de-
lay, and any preferred wavelength can be obtained with the-
se linear combinations. The maximization of the ambiguity
discrimination leads to combinations with a wavelength of
several meters and a noise level of a few centimeters. The
integer ambiguities of these combinations can be resolved
with a probability of wrong fixing of less than10−9 with
measurements from a few epochs. These combinations are
recommended for any application where reliability is more
important than accuracy.

Moreover, an efficient method for the computation of the
success rate of rounding of the float solution is suggested. It
is based on a transformation of the cumulative multivaria-
te Gaussian distribution into uniform distributions, which
can be efficiently evaluated in realtime. The rounding of
the float solution was considered for two reasons: First, the
linear combinations improve the conditioning of the equa-
tion system such that there is no strong need of an inte-
ger decorrelation. Secondly, rounding of the float solution
is much less sensitive with respect to multipath and biases
than bootstrapping and integer least-squares estimation.

Both the optimized multi-frequency linear combinations
with large wavelengths and the efficient computation of the
success rate are seen as two steps to improve the reliability
of ambiguity resolution for precise point positioning.
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