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Abstract

The paper presents a cointegration model in continuous time, where the linear combinations

of the integrated processes are modeled by a multivariate Ornstein-Uhlenbeck process. The

integrated processes are defined as vector-valued Lévy processes with an additional noise term.

Hence, if we observe the process at discrete time points, we obtain a multiple regression model.

As an estimator for the regression parameter we use the least squares estimator. We show that it

is a consistent estimator and derive its asymptotic behavior. The limit distribution is a ratio of

functionals of Brownian motions and stable Lévy processes, whose characteristic triplets have an

explicit analytic representation. In particular, we present the Wald and the t-ratio statistic and

simulate asymptotic confidence intervals. For the proofs we derive some central limit theorems

for multivariate Ornstein-Uhlenbeck processes.
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1 Introduction

Empirical studies of financial time series, as exchange rates, foreign currency spot and futures/forwards

rates, stock prices within an industry and interest rates in different countries, show that they are

cointegrated (cf. Brenner and Kroner [9] and references therein). Cointegrated originally means that

even though time series are not stationary there exist linear combinations of them that render sta-

tionarity. This concept goes back to the seminal work of Granger [27] and Engle and Granger [21],

and is well understood in discrete time if second moments exists, see e.g., the monographs of Jo-

hansen [33] and Lütkepohl [38].

The motivation for this paper comes from pairs trading, which is a popular investment strategy

among hedge funds and investment banks, and involves trading of securities in pairs. The basic
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concept is to find pairs of assets which tend to move together in the long-run, i.e. they are cointe-

grated, so that the difference of the log assets, called spread, is mean-reverting. Hence, if the spread

is large then the trader sells the higher-priced asset and buys the lower-priced asset with the knowl-

edge that in the long-term the prices will converge together again. Thus, if the spread tends to its

mean value, the trader will sell the assets and realizes a profit (cf. Gatev et al. [26]). Pairs trading

is a form of statistical arbitrage. This concept can be applied to any equilibrium relationship in

financial markets. Besides pairs trading where it is essential to find the optimal investment strategy

(cf. Ekström et al. [19]) there exist also spread options, used in fixed income markets, currency and

foreign exchange markets, commodity future markets and energy markets, which take into account

that the underlying assets are cointegrated if they price options.

In this paper we consider a cointegrated model in continuous time. Continuous-time models

provide the basis of option pricing, asset allocation and term structure theory. The underlying ob-

servations of asset prices, exchange rates, and interest rates are often irregularly spaced, in particular,

in the context of high frequently data. Consequently, one often works with continuous-time models

which infer the implied dynamics and properties of the estimated model at different frequencies

from the one used in the estimation.

Typical for high frequency financial time series as asset returns and exchange rates are jumps

and a distribution which is peaked around zero with a tail distribution decreasing slower to zero than

any exponential function. Empirical studies show that these distributions have often a power law

tail with an index in (2, 4) (cf. Adler [2], Rachev [57]), which implies that they have finite variances

but infinite fourth moments. Already Mandelbrot [40] and Fama [22] noticed in the 60’s that the

Gaussian distribution is not the appropriate model and suggested to use α-stable distributions with

α ∈ (0, 2) as natural generalization of the Gaussian distribution. Although α-stable distributions

have an infinite second moment, tail index estimation are not sufficient to reject stable distributions;

see McCulloch [43]. There is, e.g., empirical evidence that electricity prices and the daily trading

volume of stocks have a power law tail with an index in (1, 2) (cf. Weron [68] and Aban and

Meerschaert [1]). More about α-stable distributions in financial modelling can be found in Mittnik

and Rachev [56].

The model

A model for the price of an asset S = (S(t))t≥0 is

S(t) = exp(L(t) + ζ(t)), t ≥ 0, (1.1)

where L = (L(t))t≥0 is a Lévy process, a stochastic process with independent and stationary incre-

ments, and ζ = (ζ(t))t≥0 is a stationary process. This model extends the classical exponential Lévy

model for stock prices which can be found, e.g., in the standard textbook of Jeanblanc et al. [31].

Models of the form (1.1) are popular for describing spot prices of commodities whose logarithmic

prices are mean reverting. Our model (1.1) extends the model of Lucia and Schwartz [39]; see Benth

et al. [7] and references therein for further examples. One interpretation is that L is a Brownian

motion which reflects the long-term equilibrium and accounts the small variations in the spot prices

when normal trading takes place, and the arrival of information, transaction and storages costs,
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which causes large fluctuations, are modeled as jump process in the short-term behavior ζ. In this

paper L and ζ will be very flexible. They may be jump processes or Gaussian processes; they may

have a power like tail or a finite second moment. In an exponential Lévy model with finite time

horizon (where ζ(t) = 0 for t ≥ 0) there is no arbitrage except in the case where L is increasing

or decreasing, and the market is incomplete, except in the case where L is a Brownian motion and

a Poisson process; see Selivanov [65]. Incomplete markets are, for example, typical for commodity

markets.

Here, we suppose that we have two prices S1, S2, and

Y (t) := log S1(t) = L1(t) + ζ(t), t ≥ 0, (1.2)

where L1 = (L1(t))t≥0 is a Lévy process and ζ = (ζ(t))t≥0 is some stationary process. The spread

of the log prices

Z(t) = logS2(t)− a log S1(t), t ≥ 0

for some a ∈ R\{0} is modeled by a mean reverting Ornstein-Uhlenbeck process, i.e.,

Z(t) = e−λtZ(0) +

∫ t

0
e−λ(t−s) dL2(s), t ≥ 0,

for some λ > 0 and some Lévy process L2 = (L2(t))t≥0; this is a common model, see [6, 18, 19, 20].

The parameter λ reflects the speed of mean reversion.

Finally, we suppose that (Z(t), ζ(t))t≥0 are jointly stationary, which holds obviously, if ζ and L2

are independent. Then the price S2 is also in the class (1.1) since

X(t) := log S2(t) = aY (t) + Z(t) = L̃(t) + ζ̃(t), t ≥ 0, (1.3)

where L̃(t) = aL1(t) is a Lévy process and ζ̃(t) = aζ(t) + Z(t) is a stationary process. In the case

where (L1, L2) is a bivariate Brownian motion and ζ(t) = 0 for t ≥ 0 (which means that S1 is a

geometric Brownian motion), Duan and Pliska [18] showed that the model is complete and the price

of any option is not affected by the cointegration, and remains as in the standard Black-Scholes

framework.

We consider a multivariate version of such a cointegrated regression model (1.2) and (1.3) in con-

tinuous time. Extensions of discrete-time cointegrated autoregressive models to continuous time can

be found in Comte [14], Phillips [50, 52] and Stockmarr and Jakobsen [67]. Let L1 = (L1(t))t≥0 and

L2 = (L2(t))t≥0 be q-dimensional and d-dimensional Lévy processes. A multivariate Lévy process

(L(t))t≥0 in R
m is characterized by its Lévy-Khintchine representation E(eiΘ

′L(t)) = exp(−tΨ(Θ))

for Θ ∈ R
m (for a vector x ∈ R

m we write x
′ for the transpose of x and ‖x‖ for the Euclidean

norm), where

Ψ(Θ) = −iγ′Θ+
1

2
Θ′ΣΘ+

∫

Rm

(
1− eiΘ

′
x + ix′Θ1{‖x‖≤1}

)
νL(dx)

with γ ∈ R
m, Σ a positive semi-definite matrix in R

m×m and νL a measure on R
m, called Lévy

measure, which satisfies
∫
Rm min{‖x‖2, 1} νL(dx) < ∞ and νL({0m}) = 0 (where 0m is the zero-

vector in R
m). The triplet (γ,Σ, νL) is also called characteristic triplet, because it characterizes
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completely the distribution of the Lévy process (cf. the excellent monograph of Sato [63] for more

details on Lévy processes). Typical examples for Lévy processes are the Brownian motion, whose

increments are multivariate normal distributed with covariance matrix Σ and νL = 0, and α-stable

Lévy processes, α ∈ (0, 2), where the Gaussian part represented by Σ is zero and the Lévy measure

has the representation

νL(dx) = r−1−αdrσ(ds), (1.4)

where r = ‖x‖, s = x

‖x‖ and σ is a measure on the unit sphere of Rm. An α-stable Lévy process

with α = 2 is defined to be a Brownian motion.

Moreover, let A ∈ R
d×q and Λ ∈ R

d×d, where the eigenvalues of Λ have strictly positive real

parts. The multivariate cointegration model is

X(t) = AY(t) + Z(t), t ≥ 0, in R
d, (1.5)

Y(t) = L1(t) + ζ(t), t ≥ 0, in R
q, (1.6)

where ζ = (ζ(t))t≥0 is some stationary process in R
q, and Z = (Z(t))t≥0 is a stationary Ornstein-

Uhlenbeck process in R
d with representation

Z(t) = e−Λt
Z(0) +

∫ t

0
e−Λ(t−s)dL2(s), t ≥ 0. (1.7)

We can take a stationary version of Z by defining Z(0) =
∫ 0
−∞ eΛsdL2(s) with (L2(t))t≤0 an in-

dependent copy of (L2(t−))t≥0, since the eigenvalues of Λ have strictly positive real parts and

the logarithmic moments of the Lévy measure are finite under Assumption 3.1-3.3 (cf. Sato and

Yamazato [64], Theorem 4.1). Thus, in the following Z will be a stationary Ornstein-Uhlenbeck

process. We will furthermore extend the model in (1.5), and allow the short-run equilibrium Z to

be more general than an Ornstein-Uhlenbeck model. If Λ is a diagonal matrix in R
d×d then any

component of Z is an one-dimensional Ornstein-Uhlenbeck process.

By definition (1.6), Y is integrated since it is non stationary but it has stationary increments.

Moreover, it is not cointegrated if L1 has independent components, i.e. there exists no linear com-

binations of Y which are stationary. It is obvious that (X′,Y′)′ is cointegrated with cointegrating

matrix (Id×d,−A) if A 6= 0d×q (where Id×d denotes the identity matrix in R
d×d and 0d×q the

zero-matrix in R
d×q). Furthermore, if L1 has independent components, then the rank of A is equal

to the rank of cointegration.

The estimation problem

Our aim is to present for the multiple cointegration model (1.5)-(1.7), an estimator for the regression

parameter A. Assume the following observation scheme

X
′
n = (X(h), . . . ,X(nh)) ∈ R

d×n, Y
′
n = (Y(h), . . . ,Y(nh)) ∈ R

q×n

with grid distance h > 0 (see Remark 3.11 (iii) if h depends also on n and tends to 0 as n → ∞).

We use as estimator for A the least squares estimator

Ân = X
′
nYn(Y

′
nYn)

−1. (1.8)
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We will show that under general assumptions the least squares estimator is a consistent estimator

and we will derive its asymptotic behavior when ‖L1(1)‖ and ‖L2(1)‖, respectively, has either a

heavy tail in the sense that it is regularly varying of some index in (0, 2), or a finite second moment.

We cover the possibility that one has a finite second moment and the other is heavy tailed, and

that L1 and L2 are dependent. We obtain an explicit representation of the limit distribution of

the estimation error, which allows us to present asymptotic confidence intervals for parameter tests

on components of A. The limit distribution is a functional of stable Lévy processes and Brownian

motions depending on the tail behavior of ‖Li(1)‖, i = 1, 2. Moreover, we derive the t-ratio statistic

for A. Simulation studies suggest that the asymptotic confidence intervals of that statistic do not

depend on the tail behavior of ‖Li(1)‖, i = 1, 2. Hence, the performance of the least squares

estimator can be tested without knowing anything about L1 and L2, which is in the case of heavy

tailed distributions unusual and valuable for statistical purpose.

The paper is structured in the following way. In Section 2 we present central limit results, which

we need in order to derive the asymptotic behavior of our estimator in Section 3. In Section 3 we

state that the least squares estimator is a consistent estimator and present its asymptotic behavior.

We show that the results not only hold for a multivariate Ornstein-Uhlenbeck process Z but also

for the much larger class of multivariate continuous-time ARMA (CARMA) processes, which, in

particular, include Ornstein-Uhlenbeck processes. Examples of simulated confidence intervals are

also presented in that section. Section 4 contains test statistics as the t-ratio and the Wald statistic

for our setup. Finally, in Section 5 we derive the proofs of the results.

We will continue using the notation =⇒ for weak convergence,
P−→ for convergence in prob-

ability, and
ν

=⇒ for vague convergence. Let R = R ∪ {−∞,∞} and let B(·) be the Borel-σ-

algebra. For x ∈ R we write ⌊x⌋ = sup{k ∈ N : k ≤ x}. The expression diag(B1,B2) for

B1 ∈ R
m1×m1 , B2 ∈ R

m2×m2 , m1,m2 ∈ N, stands for a block diagonal matrix with block B1

and B2, respectively. For a vector x ∈ R
m we write x

′ for the transpose of x. The matrix 0m1×m2 is

the zero matrix in R
m1×m2 and Im1×m1 is the identity matrix in R

m1×m1 . The symbol ⊗ denotes the

Kronecker product and we use as norms the Euclidean norm ‖·‖ in R
m and the corresponding op-

erator norm ‖·‖ for matrices. Then λ := ‖Λ‖ is the spectral norm of Λ. An Sα(1, 0, 0)-distribution

will be an α-stable distribution with scale parameter 1, skewness and shift parameter 0 in the

sense of Samorodnitsky and Taqqu [62]. Particularly, for α = 2 this is a Gaussian distribution.

