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ABSTRACT. Properties of the law p of the integral fooo ¢ Ni= dY; are studied, where
¢ > 1 and {(N,Y;), t > 0} is a bivariate Lévy process such that {N;} and {Y;}
are Poisson processes with parameters a and b, respectively. This is the stationary
distribution of some generalised Ornstein-Uhlenbeck process. The law p is either
continuous-singular or absolutely continuous, and sufficient conditions for each case
are given. Under the condition of independence of {N;} and {Y;}, it is shown that u
is continuous-singular if b/a is sufficiently small for fixed ¢, or if ¢ is sufficiently large
for fixed a and b, or if ¢ is in the set of Pisot-Vijayaraghavan numbers, which includes
all integers bigger than 1, for any a and b, and that, for Lebesgue almost every ¢, u
is absolutely continuous if b/a is sufficiently large. The law p is infinitely divisible
it {N;} and {Y;} are independent, but not in general. Complete characterisation
of infinite divisibility is given for p and for the symmetrisation of p. Under the
condition that p is infinitely divisible, the continuity properties of the convolution
power pu'* of p are also studied. Some results are extended to the case where {Y;}
is an integer valued Lévy process with finite second moment.

1. INTRODUCTION

A generalised Ornstein-Uhlenbeck process {V;,t > 0} with initial condition V} is

defined as
t
Vi = e_gt (‘/0 +/ 655— dns> )
0

where {(&,m:),t > 0} is a bivariate Lévy process, independent of ;. See Carmona et
al. [3], [4] for basic properties. Such processes arise in a variety of situations such as
risk theory (e.g. Paulsen [17]), option pricing (e.g. Yor [25]) or financial time series
(e.g. Kliippelberg et al. [12]), to name just a few. They also constitute a natural
continuous time analogue of random recurrence equations, as studied by de Haan and
Karandikar [11]. Lindner and Maller [15] have shown that a generalised Ornstein-
Uhlenbeck process admits a strictly stationary solution which is not degenerate to a
constant process with a suitable V; if and only if

00— t
(1.1) / e 5= dL,:= lim [ e %~ dL,
0

t—00 0

exists and is finite almost surely and not degenerate to a constant random variable.
Here, {(&, L;),t > 0} is another bivariate Lévy process, defined in terms of {(&,n)}



by
Li=m+ Y (e — 1)(ns — ns—) — tag,,

0<s<t

where ag > denotes the (1,2)-element in the Gaussian covariance matrix of the Lévy-
Khintchine triplet of {(&,n;)}. Conversely, {(&,7:)} can be reconstructed from

{(&, L)} by
mo=Li+ > (5% —1)(L, — L,_) + tag).
0<s<t

The distribution of (1.1) then gives the unique stationary distribution. When the
integral (1.1) converges was characterised by Erickson and Maller [6] and generalised
by Kondo et al. [13] to the case when {(&;, L;)} is an R x R? valued Lévy process with
deN.

Suppose now that {(&, L;)} is a bivariate Lévy process such that (1.1) converges
almost surely and is finite, and denote by

pi=L (/ et dLs>
0

the distribution of the integral. If §& = t is deterministic, then it is well known that
1 is self-decomposable, hence is infinitely divisible as well as absolutely continuous
(if not degenerate to a constant, which happens only if {L;} is also deterministic).
Other cases where p is self-decomposable include the case where {&;} is stochastic,
but spectrally negative (cf. Bertoin et al. [1]). On the other hand, as remarked by
Samorodnitsky, p is not infinitely divisible if e.g. & = N; + af with a Poisson process
{Ni,t > 0} and a positive drift & > 0 and L; = ¢ (cf. Kliippelberg et al. [12], p. 408).
Continuity properties of u for general {(&, L)} were studied by Bertoin et al. [1], who
showed that p cannot have atoms unless p is a Dirac measure, with this degenerate
case also being characterised. Gjessing and Paulsen [8] derived the distribution of u
in a variety of situations; however, in all cases considered the distribution turned out
to be absolutely continuous.

With these results in mind, it is natural to ask whether p will always be absolutely
continuous for general {(&;, L;)}, unless u degenerates to a Dirac measure. That this
is not the case, even when {&} and {IL;} are assumed to be independent, will be
shown in the present article. More precisely, we will study in detail

(1'2) = L (/ e—(logc)st dY;) =L (/ o Ns- ing) ’
0 0

where ¢ is a constant greater than 1 and {N;} and {Y;} are both Poisson processes
with parameters a and b, respectively, and with {(N,Y;)} being a bivariate Lévy
process. The integral in (1.2) is then an improper Stieltjes integral pathwise. From
the strong law of large numbers, we see that the integral exists and is finite. Let T’
be the first jump time of {/NV;}. Then

/ cNe-dY, = Yy +/ N dY, =Y + cl/ ¢ Ne- dy?,
0 0

T



where {(N/,Y/)} is an independent copy of {(Ny, Y:)}. Hence, letting p = L(Y7), we
obtain

(1.3) i(z) =p(z) i(c™'2), z€R,

where Ji(z) and p(z) denote the characteristic functions of p and p. It follows that

k—1
i) =) [[Ae™s), keN,
n=0

and hence
(14) i) = T ate)
n=0

In general, if a distribution p satisfies (1.3) with some distribution p, then p is called
c~t-decomposable. Our study of the law p is based on this ¢~!-decomposability. The
expression (1.4) shows that the law p controls p. The properties of ¢~ !'-decomposable
distributions are studied by Wolfe [24], Bunge [2], Watanabe [22] and others. In par-
ticular, it is known that any non-degenerate ¢~ !-decomposable distribution is either
continuous-singular or absolutely continuous (Wolfe [24]). A distribution u is self-
decomposable if and only if u is ¢ !-decomposable for all ¢ > 1. In this case p and p
are infinitely divisible. In general if a distribution p satisfies (1.3) with p being infin-
itely divisible, then p is called ¢~ '-semi-selfdecomposable. For the law p in (1.2), we
are interested in the Hausdorff dimension dim (u) of p, defined as the infimum of the
Hausdorff dimensions of E over all Borel sets E satisfying pu(F) =1 (in some papers
including [22], this is called upper Hausdorff dimension and denoted by dim*(yu)).
Watanabe [22] shows that, if a distribution u is ¢~'-decomposable satisfying (1.3)
with a discrete distribution p, then dim (u) < H(p)/log e, where H(p) is the entropy
of p. It follows that the law p in (1.2) is continuous-singular if H(p)/loge < 1.

In Section 2 we will concentrate on the case where {N;} and {Y;} are independent.
The law p is determined by ¢ and ¢ = b/(a + b), and so it is denoted by fi.,. We
will show that p., is continuous-singular if ¢ is sufficiently small for fixed ¢, or if c is
sufficiently large for fixed ¢, or if ¢ is a Pisot-Vijayaraghavan (P.V.) number for any
q. Further we will show that if ¢7' is a Peres-Solomyak (P.S.) number, then u,, is
absolutely continuous for ¢ sufficiently close to 1.

