
Risk management with high-dimensional vine copulas:

An analysis of the Euro Stoxx 50

Eike Christian Brechmann∗†, Claudia Czado∗

April 17, 2013

Abstract

The demand for an accurate financial risk management involving larger numbers of assets

is strong not only in view of the financial crisis of 2007-2009. Especially dependencies among

assets have not been captured adequately. While standard multivariate copulas have added

some flexibility, this flexibility is insufficient in higher dimensional applications. Vine copulas

can fill this gap by benefiting from the rich class of existing bivariate parametric copula

families. Exploiting this in combination with GARCH models for the margins, we develop

a regular vine copula based factor model for asset returns, the Regular Vine Market Sector

model, which is motivated by the classical CAPM and shown to be superior to the CAVA

model proposed by Heinen and Valdesogo (2009). The model can also be used to separate

the systematic and idiosyncratic risk of specific stocks, and we explicitly discuss how vine

copula models can be employed for active and passive portfolio management. In particular,

Value-at-Risk forecasting and asset allocation are treated in detail. All developed models

and methods are used to analyze the Euro Stoxx 50 index, a major market indicator for the

Eurozone. Relevant benchmark models such as the popular DCC model and the common

Student’s t copula are taken into account.

1 Introduction

In light of the recent financial crisis of 2007-2009 and increasing volatility at global financial

markets, a diligent risk management is critical for any financial institution and also required by

regulators. The Basel II and III rules for banks and Solvency II for the insurance sector encourage

the use of sophisticated internal models. An important issue of such models is how dependence

among different assets is treated. It is a stylized fact that the long time predominant Gaussian

correlations are inappropriate in this matter. Dependencies among asset returns exhibit features

such as tail dependence and asymmetry (see, amongst others, Longin and Solnik (1995, 2001)

and Ang and Bekaert (2002)), for which the classical product-moment correlation, as implied by

the normal distribution, cannot account (see also Embrechts et al. (2002) for a comprehensive

discussion of the use of linear product-moment correlations in risk management). Despite this,

the dramatic events of 2007-2009 most emphatically stress that the need for adequate models

capturing complex dependence structures of large numbers of assets and accurately assessing

financial risk is stronger than ever.
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It is also well known that asset returns do not follow a Gaussian distribution as already

noted by Mandelbrot (1963). In particular, they exhibit fat tails, which cannot be captured

adequately using a Gaussian distribution. Since the seminal work of Engle (1982), there has

been considerable progress in modeling financial time series. Especially GARCH models, as

introduced by Bollerslev (1986), are widely and successfully used. They allow for time-varying

variances and the use of fat-tailed distributions as observed for financial returns. There also has

been some progress in extending GARCH models beyond univariate specifications (see Bauwens

et al. (2006) for a survey). Multivariate GARCH models such as the popular DCC model

by Sheppard and Engle (2001) and Engle (2002) however use only covariances for dependence

modeling among time series, while maintaining positive definite covariance matrices.

Copulas overcome this problem. According to the famous theorem by Sklar (1959), the

modeling of margins and dependence can be separated by the way of copulas. Hence, the

last years saw a steadily growing literature on copula GARCH models, where the marginal time

series are modeled with univariate GARCH models, while copulas are applied for the dependence

structure (see, e.g., Liu and Luger (2009), Berg and Aas (2009) and Fischer et al. (2009)).

Unfortunately, the choice of multivariate copulas is rather limited in contrast to the bivariate

case, where a rich variety of different copula types exhibiting flexible and complex dependence

patterns exists. While the infamous Gaussian copula (see Salmon (2009) for a criticism on its

role during the financial crisis) and also the Student’s t copula can only capture symmetric

dependencies using correlation matrices, exchangeable Archimedean copulas use only one or

two parameters for the dependency modeling among possibly dozens of variables, which is too

restrictive. The so-called pair copula constructions overcome this issue. They were originally

proposed by Joe (1996) and further explored and greatly extended by Bedford and Cooke (2001,

2002) and Kurowicka and Cooke (2006). Regular vines (R-vines) are a convenient graphical

model to classify such pair copula constructions and are hierarchical in nature. Each level only

involves the specification of arbitrary bivariate copulas as building blocks and hence allows for

very flexible models, exhibiting effectively any possible dependence structure.

The aim of this paper is to present and discuss the use of vine copulas for financial risk

management and thus introduce them to a broader audience. While in finance the use of

copulas is quite common nowadays (see, e.g., Cherubini et al. (2004)), literature on vine copula

modeling so far mainly concentrated on illustrative applications (see Aas et al. (2009), Fischer

et al. (2009), Berg and Aas (2009), Min and Czado (2010) and Czado et al. (2012)). A first

step to compensate this deficiency was taken by Mendes et al. (2010), who employ a D-vine

copula (a specific sub-class of R-vine copulas) with only four different bivariate copula families

for a six-dimensional data set and discuss its use for portfolio management. Our work goes

well beyond this. Since financial risk management often involves large numbers of assets to be

modeled accurately, we particularly focus on high-dimensional vine copula modeling. Model

selection techniques, which are required to find adequate R-vine structures especially in such

dimensions, are presented. To illustrate our methods, we analyze the Euro Stoxx 50 index,

which is a major market indicator for the Eurozone.