Finally, for a metric space E we write (D[0, 1], E) for the space of all càdlàg (continue à droite

et limitée à gauche = right continuous, with left limits) functions on [0, 1] with values in E in-

duced with the Skorokhod J1 topology. The quadratic covariation process of two semimartingales

W1 = (W1,1(t), . . . ,W1,m1(t))t≥0 in R
m1 and W2 = (W2,1(t), . . . ,W2,m2(t))t≥0 in R

m2 is denoted

by [W1,W2]t = ([W1,i,W2,j ]t)i=1,...,m1,j=1,...,m2 for t ≥ 0.
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2 Limit results

2.1 Domain of attraction

The asymptotic behavior of our estimator in Section 3 is based on central limit results. Therefore,

we have to distinguish the different domains of attractions of L1(1) and L2(1). We say that a

random vector U in R
m belongs to the domain of attraction of an α-stable distribution S with

α ∈ (0, 2] (shortly DN(α)), where α = 2 reflects the multivariate normal distribution, if there exists

a sequence (an)n∈N of positive numbers and (dn) of real numbers such that for an iid (independently

and identically distributed) sequence (Un)n∈N with distribution U the asymptotic behavior

a−1
n

n∑

k=1

Uk − dn =⇒ S as n → ∞ (2.1)

holds. The left hand side is only capable to converge to an α-stable distribution with α ∈ (0, 2].

Other limit distributions are not possible (cf. Rvačeva [61]). In particular, every α-stable distribution

is in its own domain of attraction. A sufficient condition to be in the domain of attraction of a

multivariate normal distribution is E‖U‖2 < ∞. However, this is not a necessary assumption. In

contrast, U is in the domain of attraction of an α-stable distribution with α ∈ (0, 2) if and only if

U is multivariate regularly varying of index −α. Then E‖U‖2 = ∞.

Recall that a random matrix U in R
m×d is multivariate regularly varying with index −α < 0 if

and only if there exists a non-zero Radon measure µ on R
m×d \ {0m×d} with µ(R

m×d \Rm×d) = 0

and a sequence (an)n∈N of positive numbers increasing to ∞ such that

nP(a−1
n U ∈ ·) υ

=⇒ µ(·) as n → ∞ on B(Rm×d \ {0m×d}). (2.2)

The limit measure µ is homogenous of order −α, i.e., µ(uB) = u−αµ(B) for u > 0 and B ∈
B(Rm×d\{0m×d}). The sequence (an)n∈N in (2.1) can be chosen as in (2.2). We shortly write U ∈
R−α(an, µ). If the representation of the limit measure µ or the norming sequence (an)n∈N does not

matter, we also write R−α(an) and R−α, respectively. In particular, E‖U‖r < ∞ for r < α and

E‖U‖r = ∞ for r > α. For further information regarding multivariate regular variation of random

vectors we refer to Resnick [60]. However, we can transfer the results to random matrices in R
m×d

by rewriting the random matrix as a random vector in R
md. A typical example for a multivariate

regularly random vector are multivariate α-stable distributions. If L is a multivariate α-stable Lévy

process with Lévy measure νL as given in (1.4), then L(1) ∈ R−α(n
1/α, νL).

As a special case we remark that a measurable function f : (0,∞) → (0,∞) is called regularly

varying of index −α, α ∈ R, if limx→∞ f(xu)/f(x) = u−α for any u > 0. In that case we also

write f ∈ R−α. If the random matrix U ∈ R−α(an, µ) then there exists an ℓ1, ℓ2 ∈ R0 such that

an = n1/αℓ1(n) for n ∈ N and P(‖U‖ > x) = x−αℓ2(x) for x > 0 as well.

In this paper we distinguish

(i) L1(1) ∈ DN(α), L2(1) ∈ DN(β), α, β ∈ (0, 2], and L1, L2 are independent Lévy processes;

(ii) (L1(1)
′,L2(1)

′)′ ∈ DN(α), α ∈ (0, 2].
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However, if L1 and L2 are dependent and L1(1) ∈ DN(α),L2(1) ∈ DN(β) and β > α, then

(L1(1)
′,L2(1)

′)′ is also in DN(α).

2.2 Central limit results in DN(α) for α ∈ (0, 2)

For the proof of the asymptotic behavior of the least squares estimator we require more general

limit results than (2.1), where our increments are an iid sequence. If (L1(1)
′,L2(1)

′)′ ∈ DN(α),

α ∈ (0, 2), the proofs of our limit results rely on point process techniques (cf. Section 5.1). We

follow Resnick’s [58] notation of point processes. Let S denote the locally compact and separable

Hausdorff space [0,∞)× R
m\{0m} with the Borel σ-field B(S), and let MP (S) denote the class of

point measures (integer-valued Radon measures) on S provided with a metric that generates the

topology of vague convergence. A measure of the form
∑

k∈I εxk
, where xk ∈ S, I is at most countable

and εxk
denotes the Dirac measure in xk, is a point measure. A point process is a measurable map

from a probability space (Ω,F ,P) into (MP (S),B(MP (S))). A famous point process is the Poisson

random measure denoted by PRM(ϑ). A point process N is PRM(ϑ) if

(a) N(A) is Poisson distributed with mean ϑ(A) for every A ∈ B(S),

(b) for all mutually disjoint sets A1, . . . , An ∈ B(S), N(A1), . . . , N(An) are independent.

More about point processes can be found in Daley and Vere-Jones [15] and Kallenberg [34].

Proposition 2.1 Let the multivariate cointegration model (1.5)-(1.7) be given. Suppose that (L(t))t≥0

is a w-dimensional Lévy process with L(1) ∈ R−α(an, µ) for 0 < α < 2,

L1(t) := Σ1L(t) and L2(t) := Σ2L(t), t ≥ 0,

where Σ1 ∈ R
q×w and Σ2 ∈ R

d×w. Define for t ≥ 0 and n ∈ N:

S
(1)
n (t) = a−1

n

⌊nt⌋∑

k=1

(
∆L1(kh)− E(∆L1(h)1{‖∆L1(h)‖≤an})

)
,

S
(2)
n (t) = a−1

n

⌊nt⌋∑

k=1

(
Z(kh)−

∞∑

i=0

e−hΛi
E

(∫ h

0
e−Λs dL2(s)1{‖

∫ h
0 e−Λs dL2(s)‖≤an}

))
,

S
(3)
n (t) = a−2

n

⌊nt⌋∑

k=1

Z(kh)Z(kh)′, S
(4)
n (t) = a−2

n

⌊nt⌋∑

k=1

Z((k + 1)h)Z(kh)′,

where ∆L1(kh) = L1(kh)− L1((k − 1)h). Let Leb be the Lebesgue measure and

∞∑

k=1

ε
(tk ,j

(1)
k ,j

(2)
k )

∼ PRM(Leb × µ̃)

be a point process on S = [0,∞) × (R
q+d\{0q+d}), where

µ̃(B) = hE
(
µ
({

x ∈ R
w\{0w} :

(
Σ1x, e

−hΛUΣ2x

)
∈ B

}))
(2.3)
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for B ∈ B(Rq+d\{0q+d}) and U is a uniform random variable on (0, 1) and, similarly,

µ∗(B) = hE
(
µ
{
x ∈ R

w\{0w} :
(

Σ1x,
∑∞

i=0 e
−hΛie−hΛUΣ2x

)
∈ B

})
. (2.4)

Furthermore, let

µ∗
1(·) := µ̃1(·) := µ∗(· × R

d
), µ∗

2(·) := µ∗(R
q × ·) and µ̃2(·) := µ̃(R

q × ·).

Finally, define

S
(1)(t) :=

∑

tk≤t

j
(1)
k 1

{‖j
(1)
k

‖>1}
+ lim

γ→0


∑

tk≤t

j
(1)
k 1

{γ<‖j
(1)
k

‖≤1}
− t

∫

γ<‖x‖≤1
x µ̃1(dx)




=: S1(t) + t





∫
‖x‖>1 xµ∗

1(dx) if α > 1,

0q if α = 1,

−
∫
‖x‖≤1 xµ∗

1(dx) if α < 1,

S
(2)(t) :=

∞∑

i=0

e−hΛi


∑

tk≤t

j
(2)
k 1

{‖j
(2)
k

‖>1}
+ lim

γ→0


∑

tk≤t

j
(2)
k 1

{γ<‖j
(2)
k

‖≤1}
− t

∫

γ<‖x‖≤1
x µ̃2(dx)






=: S2(t) + t





∫
‖x‖>1 xµ∗

2(dx) if α > 1,

0d if α = 1,

−
∫
‖x‖≤1 xµ∗

2(dx) if α < 1,

S
(3)(t) :=

∑

tk≤t

∞∑

i=0

e−hΛij
(2)
k j

(2)′

k e−hΛ′i =: S3(t),

S
(4)(t) :=

∑

tk≤t

∞∑

i=0

e−hΛ(i+1)j
(2)
k j

(2)′

k e−hΛ′i = e−hΛ
S
(3)(t) =: S4(t).

Let 0 ≤ t1 ≤ . . . ≤ tl ≤ 1 and t := (t1, . . . , tl). For a function g we write

g(t) := (g(t1), . . . , g(tl)). Then we have as n → ∞,

(
(S(1)

n (t))t≥0,S
(2)
n (t),S(3)

n (t),S(4)
n (t)

)
=⇒

(
(S(1)(t))t≥0,S

(2)(t),S(3)(t),S(4)(t)
)

in (D[0, 1],Rq)× R
d×l × R

(d×d)×l × R
(d×d)×l equipped with the product topology.

Remark 2.2

(i) The limit processes S
(1),S(2),S(3) and S

(4) are stable Lévy processes, where S
(1) has Lévy

measure µ∗
1, S

(2) has Lévy measure µ∗
2, S

(3) has Lévy measure µ∗
2({x ∈ R

d\{0d} : xx′ ∈ ·}),
and S

(4) has Lévy measure µ∗
2({x ∈ R

d\{0d} : e−hΛ
xx

′ ∈ ·}). They are also jointly an α-stable

Lévy process. If α > 1, S1 and S2 are centered stable Lévy processes with Lévy measures µ∗
1

and µ∗
2, respectively. In the following we will work with the centered Lévy processes S1 and S2

and thus, we have defined for the ease of notation also S3 and S4 (whose means are infinite).

(ii) The limit result of Proposition 2.1 can also be used to derive estimators for Λ as in Fasen [24].
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(iii) The convergence S
(1)
n =⇒ S

(1) as n → ∞ holds in the Skorokhod J1 topology. But (S
(2)
n )n∈N

does not converge in the Skorokhod J1 topology; the proof is presented in Avram and Taqqu [3]

and Remark 5.3 below; see also Remark 3.20 (iii) in Phillips and Solo [54] for a motivation in

terms of the Beveridge-Nelson decomposition. Moreover, Avram and Taqqu [3] showed that in

the one-dimensional case (d = 1) (S
(2)
n )n∈N converges at least in the Skorokhod M1 topology.

However, in the multidimensional case, d > 1, the assumptions of Proposition 2.1 are not

sufficient to obtain the convergence in the Skorokhod M1 topology.

(iv) Similar results were proven in Meerschaert and Scheffler [45]. However, from Meerschaert and

Scheffler [45] we can only follow under some slightly different assumptions the convergence of

(S
(i)
n (t))n∈N for i = 1, . . . , 4, t ≥ 0, but not the joint convergence in the finite dimensional

distributions, which we require for the forthcoming results of this paper. �

We continue with a corollary which gives, under some stronger assumptions, simple representa-

tions of Si, i = 1, . . . , 4.

Corollary 2.3 Let the assumption of Proposition 2.1 hold, and let 0 < α < 1, or 1 < α <

2 with E(L(1)) = 0w. Suppose that the components of the (q + d)-dimensional Lévy process

((L1(t)
′,L2(t)

′)′)t≥0 are iid Lévy processes with distribution of (L(t))t≥0. Furthermore, we assume

that the tail balance condition

lim
u→∞

P(L(1) > u)

P(|L(1)| > u)
= lim

u→∞

P(−L(1) > u)

P(|L(1)| > u)
=

1

2
(2.5)

and

lim
n→∞

nP(|L(1)| > an) = K−1
α (2.6)

holds, where

Kα =

{
Γ(1− α) cos

(
πα
2

)
if 0 < α < 1,

Γ(2−α)
α−1 | cos(πα2 )| if 1 < α < 2.