In Section 3 we treat the case where the independence of {N,} and {Y;} is not
assumed. The Lévy process {(Ny, Y;)} then has Lévy measure concentrated on the
three points (1,0), (0,1) and (1,1) and the amounts of the measure of these points
are denoted by u, v and w. Letting p = u/(v + v + w), ¢ = v/(u + v + w) and
r=uw/(u+v+w), we will see that u is determined by ¢, ¢ and r, and p is by ¢ and
r, and hence denote y1 = pic 4, and p = p,,. We call r the dependence parameter of
{(Ni, Yy)}, since r = 0 is equivalent to independence of { N;} and {¥;} and r = 1 means
{N:} = {V;}. If r =0, then p = L£(Y7) is infinitely divisible as is seen from subordina-
tion theory, and hence y is also infinitely divisible. But, if » > 0, the situation is more
complicated. We will give complete description of the condition of infinite divisibility
of pieq, and py, in terms of their parameters. It will turn out that infinite divisibility



of jicq, does not depend on c. It is shown in Niedbalska-Rajba [16] that there exists
a ¢~*-decomposable infinitely divisible distribution u that satisfies (1.3) with a non-
infinitely-divisible p. But, in our case, it will turn out that p.,, is infinitely divisible
if and only if p,, is so. We also address the problem of infinite divisibility of the sym-
metrisations p*™ and p®™ of p and p. Infinite divisibility of a distribution implies
that of its symmetrisation, but there is a non-infinitely-divisible distribution whose
symmetrisation is infinitely divisible, which is pointed out in pp.81-82 in Gnedenko
and Kolmogorov [9]. Complete description of infinite divisibility of p®™ and p®™
will be given, which provides new examples of this phenomenon in [9]. In the proof
of non-infinite-divisibility in Section 3, we use three methods: (1) Katti’s condition
for distributions on nonnegative integers; (2) Lévy-Khintchine type representation of
characteristic functions with signed measures in place of Lévy measures; (3) repre-
sentation of the Laplace transforms of infinitely divisible distributions on [0, 00) in
the form e ¢ with ¢'(6) being completely monotone.

In the latter half of Section 2 we consider a more general bivariate Lévy process
{(Vy,Y:)} with independent components, where {/V;} is a Poisson process and {Y;}
is an integer valued Lévy process with finite second moment. The law g in (1.2) with
¢ > 1 is still ¢~!-semi-selfdecomposable and infinitely divisible. We will study the
convolution power p** of p, that is, the distribution at time ¢ of the Lévy process
associated with u. We will show that p'* is continuous-singular if ¢ is sufficiently
small for fixed ¢, or if ¢ is sufficiently large for fixed ¢, or if ¢ is a P.V. number for any
t, and that p'* is absolutely continuous if ¢ ! is a P.S. number and ¢ is sufficiently
large. Thus the present paper provides a new class of examples of Lévy processes
with distribution changing from continuous-singular to absolutely continuous as time
passes. See Section 27 in Sato [20] and Watanabe’s survey [23] for such time evolution
of Lévy processes. We emphasise that here the distribution p arises naturally as the
stationary distribution of a generalised Ornstein-Uhlenbeck process.

We remark that Theorem 3.2 of Kondo et al. [13] on the law p of the form (1.2)
with ¢ = e, {IV;} Poisson and {V,} and {Y;} independent can be extended to general
¢ > 1 without any change of the proof, and that Remark 3.3 of the same paper points
out that such a distribution is either continuous-singular or absolutely continuous.
This was the starting point of our research.

Throughout the paper, the set of all positive integers will be denoted by N =
{1,2,3,...}, while we set Ny = NU{0}. The set of integers is denoted by Z. The Dirac
measure at a point x will be denoted by d,. For general definitions and properties
regarding Lévy processes and infinitely divisible distributions, we refer to Sato [20].

2. CONTINUITY PROPERTIES IN THE INDEPENDENT CASE

The fist task in this section is to establish the ¢ !-decomposability of the law
in (1.2). Since this property prevails in a wider range, we formulate a more general
result.

Proposition 2.1. Suppose that {(&, Li)} is a bivariate Lévy process having the fol-
lowing properties: & = (log )&, with ¢ > 1 and with {&} being a compound Poisson



process with Lévy measure supported on {...,—2,—1} U {1} and Eé >0 fort >0,
and {L} is a Lévy process with finite log-moment. Let p be defined as

(2.1) pi= L (/OOO eﬁs—dLs> "y (/OOO cgs—dLs) .

Then p is ¢ 1-decomposable satisfying (1.3) with

(2.2) p="CL (/OT c‘ngYs> ,

where T is the hitting time of 1 for {Et}
Proof. Let {F;, t > 0} be the natural completed filtration of {(&;, L;), t > 0}. Then

T is a stopping time with respect to {F;, t > 0}. The process {£;} moves by jumps of
the height € {..., =2, —1}U{1} and satisfies {& — oo as t — 0o0. Hence T is finite a. s.
Existence and finiteness of the integral in (2.1) follows from Theorem 2 of Erickson
and Maller [6]. From the Lévy process version of the strong Markov property, we
obtain

co— T 00— -~ o~
Z = / ¢ dLy = / & dLy+ ¢t / &) d(L. — Ly),
0 0 T+

=W+4c'Z, say,

where Z and Z' both have law p, W is Fp-measurable and 7’ is independent of Fy.
This implies (1.3) with p = £(W), that is, with p of (2.2). O

As in Watanabe [22], we use two classes of numbers, namely Pisot-Vijayaraghavan
(P.V.) numbers (sometimes called Pisot numbers) and Peres-Solomyak (P.S.) num-
bers. A number ¢ > 1 is called a P.V. number if there exists a polynomial F'(x) with
integer coefficients with leading coeflicient 1 such that ¢ is a simple root of F'(x) and
all other roots have modulus less than 1. Every positive integer greater than 1 is a
P.V. number, but also (1 + 1/5)/2 or the unique real root of #* — 2 — 1 = 0 are non-
trivial examples. There exist countably infinitely many P.V. numbers which are not
integers. See Peres, Schlag and Solomyak [18] for related information. On the other
hand, following Watanabe [22], we call ¢=* a P.S. number if ¢ > 1 and if there are
p € (1/2,1) and k € N such that the kth power of the characteristic function of the
distribution of Y~ ° - ¢™"U,,, where {U, } is i.1.d. with P[U,, = 0] = 1-P[U,, = 1] = p,
is integrable. Watanabe [22] pointed out that the paper [19] of Peres and Solomyak
contains the proof that the set of P.S. numbers in the interval (0,1) has Lebesgue
measure 1. However, according to [22], an explicit example of a P.S. number is not
known so far. As follows from the results of [22], the set of P.V. numbers and the set
of reciprocals of P.S. numbers are disjoint. The entropy H(p) of a discrete probability
measure p on R is given by

H(p) === p({a}) log p({a}).

acC



where C'is the carrier of u. Here, as in [20], a measure p on R is said to be discrete if
there is a countable set C' such that p(R\ C') = 0. The carrier of a discrete measure
is the set of points with positive mass.

Now we can formulate one of our main results.