The analysis of the members of the Euro Stoxx 50 also motivates the consideration of vine

copula based factor models, in particular vine market sector models. Heinen and Valdesogo

(2009) developed a generalization of the CAPM, which can capture non-linear and non-Gaussian

behavior of the cross-section of asset returns as well as model their dependencies to the market

and the respective sector. Their so-called Canonical Vine Autoregressive (CAVA) model is based
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on two major building blocks: marginal GARCH models and a canonical vine copula structure

(another sub-class of R-vines). In this paper, we propose the Regular Vine Market Sector

(RVMS) model, which uses a flexible general R-vine copula construction without relying on

strict independence assumptions like the CAVA model. We thoroughly investigate both models

in our application to European stock market returns, establishing the superiority of the RVMS

model over the CAVA model. In contrast to Heinen and Valdesogo (2009), copula parameters

are also fitted using maximum likelihood estimation rather than only sequentially. Moreover,

although the factor based RVMS model might suffer from its less flexible structure compared

to general R-vine specifications, we demonstrate in this application that it not only facilitates

interpretation of dependencies but also is a very good model compared to relevant benchmark

models. By grouping assets by sectors, it thus mitigates the curse of dimensionality to some

extent.

Our second contribution is a discussion on how vine copula based factor models can be used

to identify the systematic and the idiosyncratic risk inherent in an asset return. It is however

important not to neglect that dependence modeling using copulas goes well beyond summarizing

dependence in one single number. The information contained in a copula is much richer and

critical to be taken into account when assessing complex financial risk.

Very important from a practitioner’s point of view is our third contribution. We describe

in detail how vine copulas can be used for portfolio management. This includes forecasting

the Value-at-Risk (or any other risk measure) of a portfolio as well as portfolio diversification

calculations and asset allocation. In doing so, we particularly point out why vine copula based

models are a serious alternative to the often used DCC model.

To summarize, this paper introduces R-vine copulas to complex financial applications, in

particular to issues of financial risk management. Building on this work, R-vine copulas can

easily serve as a “construction kit” for even more elaborate models and applications.

The remainder of the paper is structured as follows. In Section 2 we give a brief introduction

to the theory of copulas and discuss R-vine copulas and their selection. Vine market sector

models are treated in Section 3. We first review the work by Heinen and Valdesogo (2009) and

then propose our new RVMS model and discuss the separation of systematic and idiosyncratic

risk. Portfolio management using vine copulas is described in Section 4, which is subdivided into

the discussion of passive and active management methods. The Euro Stoxx 50 data is described

in Section 2.3 and analyzed at the end of each of the three sections. Section 5 provides conclusions

and an outlook to future research.

2 Multivariate copulas

The immense popularity that copulas have been enjoying recently is due to the theorem by Sklar

(1959). In the first instance, copulas are simply multivariate distribution functions with uniform

margins. For a random vector X = (X1, ..., Xd)
′ ∼ F with marginal distributions Fi, i = 1, ..., d,

Sklar’s theorem states that

F (x1, ..., xd) = C(F1(x1), ..., Fd(xd)), (2.1)
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where C is some appropriate d-dimensional copula. Moreover, if F is absolutely continuous and

F1, ..., Fd are strictly increasing continuous,

f(x1, ..., xd) =

[
d∏

k=1

fk(xk)

]
× c(F1(x1), ..., Fd(xd)),

where small letters denote corresponding density expressions. In other words, copulas conve-

niently allow to separate the modeling of the marginals and the dependency part in terms of the

copula. Comprehensive references on copulas are the books by Joe (1997) and Nelsen (2006).

Since copulas are inherently static models, they have to be combined with time series mod-

els for modeling financial returns (see, e.g., Cherubini et al. (2004)). This means that first

appropriate time series models such as ARMA-GARCH are fitted to each financial return series.

Copula modeling then proceeds with standardized residuals obtained from these models. More

details on this issue will be presented in Section 4.1.

While in two dimensions there is a wide range of flexible copulas available and frequently

used, multivariate copula modeling is more challenging. Standard classes such as elliptical and

Archimedean copulas exhibit severe drawbacks in larger dimensions. In particular, Archimedean

copulas, which typically have only one or two parameters, impose very strict dependence prop-

erties by assuming exchangeability and that all multivariate margins are the same. Elliptical

copulas such as the Gaussian or the Student’s t, on the other hand, suffer from a large number

of parameters and symmetry restrictions in the tails. While accounting for tail dependence, the

Student’s t copula however has only one parameter controlling its strength for all pairs. There

has been considerably effort in extending and enriching both classes. One such approach are

hierarchical Archimedean copulas, but they suffer from a hardly tractable density expression,

always impose stronger within-cluster than between-cluster dependence and are limited to the

Archimedean copula class (see, amongst others, Savu and Trede (2010)). The class of so-called

vine copulas easily overcomes the issues of elliptical and Archimedean copulas—as well as other

copulas—and at the same time exploits their virtue in the bivariate case.