Finally, suppose that Λ = diag(λ1, . . . , λd). Define

S1,n(t) = a−1
n

⌊nt⌋∑
k=1

∆L1(kh), S2,n(t) = a−1
n

⌊nt⌋∑
k=1

Z(kh),

S3,n(t) = a−2
n

⌊nt⌋∑
k=1

Z(kh)Z(kh)′, S4,n(t) = a−2
n

⌊nt⌋∑
k=1

Z((k + 1)h)Z(kh)′.

Then as n → ∞,

((S1,n(t))t≥0,S2,n(t),S3,n(t),S4,n(t)) =⇒ ((S1(t))t≥0,S2(t),S3(t),S4(t))

in (D[0, 1],Rq)× R
d×l × R

(d×d)×l × R
(d×d)×l equipped with the product topology, where for t ≥ 0,

S1(t) = h
1
αL

∗
1(t), S2(t) = E−1

hΛ,1EhΛ,αDΛ,αL
∗
2(t),

S3(t) = E−2
hΛ,2E

2
hΛ,αD

2
Λ,α[L

∗
2,L

∗
2]t, S4(t) = e−hΛ

S3(t),
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and (L∗
1(t))t≥0 is a q-dimensional Lévy process independent of the d-dimensional Lévy process

(L∗
2(t))t≥0. In both cases the components are iid Sα(1, 0, 0)-stable Lévy motions. Finally,

EhΛ,α = (Id×d − e−αhΛ)1/α and DΛ,α = diag((αλ1)
−1/α, . . . , (αλd)

−1/α). (2.7)

The Corollary is a direct conclusion of Proposition 2.1 and Samorodnitsky and Taqqu [62],

Theorem 1.8.1, since for an Sα(1, 0, 0)-stable random variable Sα the tail behavior

lim
n→∞

nP(Sα > n1/α) = lim
n→∞

nP(−Sα > n1/α) = K−1
α

holds.

2.3 Central limit results in DN(2)

On the other hand, if L1(1) and L2(1), respectively has at least a finite second moment and hence,

L1(1) ∈ DN(2) and L2(1) ∈ DN(2), respectively, then we have the following result.

Proposition 2.4 Let the multivariate cointegration model (1.5)-(1.7) be given.

(a) Suppose E‖L1(1)‖2 < ∞ and E(L1(1)) = 0q. Define Ω1 = hE(L1(1)L1(1)
′) and an := n1/2.

Then as n → ∞,

S1,n(t) := a−1

n

⌊nt⌋∑

k=1

∆L1(kh)




t≥0

=⇒
(
Ω

1/2
1 B1(t) =: S1(t)

)
t≥0

(2.8)

in the Skorokhod J1 topology on (D [0, 1] ,Rq), where (B1(t))t≥0 is a q-dimensional standard-

Brownian motion.

(b) Suppose E‖L2(1)‖r < ∞ for some r > 2 and E(L2(1)) = 0d. Define

Ω̃2 := E(Z(0)Z(0)′) =

∫ ∞

0
e−Λs

E(L2(1)L2(1)
′)e−Λ

′s ds,

Ω2 := Ω̃2 +

∞∑

k=1

(
e−hΛk

Ω̃2 + Ω̃2e
−hΛ′k

)
,

and bn := n1/2. If Ω2 is invertible, then as n → ∞,

S2,n(t) := b−1

n

⌊nt⌋∑

k=1

Z(kh)




t≥0

=⇒
(
Ω

1/2
2 B2(t) =: S2(t)

)
t≥0

(2.9)

in the Skorokhod J1 topology on (D [0, 1] ,Rd), where (B2(t))t≥0 is a d-dimensional standard-

Brownian motion. Furthermore,

S3,n(1) := b−2
n

n∑

k=1

Z(kh)Z(kh)′
n→∞−→ Ω̃2 =: S3(1) P-a.s. (2.10)

on R
d×d. If E(L2(1)L2(1)

′) = Id×d and Λ = diag(λ1, . . . , λd) then Ω̃
1/2

2 = DΛ,2 and

Ω
1/2
2 = E−1

hΛ,1EhΛ,2DΛ,2 with the notation in (2.7).
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(c) Let L = ((L1(t)
′,L2(t)

′)′)t≥0 be a (q + d)-dimensional Lévy process. Suppose E‖L(1)‖r < ∞
for some r > 2 and E(L(1)) = 0q+d. Define

Ω
∗ :=

∫ h

0
diag(Iq×q, e

−Λs)E(L(1)L(1)′)diag(Iq×q, e
−Λ

′s) ds,

Ω
1/2 := Ω

∗1/2 +

∞∑

k=1

diag(0q×q, e
−hΛk)Ω∗1/2.

If Ω is invertible, then as n → ∞,

(
(S1,n(t)

′,S2,n(t)
′)′
)
t≥0

=⇒
(
Ω

1/2
B(t)

)
t≥0

(2.11)

in the Skorokhod J1 topology on (D [0, 1] ,Rq+d), where (B(t))t≥0 is a (q + d)-dimensional

standard-Brownian motion. Furthermore, (Ω1/2
B(t))t≥0 = ((S1(t)

′,S2(t)
′)′)t≥0 with S1 and

S2 from (a) and (b), respectively.

3 Consistency and asymptotic behavior of the estimators

The main results of this paper satisfy either the next Assumption 3.1 allowing that L1 and L2 are

in different domains of attractions but are independent, or Assumption 3.2 and 3.3, respectively,

where (L1(1)
′,L2(1)

′)′ ∈ DN(α), α ∈ (0, 2].

Assumption 3.1

Let L1 and L2 be independent Lévy processes of dimension q and d, respectively. Furthermore,

suppose the following:

(a) Either

L1(1) ∈ R−α(an, µ1), 0 < α < 2, E(L1(1)) = 0q if 1 < α < 2 and L1(1) is symmetric

if α = 1. Furthermore, S1 is defined as in Proposition 2.1, i.e. S1 is an α-stable Lévy

process with Lévy measure µ1, and if 1 < α < 2 then E(S1(1)) = 0q. We suppose that

µ1({0i−1} ×R\{0} × {0q−i}) > 0 for i = 1, . . . , q.

Or

E‖L1(1)‖2 < ∞ and E(L1(1)) = 0q. Define an := n1/2 and α := 2. Furthermore, S1 is

defined as in Proposition 2.4 (a), i.e. S1 is a Brownian motion with covariance matrix

Ω1, and we suppose that Ω1 is invertible.

(b) Either

L2(1) ∈ R−β(bn, µ2), 0 < β < 2, E(L2(1)) = 0d if 1 < β < 2 and L2(1) is symmetric if

β = 1. Furthermore, S2,S3 are defined as in Proposition 2.1, i.e. S2 is a β-stable Lévy

process with Lévy measure

µ∗
2(·) = hE

(
µ2

{
x ∈ R

d\{0d} :

(
∞∑

i=0

e−hΛie−hΛU

)
x ∈ ·

})

11



where U is a uniform random variable on (0, 1), and if 1 < β < 2 then E(S2(1)) = 0d.

Or

E‖L2(1)‖r < ∞ for some r > 2 and E(L2(1)) = 0d. Define bn := n1/2 and β := 2.

Furthermore, S2,S3(1) are defined as in Proposition 2.4 (b), i.e. S2 is a Brownian motion

with covariance matrix Ω2 and S3(1) = E(Z(0)Z(0)′).

Finally, S1 and (S2,S3(1)) are independent.

If (L1, ζ) and L2 are independent then the long-run equilibrium AY and the short-run equilibrium

Z are independent which is a somewhat natural assumption. However, the next assumptions show

that dependence between L1 and L2 is also allowed.

Assumption 3.2

Let L = ((L1(t)
′,L2(t)

′)′)t≥0 be a (q + d)-dimensional Lévy process. Suppose E‖L(1)‖r < ∞ for

some r > 2 and E(L(1)) = 0q+d. Furthermore, an := bn := n1/2 and α := β := 2. Finally, S1,S2,S3

are given as in Proposition 2.4, i.e. (S′
1,S

′
2)

′ is a Brownian motion with covariance matrix Ω and

S3(1) = E(Z(0)Z(0)′). We suppose that the covariance matrix Ω1 of S1 is invertible.

Assumption 3.3

Let L = ((L1(t)
′,L2(t)

′)′)t≥0 be a (q + d)-dimensional Lévy process. Suppose (L1(1)
′,L2(1)

′)′ ∈
R−α(an, µ), 0 < α < 2, E(L1(1)

′,L2(1)
′)′ = 0q+d if 1 < α < 2 and (L1(1)

′,L2(1)
′) is symmetric if

α = 1. Furthermore, bn := an and β := α. Finally, S1,S2,S3 are given as in Proposition 2.1 with

Σ1 := (Iq×q,0q×d) and Σ2 := (0d×q, Id×d). We suppose that µ1({0i−1} × R\{0} × {0q−i}) > 0 for

i = 1, . . . , q.

These assumptions lead to the following asymptotic behavior of Ân.

Theorem 3.4 Let the multivariate cointegration model (1.5)-(1.7) be given, and let either of the

Assumptions 3.1 – 3.3 hold. Furthermore, let the following conditions be satisfied:

(i)
∑n

k=1Z(kh)ζ(kh)
′ = op(anbn) as n → ∞.

(ii)
∑n

k=1L1(kh)ζ(kh)
′ = op(na

2
n) as n → ∞.

(iii)
∑n

k=1 ζ(kh)ζ(kh)
′ = op(na

2
n) as n → ∞.

Then Ân as given in (1.8) satisfies as n → ∞,

nanb
−1
n (Ân −A) =⇒

(
S2(1)S1(1)

′ −
∫ 1

0
S2(s−)dS1(s)

′

)(∫ 1

0
S1(s)S1(s)

′ds

)−1

=: G.

In particular, Ân
P−→ A as n → ∞ if β > α/(α + 1), i.e. Ân is a consistent estimator.

The conditions (i)-(iii) are very general in the sense that we do not require L1,Z and ζ to be

independent.
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Example 3.5

(a) Let Y(t) = L1(t), t ≥ 0, be a classical q-dimensional Lévy process, i.e. ζ(t) = 0q for t ≥ 0.

Then (i)-(iii) are satisfied. However, Y and Z can still be dependent, if Assumption 3.2 and 3.3,

respectively hold. In the finite second moment case of Assumption 3.2 the dependence is measured

by the covariance matrix of L(1). If Assumtion 3.3 holds, the dependence in extremes of L1 and L2

is measured by µ.

(b) Let either of Assumption 3.1 – 3.3 hold, and let

ζ(t) = BO(t), t ≥ 0,

where B is a random matrix in R
q×m independent of the stationary multivariate Ornstein-Uhlenbeck

process O = (O(t))t≥0 in R
m and the Lévy process L = (L′

1,L
′
2)

′. Suppose that the Ornstein-

Uhlenbeck process O is driven by the Lévy process L3, which is independent of L. If L1(1) ∈
R−α(an), we assume

lim
x→∞

P(‖L3(1)‖ > x)

P(‖L1(1)‖ > x)
= C ∈ [0,∞) ,

and if E‖L1(1)‖2 < ∞, we assume E‖L3(1)‖r < ∞ for some r > 2. Then (i)-(iii) also hold. This

structure of the noise term (ζ(t))t≥0 is flexible and captures, in particular, multivariate continuous-

time ARMA (CARMA) processes (cf. Marquardt and Stelzer [41]). �

Remark 3.6

(a) Since the limit distribution G depends on S2 it depends, in particularly, on the nuisance

parameter Λ, which is plugged in to the characteristic triplet of S2 (the Lévy measure µ∗
2 and the

covariance matrix Ω2, respectively).

(b) The norming sequences (an)n∈N and (bn)n∈N, respectively, depend on the domain of attraction

of L1(1) and L2(1), respectively, which are in general not known, and determine the convergence

rate of the least squares estimator. Therefore we will introduce the t-statistic which is independent

of (an)n∈N and (bn)n∈N. However, if L1(1) ∈ DN(α) and L2(1) ∈ DN(α) for some α ∈ (0, 2], then

an = bn. In this case we have n(Ân −A) =⇒ G and Ân
P−→ A as n → ∞.

(c) Suppose L1(1) ∈ R−α(an) and L2(1) ∈ R−β(bn) with β > α or E‖L2(1)‖r < ∞ for some

r > 2. Then (L1(1)
′,L′

2(1))
′ ∈ DN (α). A conclusion of Theorem 3.4 is that n(Ân −A) =⇒ 0d×q

as n → ∞, which is unsatisfactory if one wants to compute asymptotic confidence intervals for the

components of A. If additionally L1 and L2 are independent, then Assumption 3.1 is satisfied and

nanb
−1
n (Ân−A) =⇒ G as n → ∞, where G 6= 0d×q P-a.s. Thus, we are able to compute asymptotic

confidence intervals for the components of A. We conjecture that this result (in particular S1 and

S2 independent) also holds under some mild technical assumptions for dependent L1 and L2. The

distribution of (L1(1)
′,L2(1)

′) has at least to be operator-stable (cf. Paulauskas and Rachev [48]).

