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Abstract

This paper presents a Markov chain Monte Carlo based estimation procedure
for the COGARCH(1,1) model driven by a compound Poisson process. The CO-
GARCH model is a continuous-time analogue to the discrete-time GARCH model
and captures many of the stylized facts of financial time series, as has been shown
in various papers. Principles for the estimation of point processes by MCMC are
adapted to the special structure of the COGARCH(1,1) model. The algorithm uses
discrete GARCH-type equations on a random grid which changes in each iteration
of the MCMC sampler. Moreover, exact solutions of the volatility SDE of the CO-
GARCH(1,1) model are available on this grid, so that no approximations of the
COGARCH equations are necessary. The method is also applicable to irregularly
spaced observations. A simulation study illustrates the quality of the MCMC es-
timates. Finally we fit the COGARCH(1,1) model to high-frequency data of the
S&P500.
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1 Introduction

Since the seminal papers by Engle (1982) and Bollerslev (1986), many extensions of the
ARCH and GARCH models have been proposed in the literature to cover different as-
pects of financial time series. An impressive overview over the ARCH and GARCH model
family is given in Bollerslev (2008). With the increasing popularity of continuous-time
models in financial econometrics - dating back to the fundamental work of Black and
Scholes (1973) - also various continuous-time analogues of GARCH have been proposed
over the past two decades. But what is meant exactly by a continuous-time analogue
of GARCH? Is it a process that preserves the random recurrence volatility equation of
GARCH(1,1)? Or a process that can be derived as a functional limit of GARCH? One
which exhibits a GARCH-type behavior when sampled in discrete-time? Or one which
is statistically equivalent to the discrete-time GARCH in the sense of Le Cam? Should
such a process incorporate only one source of uncertainty as the original GARCH model?
According to these and even more different ways of thinking of a continuous-time ana-
logue of GARCH, the suggested models in the literature vary a lot in formulation and
have different statistical properties. In order to understand where the COGARCH model
considered in this paper stands with respect to other continuous-time GARCH models,
we briefly summarize some important works dealing with continuous-time analogues of
GARCH.

As one of the first dealing with this topic, Nelson (1990) derived a continuous-time
limit of discrete GARCH(1,1) processes by aggregating the GARCH innovations. The
corresponding limit process turned out to be a bivariate diffusion driven by two indepen-
dent Brownian motions, so that the continuous-time limit incorporates two independent
sources of uncertainty. Wang (2002) showed that the diffusion limit derived by Nelson
is not asymptotically equivalent to the approximating GARCH sequence, in terms of
Le Cam’s deficiency distance (see Le Cam (1986)). One should note that it is possible
to modify Nelson’s approximation to obtain a limit process which is driven by a sin-
gle Brownian motion only (see Corradi (2000)), but in that case the limiting volatility
process is deterministic, which is an undesirable property for a model describing a price
process. However, for this latter case, the sequence of discrete-time GARCH models and
the continuous-time limit are equivalent, cf. Wang (2002). An extension to diffusion limits
of a more general class of GARCH processes (called augmented GARCH) was obtained
by Duan (1997).

Also Drost and Nijman (1993) considered temporal aggregation of volatility models.
They showed that the common GARCH models of Bollerslev (1986) are not closed under
temporal aggregation, which is due to the fact that semistrong ARMA models do not have
this property, in contrast to weak ARMA models. Accordingly, Drost and Nijman (1993)

investigated weak GARCH models, a class which is closed under temporal aggregation.



Drost and Werker (1996) introduced the corresponding class of continuous-time processes
which exhibit a weak GARCH-type behavior at all discrete frequencies. They also show
that the parameters of the discretized weak GARCH process correspond to certain param-
eters in the continuous-time weak GARCH process, so that estimation methods for the
discrete-time model can be used for the continuous-time model. The class of continuous-
time weak GARCH processes nests the diffusion limit by Nelson (1990), provided that it
has finite fourth moment, and other models which are driven by two independent Lévy
processes with finite fourth moment.

In order to avoid some limitations of the weak GARCH models Meddahi and Renault
(2004) introduced the square-root stochastic autoregressive volatility (SR-SARV) mod-
els in discrete- and continuous-time, generalizing the weak GARCH models considered
in Drost and Nijman (1993) and Drost and Werker (1996). The SR-SARV class takes
its name from the closely related SR-SARV class discussed in Andersen (1994) and has
some attractive advantages: for example, in contrast to weak GARCH models, SR-SARV
allows for asymmetries, and fourth moments are not required to be finite. Moreover, the
discrete-time SR-SARV models are still closed under temporal aggregation, and exact
discretizations of continuous-time SR-SARV models are discrete-time SR-SARV models.
For a discussion of exact discretizations of SR-SARV within the framework of irregularly
spaced data see Meddahi, Renault, and Werker (2006). The continuous-time SR-SARV
class is driven by a multivariate standard Brownian motion and nests several well-known
models, e.g. the CEV (constant elasticity of variance) process introduced by Cox (1975),
the GARCH diffusion by Nelson (1990), and even a special case of COGARCH (the CO-
GARCH model where the driving Lévy process is a Brownian motion).

Closing our brief summary of continuous-time GARCH models, we mention three other
papers where Brownian motions are used as driving processes. Aiming in option pricing
applications, Kallsen and Taqqu (1998) developed a continuous-time GARCH model which
is driven by a single Brownian motion. Sampled at integer times, this model follows a
GARCH process. However, the volatility process is constant on intervals [t,¢ + 1) for
t € Ny. Kallsen and Taqqu (1998) show that the model is arbitrage free and complete,
and use it to derive pricing formulas for contingent claims such as European options. Also
Kazmerchuk et al. (2005) use a continuous-time GARCH process which is driven by a
single Brownian motion. Here the GARCH volatility process is combined with a price
process defined by a stochastic delay differential equation. Lorenz (2006) got solutions
of such stochastic delay differential equations as a weak limit of scaled GARCH(p, 1)
processes for p — co. The continuous-time GARCH limit incorporates two independent
Brownian motions, and a special case of this limiting model is Nelson’s diffusion.

After this look into the history of continuous-time GARCH modelling, we now turn
to the COGARCH model by Kliippelberg, Lindner, and Maller (2004) considered in this
paper. The COGARCH was introduced in the spirit of (i) preserving the random recur-



rence type equation of the original GARCH model, (ii) incorporating only one (univari-
ate) source of uncertainty, and (iii) using a general Lévy process (instead of the widely
used Brownian motion) in order to be able to account for jumps. This characterization
demarcates the COGARCH from all other continuous-time GARCH models mentioned
above. Although the analysis for models including jumps is far less tractable, accounting
for jumps seems to be important because jumps represent a significant source of non-
diversifiable risk as discussed by Bollerslev et al. (2008). Meantime there is quite strong
evidence for the existence of jumps in financial time series, cf. the recent studies by
Barndorff-Nielsen and Shephard (2007) and Ait-Sahalia and Jacod (2009) among others.

Let us now briefly recall the definition of COGARCH. On a filtered probability space
(Q, F, P, (F;)i>0) one is given a background driving Lévy process L = (L;);>¢. Throughout
it is assumed that EL; = 0 and EL? = 1. Given parameters (3,7, ), with 8 > 0, n > 0,
¢ > 0, and an initial variance o2, the integrated COGARCH(1,1) process G = (Gy)¢>o and

its variance process 0® = (0?);>0 are defined by the two stochastic differential equations
(SDEs)
th = O st, (11)
doj, = Bdt—no}dt+ o} d]L, L]?, (1.2)

for t > 0 and with Gq = 0. The process [L,L]b denotes the discontinuous part of
the bracket process (i.e. the quadratic variation) of L, cf. Protter (2005), p.66. As
an extension of this COGARCH(1,1) definition, Brockwell et al. (2006) introduced the
COGARCH(p, q) models. In the present paper, however, we do not deal with these higher
order models, and therefore usually just refer to COGARCH instead of COGARCH(1,1).