Theorem 2.2. Assume that {Ny, t > 0} and {Y;, t > 0} are independent Poisson
processes with parameters a > 0 and b > 0, respectively. Let

(2.3) q:=0b/(a+0D)

and

(2.4) feg =L (/ ¢ M- dYS)
0

with ¢ > 1. Let

(2.5) h(q) :== log - log

Then the following are true:
(a) The Hausdorff dimension of ji.q is estimated as

(2.6) dim (i) < hia) Jor allc>1 and q € (0,1).

log ¢
(b) If c is a P.V. number, then ., is continuous-singular for all g € (0,1).
(¢) If ¢! is a P.S. number, then there are constants 0 < qy < q1 < 1 such that
Ueq Us continuous-singular for all ¢ € (0,qo), absolutely continuous without bounded
continuous density for all ¢ € (go,q1) if @0 < qi, and absolutely continuous with
bounded continuous density for all ¢ € (¢1,1).

The estimate (2.6) is meaningful only when h(q)/loge < 1, as the Hausdorff
dimension of any measure on the line is less than or equal to 1. In Theorem 2.2 the
law g in (1.2) depends only on ¢ and ¢, as will be seen in the proof. The function
h(q) is continuous and strictly increasing on (0, 1) and tends to 0 as ¢ | 0 in the speed
h(q) ~ qlog(1/q). Under the same assumption we have the following consequences.

Corollary 2.3. (a) Fiz ¢ > 1. If ¢ € (0,1) is such that h(q) < loge, then fi.q is
continuous-singular.
(b) Let ¢ > 2. If

0<g<1—(log2/logc),

then piq s continuous-singular.
(¢) Fiz ¢ > 0. If ¢ > M9 then p,, is continuous-singular.

For example of (), in the case ¢ = e, p., is continuous-singular if
g <1—1log2 = 0.30685.

In the case ¢ = 1/2, (c) says that p.; /2 is continuous-singular if ¢ > 4.



Proof of Corollary 2.3. Assertions (a) and (¢) are clear from (2.6), since probability
measures with Hausdorftf dimension < 1 are singular and since f., is continuous, as
will be seen in the proof of Theorem 2.2. Assertion (b) is a consequence of (a), since

hg) = —— ((1 “o)log

log 2

4ol 1 < 1
O_
1—g¢q ¢ gq -1

by concavity of the function log z. O
Proof of Theorem 2.2. Notice that, by Proposition 2.1, j., is ¢~ '-decomposable and

T is now the first jump time of {NV;}. The law of T is exponential with parameter a
and the law p in (2.2) equals £(Y7). This law p = L(Y7) is geometric with parameter
p, l.e.,

p({k}) :qua ke NO;
where p=1— ¢ =a/(a + b). Indeed, using the independence of {N;} and {Y;},

p({k}) = P(Yy = k) = /0 P = k)ae-tdt

o pkk a b \*
— 7bt_ 7atdt — .
/0 R a+b\a+b

Hence p is compound Poisson with Lévy measure

am = v,({m}) =¢"/m, meN,
that is,

(2.7) p(z) = exp [Z(eimz - 1)am] .

m=1
Thus it follows from (1.4) that g = p., is infinitely divisible with characteristic
function

(2.8) fi(z) = exp [Z D (eme - 1)am] .

n=0 m=1

The entropy H(p) of p equals h(q), since
oo o q

(2.9) H(p) = —p(logp) Y ¢" —pllogq) Y kq* = —logp — Jlogq.
k=0 k=0

Now we obtain assertion (a) from Theorem 2.2 of Watanabe [22].

Let us prove (b). Assume that ¢ is a P.V. number. The following proof of
continuous-singularity of = i, is based on an idea of Erdds [5] as in [22]. Since p
is ¢~ !-decomposable and non-degenerate, Wolfe’s theorem in [24] (or Theorem 27.15
of [20]) tells us that p is either continuous-singular or absolutely continuous. So
it is enough to show that it is not absolutely continuous. Thus, by virtue of the
Riemann-Lebesgue theorem, it is enough to find a sequence z, — oo such that

lim sup |zi(z)| > 0.

k—00



By the definition of a P.V. number, there is a polynomial F(z) = 2 +ay 12V 1 +
-+ + a1x + ag such that ay_1,...,a9 € Z, F(c¢) = 0, and the totality {a,...,ay} of
roots of F(x) satisfies a; = ¢ and || < 1 for 2 < j < N. Choose z; = 2nc*. Then

|1(zk)| = exp ( Z Z (1 — cos(2mmcF "))am> = exp (— Z(Sm + Rm)am>

m=1

with

Mw

(1 — cos(2mmc™=)), Z (1 — cos(2mmc™™™)).

k k N
= Z (1 — cos(2mmc™)) = Z (1 — cos (27rmz aﬁ)) :

n=0 n=0 =2
since ¢" = Zjvzl a;" — Zf; a;" and Zj\le a;" is an integer. The latter is a conse-
quence of the symmetric function theorem in algebra (e.g. Lang [14], Section IV.6),
implying that Zjvzl a;", as a symmetric function of av, ..., an, can be expressed as a
polynomial with integer coefficients in the elementary symmetric functions oy, ..., o,
which are integer valued themselves since F' has integer coefficients with leading co-
efficient 1. Choose 0 < § < 1 such that || < 0 for j = 2,..., N. Then, with some

constants C, Cy, Cs,

Sm < C4 my < Cym? o] < Csm* Y 6% < Cam?/(1 — %),
> (n3ar) s S < cunty

n=0 n=0 j=2

Further, we have
0

Ry <C1 Y (me™)” =Cim?/(* = 1).

n=1

Hence, it follows that

- C C
~ 2 3 1
|Fi(z1)| > exp [—Zamm (1—52+02—1>

m=1

This shows that lim sup,_, . [fi(zx)| > 0, since Y, a,m* < co. Thus (b) is true.

For the proof of (¢), suppose that ¢! is a P.S. number, and let p € (1/2,1) and
k € N as in the definition of a P.S. number. The following proof was suggested by an
argument of Watanabe [22] p.392-393. Let K := k|log(2p — 1)|/2, which is positive.
Then, Equation (2.4) of [22] tells us that

(2.10) / exp {az cos(c "u) — 1)} du < oo whenever a > K.

Recall (2.8). Let

zOO: iﬁzlog L .
— = m 1—gq

oo



Then it follows from Jensen’s inequality that

/_OO |fi(2)|dz = 2/000 exp [O‘i‘);am (Oéozm:(cos(mc”z) _ 1))] d

o] n=0

o0 1 o o]
< 2/ [— Z Ay, €XP (ao (cos(me "z) — 1))] dz
U =0

n

= 0430 (Z %”) /000 exp (ao Z(cos(c’”u) — 1)) du.

m=1 n=0

The latter is finite whenever oy > K by (2.10), that is, whenever ¢ > 1 —e . Hence
p is absolutely continuous with bounded continuous density if ¢ > 1 — e %. On the
other hand we know from (a) that p is continuous-singular for small enough ¢. The
expression (2.8) shows that p has Lévy measure

(211) v, = Z Z %50—”777,7

which is increasing in ¢ € (0,1). Thus p. is a convolution factor of pu., if ¢ < q.
Thus, recalling Lemma 27.1 of [20], we obtain assertion (c). O

Keeping the assumptions that {N;} is a Poisson process and that {V;} and {Y;}
are independent, we will allow {Y;} more general than in Theorem 2.2. We cannot
give the properties of u itself (except when ¢ is a P.V. number), but we describe the
properties of the convolution power u** of p.