(d) The integral
∫ t
0 S2(s)dS1(s)

′ in the representation of G already suggests that we show in

the proof the convergence of stochastic integrals. However, the well known results of Kurtz and

Protter [35] require that the integrand and integrator converge weakly in the Skorokhod J1 topology.
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As mentioned in Remark 2.2 the sequence (S2,n)n∈N does not converge in the Skorokhod J1 topology

such that we can not use these results directly. �

In the following we comment on relations of our results to those in the literature.

Remark 3.7

(i) If Assumption 3.2 holds, then our model is a special case of Phillips and Durlauf [53]. Phillips

and Durlauf [53] investigate the discrete time model

Xn = AYn + ε(1)n and Yn = Yn−1 + ε(2)n , n ∈ N, (3.1)

where the strongly mixing noise sequence {(ε(1)n , ε
(2)
n )}n∈N has at least finite r-moment for

some r > 2.

An extension of these results to infinite second moments was given in Paulauskas and Rachev [48].

However, they restricted themselves to the case that {(ε(1)n , ε
(2)
n )}n∈N forms an iid sequence

and derived only the asymptotic behavior of the least squares estimator Ân without going

into detail into the structure of the limit distribution and to test statistics. A detailed analysis

of the one-dimensional model of Paulauskas and Rachev [48] was done by Mittnik et al. [46].

(ii) Other models, which also allow an infinite variance of the noise term (Zn)n∈N are, e.g., the

regression model of Caner [10] of the form

Xn = AXn−1 + Zn, where Zn =

∞∑

k=0

Ckεn−k, n ∈ N, (3.2)

is a stationary MA-process with Ck ∈ R
d×d, and (εk)k∈Z is a sequence of iid symmetric

d-dimensional random vectors with independent components and ε1 ∈ R−α(an). However,

in that model they used as hypothesis only A = Id×d which means that the model is not

cointegrated, and they test for unit roots. The techniques of our paper can straightforwardly

be applied to Caner’s [10] model to avoid the assumption of iid symmetric components and

will be presented in some future work. Note that Paulauskas et al. [47] pointed out a gap

in Caner’s proof of Theorem 2, although the other results of that paper are still valid. The

one-dimensional case of (3.2) was already studied in Phillips [51] and Chan and Tran [12].

In the unit root model (3.2) different results apply than in our cointegrated model. For a

survey on unit root models we refer to Chan [11]. �

Corollary 3.8 Let the assumptions of Theorem 3.4 be satisfied, and let X∗(t) = A∗Y(t)+B∗Z(t),

t ≥ 0, where A
∗ ∈ R

m×q is deterministic and B
∗ in R

m×d is a random matrix. Then the least

squares estimator Â
∗
n = X

∗′
nYn(Y

′
nYn)

−1 of A∗ satisfies as n → ∞,

nanb
−1
n (Â∗

n −A
∗) =⇒ B

∗

(
S2(1)S1(1)

′ −
∫ 1

0
S2(s−)dS1(s)

′

)(∫ 1

0
S1(s)S1(s)

′ds

)−1

.

In particular, Â∗
n

P−→ A
∗ as n → ∞ if β > α/(α + 1).
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Remark 3.9 The model shows that we can take the short-term equilibrium more general than an

Ornstein-Uhlenbeck process namely as (B∗
Z(t))t≥0 in our multivariate cointegration model, and still

obtain consistency if β > α/(α+1), and the asymptotic convergence of the least squares estimator

Â
∗
n to a functional of stable Lévy processes and Brownian motions, whose characteristic triplets are

known.

If we furthermore choose ζ(t) = BO(t), t ≥ 0, as in Example 3.5, then both X and Y are of the

form Lévy process plus an additional Ornstein-Uhlenbeck noise which is multiplied by a random

matrix. This means that X and Y are in the same class of processes.

The class of multivariate continuous-time processes with a representation (B∗
Z(t))t≥0 is huge

and includes, in particularly, multivariate CARMA models. Moreover, the components of (B∗
Z(t))

can be sums of dependent or independent Ornstein-Uhlenbeck processes, or CARMA processes as

well. Furthermore, if L2 is a multivariate Brownian motion, then the distribution of B
∗
Z(t) is a

scaled mixtures of normals.

More complex noise terms than (B∗
Z(t))t≥0 will raise the problem that the characteristic triplet

of the β-stable Lévy motion (B∗
S2(t))t≥0 becomes analytically complex and, hence, the simulation

of asymptotic confidence intervals for the components of A will be involved. �

Particularly, useful for the practical simulation of asymptotic confidence intervals is the next

result.

Corollary 3.10 Let the assumptions of Theorem 3.4 be satisfied. Furthermore, suppose that L1 and

L2 are independent, and Λ = diag(λ1, . . . , λd). Assume that either L1(1) ∈ R−α(an, µ1), 0 < α < 2,

α 6= 1, with iid components satisfying (2.5) and (2.6), or E(L1(1)L1(1)
′) = Iq×q. Similarly assume

that either L2(1) ∈ R−β(bn, µ2), 0 < β < 2, β 6= 1, with iid components satisfying (2.5) and (2.6)

(with bn instead of an, and β instead of α), or E(L2(1)L2(1)
′) = Id×d. Then as n → ∞,

nanb
−1
n h

1
αEhΛ,1E

−1
hΛ,βD

−1
Λ,β(Ân −A) =⇒

(∫ 1

0
L
∗
1(s−)dL∗

2(s)
′

)′(∫ 1

0
L
∗
1(s)L

∗
1(s)

′ds

)−1

=: G∗

where L
∗
1 is a q-dimensional Lévy process with components which are iid Sα(1, 0, 0)-stable Lévy

motions, independent of L∗
2 a d-dimensional Lévy process with components which are iid Sβ(1, 0, 0)-

stable Lévy motions. Finally,

EhΛ,β = (Id×d − e−βhΛ)1/β and DΛ,β = diag((βλ1)
−1/β , . . . , (βλd)

−1/β).

Remark 3.11

(i) In the model of Corollary 3.10 the components of Z are independent (uncorrelated, respec-

tively), one-dimensional Ornstein-Uhlenbeck processes. Moreover, if ζ(t) = 0q for t ≥ 0, then

Z and Y are independent, and Y consists of independent and identically distributed compo-

nents.

(ii) The result of Corollary 3.10 shows very nicely the influence of the nuisance parameter Λ on the

limit result. The limit distribution G
∗ depends only on α and β. The parameter Λ influences

the deterministic matrix EhΛ,1E
−1
hΛ,βD

−1
Λ,β and can be estimated as in Fasen [24].
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(iii) Suppose we investigate the observation scheme

X′
n = (X(hn), . . . ,X(nhn)) ∈ Rd×nhn , Y′

n = (Y(hn), . . . ,Y(nhn)) ∈ Rq×nhn

with grid distance hn −→ 0 and nhn −→ ∞ as n → ∞. Since

(nanb
−1
n h

1
α
n EhnΛ,1E

−1
hnΛ,βD

−1
Λ,β)(nhnanhnb

−1
nhn

Λ)−1 = Id×d,

this suggests that as n → ∞,

nhnanhnb
−1
nhn

Λ(Ân −A) =⇒ G
∗.

That case is studied in detail in Fasen [23]. �

Example 3.12 To obtain the asymptotic 1 − p−confidence intervals of the components of A for

some p ∈ (0, 1), we have simulated the 1− p
2−quantiles of the components of G∗ from Corollary 3.10

in Table 1 by 100.000 Monte Carlo simulations using the toolbox STABLE of Robust Analysis Inc,

where L
∗
1 and L

∗
2 are both multivariate Sα(1, 0, 0)-stable Lévy motions (0 < α ≤ 2) of dimension

q and d, respectively (i.e. α = β). Then G
∗ is a random matrix whose components are identically

distributed, since (L∗
1(t)

′(
∫ 1
0 L

∗
1(s)L

∗
1(s)

′ds)−1)t≥0 has identically distributed components. Hence,

the 1− p
2−quantiles given here are the quantiles of any component of G∗.

Let xp(α) denote the 1 − p
2 quantile of a component of G∗ which depends on the dimension d.

Moreover, we see that if α decreases xp(α) is increasing which reflects similarly to the sample paths

behavior that the heavy tails of S1 and S2 are transferred to G
∗ if α < 2. This is also confirmed by

the huge quantiles for small α’s.

Next, we compute the asymptotic 1 − p−confidence interval of Aij , the (i, j) component of

A = (Aij)i,j=1,...,d if an = bn, which is

[
(Ân)ij −

xp(α)

n
h−

1
α (αλi)

− 1
α (1− e−hαλi)

1
α (1− e−hλi)−1,

(Ân)ij +
xp(α)

n
h−

1
α (αλi)

− 1
α (1− e−hαλi)

1
α (1− e−hλi)−1

]
.

If h is small then (hαλi)
−1/α(1− e−hαλi )1/α ≈ 1 such that for decreasing α, the confidence intervals

are getting larger, which results in larger statistical uncertainty.

4 Hypothesis testing

4.1 t-ratio statistic

In the following we define

Ω̂n = n−1(X′
n − ÂnY

′
n)(X

′
n − ÂnY

′
n)

′

which is under the assumption E‖L2(1)‖2 < ∞ an estimator for the covariance matrix Ω̃2 =

E(Z(0)Z(0)′). Furthermore, in a classical linear model with iid standard-normal noise (Z(k))k∈N
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d = 1 α = 0.9 α = 1.2 α = 1.4 α = 1.5 α = 1.6 α = 1.8 α = 2

p = 0.1 12.5 7.0 5.5 5.1 4.8 4.2 3.8

p = 0.05 27.9 12.5 8.9 7.8 7.1 5.7 5.0

p = 0.025 60.8 22.1 14.3 11.9 10.2 7.6 6.2

p = 0.01 169.5 45.0 26.0 20.0 16.6 11.0 7.9

d = 2 α = 0.9 α = 1.2 α = 1.4 α = 1.5 α = 1.6 α = 1.8 α = 2

p = 0.1 17.2 9.6 7.7 6.9 6.4 5.5 5.0

p = 0.05 39.0 17.1 12.1 10.4 9.3 7.5 6.5

p = 0.025 88.6 30.1 19.0 15.6 13.1 9.8 7.9

p = 0.01 255.0 64.5 34.8 27.2 21.6 13.7 9.8

Table 1: Simulated 1− p
2 -quantiles of the components of G∗ for any q ∈ N and for different choices

of α and d.

the matrix
(
n−1

Y
′
nYn

)−1 ⊗ Ω̂n is an estimator for the covariance of the least squares estimator

and is used as standardization in the t-ratio statistic to get an estimator with a covariance matrix

which is the identity matrix. In the setup of a model with infinite variance the sequence of random

matrices
(
n−1

Y
′
nYn

)−1 ⊗ Ω̂n do not converge to a finite random matrix. However, as usual we use

this sequence as standardization in the t-ratio statistic.

Theorem 4.1 Let the assumptions of Theorem 3.4 hold and suppose P(det(S3(1)) = 0) = 0. Then

as n → ∞,

t
Ân

= (Ω̂n)
−1/2(Ân −A)(Y′

nYn)
1/2 =⇒ S3(1)

−1/2
G

(∫ 1

0
S1(s)S1(s)

′ds

)1/2

.

Let the stronger assumptions of Corollary 3.10 hold. Then as n → ∞,

EhΛ,1E
−1
hΛ,2tÂn

=⇒ [L∗
2,L

∗
2]
−1/2
1

(∫ 1

0
L
∗
1(s−)dL∗

2(s)
′

)′(∫ 1

0
L
∗
1(s)L

∗
1(s)

′ds

)−1/2

=: G∗∗.

Remark 4.2

(i) The t-ratio statistic has the advantage that the limit distribution does not depend on the

regression order if A 6= 0d×q and (d, q) = (1, 1), i.e. if we regress X after Y or Y after X

the asymptotic error distribution is the same. Hence, it makes no difference, if we test if X

depends on Y, or vice versa, which is natural.

(ii) Moreover, a goal of the t-ratio statistic is that we do not need the norming sequence (nanb
−1
n )n∈N,

which is unknown anyway, and which depends on α and β.

(iii) For α = 2 we know that [L∗
2,L

∗
2]1 = Id×d. Thus, if α = β = 2 then the conditional distribution

of
∫ 1
0 L

∗
1(s−)dL∗

2(s)
′ under L

∗
1 is a multivariate normal distribution with covariance matrix∫ 1

0 L
∗
1(s−)L∗

1(s−)′ds such that G
∗∗ is a multivariate standard normal distribution. �
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Example 4.3 In Table 2 we present the simulated 1− p
2−quantiles of G∗∗ of Theorem 4.1, where

both L
∗
1 and L

∗
2 are Sα(1, 0, 0)-Lévy processes (0 < α ≤ 2), i.e. α = β, based again on 100.000 Monte-

Carlo simulations. The distribution of the components of G
∗∗ is independent of the dimension d

and q.