2.1 Vine copulas

Vine copulas are another name for so-called pair copula constructions (PCCs) as introduced by

Aas et al. (2009). A PCC can be best illustrated in three dimensions. Let X = (X1, X2, X3)
′ ∼

F and assume that all necessary densities exist. It holds that

f(x1, x2, x3) = f1(x1)f(x2|x1)f(x3|x1, x2). (2.2)

Using Sklar’s theorem (2.1), it follows

f(x2|x1) =
f(x1, x2)

f1(x1)
=
c1,2(F1(x1), F2(x2))f1(x1)f2(x2)

f1(x1)
= c1,2(F1(x1), F2(x2))f2(x2), (2.3)

and

f(x3|x1, x2) =
f(x2, x3|x1)
f(x2|x1)

=
c2,3|1(F (x2|x1), F (x3|x1))f(x2|x1)f(x3|x1)

f(x2|x1)
= c2,3|1(F (x2|x1), F (x3|x1))f(x3|x1)
(2.3)
= c2,3|1(F (x2|x1), F (x3|x1))c1,3(F1(x1), F3(x3))f3(x3),

(2.4)
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with

F (x|v) =
∂Cxvj |v−j

(F (x|v−j), F (vj |v−j))
∂F (vj |v−j)

, (2.5)

where Cxvj |v−j
is a bivariate copula and v−j denotes a vector with the jth component vj removed.

Combining Equations (2.2)-(2.4) then gives a representation of a three-dimensional joint

density in terms of only bivariate copulas,

f(x1, x2, x3) = f1(x1)f2(x2)f3(x3)c1,2(F1(x1), F2(x2))

c1,3(F1(x1), F3(x3))c2,3|1(F (x2|x1), F (x3|x1)).

The bivariate copulas C1,2, C1,3 and C2,3|1 can be chosen independently of each other, so that a

wide range of different dependence structures can be modeled using PCCs, which are constructed

in essentially the same way in high dimensions. To facilitate inference, it is assumed that the

pair copula C2,3|1 only depends on x1 through the arguments F (x2|x1) and F (x3|x1). This

so-called simplifying assumption has been investigated by Hobæk Haff et al. (2010) and Stöber

et al. (2012). A critical look on the subject can be found in Acar et al. (2012).

Vines are a graphical representation to specify such PCCs. They were introduced by Joe

(1996) and Bedford and Cooke (2001, 2002) and described in more detail in Kurowicka and

Cooke (2006) and Kurowicka and Joe (2011). Statistical inference of regular vines is considered

in Dißmann et al. (2013).

According to Definition 4.4 of Kurowicka and Cooke (2006), a regular vine (R-vine) on d

variables consists first of a sequence of linked trees (connected acyclic graphs) T1, ..., Td−1 with

nodes Ni and edges Ei for i = 1, ..., d− 1, where T1 has nodes N1 = {1, ..., d} and edges E1, and

for i = 2, ..., d− 1 tree Ti has nodes Ni = Ei−1. Moreover, the proximity condition requires that

two edges in tree Ti are joined in tree Ti+1 only if they share a common node in tree Ti.

It is shown in Bedford and Cooke (2001) and Kurowicka and Cooke (2006) that the edges

in an R-vine tree can be uniquely identified by two nodes, the conditioned nodes, and a set of

conditioning nodes, i.e., edges are denoted by e = j(e), k(e)|D(e) where D(e) is the conditioning

set. An example of a seven-dimensional R-vine tree sequence with edge labels is given in the

left panel of Figure 1 (see Dißmann et al. (2013)).

The multivariate copula associated to trees T1, ..., Td−1 is then built up by associating each

edge e = j(e), k(e)|D(e) in Ei with a bivariate copula density cj(e),k(e)|D(e). According to Theo-

rem 4.2 of Kurowicka and Cooke (2006), the R-vine copula density is uniquely determined and

given by

c(F1(x1), ..., Fd(xd)) =
d−1∏
i=1

∏
e∈Ei

cj(e),k(e)|D(e)(F (xj(e)|xD(e)), F (xk(e)|xD(e))),

where xD(e) denotes the subvector of x = (x1, ..., xd)
′ indicated by the indices contained in D(e).

A special case of R-vines, which is often considered, are canonical vines (C-vines). In par-

ticular, an R-vine is called a C-vine if each tree Ti has a unique node with degree d− i, the root

node. A five-dimensional example is shown in the right panel of Figure 1. According to Aas

et al. (2009), we can write the C-vine copula density as

c(F1(x1), ..., Fd(xd)) =

d−1∏
i=1

d−i∏
j=1

ci,i+j|1,...,i−1(F (xi|x1, ..., xi−1), F (xi+j |x1, ..., xi−1)).
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Figure 1: Seven-dimensional R-vine trees (left panel) and five-dimensional C-vine trees (right

panel) with edge indices.

Evidently, C-vine copulas are only appropriate when there are pivotal quantities among the

variables under consideration. Otherwise this convenient tree structure may be too restrictive,

especially in higher dimensions.

2.2 Model selection

The number of different R-vines is substantial:
(
d
2

)
× (d− 2)!× 2(d−2

2 ) in d dimensions as shown

in Morales-Nápoles et al. (2010). For example, in seven dimensions (see Figure 1) there are

2 580 480 different R-vines, while for d = 23 there are already more R-vines than atoms in the

universe. Also for C-vines there are as many as d!/2 different ones (Aas et al. 2009). We

therefore rely on heuristic methods to select appropriate R- and C-vine trees (see Czado et al.

