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Limit Experiments of GARCH
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Abstract

GARCH is one of the most prominent nonlinear time series models, both widely applied

and thoroughly studied. Recently, it has been shown that the COGARCH model, which

has been introduced a few years ago by Klüppelberg, Lindner and Maller, and Nelson’s

diffusion limit are the only functional continuous-time limits of GARCH in distribution.

In contrast to Nelson’s diffusion limit, COGARCH reproduces most of the stylized facts

of financial time series. Since it has been proved, that Nelson’s diffusion is not asymp-

totically equivalent to GARCH in deficiency, we investigate in the present paper the

relation between GARCH and COGARCH in Le Cam’s framework of statistical equiva-

lence. We show that GARCH converges generically to COGARCH, even in deficiency,

provided that the volatility processes are observed. Hence, from a theoretical point of

view, COGARCH can indeed be considered as a continuous-time equivalent to GARCH.

Otherwise, when the observations are incomplete, GARCH still has a limiting experi-

ment which we call MCOGARCH, and which is not equivalent, but nevertheless quite

similar to COGARCH. In the COGARCH model, the jump times can be more random,

as for the MCOGARCH, a fact practitioners may see as an advantage of COGARCH.
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1. Introduction. Since the seminal papers by Engle (1982, [10]) and Bollerslev

(1986, [4]) the discrete-time GARCH methodology has become a widely applied tool

in the modeling of heteroscedasticity in financial times series. On the other hand,

continuous-time models are very useful, for instance, in option pricing as shown by

Black & Scholes (1973, [3]) and Merton (1973, [21]), in the analysis of tick-by-tick data

and for modeling irregularly spaced time series.

In the 1990’s researchers tried to bridge the gap between continuous and discrete time.

Nelson (1990, [23]) showed that an appropriately parametrised GARCH can be seen as

a discrete-time approximation of a bivariate diffusion model on an approximating time

grid. However, this diffusion model does not capture most of the so-called stylized facts

reflecting empirical findings in financial time series: for example, volatility exhibits heavy

tails, jumps upwards and clusters on high levels. To overcome the shortcomings of the

diffusion model, Klüppelberg et al. (2004, [17]) have introduced a new continuous-time

GARCH model which they called COGARCH. In contrast to the bivariate diffusion this

model exhibits many of the stylized facts. We refer the reader to Fasen et al. (2006, [12])

for an extensive discussion of the stylized facts and various competing volatility models

proposed in the literature.

Recently, Kallsen and Vesenmayer (2007, [16]) and Maller et al. (2008, [20]) have

identified COGARCH as a functional limit of GARCH in distribution. Most notable,

Kallsen and Vesenmayer [16] have argued that Nelson’s diffusion and COGARCH are

the only possible limits of GARCH in distribution in a semi-martingale setting.

The passage from discrete to continuous time has an obviously appealing practical

purpose: one can estimate the underlying continuous-time model parameters by a time-

series formulation and plug them into the continuous-time limit for other purposes.

As argued by Wang (2002, [28]) such a passage is in generally only justified if the

corresponding statistical experiments converge in Le Cam’s framework of deficiency [cf.

Le Cam (1986, [18]), Le Cam and Young (1990, [19]) and Strasser (1985, [27])].

In particular, Wang [28] (cf. also Brown et al., 2003, [6]) showed, assuming independent

Gaussian innovations, that Nelson’s diffusion approximation of GARCH is not valid

in deficiency: the innovations encounter both models in an intrinsically different way.

Whereas GARCH is driven by one-dimensional innovations, its diffusion limit is driven

by planar Brownian motion.

In contrast to Nelson’s approximation, COGARCH is driven by an only one-dimen-

sional Lévy process, thereby mimicking one of the key features of GARCH. Naturally,

the following questions arise: are the approximations of COGARCH by GARCH, as

proposed by Kallsen and Vesenmayer [16] and Maller et al. [20], also valid in deficiency?

Does the limiting model depend on the underlying sampling scheme?

Dealing with Le Cam’s distance in deficiency is a challenging task. In particular,

asymptotic equivalence results for dependent data are very scarce, see Dalalyan and

Reiß [8] for an overview. Further obstacles arise from the intrinsic heteroscedasticity
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of GARCH. Therefore, in this paper we restrict ourselves to compound Poisson pro-

cesses as driving Lévy process and assume that the innovations are randomly thinned.

This approximation scheme occurs also in both papers [16] and [20]. Random thinning

is a standard limiting procedure in many other areas of probability theory and statis-

tics. In particular, we mention the peak-over-threshold method in extreme value theory

(cf. Remark 2.1(ii)). In contrast to our approximation scheme, most papers on statisti-

cal equivalence deal with aggregated innovations where the experiments are compared

to Gaussian shift experiments, cf. Brown and Low (1996, [5]), Nussbaum (1996, [24]),

Grama and Neumann (2006, [13]) and Carter (2007, [7]) and references therein; cf. Mil-

stein and Nussbaum (1998, [22]) with potential applications to time series analysis. We

point out once again, that, for the GARCH, aggregated innovations lead to the diffusion

limit investigated by Nelson [23] and Wang [28].

The paper is organised as follows. Section 2 contains our main results. To be more

specific, we introduce the experiments and sampling schemes in Subsection 2.1. In Sub-

section 2.2 we construct a limiting experiment for randomly thinned GARCH with con-

ditionally variances unobserved. As shown in Subsection 2.3, using both theoretical and

numerical methods, this experiment is generically not equivalent to COGARCH. If,

however, the conditional variances are observable in full, all experiments are generically

(asymptotically) equivalent to COGARCH. This is shown in Subsection 2.4. We con-

clude in Section 3. In Sections 4 to 7 we give the proofs to all theorems and propositions

in Section 2. Section 4 contains the proof of Theorem 2.1, Section 5 the proof of The-

orem 2.2, and Section 6 the proof of Theorem 2.3. The proofs of all propositions in

Subsection 2.4 are reported in Section 7. In the Appendix we review some of the basic

notions of Le Cam’s convergence in deficiency.

2. Main results.

2.1. Garch-type experiments in discrete and continuous time. For all n ∈ N we con-

sider an n-dimensional vector Zn = (Zn,k)1≤k≤n with distribution

(2.1) L(Zn) =
(
(1−pn)ε0 + pnQn

)⊗n
,

where, for all n ∈ N, pn ∈ (0, 1) and Qn is a probability measure on the Borel field B(R).

Here ε0 denotes the Dirac measure with total mass in zero.

The parameter pn modulates our random thinning. In accordance with the law of rare

events we assume that the following limit exists in (0,∞):

(2.2) γ = lim
n→∞

npn ∈ (0,∞) .

In the sequel we will encounter several GARCH-type processes, all of them indexed

by θ ∈ [0,∞)4. In discrete time, processes will be indexed additionally by n ∈ N and a

suitable parametrisation. Throughout this paper a parametrisation is a pair (Θ, (Hn)n∈N)
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where Θ is a nonempty subset of [0,∞)4 and, for all n ∈ N, Hn is a mapping Hn =

(h0,n, βn, αn, λn) : Θ→ [0,∞)4. Here h0 (h0,n(θ)) denotes the unknown initial value of the

volatility h0 which is contrived as an additional unknown parameter in this paper. For

the corresponding continuous time limits, β/α and α are the mean level and the mean

reversion parameter of the volatility processes, respectively; λ is a scaling parameter for

the corresponding jumps of the volatility processes.

For a parametrization (Θ, (Hn)n∈N) we consider the sequence of partial sums corre-

sponding to a randomly thinned GARCH model, indexed by θ ∈ Θ and n ∈ N, defined

by

Gn(k) = Gn(k−1) + h1/2
n (k−1) Zn,k , Gn(0) = 0 ,(2.3)

hn(k) = βn(θ) + αn(θ)hn(k−1) + λn(θ) hn(k−1) Z2
n,k ,

hn(0) = h0,n(θ) , 1 ≤ k ≤ n , θ ∈ Θ ,

where Hn(θ) = (h0,n(θ), βn(θ), αn(θ), λn(θ)) for all θ ∈ Θ. Note that the specification of a

GARCH does not quite follow the traditional one, but enumerating the indices generates

the same processes. Also, observe that the definition of (Gn, hn) in (2.3) depends on the

choice of (Θ, (Hn)n∈N).

Provided that Qn converges weakly to some probability measure Q, the limit in (2.2)

sets up convergence in distribution of
∑[n·]

k=1 Zn,k to a compound Poisson process with

rate γ and jump distribution Q as n→∞. For a choice of (Θ, (Hn)n∈N) it is, thus, natu-

ral to ask whether the limit of (Gn([nt]), hn([nt]))0≤t≤1 in distribution exists along Hn(θ)

as n → ∞ for fixed θ ∈ Θ. In [16] and [20] such parametrisations have been success-

fully constructed. Moreover, the corresponding continuous time limit equals COGARCH

driven by a compound Poisson process.

COGARCH is a process (G, h) = (G(t), h(t))0≤t≤1 that is indexed by θ = (h0, β, α, λ) ∈
[0,∞)4 and determined as the unique pathwise solution of the system of the following

integral equations:

G(t) =

∫
[0,t]×R

h1/2(s−)z N(ds, dz) ,(2.4)

h(t) = h0 +

∫
[0,t]

β−αh(s−) ds+ λ

∫
[0,t]×R

h(s−)z2N(ds, dz) ,

where N is a Poisson point measure on [0, 1]× R with an intensity γ`⊗Q.

In the sequel we restrict our analysis to the following two sampling schemes:

• incomplete observations: only G and Gn (n ∈ N) are observable in full whereas the

corresponding volatility processes h and hn (n ∈ N) are unobservable.

• complete observations: both processes (G, h) and (Gn, hn) are observable in full.

We are dealing with both sampling schemes in the separate Subsections 2.2–2.3 and Sub-

section 2.4, respectively. Not surprisingly, a simpler theory is in place in case of complete
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observations. In the more realistic scenario, where observations of the volatility processes

are not available, results are more difficult due to the nonlinearity of (CO)GARCH.

Throughout the whole paper, the space of right-continuous functions g : [0, 1] → Rd

with left limits on [0, 1] is denoted by Dd. We endow Dd with the σ-algebra Dd, generated

by the point evaluations (cf. Billingsley, 1968, [2]). Furthermore, let Md be the space of

all nonnegative point measures on [0, 1] × Rd with finite support. We equip this space

with the σ-algebraMd generated by the point evaluations A 7→ µ(A), A ∈ B([0, 1]×Rd),

µ ∈M0 (cf. Reiss ,1993, [26], pages 5–6).

The trace of the Borel field in Rd
= (R ∪ {−∞,∞})d with respect to A ⊆ Rd

is

denoted by B(A). The Lebesgue measure on B(R) and the Dirac measure with total

mass in x are denoted by ` and εx, respectively. If (E,A) is a measurable space and X

is a random element taking values in (E,A) then its distribution is denoted by L(X).

Whenever this distribution depends on a parameter θ we employ the notation Lθ(X).

If (Ei,Ai), i = 1, 2, are measurable spaces and X : E1 → E2 is A1/A2 measurable then

µX denotes the image of a measure µ under X.

We refer to the Appendix and [27] for unexplained notations regarding convergence

in deficiency.

2.2. Limit experiments of GARCH (incomplete observations). In this subsection we

assume that the volatility processes are unobservable. To pursue our programme we

introduce another class of processes. Therefore let (Ĝ, ĥ) = (Ĝ(t), ĥ(t))0≤t≤1 be the

unique pathwise solution of the following system of integral equations:

Ĝ(t) =

∫
[0,t]×R

ĥ1/2(s−)z N(ds, dz) ,(2.5)

ĥ(t) = h0 +

∫
[0,t]

β−αĥ(s−) dTN (s) + λ

∫
[0,t]×R

ĥ(s−)z2N(ds, dz) ,

where θ = (h0, β, α, λ) ∈ [0,∞)4. Here T : M1 → D1, σ 7→ Tσ is defined as follows: if,

for some m ∈ N, 0 = t0 < t1 < ... < tm < 1 and x1, . . . , xm ∈ R, σ ∈ M admits a

representation of form σ =
∑m

k=1 ε(tk,xk) where 0 = t0 < t1 < ... < tm < 1, then we set

Tσ(t) =
t−tk

m(tk−tk−1)
+
k

m
, t ∈ [tk−1, tk) , 1 ≤ k ≤ m,(2.6)

Tσ(t) =
t−tm

m(tm−tm−1)
+ 1 , t ∈ [tm, 1] .

If such a representation does not exist, then we set Tσ(t) = t for all t ∈ [0, 1].

Let us call (Ĝ, ĥ) the MCOGARCH, an acronym referring to Modified COGARCH. To

illustrate the difference between COGARCH and MCOGARCH, we consider a simpler

representation of Ĝ next (we will return to (2.5) in our analysis in Subsection 2.4).
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To this end, let ν = (ν(t))0≤t≤1 be a Poisson process with rate γ and (Zk)k∈N be a

sequence of independent random variables, independent of ν. By solving the integral

equations for ĥ in (2.5) we observe that

(2.7) Lθ(Ĝ) = Lθ

 ν(·)∑
k=1

ĥ
1/2
ν(1),k,θ Zk

 ,

where, for k,m ∈ N, k ≥ 2, we set

ĥm,k,θ =
β

α

(
1−e−α/m

)
+ e−α/mĥm,k−1,θ

[
1 + λ Z2

k−1

]
,(2.8)

ĥm,1,θ =
β

α

(
1−e−α/m

)
+ e−α/mh0 ,

for θ = (h0, β, α, λ) ∈ [0,∞)4, α > 0, with the convention
∑
∅ = 0. Here we extend the

definition of ĥm,k,θ to θ = (h0, β, 0, λ) ∈ [0,∞)4 by taking α ↓ 0 in (2.8).