The simulations suggest that high level quantiles of the components of G
∗∗ do not depend

on α. In particular, we obtain the same high level quantiles of G∗∗ for α = 2 (the Gaussian case)

and 0 < α < 2 (the usual stable case). As noted in Remark 4.2 (iii), if α = 2, then G
∗∗ is a

multivariate standard normal distribution. Hence, in Table 2 we see the quantiles of a standard

normal distribution. Already Mittnik et al. [46] observed a similar phenomena. For α < 2 the

explanation of this result is not obvious and outside the scope of the present paper.

However, the independence of high level quantiles of G
∗∗ from α is very useful for statistical

purpose because it shows that the confidence intervals do not depend on the model parameter α.

Let xp(α) denote the 1 − p
2−quantile of G∗∗ and suppose (d, q) = (1, 1) with A = A and α = β.

Then A has the 1− p−confidence interval

[
Ân − xp(α)(1 − e−hλ)−1(1− e−2hλ)

1
2 Ω̂

1
2
n (Y

′
nYn)

− 1
2 ,

Ân + xp(α)(1 − e−hλ)−1(1− e−2hλ)
1
2 Ω̂

1
2
n (Y

′
nYn)

− 1
2

]
,

which is independent from α since xp(α) is close to the 1− p
2−quantile of the normal distribution.

p = 0.1 1.6

p = 0.05 1.9

p = 0.025 2.2

p = 0.01 2.5

Table 2: Simulated 1 − p
2−quantiles of the components of G

∗∗ for any d, q ∈ N, α ∈
{0.5, 0.7, 0.9, 1.2, 1.4, 1.5, 1.6, 1.8, 2}.

Remark 4.4 By (Xk)k∈N we denote a sequence of iid Sα(1, 0, 0)-distributed random variables and

L∗ = L∗
1. Then as n → ∞,




∑⌊nt⌋
k=1 Xk

(∑n
k=1X

2
k

) 1
2




t∈[0,1]

=⇒


 L∗(t)

[L∗, L∗]
1
2
1




t∈[0,1]

in (D[0, 1],R).

De la Peña et al. [49], Theorem 4.4, states that the asymptotic behavior of the density of L∗(1)[L∗, L∗]
− 1

2
1

is c1(α) exp(−x2c2(α)) for some constants c1(α), c2(α) depending on α. These constants can unfor-

tunately only be calculated numerically. However, Loretan and Phillips [37] simulated the quantiles

of L∗(1)[L∗, L∗]
− 1

2
1 for 1 < α < 2. They realized that for p ≤ 0.1, xp(α) is indeed smaller than the

corresponding quantile xp(2) of the normal case. A similar phenomena was observed for the Stu-

dent’s t-statistic of the symmetric α-stable sequence X1,X2, . . . with 1 < α < 2, whose distribution
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belongs to the larger class Gaussian scale mixtures; see Bakirov and Székely [4]. There

lim
n→∞

P

(√
n
Xn

SX,n
> x

)
≤ 1− Φ(x) for x ≥

√
3,

where Xn = n−1
∑n

k=1Xk, SX,n = (n − 1)−1
∑n

k=1(Xk − Xn)
2 and Φ is the standard normal

distribution function. An open question is if these results are correlated to the properties of G∗∗.

A method to get asymptotically correct confidence intervals for our model could be subsampling

as presented in Chapter 11 of Politis et al. [55], and was done in McElroy and Politis [44] for the

selfnormalized-sum of heavy tailed moving averages. �

4.2 Wald statistic

Next we use the Wald-statistic to test the significance of subvectors and components of A. It can be

applied to test which components of Y have statistically significant information about future values

of X. For example, we divide the process Y
′ = (Y(1)′ , Y (2)) into subprocesses Y

(1) in R
q−1 and

Y (2) in R, and test if Y (2) not Granger causes X. This means that past and present values of Y (2)

can not be used to forecast X. For more information we refer to the monograph of Lütkepohl [38].

In our model this is equivalent to Aiq = 0 for i = 1, . . . , d, if A = (Aij)i=1,...,d,j=1,...,q. Thus, if we

define R = (0d×(q−1)d, Id×d) ∈ R
d×dq, then Aiq = 0 for i = 1, . . . , d, if and only if R vec(A) = 0d.

The null hypothesis of non-Granger causality from Y (2) to X is then

H0 : R vec(A) = 0d .

In general we obtain the following.

Theorem 4.5 Let the assumptions and notation of Theorem 3.4 hold, P(det(S3(1)) = 0) = 0

and suppose that the null hypothesis H0: R vec(A) = r is true where R ∈ R
l×dq, r ∈ R

l and

rank(R) = q. Then as n → ∞,

F
Ân

= (R vec(Ân)− r)′
(
R((Y′

nYn)
−1 ⊗ Ω̂n)R

′
)−1

(R vec(Ân)− r)

=⇒ (R vec(G))′
(
R

(∫ 1

0
S1(s)S1(s)

′ds⊗ S3(1)

)
R

′

)−1

(R vec(G)) =: GR,r.

Remark 4.6

(i) Note that F
Ân

and GR,r are real-valued random variables. Let xp(α, β, r,R) denote the 1 −
p−quantile of GR,r. Then the null hypothesis R vec(A) = r is not rejected at significance

level p if F
Ân

≤ xp(α, β, r,R).

(ii) In a classical linear model with iid standard-normal noise (Z(k))k∈N and R vec(A) = r, the

sequence of random matrices R((Y′
nYn)

−1 ⊗ Ω̂n)R
′ are estimators of the covariance matrix

of R vec(Ân)− r. �
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5 Proofs

5.1 Proofs of Section 2

Before we start with the proof of Proposition 2.1 we require some preliminary results. Without loss

of generality we assume h = 1 in the following. Note that (Z(k))k∈N has the AR(1) representation

Z(k) = e−Λ
Z(k − 1) + ξk for k ∈ N, (5.1)

where ξk =
∫ k
k−1 e

−Λ(k−s)dL2(s) for k ∈ Z. Then also the MA representation

Z(k) =

k∑

j=−∞

e−Λ(k−j)ξj =

∞∑

i=0

e−Λiξk−i (5.2)

holds and (Z(k))k∈N is stationary as well. Furthermore, we define for γ > 0,m ∈ N,

Zn,γ(k) =

∞∑

i=0

e−Λiξk−i1{‖ξk−i‖>γan}

and the truncated sums

Z
(m)(k) =

m∑

i=0

e−Λiξk−i, Z
(m)
n,γ (k) =

m∑

i=0

e−Λiξk−i1{‖ξk−i‖>γan}. (5.3)

Finally,

Z
′
n = (Z(1), . . . ,Z(n)) ∈ R

d×n. (5.4)

First of all we require some results on multivariate regular variation which we need for the

explicit representation of the Lévy measure of ((S(1)(t)′,S(2)(t)′)′)t≥0 in Proposition 2.1.

Proposition 5.1 Let the assumptions of Proposition 2.1 hold. Then

J =

(
L1(1),

∫ 1

0
e−Λ(1−s)dL2(s)

)
∈ R−α(an, µ̃) and Z(1) ∈ R−α


an,

∞∑

j=0

µ̃2 ◦ eΛj


 .

Proof. Let (γ,Σ, νL) be the characteristic triplet of L and S
w−1 = {x ∈ R

w : ‖x‖ ≤ 1} be the unit

ball in R
w. We factorize the Lévy measure νL into two Lévy measures

νL,1(B) = νL(B\Sw−1) and νL,2(B) = νL(B ∩ S
w−1)

such that νL = νL,1 + νL,2. Then we can decompose L in two independent Lévy processes

L(t) = L
(1)(t) + L

(2)(t), t ≥ 0,

where L
(1) = (L(1)(t))t≥0 has the characteristic triplet (0d,0d×d, νL,1) and L

(2) = (L(2)(t))t≥0 has

the characteristic triplet (γ,Σ, νL,2). Hence, J can be written as the sum of two independent random

vectors

J =
(

Σ1L
(1)(1),

∫ 1
0 e

−Λ(1−s)Σ2dL
(1)(s)

)
+
(

Σ1L
(2)(1),

∫ 1
0 e

−Λ(1−s)Σ2dL
(2)(s)

)
=: J1 + J2.
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First, we will show that J1 is regularly varying with the limit measure µ̃ as stated in (2.3), and

secondly that all moments of ‖J2‖ exists. Thus, we have by Lemma 3.12 in Jessen and Mikosch [32]

that J is regularly varying with limit measure µ̃.

First, the Lévy measure of J2 has compact support. Thus, Sato [63], Corollary 25.8, gives that

all moments of ‖J2‖ exist.

Next, we prove the multivariate regular variation of J1. For this, let (ζk)k∈N be a sequence

of w-dimensional iid random vectors with common distribution
νL,1(·)

νL,1(Rw) and let N be a Poisson

process independent of (ζk)k∈N, with intensity νL,1(R
w) and jumping times (Γk)k∈N. Then L

(1) can

be written as a compound Poisson process L
(1)(t) =

∑N(t)
k=1 ζk. Hence,

J1 =
(

Σ1L
(1)(1),

∫ 1
0 e

−Λ(1−s)dL(1)(s)
)

d
=

N(1)∑

k=1

(
Σ1ζk, e

−ΛUkΣ2ζk

)
=:

N(1)∑

k=1

ζ̃k, (5.5)

where (Uk)k∈N is a sequence of iid uniform distributed random variables on (0, 1) independent of

(ζk)k∈N and N (cf. Resnick [59], Theorem 4.5.2). By a generalization of Breiman’s result in Basrak

et al. [5], Proposition 5.1, we obtain ζ̃k ∈ R−α(an,
1

νL,1(Rw) µ̃). Finally, Theorem 1.30 in Lindskog [36]

gives J1 ∈ R−α(an, µ̃).

The multivariate regular variation of Z(1) follows then by (5.2) and Hult and Samorodnitsky [28],

Theorem 2.1. �

A very similar point process result as the following was derived in Davis et al. [16].

Proposition 5.2 Let the assumptions of Proposition 2.1 hold, and let (Z(k))k∈N and (Z
(m)
n,γ (k))k∈N

be given as in (5.2) and (5.3), respectively. Then as n → ∞,

N (m)
n,γ :=

∞∑

k=1

ε
(k/n,a−1

n ∆L1(k),a
−1
n ξk,a

−1
n Z

(m)
n,γ (k),a−1

n Z(k),a−1
n Z(k+1))

(5.6)

=⇒
∞∑

k=1

∞∑

i=0

ε
(tk ,j

(1)
k
1{i=0},j

(2)
k
1{i=0},e−Λi1{i≤m}j

(2)
k
1
{‖j

(2)
k

‖>γ}
,e−Λij

(2)
k

,e−Λ(i+1)j
(2)
k

)
=: N (m)

γ

in Mp([0,∞)×(R
q×R

d×4
)\{0q ×0d×4}) for m ∈ N∪{∞} where

∑∞
k=1 ε(tk ,j

(1)
k

,j
(2)
k

)
∼ PRM(Leb×µ̃).

Proof. The sequence (∆L1(k), ξk)k∈N is a sequence of iid random vectors which are in R−α(an, µ̃)

by Proposition 5.1. Therefore we have by Resnick [58], Proposition 3.21, that as n → ∞,

∞∑

k=1

ε(k/n,a−1
n ∆L1(k),a

−1
n ξk)

=⇒
∞∑

k=1

ε
(tk ,j

(1)
k

,j
(2)
k

)
(5.7)

in Mp([0,∞)×R
q+d\{0q+d}). Now fix some integer l ∈ N and define the d× l-dimensional random

matrices

ξ(k,l) = (ξk, . . . , ξk−l+1) and ξn(k,l) = (ξk1{‖ξk‖>anγ}, . . . , ξk−l+11{‖ξk−l+1‖>anγ}).
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Further, we denote by ei the unit vector in R
l having 1 in row i and 0 otherwise. Then, as in

Theorem 2.2 in Davis and Resnick [17], we obtain with (5.7) that as n → ∞,

∞∑

k=1

ε(k/n,a−1
n ∆L1(k),a

−1
n ξ(k,l))

=⇒
∞∑

k=1

l∑

i=1

ε
(tk ,j

(1)
k
1{i=1},e

′
i⊗j

(2)
k

)

in Mp([0,∞) × (R
q × R

d×l
)\{0q ×0d×l}). An application of the continuous mapping theorem and

Resnick [58], Proposition 3.18, result that as n → ∞,

∞∑

k=1

ε(k/n,a−1
n ∆L1(k),a

−1
n ξ(k,l),a

−1
n ξn(k,l))

=⇒
∞∑

k=1

l∑

i=1

ε
(tk ,j

(1)
k
1{i=1},e

′
i⊗j

(2)
k

,e′i⊗j
(2)
k
1
{‖j

(2)
k

‖>γ}
)

in Mp([0,∞) × (R
q × R

d×l × R
d×l

)\{0q ×0d×l ×0d×l}). Using the continuous mapping theorem a

second time gives

N (m,l)
n,γ =

∞∑

k=1

ε
(k/n,a−1

n ∆L1(k),a
−1
n ξk ,a

−1
n

l−1∑
i=0

e−Λi1{i≤m}ξk−i1{‖ξk−i‖>anγ},a
−1
n

l−1∑
i=0

e−Λiξk−i,a
−1
n

l−1∑
i=0

e−Λ(i+1)ξk−i)

=⇒
∞∑

k=1

l−1∑

i=0

ε
(tk ,j

(1)
k 1{i=0},j

(2)
k 1{i=0},e−Λi1{i≤m}j

(2)
k 1

{‖j
(2)
k

‖>γ}
,e−Λij

(2)
k ,e−Λ(i+1)j

(2)
k )

=: N (m,l)
γ .