The similarity between the defining equations of GARCH and COGARCH is obvious.
Nevertheless, a few most important questions around the COGARCH model arise imme-
diately: Does COGARCH follow a common GARCH process when sampled in discrete
time? Does it capture the stylized facts of financial time series? How can it be estimated?

Maller, Miiller, and Szimayer (2008) proved that the COGARCH model occurs as
a continuous-time limit of GARCH in a strong sense (in probability, in the Skorokhod
metric). This result is no contradiction to Nelson, but due to the fact that Maller et al.
(2008) used thinned, not aggregated innovations and a different scaling of the parameters.
Although GARCH models can be used to approximate COGARCH, the discretely sampled
COGARCH does not form an exact GARCH process. This has major implications for the
estimation of COGARCH which we discuss later. Also Kallsen and Vesenmayer (2009)
derived the COGARCH as a continuous-time limit of GARCH, however using a different
approach than Maller et al. (2008). A recent paper by Buchmann and Miiller (2009)
addresses the question of statistical equivalence for the COGARCH, discussing therefore
the same topic as Wang (2002) for Nelson’s diffusion. The results are a bit ambiguous,

but show again non-equivalence in a realistic framework.
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As a byproduct of their strong convergence result, Maller et al. (2008) get a discrete-
time GARCH formulation for irregularly spaced observations, with specific time-varying
parameters. Such GARCH models for irregularly spaced data were also discussed in
Ghysels and Jasiak (1998), Engle (2000), and Meddahi, Renault, and Werker (2006).
Ghysels and Jasiak (1998) specify the total variance process as GARCH equation with
time-varying parameters which mimic the functional forms derived by Drost and Werker
(1996) for Nelson’s GARCH diffusion approximation when the observations are equally
spaced. Engle (2000) follows a more direct approach and assumes, in his simplest volatility
model, that the variance per time unit follows a regular GARCH(1,1) equation with
time-independent parameters. Meddahi et al. (2006) discuss the exact discretization of
continuous-time stochastic volatility processes observed at irregularly spaced times (cf.
the paragraph on SR-SARV models above), and compare their approach with those of
Ghysels and Jasiak (1998) and Engle (2000).

The second of our questions above - whether COGARCH captures the stylized facts
of financial time series - assesses the practical use of the COGARCH model. As other
continuous-time models, COGARCH might, of course, be useful for option pricing ap-
plications, and it can easily cope with irregularly spaced or missing data. The GARCH
model has been proven to be most useful for modelling financial time series, and, obvi-
ously, the feedback mechanism between mean and variance is preserved by COGARCH. A
thorough theoretical investigation of many interesting properties of COGARCH, even in
comparison to other continuous-time stochastic volatility models, can be found in Fasen
et al. (2005). Here it is shown that the COGARCH indeed captures many of the stylized
facts of financial times series. For instance, the COGARCH model, in general, exhibits
regularly varying (heavy) tails, volatility jumps upwards, and clusters on high levels. More
precisely, it can be shown that both the tail of the distribution of the stationary volatility
and the tail of the distribution of G(t) are Pareto-like under weak assumptions. It may
be of interest to compare these properties of COGARCH with the corresponding prop-
erties of other continuous-time stochastic volatility models, for instance, the model by
Barndorff-Nielsen and Shephard (2001). The Ornstein-Uhlenbeck process in this model
has heavy tails only if the Lévy process is heavy tailed, and extreme value clusters occur
only if the Lévy process has a regularly varying tail. For a detailed comparison of CO-
GARCH to the Barndorff-Nielsen and Shephard model as well as other continuous-time
models, e.g. the generalized Cox-Ingersoll-Ross model, we refer the reader to Fasen et al.
(2005). However, we point out once again that the COGARCH differs from most other
continuous-time stochastic volatility models by incorporating only one source of uncer-
tainty. Moreover, the overall volatility jump sizes depend also on the actual variance,
and, thus, vary over time, which is also a difference to some other models, e.g. the affine
jump-diffusion model as in Duffie, Pan, and Singleton (2000).

Next we address the third question asked above, i.e. how the COGARCH model can be



fitted to a data set. A first approach to estimate the parameters of the COGARCH(1,1)
model can be found in Haug, Kliippelberg, Lindner, and Zapp (2007). This paper provides
a method of moment (MM) estimation procedure based on the theoretical and empirical
moments and autocorrelation functions of the volatility process. For MM, there is no need
to specify the driving Lévy process, however, it can only be applied to equally spaced
observations and is, therefore, not applicable in many interesting situations. Moreover, it
has been shown that, as for many other models, this moment method - although being
consistent - is not very efficient.

Another estimation strategy was developed in Maller et al. (2008). Based on the
discrete-time GARCH approximation with time-varying parameters mentioned above, a
pseudo maximum likelihood (PML) procedure is derived, cf. Equations (3.2), (3.3) and
(3.4) in Maller et al. (2008). In contrast to the method of moments, this method is
applicable also to irregularly spaced observations. Although Maller et al. (2008) give an
exact formula for the conditional variance based on the continuous-time model, in practice
the volatility approximation derived in that paper has to be used. Hence, the results by
Bollerslev and Wooldridge (1992) on consistency of the PML estimates (proven for semi-
strong GARCH with a correct specification of the conditional mean and variance) cannot
be applied, and the PML estimates are not consistent. This is in line with the results
of Meddahi and Renault (2004) who considered temporally aggregated GARCH models.
Table 1 therein gives strong evidence that QMLE is not consistent for weak GARCH
coming even from an exact discretization of continuous-time processes. Nevertheless,
simulation studies (see, for example, Table 2 in Maller et al. (2008)) have shown that PML
(although being not consistent) is superior to MM (which is consistent) for not too large
sample sizes, say up to about 50000 observations (superior here means that the method
shows smaller mean squared errors for all parameters). Only for very large data sets,
consisting of, say, 100000 observations, MM gets superior to PML. Altogether it seems
that the approximation error in Maller et al. (2008) is minor compared to the inefficiency
of MM, at least for not too large sample sizes. Moreover, since the PML estimates in
Maller et al. (2008) (as well as the QML estimates considered in Meddahi and Renault
(2004)) give reasonable approximations to the true values in simulation studies, such
estimates still can serve as (quite good) starting values for other more reliable methods.
That is what the PML method of Maller et al. (2008) will be used for in the present
paper.

Since the method of moments turned out to be quite inefficient, although being con-
sistent, and the (not consistent) PML method gives only slightly better estimates for
realistic sample sizes, it is the goal of this paper to provide a more reliable estimation
method for the COGARCH parameters. The estimation method presented here is based
on a Markov chain Monte Carlo (MCMC) simulation and can also be applied to irregularly
spaced observations from COGARCH. Whereas for the method of moments and the PML



method there is no need to specify the driving Lévy process, we have to do this in our
Bayesian approach - aside from the specification of prior distributions. Moreover, we will
assume in this paper that the driving Lévy process is a compound Poisson process, having
in mind that each Lévy process (up to a possible Brownian part) can be approximated
by a sequence of compound Poisson processes. For volatility modelling with COGARCH,
this is not a severe restriction since we recall from Equation (1.2) that the volatility is
affected only by the discontinuous part of the quadratic variation process of L. Of course,
our simulation based method requires a significantly higher computation time than MM
or PML. On the other hand, we also get density estimates, not only pure point estimates.
In addition, as we will see, this effort is remunerated by much better estimation results
than one gets from MM and PML. The MCMC algorithm presented here is based on
discrete GARCH-type equations on a random grid which changes in each iteration of the
MCMC sampler. Moreover, we use ideas developed by Geyer and Mgller (1994) to sample
from point processes. This methodology was also applied in Roberts, Papaspiliopoulos,
and Dellaportas (2004) for the MCMC estimation of the model by Barndorff-Nielsen and
Shephard (2001). For the COGARCH, the methodology has to be adapted, since the
same driving Lévy process appears in both model equations.