In view of (2.8) note that the magnitudes of the jumps of Ĝ (in space) depend on their

multiplicity and the size of innovations, but not on their arrival times. This attribute is

not shared by COGARCH. To some extend it is, thus, justified to speak of Ĝ and G as

experiments driven by two and three sources of randomness, respectively: the number

of jumps, the innovations, and the arrival times.

As no information about the volatility processes is assumed in this subsection we

consider the following experiment of MCOGARCH type:

(2.9) Ê =
(
D1,D1,

(
Lθ(Ĝ)

)
θ∈[0,∞)4

)
.

For a parametrisation (Θ, (Hn)n∈N) we consider the corresponding GARCH experiments

in discrete time by

(2.10) En,Hn(Θ) =
(
Rn,B(Rn),

(
Lθ(Gn)

)
θ∈Θ

)
, n ∈ N ,

where, for n ∈ N, Gn = (Gn(k))1≤k≤n is defined by (2.3) via the parametrisation

(Θ, (Hn)n∈N). We write En,Hn = En,Hn(Θ), provided we have Θ = [0,∞)4 in (2.10).

Next we give a GARCH parametrisation such that the randomly thinned GARCH

converges strongly to the MCOGARCH experiment Ê in deficiency: therefore pick θ =

(h0, β, α, λ) ∈ Θ and n ∈ N. If α > 0 then we set

h
(0)
0,n(θ) = h0e

−α/n +
β

α
(1−e−α/n) , β(0)

n (θ) =
β

α
(1−e−α/n) ,(2.11)

α(0)
n (θ) = e−α/n , λ(0)

n (θ) = λe−α/n ,

and, otherwise, if α = 0 then we set

(2.12) h
(0)
0,n(θ) = h0 +

β

n
, β(0)

n (θ) =
β

n
, α(0)

n (θ) = 1 , λ(0)
n (θ) = λ .
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Let ([0,∞)4, (H
(0)
n )) be the corresponding parametrization and G

(0)
n be the corresponding

partial sum processes of GARCH in (2.3).

Although the parametrisation in (2.11)–(2.12) is quite elaborated, we show that the

corresponding GARCH experiments converges to the experiment of MCOGARCH-type,

with no restrictions on the limiting probability measure Q assumed [cf. Section 4 for a

proof].

Theorem 2.1. Let (2.2) be satisfied for some γ ∈ (0,∞) and pn ∈ (0, 1), n ∈ N.

If Qn tends to a probability measure Q in total variation as n→∞ then E
n,H

(0)
n

converges

strongly to Ê in deficiency as n→∞.

If Q is absolutely continuous with respect to the Lebesgue measure, then Theorem 2.1

extends partially to other GARCH parametrisations [cf. Section 5 for a proof of the

following theorem].

Theorem 2.2. Let (2.2) be satisfied for some γ ∈ (0,∞) and pn ∈ (0, 1), n ∈ N.

Suppose both that Qn tends to a probability measure Q in total variation as n→∞ and

Q<<`.

Let Θ 6= ∅ with compact closure Θ in (0,∞) × [0,∞)3. For n ∈ N, let Hn =

(h0,n, βn, αn, λn) : Θ → [0,∞)4 be a GARCH parametrisation and Gn be the corre-

sponding GARCH model in (2.3).

If there exist n0 ∈ N and C > 0 such that, for all n ≥ n0, both

(2.13) sup
θ=(h0,β,α,λ)∈Θ

max

{∣∣h0,n(θ)−h0

∣∣ , ∣∣λn(θ)−λ
∣∣} ≤ C

n
,

and

(2.14) sup
θ=(h0,β,α,λ)∈Θ

max

{∣∣nβn(θ)−β
∣∣ , ∣∣n(αn(θ)−1) + α

∣∣} ≤ C ,

then

(2.15) lim
n→∞

sup
θ∈Θ

∥∥Lθ(Gn)− Lθ(G(0)
n )
∥∥ = 0 ,

and En,Hn(Θ) converges strongly to Ê(Θ) in deficiency as n→∞.

Remark 2.1. (i) Let Q = Qn for all n ∈ N. In Kallsen and Vesenmayer [16]

and Maller et al. [20] the following GARCH parametrisations (Θ, (H
(KV )
n )n∈N) and

(Θ, (H
(M)
n )n∈N) have been considered where, for θ = (h0, β, α, λ) ∈ (0,∞)3 × [0,∞) ,
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in obvious notation, Θ = (0,∞)3 × [0,∞) and

h
(KV )
0,n (θ) = h

(M)
0,n (θ) = h0 ,(2.16)

β(KV )
n (θ) = β(M)

n (θ) =
β

n
,

α(KV )
n (θ) = α(M)

n (θ) = e−α/n ,

λ(KV )
n (θ) = λ , λ(M)

n (θ) = e−α/nλ .

Kallsen and Vesenmayer [16] have shown that (Gn[n·], hn[n·]), as defined in (2.3) by

Hn(θ) = H
(KV )
n (θ), converge to COGARCH with parameter θ in (2.4) in law with

respect to the Skorokhod topology, as n→∞, for all θ ∈ Θ.

Maller et al. [20] have encountered a slightly different scenario. For θ ∈ Θ they have

embedded a sequence of GARCH models into a given COGARCH and obtained the

convergence with respect to the same topology, now driven by a general Lévy process,

even in probability. If the driving process is a compound Poisson process with rate γ

and jump size distribution Q then their analysis comprises a situation where the corre-

sponding partial sums have the same law as (Gn[n·], hn[n·]) under the parametrisation

H
(M)
n (θ), θ ∈ Θ, n ∈ N.

In short, it follows from the analyses in [16] and [20] that the partial sum processes of

GARCH converge to COGARCH with parameter θ in law along both parametrisations

H
(KV )
n (θ) and H

(M)
n (θ), respectively, as n→∞, with respect to the Skorokhod topology,

for all θ ∈ Θ. On the other hand, both parametrisations fall into the framework of

Theorem 2.2. Hence, if the distribution of the innovations admits a Lebesgue density

the limiting experiment is given by MCOGARCH Ê(Θ) rather than COGARCH E(Θ).

(ii) In Part (i) Q = Qn does not depend on n. Potential applications, where Qn depends

on n, arises in the peak-over-threshold method in extreme value theory, for instance, cf.

Embrechts et al. (1997, [9]), Resnick (1987, [25]) and Falk et al. (2000, [11]). Here Qn

equals the laws of rescaled innovations, conditioned on the event that they exceed a

given threshold. Under reasonable assumptions, Qn converge weakly to a generalised

Pareto distribution Q as n → ∞. Also, the corresponding GARCH models converge in

distribution in law to a COGARCH driven by a compound Poisson process with jump

distribution Q. In this sense COGARCH serves as a good approximation of GARCH in

law if one is interested in the extreme parts of the innovations. On the other hand, if

Qn converges to Q even in total variation norm, then it follows from Theorem 2.1 that

the corresponding limiting experiment must be statistically equivalent to MCOGARCH.

�

2.3. COGARCH vs. MCOGARCH (incomplete observations). In this subsection we

investigate whether the experiments induced by COGARCH and MCOGARCH are of

the same type. Here we again assume that the volatility processes are unobservable.
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Therefore recall (2.4) and consider the experiment

(2.17) E =
(
D1,D1,

(
Lθ(G)

)
θ∈[0,∞)4

)
.

Note that both experiments E and Ê depend on the intensity measure γ`⊗Q which enters

(2.4)– (2.5) via N . In this subsection we include this dependence into our notation by

writing Eγ,Q and Êγ,Q instead of E and Ê , respectively.

Let f : R→ (0,∞] be a strictly positive probability density with respect to Lebesgue

measure and set

(2.18) gf, ζ(h) := hζ
∫
R
f(hz)ζ f(z)1−ζ dz , h > 0 , ζ ∈ (0, 1) .

By Hölder’s inequality, gf, ζ defines a function gf,ζ : (0,∞)→ (0, 1] with gf,ζ(1) = 1. Note

that gf, ζ satisfies both a scaling and a reflexion property: for all 0 < ζ < 1, a, h > 0,

(2.19) gaf(a·), ζ(h) = gf, ζ(h) , gf, ζ(h) = gf, 1−ζ(1/h) .

Next we investigate how COGARCH relates to MCOGARCH in deficiency [cf. Section 6

for a proof]:

Theorem 2.3. Let ∅ 6= Θ ⊆ (0,∞)× [0,∞)3.

Assume that Q admits a strictly positive Lebesgue density f such that, for some ζ0 ∈
(0, 1), gf, ζ0 : (0,∞)→ [0, 1] is strictly increasing on (0, 1].

Let (γn)n∈N ⊆ (0,∞) be a sequence such that γ = limn→∞ γn exists in [0,∞) and

γn 6= γ for all n ∈ N.

If Eγn,Q(Θ) is equivalent to Êγn,Q(Θ) for all n ∈ N then we have:

(i) If (h0,1, β, α, λ), (h0,2, β, α, λ) ∈ Θ and β > 0 then h0,1 = h0,2.

(ii) If (h0, β1, α, λ), (h0, β2, α, λ) ∈ Θ then β1 = β2.

(iii) If (h0, β, α1, λ), (h0, β, α2, λ) ∈ Θ and β = 0 then α1 = α2.

(iv) If (h0, β, α1, λ), (h0, β, α2, λ) ∈ Θ and α1 = 0 then α2 = 0.

(v) If (h0, β, α1, λ), (h0, β, α2, λ) ∈ Θ and α1 < α2 then h0 > β/α1.

Theorem 2.3 indicates that equivalence of MCOGARCH and COGARCH is restricted

to parameter sets that are of considerably lower dimensions and have nonempty interior.

Hence, we do not have equivalence in deficiency.

Observe that ζ 7→ gf,ζ(h) occurs as the Hellinger transformation of the scaling exper-

iment (R,B(R), {L(Z),L(Z/h)}) where Z is a random variable with Lebesgue density

f . Next we verify the monotonicity property of gf,ζ(h) in a number of examples:

Generalised symmetric Gamma distribution. Let a, b, c > 0 and Γ be Euler’s Gamma

function. Assume that f : R→ (0,∞] has the following form:

f(z) =
1

2

ac/b

Γ(c/b)
e−a|z|

b|z|c−1 , z ∈ R .
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This class of distributions covers important special cases such as the normal distribution

with zero mean and Laplace distribution. It follows straight forwardly that

gf, ζ(h) =

(
hbζ

hbζ + (1− ζ)

)c/b
, 0 < ζ < 1 , h > 0 .

Observe that gf,ζ : (0,∞) → [0, 1] is strictly increasing on (0, 1] for all 0< ζ < 1 and,

thus, f satisfies the monotonicity assumption of Theorem 2.3.

Centred Cauchy Distribution. Let a > 0, and let fa(z) = a
π

1
1+(az)2

be the density of

the centred Cauchy distribution Cauchy(0, a) with scaling parameter a. By the scaling

property in (2.19), we have gfa, 1/2(h) = gf1, 1/2(h) for all h > 0. By differentiating this

under the integral sign, we obtain

d

dh
gfa, 1/2(h) =

1−h2

2πh2

∫ ∞
0

√
x dx

(1 + 1+h2

h
x+ x2)3/2

> 0 , a > 0 , 0 < h ≤ 1 .

Consequently, the centred Cauchy distribution satisfies the monotonicity assumption of

Theorem 2.3.

Next, we present a simulation-based approach to assess non-equivalence. This ap-

proach can be used in cases not covered by Theorem 2.3 (or when it is not clear whether

the assumption of Theorem 2.3 is satisfied). Recall that statistical equivalence of the

experiments E and Ê is implied (cf. [27], Theorem 53.10) when for all finite subsets

Θ ⊆ [0,∞)4 and all θ0 ∈ Θ we have

(2.20) Lθ0
((

dLθ(G)

dLθ0(G)

)
θ∈Θ

)
= Lθ0

((
dLθ(Ĝ)

dLθ0(Ĝ)

)
θ∈Θ

)
.

We generated samples from these two distributions according to the recursion (6.1) in

the proof of Theorem 2.3 in Subsection 6. To this end, we first restricted the parameter

space to a set with two elements, θ0 and θ. While fixing θ0 to (2, 1, 1, 0.1), we have chosen

eight vectors θij, i = 1, . . . , 4, j = 1, 2, for the parameter vector θ, which differ from θ0 in

only one component, cf. Table 1. Secondly, we checked the distributional equality (2.20)

for three different jump distributions: the standard normal and the standard Cauchy

distribution Cauchy(0, 1) (for comparison - note that both are covered by Theorem 2.3),

and the normal mixture distribution

1

2
N(−0.5, 0.75) +

1

2
N(0.5, 0.75),

which has mean 0 and variance 1. The intensity γ was always fixed to 4.

For each of the eight pairs (θ0, θij) and each of the three jump distributions, we gener-

ated 106 samples of the two distributions referring to the COGARCH and MCOGARCH

in Equation (2.20). Table 2 reports in the left column the choice of θij, whereas the other
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Table 1
Choices of θ0 and θ = θij in Equation (2.20).

