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Abstract. We propose a new type of multivariate statistical model that permits

non-Gaussian distributions as well as the inclusion of conditional independence as-

sumptions specified by a directed acyclic graph. These models feature a specific

factorisation of the likelihood that is based on pair-copula constructions and hence

involves only univariate distributions and bivariate copulas, of which some may be

conditional. We demonstrate maximum-likelihood estimation of the parameters of

such models and compare them to various competing models from the literature. A

simulation study investigates the effects of model misspecification and highlights the

need for non-Gaussian conditional independence models. The proposed methods are

finally applied to modeling financial return data.
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1 Introduction

Graphical models are multivariate statistical models in which the corresponding joint distribu-

tion of a family of random variables is restricted by a list of conditional independence assump-

tions. This list is conveniently summarised in a graph whose vertices represent the variables

and whose edges represent interrelations of these variables. Lauritzen (1996) and Cowell et al.

(2003) are standard references on the theory of graphical models but are mainly limited to the

assumption of joint normality as far as continuous variables are concerned. At the same time, it

is well known from the literature on statistical models for financial markets that the assumption
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1 Introduction

of joint normality may lead to severe underestimation of certain risks and, in a more general

sense, fails to yield suitable models in many applications, see, for instance, McNeil et al. (2005).

We hence propose a new type of statistical model based on generally non-Gaussian distributions

which, by construction, satisfy conditional independence assumptions induced by a directed

acyclic graph (DAG). This combination of features is achieved by using so-called pair-copula

constructions (PCCs) in which a multivariate distribution is decomposed into bivariate, poten-

tially conditional distributions based on iterated applications of Sklar’s theorem on copulas.

The basic idea of applying PCCs to distributions with certain conditional independence prop-

erties goes back to Hanea et al. (2006) and Kurowicka and Cooke (2006). We follow these

authors’ approach of utilising PCCs to specifically construct non-Gaussian distributions in or-

der to capture features such as tail behaviour and non-linear, asymmetric dependence. This

approach has various benefits: First, as is customary in applications of copula models, we may

conveniently separate the tasks of modeling univariate margins and multivariate dependences.

Second, since we need not limit ourselves to Gaussian margins and copulas and since univariate

marginal distributions and bivariate copulas may be freely combined, we are able to capture

certain distributional properties to be modeled, for instance, heavy-tailedness and tail depen-

dence as observed in financial data. Third, the building blocks of PCCs are bivariate copulas,

even though we model higher-dimensional distributions. In particular, we may draw from the

rich literature on bivariate copula families, see, for example, Joe (1997). Hanea et al. (2006)

rely on elicited expert knowledge to construct multivariate distributions using a PCC approach.

By comparison our work is focused on data-driven parametric inference.

PCCs were first proposed by Joe (1996) and further extended by Bedford and Cooke (2001, 2002)

who developed so-called regular vines as a graphical representation of a class of hierarchical PCC

models. Aas et al. (2009) later recognized these models’ aptitude for likelihood inference since

densities of PCC distributions are easily obtainable in explicit analytical form. Applications to

financial data have shown that these vine-PCC models outperform other multivariate copula

models in predicting log-returns of equity portfolios, see Aas and Berg (2009), Chollete et al.

(2009), Fischer et al. (2009), and Czado et al. (2011). Min and Czado (2010, 2011) demonstrate

that vine-PCC models also lend themselves to Bayesian inference. Elidan (2010a,b) gives another

copula decomposition of distributions associated with a DAG that is based on generally higher-

variate copulas and therefore lacks the flexibility of the pair-copula approach. A concept crucial

to PCCs are conditional copulas. Outside the PCC context conditional copulas have been

used in finance applications, frequently with the aim of modeling time-varying dependence, see

Cherubini et al. (2004, Section 5.9) and Patton (2006). Here time variation in the conditional

copulas was captured through the inclusion of time-varying parameters. Hobæk Haff et al.

(2010) investigate conditional bivariate distributions in which the conditioning values enter the

conditional margins but not the conditional copula, a customary assumption in PCC modeling.
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2 Pair-copula constructions and regular vines

The flexibility of vine-PCC models comes at the price of exponential growth in the number of

pair copulas to be specified as the number of variables increases. We show that by capturing

conditional independences present in the data, our closely related DAG-PCC approach yields

more parsimonious models in many settings.

The paper is organised as follows. In Section 2 we give a short review of PCCs and regular

vines. Section 3 shows how PCCs can be used to obtain multivariate distributions with Markov

properties given by a directed acyclic graph. Based on this idea we construct so-called DAG-

PCC models whose aptitude for likelihood inference is explored in a simulation study in Section

4. Section 5 presents an application of DAG-PCC models to financial data, and the paper

concludes with a brief discussion in Section 6.

2 Pair-copula constructions and regular vines

A copula is a multivariate cumulative distribution function (cdf) C : [0, 1]d → [0, 1], d ∈ N, such

that all univariate marginals are uniform on the interval [0, 1]. By Sklar’s theorem (Sklar, 1959)

every cdf F : Rd → [0, 1] with univariate marginals F1, . . . , Fd may be written as

F (x1, . . . , xd) = C
(
F1(x1), . . . , Fd(xd)

)
(2.1)

for some suitable copula C and all x1, . . . , xd ∈ R. If F is absolutely continuous and F1, . . . , Fd

are strictly increasing we can pass to its probability density function (pdf) and write

f(x1, . . . , xd) = c
(
F1(x1), . . . , Fd(xd)

) d∏
i=1

fi(xi), (2.2)

where the copula pdf c is uniquely determined. Equations (2.1) and (2.2) can be solved for C

and c, respectively, using marginal quantile functions. Doing so we obtain

C(u1, . . . , ud) = F
(
F−1

1 (u1), . . . , F−1
d (ud)

)
and

c(u1, . . . , ud) =
f
(
F−1

1 (u1), . . . , F−1
d (ud)

)∏d
i=1 fi

(
F−1
i (ui)

)
for all u1, . . . , ud ∈ [0, 1]. Various examples of copulas together with the underlying theory are

presented in Joe (1997) and Nelsen (2006). We will restrict our considerations to cdfs with the

above-mentioned properties.

While there is a plethora of literature on bivariate copula families (also called pair-copula fam-

ilies), the range of higher-variate copula families is rather limited, see Joe (1997, Chapter 4).
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2 Pair-copula constructions and regular vines

Many popular bivariate copulas have no straightforward multivariate extension. Based on work

of Joe (1996), Bedford and Cooke (2001, 2002) therefore proposed a flexible way of constructing

multivariate copulas that uses (conditional) pair copulas as building blocks only. The core of

their approach is a graphical representation called a regular vine that consists of a sequence of

trees, each edge of which is associated with a certain pair copula. We briefly review the idea

behind such pair-copula constructions (PCCs) using the example of a D-vine, which is one of

the most popular types of regular vines, see Figure 1.

1 2 3 4
12 23 34

12 23 34
13|2 24|3

13|2 24|3
14|23

Figure 1: A four-variate D-vine specifying the pair copulas C12, C23, C34, C13|2, C24|3, and C14|23.