Theorem 2.4. Assume that {N;} is a Poisson process and {Y;} is an integer valued
Lévy process, not identically zero, with finite second moment, and that {N;} and {Y;}
are independent. Let

(2.12) pe =L </ : ¢ o= dYs> ,
0

where ¢ > 1. Let T be the first jump time of {N,} and let p = L(Yr). Then the
following are true.

(a) The entropy H(p™) is a finite, continuous, strictly increasing function of t €
[0,00), vanishing at t = 0.

(b) It holds true that

H(p™)
log c

(2.13) dim (p*) < for allt >0 and ¢ > 1.

(¢) If ¢ is a P.V. number, then p.* is continuous-singular for all t > 0.

(d) If ¢! is a P.S. number, then there are ty and t; with 0 <ty < t; < oo such that
pet* is continuous-singular for all t € (0,tg), absolutely continuous without bounded
continuous density for allt € (to,t1) ifto < t1, and absolutely continuous with bounded

continuous density for all t € (t1,00).



Corollary 2.5. For each ¢ > 1, p.* is continuous-singular for all sufficiently small

t > 0. For each t > 0, p.t* is continuous-singular for all sufficiently large ¢ > 1.
This is an obvious consequence of (a) and (b) of the theorem.

Lemma 2.6. If p is a distribution on Z with finite absolute moment of order 1 + &
for some € > 0, then its entropy H(p) is finite.

Proof. Let p =Y ppmOm. Then Y > |m|['*p,, < co. Hence there is a con-

stant C' > 0 such that p,, < C|m|~'7*. The function f(z) = xlog(1/x) is increasing
for 0 < z < e~'. Hence,

H(p) < Y pmlog(l/pm) + Y Clm|™ " log((Clm| ™) 7") < o0

|m|<mg |m|>mo
with an appropriate choice of my. O

Proof of Theorem 2.4. By Proposition 2.1, uis ¢™'-decomposable satisfying (1.3) with
p = L(Y7). Since {Y;} is integer valued, p is a distribution on Z. Since, for some con-
stant C' > 0, E[Y}?] < C(t+t*) for all t > 0 and since T is exponentially distributed,

Elvy?] = / E[Y2 P[T € ds] < 0/ (s + ) P[T € ds] < .
(0,00) (0,00)
Lemma 2.6 then shows that H(p) < oco. Notice that p is the distribution at time
1 of the Lévy process {Yr,} obtained by subordination of {Y;} by an independent
gamma subordinator {7;}. The process {Yr,} has drift 0, since it is integer valued
(use Corollary 24.6 of [20]; another proof is to use Theorem 30.10 of [20]). Thus p
is compound Poisson. In particular, y. is ¢~ -semi-selfdecomposable. We obtain (a)
from Proposition 5.1 of Watanabe [22] or Exercise 29.24 of Sato [20]. The property
of being ¢~ 1-semi-selfdecomposable is inherited by going to convolution powers, since
(1.3) implies
pet* (2) = p*(2) pet(c™'2)

for any ¢ > 0. Then, applying Theorem 2.2 of [22] to the law p.t*, we get (b). The
characteristic function of p is given by

p(z) = exp Z (€™ —Da, |, z€R,
mez\ {0}

with some a,, > 0 satisfying ZmEZ\{O} m2a,, < co. The latter is because p has finite
second moment. Hence the proof of (¢) is given entirely in the same way as that
of Theorem 2.2 (b). If ¢™' is a P.S. number and ¢t is sufficiently large, then p.'* is
absolutely continuous with bounded continuous density, which is shown in the same

way as Theorem 2.2 (¢), or we can apply Theorem 2.1 of Watanabe [22]. This proves
(d). O

In the set-up of Theorem 2.2, the distribution p is geometric with parameter
1 — ¢. Thus, the estimate of H(p™) for this p is of some interest, in connection with
the estimate (2.13) of Theorem 2.4.

10



Proposition 2.7. If p is geometric with parameter 1 — q, then

1 1 1
(2.14) H(p™) <t [—(1 +2log —) + glog ;] for 0<t<1,
p p p

where p =1 —gq.

Proof. The distribution p**, ¢t > 0, is negative binomial distribution with parameters
t and p, i.e.,

N —t
i = ()pot kem
To estimate H(p"*) from above, observe that, for 0 <t <1 and k € N,

tpld" /k < p"({k}) < tqF,
so that

H(p™) ==Y p"({k}) log o ({k})

< —(logp") + > tq" (logk — log(tp') — klog q)
k=1

1 1 1
<t {log—Jr —log - — glog(tpt) — %logq ,
p p D p

where we used Y77 k¢* = ¢/p? and

oo oo k 1 1 1
k k

E qlongE q E — = —log —,

k=1 =1 a1 v P p

cf. Gradshteyn and Ryzhik [10], Formula 1.513.6. Recalling that p' > p since ¢ < 1,
this can be further estimated to

2 1 1
H(p™) <t (—log— + glog— + %log—) :
p p p p q
Together with (¢/p)log(1/q) = (q¢/p)log(1 + p/q) < 1, this gives (2.14). O

Let g4(t) denote the function on the right-hand side of (2.14). This is continuous
and strictly increasing on (0, 1] with limy | g4(¢) = 0. For p., of (2.4), we can estimate
dim (pc ™) by g4(t)/logeif 0 <t < 1.

The following proposition explains why Theorems 2.2 and 2.4 have similarity. We
say that {U,, 0 < ¢ < 1} is an additive process if it is stochastically continuous, with
independent increments, starting at the origin and having cadlag paths.

Proposition 2.8. Fiz ¢ > 1. Then there exists an additive process {U,, 0 < ¢ < 1}
with time parameter g € [0,1) such that L(U,) equals pi., of (2.4) for ¢ > 0 and
ﬁ(U@) - 60.
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Proof. As we observed in the proof of Theorem 2.2, p., has characteristic function
(2.8) and its Lévy measure (2.11) is increasing in ¢ € (0,1). Furthermore, for each
2, Heq(2) is continuous in ¢ € (0,1) and tends to 1 as ¢ | 0. Hence we can apply
the analogue of Theorem 9.7 of [20] to time parameter running on [0,1) and find an
additive process in law corresponding to p.,. It has a cadlag modification by the
analogue of Theorem 11.5 of [20]. O

3. THE DEPENDENT CASE: INFINITE DIVISIBILITY AND CONTINUITY PROPERTIES

In Theorem 2.2 we studied the law p. , of fooof ¢ Ns= dY; in the case where {V;}
and {Y;} were independent Poisson processes. In particular, we showed infinite di-
visibility of p.4. In this section we relax the assumption of independence. Suppose
that {(Ny, Y;), t > 0} is a bivariate Lévy process such that {N;} is a Poisson pro-
cess with parameter a > 0 and {Y;} is a Poisson process with parameter b > 0. It
then follows easily that {(Ny,Y;)} has no Gaussian part, zero drift, and Lévy mea-
sure v(y,y) concentrated on the set {(1,0),(0,1),(1,1)}, consisting of three points
(e.g. [20], Proposition 11.10). Denote

u=vnyy{(1,0)}), v:=vwnr({(0,1)}), and w:=yuyy)({(1,1)}).
Then u,v,w >0, u+w =a and v+ w = b. Let
u v w