θ0 2 1 1 0.1
θ11 0.4 1 1 0.1
θ12 10 1 1 0.1
θ21 2 0.2 1 0.1
θ22 2 5 1 0.1
θ31 2 1 0.2 0.1
θ32 2 1 5 0.1
θ41 2 1 1 0.02
θ42 2 1 1 0.5

Table 2
Estimated 25% quantiles, medians, and 75% quantiles for the distributions in (2.20).

jumps N(0, 1) Cauchy(0, 1) mixed N
quantiles 25% median 75% 25% median 75% 25% median 75%

COGARCH COGARCH COGARCH
MCOGARCH MCOGARCH MCOGARCH

θ11 0.1081 0.5560 1.3888 0.5521 0.7775 1.1767 0.0909 0.5329 1.3918
0.1785 0.6977 1.3495 0.5884 0.8226 1.1811 0.1558 0.6743 1.3543

θ12 0.1505 0.3152 0.6449 0.4173 0.8127 1.4573 0.1436 0.3008 0.6136
0.1637 0.3377 0.6768 0.4412 0.8335 1.4505 0.1575 0.3264 0.6559

θ21 0.8326 1.0168 1.1711 0.9273 0.9761 1.0393 0.8307 1.0201 1.1766
0.7605 1.0114 1.2459 0.9051 0.9566 1.0539 0.7560 1.0155 1.2512

θ22 0.4883 0.7071 1.0086 0.7765 1.0229 1.2130 0.4797 0.6956 1.0000
0.4201 0.6077 1.0000 0.7010 1.0247 1.2676 0.4100 0.5988 0.9798

θ31 0.6928 0.8543 1.0621 0.8497 1.0000 1.1506 0.6863 0.8476 1.0530
0.6304 0.7841 1.0629 0.8029 1.0000 1.1881 0.6248 0.7757 1.0524

θ32 0.0053 0.1702 1.1056 0.3853 0.6449 1.1172 0.0028 0.1392 1.0856
0.0010 0.0590 0.9129 0.3093 0.5650 1.1090 0.0005 0.0437 0.8703

θ41 0.9864 1.0104 1.0735 0.8265 1.0000 1.0798 0.9863 1.0114 1.0762
0.9884 1.0100 1.0693 0.8357 1.0000 1.0779 0.9884 1.0109 1.0722

θ42 0.6851 0.8870 1.0000 0.6217 0.9328 1.0418 0.6750 0.8802 1.0000
0.6963 0.8942 1.0000 0.6281 0.9360 1.0388 0.6865 0.8874 1.0000

three columns report, for each of the three jump distributions, the 25% quantile, the me-

dian, and the 75% quantile of the distribution in Equation (2.20).

Next, we applied the Wilcoxon rank sum test (also known as Mann-Whitney test)

to investigate the null hypothesis the median of the likelihood ratio for the COGARCH

experiment equals the median of the likelihood ratio for the MCOGARCH experiment.

Table 3 reports the values of the Wilcoxon test statistic W , together with the correspond-

ing p-values. For each jump distribution, the first column corresponds to a sample size of

104, the second row to 105, and the third column to a sample size of 106 per experiment.

Obviously, the p-values tend to 0 as the sample size increases. Based on 106 samples,

the null hypothesis is most significantly rejected, for all three jump distributions and

for all eight parameter vectors θij. In other words, there is strong evidence that, in the

case of uncomplete observations, the randomly thinned GARCH and the COGARCH
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Table 3
Wilcoxon rank sum test: Values of Wilcoxon test statistic W and corresonding p-values.

jumps N(0, 1) Cauchy(0, 1) mixed N
sample size 104 105 106 104 105 106 104 105 106

W statistic W statistic W statistic
p-value p-value p-value

θ11 -7.10 -24.12 -73.91 -8.82 -25.46 -73.81 -8.11 -24.01 -71.91
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

θ12 -3.04 -14.90 -47.21 -0.35 -2.73 -9.90 -6.04 -15.37 -48.40
0.0024 0.0000 0.0000 0.7245 0.0064 0.0000 0.0000 0.0000 0.0000

θ21 -1.56 -3.20 -12.52 8.71 31.90 98.90 -0.45 -3.45 -14.05
0.1189 0.0014 0.0000 0.0000 0.0000 0.0000 0.6545 0.0006 0.0000

θ22 12.10 44.13 136.09 -1.92 -2.69 -8.28 14.17 45.16 141.15
0.0000 0.0000 0.0000 0.0546 0.0070 0.0000 0.0000 0.0000 0.0000

θ31 12.38 37.96 116.09 1.76 2.16 10.30 12.07 38.89 119.95
0.0000 0.0000 0.0000 0.0788 0.0311 0.0000 0.0000 0.0000 0.0000

θ32 11.34 39.48 126.96 11.63 33.04 100.34 13.59 42.66 131.75
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

θ41 0.83 1.41 5.79 -1.52 -2.85 -4.98 2.83 3.64 5.35
0.4054 0.1572 0.0000 0.1280 0.0044 0.0000 0.0047 0.0003 0.0000

θ42 -2.96 -3.71 -13.73 -1.29 -2.35 -2.94 -1.63 -4.81 -15.26
0.0031 0.0002 0.0000 0.1963 0.0189 0.0032 0.1041 0.0000 0.0000

experiment are not statistically equivalent for these jump distributions. This confirms

our conjecture, that Theorem 2.3 holds in a much more general formulation for quite

arbitrary jump distributions.

2.4. Complete Observations. In the last subsections we have investigated both con-

vergence and equivalence in deficiency of a variety of GARCH-type experiments under

the assumption that their volatility processes hn, h and ĥ are unobservable. In this sub-

section we are dealing with the situation where the corresponding volatility processes are

observable in full. Of course, this situation is mainly of theoretical interest, and will help

primarily to learn about the structural connections between GARCH and COGARCH.

However, we want to mention briefly some modern approaches how one can deal with

the unobservability of the volatility process in practice. For example, there are sev-

eral modern ways to estimate the local volatility directly, see e.g. Aı̈t-Sahalia, Mykland

and Zhang (2010, [1]) and references therein or Jacod, Klüppelberg and Müller (2010,

[15]), who use local volatility estimates also in a COGARCH context, and many others.

The paper by Hubalek and Posedel (2010, [14]) contains another very interesting idea.

They use martingale estimating functions to estimate the parameters in the Barndorff-

Nielsen/Shephard model, which is composed of a stochastic differential equation (SDE)

for the log-prices and another SDE for the variance. But the martingale estimating func-

tions approach requires that both processes can be observed. Hence, Hubalek and Posedel

(2010) reinterpret the volatility equation as an equation for some other observable mea-

sure of trading intensity (as trading volume or the number of trades) assuming that the
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instantaneous variance process behaves (up to a time-independent constant) exactly as

the observable trading volume (or the number of trades). As they show in their real data

example, this approach leads to quite satisfying results. The same idea could be used, of

course, for the COGARCH model, to bypass problems with the unobservability of the

volatility process in practice.

Back to theory, consider now the following GARCH-type experiments in continuous

time with fully observed volatilities, denoted by

Eh =
(
D2,D2,

(
Lθ(G, h)

)
θ∈[0,∞)4

)
, Êh =

(
D2,D2,

(
Lθ(Ĝ, ĥ)

)
θ∈[0,∞)4

)
,

where ĥ is defined by the specification in (2.5) and (2.6). Similar to Subsections 2.1–2.2,

where we dealt with the continuous time, both experiments Eh and Êh depend upon Q

and γ > 0 as well. In this subsection we will suppress this dependence in our notations.

We need to specify a set Θe ⊆ [0,∞)4 of exceptional points in the parameter space

[0,∞)4 by

(2.21) Θe = {θ = (h0, β, α, λ) ∈ [0,∞)4 : h0α = β} .

Observe that Θe is closely connected to the fixpoint of the affine differential equation

h′(t) = β − αh(t). Indeed, if θ = (h0, β, α, λ) ∈ Θe then we have h(t) = ĥ(t) ≡ h0 for

all t ∈ [0, T ) where T is the first jump of (M)COGARCH. It is impossible to recover

the parameters β, α, λ in full within the time horizon [0, T ). Otherwise, if h0 is not the

fixpoint of this differential equation then it is always possible to recover parts of θ by

taking appropriate derivatives. In the next proposition we formalize this idea and show

that both Eh and Êh are equivalent to a simple reference experiment [cf. Subsection 7.1

for a proof].

Proposition 2.1. If Q({0}) = 0 then both Eh and Êh are equivalent to F =(
[0,∞]4,B([0,∞]4), (Qθ)θ∈[0,∞)4

)
where, for θ = (h0, β, α, λ) ∈ [0,∞)4, γ > 0, we set

(2.22) Qθ =


e−γ ε(h0,β,α,∞) + (1−e−γ) εθ , θ /∈ Θe ,

e−γ ε(h0,∞,∞,∞) + (1−e−γ) εθ , θ ∈ Θe , h0>0 , λ>0 ,

e−γ ε(h0,∞,∞,∞) + (1−e−γ) ε(h0,∞,∞,0) , θ ∈ Θe , h0>0 , λ=0 ,

ε(0,∞,∞,∞) , θ ∈ Θe , h0 =0 ,

and Θe is the set as defined in (2.21).

Remark 2.2. In the situation of Proposition 2.1 we require Q to satisfy Q({0}) = 0.

Indeed, if Q = ε0 then it is easy to see that both Eh and Êh are equivalent to F where

we formally set γ = 0 in (2.22). Otherwise, if Q({0}) ∈ [0, 1) then we may adjust

the intensity measures of the driving Poisson measure accordingly, to see that both

Eh and Êh are equivalent to F , but with γ replaced by γ Q(R\{0}) in the definition

of Qθ. Analogously, one can adjust the discrete-time experiments that we consider in

Proposition 2.2. We leave the details to the reader. �



14

Next we investigate the discrete time experiments. Note that the initial value of h is

observable in continuous time. As a result, it is always possible to recover the param-

eter h0 in full. To account for this phenomenon in discrete time we shall introduce the

following sequence of experiments Eh,n,Hn , indexed by n ∈ N, where we set

(2.23) Eh,n,Hn =
(
[Rn+1]2,B([Rn+1]2),

(
Lθ
(
Gn, hn

))
θ∈[0,∞)4

)
, n ∈ N .

Here ([0,∞)4, (Hn)) is a parametrisation of the full parameter space [0,∞)4; both Gn =

(Gn,k)0≤k≤n and hn = (hn,k)0≤k≤n are defined by (2.3) via

Hn(θ) = (h0,n(θ), βn(θ), αn(θ), λn(θ)) for n ∈ N and θ ∈ [0,∞)4 [by a slight abuse of the

previous notations]. Now we are in the position to state an analogon of Proposition 2.1

in the discrete time [cf. Subsection 7.2 for a proof].

Proposition 2.2. Suppose that (2.2) is satisfied for some γ ∈ (0,∞) and pn ∈
(0, 1), n ∈ N. Let ([0,∞)4, Hn)n∈N be the parametrisation in (2.11)–(2.12). Also, let

([0,∞)4, H
(KV )
n )n∈N and ([0,∞)4, H

(M)
n )n∈N be the parametrisations in (2.16), respec-

tively.

If Q({0}) = Qn({0}) = 0 for all n ∈ N then the following assertions are in place as

n→∞, both in deficiency:

(i) Eh,n,Hn converges strongly to F .

(ii) Both E
h,n,H

(KV )
n

and E
h,n,H

(M)
n

are asymptotically equivalent to

Fn =
(
[0,∞]4,B([0,∞]4), (Qθ,n)θ∈[0,∞)4

)
,

where for n ∈ N and θ = (h0, β, α, λ) ∈ [0,∞)4 we define Qθ,n as Qθ in (2.22), but with

Θe replaced by

Θe,n = {θ = (h0, β, α, λ) ∈ [0,∞)4 : h0n (1−e−α/n) = β} .

Finally we are concerned with the relationships between the experiments F and Fn,

n ∈ N ∪ {∞} [cf. Subsection 7.3 for a proof].

Proposition 2.3. Let γ > 0 and ∅ 6= Θ ⊆ [0,∞)4. Let F ,Fn, n ∈ N, be the

experiments in Propositions 2.1 and 2.2.

Let F̂ =
(
[0,∞]4,B([0,∞]4), (Q̂θ)θ∈[0,∞)4

)
be the experiment where for θ = (h0, β, α, λ) ∈

[0,∞)4 we define Q̂θ as Qθ in (2.22), but with Θe replaced by

Θ̂e = {0}2 × (0,∞)× [0,∞) ∪ [0,∞)× {0}2 × [0,∞) .

Then the following assertions hold:

(i) Always δ(F̂(Θ),F(Θ)) = δ(F̂(Θ),Fn(Θ)) = 0 for all n ∈ N.
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(ii) Further, δ(F(Θ), F̂(Θ)) = 0 if and only if, for all h0 > 0,{
(β, α, λ) ∈ [0,∞)3 : (h0, β, α, λ) ∈ Θ ∩Θe ∩ Θ̂C

e

}
6= ∅(2.24)

⇒ #

{
(β , α) ∈ [0,∞)2 : ∃λ ≥ 0 (h0, β, α, λ) ∈ Θe ∩Θ

}
= 1 .

(iii) Further, limn→∞ δ(Fn(Θ), F̂(Θ)) = 0 if and only if there exists n0 such that, for

all n ≥ n0 and h0 > 0, (2.24) is in place, but with Θe replaced by Θe,n. In particular, Fn
converges weakly to F̂ as n→∞ in deficiency.

Let us rephrase our results in terms of the GARCH experiments, with the volatility

processes fully observed in both continuous and discrete time. In contrast to the situation

in Theorem 2.3 it follows from Proposition 2.1 that the continuous-time experiments

induced by (M)COGARCH are mutually equivalent in deficiency. Depending on the

parametrisation, (M)COGARCH occurs also as the limit in deficiency of discrete-time

GARCH, in particular, this is the case for the parametrisation in Proposition 2.2. In

contrast to Theorem 2.3, for a large class of parameter sets Θ, all of these discrete-time

experiments, i.e. E
h,n,H

(0)
n

(Θ), E
h,n,H

(KV )
n

(Θ), E
h,n,H

(M)
n

(Θ), are asymptotically equivalent

to (M)COGARCH Eh(Θ) and Êh(Θ), in deficiency, as n→∞, for instance, this happens

if Θ ⊆ [0,∞)4 does not contain an open neighbourhood of Θe. Since the set Θe is of lower

dimension than [0,∞)4 it is, thus, justified to say that the randomly thinned GARCH

is generically equivalent to COGARCH in deficiency, as n→∞.