Let F be the cdf of a D-vine PCC on Rd and let I = {1 . . . , d}. The first tree (or level) of

the D-vine comprises the d nodes i ∈ I which represent the univariate margins Fi of F . These

nodes are joined by the d− 1 edges (i− 1, i), i ∈ I \ {1}, such that every node has at most two

neighbours. The edge labels (i− 1, i) (displayed without parentheses and commas in Figure 1)

represent the unconditional pair copulas C(i−1),i used in the PCC. Each subsequent tree of the

D-vine is then derived from its predecessor by turning all edges into nodes and by introducing a

new edge whenever two nodes share all but two indices. Those two indices form the conditioned

set and the remaining ones the conditioning set of the associated pair copula, as denoted by the

respective edge label. The edges of the second tree, for instance, denote the conditional pair

copulas Ci,(i+2)|(i+1), i ∈ I \ {d − 1, d}. Altogether, the D-vine consists of d − 1 trees with
(
d
2

)
edges. As pointed out in Aas et al. (2009) the pdf of F is given by

f(x) =
d−1∏
i=1

d−i∏
j=1

cj,j+i|(j,j+i)
(
Fj|(j,j+i)(xj |x(j,j+i)), Fj+i|(j,j+i)(xj+i |x(j,j+i))

∣∣x(j,j+i)

) d∏
i=1

fi(xi).

Here we have written x(j,j+i) := (xj+1, . . . , xj+i−1) for all i ≤ d−1 and j ≤ d− i. More generally

we will write xJ := (xj)j∈J for all J ⊆ I. Also, we have denoted the conditional cdf of Xj given

X(j,j+i) = x(j,j+i) by Fj|(j,j+i)( · |x(j,j+i)), where X = (X1, . . . , Xd) is distributed as F .

According to Joe (1996) the conditional cdfs Fj|K , j ∈ I, K ⊆ I \ {j}, may be computed using

the recursive formula

Fj|K(xj |xK) =
∂Cjk|(K\{k})

(
Fj|(K\{k})(xj |x(K\{k})), Fk|(K\{k})(xk |x(K\{k}))

∣∣x(K\{k})
)

∂Fk|(K\{k})(xk |x(K\{k}))
(2.3)
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3 Pair-copula constructions and directed acyclic graphs

for some k ∈ K. We can thus iteratively compute the values of Fj|(j,j+i) and Fj+i|(j,j+i) in tree

i of our D-vine by choosing k = j+ i− 1 and k = j+ 1, respectively. Note that the only copulas

needed in this computation are the ones already specified in the preceding trees.

We can construct a multitude of multivariate D-vine copulas by selecting a number of pair

copulas and by setting all univariate marginals to be uniform distributions on [0, 1]. To ease

notational burden we then express conditional cdfs in terms of so-called h-functions defined as

hij(ui, uj) := Fi|j(ui |uj) =
∂Cij(ui, uj)

∂uj
and hij(ui, uj) := Fj|i(uj |ui) =

∂Cij(ui, uj)

∂ui
(2.4)

for all i 6= j ∈ I. Many popular copulas exhibit closed form expressions for these partial deriva-

tives, see Aas et al. (2009). A more detailed exposition of D-vines can be found in Kurowicka

and Cooke (2006, Section 4.4) and Kurowicka and Joe (2011).

Although very convenient a model, the flexibility of regular vines comes at a price. The con-

struction of a d-variate vine copula requires the specification of
(
d
2

)
pair copulas, a number

increasing quadratically in d. The actual number of decisions to make in practical applications

might, however, be lower if the analysed data exhibit conditional independences. In that case

the corresponding pair copulas are nothing but product copulas with pdf equal to one.

Instead of starting one’s analysis with a set of regular vines it may therefore be more fruitful

to look for conditional independences first. Finding a vine copula that satisfies a given set of

conditional independence assumptions is in general, however, a hard problem. One class of

models tailor-made for this task are Bayesian networks. By applying the pair-copula concept to

graphical models, Hanea et al. (2006) provided an opportunity to exploit the advantages of both

worlds. However, their analysis is restricted to pair copula families with the property that zero

rank correlation implies independence. We will review PCCs for directed graphs in the next

section.

3 Pair-copula constructions and directed acyclic graphs

Let V 6= ∅ be a finite set and let E be a subset of
{

(v, w) ∈ V 2
∣∣ v 6= w

}
such that (w, v) /∈ E

whenever (v, w) ∈ E. Then D = (V,E) is a directed graph with vertex set V and edge set E.

We denote a pair (v, w) ∈ E by an arrow v → w. A path in D is a sequence v1, . . . , vn ∈ V ,

n ≥ 2, such that D contains all arrows vi → vi+1, i ≤ n − 1. In the special case v1 = vn the

path v1, . . . , vn is a cycle. If there are no cycles in D, then D is called a directed acyclic graph
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3 Pair-copula constructions and directed acyclic graphs

(DAG). We set

pa(v) := {w ∈ V |D contains w → v} (set of parents of v),

de(v) := {w ∈ V |D contains a path from v to w} (set of descendants of v), and

nd(v) := V \
(
de(v) ∪ {v}

)
(set of non-descendants of v)

for all v ∈ V .

Now let P be a probability measure on R|V | and let PI denote its I-margin for all non-empty

I ⊆ V . Furthermore, let X be an R|V |-valued random variable distributed as P . Then clearly

XI ∼ PI . We will only consider those probability measures P that can be associated with

some DAG D = (V,E) via certain conditional independence properties. Let us therefore write

XI ⊥⊥ XJ | XK whenever XI and XJ are conditionally independent given XK for pairwise

disjoint sets I, J,K ⊆ V .

P is said to be D-Markovian or, equivalently, to possess the local D-Markov property if

Xv ⊥⊥Xnd(v) \pa(v) |Xpa(v) for all v ∈ V . (3.1)

Note that P might exhibit further conditional independence properties. If P has a Lebesgue-

density f , then the D-Markov property is equivalent to f admitting a D-recursive factorisation

of the form

f(x) =
∏
v∈V

fv|pa(v)

(
xv
∣∣xpa(v)

)
for all x ∈ R|V |, (3.2)

where fv|pa(v) is the pdf of Pv|pa(v). A graphical model based on D is a family of D-Markovian

probability measures. For instance, the family of all regular D-Markovian normal distributions

on R|V | is called the Gaussian graphical model based on D. A comprehensive introduction to

graphical models is found in Lauritzen (1996). Directed graphical models are also known as

Bayesian networks, see Cowell et al. (2003, Section 2.10). Applications of Bayesian networks

range from artificial intelligence, decision support systems, and engineering to genetics, geology,

medicine, and finance, see also Pourret et al. (2008).

As an example consider the DAG from Figure 2 and an absolutely continuous probability measure

P on R4 possessing the respective local D-Markov property. Straightforward evaluation of

condition (3.1) yields the restrictions X1 ⊥⊥ X∅ | X∅ (for v = 1), X2 ⊥⊥ X3 | X1 (both for v = 2

and v = 3), and X1 ⊥⊥ X4 | X23 (for v = 4), of which the first is vacuous. There are no other

implicit conditional independence properties in this example. As for the pdf of P , equation (3.2)

yields the representation

f(x) = f1(x1) f2|1(x2 |x1) f3|1(x3 |x1) f4|23(x4 |x23) for all x ∈ R4.
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3 Pair-copula constructions and directed acyclic graphs

1

2 3

4

Figure 2: A DAG D = (V,E) specifying the conditional independence properties X2 ⊥⊥ X3 | X1

and X1 ⊥⊥ X4 |X23.