Before we specify the MCMC algorithm in Section 2, let us now finally summarize some
important theoretical properties of the COGARCH. They all can be found in Kliippelberg
et al. (2004). As can be seen from Equation (1.1), the process G jumps at the same times

as L does, and has jump sizes
AGt == O'tALt, t Z O, (13)

where AL, denotes the jump size of L at time ¢. Conditions on the existence of moments
and for the stationarity of the volatility process can be stated using an auxiliary process
(Xt)i>0, defined by

Xp=nt— > log[l+ (AL, >0, (1.4)

0<s<t

sXt 6t\I/(s

and its Laplace transform Ee™ ). The corresponding Laplace exponent is given

by
U(s) = —ns+ /R((l + @2?)® — Dy (dr), s> 0. (1.5)

2 is implied by the

The existence of a stationary distribution for the variance process o
existence of some s > 0 such that ¥(s) < 0. Moreover, if ¥U(s) < 0 for some s > 0, then
U(t) < 0 for all 0 < t < s. For arbitrary values of s > 0 it may be difficult to derive
an explicit condition on 7, ¢ and the parameters of the driving Lévy process, so that

U(s) < 0. However, for s = 1 Equation (1.5) writes as
V(1) =—n+ <p/ 2?vy(dx). (1.6)
R
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If we assume that L is compound Poisson with intensity ¢ and a jump distribution with
finite second moment my, we immediately get W(1) = comsy — 1. If my is known, it is,
thus, sufficient to check

come—n<0 (1.7)

to guarantee the existence of a stationary distribution for the volatility process. Note
that it may be possible for certain jump distributions to derive a corresponding condition
for some s < 1, which would represent a weaker condition and therefore should be used
then instead of condition (1.7). Finally, Corollary 4.4 in Kliippelberg et al. (2004) shows
that the moment E(c%*) (k € N) exists if and only if EL3* < oo and ¥ (k) < 0. If these
conditions are satisfied for k = 1, 2, one gets

23

o _ P 5 _
E(o}) = —— and  E(o;) = T

(1)) (18)

With this theoretical background at hand, we are now ready to look into the MCMC
procedure. The paper is organized as follows: In Section 2 we develop the MCMC sampler,
choose prior distributions, and give some guidelines about the choice of the initial values.
Section 3 assesses the performance of the algorithm in a simulation study and compares
the quality of the posterior mean estimates to the quality of the PML estimates in Maller
et al. (2008). In Section 4 we apply our MCMC algorithm to high-frequency data from the
S&P 500 for the years 2005, 2006, and 2007. Section 5 finally contains a short summary.

2 Markov chain Monte Carlo algorithm

The fundamental idea of the MCMC algorithm is to estimate the jumps of the underlying
compound Poisson process and to represent the COGARCH(1,1) model in such a form
that, based on the jump times, it can be considered a discrete GARCH model on the
(random) grid of the jump times. Therefore, the approach is different to the discrete-time
GARCH formulation in Maller et al. (2008) which is defined on the grid of the observation
times, not of the jump times.

Since we work with a compound Poisson process as driving Lévy process, the quadratic
variation process just adds up the squared jumps of the compound Poisson process, so

that Equation (1.2) can be written as
do}, = Bdt —no} dt + oo} (AL)>. (2.1)

Throughout we will assume that the jump distribution has finite second moment my and
no point mass at 0 (the latter condition is required since we cannot identify jumps of size
0), and denote the corresponding density function by z(-). The interarrival times between
the jumps of L are exponentially distributed, a fact which also implies that almost surely

no jumps occur at the observation times. Since the process G is the integrated COGARCH
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process, log returns correspond to differences of GG, so that L should also have negative
jumps.

Let us now introduce some notations. We assume that we observe the process G
on the interval [0,7] at the observation times 0 < t; < ... < t, =: T. The set of
observations is denoted by G := (Gy,,...,Gy,). The interval between the (j — 1)th and
the jth observation is denoted by [;, i.e. I; := [t;_1,%;], and the change of G on I; by
AGy; =Gy — Gy,

The estimated jump times of G' and of L in [0, 7] are denoted by 0 < 7y < ... < 7, < T
Note that the index m reflects the estimated number of jumps. Therefore the value of
m can vary over the iterations of the MCMC procedure. The estimated jump sizes of G
at the jump times 7; are denoted by g;, i.e. ¢; := AG,, for ¢ = 1,...,m. For notational
convenience we set gy := 0. Further we define g to be the vector of all jump sizes g;, i.e.
g :=(91,-..,9m). The time elapsed between the (i — 1)th and the ith estimated jump is
A7; := 7; — 7;_1. Throughout this paper we will consider ¥ := {(7;,¢;)|i = 1,...,m} as
a marked point process. For notational convenience, the parameters 3, 1, ¢, and o2 will

often be collected in the vector 8 := (3,7, p,02), and the jump times will be combined to

T:= (Tt Tm)-

2.1 The volatilities at the jump times

Obviously, the COGARCH process G as well as the volatility process o does not jump
between two subsequent jumps of the Lévy process, say during the time interval (7;_1,7;).
Therefore, between two subsequent jumps, the process o2 follows an ordinary differential
equation (ODE), as can be seen from Equation (2.1). Accordingly, we can apply the
theory for solving ODEs to derive an exact solution of the volatility SDE (2.1) on the
grid of the jump times. We just have to take into account, that the volatility process as

defined in (1.2) and (2.1) is left-continuous. The exact solution is given as

o7 = % + 0% g - g e AT (2.2)

Obviously, the volatility process has lower bound 3/7, and, between the jumps, the volatil-

ity is exponentially decreasing with rate 1. Now we rewrite Equation (2.2) by

o2 = §<1 — e AT + e 1B Tipg? |+ e 1T (2.3)

to find a discrete GARCH-type equation on the grid of the jump times. In particular, we
2

can deterministically compute an estimate of the volatility o2 at time 7; when o2, 8,m, p,
the jump sizes ¢i,...,9;_1, and the jump times 7q,...,7; are known or estimated. In
this case we can obviously avoid the difficult update of the volatilities from their full

conditionals. Our MCMC algorithm therefore estimates 3, n, ¢, o2, ¢, and the marked
point process P = {(7;,g:)|i = 1,...,m}.



Note that Equations (2.2) and (2.3) give the spot variance at one time point given the
jumps, not the conditional variance of a return on [¢,¢ + 1] given information available
at time t. In particular, Equations (2.2) and (2.3) do not play any role in the PML
method which is used later to derive reasonable starting values for the MCMC chains.
The PML method is based only on Equations (3.2), (3.3) and (3.4) in Maller et al.
(2008). In particular, there are two important differences between (2.2) and (2.3) above
and Equation (3.4) in Maller et al. (2008): First, (2.2) and (2.3) both live on the grid
of the unknown (and later estimated) jump times, whereas (3.4) in Maller et al. (2008)
lives on the grid of the observation times. Second, (2.2) and (2.3) are exact, whereas
(3.4) in Maller et al. (2008) is an approximation. Equations (2.2) and (2.3) show how to
calculate the conditional variance if samples of the jump times and sizes were available. In
reality the exact jumps times and sizes will, of course, never be known, but here samples
are provided by the MCMC algorithm. We emphasize once again, that between two
subsequent jumps, the SDE (2.1) becomes a simple ordinary differential equation, due to
the fact the the driving Lévy process is a compound Poisson process. This ODE can be
solved using standard methods from analysis, giving Equation (2.2).

We point out that we do not estimate the jump sizes of the process L but those of
G. The advantage of this strategy is that the restrictions which are imposed from the
observations on the latent processes, are taken into account directly when the jumps of G
are estimated. This is not possible for the estimation of the jumps of L, since according
to Equation (1.3) the jumps of L are related to the jumps of G via the volatilities o7.

The general sampling scheme looks as follows (recall that G = (G, ..., Gy,) denotes
the set of observations and 8 = (3,7, ¢, 02) contains the COGARCH parameters):

1. Draw @ = {(7,g:)]: = 1,...,m} (the jump times and sizes of G) from f(¢|G,0,c).
2. Draw the COGARCH parameters 3,7, ¢, o8 from f(0|G,,c).
3. Draw the intensity ¢ of the compound Poisson process L from f(c|G,,8).