3. Conclusion. In Le Cam’s framework Wang [28] and Brown et al. [6] investigated

GARCH and Nelson’s diffusion limit. They dealt with aggregated Gaussian innovations.

For a suitable parametrisation, Maller et al. [20] and Kallsen and Vesenmayer [16]

showed, that the GARCH model converges to the COGARCH model in probability

and in distribution, respectively, when the innovations are randomly thinned. These

papers are dealing with a general Lévy process as driving process of the COGARCH.

In this paper we study an important special case in Le Cam’s framework of statistical

experiments, namely, we assume that the driving process of COGARCH is a compound

Poisson process. Then GARCH converges generically to COGARCH, even in deficiency,

provided that the volatility processes are observed. Hence, from a theoretical point of

view, COGARCH can indeed be considered as a continuous-time equivalent to GARCH.

Otherwise, when the observations are incomplete, GARCH still has a limiting experiment

which we call MCOGARCH, but this will usually not be equivalent to COGARCH in

deficiency. Nevertheless, this limiting experiment is, from a statistical point of view, quite

similar to COGARCH, since the only difference is the exact localisation of the jump

times. For COGARCH, the jump times can be more random as for the MCOGARCH,

but practitioners may see this as an additional advantage of COGARCH.
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It would be interesting to extend the analysis to more general Lévy processes, rather

than Brownian motion and compound Poisson processes. However, this first needs sub-

stantial investigations on the approximation and randomisations of Lévy processes them-

selves and, therefore, seems out of reach at the present stage of research.

4. Proof of Theorem 2.1. For the reader’s convenience, we first provide a brief

roadmap for the proof of Theorem 2.1. The proof is split up into two parts, appearing

in Sections 4.1 and 4.3. The second part uses a lemma which we formulate and prove

in Section 4.2. To prove that E
n,H

(0)
n
→ Ê in deficiency, we will introduce intermediate

experiments E?1,n and E?2,n. The first of these two experiments corresponds to a determin-

istic time grid, the latter one to a randomized time grid. First we will show that E
n,H

(0)
n

is equivalent to E?1,n in deficiency, and then, using Lemma 4.1 from Section 4.2, that E?2,n
converges strongly to Ê . Finally, we prove that E?1,n and E?2,n are equivalent.

4.1. Proof of Theorem 2.1 (Part I). For n ∈ N define a point measureN1,n on [0, 1]×R
by

(4.1) N1,n =
n∑
k=1

1Zn,k 6=0 ε(k/n , Zn,k) , n ∈ N .

Using N1,n we pass from discrete to continuous time. For n ∈ N define

E?1,n = {D1,D1, (Lθ(G1,n)}θ∈[0,∞)4),

where, for all 0 ≤ t ≤ 1, n ∈ N and θ = (h0, β, α, λ) ∈ [0,∞)4, (G1,n, h1,n) is the unique

pathwise solution of the following system of integral equations (t ∈ [0, 1]):

G1,n(t) =

∫
[0,t]×R

h
1/2
1,n (s−) z N1,n(ds, dz) ,(4.2)

h1,n(t) = h0 +

∫
[0,t]

β − αh1,n(s−) ds+ λ

∫
[0,t]×R

h1,n(s−)z2N1,n(ds, dz) .

Fix θ = (h0, β, α, λ) ∈ [0,∞)4 with α 6= 0. By solving the linear ode for h1,n in (4.2)

observe that

(4.3) h1,n(t) =
β

α

[
1−e−α[t−(k−1)/n]

]
+ e−α[t−(k−1)/n] h1,n

(
k−1

n

)
,

for (k−1)/n ≤ t < k/n, 1 ≤ k ≤ n and n ∈ N. It, thus, follows from (2.11) and (4.3)

that, for all n ∈ N,

h1,n(1/n−) = h0e
−α/n +

β

α
[1−e−α/n] = h0,n(θ) .

h1,n

(
k

n
−
)

= βn(θ) + h1,n

(
k−1

n
−
) [

αn(θ) + λn(θ)Z2
n,k−1

]
, 2 ≤ k ≤ n .
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In view of (2.3) and the identities in the last display, we, thus, have

hn(k) = h1,n (((k+1)/n)−) for all n ∈ N, 0≤ k ≤ n−1 and θ = (h0, β, α, λ) ∈ [0,∞)4

with α > 0. A similar argument is applicable to (2.12) and θ = (h0, β, 0, λ) ∈ [0,∞)4.

It, thus, follows from (2.3) and (4.2) that

Lθ
(
(G1,n(k/n))1≤k≤n

)
= Lθ

(
(Gn(k))1≤k≤n

)
, n ∈ N , θ ∈ [0,∞)4 .

Note that G1,n is constant on [(k−1)/n, k/n), 1 ≤ k ≤ n and n ∈ N. Hence E
n,H

(0)
n

is

equivalent to E?1,n in deficiency for all n ∈ N by (A.2) and the monotonicity theorem for

Markov kernels (cf. [26], Lemma 1.4.2(i)).

Next we randomize the deterministic time grid. Therefore let (Uk)k∈N be an iid se-

quence of random variables independent of the vector Zn, where Uk is uniformly dis-

tributed on [0, 1]. Set

(4.4) Vn,k = ((k−1)+Uk)/n , 1 ≤ k ≤ n

and define a point process N2,n by

(4.5) N2,n =
n∑
k=1

1Zn,k 6=0 ε(Vn,k,Zn,k) , n ∈ N .

Let T be as in (2.6). For n ∈ N let E?2,n = (D1,D1, (Lθ(G2,n))θ∈[0,∞)4), where, for all

0 ≤ t ≤ 1, n ∈ N and θ = (h0, β, α, λ) ∈ [0,∞)4, (G2,n, h2,n) is the pathwise unique

solution of the following system of integral equations:

G2,n(t) =

∫
[0,t]×R

h
1/2
2,n (s−)z N2,n(ds, dz) ,(4.6)

h2,n(t) = h0 +

∫
[0,t]

β − αh2,n(s−) dTN2,n (s) + λ

∫
[0,t]×R

h2,n(s−)z2N2,n(ds, dz) .

To proceed with the proof of Theorem 2.1 we need the following lemma:

4.2. Lemma 4.1 and Proof.

Lemma 4.1. Let N be a Poisson measure with intensity measure γ`⊗Q and N2,n as

in (4.5). Suppose that (2.2) is in place. If Qn tends to Q in total variation as n → ∞
then limn→∞ ‖L(N2,n)− L(N)‖ = 0.

Proof. Suppose that (2.2) is satisfied for n ∈ N, pn ∈ (0, 1) and γ ∈ (0,∞).

Let Bn,1, . . . , Bn,n be independent Bernoulli variables with parameter pn. Suppose that

(Uk, ζn,k)k∈N is an iid sequence of random vectors with independent components where

Uk is uniformly distributed on (0, 1) and L(ζn,k) = Qn. Suppose that Bn,1, . . . , Bn,n and

(Uk, ζn,k)k∈N are independent. Observe that

L(N2,n) = L

(
n∑
k=1

Bn,kε(Vn,k,ζn,k)

)
,
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with Vn,k = (k−1 +Uk)/n for all n ∈ N and 1 ≤ k ≤ n.

Let N̂n be a Poisson measure on [0, 1]⊗R with intensity measure npn`⊗Qn and define

N̂n,k(B) = N̂n

(
B ∩

((
k−1

n
,
k

n

]
× R

))
, B ∈ B([0, 1]× R) .

Then N̂n,1, . . . , N̂n,n are independent Poisson point processes where, for all n ∈ N, 1 ≤
k ≤ n, N̂n,k has intensity measure

npn[`⊗Qn]

(
B ∩

((
k−1

n
,
k

n

]
× R

))
, B ∈ B([0, 1]× R) .

By the monotonicity theorem of Markov kernels (cf. [26], Lemma 1.4.2(i)), observe that,

for all n ∈ N,

(4.7) ‖L(N2,n)− L(N̂n)‖ ≤

∥∥∥∥∥
n⊗
k=1

L
(
Bn,kε(Vn,k,ζn,k)

)
−

n⊗
k=1

L
(
N̂n,k

)∥∥∥∥∥ .
Denote the Hellinger’s distance between two probability measures P1 and P2 byH(P1, P2).

This gives us the following upper bound (cf. [26], Section 1.3, Equation (1.23) and Sec-

tion 1.3, Equation (1.25)):∥∥∥∥∥
n⊗
k=1

L
(
Bn,kε(Vn,k,ζn,k)

)
−

n⊗
k=1

L
(
N̂n,k

)∥∥∥∥∥(4.8)

≤ H

(
n⊗
k=1

L
(
Bn,kε(Vn,k,ζn,k)

)
,

n⊗
k=1

L
(
N̂n,k

))

≤

(
n∑
k=1

H2
(
L
(
Bn,kε(Vn,k,ζn,k)

)
,L
(
N̂n,k

)))1/2

.

Fix n ∈ N and 1 ≤ k ≤ n. Let (Vn,k,l, ζn,k,l)l∈N be an iid sequence of random vectors

with L(Vn,k,l, ζn,k,l) = L(Vn,k) ⊗ Qn, l ∈ N. Suppose that (Vn,k,l) is independent of Bn,k

and τn,k where τn,k is a Poisson variable with parameter pn. Then we have the following

identities:

L
(
Bn,kε(Vn,k,ζn,k)

)
= L

Bn,k∑
l=1

ε(Vn,k,l,ζn,k,l)

 , L(N̂n,k) = L

(
τn,k∑
l=1

ε(Vn,k,l,ζn,k,l)

)
.

By Lemma 1.4.2(ii) in [26], for n ∈ N and 1 ≤ k ≤ n, we must have

(4.9) H
(
L
(
Bn,k ε(Vn,k,Zn,k)

)
,L
(
N̂n,k

))
≤ H(L(Bn,k),L(τn,k)) .

As H(L(Bn,k),L(τn,k)) ≤ 31/2pn (cf. [26], Theorem 1.3.1(ii)), it follows from (4.7)–(4.9),

and (2.2) that

(4.10) lim sup
n→∞

‖L(Ñn)− L(N̂n)‖ ≤ lim sup
n→∞

(3np2
n)1/2 = 0 .
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In view of a well-known upper bound of the laws of a Poisson point measures in terms

of the corresponding intensity measures (cf. [26], Section 3.2, Equation (3.8)), it follows

from (2.2) and ‖`⊗Q‖ = 1 that

‖L(N̂n)− L(N)‖ ≤ 3‖γ`⊗Q− npn`⊗Qn‖
≤ 3|npn − γ|+ 3npn‖Q−Qn‖ → 0 , n→∞ .

By means of (4.10) and (4.11), this completes the proof of the lemma.

4.3. Proof of Theorem 2.1 (Part II). Let N be a Poisson measure with intensity

measure γ`⊗Q. It follows from (2.5) and (4.6) that there exists a family of deterministic

Markov kernels Kθ : M1×D1 → [0, 1], indexed by θ ∈ [0,∞)4, such that both Lθ(G2,n) =

KθL(N2,n) and Lθ(Ĝ) = KθL(N) for all n ∈ N and θ ∈ Θ. Since we assumed (2.2) the

assertion of Lemma 4.1 is in place, we, thus, get from (A.4) and the monotonicity theorem

for Markov kernels (cf. [26], Lemma 1.4.2(i)) that as n→∞,

∆(Ê , E?2,n) ≤ sup
θ∈[0,∞)4

‖Lθ(Ĝ)− Lθ(G2,n)‖ ≤ ‖L(N)− L(N2,n)‖ → 0 .

Consequently, E?2,n converges (strongly) to Ê in deficiency as n→∞. Recall that E
n,H

(0)
n

is equivalent to E?1,n in deficiency for all n ∈ N. To complete the proof of the theorem it,

thus, suffices to show that E?1,n is equivalent to E?2,n.

Therefore let M0 be the space of all nonnegative point measures on [0, 1] with finite

support. We equip this space with the σ-algebraM0 generated by the point evaluations

(cf. Reiss (1993), [26], pages 5–6). Let M0,1 ⊆M0 be the subset of point measures σ ∈M0

such there exist m ∈ N and 0 = t0 < t1 < . . . < tm < 1 with σ =
∑m

k=1 εtk . For σ ∈ M0,

we define mappings T1,σ, T2,σ : [0, 1]→ [0,∞) and T3,σ, T4,σ : [0, 1]× R→ [0,∞)× R as

follows: if σ ∈ M0\M0,1 then for all t ∈ [0, 1] and x ∈ R, we set T1,σ(t) = T2,σ(t) = t

and T3,σ(t, x) = T4,σ(t, x) = (t, x). Otherwise, if σ ∈ M0,1 then there exist m ∈ N and

0= t0<t1<. . .<tm< 1 with σ =
∑m

k=1 εtk and we set

T1,σ(t) =
t− tk

m(tk − tk−1)
+
k

m
, t ∈ [tk−1, tk) , 1 ≤ k ≤ m,

T1,σ(t) =
t− tm

m(tm − tm−1)
+ 1 , t ∈ [tm, 1] .