(2013) for an overview). Following Aas et al. (2009), Brechmann et al. (2012) and Dißmann

et al. (2013), the idea is to capture the strongest dependencies in the first trees, since these

are typically most important to be modeled explicitly and accurately. This is underlined by Joe

et al. (2010) who show that in order for a vine copula to have (tail) dependence for all bivariate

margins, it is sufficient for the bivariate copulas in the first tree to have (tail) dependence. In

addition, this strategy has proven useful to avoid numerical errors in higher order trees.

The setting of the first tree is a graph on d nodes, which correspond to the variables and where

all nodes are connected to each other by edges. To each edge a weight is attached according to

an arbitrary pairwise dependence measure δ such as the empirical tail dependence coefficient or

Kendall’s τ . The latter will be used in the following due to the fact that it captures the general

dependence among two variables. For R-vine tree selection, we then find a tree on all nodes, a

so-called spanning tree, which maximizes the sum of (absolute) pairwise dependencies. Such a
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N t C G F J BB1 BB7 RC RG

Positive dependence X X X X X X X X - -

Negative dependence X X - - X - - - X X
Tail asymmetry - - X X - X X X X X
Lower tail dependence - X X - - - X X - -

Upper tail dependence - X - X - X X X - -

Table 1: Bivariate copula families and their properties. Notation of copula families: N =

Gaussian, t = Student’s t, C = Clayton, G = Gumbel, F = Frank, J = Joe, BB1 = Clayton-

Gumbel, BB7 = Joe-Clayton, RC = rotated Clayton (90◦), RG = rotated Gumbel (90◦).

tree is usually referred to as maximum spanning tree. We hence solve the optimization problem

max
∑

edges e={i,j} in
spanning tree

|δij |,

where the absolute values of the pairwise dependencies δij , i 6= j, are used, since it is also

important to model strong negative dependencies as typically indicated by negative values of δ.

For C-vine tree selection, we simply choose as root node the node that maximizes the sum of

pairwise dependencies to this node (see Czado et al. (2012)).

Given the selected tree, we then choose appropriate pair copulas from a range of ten different

families, which are shown in Table 1 with their properties (whether or not they can model

positive and negative dependence, tail asymmetry, and lower and upper tail dependence; see

Joe (1997) and Nelsen (2006)). As selection criterion we use the AIC because it turned out to

perform particularly well in a simulation study (Brechmann 2010, Section 5.4.4). Moreover, we

always perform a bivariate independence test first to obtain parsimonious models. Parameters

for copulas are estimated using bivariate maximum likelihood estimation.

In the next step, we compute transformed observations F (x|v) from the estimated pair

copulas using formula (2.5). These are used as input parameters for the next trees, which are

obtained similarly by constructing a graph according to the above R-vine construction principles,

in particular the proximity condition, and then finding a maximum spanning tree or the next

root node.

The treewise selection and estimation procedure described here gives sequential estimates of

pair copula parameters, which are quite quickly obtained and can be used as starting values for

a full maximum likelihood estimation (see Aas et al. (2009) and Hobæk Haff (2013)). This way

of proceeding selects the vine tree structure simultaneously together with pair copula families

and their parameter values. In particular, pair copula families are selected individually and the

corresponding parameter estimation only requires bivariate optimization. Usually, the sequential

estimation procedure even provides quite good estimates, and they therefore can be seen as

reasonable approximations to maximum likelihood estimates for the selected tree structure and

selected pair copula families (see Hobæk Haff (2012) who shows that the performance of the

stepwise estimator is quite satisfactory compared to the full log likelihood method).

2.3 Application to data

The Euro Stoxx 50 index is a major barometer of financial markets in the Eurozone. It covers

stocks of 50 large Eurozone companies selected based on their market capitalization. According
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Ticker symbols

Indices ^STOXX50E, ^GDAXIP, ^FCHI, FTSEMIB.MI, ^IBEX, ^AEX

Germany ALV.DE, BAS.DE, BAYN.DE, DAI.DE, DB1.DE, DBK.DE, DTE.DE, EOAN.DE,

MUV2.DE, RWE.DE, SAP.DE, SIE.DE

France ACA.PA, AI.PA, ALO.PA, BN.PA, BNP.PA, CA.PA, CS.PA, DG.PA, FP.PA, FTE.PA,

GLE.PA, GSZ.PA, MC.PA, OR.PA, SAN.PA, SGO.PA, SU.PA, UL.PA, VIV.PA

Italy ENEL.MI, ENI.MI, G.MI, ISP.MI, TIT.MI, UCG.MI

Spain BBVA.MC, IBE.MC, REP.MC, SAN.MC, TEF.MC

Netherlands AGN.AS, INGA.AS, PHIA.AS, UNA.AS

Table 2: Ticker symbols of the analyzed stocks of the Euro Stoxx 50.

to Stoxx Ltd, the index serves “as underlying for a wide range of investment products such as

Exchange Traded Funds, Futures and Options, and structured products worldwide”. A detailed

understanding of the dynamics of the Euro Stoxx 50 therefore is an important issue.