It will turn out that we have to update the latent process v and all other parameters
by Metropolis-Hastings (MH) steps, since the exact computation of the corresponding full
conditionals is analytically intractable. For MH-steps the old value will always be marked
with a ®, while the proposed value will be marked with a °©. We now consider the prior
distributions and the MH-steps in detail.

2.2 Prior distributions

For the prior distributions we assume the following dependence structure:

f(,0.m,c,8,08) = f(l8,n, 0,00, ¢) f(05]8,1,0,¢) f(eln, ) f(B) f(n) f(c).
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For ¢ we take a I'(a, b) prior with some hyperparameters a and b and for § and 7 uniform
priors on (0,00). As found in simulation experiments, unstationarity of the volatility
process can result in numeric instabilities of the MCMC procedure. Therefore we use
unequality (1.7) and guarantee the stationarity of the volatility process by assuming that
the parameter ¢ conditional on 1 and ¢ is uniformly distributed on [0,7/(cm2)]. The
parameter o2 conditional on 3, 7, ¢, and ¢ has a Pareto(z i, d)-prior with left boundary
Tmin := (/1 and parameter d := n/(cpms). The boundary z,, reflects the lower bound
B/n for the stationary volatility process (cf. Kliippelberg et al. (2006), Proposition 2),
whereas the parameter d is chosen so that the mean of the Pareto distribution matches
the mean of the stationary distribution of the volatility process given in Equation (1.8).
Now we consider the prior distribution for the marked point process 1. This prior
distribution is completely determined by the properties of the compound Poisson process
L and by the implications given from the model equations. Since the jumps g; are related
to the jumps of the process L via the volatilities and therefore via the parameters 3, 1, ¢,
and o2, we assume prior dependence of ¥ on the parameter vector @ and on c. Since the
jump times of GG are the same as of L and the interarrival times for L are independent of

each other, of the jump sizes, and of all model parameters, we assume that

f(¢|07 C) = f<g|7—17 ey Tm, M, O)f(Th cee 7Tm‘m7 C>f<m|c) (24)

That means, f(1|6,c) decomposes into the distribution of the number of jumps, the
distribution of the position of these jumps given the number, and the distribution of the
jump sizes given the positions.

Now we write the first factor on the right-hand side of Equation (2.4) as the product

f<g|7-17 <oy T,y T, 0) = H f(gi‘gifla T1y vy Tm, M, 0) (25)
i=1
Following Equation (2.3) the distribution of g; given g; 1, 71,...,Tm, and @ is the same

as the distribution of g; given o,.. Since the jumps of L have density z(-), we arrive, in

accordance to Equation (1.3), at

m

Flglri, . rmm, 8) = [[—= <g—> (2.6)

For the second factor on the right-hand side of Equation (2.4) we just refer to the basic
property of Poisson processes, that, given a fixed number m of jumps in [0,7] and the
intensity ¢, the position of the jumps 71, ..., 7, is uniformly distributed on the set {0 <
T < ...<Tym<T} ie.

m!
f(Tl, e ,Tm|m, C) = 7_'—nl]l{o<.,-1<_”<7-m<T}. (27)
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Finally, the factor f(m|c) in (2.4) represents the probability to have exactly m jumps
in [0,7] when the intensity ¢ is known. From the properties of the compound Poisson

process we know that
T m
f(mle) = e
m!

Combining Equations (2.6), (2.7), and (2.8) we get

f("ab|9,c) = e Tcm [H LZ (C;q—l)] ]1{0<7'1<...<Tm<T}- (2-9)

Ti

(2.8)

This is an exact joint density for m, g and 7 given 6 and c. However, one should always
keep in mind that it contains the continuous components g and 7 as well as the discrete

component m.

2.3 Sampling of the marked point process

The update of the marked point process 1) is central to the MCMC algorithm. Here the
statistical information from the observed data is incorporated. Intuitively speaking, the
hidden process 1 must be updated in such a way that it always fits together with the
observations. In particular, the jump sizes g; between two observation times have to be
drawn in such a way that they sum up to the observed overall change of the process G
in the corresponding observation interval. Hence, sampling of the marked point process
1) is quite involved. A general methodology for simulation procedures for spatial point
processes was developed by Geyer and Mgller (1994). However, their strategies are only
partly applicable in our context. One main reason is that the observations G imply some
restrictions on 1), so that for example a birth step as suggested in Geyer and Moller (1994)
cannot be applied directly. However, like Geyer and Mgller (1994) we also basically use
two types of steps to draw from t): the displacement move and the birth-or-death move.
For the displacement moves, we distinguish further between a move, where the jump sizes
of all jumps of an interval (¢;_1,¢;) are drawn, and a move, where the jump times of all
jumps of such an interval are drawn. A birth move increases the number of elements in
1, and a death move decreases the number of elements in ). In each iteration we choose
one of these four moves with probability 1/4 each. More details are given in Sections 2.3.2
and 2.3.3. Let us now first investigate the full conditional distribution f(v|G, 8, c).

2.3.1 The full conditional for )

The observations collected in G contain important information about the process .

Consider the interval I; between the (j — 1)th and the jth observation. The fact, that the

jumps sizes {g;|7; € I;} must add up exactly to AGy,, implies several restrictions on .
If AGy, = 0, the process ¥ does not contain any jumps in I;. That is a direct

consequence of our assumption that the jumps of L are almost surely unequal to zero.
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Now, if ¥ contains exactly one jump in [; and AG;, # 0, then obviously this jump must
have size AGy,. If ¥ contains k jumps in [; with & > 1 and we know that AGy; # 0, then
only £ — 1 jumps can be chosen randomly, while the kth jump is determined by the other
ones.

We will use these implications for choosing suitable proposal densities for the moves of
1p. Whether the collection of jumps summarized in ) is in accordance to the observation
vector G in the sense, that the jumps in 2 imply the observation vector G, can be
expressed by the density f(G|v), which takes on only the values 0 or 1 and which therefore
will also be denoted by the indicator

]l{'@b supports G} *— f(G).

Now we can derive that

f]G.0.c) o f(G..0.c) = f(Glp.0.0)f(1[6.c)f(6.c)
x FGROFEI0.0) = Ly qupports Gy FW10.0). (210)

Equation (2.9) gives an explicit expression for f(t|6,c). Therefore we get

—¢T m 1 9i
f(|G,0,c) < e e [H—Z (—)] ]1{0<n<...<rm<T}11{¢ supports G} (2.11)

~ron \0

k3

Recall from (2.3) that the volatilities Ui_ depend on the parameters 3, n, ¢, and o3.
Proportionality (2.11) is used for the evaluation of the acceptance probabilities for the
following Metropolis-Hastings steps. Therefore it does not matter that the normalizing

constant is missing.

2.3.2 Displacement Moves

For a displacement-size-move we choose one interval I; randomly, with probability (t; —
ti—1)/T. Now let N; be the current (estimated) number of jumps in this interval I;. Let
us consider the possible cases:

Of course, if N; = 0, we cannot change size or position. For N; = 1 we must not
change the size of this only jump, because otherwise 9 would no longer support G. Only
in the case N; > 1 we are allowed to change the jump sizes. As for all MH-steps, it is very
important to choose a good proposal density ¢(°,1°) to get appropriate acceptance
rates. In particular, the proposal density should refer to the jump distribution of the

driving compound Poisson process.