In this case, define T4,σ : [0, 1]×R→ [0, 1]×R by T4,σ = (T1,σ(t), x). Then T1,σ : [0, tm]→
[0, 1] and T4,σ : [0, tm]×R→ [0, 1]×R are bijections and we let T2,σ : [0, 1]→ [0, tm] and

T3,σ : [0, 1]× R→ [0, tm]× R to be their corresponding inverses.

Let n ∈ N. Recall (4.4) and set

M1,n =
n∑
k=1

εVn,k 1G1,n(k/n)−G1,n((k−1)/n)6=0 ,

M2,n =
∑

0≤t≤1

ε([tn]+1)/n 1G2,n(t)−G2,n(t−) 6=0 .
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For n ∈ N and i = 1, 2, it follows from the transformation theorem that

Gi,n ◦ Ti,Mi,n
(t) =

∫
[0,t]×R

(hn,i ◦ TMi,n
)1/2(s−) z N

Ti+2,Mi,n

i,n (ds, dz)

hi,n ◦ Ti,Mi,n
(t) = h0+

∫
[0,t]

β−α(hi,n ◦ Ti,Mi,n
)(s−) dTi,Mi,n

(s)

+λ

∫
[0,t]×R

(hi,n ◦ Ti,Mi,n
)(s−) z2N

Ti+2,Mi,n
n (ds, dz)(4.11)

for all t ∈ [0, 1] and θ = (h0, β, α, γ) ∈ [0,∞)4.

Let θ = (h0, β, α, γ) ∈ [0,∞)4. If h0 = β = 0 then it follows from (4.2) and (4.6) and

(4.11) that hi,n = hi,n ◦ Ti,Mi,n
≡ 0, i = 1, 2, a.s., and, thus,

Lθ(Gi,n) = Lθ(Gi,n ◦ Ti,Mi,n
)) = ε0 , n ∈ N , i = 1, 2 .

Otherwise, if h0 + β > 0 then it follows from (4.2) and (4.6) that hi,n(t) > 0 for all

t ∈ (0, 1] a.s., i = 1, 2. In this case we have M1,n=N2,n, M2,n=N1,n, N
T3,M1,n

1,n =Nn,2 and

N
T4,M2,n

2,n =Nn,1 and, thus, we get from (4.11) that both

Lθ(G1,n) = Lθ(G2,n ◦ T2,M2,n) and Lθ(G2,n) = Lθ(G1,n ◦ T1,M1,n) .

for n ∈ N. In other words, for all n ∈ N there are Markov kernels K1,2,n : D1×D1 → [0, 1]

and K2,1,n : D1 ×D1 → [0, 1], not depending on θ ∈ [0,∞)4, such that K1,2,nLθ(G2,n) =

Lθ(G1,n) and K2,1,nLθ(G1,n) = Lθ(G2,n) for all θ ∈ [0,∞)4. Hence E?1,n is equivalent to

E?2,n in deficiency by (A.2) for all n ∈ N. This completes the proof of the theorem. �

5. Proof of Theorem 2.2. The proof of Theorem 2.2 is split up into two parts

reported in Sections 5.1 and 5.4. We will need two additional results, which appear as

Lemma 5.1 and Lemma 5.2 together with their proofs in Sections 5.2 and 5.3, respec-

tively.

5.1. Proof of Theorem 2.2 (Part I). Recall that Le Cam’s distance is a pseudo-metric.

In view of (A.4) and Theorem 2.1, it, thus, suffices to show (2.15). For n ∈ N let

Zn = (Zn,k)1≤k≤n be a random vector with a distribution as in (2.1).

First we assume that

(5.1) Qn = Q , n ∈ N .

At the end of the proof we will relax this condition to ‖Qn −Q‖ → 0, as n→∞.

Let Nn be as in (4.1) and set ‖Nn‖ = Nn([0, 1]×R), n ∈ N. Let Θ be as in the assertion

of the theorem. Suppose that H1,n = Hn = (h0,1,n, β1,n, α1,n, λ1,n) : Θ→ [0,∞)4 satisfies

the assumptions of the theorem. Further, let H2,n = (h0,2,n, β2,n, α2,n, λ2,n) = H
(0)
n : Θ→

[0,∞)4 be defined by the identities in (2.11)–(2.12).
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For θ ∈ Θ and i = 1, 2, let us define Xi,n = (Xi,n(k))1≤k≤n by

Xi,n(k) = h
1/2
i,n (k−1) Zn,k , Xi,n(0) = 0 ,(5.2)

hi,n(k) = βi,n(θ) + hi,n(k−1)
[
αi,n(θ) + λi,n(θ) Z2

n,k

]
,

hi,n(0) = h0,i,n(θ) , n ∈ N , 1≤k≤n .

Hence, X1,n corresponds to the GARCH processes Gn as in the theorem, and X2,n to

the GARCH processes G
(0)
n defined directly after (2.12). Let

(5.3) Mn,k =

{
σ = (σl)1≤l≤k ∈ Nk :

k∑
l=1

σl ≤ n

}
, 1≤k≤n , n ∈ N.

By employing the conventions 00 = 1 and
∑m

l=k = 0 for m<k, we set

ηi,n,1,l,σ(θ) = βi,n(θ)

σl+1−1∑
m=0

[αi,n(θ)]m ,(5.4)

ηi,n,2,l,σ(θ) = [αi,n(θ)]σl+1 ,

ηi,n,3,l,σ(θ) = λi,n(θ) [αi,n(θ)]σl+1−1 .

for σ = (σl)1≤l≤k ∈Mn,k, 1≤k≤n, 0≤ l≤k−1, i = 1, 2, and n ∈ N.

Also, we define recursively functions from Rk → R by setting

ĝi,n,0,σ,θ ≡ h0,i,n(θ)αi,n(θ)σ1−1 + βi,n(θ)

σ1−2∑
m=0

αmi,n(θ) ,(5.5)

ĝi,n,l,σ,θ(y) = ηi,n,1,l,σ(θ) + ηi,n,2,l,σ(θ) ĝi,n,l−1,σ,θ(y) + ηi,n,3,l,σ(θ) y2
l ,

for y ∈ Rk, σ = (σl)1≤l≤k ∈Mn,k, 1≤k≤n, 0≤ l≤k−1, i = 1, 2 and n ∈ N.

Let n ∈ N and 1≤k≤n. On {‖Nn‖ = k} we consider the following stopping times

τ0 = 0 , τm = min{ν ∈ {τm−1+1, . . . , n} : Zn,ν 6= 0} , 1≤m≤k .

Using these stopping times let ∆τ = ((∆τm)1≤m≤k) ∈Mn,k be the random vector defined

componentwise by ∆τm = τm − τm−1 for 1≤m≤k.

Let i = 1, 2, n ∈ N, 1≤k≤n and θ ∈ Θ. On {‖Nn‖ = 0} set Yi,n = 0, and otherwise,

(5.6) Yi,n = (Yi,n(l))1≤l≤‖Nn‖ = (Xi,n(τl))1≤l≤‖Nn‖ .

In the notations of (5.4) and (5.5), Yi,n satisfies the following recursion on {‖Nn‖ = k}:

Yi,n(l) = g
1/2
i,n (l−1) Zn,τl , Yi,n(0) = 0 , 1≤ l≤k ,(5.7)

gi,n(l) = ηi,n,1,l,∆τ (θ) + gi,n(l−1) ηi,n,2,l,∆τ (θ)

+ ηi,n,3,l,∆τ (θ) gi,n(l−1) Z2
n,τl

, 1≤ l≤k−1 ,

gi,n(0) = ĝi,n,0,∆τ,θ .
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Recall (5.3). For all n ∈ N, 1≤k≤n and σ = (σl)1≤l≤k ∈Mn,k let

(5.8) An,k,σ =

{
‖Nn‖ = k , ∆τ = σ

}
.

For future purposes we collect some useful inequalities in the next lemma.

5.2. Lemma 5.1 and Proof.

Lemma 5.1. Suppose that (Θ, (Hn)n∈N) satisfies the assumption of Theorem 2.2. Let

S ∈ (0,∞) and suppose that Q([−S, S]) = 1.

Then there exists C = C(S,Θ) ∈ (1,∞) and n0 = n0(S,Θ) ∈ N such that the following

three inequalities are in place

|ĝ1,n,0,σ,θ − ĝ2,n,0,σ,θ| ≤
C

n
(5.9)

ĝi,n,l,σ,θ(y) ≥ C−1 ,(5.10)

(5.11) Eθ
[
|ĝ1,n,l,σ,θ(Y1,n)− ĝ2,n,l,σ,θ(Y1,n)|

∣∣An,k,σ] ≤ Ck

n
.

for all n≥n0, 1≤k≤n, 0≤ l ≤k−1, σ ∈Mn,k, i = 1, 2, θ ∈ Θ, y ∈ Rk and i = 1, 2.

Proof. Let (Θ, (Hn)n∈N) be as in Theorem 2.2. First note that (Θ, (H1,n)n∈N) =

(Θ, (Hn)n∈N) satisfies the assumption in Theorem 2.2. Also, recall that (Θ, (H2,n)n∈N) =

(Θ, (H
(0)
n )n∈N) is defined in (2.11)–(2.12). In particular, observe that αi,n(θ) → 1 uni-

formly for all θ = (h0, β, α, λ) ∈ Θ as n→∞, i = 1, 2 and, thus, there is a n1 = n1(Θ) ∈
N satisfying

(5.12)
e−1

2
≤ [αi,n(θ)]n = exp(n log[n+ n(αi,n(θ)−1)]− n log n) ≤ 2e ,

for all n ≥ n1, i = 1, 2 and θ = (h0, β, α, λ) ∈ Θ.

It follows from our assumptions on (Θ, (Hn)n∈N) that there exist n0 = n0(Θ) ≥ n1

and C1 = C1(Θ) ∈ (1,∞) such that

ĝi,n,l,σ,θ(y) ≥ h0,i,n(θ)[αi,n(θ)]−1+
∑l+1
m=1 σk ≥ e−1

2

h0,i,n(θ)

αi,n(θ)

≥ e−1

4
inf

(h0,β,α,λ)∈Θ
h0 ≥ C−1

1 ,(5.13)

and

max

{
h0,i,n(θ) , βi,n(θ) , [αi,n(θ)]n ,

h0,i,n(θ)

αi,n(θ)

}
≤ C1 ,(5.14)

max
{
|h0,1,n(θ)−h0,2,n(θ)| , |β1,n(θ)−β2,n(θ)| ,

|α1,n(θ)−α2,n(θ)| , |λ1,n(θ)−λ2,n(θ)|
}
≤ C1

n
,
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for all n ≥ n0, 1≤k≤n, 0≤ l≤k−1 σ = (σl)1≤l≤k ∈Mn,k, i = 1, 2, θ ∈ Θ and y ∈ Rk.

Recall (5.4) and (5.5). It follows from (5.14) that we have

max {ηi,n,2,l,σ(θ) , ηi,n,3,l,σ(θ)} ≤ C2
1 ,(5.15)

max {ηi,n,1,l,σ(θ) , ĝi,n,0,σ,θ} ≤ (k+1)C2
1 ,

max {|[α1,n(θ)]m − [α1,n(θ)]m|} ≤ C2
1m

n
,

max {|η1,n,j,l,σ(θ)− η2,n,j,l,σ(θ)| : j = 1, 2, 3} ≤ (2e2C3
1)k

n
,

|ĝ1,n,0,σ,θ − ĝ2,n,0,σ,θ| ≤
(4e2C3

1)k

n
,

for all n ≥ n0, 1≤k≤n, 0≤ l ≤k−1, σ = (σl)1≤l≤k ∈Mn,k, i = 1, 2, m ∈ N0 and θ ∈ Θ.

Recall (5.7). Let S > 1 such that Q([−S, S]) = 1 and set C2 = C2(S, θ) = e2(1+S)2C4
1

and C3 = C3(S, θ) = S2C2. It follows from an induction and the inequalities in (5.15)

that

Eθ[gi,n(l)|An,k,σ] ≤ C2
1(k+1) + C2

1(1+S2)Eθ[gi,n(l−1)|An,k,σ]

≤ (k+1)
l∑

m=0

(1+S2)mC
2(1+m)
1 ≤ Ck

2 ,(5.16)

and, thus,

(5.17) Eθ[Y
2
i,n(l)|An,k,σ] ≤ Ck

3 ,

for all n ≥ n0, 1≤k≤n, 0≤ l≤k−1, σ = (σl)1≤l≤k ∈Mn,k, i = 1, 2 and θ ∈ Θ.

Finally, let C = C(S, θ) = 12e3C3
1C3. By an induction it follows from (5.15)–(5.17)

that

Eθ

[∣∣ĝ1,n,l,σ,θ(Y1,n)− ĝ2,n,l,σ,θ(Y1,n)
∣∣∣∣∣∣An,k,σ]

≤ Ck
3

3∑
j=1

|η1,n,j,l(θ)− η2,n,j,l(θ)|+ Eθ

[∣∣ĝ1,n,l−1,σ,θ(Y1,n)− ĝ2,n,l−1,σ,θ(Y1,n)
∣∣∣∣∣∣An,k,σ]

≤
∣∣ĝ1,n,0,σ,θ − ĝ2,n,0,σ,θ

∣∣+ Ck
4

k−1∑
l=1

3∑
j=1

|η1,n,j,l(θ)− η2,n,j,l(θ)| ≤
Ck

n
,

for all n ≥ n0, 1≤ k≤n, 0≤ l≤ k−1 σ = (σl)1≤l≤k ∈ Mn,k and θ ∈ Θ. This completes

the proof in view of (5.13) and (5.15).

