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ABSTRACT

Carrier phase measurements are extremely accurate but
ambiguous. The estimation of the integer ambiguities is
in general split in two parts: A least-squares float soluti-
on, which is obtained by disregarding the integer proper-
ty, and the actual fixing. The latter one can be a simple
rounding, a sequential fixing (bootstrapping), or an intege
least-squares estimation, which typically includes aa-int

ger decorrelation and a search. All these fixing methods
suffer from a poor accuracy of the float solution due to the
small carrier wavelengths. Moreover, the optimal integer
least-squares estimation techniques are extremely sensit
to unknown biases.

This paper provides a new group of multi-frequency li-
near combinations to overcome the previous shortcomings:
The combinations include both code and carrier phase mea-
surements, and allow an arbitrary scaling of the geometry,
an arbitrary scaling of the ionospheric delay, and any pre-
ferred wavelength. The maximization of the ambiguity dis-
crimination results in combinations with a wavelength of
several meters and a noise level of a few centimeters. These
combinations are recommended for any application where
reliability is more important than accuracy. Moreover, the
paper provides an efficient method for the computation of
the success rate of rounding.

INTRODUCTION

Real-time kinematic (RTK) positioning uses double dif-
ference carrier phase measurements. The double differen-
cing eliminates both receiver and satellite biases andcloc
offsets, which simplifies the resolution of the carrier pha-
se integer ambiguities. Currently, there exist mainly ¢hre
error sources that limit the reliability of the integer reso
tion: First, there is the double difference ionospheriagel
which only cancels for short baselines. Secondly, the dou-
ble difference tropospheric delay is often neglected, tvhic
introduces some errors especially if there is a significant
difference in the height between both receivers. The third
and probably most challenging error source is multipath.

Fig. 1 shows the probability of wrong fixing for widela-
ne ambiguity resolution as a function of the baseline length
We can observe a substantial increase in the failure rate if
there is an ionospheric gradient bimm/km between both
receivers. It causes a double difference ionospheric delay
which occurs as a bias in the ambiguity resolution. The
probability of wrong fixings are shown in Fig. 1 for boot-



strapping with and without integer decorrelation, whereas
the latter one enables a certain improvement over the first
one. Galileo double difference measurements on E1 and E5
were combined into an ionosphere-free code only combi-
nation and a phase-only combination with a wavelength of
78.2 cm. The latter combination amplifies the ionospheric
delay by a factot.32. The failure rates significantly incre-
ase if the ionospheric gradient risesstonm/km, which is

still two orders of magnitude below the largest ionospheric
gradient that has been observed so far. This is the motiva-
tion for the derivation and analysis of a new set of linear
combinations, that enable an arbitrary scaling of the ienos
pheric delay and any preferred wavelength.
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Fig. 1 Reliability of widelane ambiguity resolution with
double difference measurements.

MULTI-FREQUENCY CODE CARRIER LINEAR
COMBINATIONS

Multi-frequency linear combinations are an efficient ap-
proach to improve the reliability of carrier phase integer
ambiguity resolution. The linear combinations enable a si-
gnificant suppression of the ionospheric delay and an in-
crease in the wavelength, while the range information is
kept. A systematic search of all possible dual frequency
phase-only widelane combinations has been performed by
Cocard and Geiger in [1] and by Collins in [2]. An L1-
L2 linear combination with a wavelength o#.65 m was
found. However, the combination also amplifies the ionos-
pheric delay by more tha25 dB. The generalization to
measurements on three and more frequencies enables much
more attractive linear combinations as shown by Henkel
and Gunther in [3], by Wibbena in [4], or by Richert and
El-Sheimy in [5]. For example, a Galileo triple frequen-
cy E1-E5a-E5b linear combination with a wavelength of
3.285 m suppresses the ionospheric delayi bylB. Howe-
ver, a complete elimination of the ionosphere is not achie-