We shall mention that verifying whether a given empirical distribution on R|V | can be assumed to

originate from a D-Markovian probability measure is hard. One approach is to apply structure

learning algorithms like the PC algorithm (Spirtes et al., 2000, Section 5.4.2) to the given data,

see also Neapolitan (2003, Chapters 8 to 11), Koller and Friedman (2009, Chapter 18), and the

discussion in Section 6. As an alternative approach expert knowledge is frequently exploited to

define the graph D specifying the Markov structure, see Kurowicka and Cooke (2006, Chapter

5). However, both approaches are mainly confined to discrete or Gaussian modeling.

Straightforward application of Sklar’s theorem to equation (3.2) yields a copula decomposition

for the pdf f of a D-Markovian probability measure P on R|V |, see Elidan (2010a,b). This

decomposition, however, consists of generally higher-variate copulas and hence leads to statistical

models hampered by the difficulties described in Section 2.

We aim to derive a pair-copula decomposition for the pdf f of P . For every v ∈ V we therefore

order the elements of pa(v) increasingly (with respect to some strict total order <v on pa(v))

and set

pa(v;w) :=
{
u ∈ pa(v)

∣∣u <v w} , w ∈ pa(v).

Contrary to the vine-based approach of Hanea et al. (2006), the proof of our theorem relies on

graph theoretical considerations only.

Theorem 3.1. Let D = (V,E) be a DAG and let P be an absolutely continuous D-Markovian

probability measure whose univariate marginal cdfs are strictly increasing. Then P is uniquely

determined by its univariate margins Pv, v ∈ V , and its (conditional) pair copulas Cvw|pa(v;w),

v ∈ V , w ∈ pa(v).

Proof. (Induction on the cardinality of V .) Since P is D-Markovian, its pdf f admits a D-

recursive factorisation of the form (3.2). The claim is trivial for |V | = 1. Now let |V | ≥ 2. Since

D is acyclic we may choose some maximal vertex of D, that is, some m ∈ V with de(m) = ∅.
Let V ′ = V \ {m} and E′ = E ∩ (V ′ × V ′). Then above-mentioned factorisation can be written
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3 Pair-copula constructions and directed acyclic graphs

as

f(x) = fm|pa(m)

(
xm
∣∣xpa(m)

) ∏
v∈V ′

fv|pa(v)

(
xv
∣∣xpa(v)

)
, x ∈ R|V |. (3.3)

By the choice of m the sets pa(v) and nd(v), v ∈ V ′, remain unaffected by a transition from D to

the subgraph D′ = (V ′, E′). Hence, PV ′ is D′-Markovian and the product
∏
v∈V ′ fv|pa(v)(. . .) on

the right hand side of (3.3) is the D′-recursive factorisation of fV ′ . We may assume inductively

that PV ′ and thus fV ′ are uniquely determined by the univariate margins Pv, v ∈ V ′, and by

the (conditional) pair copulas Cvw|pa(v;w), v ∈ V ′, w ∈ pa(v). It remains to show that the same

property holds for fm|pa(m) if we include Pm and Cmw|pa(m;w), w ∈ pa(m), in our analysis.

We prove the latter claim by induction on n = |pa(m)|. The claim is trivial for n = 0. In the

case n ≥ 1 let w1 <m . . . <m wn denote the elements of pa(m) and let S := pa(m;wn). By

Sklar’s theorem,

fm|pa(m)

(
xm
∣∣xpa(m)

)
= cmwn|S

(
Fm|S(xm |xS), Fwn|S(xwn |xS)

∣∣xS) fm|S (xm |xS)

for all xm ∈ R and xpa(m) ∈ Rn. Since pa(m) ⊆ V ′, the conditional cdf Fwn|pa(m;wn) is completely

determined by PV ′ and therefore by the quantities specified in the theorem’s claim. Observing

that pa(m;wn) = pa(m) \ {wn} we may conclude by induction that Fm|pa(m;wn) and fm|pa(m;wn)

exhibit the claimed property, too. This establishes the claim.

By Theorem 3.1 we can decompose f into

f(x) =
∏
v∈V

fv(xv)
∏

w∈pa(v)

cvw|pa(v;w)

(
Fv|pa(v;w)(xv |xpa(v;w)), Fw|pa(v;w)(xw |xpa(v;w))

∣∣xpa(v;w)

)
,

(3.4)

and thus again distinguish the pair copulas involved by the number of conditioning variables.

Similarly to regular vines, the number of levels ranges from 0 to possibly |V | − 1. Although

the graphical representations of the two models look fairly similar, the concepts behind are

completely different. While regular vines illustrate the required pair copulas only, the arrows of a

DAG specify conditional independence conditions. In both cases, however, these representations

are visual aids only and can be omitted.

The remaining question is whether DAGs actually extend the set of pair-copula decompositions

beyond regular vines. This question is closely related to the computation of the conditional cdfs

Fv|pa(v;w) and Fw|pa(v;w) in equation (3.4). In contrast to vines, DAGs allow for the specification

of conditional cdfs that cannot be computed by simply plugging in results from preceding levels.

Hence the values of these functions have to be computed via integration of other margins. In view

of their application for statistical inference, however, DAG PCCs may be more parsimonious

than vine PCCs, see Section 4.
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4 Likelihood inference: A simulation study

The lowest dimensional DAG models exhibiting this characteristic are the ones having the same

Markov properties as the DAG in Figure 2. Using the ordering 2 <4 3 of the vertices v ∈ pa(4)

we obtain pa(1; ∅) = ∅, pa(2; 1) = ∅, pa(3; 1) = ∅, pa(4; 2) = ∅, and pa(4; 3) = {2}. Equation

(3.4) therefore yields

f(x) = f1(x1) · · · f4(x4) · c12

(
F1(x1), F2(x2)

)
· c13

(
F1(x1), F3(x3)

)
· c24

(
F2(x2), F4(x4)

)
· c34|2

(
F3|2(x3 |x2), F4|2(x4 |x2)

∣∣x2

)
, x ∈ R4,

(3.5)

where by equation (2.3)

F4|2(x4 |x2) =
∂C24

(
F2(x2), F4(x4)

)
∂F2(x2)

.

Since the copula C23 is not available in the decomposition of f we exploit the conditional

independence property X2 ⊥⊥ X3 | X1 to get

F3|2(x3 |x2) =

∫ x3

−∞
f3|2(y3 |x2) dy3

= f−1
2 (x2)

∫ x3

−∞

∫ ∞
−∞

f123(y1, x2, y3) dy1 dy3

(3.2)
= f−1

2 (x2)

∫ ∞
−∞

f1(y1) f2|1(x2 | y1)

∫ x3

−∞
f3|1(y3 | y1) dy3 dy1

=

∫ ∞
−∞

f−1
1 (y1) f−1

2 (x2) f12(y1, x2)F3|1(x3 | y1) dF1(y1)

(2.3)
=

∫ ∞
−∞

c12

(
F1(y1), F2(x2)

) ∂C13

(
F1(y1), F3(x3)

)
∂F1(y1)

dF1(y1)

=

∫ 1

0
c12

(
u1, F2(x2)

) ∂C13

(
u1, F3(x3)

)
∂u1

du1

(2.4)
=

∫ 1

0
c12

(
u1, F2(x2)

)
h13

(
u1, F3(x3)

)
du1.

There is no general closed-form solution for the last integral.