5.3. Lemma 5.2 and Proof. Now we provide an upper bound for conditional laws and

their total variation norm in the next lemma.
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Lemma 5.2. Suppose that Q admits a Lebesgue density f where f is globally Lipschitz

and has a compact support {f > 0}.
If (Θ, (Hn)n∈N) satisfies the assumptions of the Theorem 2.2 then there exist n0 =

n0(f,Θ) ∈ N and C = C(f,Θ) ∈ (0,∞) such that

(5.18)

∥∥∥∥Lθ(Y1,n

∣∣An,k,σ)− Lθ(Y2,n

∣∣An,k,σ)∥∥∥∥ ≤ Ck

n
,

for all θ ∈ Θ, n ≥ n0, 1≤k≤n and σ ∈Mn,k.

Proof. By assumption we have f(x) = 0 for all |x| ≥ S and some S > 0. Hence

there are n0 = n0(f, θ) ∈ N and C1 = C1(f, θ) ∈ (1,∞) such that, for C replaced by C1,

the assertion of Lemma 5.1 is in place.

Let n ≥ n0, i = 1, 2, θ ∈ Θ, 1≤ k≤n and σ ∈ Mn,k. Recall (5.5). In view of (5.10),

Ψi,n,θ : Rk → Rk is a well-defined C∞-diffeomorphism, where Ψi,n,σ,θ = (ψi,n,l,σ,θ)1≤l≤k :

Rk → Rk is defined by

ψi,n,l,σ,θ(y) =
yl

ĝ
1/2
i,n,l−1,σ,θ(y)

,(5.19)

for y = (y1, . . . , yk) ∈ Rk and 1 ≤ l ≤ k. For all n ≥ n0, θ ∈ Θ, n ≥ n0, 1≤ k≤n and

σ ∈Mn,k we define

f̃i,n,k,σ,θ(y) =
k∏
l=1

f(ψi,n,l,σ,θ(y))

ĝ
1/2
i,n,l−1,σ,θ(y)

, y ∈ Rk , i = 1, 2 .

It follows from (5.5) and (5.7) and (5.19) that f̃i,n,k,σ,θ is a density of the probability mea-

sure Lθ
(
Yi,n
∣∣An,k,σ) with respect to the Lebesgue measure `⊗k on B(Rk). In particular,

we must have∥∥Lθ(Y1,n

∣∣An,k,σ)− Lθ(Y2,n

∣∣An,k,σ)∥∥ =
1

2

∫
Rk
|f̃1,n,k,σ,θ(y)− f̃2,n,k,σ,θ(y)| dy ,(5.20)

for all θ ∈ Θ, n ≥ n0, 1≤k≤n and σ ∈Mn,k.

Suppose that Cf ∈ (0,∞) is a global Lipschitz constant of f . By means of simple

substitutes, for all ε > 0 and w, v ≥ ε, observe

1

2

∫ ∣∣∣∣f(x/v)

v
− f(x/w)

w

∣∣∣∣ dx ≤ 1

ε
(S2Cf + 1) |v − w| .

Consequently, for all ε > 0, we find a κ1 = κ1(f, ε) ∈ (1,∞) such that

1

2

∫ ∣∣∣∣f(x/v)

v
− f(x/w)

w

∣∣∣∣ dx ≤ κ1(ε)|v − w| , v, w ≥ ε .
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In view of (5.10), there, thus, exists κ2 = κ2(f,Θ) ∈ (1,∞) such that

1

2

∫ ∣∣∣∣∣f(yl/ĝ
1/2
1,n,l−1,σ,θ(y))

ĝ
1/2
1,n,l−1,σ,θ(y)

−
f(yl/ĝ

1/2
2,n,l−1,σ,θ(y)

ĝ
1/2
2,n,l−1,σ,θ(y))

∣∣∣∣∣ dyl(5.21)

≤ κ2|ĝ1,n,l−1,σ,θ(y)− ĝ2,n,l−1,σ,θ(y)| ,

for all n ≥ n0, 1≤k≤n, 1≤ l ≤k, σ ∈ Mn,k, y ∈ Rk and θ ∈ Θ. By integrating over yk,

we get from (5.21) that

1

2

∫
Rk
|f̃1,n,k,σ,θ(y)− f̃2,n,k,σ,θ(y)| dy(5.22)

≤ κ2

∫
Rk−1

k−1∏
l=1

f(ψ1,n,l,σ,θ(y))

ĝ
1/2
1,n,l−1,σ,θ(y)

|ĝ1,n,k−1,σ,θ(y)− ĝ2,n,k−1,σ,θ(y)| dy

+
1

2

∫
Rk−1

∣∣∣∣∣
k−1∏
l=1

f(ψ1,n,l,σ,θ(y))

ĝ
1/2
1,n,l−1,σ,θ(y)

−
k−1∏
l=1

f(ψ2,n,l,σ,θ(y))

ĝ
1/2
2,n,l−1,σ,θ(y)

∣∣∣∣∣ dy ,
for all n ≥ n0, 1≤k≤n, σ ∈Mn,k and θ ∈ Θ. It follows from (5.11) that∫

Rk−1

k−1∏
l=1

f(ψ1,n,l,σ,θ(y))

g
1/2
1,n,l−1,σ,θ(y)

|ĝ1,n,k−1,σ,θ(y))− ĝ2,n,k−1,σ,θ(y))| dy(5.23)

= Eθ

[∣∣ĝ1,n,k−1,θ(Y1,n)− ĝ2,n,k−1,θ(Y1,n)
∣∣∣∣∣∣An,k,σ] ≤ Ck

1

n
.

for all n ≥ n0, 1≤k≤n, σ ∈Mn,k and θ ∈ Θ, .

Let C = e κ2C1. By an induction we, thus, get from (5.9) and (5.22)–(5.23) that

∥∥Lθ(Y1,n

∣∣An,k,σ)− Lθ(Y2,n

∣∣An,k,σ)∥∥ ≤ Ck

n
,

uniformly for all n ≥ n0, 1≤k≤n, σ ∈Mn,k and θ ∈ Θ. This completes the proof of the

lemma.

5.4. Proof of Theorem 2.2 (Part II). Let f be a Lebesgue density of Q and Θ be

as in Theorem 2.2. We denote the positive part of a function g : R → R by g+. Let

C∞C be the space of infinitely often continuously differentiable functions g : R→ R with

compact support {g > 0}. As C∞C is dense in L1 we find a sequence of gm ∈ C∞C , m ∈ N,

such that
∫
|gm − f |d` → 0 as m → ∞. It is immediate that both,

∫
|g+
m − f |d` → 0

and
∫
g+
m d` → 1 as m → ∞. Without loss of generality, we may, thus, assume that∫

g+
m d` > 0 for all m ∈ N. Then hm := g+

m/
∫
g+
md` defines a sequence of globally

Lipschitz continuous probability densities with a compact support {hm > 0} such that∫
|hm − f |d`→ 0.
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For m ∈ N let Z
(m)
n = (Z

(m)
n,k )1≤k≤n be a random vector with distribution

L(Z(m)
n )(B) =

(
(1−pn)ε0(B) + pn

∫
B

hmd`
)⊗n

,

with B ∈ B(Rn), m,n ∈ N, 1 ≤ k ≤ n. If we replace Zn,k by Z
(m)
n,k in (5.2) then we get

yet another family of GARCH models X
(m)
i,n = (X

(m)
i,n (k))1≤k≤n, say, indexed by θ ∈ Θ,

i = 1, 2 and m, n ∈ N.

It follows from the monotonicity theorem for Markov kernels and a well-known upper

bound for product measures [cf. [26], Lemma 1.4.2(i) and p.23] that, for all i = 1, 2,

sup
θ∈Θ0

‖Lθ(Xi,n)− Lθ(X(m)
i,n )‖ ≤ ‖L(Zn)− L(Z(m)

n )‖

≤ n‖L(Zn,1)− L(Z
(m)
n,1 )‖ =

npn
2

∫
|hm − f |d` .(5.24)

As hm is globally Lipschitz with a compact support {hm > 0} for all m ∈ N0 the as-

sumptions of Lemma 5.2 are in place. For all m ∈ N there, thus, exist nm ∈ N and

Cm = C(hm,Θ) ∈ (0,∞) such that, for all n ≥ nm, we get by conditioning and the

monotonicity theorem for Markov kernels that

(5.25) sup
θ∈Θ
‖Lθ(X(m)

1,n )− Lθ(X(m)
2,n )‖ ≤ 1

n
E

[
C‖Nn‖m

]
,

for Nn as defined in (4.1). Recall (5.2). By combining (5.24) and (5.25) we get from the

triangular inequality that

sup
θ∈Θ

∥∥Lθ(Gn)− Lθ(G(0)
n )
∥∥ ≤ npn

∫
|hm − f |d`+

1

n
E

[
C‖Nn‖m

]
,

for all m ∈ N and n ≥ nm. As (2.2) is in place, we have limn→∞EC
‖Nn‖
m = eλ(Cm−1) and,

thus,

lim sup
n→∞

sup
θ∈Θ

∥∥Lθ(Gn)− Lθ(G(0)
n )
∥∥ ≤ λ lim sup

m→∞

∫
|hm − f |d` = 0 ,

giving (2.15). This completes the proof of Theorem 2.2 in the case that Qn = Q for all

n ∈ N [cf. (5.1)].

Now assume that Qn → Q in total variation norm as n → ∞. For m ∈ N let Ẑn =

(Ẑn,k)1≤k≤n be a random vector with distribution

L(Ẑn) =
(
(1−pn)ε0 + pnQn

)⊗n
, n ∈ N .

If we replace Zn,k by Ẑn,k in (5.2) then we get the GARCH models in the assertion of

the theorem. We denote them by X̂i,n [n ∈ N, i = 1, 2]. By the same argument as in

(5.24) we must have, for all i = 1, 2 and n ∈ N ,

sup
θ∈Θ0

‖Lθ(X̂i,n)− Lθ(Xi,n)‖ ≤ npn‖Qn −Q‖ .

As the right hand-side tends to zero, this completes the proof of the theorem. �
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6. Proof of Theorem 2.3. We need some preparations. Let Z = (Zn)n∈N and

U = (Un)n∈N be independent sequences of iid random variables such that L(Z1) = Q

with Lebesgue density f and U1 is uniformly distributed on (0, 1). For d ∈ N, we denote

the order statistics of 0, U1, . . . , Ud by 0 =: Ud,0 < Ud,1 ≤ ... ≤ Ud,d. For each n ∈ N let

νn be a Poisson random variable with parameter γn > 0, independent of Z and U .

In both (2.4) and (2.5), N admits a representation N =
∑νn

k=1 ε(Uνn,k,Zk), since N is a

Poisson measure with the intensity γn`⊗Q. On {νn = 0} let ∆Uνn = ∆Gνn = ∆Ĝνn = 0,

whereas, on {νn > 0}, we set

∆Uνn = (Uνn,k−Uνn,k−1)1≤k≤νn ,

∆Gνn = (G(Uνn,k)−G(Uνn,k−))1≤k≤νn ,

∆Ĝνn = (Ĝ(Uνn,k)− Ĝ(Uνn,k−))1≤k≤νn .

Let S0 = R0 = {0} and R̃ =
⋃∞
d=0{d} × Sd × Rd where, for d ∈ N, Sd equals the set

of all w = (w1, . . . , wd)
′ ∈ (0, 1)d such that

∑d
i=1wi ≤ 1. We endow Sd and R̃ with the

Borel trace field B(Sd) [d ≥ 0] and the σ-algebra B̃, respectively, where B̃ is the set of

all B ⊆ R̃ such that B ∩ ({d} × Sd × Rd) ∈ {∅, {d}} ⊗ B(Sd)⊗ B(Rd) for all d ∈ N0.

Since we assumed that Θ ⊆ (0,∞) × [0,∞)3, and since G and Ĝ jump always at

the same time as N does, all arrival times are observed in full and, thus, Eγn,Q(Θ) and

Êγn,Q(Θ) are equivalent to Fn and F̂n in deficiency, respectively, in view of (A.2), where,

for all n ∈ N, we set

Fn =
(
R̃, B̃, (Lθ(νn,∆Uνn ,∆Gνn))θ∈Θ

)
,

F̂n =
(
R̃, B̃, (Lθ(νn,∆Uνn ,∆Ĝνn))θ∈Θ

)
.

Let ŵ0 = 0 and, for d > 0, set ŵd = (1/d, . . . , 1/d) ∈ Rd. Recall that Θ ⊆ (0,∞)×[0,∞)3

and pick d ∈ N0, θ = (h0, β, α, λ) ∈ Θ, w = (w1, . . . , wd) ∈ Sd ∪ {ŵd}. We define a

diffeomorphism Ψd,w,θ : Rd → Rd as follows: if d = 0 then let Ψd,w,θ = 0, otherwise, if

d > 0 then let

Ψd,w,θ(z) =
(
h

1/2
d,w,θ,k(z) zk

)
1≤k≤d

, z = (z1, . . . , zd) ∈ Rd ,

where, for 2 ≤ k ≤ d, recursively, we define

hd,w,θ,k(z) =
β

α
(1−e−αwk) + e−αwk(1 + λz2

k−1) hd,w,θ,k−1(z) ,(6.1)

hd,w,θ,1(z) ≡ hd,w,θ,1 =
β

α
(1−e−αw1) + e−αw1h0 ,

provided α > 0, and, otherwise, if α = 0 then we set

hd,θ,w,k(z) = βwk + hd,θ,w,k−1(z)(1 + λz2
k−1) ,(6.2)

hd,θ,w,1(z) ≡ hd,w,θ,1 = βw1 + h0 .
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Let f be a strictly positive Lebesgue density of Q, and set

Hd,θ1,θ2,w(ζ) =∫
Rd

(
|JΨ−1

d,w,θ1

(x)| f⊗d(Ψ−1
d,w,θ1

(x))

)ζ (
|JΨ−1

d,w,θ2

(x)| f⊗d(Ψ−1
d,w,θ2

(x))

)1−ζ

dx ,

for all θ1, θ2 ∈ Θ, 0<ζ<1, w ∈ Sd ∪ {ŵd}.
To summarise, so far we have shown that, for all n ∈ N, equivalence of Eγn,Q(Θ) and

Êγn,Q(Θ) in deficiency is equivalent to equivalence of Fn and F̂n in deficiency. For the

remaining part recall that the two experiments are equivalent in deficiency if, and only

if, their corresponding Hellinger transformations equal, eg. Corollary 53.8 in [27]. By

solving the differential equations in (2.4) and (2.5), we, thus, arrive at the following

identity:

∞∑
d=1

γdne
−γn

d!
Hd,θ1,θ2,ŵd(ζ) =

∞∑
d=1

γdne
−γn

d!