This involves an accurate assessment of the dependencies among the index members. Here,

we concentrate on 46 of them. For the index composition as of February 8, 2010, these are

the stocks from the five largest Eurozone economies, namely Germany, France, Italy, Spain and

the Netherlands. The four disregarded stocks are the only stocks from their countries (Belgium,

Finland, Ireland, Luxembourg) and correspond to only 6.7% of the total index weight. All stocks

considered in our analyses are shown in Table 2. The table also shows the five national indices

that the 46 stocks belong to: the German DAX, the French CAC 40, the Italian FTSE MIB,

the Spanish IBEX 35, and the Dutch AEX.

Recent statistical analyses of the Euro Stoxx 50 can be found, e.g., in Savu and Trede (2010),

Cherubini et al. (2004) and Hlawatsch and Reichling (2010). The first paper analyzes a subset of

twelve stocks using a hierarchical Archimedean copula. Hlawatsch and Reichling (2010) consider

a portfolio allocation problem for 16 major stocks belonging to the Euro Stoxx 50 using skewed

Student’s t distributions and a Clayton copula. Only Cherubini et al. (2004) analyze all 50

components of the Euro Stoxx 50 with GARCH(1,1) filters and Student’s t error distributions.

For the dependence structure they consider multivariate Gaussian and Student’s t copulas as

well as two Archimedean copulas.

We now investigate the dependence structure of the Euro Stoxx 50 members using R- and

C-vine copulas. For this, we consider daily log returns of the indices and stocks shown in Table

2 over the 4-year period from May 22, 2006 to April 29, 2010 resulting in 985 observations. In

terms of complexity, this means that we are dealing with a 52-dimensional data set (46 stocks,

five national indices and the Euro Stoxx 50 index). This dimensionality is beyond vine copula

applications that can be found in the literature so far (see Brechmann et al. (2012) and Dißmann

et al. (2013)). Heinen and Valdesogo (2009) analyze 95 financial returns using C-vine copulas.

They however do not provide maximum likelihood estimates of the copula parameters.

As noted above, we preliminarily find appropriate models for the univariate time series before

analyzing the dependence of the standardized residuals. This is called the estimation method

of inference functions for margins (IFM) by Joe and Xu (1996) and Joe (2005). The selection

process of the marginal time series models is described in Appendix A.

We then fit appropriate R- and C-vine copulas as described in Section 2.2. The order of the

first seven C-vine root nodes is as follows: Euro Stoxx 50, Société Générale (GLE.PA), CAC 40,

DAX, IBEX 35, ING Groep (INGA.AS), FTSE MIB; the Dutch AEX is only identified as the
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Figure 2: First tree of the selected R-vine for the Euro Stoxx 50 data. The thickness of the

edges corresponds to the Kendall’s τ implied by the respective pair copula parameters.

13th root node. The first tree of the selected R-vine is shown in Figure 2.

The order of the C-vine root nodes and the first R-vine tree show that the Dutch AEX only

plays a minor role due to its small size. It is the only national index that is not directly connected

to the Euro Stoxx 50, which constitutes some kind of “root node” of the R-vine. Further,

the Euro Stoxx 50 and the national leading stock indices are identified as main dependency

drivers, where the importance of the CAC 40 and the DAX is due to the high number of

French and German stocks represented in the Euro Stoxx 50 (index weights of 35.3% and 28.1%,

respectively). The financial companies Société Générale and ING Groep also play a central role,

since 28.2% of the Euro Stoxx 50 are composed of financial institutions.

The full maximum likelihood fit of the R- and C-vine copulas is compared to a multivariate

Gaussian copula and a multivariate Student’s t copula with one common degrees of freedom

parameter. The Student’s t copula serves as a benchmark model, since it is currently the

state-of-the-art approach for modeling financial returns (see, e.g., Mashal and Zeevi (2002) and

Breymann et al. (2003)). The Gaussian copula cannot account for tail dependence, but it is

nevertheless still frequently used and therefore fitted for comparison. The parameters of the two

elliptical copulas are also estimated by maximum likelihood estimation. Results are reported

in Table 3, which also gives statistics of Vuong (1989) tests for non-nested model comparison

between the copulas. Vuong test statistics are asymptotically standard normal, so that model

discrimination can be based on standard normal quantiles. Both vine copulas are clearly superior

to the Gaussian copula, which provides the worst fit here, and even superior to the Student’s t

copula. The R-vine copula is also slightly superior to the C-vine copula, especially when taking

into account the number of model parameters, which is clearly less for the R-vine copula with

its less restrictive structure.

The selected pair copula families of the first five trees of the R-vine copula are shown in Table

9



Copula Log No. of AIC BIC Vuong: R-vine Vuong: Student’s t

likelihood param. no Schwarz no Schwarz

R-vine 30879.60 596 -60567.20 -57651.19 - - -1.61* -23.09*

C-vine 30839.68 685 -60309.36 -56957.90 0.50* 4.35 -1.55* -24.68*

Student’s t 30691.36 1327 -58728.72 -52236.18 1.61* 23.09 - -

Gaussian 29253.73 1326 -55855.45 -49367.81 13.89 25.27 14.96 14.94

Table 3: Log likelihoods, number of copula model parameters, AICs and BICs of the copula

fits for the Euro Stoxx 50 data. Estimates are obtained using maximum likelihood estimation.

Vuong test statistics (with and without Schwarz correction for the number of model parameters

used) indicated by asterisks imply that the considered model is indistinguishable from or superior

to the R-vine copula (columns 5 and 6) or the Student’s t copula (columns 7 and 8), respectively,

at the 5% level.