vable with phase-only widelane combinations. Therefore,
the authors suggested the inclusion of code measurements
in the linear combination in [6]. The ambiguity discrimi-
nation was introduced as an optimization criterion for the
combinations: It was defined as the ratio between the wa-
velength and twice the standard deviation of noise, which
shall be maximized. The code measurements relax the in-
teger constraint and enable the computation of a dual fre-
guency geometry-preserving, ionosphere-free linear com-
bination with a wavelength 03.285 m and a noise level

of a few centimeters. In [7], Henkel, Gomez and Gunther
presented multi-frequency code carrier linear combimetio
including the Galileo signals on E1, E5 and E6. In [8], Hen-
kel gave a detailed derivation of code carrier combinations
of maximum discrimination for an arbitrary number of fre-
guencies.

In this section, the class of linear code carrier combina-
tions is further generalized such that an arbitrary scaling
the geometry, an arbitrary scaling of the ionospheric delay
and any preferred wavelength are feasible. The code mea-
surements from satellite observed at user on frequency
m are modeled as
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with the user positioe,,, the satellite position:*, the unit
vectore’ pointing from the satellite to the receiver, the sa-
tellite position errodz” due to imperfect knowledge of the
orbit, the receiver clock offsétr,,, the satellite clock offset
§7%, the speed of light, the tropospheric dela¥”, the ra-

tio of frequencies,,, = f1/fm, the first and second order
ionospheric delay$1;f,, I}, } on L1/E1, the receiver co-
de biasb,, .., the satellite code bials,. , the delayo,.
due to code multipath, and the code ncﬁ§§m. A similar
model is used for the carrier phase measurements:
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with the wavelength\,,, and the carrier phase integer am-
biguity N¥ .. The code and carrier phase measurements
of (1) and (2) are linearly combined in (4) with the phase
weight o, and the code weight,,,. The choice of these
weights is obtained from some constraints on the geome-
try, ionospheric delay, combined multipath and biases, and
a further optimization that shall be described later in this
section. The first term on the right side of (4) describes the
geometry term which can be scaled to any arbitrary value

hi,i.e.
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A geometry-free combination is obtainediif = 0 and a
geometry-preserving one if; = 1. Note that the scaling

of the geometry also affects the orbital error, the clock off
sets and the tropospheric delay. The first order ionospheric
delayL’jf1 can also be scaled by any arbitrary valyei.e.

M
Z Oy — ﬁm qlrn = ha, (5)
m=1

where hy = 0 corresponds to an ionosphere-free and
ho = —1 to an ionosphere-preserving combination. Howe-
ver, a scaling factor in betweenl and0 could be intere-
sting if a certain ionospheric suppression is already achie
ved by double differencing. Similarly, the second order io-
nospheric delay can also be scaled by any valye.e.
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The next term on the right side of (4) describes the linear

combination of integer ambiguities which shall be a com-

mon wavelength times a single integer ambiguity”, i.e.

M
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which can be easily solved fov":
M
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As Nk is an unknown integey,,, has to be integer to ob-

tain an integetV’. Rearranging (8) gives the phase weight
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which depends on the integer weight and the combi-
ned wavelength\. The next term on the right side of (4)
includes the linear combination of code and carrier phase
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biases. It can also be considered in the combination design,
e.g. by a pre-defined upper boubg.. on the worst-case
combined bias, i.e.

M
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which requires some assumptions on the measurement bia-
ses. The superposition of multipath delays can also be in-
cluded in the combination design, e.g. by
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with some pre-defined upper bouid. on the worst-case
superposition of multipath-delays. These could be chosen
from an elevation-dependant exponential function, i.e.

(12)

with the decay constant and elevation anglé’. Finally,
the last term on the right side of (4) describes the linear
combination of phase and code noises. Its variance is given
by

M
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and can be minimized under the consideration of all other
constraints. Alternatively, the ambiguity discriminatican
be maximized. It was first introduced by Henkel and
Guntherin [6] as

A

== (14)

Its maximization corresponds to the minimization of
the probability of wrong fixing for a geometry-free,
ionosphere-free linear combination. As this paper is focus
sing more on the reliability than on the accuracy, the furthe
analysis is restricted to the class of linear combinatibas t
maximizeD.