Furthermore, N
(m,l)
γ =⇒ N

(m)
γ as l → ∞. Thus, if

lim
l→∞

lim sup
n→∞

P(ρ(N (m,l)
n,γ , N (m)

n,γ ) > η) = 0, (5.8)

where ρ is the metric inducing the vague topology on Mp([0,∞) × R
q × R

d×4\{0q ×0d×4}), we

can finish the proof by Billingsley [8], Theorem 4.2. However, (5.8) holds as (2.11) in Davis and

Resnick [17] using Hult and Samorodnitsky [28], Theorem 2.1 (or Lemma 2.3 in Davis et al. [16]).

�

Proof of Proposition 2.1.

Let us define for m ∈ N and for 0 < γ < 1,

S
(1)
n,γ(t) =

1

an

⌊nt⌋∑

k=1

(
∆L1(k)1{‖∆L1(k)‖>γan} − E(∆L1(1)1{γan<‖∆L1(1)‖≤an})

)
,

S
(2,m)
n (t) =

1

an

⌊nt⌋∑

k=1

(
Z
(m)(k)−

m∑

i=0

e−Λi
E(ξ11{‖ξ1‖≤an})

)
,

S
(2,m)
n,γ (t) =

1

an

⌊nt⌋∑

k=1

(
Z
(m)
n,γ (k)−

m∑

i=0

e−Λi
E(ξ11{γan<‖ξ1‖≤an})

)
,

S
(3)
n,γ(t) =

1

a2n

⌊nt⌋∑

k=1

Z(k)Z(k)′1{‖Z(k)‖>γan},

S
(4)
n,γ(t) =

1

a2n

⌊nt⌋∑

k=1

Z(k + 1)Z(k)′1{‖Z(k)‖>γan or ‖Z(k+1)‖>γan},
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and

S
m
n,γ = ((S(1)

n,γ(t))t≥0,S
(2,m)
n,γ (t),S(3)

n,γ(t),S
(4)
n,γ(t))

in ((D[0, 1],Rq)× R
d×l × R

(d×d)×l × R
(d×d)×l). There exist a map

Φ : Mp([0,∞)× (R
q ×R

d×4
)\{0q ×0d×4}) → ((D[0, 1],Rq)× R

d×l × R
(d×d)×l × R

(d×d)×l)

with

Φ(N (m)
n,γ ) = S

m
n,γ . (5.9)

Since Φ is a.s. continuous with respect to N
(m)
γ (cf. Resnick [58], Proposition 3.13 and Resnick [60],

Section 7.2.3), we have by Proposition 5.2 and the continuous mapping theorem as n → ∞,

Φ(N (m)
n,γ ) =⇒ Φ(N (m)

γ ).

Let us define S
m
γ := Φ(N

(m)
γ ), i.e. Sm

n,γ =⇒ S
m
γ as n → ∞. Furthermore, if γ → 0 then S

m
γ converges

weakly. The limit we denote by S
m and it is equal to ((S(1)(t))t≥0,S

(2,m)(t),S(3)(t),S(4)(t)) where

for t ≥ 0,

S
(2,m)(t) =

m∑

i=0

e−Λi


∑

tk≤t

j
(2)
k 1

{‖j
(2)
k ‖>1}

+ lim
γ→0


∑

tk≤t

j
(2)
k 1

{γ<‖j
(2)
k ‖≤1}

− t

∫

γ<‖x‖≤1
x µ̃2(dx)




 .

We will now divide the proof in several steps. Therefore we will show that

lim
γ→0

lim
n→∞

P( sup
t∈[0,1]

‖S(1)
n,γ(t)− S

(1)
n (t)‖ > η) = 0, (5.10)

lim
γ→0

lim
n→∞

P( sup
t∈[0,1]

‖S(2,m)
n,γ (t)− S

(2,m)
n (t)‖ > η) = 0, (5.11)

lim
γ→0

lim
n→∞

P( sup
t∈[0,1]

‖S(3)
n,γ(t)− S

(3)
n (t)‖ > η) = 0, (5.12)

lim
γ→0

lim
n→∞

P( sup
t∈[0,1]

‖S(4)
n,γ(t)− S

(4)
n (t)‖ > η) = 0 (5.13)

for any η > 0. Because Billingsley [8], Theorem 4.2, then gives S
m
n =⇒ S

m as n → ∞, where

S
m =⇒ ((S(1)(t))t≥0,S

(2)(t),S(3)(t),S(4)(t)) as m → ∞. Since we want to show that

Sn := ((S(1)
n (t))t≥0,S

(2)
n (t),S(3)

n (t),S(4)
n (t)) =⇒ ((S(1)(t))t≥0,S

(2)(t),S(3)(t),S(4)(t)) as n → ∞,

it is then sufficient to prove that

lim
m→∞

lim
n→∞

P( sup
t∈[0,1]

‖Sm
n (t)− Sn(t)‖ > η) = 0 (5.14)

for any η > 0. Then ((S
(1)
n (t))t≥0,S

(2)
n (t),S

(3)
n (t),S

(4)
n (t)) =⇒ ((S(1)(t))t≥0,S

(2)(t),S(3)(t),S(4)(t))

as n → ∞ follows by Billingsley [8], Theorem 4.2, as well, and we can conclude the proof.
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We start with (5.10). First,

P( sup
t∈[0,1]

‖S(1)
n,γ(t)− S

(1)
n (t)‖ > η) (5.15)

= P


 sup

t∈[0,1]

∥∥∥∥∥∥
1

an

⌊nt⌋∑

k=1

(
∆L1(k)1{‖∆L1(k)‖≤γan} − E(∆L1(1)1{‖∆L1(1)‖≤γan})

)
∥∥∥∥∥∥
> η




≤
q∑

j=1

P

(
sup

0≤i≤n

∣∣∣∣∣
1

an

i∑

k=1

(
∆L1,j(k)1{‖∆L1(k)‖≤γan} − E(∆L1,j(1)1{‖∆L1(1)‖≤γan})

)
∣∣∣∣∣ > C1η

)

where ∆L1,j(k) is the j-th component of ∆L1(k) = (∆L1,1(k), . . . ,∆L1,q(k)). Now, note that the

terms in the sum are an iid sequence with mean zero and finite variance. Hence, we can apply

Kolmogorov’s inequality (cf. Kallenberg [34], Lemma 4.15) and obtain

P( sup
t∈[0,1]

‖S(1)
n,γ(t)− S

(1)
n (t)‖ > η) ≤ 1

C2
1η

2a2n

q∑

j=1

nE
(
(∆L1,j(1))

2
1{‖∆L1(1)‖≤γan}

)
.

Since ‖∆L1(1)‖ ∈ R−α(an) or lighter tailed, Karamata’s and Potter’s Theorem (cf. Resnick [60], 2.5

on p. 36 and Proposition 2.6) result for some ǫ > 0 small in

n

a2n
E
(
(∆L1,j(1))

2
1{‖∆L1(1)‖≤γan}

)
≤ C2

n

a2n
E
(
‖∆L1(1)‖21{‖∆L1(1)‖≤γan}

)
≤ C3γ

2−α−ǫ −→ 0

as γ → 0. Hence, we have (5.10). Next we prove (5.12). Here, applying Markov’s inequality gives

P

(
sup
t∈[0,1]

‖S(3)
n,γ(t)− S

(3)
n (t)‖ > η

)
≤ P


 sup

t∈[0,1]
C4

⌊nt⌋∑

k=1

‖Z(k)‖21{‖Z(k)‖≤γan} > ηa2n




≤ C4

ηa2n

n∑

k=1

E
(
‖Z(k)‖21{‖Z(k)‖≤γan}

)
.

Again by Karamata’s and Potter’s Theorem, and ‖Z(0)‖ ≤ ∑∞
k=0 e

−λk‖ξk‖ ∈ R−α(an) or lighter

tailed we can conclude that

n

a2n
E
(
‖Z(0)‖21{‖Z(0)‖≤γan}

)
≤ C5γ

2−α−ǫ −→ 0 as γ → 0,

such that (5.12) holds. Analogously we derive (5.13).

Finally, we turn our attention to (5.11). We use the following decomposition:

S
(2,m)
n (t)− S

(2,m)
n,γ (t) =

1

an

0∑

i=1−m

(
i+m∑

k=1

e−Λ(k−i)

)(
ξi1{‖ξi‖≤γan} − E(ξ11{‖ξ1‖≤γan})

)

+
1

an

⌊nt⌋−m∑

i=1

(
i+m∑

k=i

e−Λ(k−i)

)(
ξi1{‖ξi‖≤γan} − E(ξ11{‖ξ1‖≤γan})

)

+
1

an

⌊nt⌋∑

i=⌊nt⌋−m+1




⌊nt⌋∑

k=i

e−Λ(k−i)



(
ξi1{‖ξi‖≤γan} − E(ξ11{‖ξ1‖≤γan})

)

=: I(1)n,γ(t) + I(2)n,γ(t) + I(3)n,γ(t).
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Note that I
(1)
n,γ(t) is independent of t. Furthermore, ‖∑i+m

k=1 e−Λ(k−i)‖ ≤ C6 < ∞ for i = 1−m, . . . , 0.

Thus, we get for any t ≥ 0,

‖I(1)n,γ(t)‖ ≤ C6

an

0∑

i=1−m

‖ξi1{‖ξi‖≤γan} − E(ξ11{‖ξ1‖≤γan})‖ ≤ C7γm −→ 0 as γ → 0.

Next, we investigate I
(3)
n,γ(t). Similarly as above we obtain

∥∥∥∥∥∥

⌊nt⌋∑

k=i

e−Λ(k−i)

∥∥∥∥∥∥
≤ C8

∞∑

k=1

e−λk ≤ C9 < ∞.

This yields for any t ≥ 0,

‖I(3)n,γ(t)‖ ≤ C9

an

⌊nt⌋∑

i=⌊nt⌋−m+1

∥∥ξi1{‖ξi‖≤γan} − E(ξ11{‖ξ1‖≤γan})
∥∥ ≤ C10mγ −→ 0 as γ → 0.

Finally, we treat the second term I
(2)
n,γ . As in the two cases before, we start with an upper bound

‖∑m
k=0 e

−Λk‖ ≤ C11. We use Kolmogorov’s inequality componentwise and afterward Karamata’s

and Potter’s Theorem. Let ξi,j be the j-th component of ξi = (ξi,1, . . . , ξi,d). This gives

P( sup
t∈[0,1]

‖I(2)n,γ(t)‖ > η)≤
d∑

j=1

P

(
sup

0≤k≤n

∣∣∣∣∣

k−m∑

i=1

(
ξi,j1{‖ξi‖≤γan} − E(ξ1,j1{‖ξ1‖≤γan})

)
∣∣∣∣∣ > anηC12

)

≤ C13

a2nη
2
nE
(
‖ξ1‖21{‖ξ1‖≤γan}

)

≤ C14

η2
γ2−α−ǫ −→ 0 as γ → 0.

Thus, we have shown not only (5.11) but also a stronger version

lim
γ→0

sup
n∈N

P( sup
t∈[0,1]

‖S(2,m)
n,γ (t)− S

(2,m)
n (t)‖ > η) = 0 (5.16)

and hence, Sm
n =⇒ S

m as n → ∞ holds.

Now we consider (5.14). Note that Sn and S
m
n differ only in the second component such that

(5.14) is equivalent to

lim
m→∞

lim
n→∞

P( sup
t∈[0,1]

‖S(2)
n (t)− S

(2,m)
n (t)‖ > η) = 0.