4 Likelihood inference: A simulation study

An appealing feature of DAG-PCC models is their flexibility gained from using bivariate copulas

as building blocks only. In particular, these models can accomodate distributions other than

the multivariate Gaussian, which is a desirable property in many statistical applications, see for

example McNeil et al. (2005, Section 3.1.4). We now investigate the tractability of likelihood

inference in DAG-PCC models. With reference to Sklar’s theorem we restrict our considerations

to DAG copulas in this section, that is, DAG distributions with uniform [0, 1] univariate margins.

Let D = (V,E) be a DAG and let {Pθ |θ ∈ Θ} be a family of D-Markovian probability measures
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4 Likelihood inference: A simulation study

on [0, 1]|V | satisfying the usual assumptions. Given a realisation u =
(
u1, . . . ,un

)
∈
(
[0, 1]|V |

)n
,

n ∈ N, of a sample of i.i.d. random variables U1, . . . ,Un, equation (3.4) yields the log-likelihood

function

L(θ;u) =
n∑
k=1

∑
v∈V

∑
w∈pa(v)

log cvw|pa(v;w)

(
Fv|pa(v;w)

(
ukv

∣∣∣ukpa(v;w);θ
)
, Fw|pa(v;w)

(
ukw

∣∣∣ukpa(v;w);θ
)

;θ
)

(4.1)

for all θ = (θvw|pa(v;w))v∈V,w∈pa(v) ∈ Θ. Note that the components θvw|pa(v;w) are potentially

vector-valued. On the right hand side we have omitted parameter subscripts as well as the values

of the conditioning variables in the pair-copula pdfs cvw|pa(v;w). The latter omission is based on

the assumption of constant copula parameters θvw|pa(v;w) for all observations uk, k ≤ n. By that

assumption the copula pdfs involved are treated as if they were unconditional. The cdfs Fv|pa(v;w)

and Fw|pa(v;w), however, remain conditional. This assumption reduces model complexity while

still encompassing a rich class of DAG copulas and has become common practice in likelihood

inference for PCCs, see Aas et al. (2009) and Hobæk Haff et al. (2010).

Note that equation (3.4) also allows the inclusion of univariate marginal distributions other

than the uniform [0, 1] distribution. The joint estimation of the parameters of the marginal

distributions and the copula can, however, become computationally intensive, especially in higher

dimensions. Joe and Xu (1996) therefore proposed the inference functions for margins (IFM)

method in which the estimation procedure is split into two steps. First, the marginal parameters

are estimated and second, given the estimates of the marginal parameters, the copula parameters

are inferred, see also the example in Section 5. Alternatively, Genest et al. (1995) suggested

a semiparametric approach in which the univariate marginals are transformed to uniform [0, 1]

distributions using the empirical cdf before estimating the parameters of the copula model. See

Kim et al. (2007) for a comparison of the joint, IFM, and semiparametric inference methods.

Hofmann and Czado (2010) conducted a comparison of the joint and IFM estimation methods

using D-vine-copula models with GARCH margins (Bollerslev, 1986) in a Bayesian framework.

The results of their analysis show that the benefit of applying a joint estimator is negligible

compared to the increase in computational effort that comes along with it. It is thus reasonable

to focus attention on DAG copulas in this section.

We examined the practical performance of the DAG-copula model by a simulation study. To

this end we drew samples from two families of DAG copulas with conditional independence

properties given by the DAG D in Figure 2. More precisely, these families of DAG copulas

emerge from two different choices of pair-copula families involved. In either setting we considered

six different parameter configurations, resulting in the twelve simulation scenarios described in

Table 1. The copula families used (Clayton, Gumbel, Gaussian, and Student’s t, see Aas (2004))
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4 Likelihood inference: A simulation study

exhibit notable differences in tail behaviour as captured by the lower and upper tail dependence

coefficients (TDCs)

λL(U1, U2) = lim
u→0

P(U2 ≤ u |U1 ≤ u) = lim
u→0

C12(u, u)

u
,

λU(U1, U2) = lim
u→1

P(U2 > u |U1 > u) = lim
u→1

1− 2u+ C12(u, u)

1− u ,

(4.2)

where C12 is the copula of (U1, U2), see Joe (1997, Section 2.1.10). Within each copula family a

range of values of Kendall’s τ as a dependence measure may be obtained by suitable parameter

choices. We considered two scenarios in which all selected copulas have τ = 0.25, and two

scenarios with τ = 0.75. In each of the eight remaining scenarios one copula has τ = 0.75, while

all other copulas have τ = 0.25. See Table 2 for the relations between copula parameters, TDCs,

and Kendall’s τ .

Scenario 1 2 3 4 5 6

C12 Clayton δ 0.67 (0.25) 6.00 (0.75) 6.00 (0.75) 0.67 (0.25) 0.67 (0.25) 0.67 (0.25)
C13 Gumbel δ 1.33 (0.25) 4.00 (0.75) 1.33 (0.25) 4.00 (0.75) 1.33 (0.25) 1.33 (0.25)
C24 Student ρ, ν 0.38, 5 (0.25) 0.92, 5 (0.75) 0.38, 5 (0.25) 0.38, 5 (0.25) 0.92, 5 (0.75) 0.38, 5 (0.25)
C34|2 Gauss ρ 0.38 (0.25) 0.92 (0.75) 0.38 (0.25) 0.38 (0.25) 0.38 (0.25) 0.92 (0.75)

Scenario 7 8 9 10 11 12

C12 Clayton δ 0.67 (0.25) 6.00 (0.75) 6.00 (0.75) 0.67 (0.25) 0.67 (0.25) 0.67 (0.25)
C13 Clayton δ 0.67 (0.25) 6.00 (0.75) 0.67 (0.25) 6.00 (0.75) 0.67 (0.25) 0.67 (0.25)
C24 Clayton δ 0.67 (0.25) 6.00 (0.75) 0.67 (0.25) 0.67 (0.25) 6.00 (0.75) 0.67 (0.25)
C34|2 Clayton δ 0.67 (0.25) 6.00 (0.75) 0.67 (0.25) 0.67 (0.25) 0.67 (0.25) 6.00 (0.75)

Table 1: Twelve simulation scenarios given by various choices of copula families and parameters
for C12, C13, C24, C34|2, with notation as in Aas (2004). Parameters were chosen with
regard to Kendall’s τ as a measure of dependence. The values of τ for each scenario
are given in parentheses. See Table 2 for further details on the copula families used.

Copula Kendall’s τ Lower TDC λL Upper TDC λU

Clayton δ
δ+2 ∈ [0, 1] 2−

1
δ 0

Gumbel 1− 1
δ ∈ [0, 1] 0 2− 2

1
δ

Gauss 2
π arcsin (ρ) ∈ [−1, 1] 0 0

Student 2
π arcsin (ρ) ∈ [−1, 1] 2 tν+1

(
−
√
ν + 1

√
1−ρ
1+ρ

)
2 tν+1

(
−
√
ν + 1

√
1−ρ
1+ρ

)
Table 2: Kendall’s τ and tail-dependence coefficients (TDCs) of the selected copulas. tν+1 de-

notes the cdf of a univariate Student’s t distribution with ν + 1 degrees of freedom.