Let us start the derivation of the optimum), andg,,, by
introducing the total phase weight

w¢:2am:)\z)\:,
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which can be solved for the combined wavelengthe.
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Replacing) in (9) by (16) gives
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The constraints on the geometry and first order ionospheric
delay are written in matrix-vector notation using (3), (5)
and (17), i.e.

we
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Note that the second order ionospheric delay has not been
included in (18) as it is often negligible. Eq. (18) can be
solved for the code weight$, andg.:
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where thes,,, and¢,,, m € {1,..., M} are implicitly de-
fined by the last equality. Equation (21) leaves the integer
coefficientsj,,, m > 1, the code weightg,,, m > 3, and

the total phase weight, as unknowns. The maximization
of D over these variables shall be performed in two steps
as shown in Fig. 2.

Frequencies and
noise assumptions:

Maximization of f f
ambiguity discrimination Lo JM
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a.) Analytical computation

ma%c D(j,wy,B) Constraint on geometryz;
We,

Constraints on 1st and 2
order ionospheric delays

ha, h3

Constraints on biases
and multipath

b.) Numerical search

max D(3, wg, 3)
J
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Fig. 2 Computation of multi-frequency code carrier linear
combinations of maximum ambiguity discrimination

First, a numerical search is performed with a maximi-
zation overj,, and, secondly, an analytical computation is
performed with a maximization over, and/,,. Equation
(28) provides an expression of the ambiguity discriminati-
on that is obtained from (14) using (16), (17), (21) and (13),
and only depends om, and3. Some abbreviations were
introduced to simplify the notation:
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as well as@ = [B3,...,8u]T, s = [s3,...,sm]7, and

t = [ts,...,tm]T. The maximization with respect to
results in the constraint
oD
—=0 24
5y O (24)
and the maximization with respect bgives
oD
— =0. 25
%5 (25)
The latter constraint can be developed as
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+ 38

= [azlssT + UizttT + E} J6]

A
+ [520;2,13 + t20';2)2t} we + [510513 + tlaizt} =0,

b c
(27)



We

(28)

D(wy. ) = 2 =

20
A

which shows a linear relationship betweep and3. Sol-
ving (26) for 3 yields

B=-A"'c+b-w). (29)

The first constraint in (24) can also be further developed as

(s1 4 s2wy + 87 B) (s1+ 5" B) o7
+ (t + tawy +t"B) (1 +t"B) o7, + 8728 =0,

and replacing3 by (29) gives
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which only includeswv, (andj,,, hiddeninA, b, ¢, s and
t) as unknowns. Equation (30) is a quadratic equation in
W i.e.
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The latter ternr, always vanishes which can be proven by
replacingA, b, ¢, s andt by their definitions. Thus, the
optimal total phase weight is given by

To
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The optimal phase and code weights and,,, are then

obtained from (29), (21), and (17). The, andg,, can be
optimized for any standard deviatiep,, . In this paper, the
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o,,, are chosen according to the Cramer Rao bound, which
is given by

02
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with the speed of light, the carrier to noise power ratg@(;,
the pre-detection integration tin¥e, and the power spec-
tral densityS,, (f). The latter one has been derived by Betz
in [9] for binary offset carrier (BOC) modulated signals.
Tab. 1 shows the Cramer Rao bounds of the wideband Ga-
lileo signals, which are used in the further analysis.