We use the following decomposition

S
(2)
n (t)− S

(2,m)
n (t) =

1

an

−m−1∑

i=−∞




⌊nt⌋∑

k=1

e−Λ(k−i)


(ξi1{‖ξi‖≤an} − E(ξ11{‖ξ1‖≤an})

)

+
1

an

⌊nt⌋−m−1∑

i=−m




⌊nt⌋∑

k=i+m+1

e−Λ(k−i)


(ξi1{‖ξi‖≤an} − E(ξ11{‖ξ1‖≤an})

)

+
1

an

⌊nt⌋∑

k=1

k−m−1∑

i=−∞

e−Λ(k−i)ξi1{‖ξi‖>an}

=: J (1)
n (t) + J (2)

n (t) + J (3)
n (t). (5.17)
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We will investigate all three terms. We start with J
(1)
n by looking at it componentwise. Furthermore,

we have
∑d

j=1 ‖e′jeΛi‖2 ≤ C15e
2λi and ‖∑⌊nt⌋

k=1 e
−Λk‖ ≤ C16 for any t ≥ 0. An application of

Tschebyscheff’s inequality results in

P( sup
t∈[0,1]

‖J (1)
n (t)‖ > η) ≤

d∑

j=1

P

(∣∣∣∣∣

−m−1∑

i=−∞

(
e
′
je

Λiξi1{‖ξi‖≤an} − E(e′je
Λiξ11{‖ξ1‖≤an})

)
∣∣∣∣∣ > ηanC17

)

≤ C18

a2nη
2

−m−1∑

i=−∞

d∑

j=1

‖e′jeΛi‖2E
(
‖ξ1‖21{‖ξ1‖≤an}

)
≤ C19

η2

∞∑

i=m+1

e−2λi

−→ 0 as m → ∞. (5.18)

Next, we show that supt∈[0,1]‖J
(2)
n (t)‖ P−→ 0 as n → ∞. Therefore we use the decomposition

J (2)
n (t) =

1

an

⌊nt⌋−m−1∑

i=−m

(
∞∑

k=m+1

e−Λk

)
(
ξi1{‖ξi‖≤an} − E(ξ11{‖ξ1‖≤an})

)

− 1

an

⌊nt⌋−m−1∑

i=−m




∞∑

k=⌊nt⌋−i+1

e−Λk


(ξi1{‖ξi‖≤an} − E(ξ11{‖ξ1‖≤an})

)

=: J (2,1)
n (t) + J (2,2)

n (t). (5.19)

First, we investigate J
(2,1)
n . Therefore we take

∥∥∑∞
k=m+1 e

−Λk
∥∥ ≤ C20e

−λm into account. Similar

calculations as above yield

P( sup
t∈[0,1]

‖J (2,1)
n (t)‖ > η)

≤
d∑

j=1

P


 sup

t∈[0,1]

∣∣∣∣∣∣

⌊nt⌋−m−1∑

i=−m

(
ξi,j1{‖ξi‖≤an} − E(ξ1,j1{‖ξ1‖≤an})

)
∣∣∣∣∣∣
> C21e

λmanη




≤ C22
e−2λm

η2a2n
nE(‖ξ1‖21{‖ξ1‖≤an})

≤ C23e
−2λm −→ 0 as m → ∞. (5.20)

Moreover, ‖
∑∞

k=l−i+1 e
−Λk‖ ≤ C24e

−λ(l−i) and sup1≤l≤n

∑l−m−1
i=−m e−λ(l−i) ≤ C25e

−λm give for the

second term:

P( sup
t∈[0,1]

‖J (2,2)
n (t)‖ > η)

≤ P

(
sup

1≤l≤n

l−m−1∑

i=−m

e−λ(l−i)
∥∥ξi1{‖ξi‖≤an} − E(ξ11{‖ξ1‖≤an})

∥∥ > anηC26

)

≤ P

(
e−λman > anηC27

)
−→ 0 as m → ∞. (5.21)

Thus, we have established the convergence of supt∈[0,1] ‖J
(2)
n (t)‖ P−→ 0 as n → ∞. Finally, we

investigate J
(3)
n where the upper bound

sup
t∈[0,1]

‖J (3)
n (t)‖ ≤ C28

an

n∑

k=1

k−m+1∑

i=−∞

e−λ(k−i)‖ξi‖1{‖ξi‖>an}
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holds. In order to be able to apply Karamata’s Theorem we have to treat two cases. First, let α > 1.

Markov’s inequality gives

P( sup
t∈[0,1]

‖J (3)
n (t)‖ > η) ≤ C29

anη

n∑

k=1

k−m+1∑

i=−∞

e−λ(k−i)
E
(
‖ξ1‖1{‖ξ1‖>an}

)
≤ C30

(
∞∑

i=m+1

e−λi

)
−→ 0

as m → ∞. Now, let α ≤ 1 and 0 < δ < α ≤ 1. Then

(
1

an

n∑

k=1

k−m−1∑

i=−∞

e−λ(k−i)‖ξi‖1{‖ξi‖>an}

)δ

≤ a−δ
n

n∑

k=1

k−m−1∑

i=−∞

e−λδ(k−i)‖ξi‖δ1{‖ξi‖>an},

and by Markov’s inequality and Karamata’s Theorem we obtain

P( sup
t∈[0,1]

‖J (3)
n (t)‖ > η) ≤ η−δa−δ

n

n∑

k=1

k−m−1∑

i=−∞

e−λδ(k−i)
E(‖ξi‖δ1{‖ξi‖>an})

≤ C31

(
∞∑

i=m+1

e−λδi

)
−→ 0

as m → ∞ which proves statement (5.14) together with (5.17)-(5.36). Again we proved a stronger

version namely

lim
m→∞

sup
n∈N

P( sup
t∈[0,1]

‖S(2,m)
n (t)− S

(2)
n (t)‖ > η) = 0 (5.22)

for any η > 0. �

Remark 5.3 (Continuation of Remark 2.2) As noted in Remark 2.2 the process (S
(2)
n )n∈N does

not converge in the Skorokhod J1 topology. The only part where the proof in Proposition 2.1 fails

is that the adapted definition of Φ in (5.9) would not be a.s. continuous in the J1 topology with

respect to N
(m)
γ anymore and thus, we are not allowed to apply the continuous mapping theorem.

�

Proof of Proposition 2.4.

(a) is a multivariate version of the invariance principle of Donsker (cf. Phillips and Durlauf [53],

Corollary 2.2).

(b) By Masuda [42], Theorem 4.3, the multivariate Ornstein-Uhlenbeck process (Z(t))t≥0 is ergodic

and strongly mixing with geometric rate. Hence, the same holds for (Z(k))k∈N. Thus, (2.11) is a

conclusion of Phillips and Durlauf [53], Corollary 2.2.

Since the components ((Z(k)Z(k)′)ij)k∈N, i, j = 1, . . . , d of (Z(k)Z(k)′)k∈N are also ergodic and

strongly mixing, the statement (2.10) follows from the ergodic theorem (cf. Shiryaev [66], Theorem 3

on p.413).

(c) follows with the same arguments as in (b). �
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5.2 Proofs of Section 3

Proof of Theorem 3.4.

(a) Since X
′
n = AY

′
n + Z

′
n we have

Ân −A = AY
′
nYn(Y

′
nYn)

−1 + Z
′
nYn(Y

′
nYn)

−1 −A = Z
′
nYn(Y

′
nYn)

−1. (5.23)

This gives

nanb
−1
n

(
Ân −A

)
= nanb

−1
n (Z′

nYn)(Y
′
nYn)

−1 =
(
b−1
n Z

′
nYna

−1
n

) (
n−1(a−1

n Y
′
nYna

−1
n )
)−1

.

Now we will prove the convergence

(
b−1
n Z

′
nYna

−1
n , n−1(a−1

n Y
′
nYna

−1
n )

)

=⇒
(
S2(1)S1(1)

′ −
∫ 1

0
S2(s−)dS1(s)

′,

∫ 1

0
S1(s)S1(s)

′ds

)
(5.24)

in R
d×q ×R

q×q as n → ∞, giving us the claim by a continuous mapping theorem, since

P

(
det

(∫ 1

0
S1(s)S1(s)

′ds

)
= 0

)
= 0

by µ1({0i−1} × R\{0} × {0q−i}) > 0 and Ω1 invertible, respectively. We define the processes

S1,n(t) := a−1
n

⌊nt⌋∑

k=1

∆L1(k) and S2,n(t) := b−1
n

⌊nt⌋∑

k=1

Z(k) for t ≥ 0.

We get for the first term on the left-hand side of (5.24), by assumption (i)-(iii)

a−1
n b−1

n Z
′
nYn =

n∑

k=1

b−1
n Z(k)


a−1

n

k∑

j=1

∆L1(j)




′

+ op(1)

=

(
b−1
n

n∑

k=1

Z(k)

)
a−1

n

n∑

j=1

∆L1(j)




′

−
n∑

j=1

(
b−1
n

j−1∑

k=1

Z(k)

)
(
a−1
n ∆L1(j)

)′
+ op(1)

= S2,n(1)S1,n(1)
′ −
∫ 1

0
S2,n(s−) dS1,n(s)

′ + op(1), (5.25)

and for the second term,

n−1a−2
n Y

′
nYn = n−1

n∑

k=1


a−1

n

k∑

j=1

∆L1(j)




a−1

n

k∑

j=1

∆L1(j)




′

+ op(1) (5.26)

= n−1
n∑

k=1

S1,n

(
k

n

)
S1,n

(
k

n

)′

+ op(1)

=

∫ 1

0
S1,n(s)S1,n(s)

′ds+ op(1).
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Since (S1(t))t≥0 and (S2(t))t≥0 are both not necessarily of unbounded variation (depending on α

and β, respectively), and (S2,n(t))t≥0 does not necessarily converges in the Skorokhod J1 topology

(only for β = 2), we can not apply the continuous mapping theorem in (5.25), in contrast to (5.26).

However, we will show that in R
q × R

d × R
d×d × R

d×d × R
q×q × R

d×q as n → ∞,

(
S1,n(1),S2,n(1),S

(3)
n (1),S(4)

n (1),

∫ 1

0
S1,n(s)S1,n(s)

′ds,

∫ 1

0
S2,n(s−) dS1,n(s)

′

)

=⇒
(
S1(1),S2(1),S3(1),S4(1),

∫ 1

0
S1(s)S1(s)

′ds,

∫ 1

0
S2(s−) dS1(s)

′

)
, (5.27)

where the main part is to prove

∫ 1

0
S2,n(s−) dS1,n(s)

′ =⇒
∫ 1

0
S2(s−) dS1(s)

′ as n → ∞. (5.28)

We define

S̃2,n(t) = b−1
n

∞∑

j=0

e−Λj

⌊nt⌋∑

k=1

ξk for t ≥ 0. (5.29)

By a special case of Proposition 2.1 (replacing (∆L1(k))k∈N by ((∆L1(k)
′, ξ′k

∑∞
j=0 e

−Λ
′j)′)k∈N

whose distribution is in R−α(an, µ
∗)) we get

(
S1,n(1),S2,n(1),S

(3)
n (1),S(4)

n (1), ((S1,n(t)
′, S̃2,n(t)

′)′)t≥0

)

=⇒
((
S1(1),S2(1),S3(1),S4(1), ((S1(t)

′,S2(t)
′)′)t≥0

))

in R
q×R

d×R
d×d×R

d×d× (D[0, 1],Rq+d). A straightforward conclusion of the continuous mapping

theorem is then
(
S1,n(1),S2,n(1),S

(3)
n (1),S(4)

n (1),

∫ 1

0
S1,n(s)S1,n(s)

′ds, ((S1,n(t)
′, S̃2,n(t)

′)′)t≥0

)

=⇒
(
S1(1),S2(1),S3(1),S4(1),

∫ 1

0
S1(s)S1(s)

′ds, ((S1(t)
′,S2(t)

′)′)t≥0

)
.

Since (S1,n(t))t≥0 is P -UT (Predictably Uniformly Tight; see Jacod and Shiryaev [30]) by Lemma 5.5,

a result of Jacod and Shiryaev [30], Theorem VI.6.22, is that as n → ∞,

(
S1,n(1),S2,n(1),S

(3)
n (1),S(4)

n (1),

∫ 1

0
S1,n(s)S1,n(s)

′ds,

∫ 1

0
S̃2,n(s−) dS1,n(s)

′

)

=⇒
(
S1(1),S2(1),S3(1),S4(1),

∫ 1

0
S1(s)S1(s)

′ds,

∫ 1

0
S2(s−) dS1(s)

′

)
(5.30)

in R
q ×R

d ×R
d×d ×R

d×d ×R
q×q ×R

d×q. Furthermore, we have a kind of Beveridge-Nelsen decom-

position

S2,n(t) = S̃2,n(t) + b−1
n

∞∑

j=1

e−Λj [Z(0)− Z(⌊nt⌋)]
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giving

∫ 1

0
S2,n(s−) dS1,n(s)

′ (5.31)

=

∫ 1

0
S̃2,n(s−) dS1,n(s)

′ +

∞∑

j=1

e−Λj

[
b−1
n Z(0)S1,n(1)−

n∑

k=1

b−1
n Z(k − 1)a−1

n ∆L1(k)
′

]
.

Applying Lemma 5.6 from below and S1,n(1) =⇒ S1(1) as n → ∞ gives

∞∑

j=1

e−Λj

[
b−1
n Z(0)S1,n(1) −

n∑

k=1

b−1
n Z(k − 1)a−1

n ∆L1(k)
′

]
P−→ 0d×q as n → ∞. (5.32)

Finally, from (5.30)-(5.32) the statement (5.27) follows. Then the theorem is a conclusion of (5.27)

and the continuous mapping theorem. �

Remark 5.4 Under the stronger assumption E‖L(1)‖r < ∞ for some r > 4, the convergence of

(5.28) in the Skorokhod J1 topology follows directly from Ibragimov and Phillips [29], Theorem 4.3.

In particular, in that case (S2,n)n∈N converges in the Skorokhod J1 topology. �

Lemma 5.5 Let either of the Assumptions 3.1 – 3.3 hold. Then for any t > 0 the sequence of

random vectors (S1,n(t))n∈N and (S̃2,n(t))n∈N are P -UT .