Example.
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We assume just for the moment that the jumps of L are standard normally distributed. Let
9515595 N, be the current jump sizes in the interval /;, and let crjzﬁ be the corresponding
estimated volatilities. On the one hand, our proposal values g3, ..., g; n, have to satisfy

the equation g7, + ...+ g N, = AGY,, or, equivalently,

9;'),Nj =AGy, — g5y —-.. — 9;,Nj71' (2.12)

On the other hand we know that the jumps of G are normally distributed with mean 0

and variance U?’,z* Therefore we suggest to draw the N; —1 jumps from an (N, — 1)-variate

normal distribution with mean vector 0 and covariance matrix > = diag(5?, ..., 5?), where
N.
~2 1 o
T =N E :Uj,w
J =1

so that o2 represents an average over the old estimated volatilities on the jump times in
I;. Taking condition (2.12) into account, this leads in the case N; = 2 to sampling g5,
from N(AGy,/2,6°/2) and computing g5, = AGy, — ¢5,. In the case N; = 3 one has to

draw g7, and g7, from the bivariate normal distribution

N AGy, /3 262/3 —&%/3
AGy /3 |\ —6%/3 262/3

and to compute g73 = AGy; — g7, — g;5- For N; > 3 the multivariate normal proposal
densities can be derived analogously. Alternatively one can also choose only three jumps

in I; at random and apply a three-dimensional displacement-size-move to these jumps.
O

With regard to Equation (2.11) we note that it is usually very easy to propose new jump
sizes so that 1 supports G. Moreover, it is obvious that, for computing the acceptance
probability, the factor e=T¢™ in (2.11) cancels out, since the number of elements in 1)
remains unchanged under a displacement-size-move.

For the displacement-times-move we choose again one interval I; randomly, with prob-

ability (¢; —t;_1)/T. Let N; > 0 be the number of jumps in interval I, (as mentioned, for

N; = 0 nothing happens). We draw the proposal values Tigse Ty N, uniformly on the
set
N.
{(Tj,h .. 7Tj,Nj> - Ij ]lTj,l < ... < Tj,NJ-}-

Since we only draw the jump times and the jump sizes remain the same, the proposed
values support GG. The computation of the acceptance probability is straightforward, we
—cT .m

just note that the factor e~ ¢™ in (2.11) cancels out again, since the number of elements

in 7 remains unchanged.
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2.3.3 Birth-Move and Death-Move

The aim of these types of move is to increase/decrease the number of jumps. Because of
the restrictions implied by G, we use the following strategy.

For the birth-move, we first draw uniformly a time point 7° € [0,T] (i.e. we draw 7°
from the density pereate(-) := 1/T"), search for the interval I; such that 7° € I;, and check
the current number N; of jumps in [;. If N; = 0 we cannot add a jump in this interval.
If N; > 0 we add one jump at time 7° with size 0 to the current constellation in 1 and
make a displacement-size-step in I; in addition, since we do not allow for jumps of size 0.

The death-move is used to decrease the number of jumps. First we choose uniformly
an index ¢ € {1,...,m} (i.e. each index ¢ is chosen with probability premove(-) := 1/m)
and then try to remove the jump (7;,¢;) from the current constellation of jumps in .
For this we first search for the interval /; such that 7; € I;, and check the current number
N; of jumps in I;. If N; = 1 we cannot remove this jump from 1) and therefore let
the current constellation of jumps unchanged. If N; > 1 we remove this jump from the
current constellation in 1) and make a displacement-size-step in [; in addition.

It may help to think of a complete birth as a three stage procedure: The decision to
make a birth step (which happens with probability py;1, := 1/4), the creation of a new
jump time using pereate, and a displacement-size-step with a proposal distribution ggj,e-
Analogously, a complete death step is done by the following three actions: The decision
to make a death step (which happens with probability peatn := 1/4), the removal of a
jump using premove, and a displacement-size-step using again ¢giye-

The acceptance rate is influenced also by the proposal in the displacement-size-step,
and for evaluating (2.11) one has to take into account that the number of jumps increased
from m to m + 1. Neglecting the indicator variables in Equation (2.11), the acceptance

probability & = min{1,r} for a birth-move is now determined by

f(@°|G, 0, c) pgeath Premove Gsize(9°, 9°)

f(*|G,0,¢) phirth Pereate Gsize(9°5 9°)

e~ et f(g°|T°,m,0) T Gsize(9°,9°)
e=fem fg®lT®,m,0) (m+1) gsize(9°, 9°)
I f(g°|T°,m, 0) dsie(9°, 9°)

m+1f(g*|T*,m,0) qsie(9°.9°)

Obviously, the term ¢I'/(m + 1) acts a correction factor: Since we expect ¢I’ jumps on
[0,7T] it tends to reject a birth when m + 1 > ¢T' (i.e. if we have already more jumps
than expected) and tends to support a birth when m + 1 < ¢T" (i.e. if we have less jumps
than expected). Analogously, for the death step one gets the factor m/(c¢T") which tends
to reject a death when m < ¢T" and tends to support a death when m > T'.
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2.4 Sampling of 0 and ¢

For deriving the full conditional f(8|G, v, ¢) we note that 1) contains all knowledge about
G. Therefore we know that

fOIG,¥,c) = f(Olp,c) o f(¢[0,c)f(0lc)f(c) < [f(glm,... Tm,m,0)f(O]c).

The latter proportionality can be seen from Equation (2.4).

It is quite difficult to find proposal densities for the MH step which lead to good
acceptance rates. We suggest to use Equation (2.5) to get maximum likelihood estimates
for the components of 6, which maximize f(t|0,c). Recall that 3, n, ¢, and o appear
in (2.9) through the volatilities o2, which we can compute using Equation (2.3). For
all parameters contained in @ we choose normal proposal distributions (truncated to the
support of the parameter), where the mean is the corresponding MIL-estimate, and the
variance is determined by the behavior of the likelihood f(1|8, ¢) in the closer area around
the ML-estimate. A careful choice of the variance is important to achieve good acceptance
rates.

For the intensity ¢ we use again a (truncated) normal proposal. Taking the I'(a, b) prior

for ¢ and the conditional priors for o2 and ¢ into account, we get from simple calculations

f(elG,,0) o [(G,4,0,¢) o [(Glh)[f(¢]0,c)f(0]c)f(c)

oc el emdTH) (5L )T g (),

Therefore the calculation of the acceptance probability is straightforward.

2.5 Starting values, update strategy, and volatility estimates

A sensible choice of the starting values is very important for a stable run of the MCMC
sampler. Also the burn-in period can be shortened dramatically, when the initial con-
stellation of the parameters is chosen in a sensible way. A simple way to get reasonable
starting values for §, n, and ¢ is to apply the PML method by Maller et al. (2008) or, if
the observations are equally spaced, the method of moments by Haug et al. (2007), and to
use the corresponding estimates as starting values of the MCMC sampler. Alternatively,
one can often guess rough estimates of the mean and variance of the volatility process and
then choose sensible starting values using Equations (1.8) and (2.2). One should also keep
in mind, that the parameter ¢ represents not only the jump intensity of the driving Lévy
process, but also plays a role in computing the mean and the variance of the volatility
process (72)>0.

Another important tool to optimize the output of the MCMC sampler is the choice of
a good update strategy. Since in each iteration only one jump can be added or removed,

it is reasonable to update the process 1) more often than the parameters. In the following
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simulation study and application, we, therefore, update the jumps times and sizes, the
number of jumps, and the parameter ¢ in each iteration, while the parameters 3, 1, ¢ and
o2 are updated only each 50th iteration.

Usually, one is more interested in volatility estimates than in bare parameter esti-
mates. In each iteration of the MCMC algorithm one can easily compute estimates for
the volatility process at time ¢* using the estimate for o2., where 7* denotes the time of
the last estimated jump before t*. Noting that no jump occurs between time 7% and t*

one can compute the volatility at time ¢* analogously to Equation (2.3) by

of = é(l - efn(t*J*)) + e*”(t**f*)gpgz* + e =) 52

T

where g2, is the estimated jump of the process G at time 7*.

3 Simulation study

In this section we assess the quality of the MCMC estimates. We setup a simulation study;,
which is similar to the framework of the application in Section 4. In addition, we compare
the output of the MCMC procedure with the PML method of Maller et al. (2008). In
that paper it has been shown already that the PML method is usually superior to the
method of moments (MM) by Haug et al. (2007). Moreover, since we deal with irregularly
spaced observations MM cannot cope with, we cannot compare our method directly with
MM unless restricting ourselves to the special case of equally spaced observations. To
justify our estimates in Section 4, we prefer, however, to conduct a simulation study with
irregularly spaced observations, while omitting another comparison with the MM method.