Tab. 1 Cramer Rao Bounds faf'/Ny = 45dB-Hz and
Ti =1s

Signal BW [MHz] | T [cm]
E1 | MBOC 20 11.14
E5 | AltBOC(15,10) 51 1.95
E5a | BPSK(10) 20 7.83
E5b | BPSK(10) 20 7.83
E6 | BPSK(5) 20 11.36

Tab. 2, 3 and 4 show the optimized dual, triple and four
frequency code carrier widelane combinations of maxi-
mum discrimination fowy, = 1lmm ando,,, = I';,. The
first line in each table represents a geometry-preserving
(GP) ionosphere-free (IF) combination, followed by a GP
reduced ionosphere (IR, 10 dB suppression) combination
that can be used for positioning. The next linear combi-
nation is a geometry-free (GF), ionosphere-preserving (IP
one, which could be applied for the estimation of the ionos-
pheric delay. The last combination is both GF and IF, which
makes it a candidate for ambiguity resolution, or multipath
analysis. The linear combinations are characterized by a
wavelength of a few meters and a noise level of several cen-
timeters, which results in a large ambiguity discriminatio
D. The GP-IF combination tends to a slightly lardethan
the GF-IP one but both discriminations are large enough to
enable a reliable integer ambiguity resolution if multipat
and biases can be estimated. A comparison of Tab. 2 and
Tab. 3 shows that the processing of the E5 signal as a sin-
gle wideband signal is preferred over the processing of two
subbands, i.e. the lower code noise of the AltBOC signal
more than compensates for the slightly reduced number of
degrees of freedom. The inclusion of E6 measurements fur-
ther increases the ambiguity discrimination, which achie-
ves its highest value for the E5a-E5b widelane ambigui-
ty combination. Note also that all code coefficiefts of
the triple and four frequency GF-IF combinations are quite



Tab. 2 Dual-frequency code carrier widelane combinations of maxn discrimination for, = lmm ando,,, = 1",

h1 hg E1l E5 )\ g D
1 0 |7 L| Jz -1
i 17.2629 | aa —13.0593 | 3.285m | 6.5cm | 25.12
51 —0.0552 | B2 —3.1484

L | —01] 5 1] jo —1
o1 162508 | an  —12.2936 | 3.092m | 6.1cm | 25.55
Bi —0.0487 | By —2.9085

0| -1 | 5 =11 j2 1

o —10.1831 | g 7.7035 | 1.938m | 4.9cm | 19.65
Bi 0.0737 | B 2.4059
0 0 |7 1| 1
o —5.2550 | aw 3.9754 1m 8.2cm 6.09
By 0.7285 | B 0.5511
h1 hg E1l E5a )\ g D
1 0 |7 L| Jz -1
ay 22.6467 | g —16.9115 | 4.309m | 31.4cm 6.87
B —1.0227 | B2 —3.7T125

Tab. 3 Triple-frequency code carrier widelane combinations okimaim discrimination fowg = 1mm ando,,, = I'y,

h1 ho El E5b E5a A o D
1 0 it 1] J2 -4 Js 3
a1 18.9326 | s  —58.0271 | ag 42.4139 | 3.603m | 13.9cm | 12.99
B, —0.2871| B, —09899 | B5  —1.0423
T =01 j 1 I Js 3
a1 17.6991 | as —54.2465 | a3 39.6505 | 3.368 m | 12.7cm | 13.26
B, —0.2499 | B,  —0.9013 | Bs  —0.9519
O -1 |5 1] J2 —4 1 Js 3
a; —12.8901 | as 39.5074 | a3 —28.8772 | 2.543m | 12.3cm 9.98
Bi 04477 | B, 0.9061 | Bs  0.9061
0 0 Ji 01 72 =11 J3 1
aq 0] as —4.0266 | ag 3.9242 1m 0.8cm | 62.71
Bi 00004 | B, 0.0480 | B 0.0540