In a given simulation scenario with fully specified copulas C12, C13, C24, and C34|2, samples

u = (u1, . . . , u4) ∈ [0, 1]4 are obtained by simulating four independent uniform [0, 1] variables

11



4 Likelihood inference: A simulation study

w1, . . . , w4 and applying the quantile transformations

u1 = w1,

u2 = F−1
2|1 (w2 |u1;θ) = h−1

12 (u1, w2;θ12),

u3 = F−1
3|12(w3 |u12;θ) = h−1

13 (u1, w3;θ13),

u4 = F−1
4|123(w4 |u123;θ) = h−1

24

(
u2, h

−1
34|2

(∫ 1

0
c12(v1, u2;θ12)h13(v1, u3;θ13) dv1, w4;θ34|2

)
;θ24

)
,

cf. equations (2.4) and (3.5). In each simulation run we generated n = 1000 i.i.d. observations

by that method, and in each scenario we performed N = 100 such runs.

For each of the 1200 runs we numerically calculated maximum-likelihood (ML) estimates of the

parameters of the underlying DAG-copula model (as specified in Table 1) and compared them

to the respective true parameters. Due to the complex structure of the log-likelihood function

L(θ;u) =

n∑
k=1

log c12

(
uk1, u

k
2;θ12

)
+ log c13

(
uk1, u

k
3;θ13

)
+ log c24

(
uk2, u

k
4;θ24

)
+ log c34|2

(∫ 1

0
c12

(
v1, u

k
2;θ12

)
h13

(
v1, u

k
3;θ13

)
dv1, h24

(
uk2, u

k
4;θ24

)
;θ34|2

) (4.3)

(cf. equations (3.5) and (4.1)) our ML estimation procedure follows a stepwise approach as

described in Aas et al. (2009) and Hobæk Haff (2010) for vine-PCC models. In a first step

we compute ML estimates of the parameters of each pair-copula family separately. Since the

evaluation of the copula pdf c34|2 requires parameter estimates for the pair copulas C12, C13,

and C24 on the first level, the estimation of θ34|2 has to be performed last. The parameter

estimates obtained in this first step are therefore called sequential ML estimates. In a second

step the full log-likelihood function is maximised jointly using the sequential ML estimates as

starting values, resulting in the so-called joint ML estimates θ̂vw|pa(v;w), v ∈ V , w ∈ pa(v). This

stepwise procedure is performed in each simulation run. In order to summarise ML estimates

within each scenario, we used a common scale by converting all parameter estimates to estimates

for Kendall’s τ as described in Table 2. An overview of our results in terms of empirical bias

and mean squared error (MSE) with respect to the true value of Kendall’s τ is given in Figure

5.

DAG-PCC models may be viewed as generalisations of Gaussian graphical models as presented

in Lauritzen (1996, Chapter 4). As their name implies, the latter models are based on the

assumption of a joint normal distribution. ML estimation in these models reduces to an esti-

mation of the correlation matrix, observing the restrictions captured in the DAG specifying the

model, see Cox and Wermuth (1996, Chapter 3). By choosing all univariate margins as well as

all pair-copula families in a DAG-PCC model based on a DAG D to be Gaussian we obtain the

12



4 Likelihood inference: A simulation study

Gaussian graphical model based on D. The Gaussian DAG copula corresponding to the DAG

of our simulation study, for instance, is a four-variate Gaussian copula with correlation matrix

R =


1 ρ12 ρ13 R14

ρ12 1 ρ12 ρ13 ρ24

ρ13 ρ12 ρ13 1 R34

R14 ρ24 R34 1

 ,

where ρ12, ρ13, and ρ24 are the correlations implied by the pair copulas C12, C13, and C24. Using

the conditional correlation ρ34|2 implied by the copula C34|2 we may represent the correlations

R14 and R34 as

R14 = ρ12 ρ24 +
ρ13 ρ34|2 (1− ρ2

12)
√

1− ρ2
24√

1− ρ2
12 ρ

2
13

,

R34 = ρ12 ρ13 ρ24 + ρ34|2

√
1− ρ2

12 ρ
2
13

√
1− ρ2

24.

This representation is based on the conditional independence properties specified by the DAG

D in Figure 2 and the iterative formula for partial correlations given in Kurowicka and Cooke

(2006, Section 3.3). The latter is applicable since partial and conditional correlations coincide

for normal distributions, see Whittaker (1990, Section 6.2). Fitting the Gaussian DAG-copula

model to our simulated data sets allows us to compare the estimated pair-copula parameters

to the true parameters of the generating models. To ensure comparability, we again transform

estimated parameters to estimates of Kendall’s τ . Error estimates in this Gaussian DAG-copula

model are interpreted as in the true model, which we will henceforth refer to as the non-Gaussian

DAG-copula model. An overview of these error estimates is given in Figure 5.

As stated in Section 3 the DAG-copula model corresponding to the DAG D of our simulation

study cannot be represented by a regular vine. The D-vine featuring the same first level of

pair copulas C12, C13, and C24 as the DAG PCC is given in Figure 3 and specifies a D-vine-

copula model that approximates our DAG-copula model. On the second and third level this

D-vine comprises the conditional pair copulas C23|1, C14|2, and C34|12. In order to study how well

this D-vine-copula model approximates the given DAG-copula model we performed the following

procedure in each of the 1200 runs of our simulation study. First we selected pair-copula families

for C12, C13, C24, C23|1, C14|2, and C34|12, choosing from the four copula families described in

Table 2 and the product copula. More precisely, we first computed sequential ML estimates of

the parameters θ12, θ13, θ24, θ14|2, θ23|1, and θ34|12 for the Clayton, Gumbel, Gaussian, and

Student’s t copula, respectively, and then used Akaike’s information criterion (AIC) (Akaike,

1974) to identify the most appropriate copula families. We included C12, C13, and C24, of which

the true families are known, in this procedure to be able to judge the reliability of our selection

13



4 Likelihood inference: A simulation study

criterion. Table 3 gives an overview of how often each copula family was selected. In almost

all simulation runs the families of C12, C13, and C24 were identified correctly. This is in line

with results of a simulation study conducted by Brechmann (2010) who concluded that AIC is

a reliable selection criterion for bivariate copula families. If C23|1 is the product copula in this

model then the D-vine in Figure 3 yields a PCC satisfying U2 ⊥⊥ U3 | U1 but, in general, fails to

satisfy U1 ⊥⊥ U4 | U23 as specified by D. If the product copula does not appear in the D-vine

we obtain the same log-likelihood as in the model specified by the complete DAG in Figure 4,

which is hence an example of a DAG-copula model that can be represented by a D-vine. Note,

however, that interest with DAG models lies in capturing conditional independence assumptions

and therefore rather in DAGs with missing edges than in complete DAGs. The approximating

D-vine-copula model can be viewed as structurally misspecified model for the given data. Given

a choice of pair-copula families we then computed joint ML parameter estimates in the D-vine-

copula model and compared the maximised log-likelihoods to those obtained in the Gaussian

and the non-Gaussian DAG-copula model. The results are given in Figure 6.

3 1 2 4
13 12 24

13 12 24
23|1 14|2

23|1 14|2
34|12

Figure 3: A four-variate D-vine having the first level in common with the DAG PCC derived
from the DAG D in Figure 2.

1

2 3

4

12

13

14
|2

23|1

24

34
|12

Figure 4: A complete DAG specifying the same PCC as the D-vine in Figure 3 given that none of
the associated pair copulas is the product copula. We ordered the parent sets according
to pa(1; ∅) = ∅, pa(2; 1) = ∅, pa(3; 1) = ∅, pa(3; 2) = {1}, pa(4; 2) = ∅, pa(4; 1) = {2},
and pa(4; 3) = {1, 2}.