∫
Sd

Hd,θ1,θ2,w(ζ)
dw

`⊗d(Sd)
,

for all θ1, θ2 ∈ Θ, 0<ζ<1, n ∈ N.

In the last display the functions are analytical in γn; consequently, for all d ∈ N,

θ1, θ2 ∈ Θ, 0<ζ<1 we must have

(6.3) Hd,θ1,θ2,ŵd(ζ) =

∫
Sd

Hd,θ1,θ2,w(ζ)
dw

`⊗d(Sd)
.

Next we return to the proof of the theorem. By our assumption there exists ζ0 ∈ (0, 1)

such that, with gf,ζ0 : (0,∞)→ [0, 1] as in (2.18), gf, ζ0 is strictly increasing on (0, 1]. As

a result, h 7→ gf, ζ0(
√
h) is strictly increasing on (0, 1].

For all θ1, θ2 ∈ Θ define Hθ1,θ2 : (0, 1]→ (0,∞) by Hθ1,θ2(w) := h1,w,θ2,1(1)/h1,w,θ1,1(1)

for 0<w≤1. In particular, taking d = 1 and ζ = ζ0 in (6.3), we must have

(6.4) gf,ζ0

{√
Hθ1,θ2(1)

}
=

∫
(0,1)

gf,ζ0

{√
Hθ1,θ2(w)

}
dw ,

for all θ1, θ2 ∈ Θ.

(i) and (ii) For i = 1, 2 let θi = (h0,i, βi, α, λ) ∈ Θ. Then

h2
1,w,θ1,1

(1) eαw
d

dw
Hθ1,θ2(w) = β2h0,1 − β1h0,2 , 0 < w ≤ 1 .

(Note that this formula extends to α = 0.) If β1 = β2 > 0 and h0,1 >h0,2 then Hθ1,θ2 is

strictly increasing with Hθ1,θ2(1) ≤ 1 contradicting (6.4), as h 7→ gf, ζ0(
√
h) is strictly

increasing on (0, 1]. If h0,1 = h0,2 and β2 < β1 then Hθ1,θ2 is strictly decreasing with

Hθ1,θ2(0+) = 1, contradicting (6.4), as h 7→ gf, ζ0(
√
h) is strictly increasing on (0, 1].

Reversing the role of parameters, by replacing Hθ1,θ2 with Hθ2,θ1 , the previous reasoning
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extends to the remaining cases where either, β1 = β2 > 0 and h0,1 < h0,2, or, h0,1 = h0,2

and β2>β1. This completes the proof of (i) and (ii).

(iii) If (h0, β, α1, λ), (h0, β, α2, λ) ∈ Θ and β = 0 then we have Hθ1,θ2(w) = e(α1−α2)w

for all w ∈ (0, 1]. (Note that this formula extends to α1 = 0 or α2 = 0.) By the same

arguments as in part (i) and (ii), we get from (6.4) that α1 = α2.

(iv) In view of (iii), we may assume that β > 0. Contradicting the hypothesis, assume

that α2 > 0. It follows from the strict inequality ex − 1 > x, x > 0, that

(h0 + βw)2 d

dw
Hθ1,θ2(w) = e−α2w

{
w(β2−α2βh0)− h2

0α2−
β2

α2

(eα2w−1)

}
< −α2h0e

−α2w(h0 + wβ) < 0 ,

for all w ∈ (0, 1]. Thus, w 7→ Hθ1,θ2(w) is strictly decreasing on (0, 1] with Hθ1,θ2(0+) = 1,

contradicting (6.4). Thus, we must have α2 = 0.

(v) Let (h0, β, α1, λ), (h0, β, α2, λ) ∈ Θ with α2 > α1. Without loss of generality we

may assume that β > 0. First assume that β/α2 ≤ h0 ≤ β/α1. Then β − α1h0 ≥ 0 and

β − α2h0 ≤ 0. Note that we cannot have that, simultaneously, β−α1h0 = β−α2h0 = 0,

such that

h2
1,w,θ1,1

d

dw
Hθ1,θ2(w) = (β−α2h0)e−α2wh1,w,θ1,1 − (β−α1h0)e−α1wh1,w,θ2,1 < 0 ,

for all 0 < w ≤ 1. Consequently, Hθ1,θ2 is strictly decreasing with Hθ1,θ2(0+) = 1,

contradicting (6.4). Second let h0 < β/α2, and set

ψ(w) := (β − α2h0)h1,w,θ1,1 − (β − α1h0)e−(α1−α2)wh1,w,θ2,1 , 0 < w ≤ 1 .

As we have α2 > α1 and h0 < β/α2, we must have that β−α1h0 > β−α2h0 > 0 such

that

ψ′(w) = (α1−α2)(β−α1h0)e−(α1−α2)whd,w,θ2,1 < 0 , 0 < w ≤ 1 .

Note that ψ(0+) = (α1−α2)h2
0 < 0 and, thus, ψ(w) < 0 for all 0 < w ≤ 1. Since

eα2wh2
d,w,θ1,1

d
dw
Hθ1,θ2(w) = ψ(w) < 0 for all 0<w≤ 1, Hθ1,θ2 is strictly decreasing with

Hθ1,θ2(0+) = 1, contradicting (6.4). This completes the proof of (v). �

7. Proofs of the results in Subsection 2.4. This section contains the proofs of

Propositions 2.1, 2.2 and 2.3.

7.1. Proof of Proposition 2.1. For f ∈ Dd[0, 1] we write ∆f = f(t) − f(t−), 0 ≤
t ≤ 1, with the convention ∆f(0) = 0. With the usual convention inf ∅ = ∞, define

T (f) = inf{t ∈ [0, 1] : ∆f1(t) 6= 0} ∧ 1 for all f = (f1, f2) ∈ D2. Let S be the set

of all functions f ∈ D2 with T (f) ∈ (0, 1). Let D′′0 ⊆ D2[0, 1] be the set all functions

f = (f1, f2) such that the right-hand derivatives f ′1(0+) and f ′′2 (0+) exist in R. Further,
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let D′′0,T ⊆ S ∩ D′′0 be the set of all functions f = (f1, f2) such that the right-hand

derivatives f ′2(T (f)+) and f ′′2 (T (f)+) exist in R.

Let f ∈ D2 with T = T (f). If f ∈ D′′0,T and f ′2(0+) 6= 0 then we set

X(f) =

(
|f2(0)|,

∣∣∣∣(f ′2(0+))2−f2(0)f ′′2 (0+)

f ′2(0+)

∣∣∣∣ , ∣∣∣∣f ′′2 (0+)

f ′2(0+)

∣∣∣∣ , |∆f2(T ))|
(∆f1(T ))2

)
.

If f ∈ D′′0,T and f ′2(0+) = 0 and f ′2(T+) 6= 0, we set

X(f) =

(
|f2(0)|,

∣∣∣∣(f ′2(T+))2−f2(T )f ′′2 (T+)

f ′2(T+)

∣∣∣∣ , ∣∣∣∣f ′′2 (T+)

f ′2(T+)

∣∣∣∣ , |∆f2(T ))|
(∆f1(T ))2

)
.

If f ∈ D′′0,T and f ′(0+) = f ′2(T+) = 0 and ∆f2(T ) 6= 0, we set

X(f) =

(
|f2(0)|, 0, 0, |∆f2(T ))|

(∆f1(T ))2

)
.

If f ∈ D′′0,T and f ′(0+) = f ′2(T+) = 0 and ∆f2(T ) = 0, we set X(f) = (|f2(0)|,∞,∞, 0).

If f ∈ D′′0\S and f ′2(0+) 6= 0 then define

X(f) =

(
|f2(0)|,

∣∣∣∣(f ′2(0+))2−f2(0)f ′′2 (0+)

f ′2(0+)

∣∣∣∣ , ∣∣∣∣f ′′2 (0+)

f ′2(0+)

∣∣∣∣ ,∞) .
For the remaining cases we set X(f) =

(
|f2(0)|,∞,∞,∞

)
. Then X : D2 → [0,∞]4

is a D2-B([0,∞]4)-measurable mapping. Since Q({0}) = 0 it follows from (2.4) that

LXθ ((G, h)) = Qθ for all θ ∈ [0,∞)4 and, thus, δ(Eh,F) = 0 by (A.2), where F is the

experiment as defined in the assertion of the proposition.

Next we show that δ(F , Eh) = 0. To this end we define ξ = (ξ1, . . . , ξ3) : [0,∞]4 →
[0,∞)3 as follows: let ω = (ω1, . . . , ω4) ∈ [0,∞]4. If (ω1, . . . , ω3) ∈ [0,∞)3 then we

set ξ(ω) = (ω1, ω2, ω3); if ω1 ∈ [0,∞) and either ω2 = ∞ or ω3 = ∞ then we set

ξ(ω) = (ω1, 0, 0); otherwise, we set ξ(ω) = 0.

In the notations of the Introduction we define Ψ : [0,∞)3 × M2 → D2 where, for

0 ≤ t ≤ 1, ω = (ω1, ω2, ω3) ∈ [0,∞)3 and σ ∈ M2, (f1(t), f2(t)) = Ψ[ω, σ](t) is defined

to be the unique solution of the system of the following integral equations

f1(t) =

∫
[0,t]×R2

f
1/2
2 (s−)z1 σ(ds, dz1, dz2) ,(7.1)

f2(t) = ω1 +

∫
[0,t]

(ω2 − ω3f2(s−)) ds+

∫
[0,t]×R×(0,∞)

f2(s−)z2
2 σ(ds, dz1, dz2) ,

Clearly, Ψ is (B([0,∞)3)⊗M2)/D2 measurable and, thus, defines a deterministic Markov

kernel K2 : ([0,∞)3 ×M2)×D2 → [0, 1].

Let ν0 be the zero measure on B([0, 1]× R2). For λ ≥ 0 let Mλ be a Poisson measure

on [0, 1]× R2 with the intensity measure γ`⊗ L(Z, λ1/2Z), where L(Z) = Q and γ > 0
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is the intensity parameter of N in (2.4). Consider the Markov kernel K1 : [0,∞]4 ×
(B([0,∞)3)⊗M2)→ [0, 1] defined by

K1

[
(ω1, ω2, ω3, ω4), ·

]
= εξ(ω) ⊗

{
εν0 , ω4 =∞ ,

L(Mω4 |Mω4 6= ν0) , ω4<∞ .

Observe that K2K1Qθ = Lθ(G, h) for all θ ∈ [0,∞)4 in view of (2.4). Hence δ(F , Eh) = 0

by (A.2).

To summarize, we have shown that Eh is equivalent to F in deficiency. By the similar

arguments one can show that ∆(F , Êh) = 0. �

7.2. Proof of Proposition 2.2. (i) Let Hn = H
(0)
n : [0,∞)4 → [0,∞)4 be as defined in

(2.11)–(2.12) and define H̄n : [0,∞)3 →M := {(x1, x2, x3) ∈ [0,∞)2 × (0, 1] : x1 ≥ x2}
by

H̄n(h0, β, α) =
(
h0,n(h0, β, α, 0), βn(h0, β, α, 0), αn(h0, β, α, 0)

)
,

h0, β, α ∈ [0,∞). Then Hn : [0,∞)3 → M × [0,∞) and H̄n : [0,∞)3 → M are

both bijections with corresponding inverse functions H−1
n : M × [0,∞) → [0,∞)4 and

H̄−1
n : M → [0,∞)3, respectively. Define H̃n : R3 → [0,∞)3 and Ĥn : R4 → [0,∞)4

by H̃n(x1, x2, x3) = H̄−1
n (|x1| ∨ |x2|, |x2|, |x3| ∧ 1) and Ĥn(x1, x2, x3, x4) = H−1

n (|x1| ∨
|x2|, |x2|, |x3| ∧ 1, |x4|) for x1, x2, x3, x4 ∈ R with x3 6= 0.

In the sequel we write x = (x(k))0≤k≤n for a generical element of Rn+1. Fix n ≥ 5. Let

M0,n ⊆ [Rn+1]2 be the set of all (x, y) such that both y(0) 6= y(1) and y(1) 6= y(2) are in

place. By employing the convention inf ∅ =∞ define Tn : [Rn+1]2 → {1, . . . , n+1} by

Tn(x, y) = inf{1≤k≤n : x(k) 6= x(k−1)} ∧ 1 (x, y) ∈ [Rn+1]2 .

Let Sn be the set of all (x, y) ∈ [Rn+1]2 with 3 ≤ T (x, y) ≤ n−2 such that x(T ) =

x(T+1) = x(T+2). Consider the subset MT,n ⊆ Sn of all (x, y) ∈ [Rn+1]2 such that both

y(T ) 6= y(T+1) and y(T+1) 6= y(T+2) are satisfied.