We start with the simulation of 50 data sets containing different realizations of the same
COGARCH(1,1) process, i.e. with the same parameters and the same jump distribution
and intensity of the driving compound Poisson process. This compound Poisson process
is assumed to have normally distributed jumps with mean 0 and variance my = 1/20000.
We point out again, that, also under this assumption, the resulting distributions of both
G(t) and the stationary distribution of the volatility process has Pareto-like, i.e. heavy
tails. Each of the 50 data sets contains data for ¢ € [0,1]. To copy the framework of our
application in Section 4, we observe the process at 19500 unequally spaced observation
times (this corresponds to 78 observations per day over 250 trading days). We copy also
the behavior of the business time scale from Section 4 for the year 2007 (cf. Table 3; for a
detailed explanation of the used business time scale see Section 4). Starting from a given
basic time unit u, the distance of some observations is 6.2170 u, whereas sometimes the
process is observed again after 0.6174 u. Therefore, the interobservation times can differ
by a factor more than 10. The simulation parameters are, for similarity with Table 4,
B =0.001, =02, ¢ =0.1, 02 = 0.0125, and ¢ = 24 000.
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8 n @ a5 c
True 1.0000¢-3 0.2000 0.1000 0.0125 24000

PML  MCMC PML MCMC PML MCMC MCMC MCMC
Bias 0.0764e-3 0.0317e-3 -0.0052 0.0019 -0.0071 -0.0012  0.0002 -38.22
RMSE  0.1723e-3 0.0972e-3  0.0186 0.0123  0.0098 0.0056  0.0004 168.64

Table 1: Bias and RMSE for posterior mean estimates of 3, 1, ¢, ¢, and ¢, based on 50
simulated data sets. Bias and RMSE for PML estimates of 3, n, and ¢ for comparison.

Following our own recommendation in Section 2.5, we use PML estimates of 3, n, and
v as starting values for the MCMC chain to reduce the burn-in period. Based on these
estimates and together with a starting value for ¢, an initial value for the parameter o3 is
then computed as the mean of the volatility process, according to Equation (1.8). First
inspections of the trace plots of our MCMC sample show that, even for quite bad starting
values for ¢ (e.g. ¢ = 20000 or ¢ = 30000), the chains converge within about 150000
iterations. We emphasize once again that only the jump times and sizes, the number
of jumps, and the parameter ¢ are updated in each iteration, whereas the other four
parameters are updated only each 50th iteration. Therefore, 150 000 iterations correspond
to only 3000 updates of 3, n, ¢, and gg. According to these observations, we use the first
200000 iterations for burn-in, and then run the MCMC algorithm for additional 500 000
iterations, so that we have 10000 samples in total to estimate the posterior distribution.
The acceptance rates for the displacement and birth- and death-moves as well as for 3, ¢
and ¢ were around 80%, and for n and o2 at about 60%.

Table 1 shows the bias and RMSE of the posterior mean (MCMC) estimates across
the 50 simulated data sets, for the parameters (3, n, ¢, og, and c. For comparison, we
add the corresponding values for the PML estimates of 3, n, and ¢. As to the bias, the
posterior mean estimates for 7, ¢, 02, and ¢ are quite satisfying, only the parameter j3
is slightly overestimated on average. Comparing MCMC and PML, we state, that for
the parameter 3, the PML method tends to overestimate 3 by more than 7%, whereas
the MCMC method overestimates it just by about 3% on average. In addition, MCMC
reduces the RMSE of the PML method by more than 40%. Also for n and ¢, one gets the
more unbiased estimates by the MCMC method. The corresponding RMSEs are again
reduced by MCMC by around 30 to 40%.

Summarizing these results, the MCMC approach leads to less biased and more efficient
estimates than the PML method. This improvement in the quality of the estimates is,
as expected, also due to a much higher computation time for MCMC, which is, for each
of the 50 data sets, about 10 hours on an Intel Core 2.66 GHz processor. In general,
the computation time depends, of course, heavily on the number of observations. By

comparison, the PML and the MM method have usually a computing time of a few seconds
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only, however, they do not provide any information on the distribution of the parameters,
and the corresponding estimates are, furthermore, not as exact as the MCMC estimates.

As already mentioned, we used the PML estimates of 3, 1, and ¢ as starting values
for the MCMC chain to reduce the burn-in period. Based on this simulation study, we
generally recommend for practical purposes to apply first the PML method to get good
starting values. The MCMC method can than be used to make these estimates 'more
exact’ and to get the corresponding posterior distributions in addition.

Of course, it is not really surprising, that the MCMC method outperforms the PML
method (which is, in turn, usually superior to the MM method). It has been shown also in
other settings, that MCMC outperforms competing methods (for example, see Jacquier,
Polson, and Rossi (1994)). However, it cannot be stated in general that each MCMC
approach outperforms classical estimation methods, but it has to be checked for each new

algorithm again.

4 Application to S&P500 index data

The goal of this section is to illustrate how to apply the COGARCH(1,1) model to financial
data by modelling the time-varying volatility of the S&P500. The S&P500 index is one
of the most widely followed measures of the US equities market, being made up of 500 of
the largest stocks in the market (representing around three quarters of all US equities).
In the literature there exist various papers addressing the estimation of the volatility
in the S&P500. The paper by Hsieh (1991) models the S&P500 using high-frequency
data. Hsieh uses 15 minute observation intervals and finds support for an EGARCH (4,4)
model. Later, Andersen, Benzoni, and Lund (2002), and Eraker, Johannes, and Polson
(2003), used models admitting stochastic volatility together with jumps both in returns
and in volatility, for the S&P500. Lundblad (2007) estimates daily and monthly volatility
of returns on the US market using data stretching over a period over more than 150
years. While he finds some evidence of a relationship between volatility and return, he
is agnostic as to which of the models he uses - GARCH (1,1), TARCH (1,1), QGARCH
(1,1) or EGARCH (1,1) — best fits the data.

Our analysis will use observations taken at five-minute intervals. This high-frequency
structure of the data can easily be captured by the continuous-time framework of the
COGARCH. Moreover, the use of COGARCH enables the analysis of irregularly spaced
data, which we will be faced with after a transformation of the physical time scale to
a virtual business time scale. After a brief description of the raw data on the S&P500
index, we discuss data cleaning and pre-processing. To account for intraday volatility
patterns, which cannot be captured by the COGARCH model, we transform the physical
time to a virtual business time using the PML method. Simultaneously, we get good

starting values for our MCMC procedure. Finally we report on the results of fitting the
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COGARCH model to the S&P500 by MCMC, separately for the years 2005, 2006, and
2007.

4.1 Data description and pre-processing

Based on tick-by-tick index data from the NYSE of the years 2005, 2006, and 2007, we
compute b-minutes log-returns. After that, we have, in total, 19617, 19460, and 19458
observations, for these three years respectively. Note that the number of 5-minutes log-
returns per year depends not only on the number of trading days, but also on irregular-
ities as memorials, holidays (e.g. on Christmas Eve the NYSE closes usually at 1pm),
and special events (for a complete list of trading hours exceptions at NYSE since 1885
see www.nyse.com/pdfs/closings.pdf). Moreover, a few observations are missing, usually
since some data is obviously reported erroneous, and has to be removed from the data set.
However, taking advantage of our continuous-time approach, we do not use interpolation
to fill in the missing values, but instead take the time difference to the previous available
observation into account.

Before applying the COGARCH model to the data, one has to think carefully about
which features of the data are to be captured by the COGARCH, and which are not. The
COGARCH is designed to describe the behavior of the volatility in the data. Moreover,
for long data sets, it describes the fine structure of the volatility, however, long-run regime
switches, i.e. the raw structure of the volatility, cannot be detected, since we assume the
COGARCH parameters (5, n, and ¢ to be constant over time. Therefore, we must check
first whether the data indeed shows a stationary volatility pattern over the whole time
frame. In our data, this is definitely not the case, c.f. Figure 1, first and second row, for
the data in 2007. Therefore we first pre-process the data by estimating local trends and
local volatility weights. However, we must be careful not to destroy the fine structure
of volatility which we want to describe by the COGARCH model. Therefore we aim at
a standardization procedure which uses trends and volatility weights over longer periods
such as one month, which corresponds to around 1600 observations in our setup.