Since the Gaussian DAG-copula model can be viewed as a misspecified model for the data given

in scenarios 1 through 12, it is not surprising that error estimates in this model are generally

higher than those in the non-Gaussian DAG-copula models. In fact, Figure 5 shows that the

estimates of Kendall’s τ obtained in the Gaussian DAG-copula model are considerably worse

than those obtained in the non-Gaussian model. Differences between these models with regard
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Scenario 1 2 3 4 5 6 7 8 9 10 11 12

C12 Clayton 100 100 100 100 100 100 100 100 100 100 100 100
Gumbel, Gauss, Student, Product: all 0

C13 Clayton 0 0 0 0 0 0 100 100 100 100 100 100
Gumbel 100 100 99 100 99 98 0 0 0 0 0 0
Gauss 0 0 1 0 1 0 0 0 0 0 0 0
Student 0 0 0 0 0 2 0 0 0 0 0 0
Product 0 0 0 0 0 0 0 0 0 0 0 0

C24 Clayton 0 0 0 0 0 0 100 100 100 100 100 100
Gumbel 0 0 2 0 0 1 0 0 0 0 0 0
Student 100 100 98 100 100 99 0 0 0 0 0 0
Gauss, Product: all 0

C14|2 Clayton 3 0 4 1 1 0 95 29 39 100 98 98
Gumbel 36 86 36 4 36 98 0 0 8 0 0 0
Gauss 58 0 43 89 54 1 2 6 18 0 2 1
Student 3 14 4 6 8 1 3 65 4 0 0 1
Product 0 0 13 0 1 0 0 0 31 0 0 0

C23|1 Clayton 3 3 1 6 8 2 4 2 5 7 6 3
Gumbel 3 3 3 4 5 4 3 1 5 4 4 2
Gauss 13 9 7 8 10 10 16 7 10 7 11 14
Student 5 1 0 2 5 4 1 1 4 3 1 1
Product 76 84 89 80 72 80 76 89 76 79 78 80

C34|12 Clayton 0 0 0 13 0 0 100 81 100 31 99 100
Gumbel 0 0 0 3 0 0 0 0 0 2 0 0
Gauss 93 22 95 78 93 95 0 0 0 62 0 0
Student 7 78 5 6 7 5 0 19 0 5 1 0
Product 0 0 0 0 0 0 0 0 0 0 0 0

Table 3: For each scenario (column) and run we identified the copula families with optimal AIC.
The resulting frequencies are given above. Frequencies of the true copula families for
C12, C13, C24, and C23|1 appear in bold. As an example, the top left entry of the table
states that in all of the 100 runs of scenario 1 the Clayton family as a choice for C12

yields a higher AIC than all other families considered (Gumbel, Gaussian, Student’s t,
product). Also, the Clayton family is the true copula family for C12 in this scenario.

to bias and MSE for Kendall’s τ are more pronounced in scenarios featuring high correlations

and asymmetric tail dependence. The smallest difference in performance is thus found in the

low-correlation scenarios 1 and 7, whereas in the high-correlation scenarios 2 and 8 the Gaussian

DAG-copula model fails by a huge amount. For instance, in scenario 8 the ratios of biases for

Kendall’s τ in the non-Gaussian and Gaussian DAG-copula model, respectively, are of order 103

or higher. The corresponding ratios of MSEs are of order 102 or higher. We shall emphasise

that Figure 5, with its focus on estimation of Kendall’s τ , presents only one aspect in the

comparison between non-Gaussian and Gaussian DAG-copula models. For instance, estimation

of the degrees of freedom of a Student’s t copula is neglected in this figure. It is clear that

Gaussian DAG-copula models are useless when interest lies in the estimation of TDCs, say.
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Figure 5: Bias (left) and MSE (right) of estimates of Kendall’s τ associated with copulas C12,
C13, C24, C34|2. The vertical axis uses a transformed log-scale for better visibility. In
each of the 12 scenarios (horizontal axis) described in Table 1 parameter estimates
were obtained in the true (circle) and in the Gaussian (triangle) DAG-copula model
using sequential (solid grey) and joint (outline black) ML estimation.

Since DAG and D-vine-copula models have different parameter sets, direct comparisons of pa-

rameter estimates are infeasible. Hence we compared maximised log-likelihoods for the Gaussian

DAG, the non-Gaussian DAG, and the D-vine-copula model. Figure 6 shows that maximised

log-likelihoods in the non-Gaussian DAG-copula models are roughly 50% higher than those
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obtained in their Gaussian counterparts. Even though the Gaussian DAG-copula model in sce-

narios 1 through 6 has one parameter less than its non-Gaussian competitor this difference in

log-likelihood clearly shows the latter model’s superiority. Figure 6 also shows the performance

of the approximating D-vine-copula model. As this model and the non-Gaussian DAG-copula

model share the same first level of pair copulas, it is not surprising that the maximised log-

likelihoods in these models differ mainly in those scenarios with high values of θ34|2, namely,

scenarios 2, 6, 8, and 12. In other words, the effects of structural misspecification are primar-

ily noticeable in those four scenarios. Note, however, that the D-vine-copula model involves a

higher number of parameters than the non-Gaussian DAG-copula model and that its maximised

log-likelihood is always slightly inferior to that of the latter model.
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Figure 6: Kernel density estimates of the maximised log-likelihoods in 100 runs for each scenario
(see Table 1), based on the Gaussian DAG (dashed line), the non-Gaussian DAG (solid)
and the D-vine-copula model (dotted).

The average computation time for joint ML estimation in the non-Gaussian DAG-copula model

was twelve seconds in scenarios 1 through 6 and five seconds in scenarios 7 through 12 on a 2

GHz dual-core computer with 2 GB of RAM. Fitting the D-vine-copula model instead reduced
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computation time by about 70% in scenarios 1, 3, 4, 5, and 6, and by about 90% in scenarios

7, 9, 10, 11, and 12. This difference in computation time is due to the numerical integration

involved in computing joint ML estimates for the non-Gaussian DAG-copula model. In the high-

correlation scenarios 2 and 8, however, ML estimation in both models was performed equally

fast. Overall there is an increase in computation time when using the non-Gaussian DAG-copula

model instead of the D-vine-copula model but it is small compared to the associated gain in

statistical precision.

Besides maximised log-likelihoods we also investigated how well the three models capture rank

correlations of the bivariate margins U14, U23, and U34 which were not directly included in our

DAG and D-vine PCCs. To this end we performed the following procedure in each run. First,

we computed estimates τ̂14, τ̂23, and τ̂34 of Kendall’s τ for the three margins. Then we generated

a sample of n = 1000 i.i.d. observations from the Gaussian DAG, the non-Gaussian DAG, and

the D-vine-copula model, respectively, using the joint ML parameter estimates obtained before.

For each of these samples we again computed estimates of Kendall’s τ and compared the results

to τ̂14, τ̂23, and τ̂34, respectively. Figure 7 gives an overview of our findings in terms of empirical

bias and MSE for each scenario. The patterns described by these error estimates resemble those

of the maximised log-likelihoods summarised above and hence yield similar conclusions. The

range of bias and MSE values is roughly the same as in Figure 5.

In order to check whether our findings are valid for smaller sample sizes we conducted an

additional simulation study in which each simulation run contained n = 500 (as opposed to

n = 1000) observations. As far as estimation of Kendall’s τ is concerned we found biases

similar to those in Figures 5 and 7 while MSEs tended to be twice as high as those given in

Figures 5 and 7. The comparison between Gaussian and non-Gaussian DAG-copula models

may be summarised along the same lines as above. By comparison with its competitors the

performance of the vine-copula model decreases for smaller sample size and is subject to higher

variability.