Tab. 4 Four-frequency code carrier widelane combinations of maxn discrimination for, = lmm ando,,, =1',,

h1 ho El E6 E5b E5a A o D
1 0 J1 1| J2 -3 | Js 0| ja 2
oq 21.0108 | aps  —51.1627 | ag 0| oy 31.3798 | 3.998 m | 6.5cm | 31.02
B, —0.0239 | B, —0.0349 | Bs  —0.0824 | B4  —0.0867
1] =011 5 1] Jo =3 | J3 0] Jja 2
oq 19.7197 | as  —48.0187 | a3 0| oy 29.4514 | 3.753m | 6.0cm | 31.22
B, —0.0154 | B, —0.0233 | Bs —0.0554 | Bs  —0.0585
0 -1 | 5 =11 jo 41 j3 =11 s -2

a1 —13.1658 | ap  42.7460 | a;  —10.0881 | g —19.6632 | 2.505m | 5.1cm | 24.81
5 0.0285 | Bs 0.0274 | Bs 0.0576 | B4 0.0576

0 0 J1 0] Jjo 0] Js =1 Ja 1
o 0| as 0| as —4.0266 | as 3.9242 | 1m | 0.8cm | 64.27
B —0.0038 | B 0.0140 | B; 0.0429 | B4 0.0493




small, which indicates a large robustness over code multi-
path.

The search of the optimal integer coefficierits was
performed over|j,,| < 4, and further constrained by
o < 0.4m to prevent combinations of extremely large wa-
velengths, that result in a large noise level. The wavetengt
of the GF, IF linear combination was set tom as the-
se type of combinations leave one degree of freedom: The
discrimination is independent ofand both the GF and IF
constraints are fulfilled for any.

RELIABLE INTEGER AMBIGUITY RESOLUTION

In this section, the linear combinations of the previous
section are used for reliable integer ambiguity resolution
The following model is used for the code and carrier phase
measurements from all visible satellites:

W = H¢+ AN + 1, (35)

where H denotes the geometry matrig,includes all un-
known real-valued parameter4,is the wavelength matrix,

N are the integer ambiguities angl ~ AN(0,X) is the
white Gaussian measurement noise. Note tatan eit-

her consist of uncombined code and carrier phase measure-
ments (traditional approach), or of two optimized GP linear
combinations (our approach): a code carrier combination of
maximum discrimination and a code-only combination of
minimum noise amplification. In both cases, the estimation
of £ can be separated from the integer ambiguity resolution

by an orthogonal projection, i.e.
P4% = P AN + Py, (36)
H/—/

A

with P3; = 1 — HH"S'H)"'H"x™!. The least-
squares float ambiguity solution follows from (36) as
N=(ax'4) A"z 'w (37)
with the covariance
¥, =(Axta)” (38)

The most simple integer estimation technique is rounding
of the float solution of (37). The success rate heavily de-
pends on the conditioning of the equation system. It is cha-
racterized by the condition number which is defined as the
ratio between the largest and smallest eigenvaluk pf

The success rate can be increased by a sequential integer
estimation which also takes the correlation between the
float estimates into account. It was introduced by Blewitt

in [11] and is given by

k—1
Y -2
Nkll """ k=1 — Nk_ZUNkN;\l ..... j—1 N‘l -1
j=1
'(Nj|1 ..... -1 [lel g—1l),  (39)

with the conditional variance

2~ 2 2~
Ny, k-1

; (40)

and the covariance between the unconditional and condi-
tional float ambiguities

Clearly, both the conditional variances and the covariance
depend on the order of fixings. It can be easily shown that
the conditional ambiguity estimates are uncorrelated, i.e

=0 Yk#£L (42)

Thus, the success rate of sequential ambiguity fixing can be
efficiently computed from the product of one-dimensional
cumulative Gaussian distributions, i.e.