In the following we denote the observed log-returns by y;, i = 1,...,T, whereas D
denotes the number of trading days in the year under consideration (e.g. in 2007 we have
T = 19458 and D = 251). Next we have to introduce a few functions, to be able to
cover all aspects of the data within our subsequent formulas. First, let d : {1,..., T} —
{1,...,D}, i — d(i), denote a function which returns the trading day for observation i,
A:{1,...,D} = N, d— A(d), denote a function which returns the number of available
observations on trading day d, and M : {1,...,D} = N, d — M(d), a function which
returns the number of missing observations on trading day d. Since we take 5 minute
data between 9:30am and 4:00 pm, we usually have A(d) = 78 and M(d) = 0 on a
regular trading day. Note that M (-) can also be 0, when the NYSE opened later or closed
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earlier, since M (-) counts only missing values when trading really took place at that time.
Although only very few observations are missing overall (less than 0.2%), we introduce,
to act very precisely, the function 7 : {1,...,7} — N, i +— (i), which returns the number
of 5-minute intervals elapsed before observation i. Usually I(i) = 1, and if, e.g. one
observation is missing, /(i) = 2, and so on. Later, we will also need the more precise
functions I, : {1,..., T} — N, i — [ (i), for k € {9,10,...,15}, which specify how many
5-minute intervals during trading hour k£ elapsed before observation i. E.g., if we have an
observation at 9:55 am and the value at 10:00 am was deleted, so that the next observation
i is from 10:05 am, we have I(i) = 2, Iy(i) = I1o(i) = 1, and I(i) = 0 for k = 11,...,15.

We now assume that the log-returns follow the model
Yi :md(i)—i_vd(i)xia 1= 17"‘7T7

where mg(;) represents a local trend, vy a local volatility weight, and the x; are detrended

and locally reweighted log-returns. This approach takes irregularities of the stock prices

index raw data

1550
1450

1350

Jan Apr Jul Oct

5-minutes log-returns

0% Lol \
0.0 oo “‘_\h -, ‘\V’J:‘ lw”F"l | , - u“Hj“wll liv“rlhv{" ‘
-0.01

Jan Apr Jul Oct
local trends
6*10"-5
2*10"-5
-2*10"-5
-6*10"-5
Jan Apr Jul Oct

local volatility weights

18
14
1.0
0.6

Jan Apr Jul Oct

detrended and reweighted log-returns

0.01
0.0
-0.01

Jan Apr Jul Oct

Figure 1: 5 minutely observations from S&P500 index data and corresponding log-returns,

local trends, local volatility weights, and detrended and reweighted log-returns in 2007.
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and index data into account, which cannot be captured by the COGARCH model. Both
local trends and volatility weights are assumed to be constant over trading days, and are
estimated as follows. Using a fixed N € N, the local trends m;) are estimated as moving
averages over 2N + 1 trading days:

d(i)+N
P =[S0 A@+ @) Y Y . N<di)<D-N.
d=d(i)—N {jld(j)=d}
For the cases d(i) < N and d(i) > D — N we can again employ this formula by using
data from the previous and following year, respectively, or else we can shrink the time
frame of estimation. Note that the addition A(d) + M (d) makes sense, since log-returns
are additive.
Similarly, we estimate the volatility weights, for some V' € N, by computing prelimi-
nary weights

_ d(z )+V

~k d(t .
Vi) = d(:zl—é_i‘)/—v(A(d> ] g E — md(j) , V<di)<D-V,
d=d(1)=V {jld(5) }

and then by reweighting these according to

T
23:1 yj — Mag ‘/Ud ()
T Yd(i)-
> im1 Y5 — Mag)]

This implies that for Z; := (y; — Ma(;))/Vau) we have Z;F:l |z;| = Z?zl |y; — Mq)|, so that

Va@) =

the magnitude of the values is preserved.

In our analysis, we set N =V = 10, so that we use a time frame of 21 trading days
to determine the local trend and volatility weight. This seems to be a reasonable choice
since we usually get larger standard errors for the COGARCH parameter estimates for
very large or very small values of NV and V. In Figure 1, as an example, the third and
fourth row shows the estimated local trend and the estimated local volatility weight for
the year 2007. The fifth row shows the detrended and reweighted log-returns. Although
the S&P500 exhibits a different volatility pattern for the years 2005 and 2006, we omit the
corresponding figures for these two years, since the cleaning and pre-processing procedure
is the same as for 2007. We emphasize once more that both mg; and vy;) depend only
on the d(i), so that all observations of the same day are reweighted by the same weight.
This way we do not lose information about the dependence of the volatility on the exact

trading time during the day. This dependence is accounted for in the following subsection.

4.2 Accounting for trading time by time transformations

To take the possible impact of trading time on the volatility into account, we first con-
ducted a standard regression analysis for the squared log-returns to check for explana-

tory variables having an influence on the volatility. We used indicator variables for
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the month January, for all weekdays from Monday to Friday, and for all trading hours
(9,10,11,...,15). For reasons of identifiability we had to remove one weekday and one
trading hour (we chose Friday and hour 15), so that this sums up to a collection of 11
variables. The four most significant indicators always turned out to be hours 9, 12, 13,
and 10, in this order. All these had p-values of less than 1%.

An easy way to account for these explanatory variables is to apply the COGARCH to
a fictive business time axis. That means that we do not insert the explanatory variables
into the COGARCH model itself, but first rescale the physical time axis to a business
time scale. We do this using the PML method, since this way we get simultaneously good

starting values for the MCMC estimation. The idea is to replace At; by
AtF = At I(3) + holg(i) 4+ hioli0(2) + hial12(i) + higli3(7),

where hg, hig, h12, and h;3 are unknown parameters. Since we account for missing values
within the functions I and I, respectively, At; does not depend on ¢ in our setup and
serves just as the basic time unit. To get estimates on an annual basis, we choose At; as
1/(321(4)), since 35 1(j) =T + - M(d) = >_ A(d) + M(d).

Of particular interest are the quantities f := (hx + At;)/At; for £ = 9,10,12,13.
These report the factors by which the basic time unit has to be rescaled during a certain
trading hour to get business time. We note that there is no identifiability problem for hg,
h1o, h12, and hy3, since in our model business time is the same as physical time between
1lam and 12pm and after 2pm.

Table 2 and 3 contain the results of the preliminary analysis using the PML method.
Table 2 shows the parameters hg, hig, hi2, and h;3 which have to used for the transfor-
mation of physical time to business time. Furthermore, it contains preliminary estimates
of the parameters 3, n, and ¢. Table 3 shows the factors which have to applied to the
physical time axis to get business time. For example, the value 4.5319 of the estimate for
fo in 2005 means that during this year business time was running at around 4.5 times
faster than physical time between 9:30am and 10:00am, which reflects the high activity
in the market after the opening of the exchange. Between 10am and 1lam the activity
decreased, but is still higher than on average. In general, during lunch time, between
12pm an 2pm, business time runs slower than physical time, usually the activity is only
60% to 75% of the average observed between 1lam and 12pm as well as after 2pm.