Tree Π N t C G F J BB1 BB7 RC RG

T1 0 0 50 0 0 0 0 1 0 0 0

T2 2 2 28 3 0 12 0 0 0 1 2

T3 23 3 17 1 1 4 0 0 0 0 0

T4 24 4 10 1 2 5 0 0 0 0 2

T5 31 3 3 0 0 6 0 0 0 2 2

Table 4: Selected pair copula families of the first five trees of the R-vine copula for the Euro

Stoxx 50 data. The notation of copula families is as in Table 1; Π denotes the independence

copula.

4. Dependencies of national indices and the Euro Stoxx 50 are mainly captured by heavy tailed

Student’s t copulas, while higher order trees are modeled with different copulas for different types

of dependencies (see Table 1). As intended by the model selection methodology, the number

of chosen independence copulas is increasing after the first tree. In other words, the model

complexity is decreasing in higher order trees. For comparison, we also selected pair copulas

with the BIC instead of the AIC. This further reduces the number of model parameters, since

the more parsimonious BIC based selection often prefers a one parameter Gaussian or Frank

copula to a two parameter Student’s t copula. In the following, we concentrate on the R-vine

copula with pair copulas selected using the AIC.

To summarize these first results, the C- and especially the R-vine copula show a good fit to

the data and provide a directly interpretable dependence structure, which corresponds very well

to the economical intuition. In particular, the essentially exploratory selection of the R-vine

copula model identifies the apparent sectoral dependence present in the data. A more explicit

modeling of this sectoral structure is discussed in the following section.

3 Vine market sector models

Motivated by the results of the previous section, we develop a new market sector model based

on vine copulas. It is inspired by the famous classical Capital Asset Pricing Model (CAPM) of

Sharpe (1964) and Lintner (1965). The CAPM essentially assumes that at time t the individ-

ual asset returns rt,j , the market return rt,M and the idiosyncratic error terms εt,j , which are

independent of εt−1,j and of εt,k ∀k 6= j, are jointly normally distributed and follow the linear
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relationship

rt,j − rf = βj(rt,M − rf ) + εt,j , (3.1)

where βj is usually called the sensitivity of asset j to the market and rf is the risk free rate of

interest.

The CAPM belongs to a class of more general models, so-called factor models, of which the

CAPM is the simplest with the market being the only factor. The most famous multi-factor

model is the three-factor model of Fama and French (1992). Their model uses three factors

in order to take into account deviations from the CAPM for companies with small market

capitalization (small caps) and with high book-to-market ratio (value stocks). Other multi-

factor models include factors such as industry sectors or currencies (see, e.g., Drummen and

Zimmermann (1992)).

In most cases, the restrictive assumptions of the CAPM are however inappropriate, not to

say wrong. Heinen and Valdesogo (2009) addressed these issues and developed a non-linear and

non-Gaussian generalization of the CAPM, which they called Canonical Vine Autoregressive

(CAVA) model, where “autoregressive” refers to the fact that the involved copulas are possibly

time-varying.

We first review their model before introducing our new Regular Vine Market Sector model,

which is available for flexibly capturing market and sectoral dependencies among large numbers

of assets, such as the constituents of the S&P 500 index classified according to the Global

Industry Classification Standard (GICS) or those of the MSCI World index decomposed into

national indices.

3.1 Heinen and Valdesogo’s Canonical Vine Autoregressive model

Heinen and Valdesogo (2009) loosen the normality and linearity assumptions of the CAPM

specified in (3.1) by using a variety of GARCH models for the marginal time series of financial

returns and by modeling the residual dependence between assets and the market with bivariate

copulas for the standardized residuals. This obviously corresponds to the first tree of a C-vine

copula model with the market as root node. Each asset is further assumed to depend on the

market and on its sector (e.g., utilities or financial services). To fit this two-factor model to a

C-vine structure with the market and the sectors as root nodes, this model induces independence

assumptions: Conditionally on the market, sectoral returns are assumed to be independent and

asset returns independent of sector returns other than their own. The remaining dependence

of asset returns conditioned on the market and on the respective sectors is captured with a

multivariate Gaussian copula, which is shown to give a valid copula model by Valdesogo (2009).

In the following, we will refer to this model as Canonical Vine Market Sector (CVMS) model in

order to highlight the underlying model structure. It is illustrated in the following example (see

Heinen and Valdesogo (2009)).

Example 3.1 (CVMS model.). Let rA1 , rA2 , rB1 and rB2 denote the (standardized residuals of)

returns of stocks belonging to sectors A and B, respectively. Further, let rA and rB be those of

the sectors A and B as well as rM of the market. According to the CVMS model, the following

independence assumptions hold:

(i) rA is independent of rB conditioned on rM , and

(ii) rA1 and rA2 are independent of rB conditioned on rM , while rB1 and rB2 are independent of

rA conditioned on rM .
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In terms of a C-vine structure, we now have the market as the first root node and the sectors as

second and third root nodes, where the order is arbitrary due to the independence assumptions.

Let sector A be the second and B the third root node.