+0.5
/05

Ngu ..... k-1
N 2
(ENku ,,,,, k-1 Ny, k—1> d
exp 202 ENku ,,,,, k-1
N1, k-1
(43)

Bootstrapping as well as any other integer ambiguity re-
solution technique can be fully described by so called pull-
in regions [13]. A pull-in region represents the set of all
float ambiguitiesiV that are mapped to the same integer
vectorN ;. The mapSy, is given by

ZK x1 )

(44)
These pull-in regions shall now be analyzed for the optimal
integer least-squares estimator, which is defined as

Sy, ={N e REXYN, = S(N)}, Ny =

N:argrrll\lrnHNfNH;;. (45)
Fig. 3 shows these regions for a double difference carrier
phase positioning over a large baseline with a good sa&tellit
geometry. Subfigure (a) refers to the estimation of the E1
integers and subfigure (b) to the widelane ambiguities.
Obviously, the increase in the wavelength frét0 cm
to 3.285 m substantially increases the size of the pull-in re-
gions. Both figures also the include the error ellipse given
by | N — NH2 = c with ¢ = 3. Its size is larger than
the size of the puII in region for uncombined ambiguities
but significantly smaller than the size of the widelane pull-
in regions. This is another indication for extremely relia-
ble ambiguity resolution with our linear combinations. The
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Fig. 3 Increase of pull-in regions with multi-frequency li-
near combinations

integer least-squares estimation can be efficiently perfor
med with the Least-squares Ambiguity Decorrelation Ad-
justment (LAMBDA) method of Teunissen [12]. The size
of the error ellipse in Fig. 3 is typical for a long-baseline
kinematic positioning with a good satellite geometry and
measurements from only a few epochs.

Fig. 4 shows the benefit of geometry-preservihg &
1), ionosphere-freei; = 0) linear combinations for Wide-
Area Real-Time Kinematics (WA-RTK). If no linear com-
binations are used, the baseline (once per epoch), the in-
teger ambiguities (using bootstrapping with integer decor
relation), the tropospheric wet zenith delay and its rate,
the ionospheric slant delays for all satellites and their ra
tes have to be estimated from double difference measure-
ments on at least two frequencies. Here, the wideband Ga-
lileo signals on E1 (CBOC modulation) and E5 (AltBOC
modulated) were considered at a carrier to noise power of
45 dB-Hz. The small wavelength and the large number of

unknown parameters result in a rather poor probability of
wrong fixing, which varies betweel)~* and1 depending

on the satellite geometry. This is far too much for Safety-
of-Life critical applications where a failure rate of at nhos
10~? is required. Therefore, the use of an optimized multi-
frequency code carrier combination of maximum discrimi-
nation and of a code-only combination of minimum noise
amplification is analyzed. As both linear combinations are
ionosphere-free, the latter two parameter sets do not have
to be estimated. Fig. 4 shows that the probability of wrong
fixing can be reduced by several orders of magnitude due
to the large wavelength &£285 m. The10~° requirement

is fulfilled for any satellite geometry.
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Fig. 4 Benefit of E1-E5 mixed code carrier linear combi-
nation for reliable integer ambiguity resolution

Fig. 5 shows the benefit of a different class of linear com-
binations: the geometry-freg{ = 0) ones, which elimina-
te also the clock offsets, orbital errors and troposphegic d
lay. The benefitis analyzed for differential positioningtwi
triple frequency (E1, E5a, E5b) receiver-receiver singfte d
ference measurements 26 s. If no linear combinations
are used, the carrier phase integer ambiguities, the haseli
(once/ epoch), the differential receiver clock offset (@hc
epoch), the ionospheric slant delays and their rates, ds wel
as the tropospheric wet zenith delay and its rate have to be
estimated. In this traditional approach, the ambiguities w
re resolved sequentially according to (39) with integer de-
correlation based on uncombined measurements. The use
of the linear combinations significantly simplifies the am-
biguity resolution: It directly provides an integer estima
that only has to be averaged o#eepochs, i.e.