= — = ri=
p u+v+w q

u+v+w’ u+v+w
so that p,q,7 € [0,1], p+qg+r=1,p+r >0and ¢+ r > 0. If r = 0, then {N;}

and {Y;} are independent, the case which was treated in Theorem 2.2. If r = 1, then
{N:} ={Y;}. So we call r the dependence parameter of {(Ny,Y;)}. For ¢ > 1 denote

(3.1) Legr =L (/ ¢ Ns- dYs> ,
0

where the almost sure convergence to a finite random variable follows again from
Erickson and Maller [6] or directly from the strong law of large numbers. If r = 0,
then p.,, equals p. 4 of (2.4) in Theorem 2.2. If r =1 (i.e. p = ¢ = 0), then it follows
from {N;} = {V;} that

N, N, —j €
= dY, = s st_E J = ,
/() ‘ /0 ¢ : ‘ c—1
]:O

which is degenerate to a constant. So throughout this section we will assume that
p+ g > 0 in addition to the above mentioned conditions p+r > 0 and ¢+ r > 0.
That is, p,q,7 < 1. All propositions and theorems in this section are in this set-
up. By Theorem 2.2 in Bertoin et al. [1], ., Wwill then not degenerate to a Dirac
measure, hence will be a continuous distribution. More strongly, since Proposition
2.1 is applicable, p. 4, is ¢ *-decomposable and, by virtue of Wolfe’s theorem in [24],
leqr 1S either continuous-singular or absolutely continuous. We define p,, in the
following way: if ¢ > 0, denote by o, a geometric distribution with parameter 1 — g,
i.e. o,({k}) = (1 —q)¢* for k =10,1,..., and denote

(3.2) p=pgr = (1+r/q)og— (r/q)d,

12



so that p,, is a probability distribution concentrated on Ny with

(3:3) par({0}) = (U +7/q)(1 —q) = (r/g) =1 —q—r=p;

if ¢ =0, let py, be a Bernoulli distribution with parameter r € (0, 1), i.e.
(3:4) por({1}) =1 = po,({0}) = 7.

Proposition 3.1. We have

(3:5) flego(2) = Do (2) flogr(c™2), 2z ER.

In particular, g, is ¢ *-decomposable and determined by ¢, q and r.

Proof. Since we can use Proposition 2.1, we have only to show that £(Yr) = p,.,
where T is the time of the first jump of {V;}, i.e. the time of the first jump of
{(N,Y;)} with size in {(1,0),(1,1)}. Let S; € R? be the size of the ith jump of
{(Nt,Y;)}. Then we have for k£ > 1

Yr=k < [S1=...=5._1=(0,1),5 =1,1)]
or [S;=...=5,=1(0,1), 51 = (1,0)]
as well as
Yr=0 <= S =(1,0).
Since

it follows that P(Y; = 0) = p and, for k > 1, P(Yy = k) = ¢*"'r + ¢*p. From this
follows easily that L£(Yr) = p,, for ¢ > 0, while it is a Bernoulli distribution with
parameter r for ¢ = 0. 0

It is of interest whether p.,, is infinitely divisible or not. It is also of interest
whether the symmetrisation (jicq,)*™ of p.q, is infinitely divisible or not. Recall
that the symmetrisation ™ of a distribution p is defined to be the distribution with
characteristic function %™ (z) = |fi(z)[?, 2 € R. If X is a random variable such that
L(X) = pand X' is an independent copy of X, then p»™ = £(X — X'). Thus infinite
divisibility of p implies that of ™, but the converse is not true, as is mentioned
in the Introduction. Before going to p 4., we will first settle the question of infinite
divisibility of p,, and (pg,)™™.

Lemma 3.2. Assume ¢ > 0 and let p = pgr. Then the following hold true:
(a) If r < pq, or if p =0, then p is infinitely divisible.
(b) If r > pq and p > 0, then p is not infinitely divisible.
(¢) If r > pg and p > 0, then p™™ is infinitely divisible if and only if
(3.6) p=qr
We remark that if 0 < o < 1, then (1 — a)o, + ady is infinitely divisible, since
convex combinations of two geometric distributions are infinitely divisible (see pp.379-
380 in Steutel and van Harn [21]), and the Dirac measure J, is a limit of geometric

distributions. Assertions (a) and (b) of the lemma above show in what extent this
fact can be generalised to negative .
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Proof of Lemma 3.2. The characteristic function of p is given by
q p+re”
iz T/q - 1 iz’
— ge

(3.7 p(z) = (L+71/9)34(2) = /g = (1+71/9)7— ”

(a) If p = 0, then p({0}) = 0 by (3.3), and p({k}) = (1 + (1 — ¢)/a)(1 — q)¢" =
(1 —q)¢" ! for k =1,2,..., and thus p is a geometric distribution translated by 1,
hence infinitely divisible. So assume that r < pg. Then p > 0 (otherwise p = r = 0,
contradicting p 4+ r > 0). Since p = (1 — q)/(1 + r/p), it follows from (3.7) that

p(z) = exp {log(l —q) — log (1 + f) + log <1 + feiz> ~log(1 — qeiz)} '
p D

Hence

(3.5) ) = exp [fj( _nL (1 - (—p—q))] .

k=1

z eR.

Recall that 7/(pg) < 1. Tt follows that p is infinitely divisible with Lévy measure
v,({k}) = k7'¢*(1 — (—r/(pq))*), k = 1,2,..., and drift 0.

(b) Now assume that r > pg and p > 0. By Katti’s criterion (Corollary 51.2 of
Sato [20]), a distribution Y p,d, with py > 0 is infinitely divisible if and only if
there are ¢, > 0, n =1,2,..., such that

npn:qukpn,k, n=12....
k=1

In fact, the equations above determine ¢,, n = 1,2, ..., successively in a unique way.
Infinite divisibility of Y7/ pnd, is equivalent to nonnegativity of all ¢,. Now let
pn = p({n}). The first two equations are p; = ¢1po and 2ps = ¢1p1 + 2gope. Hence
@1 = p1/po > 0, but
2py — 147 1—q)¢?

=22t QEVOCZO 0 (rg)1+g)] <o
since r > pq. This shows that p is not infinitely divisible.
(¢) Assume again that r > pg and p > 0. From (3.7) it can be seen that p will have a
real zero if and only if p = r. In that case, also |p|*> will have a real zero, and hence
™ cannot be infinite divisible, in agreement with the fact that (3.6) is violated for
p =r. So in the following we assume that p # r. From (3.7) we have

log(1p(2)]?) = log |p + e’ = log |1 — ge** |

= log(p* + 2pr cos z + 1?) — log(1 — 2q cos z + ¢*).
Write
2pr 2q p? +r?
= et B = T o — .
p*+r? 1+¢? L+¢?
Then 0 < A< 1,0< B < 1,and C > 0 (recall that 0 < ¢ < 1 and p # r), and we
obtain

log(|p(2)]*) = log C + log(1 + Acos z) — log(1 — B cos 2)

14



=logC — Z EH(—A)k cosh 2 + Z k'B* cos® 2

k=1

00 k
=logC' + Zkz—lQ_k( M+ BF) Z ( ) cos(k — 20)z,
k=1

since
k

k
. . k
coskz:2’k(e”+e’”)’“:2”“2 (l) z=ilk=lz — o= kZ( )cos —2])z.