The copula terms of the first C-vine tree T1 with the market as the root node are

c1A,M
(
F (rA1 ), F (rM )

)
, c2A,M

(
F (rA2 ), F (rM )

)
, c1B,M

(
F (rB1 ), F (rM )

)
,

c2B,M
(
F (rB2 ), F (rM )

)
, cA,M (F (rA), F (rM )) , cB,M (F (rB), F (rM )) .

Since A is the second root node, the pair copulas of the second tree T2 are given by

c1A,A|M
(
F (rA1 |rM ), F (rA|rM )

)
, c2A,A|M

(
F (rA2 |rM ), F (rA|rM )

)
,

and by

c1B,A|M
(
F (rB1 |rM ), F (rA|rM )

)︸ ︷︷ ︸
(ii)
= 1

, c2B,A|M
(
F (rB2 |rM ), F (rA|rM )

)︸ ︷︷ ︸
(ii)
= 1

,

according to independence assumption (ii) (the density of the independence copula is 1). We

also have that cA,B|M (F (rA|rM ), F (rB|rM )) = 1 because of the first independence assumption.

Further, the copulas of the third tree T3 are

c1A,B|M,A

(
F (rA1 |rM , rA), F (rB|rM , rA)

)︸ ︷︷ ︸
(ii)
= 1

, c2A,B|M,A

(
F (rA2 |rM , rA), F (rB|rM , rA)

)︸ ︷︷ ︸
(ii)
= 1

,

as well as

c1B,B|M,A

(
F (rB1 |rM , rA)︸ ︷︷ ︸

(ii)
= F (rB1 |rM )

, F (rB|rM , rA)︸ ︷︷ ︸
(i)
=F (rB |rM )

)
= c1B,B|M

(
F (rB1 |rM ), F (rB|rM )

)
,

and similarly for c2B,B|M,A using both independence assumptions.

Finally, we have a four-dimensional Gaussian copula cρ1A,1B,2A,2B|M,A,B with arguments

F (rAi |rM , rA, rB) = F (rAi |rM , rA) and F (rBi |rM , rA, rB) = F (rBi |rM , rB) for i = 1, 2 due to

independence assumption (ii).

Then, the joint density of the (standardized residuals of) returns rA1 , rA2 , rB1 , rB2 , rA, rB and

rM is given by

f(rA1 , r
A
2 ,r

B
1 , r

B
2 , rA, rB, rM ) = f(rA1 )f(rA2 )f(rB1 )f(rB2 )f(rA)f(rB)f(rM )

× c1A,M
(
F (rA1 ), F (rM )

)
c2A,M

(
F (rA2 ), F (rM )

)
× c1B,M

(
F (rB1 ), F (rM )

)
c2B,M

(
F (rB2 ), F (rM )

)
× cA,M (F (rA), F (rM )) cB,M (F (rB), F (rM ))

× c1A,A|M
(
F (rA1 |rM ), F (rA|rM )

)
c2A,A|M

(
F (rA2 |rM ), F (rA|rM )

)
× c1B,B|M

(
F (rB1 |rM ), F (rB|rM )

)
c2B,B|M

(
F (rB2 |rM ), F (rB|rM )

)
× cρ1A,1B,2A,2B|M,A,B

(
F (rA1 |rM , rA), ..., F (rB2 |rM , rB)

)
.

The first three trees of the C-vine are shown in the left panel of Figure 3. Dotted lines

illustrate the independence assumptions, i.e., independence copulas are chosen for the copulas

corresponding to dotted edges.
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Figure 3: Left panel: first three trees of the CVMS model in Example 3.1. Right panel: first

and second tree of the RVMS model in Example 3.2.

3.2 The Regular Vine Market Sector model

The strong assumptions of the CVMS model due to its underlying restrictive C-vine struc-

ture and the more general and very flexible structure of R-vines motivate the construction of

an alternative model for the standardized residuals of appropriately chosen marginal GARCH

models.

We expect that there are strong relationships between the returns of an asset and the sector

that it belongs to. In contrast to the CVMS model, we thus model these dependencies first

as well as the dependencies of the sectors to the market to take into account the joint driver

of dependencies among sectors. If all remaining dependencies are captured by Gaussian pair

copulas in higher order trees, we speak of the Regular Vine Sector (RVS) model. If however

the dependencies to the market are also modeled conditionally on the respective sectors in the

second R-vine tree before setting all pair copulas of higher order trees to bivariate Gaussian

copulas, we call the model the Regular Vine Market Sector (RVMS) model. As in the CVMS

model, we furthermore assume that sectors are independent conditioned on the market in the

RVMS model. This independence assumption is however only made for convenience to avoid

the selection of an explicit tree structure among indices conditioned on the market. Moreover,

note that the construction of higher order trees is not uniquely determined by the first or second

tree in an RVS or RVMS model, respectively. We solve this problem by simply modeling the

strongest dependencies in each tree as described in Section 2.2 and where ”dependency” usually

refers to Kendall’s τ . Modeling using a multivariate Gaussian copula as in the CVMS model

is not possible here due to the more general underlying R-vine structure (see Brechmann et al.
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(2012)). Examples of both models, the one-factor RVS model and the two-factor RVMS model,

are given in the following.

Example 3.2 (RVS and RVMS models.). Similar to Example 3.1 we consider the (standardized

residuals of) returns rA1 , rA2 , rB1 , rB2 , rC1 and rC2 of stocks belonging to sectors A, B and C with

sector returns rA, rB and rC , respectively. Furthermore, rM denotes the market return.