. 1 LM . .
N = T E X E (Oém)\m(//)m (t) + ﬁmpm (f'))
t=1

m=1
~ N (NF 4 0%.), (46)
with .
d (47)

Ok = T = — )
NYTANVT - 2DVT



and thus justifies also the maximization of the ambigui-
ty discriminationD. As geometry-free linear combinations
imply an independant fixing of the ambiguities from all sa-
tellites, the probability of wrong fixing can be efficiently
computed from

ey Py,
202
N deg, -

+0.5
(48)
—0.5

K 1 _
T A
Pl \ /277012\7k
Fig. 5 shows that this probability of wrong fixing is almost
constant over time and enables a substantial improvement

over the traditional approach especially for poor satellit
geometries.
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Fig. 5 Benefit of geometry-free, ionosphere-free linear
combinations for integer ambiguity resolution

SUCCESS RATE DETERMINATION FOR ROUN-
DING OF FLOAT SOLUTION

Simple rounding of the float solution has recently recei-
ved little attention mainly for two reasons: First, it prdes
a lower success rate than sequential bootstrapping and in-
teger least-squares estimation for unbiased measurements
Secondly, there does not exist a closed-form expression for
the evaluation of the success rate of rounding. Therefore,
the easily computable success rate of bootstrapping beca-
me the de-facto standard, either used as a lower bound for
integer least-squares estimation or directly used to chara
terize bootstrapping.

However, the simple rounding could be an interesting
candidate for precise point positioning as it is less sensi-
tive with respect to unknown biases than sequential ambi-
guity fixing and integer least-squares estimation. The se-
guential estimation accumulates the biases of variout sate
lites, the integer decorrelation further amplifies thend an
the search might additionally reduce the success rate due
to the negligence of biases. The simple rounding prevents

all these disadvantages. Consequently, there is a need for
an efficient computation of the success rate of rounding as
Monte-Carlo simulations are practically unacceptable for
error rates in the order of magnitude oi—°. Genz sug-
gested in [10] an efficient method for the evaluation of the
multivariate cumulative normal distribution. This method
uses three integral transformations and shall be applied fo
the evaluation of the success rate which is given by

. 1

Y e

40.5—by H05-bx | g
. 28RN O N .
/ / e FTNIN N deg L deg

—0.5—by —0.5—bx
(49)

wheree i, = N — N denotes the error of the float solution
N. Itis normal distributed, i.e.

€NNN(0,EN), (50)

with the float ambiguity covariance matr® 5;. The Cho-
leskey decomposition is used to diagonalize the error vec-
tor, i.e.
ey ZC_IEN, (51)
with
zy=CC’.

Thus, the success rate of (49) can be rewritten as
UQ(CNI) 6%2
5 / e
12 (ENI)

P /e’N
S /enE

ur(ex, Ry _,) _“fV;Kd p p
. e eNl 61\72"' €NK71,

I (exy e vempe )

(52)

(53)

where the correlation between the float ambiguities is in-
cluded in the integration limitg, andug. These limits are
obtained from the inequalities

k

—0.5 — b, < EN, = Z ijeNj < 40.5 — by, (54)
j=1
which can be solved fary,
Iy <eg, <up (55)
with
k—1
! _ —0.5 — bk - Zj:l ijeﬁj
b Crk
405 — by — S8 Chje
P =L TN (56)
Crk

The second transformation uses the cumulative normal dis-
tribution to absorb the exponential functions of (53), i.e.

2k = CIJ(eNk), (57)



with

1 192
d(v) = —— 2% qg. 58
== [ (58)
Thus, (53) simplifies to
ub(21) K (Z1,..,2K 1)
/ / / ledZQ...dZK,
l/ l/(zl ll}((zl ..... yRK — 1)
(59)
with the transformed integration limits
1 k—1
I, = & —=—[-05-bp— C
k Crr k JZ; i @ (ZJ)
1 k—1
o= @ 0.5 — by, — C
Up Crr + k JZ; ey @ (ZJ)
Finally, Genz’s third transformation is given by
ZEk — Z;
= 60
Wi 'U/;c — Z;Cv ( )

which puts the integral into a constant limit form, i.e.

<ua—za>/01<ug—z;>/ol...