For all n ≥ 5 we define a mapping Xn : [Rn+1]2 → [0,∞]4 as follows: fix (x, y) ∈ [Rn+1]2

and set T = Tn(x, y). If (x, y) ∈ Sn ∩M0,n then set

Xn(x, y) = Ĥn

(
y(0),

y(1)2−y(0)y(2)

y(1)−y(0)
,
y(2)−y(1)

y(1)−y(0)
,

y(T )

[x(T )−x(T−1)]2
− y(1)2 − y(0)y(2) + y(T−1)[y(2)−y(1)]

[y(1)−y(0)][x(T )−x(T−1)]2

)
.

If (x, y) ∈MT,n\M0,n then set

Xn(x, y) =

Ĥn

(
y(0) ,

y(T+1)2−y(T )y(T+2)

y(T+1)−y(T )
,
y(T+2)−y(T+1)

y(T+1)−y(T )
,

y(T )

[x(T )−x(T−1)]2
− y(T+1)2 − y(T )y(T+2) + y(T−1)[y(T+2)−y(T+1)]

[y(T+1)−y(T )][x(T )−x(T−1)]2

)
.
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If (x, y) ∈ Sn\(M0,n ∪MT,n) and y(T ) 6= y(T−1)

Xn(x, y) =

(
y(0), 0, 0,

|y(T )−y(T−1)|
(x(T )−x(T−1))2

)
.

If (x, y) ∈ Sn\(M0,n ∪MT,n) and y(T ) = y(T−1) then set Xn(x, y) = (|y(0)|,∞,∞, 0).

If (x, y) ∈M0,n\Sn and T = n+1 then set

Xn(x, y) =

(
H̃n

[
y(0),

y(1)2−y(0)y(2)

y(1)−y(0)
,
y(2)−y(1)

y(1)−y(0)

]
, ∞

)
,

Otherwise, set Xn(x, y) = (|y(0)|,∞,∞,∞).

Recall that both Gn = (Gn,k)0≤k≤n and hn = (hn,k)0≤k≤n are defined by (2.3) via

(2.11)–(2.12). For n ≥ 5 the mapping Xn : [Rn+1]2) → [0,∞]4 is well-defined and

B([Rn+1]2)/B([0,∞]4)-measurable. Recall that Qn({0}) = 0 for all n ∈ N and, thus,

LXnθ (Gn, hn) =



q1,nε(h0,β,α,∞) + q2,n εθ
+ (1−q1,n−q2,n)ε(h0,n(θ),∞,∞,∞) , θ /∈ Θe ,

(1−q2,n) ε(h0,∞,∞,∞) + q2,nεθ , θ ∈ Θe , h0>0 , λ>0 ,

(1−q2,n) ε(h0,∞,∞,∞) + q2,nε(h0,∞,∞,0) , θ ∈ Θe , h0>0 , λ=0 ,

ε(0,∞,∞,∞) , θ ∈ Θe , h0 =0 ,

for all n ≥ 5, θ = (h0, β, α, λ) ∈ [0,∞)4, where we set q1,n = (1−pn)n and q2,n =

(1−pn)2[1−pn −pn(1−pn)][1−(1−pn)n−4].

On the other hand, define a mapping ξn = (ξ1,n, . . . , ξ4,n) : [0,∞]4 → [0,∞)4 as

follows: let ω = (ω1, . . . , ω4) ∈ [0,∞]4. If ω ∈ [0,∞)4 then set ξn(ω) = Hn(ω). If

ω ∈ [0,∞)3 × {∞} then set ξn(ω) = (H̄n(ω1, ω2, ω3), 0). If ω ∈ [0,∞)× ({∞}× [0,∞]∪
[0,∞] × {∞}) × [0,∞) then set ξn(ω) = (ω1, 0, 1, ω4). If ω ∈ [0,∞) × ({∞} × [0,∞] ∪
[0,∞] × {∞}) × {∞} then set ξn(ω) = (ω1, 0, 1, 0). Otherwise, set ξ(ω) = 0. Define a

Markov kernel K1,n : [0,∞]4 × B([0,∞)3 × [Rn]2)→ [0, 1] by

K1,n

[
ω, ·

]
= ε(ξn,1(ω), ξn,2(ω), ξn,3(ω))

⊗
{

ε0 , ω4 =∞ ,

L((Zn,k)k, (ξ4(ω)Z2
n,k)k|(Zn,k)k 6= 0) , ω4<∞ ,

for ω = (ω1, ω2, ω3, ω4) ∈ [0,∞]4, where Zn = (Zn,k)k is the random vector with the

distribution as specified by (2.1).

Also, let K2,n : [0,∞)3 × [Rn]2 × B([Rn+1]2) → [0, 1] be the Markov kernel defined by

the deterministic mapping (ξ1, ξ2, ξ3, z1, z2) 7→ (x, y) where, recursively, we set x(0) = 0

and y(0) = ξ1 and, for 1 ≤ k ≤ n,

x(k) = x(k−1) + y1/2(k−1) z1(k) , y(k) = ξ2 + y(k−1)(ξ3 + z2(k)) .
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For n ≥ 5 let Fn = ([0,∞]4,B([0,∞]4), (LXnθ (Gn, hn))θ∈[0,∞)4). By construction we have

δ(Eh,n,Fn) = 0 by means of (A.2). For all n ≥ 5, observe that

δ(Fn, Eh,n) ≤ sup
θ∈[0,∞)3

‖Lθ(Gn, hn)−K2,nK1,nLXnθ (Gn, hn)‖

≤ |1− q1,n − q2,n|+ |1− (1− pn)n − q2,n| ,

and, thus, Eh,n is strongly asymptotically equivalent to Fn as n → ∞, by means of

(A.2) and (2.2). By (A.4), Fn converges strongly to the experiment F in the assertion

of Proposition 2.1, completing the proof of (i).

(ii) This follows from the same arguments as in (i). �

7.3. Proof of Proposition 2.3. (i) Define X,Xn : [0,∞]4 → [0,∞]4 as follows: if

ω = (ω1, . . . , ω4) ∈ [0,∞)3 × {∞} such that ω1ω3 = ω2 then set X(ω) = (ω1,∞,∞,∞);

otherwise, set X(ω) = ω. If ω = (ω1, . . . , ω4) ∈ [0,∞)3×{∞} such that ω1n(1−e−ω3/n) =

ω2 then set Xn(ω) = (ω1,∞,∞,∞); otherwise, set Xn(ω) = ω, n ∈ N.

By definition, the deficiency is nondecreasing in the parameter set with respect to

set-inclusions. Further, we have Q̂X
θ = Qθ and Q̂Xn

θ = Qθ,n for all n ∈ N and, thus, by

(A.2), that δ(F̂(Θ),F(Θ)) ≤ δ(F̂ ,F) = 0 and δ(F̂(Θ),Fn(Θ)) ≤ δ(F̂ ,Fn) = 0 for all

n ∈ N, completing the proof of (i).

(ii) Firstly, assume that Θ satisfies (2.24) for all x > 0. Without generality we may

assume that Θ ⊆ [0,∞)4 is a finite set (cf. Theorem 51.4 in [27]). Define ΩΘ to be

the set of all ω = (ω1, ω2, ω3, ω4) ∈ (0,∞) × {∞}2 × {0,∞} such that (ω1, β, α, λ) ∈
(Θ ∩ Θe)\Θ̂e for some (β, α, λ) ∈ [0,∞)3. If ω = (ω1, ω2, ω3, ω4) ∈ ΩΘ then it follows

from (2.24) that the corresponding pair (β, α) = (β(ω1), α(ω1)) ∈ [0,∞)2 is uniquely

determined by ω1. Hence we may define a mapping Y : [0,∞]4 → [0,∞]4 as follows:

if ω = (ω1, ω2, ω3, ω4) ∈ ΩΘ then we set Y (ω) = (ω1, β(ω1), α(ω1), ω4); otherwise, if

ω ∈ [0,∞]4\ΩΘ then we set Y (ω) = ω. As both Θ and, thus, ΩΘ are finite sets the

mapping Y is B([0,∞]4)/B([0,∞]4)-measurable. In view of (2.24), note that QY
θ = Q̂θ

for all θ ∈ Θ and, thus, δ(F(Θ), F̂(Θ)) = 0 by (A.2).

Secondly assume that (2.24) is violated. Then there exist h0>0 and θ1 = (h0, β1, α2, λ1)

∈ Θ ∩Θe ∩ Θ̂C
e and θ2 = (h0, β2, α2, λ2) ∈ Θ ∩Θe such that (β1, α1) 6= (β2, α2).

Consider Θ0 = {θ1, θ2} and the decision space D = {(β1, α1), (β2, α2)}, endowed with

the discrete topology. For θ = (h0, β, α, λ) ∈ Θ consider (continuous and bounded)

loss functions Wθ : D → R, where, for x = (x1, . . . , x4) ∈ [0,∞]4, we set Wθ(x) =

1 − 1{(β,α)}(x2, x3). Further, we define a Markov kernel ρ̂ : [0,∞]4 × B(D) → [0, 1],

where, for x ∈ [0,∞]4 and B ∈ B(D), we set

ρ̂(x,B) =

{
ε(β1,α1)(B) , if x ∈ (0,∞)× {β1} × {α1} × [0,∞) ,

ε(β2,α2)(B) , otherwise.

Then we have
∫
Wθi(x)ρ̂(ω, dx) Q̂θi(dω) = 0 for i = 1, 2. On the other hand, any

Markov kernel ρ : [0,∞]4 × B(D) → [0, 1] is of form ρ(ω,B) = p(ω)ε(β1,α1)(B) + (1 −
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p(ω))ε(β2,α2)(B) where p : [0,∞]4 → [0, 1] is Borel and ω ∈ [0,∞]4 and B ∈ B(D).

It is easy to see that for such a Markov kernel ρ there exists a Markov kernel ρ̄ :

[0,∞]4 × B(D)→ [0, 1] such that, both∫
Wθ1(x)ρ(ω, dx)Qθ1(dω) ≥ e−γ(1− p(h0,∞,∞,∞)) , and∫
Wθ2(x)ρ(ω, dx)Qθ2(dω) ≥ e−γp(h0,∞,∞,∞) .

In view of (A.1) we, thus, have δ(F(Θ), F̂(Θ)) ≥ δ(F(Θ0),F(Θ0)) ≥ e−γ/2, which

completes the proof of (ii).

(iii) This follows by the same arguments as in (ii). �

APPENDIX

We collect necessary facts regarding Le Cam’s distance in deficiency. The reader is

referred to Le Cam [18] and Le Cam & Young [19] and Strasser’s monograph [27] for

unexplained notations not encountered in this section. Let Θ be a nonempty set and

(E,A) be a measurable space and (Pθ)θ∈Θ be a family of probability measures on A.

Then the triplet E = (E,A, (Pθ)θ∈Θ) is called a (statistical) experiment. Consider two

experiments Ei = (Ei,Ai, (Pi,θ)θ∈Θ), i = 1, 2, indexed by Θ. A decision problem is a

triple (Θ, D,W ) where D is a topological space and W = (Wθ)θ∈Θ is a loss function

Wθ : D → R, θ ∈ Θ. Let ‖Wθ‖∞ = supd∈D |Wθ(d)|. Also, let ε ≥ 0. Then E1 is called

ε-deficient with respect to E2, shortly E1 ⊇ε E2, iff for all decision problems (Θ, D,W ),

with W being continuous and bounded, and all β2 ∈ B(E2, D) there exists β1 ∈ B(E1, D)

such that

β1(Wθ, P1,θ) ≤ β2(Wθ, P2,θ) + ε‖Wθ‖∞ , θ ∈ Θ ,

where B(Ei, D) (i=1, 2) is the space of generalized decision functions (cf. [27], Defini-

tion 42.2). The deficiency of E1 with respect to E2 is the number

(A.1) δ(E1, E2) = inf{ε > 0 : E1 ⊇ε E2} .

The relation E1 ⊇ε E2 is interpreted in the following sense: we have E1 ⊇ε E2 if E1 is more

informative than E2 uniformly over all decision problems with continuous and bounded

loss functions up to some error ε. Two experiments E1 and E2 are called equivalent in

deficiency iff E1 ⊇0 E2 and E2 ⊇0 E1.

Recall that (cf. [27], Lemma 55.4 & Remark 55.6(2))

(A.2) δ(E1, E2) = inf
K

sup
θ∈Θ
‖P2,θ −KP1,θ‖ ,

with an infimum now taken over all Markov kernels K : E1 × E2 → [0, 1].
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Le Cam’s distance between E1 and E2 is a pseudometric on the space of all experiments

indexed by Θ [cf. [27], Corollary 59.6], defined by setting,

(A.3) ∆(E1, E2) = max{δ(E1, E2), δ(E2, E1)}.

If (E1,A1) = (E2,A2), then we have [cf. [27], Corollary 59.6]:

(A.4) ∆(E1, E2) ≤ sup
θ∈Θ
‖P1,θ − P2,θ‖ .

Clearly, if E1 and E2 are two experiments indexed by the same Θ then E1 is equivalent

to E2 in deficiency if and only if ∆(E1, E2) = 0. Let E , En, Fn, n ∈ N, be experiments, all

indexed by Θ. Then we say that En converges (strongly) in deficiency, or, En and Fn are

(strongly) asymptotically equivalent in deficiency iff ∆(En, E) → 0 and ∆(En,Fn) → 0

as n→∞.

For ∅ 6= Θ0 ⊆ Θ we employ the notation E(Θ0) = (E,A, (Pθ)θ∈Θ0) for corresponding

subexperiments of E = (E,A, (Pθ)θ∈Θ). We refer to weak convergence and weak asymp-

totically equivalence in deficiency iff, for all nonempty and finite Θ0 ⊆ Θ, the corre-

sponding subexperiments converges strongly and are strongly asymptotically equivalent

in deficiency, respectively.
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