1=0
Letting z = 0, we get

0=logC + Z E27F(—(—A)k + BY) Z <I;>

k=1
Hence
[k
log( kt2k + B* <>cosk—2zz—1.
a(17(2) Z —Ap B3 oo =20z -1
Write
(3.9) Dy = k7 '27%(—(—A)* + B*).
Then we get
00 L(k=1)/2]
3.10 log(|p(2)P) =2y D ()cosk‘—?lz—l,
(3.10) s([p(2)1%) ;kl; ;) (cos( )z —1)

where |(k —1)/2] is the largest integer not exceeding (k — 1)/2. Since
00 L(k=1)/2] i
SIS ( ) ngmk; < Zk (4% 1 BY) < o0,
k=1 1=0
we can change the order of summation in the rlght—hand side of (3.10). First, rewrite,
with m = k — 21,

log(|7(2) _QZDkZ ( k_’jn)ﬂ)(cosmz—n,

where m runs over k, k — ,...,3, llfkls odd > 1 and over k, k — 2, ...,4, 2 if k
is even > 2. Then

(3.11) log(|p(2)]*) = 2 Z E(cosmz —1).
m=1
Here FE,, is a linear sum of D,,, Dy, 19, D14, ... with positive integer coefficients.
More precisely,
0
m + 2h
(3.12) E, = ;Dm%( ) )
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Hence

(3.13) log(|p(2)]?) = /R(eim — 1 —dzz1—11)(2)) v(de),

where v is the symmetric signed measure

(3.14) v = f: Eon(6m + 6_m)-

Let F' = r/(pg). Then F > 1. A simple calculation then shows that A < B if and
only if F —1 < ¢*(F?* — F), which is equivalent to 1 < ¢?F, that is, (3.6). Now, if
(3.6) holds, then A < B and hence Dy > 0 for all k&, which implies E,, > 0 for all m
and p®™ is infinitely divisible with Lévy-Khintchine representation (3.13) and (3.14).
If (3.6) does not hold, then A > B, Dy < 0 for all even k, and E,, < 0 for all even m,
which implies, by (3.13) and (3.14), that p®™ is not infinitely divisible (see Exercise
12.3 of [20]). 0

We can now give criteria when p,, and f. 4, and their symmetrisations are infin-
itely divisible. Observe that infinite divisibility of p,, implies that of ji.,,. Similarly,
infinite divisibility of (p,,)®™™ implies that of (j 4, )*™. The converse of these two im-
plications are by no means clear, as we know Niedbalska-Rajba’s example mentioned
in the Introduction. However the following theorem will say that the converse is true
for picq, and p,, and for (p.q,)™ and (pg,)™™. Another remarkable consequence is
that (peq,)™™ can be infinitely divisible without p.,, being infinitely divisible and
that (pg,)®™ can be infinitely divisible without p,, being infinitely divisible.

Theorem 3.3. Let {(V, Y:), t > 0} be a bivariate Lévy process such that {N;} and
{Y;} are Poisson processes, and let the parameters p,q,r of {(Ny, Y3)} satisfy p,q,r <
1. Let ¢ > 1. Let picq, be defined as in (3.1) and py, as in (3.2) and (3.4). Then the
following hold true:
(a) If p= 0, then p,, and pi.q, are infinitely divisible.
(b) If p > 0 and q > 0, then the following conditions are equivalent:
(1) fegr ts infinitely divisible.
(ii) pgr is infinitely divisible.
(iii) r < pq.
(¢) If p >0, g > 0 and r > pq, then the following conditions are equivalent:
(1) (fegr)™™ is infinitely divisible.
(i) (pgr)™™ is infinitely divisible.
(iii) p < gr.
(d) If ¢ =0, then none of Pqrs He,grs (pq,r) and (Mc,q,r)

Proof. Write p1 = ficq, and p = pg,. (a) Suppose p = 0. Then p is infinitely divisible
by Lemma 3.2, and hence so is u by (3.5).

(b) Suppose that p,q > 0. Under these conditions, the equivalence of (ii) and (iii)
follows from Lemma 3.2. Further, (ii) implies (i) by (3.5), so that it remains to show
that (i) implies (iii). For that, suppose that r > pg, and in order to show that p is
not infinitely divisible, we will distinguish three cases: p =r, p > r and p < r. The

sym sym

18 infinitely divisible.
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first case is easy, but in the second and third cases, we have to use rather involved
arguments resorting to different conditions that guarantee non-infinite-divisibility.
Case 1: Suppose that p = r. Then p will have a real zero as argued in the proof
of Lemma 3.2 (¢). By (3.5), also i will have a real zero, so that u cannot be infinitely
divisible.
Case 2: Suppose that p > r. Then p can be expressed as in (3.8) (with the same
derivation). Together with (3.5) and (1.4) this implies

(315) B =ep S ) (" - (ofp)")|, 2eR

n=0 m=1

Absolute convergence of this double series follows from ¢ < 1 and r/p < 1. Define
the real numbers a,,, m € N, and the signed measure v by

Uy = %(qm — (=r/p)™) and v:= Z Z Ay Q=i -

n=0 m=1

It follows that 7z in (3.15) has the same form as the Lévy-Khintchine representation
with the signed measure v in place of a Lévy measure, so that infinite divisibility of
14 is equivalent to the signed measure v having negative part 0; see Exercise 12.3 in
Sato [20]. Thus, to show that p is not infinitely divisible, we will show that there is
some even integer m such that v({m}) < 0.

Since r/p > ¢, it follows that a,, < 0 if m is even and that a,, > 0 if m is odd.
For even m, denote

(3.16) G = {(n',m) €Ny xN: ¢ "m'=m, m'odd},
H, = {(n,m)eNygxN:c™m'=m, m even}.
Then
(3.17) v({m}) = Yot S ant+ Y aw.
(n',m")€GmUHm, (n',m")EGm
Denote

ko := inf{k € N: c¥is rational}.

If there is some even m such that G, = 0, then v({m}) < 0 by (3.17), and we are
done. So suppose from now on that G,, # 0 for every even m. As a consequence,
ko < oo. Write

& =a/B

with «, 8 € N such that o and § have no common divisor, and denote
[ :=max{t € Ny: 2"|8},
i.e. fis the largest integer t such that 2¢ divides 3. For m even, denote

g(m) := max{t € N: 2"|m}.
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Let m be even and let (n/,m’) € G,,. Then ¢ = m//m and it follows that ko|n'.
Write | :=n'/ky. Then

so that m(a/B)! = m’ is odd. Tt follows that 2|3, so that « is odd, and hence that
m/3 is odd, implying that

(3.18) g(m) =1f.