4.3 Application of the MCMC method

To improve our estimates from the PML analysis and to derive distributions for the pa-
rameters, we now use the business time scale and employ our MCMC method to fit the
COGARCH model to the data. We assume normally distributed jumps of the under-

lying compound Poisson process, emphasizing once more, that for this choice both the
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hg - 10% hig - 104 his - 101 s - 101

2005 1.8003 (0.0988)  0.1923 (0.0198) -0.1979 (0.0088) -0.1504 (0.0106)

2006 2.1767 (0.1170)  0.2547 (0.0228)  -0.1667 (0.0103) -0.1346 (0.0112)

2007 2.6795 (0.1377)  0.1301 (0.0193) -0.1965 (0.0093) -0.1766 (0.0099)
&4 n @

2005 0.00071658 (0.00002205) 0.2018 (0.0046) 0.1027 (0.0038)

2006 0.00069020 (0.00002447) 0.2039 (0.0054) 0.1009 (0.0049)

2007 0.00145146 (0.00008295) 0.2017 (0.0071) 0.0999 (0.0053)

Table 2: PML estimates and corresponding approzimated standard errors of the parame-
ters hg, hig, hia, h1s, B, n, and p. For notational convenience, the estimates and standard

errors of hg, hig, hi2, hiz have been multiplied by 10000.

o f10 f12 Ji3
2005 4.5319 1.3772 0.6117 0.7049
2006 5.2458 1.4967 0.6748 0.7374
2007 6.2170 1.2533 0.6174 0.6561

Table 3: Factors that have to be applied to get from physical to business time scale, for
trading hours 9, 10, 12, and 13, respectively.

stationary distribution of the volatility process and the distribution of G(t) have Pareto-
like (heavy) tails (cf. Section 1). Also note that, in business time, our observations are
irregularly spaced. We run the MCMC sampler for 700 000 iterations, as in the simulation
study. Again the parameters 3, 7, ¢, and op are updated only at each 50th iteration, so
that, after removing the burn-in period, we have 10000 samples to estimate the posterior
density.

As starting values for £, 7 and ¢ we use the estimates obtained from the PML method.
Although the variance msy of the jumps in the compound Poisson process can be chosen
quite arbitrarily, we set mo = 1/ > I(j), i.e. equal to the number of observed plus missing
data, in order to get the estimates nearly on an annual basis. Sometimes we report the
square root of the variance estimates to give a volatility rather than a variance estimate.
We saved the values of o}y := (3/7)"/? and omean := (8/|n — coms|)'/? in each iteration,
so that we get also detailed information about the lower bound and the mean of the
process (o), cf. Equations (1.8) and (2.2). However, we have chosen the basic time unit
in such a way that, in physical time, one year corresponds to the time interval [0, 1]. Since

we apply the COGARCH to the business time scale, we have to rescale the estimates of
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2005 15} n © c Olow,an ~ Omean,an
post.mean 0.00068223 0.2024 0.1022 23017.37 0.0643 0.1001
cred.int.: 5% quant.  0.00065019 0.1969 0.0971 22291.81 0.0627 0.0932
95% quant.  0.00071531 0.2081 0.1069 23652.43 0.0656 0.1091
PML estimate 0.00071658 0.2018 0.1027 - 0.0660 0.0941
2006 B n 2 C Olow,an 9mean,an
post.mean 0.00066078  0.2041 0.1001 22825.39 0.0653 0.1005
cred.int.: 5% quant.  0.00062501 0.1972 0.0931 22167.63 0.0632 0.0926
95% quant.  0.00069723 0.2113 0.1066 23491.20 0.0669 0.1110
PML estimate 0.00069020 0.2039  0.1009 - 0.0667 0.0938
2007 B Ui 2 c Olow,an Omean,an
post.mean 0.00131737 0.2025 0.1002 25101.72  0.0932 0.1540
cred.int.: 5% quant.  0.00119583 0.1929 0.0929 24378.09 0.0888 0.1404
95% quant.  0.00144020 0.2126 0.1074 25884.41 0.0971 0.1723
PML estimate 0.00145146 0.2017  0.0999 - 0.0977 0.1376

Table 4: Posterior mean estimates and 90% credible intervals for the parameters 3, 7, @,
and ¢, and for lower bound 014y 5y and mean omean,an of the annualized volatility process,
for years 2005, 2006, and 2007. PML estimates for comparison.

Olow and Omean, in order to have them on an annual basis. The resulting estimates are
called 0oy an and omean,an and can be derived from the original values by multiplication
with v/ B, where B is the business time elapsed after one year. Of course, B depends on

the year under consideration, and can be computed from Table 3.

4.4 Results and interpretation

Table 4 summarizes the results for the marginal posterior distributions of the parameters
B, n, ¢ and ¢, as well as for the lower bound )4y 5, and the long-run volatility omean,an-
For comparison we report also the PML estimates again. It is interesting, that the pos-
terior mean estimates of 77 and ¢ are quite the same for all three years. As can be seen
easily from Equation (2.2), the parameter 1 measures the speed of decline of a volatility
burst, whereas the parameter ¢ measures the magnitude of such a volatility burst arising
after the arrival of new information represented by a jump of the Lévy process. Therefore
we conclude, that the mechanism, how new information influences volatility, i.e. how it

changes the actual volatility and how fast this new information is absorbed by the mar-

25



ket, remained the same over these three years. What differs is the estimated frequency of
significant news, represented by the parameter ¢, and the overall level of volatility, rep-
resented by the parameter 5. Therefore, ¢ carries relevant information for the volatility,
however, it cannot be estimated by the PML method.

Let us now also have a closer look at the estimated lower bounds and long-run volatil-
ities. The estimated lower bound of the volatility o; is 6.43% p.a. in 2005, 6.53% p.a. in
2006, and 9.32% p.a. in 2007. The corresponding PML estimates for the lower bounds
are a bit higher: 6.60%, 6.67%, and 9.77%, respectively. The posterior mean estimates
for the long run volatilities are 10.01% p.a. in 2005, 10.05% in 2006, and 15.40% in 2007.
The corresponding PML estimates for long run volatilities are significantly lower: 9.41%,
9.38%, and 13.76%, respectively (note that in the PML method, the long run volatility
(not annualized) is computed as (3/(n — ¢))'/?). In 2007, the PML estimate is not even
contained in a 90% credible interval. By comparison, the actual standard deviations of
the original returns were 9.33% p.a. in 2005, 9.35% p.a. in 2006, and 14.21% in 2007.
Of course, these latter numbers are just rough estimates, received without taking into
account a sophisticated volatility model. Nevertheless they are contained in the corre-
sponding 90% credible intervals in Table 4.

It is always essential to get good estimates for the volatilities. However, it can be much
worse to underestimate volatility than to overestimate it. Also from this point of view
our Bayesian approach turns out to be very useful, since it provides information on the
distribution of the estimates, as in Figure 2. It shows the estimated marginal posterior
densities for the lower bound and the mean of the volatility, for the three years under
consideration. The densities are a bit unsymmetric: The densities of the lower bound are
slightly negatively skewed (the sample skewness is -0.65,-0.73,-0.67 for 2005, 2006, and
2007, respectively), whereas the densities for the long run volatilities are slightly positively
skewed (sample skewness is 0.86, 0.87, and 0.94).

Figure 3 finally shows the estimated volatilities for February to April 2007, and, for

comparison, the absolute values of the detrended and reweighted log-returns.

5 Summary

This paper provides an MCMC based estimation procedure for the COGARCH(1,1) model
driven by a compound Poisson process. The basic idea of the MCMC algorithm is an exact
GARCH-type solution of the volatility SDE on the grid of the jump times. The simulation
study has shown, that the parameters are quite well estimated and that the estimates are
more efficient than those based on the PML method. The application illustrated how
to apply the COGARCH model to high-frequency financial data. We studied log-returns
from the S&P500 for the years 2005, 2006, and 2007 separately. It turned out that

the mechanism, how new information changes the actual volatility and how fast this
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Figure 2: Estimated marginal posterior densities for the lower bound )4y o, and mean

Omean,an Of the annualized volatility process, for years 2005, 2006, and 2007.
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Figure 3: Top: Absolute detrended and reweighted log-returns of S&P500, February to
April 2007. Bottom: Corresponding volatilities for the S&P500, estimated by MCMC.
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new information is absorbed by the market, remained the same over these three years.
However, the frequency of significant news as well as the overall level of volatility was
different.

After considering the compound Poisson COGARCH one should now concentrate on
a COGARCH which is driven by a more general class of driving Lévy processes, in par-
ticular, Lévy processes with infinite activity. For instance, one suitable choice might be
the variance gamma process which is a pure jump process with finite quadratic varia-
tion. Furthermore, general model selection criteria for the COGARCH, in particular for

comparison to other continuous-time models, are subject of current research.
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