The main conclusion from our simulation study is that non-Gaussian DAG-PCC models are

capable of capturing features in data that neither Gaussian DAG-PCC nor vine-PCC models

can reflect. Gaussian DAG-PCC models exhibit particularly poor performance in presence of

non-normal tail behaviour. Vine-PCC models are not sufficiently flexible to observe certain

Markov properties. Both non-normality and Markov properties are easily incorporated into our

non-Gaussian DAG-PCC models.
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5 Application: Financial returns
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Figure 7: Bias (left) and MSE (right) of estimates of Kendall’s τ associated with margins U14,
U23, and U34. The vertical axis uses a transformed log-scale for better visibility. In
each of the 12 scenarios (horizontal axis) described in Table 1 estimates of Kendall’s
τ were compared to estimates of Kendall’s τ obtained from samples generated from
the Gaussian DAG (triangle), the non-Gaussian DAG (circle), and the D-vine-copula
model (diamond).

5 Application: Financial returns

We applied the DAG-PCC model to a four-variate financial data set comprising US and German

stock and bond indices. More precisely, we modeled the dependence structure of daily log-returns

of the Dow Jones Industrial Average (DJI), the Dow Jones Corporate Bond Index (DJCB), the

German stock index (DAX), and the corresponding German corporate bond index (RDAX) from

3 April 2007 to 30 September 2010 (n = 854 observations). US indices are given in US Dollars

and German indices in Euros, that is, we did not correct the data for exchange rate fluctuations.

Figure 8 shows the four time series of daily log-returns.

By Sklar’s theorem we can model univariate marginal distributions without regard to the
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Figure 8: Daily log-returns of the Dow Jones Industrial Average (DJI), the Dow Jones Corporate
Bond Index (DJCB), the German stock index (DAX), and the German corporate bond
index (RDAX).

dependence structure between variables. Hence we first removed serial correlation in the four

time series of log-returns by applying an AR(1) filter with conditional heteroskedasticity be-

ing captured by a GARCH(1,1) process, see Bollerslev (1986). The log-return of series i ∈
{DJI,DJCB,DAX,RDAX} at time t is hereby given as

xt,i = µi + ai xt−1,i + εt,i,

εt,i = σt,i zt,i,

σ2
t,i = ωi + αi ε

2
t−1,i + βi σ

2
t−1,i

with parameters ωi > 0, αi, βi ≥ 0, αi + βi < 1, |ai| < 1, and µi ∈ R, where E [zt,i] = 0

and Var [zt,i] = 1. The standardised residuals zt,i are assumed to follow a univariate Student’s t

distribution with ν degrees of freedom, that is,
√

ν
ν−2 zt,i ∼ tν . ML estimates and their standard

errors derived from numerical evaluation of the Hessian of the AR(1)-GARCH(1,1) parameters

for the four time series of log-returns are given in Table 4. Using these standard errors and a

5% significance level we cannot reject the null hypothesis of the Ljung-Box test that there is no

autocorrelation left in the residuals and squared residuals, see Ljung and Box (1978). The same

holds true for the null hypothesis of the Lagrange-multiplier ARCH test that the residuals exhibit

no conditional heteroskedasticity, see Engle (1982). We converted the standardised residuals to

uniformly distributed observations ut,i = tν

(√
ν
ν−2 zt,i

)
before modeling the joint dependence

structure of the four time series of log-returns by a DAG copula.
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µ [×104] a ω [×106] α β ν

DJI 10.15 (3.66) −0.10 (0.03) 1.99 (37.68) 0.12 (0.02) 0.88 (0.02) 6.33 (1.73)
DJCB 1.62 (1.38) −0.11 (0.04) 0.56 (28.76) 0.08 (0.02) 0.89 (0.02) 6.75 (1.52)
DAX 5.81 (4.37) 0.01 (0.03) 3.92 (37.95) 0.09 (0.02) 0.89 (0.02) 8.24 (2.30)
RDAX 2.54 (0.73) 0.10 (0.04) 0.02 (23.80) 0.05 (0.01) 0.95 (0.01) 17.30 (9.03)

Table 4: ML estimates and standard errors (in parentheses) of AR(1)-GARCH(1,1) parameters
for the DJI, DJCB, DAX, and RDAX daily log-returns.

Based on the economic consideration that the German stock index is driven by its US counterpart

and that within the US and Germany corporate bond indices are driven by the respective national

stock indices, we propose a conditional independence model for the transformed residuals ut,i.

The DAG D from Figure 2 with vertices 1, 2, 3, 4 representing the variables DJI, DJCB, DAX,

RDAX, respectively, reflects the above-mentioned dependences and specifies the conditional

independence assumptions

DJCB ⊥⊥ DAX | DJI and DJI ⊥⊥ RDAX | {DJCB,DAX}.

Besides, we also obtain the DAG D when applying the PC algorithm (Spirtes et al., 2000, Section

5.4.2) to the data Φ−1(ut,i), where Φ denotes the standard normal cdf. This transformation is

needed since the tests for conditional independence performed by the PC algorithm (at the 5%

significance level) are based on the assumption of normality. Since we aim to specify a model

with non-Gaussian dependence structure the PC algorithm may, however, only be considered

a screening method for potential Markov properties. Given the results presented below we

retrospectively measured the reliability of the PC algorithm for the analysed financial data set

as follows. We first generated N = 100 i.i.d. samples of size n = 854 from the non-Gaussian

DAG-copula model specified by the joint ML parameter estimates in Table 5 and then applied the

PC algorithm to recover the conditional independence properties of each of these samples. The

true DAG structure was recovered in 90% of the cases, which supports our model assumptions.

By contrast we obtained an overall recovery rate of only 30% when applying the PC algorithm to

the 1200 data sets of our simulation study described in Section 4. Highly non-normal data hence

require suitable tests for conditional independence to obtain more satisfactory recovery rates.

An implementation of the PC algorithm is readily available in the R package pcalg (Kalisch

et al., 2011).

Given the DAG D Theorem 3.1 prescribes which pair copulas need specification in the definition

of our model. Note that vertex 4 (RDAX) has two parents (DJCB and DAX), which necessitates

the selection of an ordering of the parents. We decided to use vertex 2 (DJCB) as the first parent

based on the heuristic rule of modeling strong bivariate dependences prior to weak dependences.

Our decision was based on estimates τ̂ of Kendall’s τ between vertices 2, 4 (τ̂ = 0.39) and 3, 4
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(τ̂ = −0.25), respectively.

Having fixed our model’s Markov structure our next step was the selection of parametric copula

families for the four copulas C12, C13, C24, and C34|2 obtained from Theorem 3.1. We considered

Gaussian, Student’s t, Frank, Clayton, and Gumbel copula families as well as reflected versions

of the Clayton and Gumbel copula families in order to account for negative correlations. Among

these candidates we selected copula families based on comparisons of AIC values, which resulted

in modeling all four copulas C12, C13, C24, and C34|2 by Student’s t copulas. Figure 9 displays

these choices along with kernel density estimates of the respective true copula pdfs. Visual

comparison of these plots strongly affirms our choices of the Student’s t copula family. We shall

note that the estimates of the correlation parameters ρ and the degrees of freedom ν used to

compute AIC values are nothing else than the sequential ML estimates to be obtained from

the selected DAG-copula model. Our choice of Student’s t copula is consistent with popular

modeling approaches in the literature on statistical finance, see Ignatieva and Platen (2010).
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Figure 9: Kernel density estimates of pair-copula pdfs (left) and our choices of Student’s t copula
pdfs (right) for modeling the DJI, DJCB, DAX, and RDAX data. All copulas are
displayed with standard normal margins.