Since g(m) and f are completely determined by m and ¢, these determine [ and hence
(n',m') uniquely. In particular, |G| < 1, and even |G,,| = 1 since we assumed G,
to be non-empty.

Now let 5 € N and let m be an even number of the form

m:mj:2jf

(recall that f > 1 as just shown, so that m is indeed even). Then g(m;) = jf. By
E}Sl.lt8), it follows that the unique element (n},m}) in G,,, is given by n} = jko, and
a

L~

W —_—
m;

Noting that 0 < ¢ <r/p <1 and ¢ > 1, choose j so large that ¢ < 27(r/p)™ and
m; = m;ci¥ > 2m;. Then

iy = m%,(qmj — (™) < —QLmjwp)mﬂ
and
Gt = (g7 (P < ) < ().
g m; 2m;- 4m;
Thus

v({m;}) < am; + am; < %j(r/p)mj(—l +(3/2)(r/p)™) <0
for large enough j, showing that p is not infinitely divisible under the conditions of
Case 2.

Case 3: Suppose that p < r and, by way of contradiction, assume that g is
infinitely divisible. Denote by L, () = [ e % u(dx), & > 0, the Laplace transform
of . Then L,(0) = e ¥ where ¢ has a completely monotone derivative 1(6) on
(0,00), that is, (—1)"™(8) > 0 on (0,00) for n = 0,1,... (see Feller [7], p.450). By
(3.5) and (3.7) we have

B p+rf, 0)
(3.19) 0(f) = —log L,( Zl BT arn(0)

where f3(0) = e? and £,(0) = exp(—c"0) = fo(c™™0), n = 1,2,.... Convergence of
the summation in (3.19) is easily established. Since ¢ = %g@ is completely monotone,
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s0 is 8 — ¢ (c710) = L(p(c71h)). As a consequence,

_ 1 p
Wl = TTRG T e rh®

d + 7 fo(0) d ~1
= o (Fro TR — el0) — (o)

is the difference of two completely monotone functions. The function

1 St - —0z - k
= g/o(®) = Z qfo(0))" = z% /[0700)6 (Zq 5k> (dx)

k=0 k=0

is completely monotone, showing that the function £(6) on (0, 0c0) defined by

p
0— &£0) = ———
@) p+re?
is the difference of two completely monotone functions. Applying Bernstein’s Theo-
rem, there must exist a signed measure ¢ on [0, 00) (finite on compacts), such that

5(0):/{0 o), V0€0,00),

with the integral being absolutely convergent for every 6 > 0. However, introducing
the signed measure 7 := >, (—r/p)*d;,, we have

(3.20) £(0) = f: (—236 9>k = /[O’Oo) e 7 (d)

k=0

if 0 is so large that e ® < p/r. Thus there is 6y > 0 such that e %%o(dz) and
e~ %27 (dr) have a common Laplace transform. Now from the uniqueness theorem in
Laplace transform theory (p.430 of Feller [7]) combined with Hahn-Jordan decom-
position of signed measures, it follows that e~%%g(dr) = e~%%7(dz), that is, o = 7.
But the integral in (3.20) does not converge for 0 < 6 < log(r/p), contradicting the
corresponding property of 0. Hence we get a contradiction, and the proof of (b) is
finished.

(¢) Suppose that p,qg > 0 and that » > pg. The equivalence of (ii) and (iii) then
follows from Lemma 3.2, and (ii) implies (i) by (3.5), so that it remains to show that
(i) implies (iii). Since |p|* and hence |fi|? will have real zeros if p = 7 as shown in the
proof of Lemma 3.2 (¢), ™ cannot be infinitely divisible if p = r, in accordance with
the fact that condition (iii) is violated in that case. So suppose that p # r. With A, B,
Dy, and E,, as in the proof of Lemma 3.2 (¢), it follows from |7i(2)|* = [[,—, [p(c "2)?
and (3.11) that

(3.21) log(|12(2)|%) = 22 Z E,(cos(me™"z) — 1).



Since

2§: i |Epm || cos(me™z) — 1|

n=0 m=1

_ZZ|Dk|Z< >|COS k—20)c"z) — 1]
n=0 k=1

< ZZ|Dk|2k(kC_ )2 ZQEOO:C 2”§:k(14k + B*) < o
n=0 k=1 n= k=1

we can consider the right-hand side of (3.21) as an integral with respect to a signed
measure. Thus

(3.22) log(|i(2)]?) = /R(em —1—ixzl11)(x))v(de),

where v is the symmetric signed measure

(3.23) b= i i Fo(Ome—n + 6—pmen).

n=0 m=1
Now suppose that p > gr. As observed in the proof of Lemma 3.2 (c), this is equivalent
to A > B. In order to show that x is not infinitely divisible, we use Exercise 12.3 of
[20] again. We need to show that 7 has a non-trivial negative part, i.e. that there is
some 9 € R such that 7({x¢}) < 0. For that, we will first estimate E,,. Recall that
E,, > 0 for all odd m and E,, < 0 for all even m. Since (m+2h) < 2m+2h for all h, it
follows from (3.9) and (3.12) that

o0

1 m+2h 24™

Choose v € (0,1) such that A/y < 1, and choose & € N such that (a+1/2)/(a+1) >
v. By Stirling’s formula, there exists a constant d; > 0 such that for every m € N,
m+2om\ J m=+2am \"*  (m+ 2am)mt2em
= ( (m 4 am)mtam (qm)em

am m + am)am

dy
= (am)'/?
Since Dy, < 0 for every even k, we conclude
m —+ 2am
am )

(2 )m+2am

|Em| 2 |Dm+2am| (

dy
— (am)'?(m + 2am)
for every even m > 2. Let G,,,, Hp,, ko and f be defined as in the proof of (b)-Case 2.

If G, = () for some even m, then 7({m}) < E,, < 0, as shown in (3.17). So suppose
that G, # () for all even m > 2. As seen in the proof of (b), this implies |G,,| = 1,

(3.25)

(Aq)mi2em (1~ (B/Ay™12em)
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and if m is of the form m = m; = 2// with j € N, then the unique element (nf,m7)
in Gp,, satisfies m);/m; = ¢/*. Recall that m/; is odd by the definition of G,,. For
large j, we then have m’/2 > m; + 2am;, and from (3.24) and (3.25) it follows that
there exists some constant d, > 0 such that

Em( /
B ]| < dyy /) (A/))™/? -0 as j— oo,
m;

so that v({m;}) < En; + Epy < Ep, /2 <0 for large j, finishing the proof of (c).

J

(d) Suppose ¢ = 0. By Proposition 3.1, p = py, is Bernoulli distributed with param-
eter r. Further, y = pi 0, is the distribution of > >° /¢~ "U,, where {U,,n € N} is an
i.i.d. sequence with distribution p. The support of u is then a subset of [0,¢/(c — 1)].
It follows that also p*™ and p*™ have bounded support. Since Dirac measures are
the only infinitely divisible distributions with bounded support, p, u, p¥™ and g™
are not infinitely divisible. O

We remark that the proof that (i) implies (iii) in Theorem 3.3 (b) and (¢) can be
simplified if ¢ > 1 is a transcendental number. For, in that case, the set G,,, appearing
in (3.16) can be easily seen to be empty for every even m, so that v({m}) < a,, <0
and v({m}) < F,, <0, respectively.