Proof. We show that (S1,n(t))n∈N is P -UT for some t > 0. The proof of the P -UTness of

(S̃2,n(t))n∈N is analogous. Thus, we define for s ≥ 0

Mn(s) = a−1
n

⌊ns⌋∑

k=1

(
∆L1(k)1{‖∆L1(k)‖≤an} − E(∆L1(1)1{‖∆L1(1)‖≤an})

)
,

Dn(s) = ⌊ns⌋a−1
n E

(
∆L1(1)1{‖∆L1(1)‖≤an}

)
,

Vn(s) = a−1
n

⌊ns⌋∑

k=1

∆L1(k)1{‖∆L1(k)‖>an},

and the filtration (Fn
s )s≥0 = (σ(∆L1(k) : k ≤ ⌊ns⌋))s≥0, n ∈ N. It is obvious that (Mn(s))s≥0 is

a (Fn
s )s≥0 martingale for any n ∈ N and in particular, a local martingale. All three processes are

adapted with respect to (Fn
s )s≥0 and we have the semimartingale decomposition

S1,n(s) = Mn(s) +Dn(s) +Vn(s) for s ≥ 0.

If (Mn(t))n∈N, (Dn(t))n∈N and (Vn(t))n∈N are P -UT then VI.6.4 in Jacod and Shiryaev [30] gives

that the sum (S1,n(t))n∈N is also P -UT .

Let VTt(W) = supi=1,...,dVTt(Wi) for t ≥ 0 denote the variation process of the càdlàg

stochastic process W = (W1(t), . . . ,Wd(t))t≥0. To prove the uniform tightness of (Dn(t))n∈N and

(Vn(t))n∈N it is sufficient to show that (VTt(Dn))n∈N and (VTt(Vn))n∈N are tight; see Jacod and

Shiryaev [30], VI.6.6. We start with the verification of the tightness of (VTt(Dn))n∈N by showing
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that it is uniformly bounded. In the following we will use the next inequality for random variables,

e.g, W , with finite second moments. That is Markov’s inequality gives for any δ ∈ (0, 2),

E(|W |δ1{|W |>|x|}) = |x|δP(|W | > x) +

∫ ∞

|x|δ
P(|W |δ > y) dy ≤ C1E|W |2|x|−2+δ. (5.33)

If 0 < α < 1, Proposition 5.1, Karamata’s and Potter’s Theorem give the uniform bound

sup
n∈N

VTt(Dn) ≤ C2 sup
n∈N

nta−1
n E(‖∆L1(1)‖1{‖∆L1(1)‖≤an}) ≤ C3t. (5.34)

If α = 1, then by symmetry Dn = 0q. If 1 < α < 2 and E(L2(1)) = 0d, Karamata’s and Potter’s

Theorem result in the uniform bound

sup
n∈N

VTt(Dn) ≤ C4 sup
n∈N

nta−1
n E(‖∆L1(1)‖1{‖∆L1(1)‖>an}) ≤ C5t. (5.35)

Finally, for α = 2 the conclusion (5.35) follows from (5.33) with δ = 1. To conclude, for η ≥
max(C3, C5)t, we have

sup
n∈N

P(VTt(Dn) > η) = 0,

which results in the tightness of (VTt(Dn))n∈N.

For the proof of the tightness of (VTt(Vn))n∈N we distinguish the cases 0 < α ≤ 1 and α > 1.

Let 0 < α ≤ 1 and 0 < δ < α. Then

(VTt(Vn))
δ ≤ C6a

−δ
n

⌊nt⌋∑

k=1

‖∆L1(k)‖δ1{‖∆L1(k)‖>an},

and by Markov’s inequality and Karamata’s Theorem we obtain

sup
n∈N

P(VTt(Vn) > η) ≤ C7η
−δ sup

n∈N
a−δ
n

⌊nt⌋∑

k=1

E(‖∆L1(k)‖δ1{‖∆L1(k)‖>an}) ≤ C8η
−δt

η→∞−→ 0. (5.36)

If α > 1 then Markov’s inequality and (5.35) give

sup
n∈N

P(VTt(Vn) > η) ≤ C9η
−1 sup

n∈N
a−1
n

⌊nt⌋∑

k=1

E(‖∆L1(k)‖1{‖∆L1(k)‖>an}) ≤ C10η
−1t

η→∞−→ 0. (5.37)

Hence, (VTt(Vn))n∈N is also tight.

If we show that ([Mn,Mn]t)n∈N is tight, then the P -UTness of (Mn(t))t≥0 follows by Jacod

and Shiryaev [30], Proposition VI.6.13. Here, we use again Markov’s inequality, and Karamata’s

Theorem if α < 2 and E(‖∆L1(1)‖21{‖∆L1(1)‖≤an}) ≤ E‖∆L1(1)‖2 if α = 2, which results in

sup
n∈N

P(‖[Mn,Mn]t‖ > η) ≤ η−1 sup
n∈N

a−2
n nE(‖∆L1(1)‖21{‖∆L1(1)‖≤an}) ≤ C11η

−1 −→ 0 as η → ∞.

Finally, ([Mn,Mn]t)n∈N is tight as well. �
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Lemma 5.6 Let the assumptions of Theorem 3.4 hold. Then as n → ∞,

a−1
n b−1

n

n∑

k=1

Z(k − 1)∆L1(k)
′ P−→ 0d×q .

Proof. We divide the sum in four parts, namely

a−1
n b−1

n

n∑

k=1

Z(k − 1)∆L1(k)
′

= a−1
n b−1

n

n∑

k=1

Z(k − 1)1{‖Z(k−1)‖≤bn}(∆L1(k)
′
1{‖∆L1(k)‖≤an} − E(∆L1(1)

′
1{‖∆L1(1)‖≤an}))

+a−1
n b−1

n

n∑

k=1

Z(k − 1)1{‖Z(k−1)‖≤bn}E(∆L1(1)
′
1{‖∆L1(1)‖≤an})

+a−1
n b−1

n

n∑

k=1

Z(k − 1)1{‖Z(k−1)‖>bn}∆L1(k)
′
1{‖∆L1(k)‖≤an}

+a−1
n b−1

n

n∑

k=1

Z(k − 1)∆L1(k)
′
1{‖∆L1(k)‖>an}

=: I(n,1) + I(n,2) + I(n,3) + I(n,4). (5.38)

Now we will investigate the four terms in (5.38). The sequence of random matrices

(Z(k − 1)1{‖Z(k−1)‖≤bn}[∆L1(k)
′
1{‖∆L1(k)‖≤an} − E(∆L1(1)

′
1{‖∆L1(1)‖≤an})])k∈N

is uncorrelated. Thus, for any (i, j)-component I
(n,1)
ij of I(n,1) there exists a constant Cij > 0 such

that

E(I
(n,1)
ij )2 ≤ nb−2

n CijE(‖Z(1)‖21{‖Z(1)‖≤bn})a
−2
n E(‖∆L1(1)‖21{‖∆L1(1)‖≤an}),

which tends to 0 as n → ∞ by Karamata’s Theorem if α < 2 and β < 2, respectively. If

α = 2 then E(‖∆L1(1)‖21{‖∆L1(1)‖≤an}) ≤ E‖∆L1(1)‖2 and similarly for β = 2. This results in

limn→∞ E(‖I(n,1)‖2) = 0.

If 0 < α < 1, then

E‖I(n,2)‖ ≤ b−1
n E(‖Z(1)‖1{‖Z(1)‖≤bn})na

−1
n E(‖∆L1(1)‖1{‖∆L1(1)‖≤an})

n→∞−→ 0

by Karamata’s Theorem, where E(‖Z(1)‖1{‖Z(1)‖≤bn}) ≤ E‖Z(1)‖ if β > 1. Moreover, I(n,2) =

0d×q if α = 1. Let 1 < α ≤ 2. Since E(∆L1(1)) = 0q and hence, E(∆L1(1)1{‖∆L1(1)‖≤an}) =

E(∆L1(1)1{‖∆L1(1)‖>an}) we have

E‖I(n,2)‖ ≤ b−1
n E(‖Z(1)‖1{‖Z(1)‖≤bn})na

−1
n E(‖∆L1(1)‖1{‖∆L1(1)‖>an}).

Then E‖I(n,2)‖ tends to 0 by Karamata’s Theorem if α < 2 and (5.33) if α = 2, respectively.

In the following, if 0 < min(α, β) ≤ 1, we choose some δ ∈ (0,min(α, β)) and define δ′ := δ.

δ′ := 1 if min(α, β) ∈ (1, 2]. Next,

E‖I(n,3)‖δ′ ≤ nb−δ′

n E(‖Z(1)‖δ′1{‖Z(1)‖>bn})a
−δ′

n E(‖∆L1(1)‖δ
′
),
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which tends to 0 by Karamata’s Theorem if β < 2 and (5.33) if β = 2, respectively.

Finally,

E‖I(n,4)‖δ′ ≤ b−δ′
n E‖Z(1)‖δ′na−δ′

n E(‖∆L1(1)‖δ
′
1{‖∆L1(1)‖>an}),

which tends again to 0 by Karamata’s Theorem if α < 2 and (5.33) if α = 2, respectively. �

Proof of Example 3.5.

(a) is clear.

(b) We give only a sketch of the proof. It is sufficient to show (i)-(iii) with O instead of ζ since B

is independent of L1,L2 and L3.

We distinguish three different cases to show (i).

Case 1: If E‖L1(1)‖2 < ∞ and E‖L2(1)‖2 < ∞. Then an = bn =
√
n, E(Z(1)ζ(1)′) = 0d×q and

E(‖Z(1)‖2‖ζ(1)‖2) < ∞. Hence, (i) follows by the ergodic theorem (cf. proof of Proposition 2.4).

Case 2: L1(1) ∈ R−α(an) and L2(1) ∈ R−α(bn). Then ‖O(1)‖ ∈ R−α(an) and hence,

lim
n→∞

nP(‖Z(1)‖‖O(1)‖ > anbn) = 0

by Cline [13], and (i) follows (cf. Fasen [24]).

Case 3: W.l.o.g. L2(1) ∈ R−β(bn), and L1(1) ∈ R−α(an) with α > β or E‖L1(1)‖2 < ∞. Then

E‖ζ(1)‖β < ∞ such that ‖O(1)‖‖Z(1)‖ ∈ R−β(bn). Thus, we obtain (i) again.

Next, (ii) is a conclusion of Lemma 5.6 since L1 and O are independent. Finally, (iii) follows

directly from Proposition 2.1 and Proposition 2.4. �

5.3 Proofs of Section 4

Proof of Theorem 4.1.

First,

nΩ̂n = ((A− Ân)Y
′
n + Z

′
n)((A− Ân)Y

′
n + Z

′
n)

′ (5.39)

= (A− Ân)Y
′
nYn(A− Ân)

′ + Z
′
nYn(A− Ân)

′ + (A− Ân)Y
′
nZn + Z

′
nZn

=: ε(1)n + Z
′
nZn.

On the one hand, (5.23) and (5.24) result in

nb−2
n ε(1)n =⇒ ε(1) as n → ∞, (5.40)

where ε(1) is some a.s. finite random matrix. On the other hand, by (5.27) we have as n → ∞,

b−2
n Z

′
nZn =⇒ S3(1). (5.41)

Thus, (5.39)-(5.41) result in

nb−2
n Ω̂n =⇒ S3(1). (5.42)
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Moreover, by (5.24) as n → ∞,

n−1a−2
n (Y′

nYn) =⇒
∫ 1

0
S1(s)S1(s)

′ds.

Hence, applying the continuous mapping theorem, (5.27) and Theorem 3.4, respectively we obtain

the result. �

Proof of Theorem 4.5. It is again an application of Theorem 3.4, Proposition 2.1, (5.42), (5.27)

and the continuous mapping theorem. �
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[61] Rvačeva, E. L. (1962). On domains of attraction of multidimensional distributions. Selected

Translations in Math. Statist. Prob. Theory 2, 183–205.

[62] Samorodnitsky, G. and Taqqu, M. S. (1994). Stable Non-Gaussian Random Processes.

Chapman & Hall, New York.

[63] Sato, K. (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge University

Press, Cambridge.

[64] Sato, K.-I. and Yamazato, M. (1984). Operator selfdecomposable distributions as limit

distributions of processes of Ornstein-Uhlenbeck type. Stoch. Proc. Appl. 17, 73–100.

[65] Selivanvov, A. V. (2005). On the martingale measures in exponential Lévy models. Theory

Probab. Appl. 49, 261–274.

[66] Shiryaev, A. (1995). Probability . 2nd edn. Springer.

[67] Stockmarr, A. and Jacobsen, M. (1994). Gaussian diffusions and autoregressive processes:

weak convergence and statistical inference. Scand. J. Statist. 21, 403–429.

[68] Weron, R. (2006). Modeling and Forecasting Electricity Loads and Prices: A Statistical Ap-

proach. John Wiley & Sons.

38