We computed joint ML estimates of the parameters of the selected non-Gaussian DAG-copula

model using the routines described in Section 4. In view of reducing model complexity we also

applied a semiparametric ML estimator inspired by Hobæk Haff (2010). To this end we replaced

the integral in the log-likelihood function in equation (4.3) by a non-parametric conditional-cdf
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estimator of F3|2 given by

F̂3|2(ut,3 |ut,2) =

∑n
s=1 Φ

(
Φ−1(ut,3)−Φ−1(us,3)

h3

)
ϕ
(

Φ−1(us,2)−Φ−1(ut,2)
h2

)
∑n

s=1 ϕ
(

Φ−1(us,2)−Φ−1(ut,2)
h2

) , t ≤ n,

where ϕ denotes the standard normal pdf and h2, h3 are normal-reference rule-of-thumb band-

widths, see Li and Racine (2007, Section 6.2). We used transformed observations Φ−1(ut,i) for

the kernel smoothing to avoid boundary effects. The log-likelihood function of this model, which

we will refer to as the semiparametric non-Gaussian DAG-copula model, takes the form

L̂(θ;u) =
n∑
t=1

log c12(ut,1, ut,2;θ12) + log c13(ut,1, ut,3;θ13) + log c24(ut,2, ut,4;θ24)

+ log c34|2

(
F̂3|2(ut,3 |ut,2), h24(ut,2, ut,4;θ24);θ34|2

)
.

ML estimation in this model is performed as in the fully parametric case. Last, we also applied

the Gaussian DAG-copula model from Section 4 to the data and compared its performance to the

non-Gaussian and the semiparametric non-Gaussian DAG-copula model. Parameter estimates

and their standard errors as well as AIC values for all three models are given in Table 5.

Student Student Student Student AIC
C12 C13 C24 C34|2

nG S −0.35, 10.1 (0.03, 3.8) 0.66, 9.2 (0.02, 4.3) 0.57, 17.4 (0.02, 4.0) −0.29, 8.9 (0.03, 3.4) −1002.0
J −0.35, 10.4 (0.03, 4.3) 0.66, 9.3 (0.02, 4.4) 0.56, 14.0 (0.02, 4.4) −0.29, 8.7 (0.03, 3.6) −1002.4

sG S −0.35, 10.1 (0.03, 3.9) 0.66, 9.2 (0.02, 4.3) 0.57, 17.4 (0.02, 4.0) −0.30, 9.8 (0.03, 4.3) −999.6
J −0.35, 10.1 (0.03, 4.2) 0.66, 9.2 (0.02, 4.4) 0.56, 15.6 (0.02, 4.2) −0.30, 9.5 (0.03, 4.3) −999.8

Gauss Gauss Gauss Gauss AIC
C12 C13 C24 C34|2

G S −0.34 (0.03) 0.66 (0.02) 0.57 (0.02) −0.28 (0.04) −971.5
J −0.34 (0.03) 0.66 (0.02) 0.57 (0.02) −0.28 (0.04) −971.5

Table 5: Sequential (S) and joint (J) ML estimates, standard errors (in parentheses), and AIC
values for the Gaussian (G), the non-Gaussian (nG), and the semiparametric non-
Gaussian (sG) DAG-copula model applied to the log-return data.

Due to non-normal tail behaviour observed in the data it is not surprising that the Gaussian

DAG-copula model again turns out inferior to its non-Gaussian competitors. Applying the Vuong

test with AIC correction (Vuong, 1989) for model selection yields the same conclusion. The

results for the non-Gaussian and the semiparametric non-Gaussian DAG-copula model, however,

are rather close. In fact, the null hypothesis of the Vuong test that both models are equally close

to the true model cannot be rejected at the 5% significance level. Choosing the semiparametric

over the fully parametric non-Gaussian DAG-copula model cut down computation time by the

factor 50.
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6 Conclusion

We have defined non-Gaussian DAG-copula models based on density factorisations that are

driven by two ideas: First, the D-recursive factorisation known from the literature on DAG

models and second, pair-copula constructions (PCCs) for the conditional densities resulting from

that factorisation. Such PCCs have been widely used in regular-vine models. Our approach in

Section 3, however, is tailored to constructing models with pre-specified Markov properties (as

given by a DAG), a feature that cannot be precisely implemented in vine models. The theoretical

justification for that approach is given in Theorem 3.1, which also states that univariate margins

and pair copulas in these models can be freely chosen and are not limited to the Gaussian case.

As is demonstrated in Section 4 our non-Gaussian DAG-copula models are suitable for likelihood

inference and outperform both Gaussian DAG and D-vine-copula models in certain settings. In

Section 5 we have presented an application to US and German stock and bond indices in which

our non-Gaussian DAG-copula models proved superior to their Gaussian competitors.

We shall mention that our approach, which extends an idea from Hanea et al. (2006), involves

considerable computational effort. First, the pair-copula constructions used in our expansion

of the likelihood function give rise to conditional cdfs whose evaluation requires numerical inte-

gration. Second, the routine for finding joint ML estimates as described in Section 4 faces the

usual difficulties of non-linear high-dimensional optimisation problems. The first problem may

be tackled by approximating certain conditional cdfs by non-parametric estimates as suggested

by Hobæk Haff (2010). Including this idea in the optimisation routines used in Section 5 cut

down computation time by the factor 50. One way of dealing with the second problem above

may be to consider sequential instead of joint ML estimates. Although sequential ML estimates

do not maximise the full log-likelihood function they often, as far as our experience shows, turn

out to be good approximations to joint ML estimates. However, there is yet no systematic study

of this relation.

Selecting a suitable model from the class of non-Gaussian DAG-PCC models is still an open

problem and involves both the question for the assumed Markov structure and the question for

suitable pair copulas. In Section 5 we used economic considerations to address the problem

of selecting a non-Gaussian DAG-PCC model for the given financial data. We are currently

researching whether existing structure learning algorithms such as the PC algorithm by Spirtes

et al. (2000) can be adapted to our continuous non-Gaussian framework. As mentioned in

Section 5, an application of the PC algorithm with conditional independence tests based on

the assumption of joint normality to the simulated data sets of Section 4 recovered the true

DAG structure in only 30% of the cases. Suitable tests for conditional independence are hence

required to obtain more satisfactory recovery rates. One may also investigate whether the

Bayesian methodology of model selection suggested for vine-PCC models by Min and Czado
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(2011) and Smith et al. (2010) may be applied to non-Gaussian DAG-PCC models. In a similar

vein, there is yet no clear answer to the question of whether regular-vine models or non-Gaussian

DAG-PCC models are preferable for modeling a given data set.

Also, we are currently working on a general algorithm for simulating DAG copulas with ar-

bitrarily prescribed DAGs as well as for likelihood inference in models based on these DAG

copulas. The computational effort mentioned above necessitates a C++ implementation (as

opposed to the R implementation that we started out with). The current development stage of

this implementation shows promising results in terms of numerical efficiency.
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