Example 3.4. (a) If p = ¢ > 0, then pg,, flegrs (Pgr)™™ and (peq,)™™ will all
be infinitely divisible if r € [0,3 — 2\/5] and all fail to be infinitely divisible if r >
3 — 2v/2 &~ 0.17157. Recall that r is the dependence parameter.

(b) Let 2p = ¢ > 0. Then p,, and p.,, will be infinitely divisible for r € [0, (13 —
3v/17)/4] and fail to be infinitely divisible for r > (13 — 3v/17)/4 ~ 0.15767. On
the other hand, (p,,)™™ and (pcq,)®™ are infinitely divisible if and only if r €

[0, (13 — 3/17) /4] U [1/2,1).

Let us study continuity properties of p.,, and its convolution power. If ¢ = 0,

then the proof Theorem 3.3 shows that
a(z) = H [(1 —r)+re F 2 ER,
n=0

so that p is an infinite Bernoulli convolution (usage of this word is not fixed; here
we follow Watanabe [22]). The question of singularity /absolute continuity of infinite
Bernoulli convolutions has been investigated by many authors but, even if r = 1/2
(i.e. the measure fi /> with u = w), characterisation of all ¢ > 1 for which the
distribution is absolutely continuous is an open problem. See Peres et al. [18], Peres
and Solomyak [19], Watanabe [22] and the references therein. In the following, we
shall exclude the case ¢ = 0 in our considerations and formulate results which are
analogues to Theorems 2.2 and 2.4.

Theorem 3.5. Let pi 4, be defined as in (3.1), withc > 1 and 0 < ¢ < 1. Let

+r 1
4 )—l—plog—,
p

1 1
(3.26) h(g,r) = (qg+7) (log + . logg — log

1—q 1-—
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where p =1 —q —r and plog(1/p) is understood zero for p = 0. Then the following
are true:
(a) The Hausdorff dimension of pi.q, is estimated as

. h(g, )
(3.27) dim (pre,qr) < og e’
Thus, for each ¢ > 1, there exists a constant C; = Ci(c) > 0 such that ficq, is
continuous-singular whenever p > Cymax{q,r}.
(b) Fiz q and r. Then there exists a constant Cy = Ca(q,7) > 0 such that jicq, is
continuous-singular whenever ¢ > Cs.
(¢) If ¢ is a P.V. number, then pq,, is continuous-singular whenever p > 0 and
r < pg.
(d) Fiz ¢ > 1 such that ¢c™' is a P.S. number. Then there exists € = ¢(c) € (0,1) such
that picq, ts absolutely continuous with bounded continuous density whenever p > 0,
r<pqg<1andq >1—c¢c. In particular, there ezist constants C3 = Cs(c) > 0
and Cy = Cy(c) > 0 such that pi.q, is absolutely continuous with bounded continuous
density whenever ¢ > Csp > Cyr.

Proof. First, note that 0 < ¢ < 1 implies p < 1 and r < 1. Recall that p = p,, =
(147/q)o, — (r/q)d0, where o, is a geometric distribution with parameter 1 —¢. The
entropy of p can then be readily calculated as

H(p) = (1+r/q) (H(og) + (1 = q)log(1 — q) — qlog(1 +r/q)) — plogp,
which equals h(q,r) since H(o,) equals h(g) of (2.5). Using again Theorem 2.2 of
Watanabe, it follows that the Hausdorff dimension of y = p.,, is estimated as in
(3.27). To see the latter half of (a), notice that, since p is continuous by [1], it
must be continuous-singular if its Hausdorff dimension is less than 1. Suppose that
p > Cymax{q,r}. Then

1 1
= >
l+gq/p+r/p = 1+2/C
which tends to 1 as C; — oo. Hence ¢ — 0 and r — 0 as C; — oo. Thus

1 qg+r
log — — log
q q

b

1 1
1
(q+7")<og1_q+1_q

1 q 1 1
=(qg+r)|lo + log — +1o —0
(¢ )( 8T o T T8, gq+r>

and hence
sup{h(q,r): p > Cimax{q,7}} — 0, C; — oc.

This shows (a).

(b) For given ¢, r, take any Cy > €97, Then h(q,r)/logec < 1 whenever ¢ > Cs.

(¢) Proof is the same as that of Theorem 2.2 (b) since, by (3.8) and (1.4), 1i(2)
has representation (2.8), with a,, = v,({m}) = m~'¢™(1 — (=r/(pg))™).

(d) Suppose that p > 0 and 7 < pg. Again we use (2.8) with a,, = m™'¢™(1 —
(=r/(pq))™). We have a,, > m~'¢™ for m odd, and it follows that ag := > > an,
converges to 0o as ¢ T 1. The proof of the first half of (d) then follows in complete
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analogy to that of Theorem 2.2 (¢). To see the second half, suppose that ¢ > Csp >
Cyr. Then 1 > Csp/q > Cyr/q and

p, o\ p, Csp\ ™
q=<1+5+5> 2<1+—+—3>

> (1+ 1+C3 LYy 1+1+1 B
- Cy) Cs - C; Oy '

Hence, ¢ > 1 — (c) if C5 and C} are large enough. We also have

1 1
L:i(1+2+i)<%(1+_+_).

pg p ¢ q) = Ci Cs  Cy
Hence r/(pg) < 1if Cj is fixed and Cy is large. Thus there are C3 and Cy such that
q>1—¢(c) and 7/(pq) <1 whenever g > Csp > Cyr. O

Theorem 3.6. Let p1 = fic 4, be defined as in (3.1) with ¢ > 1 and 0 < ¢ < 1. If
p # 0, assume additionally that r < pq. Let p = py, be defined as in (3.2) and (3.4).
Then the same assertions as in Theorem 2.4 (a) — (d) hold true with pcq, and py,
wmn place of e and p.

Proof. Observe that under our assumption f is infinitely divisible (recall Theorem 3.3),
so that p'* is definable for all nonnegative real . If p > 0 and r < pq, it follows from
(3.8) that p is a compound Poisson distribution, concentrated on Ny, with finite sec-
ond moment. If p = 0, then p is a geometric distribution shifted by 1. In both cases,
H(p) < 0o by Lemma 2.6. We have

(3.28) /It\*(z) = H ;t\*(c’"z) = exp (étfygz + tz Z(eimc_nz - 1)am> ,

n=0 n=0m=1

where a,, = v,({m}), and 7) = 0 for p > 0 and 7p) = 37" ¢ " = ¢/(c — 1) for
p = 0. If p > 0, then the proof of assertions (a) — (d) is done in complete analogy
to Theorem 2.4 (a) — (d). If p = 0, then the result is the same as in the case of p
being geometric distribution, since shifts do not change entropy, Hausdorff dimension,
continuous-singularity and absolute continuity. 0

Remark 3.7. If ¢ is restricted to be an integer in part (d) of the theorem above,
then the convolution power p'* can still be defined even if the condition r < pg
guaranteeing infinite divisibility of p is violated. In that case, the same proof shows
that if ¢! is a P.S. number, then p** will be absolutely continuous with bounded
continuous density for large enough integer ¢.
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