1
(u’K—l}()/ dwidws, ... dwg.  (61)
0

P =

Eq. (61) can be expanded to

1 1
Po= =) [ b= tsn [
(ux — ) f(wr—1) 01 flwg)dw ... dwg,
(62)
with
fwy) = { b pseest (63)

The introduction off (wy) does not change the value Bf
but it allows us to interprety;, as a uniformly distributed
random variable betweehand 1. Thus, (62) can also be
written as

K
Euw,,... wK{ (u;(wl,...,w;{)l;(wl,...,wK))}
(64)

with wy, ~ U(0,1) for all k. The success rate of (64) can
be efficiently computed using Monte-Carlo simulation or
more advanced numerical integration techniques, e.g. the
subregion adaptive method as discussed by Genz in [10].

Fig. 6 shows the benefit of computing the expectation va-
lue w.r.t.wy in (64) instead of w.r.tz ;; in (49). The compu-
tational burden is measured by the time required to estima-
te P, with a dual core2.1 GHz CPU. The use of the three
integral transformations enables a substantial reduation
the computation time. A realtime evaluation becomes also
feasible.
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Fig. 6 Efficient computation of success rate of rounding
with integral transformations.

Fig. 7 shows the probability of wrong fixing for various
integer estimation techniques. An ionosphere-free aarrie
smoothing is applied to two GP-IF linear combinations (a
code carrier combination of maximum discrimination and a
code-only combination) of E1 and E5 measurements to im-
prove the reliability of widelane ambiguity resolution. Ob
viously, a larger smoothing period results in a lower error
rate. For unbiased measurements, the integer least-square
estimation achieves the lowest error rate of all fixing me-
thods. A slightly higher error rate can be observed for se-
guential fixing with integer decorrelation due to the lack of
an integer search. An additional degradation occurs if the
integer decorrelation is omitted, and the largest errerisat
obtained for rounding as it does not consider the correlati-
ons between the float ambiguity estimates. The ranking of
the fixing techniques completely changes in the presence
of biases. An elevation dependent exponential bias profile
was chosen to analyze the impact of multipath. A worst-
case accumulation over all visible satellites is considere
as described by Henkel et al. in [7]. The magnitude of the
code multipath was set tbcm for a satellite in the zenith
and to10 cm for a satellite in the horizon. For the phase
multipath,0.01 cycles and).1 cylces were assumed respec-
tively. In this case, rounding achieves the lowest errae,rat
followed by sequential fixing without and with integer de-
correlation. The integer decorrelation amplifies the dase
and the search criterion is suboptimal which results in the
largest error rate. Consequently, the most simple method is
also the most robust one: the rounding of the float solution.
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Fig. 7 Comparison of various integer ambiguity resoluti-
on techniques for both unbiased and biased measurements
with worst-case accumulation of biases.

CONCLUSION

In this paper, a new group of linear combinations was
analyzed that include both code and carrier phase measu-
rements on two or more frequencies. An arbitrary scaling
of the geometry, an arbitrary scaling of the ionospheric de-
lay, and any preferred wavelength can be obtained with the-
se linear combinations. The maximization of the ambiguity
discrimination leads to combinations with a wavelength of
several meters and a noise level of a few centimeters. The
integer ambiguities of these combinations can be resolved
with a probability of wrong fixing of less that0—? with
measurements from a few epochs. These combinations are
recommended for any application where reliability is more
important than accuracy.

Moreover, an efficient method for the computation of the
success rate of rounding of the float solution is suggesdted. |
is based on a transformation of the cumulative multivaria-
te Gaussian distribution into uniform distributions, whic
can be efficiently evaluated in realtime. The rounding of
the float solution was considered for two reasons: First, the
linear combinations improve the conditioning of the equa-
tion system such that there is no strong need of an inte-
ger decorrelation. Secondly, rounding of the float solution
is much less sensitive with respect to multipath and biases
than bootstrapping and integer least-squares estimation.

Both the optimized multi-frequency linear combinations
with large wavelengths and the efficient computation of the
success rate are seen as two steps to improve the reliability
of ambiguity resolution for precise point positioning.
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