The first R-vine tree in the RVS as well as the RVMS model is specified with appropriate

pair copulas as

c1A,A
(
F (rA1 ), F (rA)

)
c2A,A

(
F (rA2 ), F (rA)

)
c1B,B

(
F (rB1 ), F (rB)

)
× c2B,B

(
F (rB2 ), F (rB)

)
c1C,C

(
F (rC1 ), F (rC)

)
c2C,C

(
F (rC2 ), F (rC)

)
× cA,M (F (rA), F (rM )) cB,M (F (rB), F (rM )) cC,M (F (rC), F (rC)) .

In the RVS model, all pair copulas of higher order trees are then set to bivariate Gaussian

copulas. The RVMS model, on the other hand, also models the second R-vine tree under the

assumption that sectors are independent conditionally on the market, i.e.,

cA,B|M (F (rA|rM ), F (rB|rM )) = 1,

and similarly for A and C as well as for B and C (see independence assumption (i) in Example

3.1). Hence, the pair copula terms of the second tree of the RVMS model are

c1A,M |A
(
F (rA1 |rA), F (rM |rA)

)
c2A,M |A

(
F (rA2 |rA), F (rM |rA)

)
× c1B,M |B

(
F (rB1 |rB), F (rM |rB)

)
c2B,M |B

(
F (rB2 |rB), F (rM |rB)

)
× c1C,M |C

(
F (rC1 |rC), F (rM |rC)

)
c2C,M |C

(
F (rC2 |rC), F (rM |rC)

)
.

Without the above independence assumption, we would have to model the dependence among

the sectors A, B and C conditionally on the market. In terms of a vine, this means that we

would have to choose a tree structure for the sector variables, since the pairs A,B|M , A,C|M
and B,C|M form a cycle. A possible choice would be the pairs A,B|M and A,C|M and to

model the dependence between the sectors B and C conditionally on sector A and on the market,

i.e., B,C|M,A (see the three-dimensional example in Section 2.1). Due to the independence

assumption, the model is independent of this choice. All higher order trees of the RVMS model

are then specified with Gaussian pair copulas.

Figure 3 shows the first tree of the RVS and the RVMS model as well as the second tree of

the RVMS model. The dotted lines in the second tree illustrate the independence assumption

for sectors conditionally on the market.

Before analyzing the Euro Stoxx 50 using vine market sector models, we first discuss the

decomposition into systematic and idiosyncratic risk of asset returns using the RVMS model,

since it is central to any factor model.

3.3 Separation of systematic and idiosyncratic risk

Given the rather simple CAPM equation (3.1), it is straightforward to separate the systematic

market risk and the idiosyncratic risk of the return of an asset j by

σ2j = β2j σ
2
M + σ2εj , (3.2)
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where σ2j , σ
2
M and σ2εj denote the variances of the asset return, the market return and the

idiosyncratic error term, respectively.

Such a decomposition is due to the assumptions of linearity and joint normality. For our

non-linear and non-Gaussian RVMS model it is therefore not clear how to obtain a similar result.

We would nevertheless like to present some ideas regarding this issue in order to facilitate the

interpretation of results. First, note that we separate marginal and dependency modeling by

first selecting appropriate GARCH models for the marginal time series. Hence, dependencies are

modeled not directly among returns but among standardized residuals of them. All following

statements are therefore based on the residuals rather than on the original data. Moreover,

variances are not constant when using a GARCH model, but time-dependent. This also prohibits

an expression as in (3.2).

A central—and rather restrictive—assumption of the CAPM is joint normality. In the RVMS

model this is not required. The copulas used here are able to capture more complex dependency

structures than a simple product-moment correlation coefficient, as it is the case for Gaussian

random variables. Examples of such structures allow for asymmetric and tail dependent depen-

dencies. Hence, the dependence structure of a particular asset j in the RVMS model cannot

simply be summarized in one single number such as the sensitivity βj in the CAPM. A copula

contains much more information and this should not be neglected. In particular, the considera-

tion of joint tail behavior is critical when dealing with financial returns.

In order to separate market, sectoral and idiosyncratic risk, it is however useful to consider

the following: Choose a dependence measure such as the product-moment correlation, Kendall’s

association measure τ , Spearman’s rank correlation ρ or Blomqvist’s medial correlation β (see

Nelsen (2006) for more details) and compute it for each pair copula in the RVMS model that

involves asset j in the conditioned set, i.e., we consider the conditional dependence of asset j to

all other assets and sectors as identified by the R-vine structure. Then, one obtains an indication

how strong the (conditional) dependencies to the market M , to the respective sector S of asset

j and to the other assets and sectors kj1 , ..., kjm are (here m denotes the number of assets and

sectors other than j and S). Let δ be the chosen dependence measure and assume that asset j

is not independent of all other variables under consideration (to exclude unrealistic scenarios),

then the fraction

Rj,S(δ) =
|δj,S |

|δj,S |+ |δj,M |S |+ |δj,kj1 |S,M |+ ...+ |δj,kjm |S,M,kj1 ,...,kjm−1
| (3.3)

gives an indication how strong the sectoral risk is compared to the market and the idiosyncratic

risk for asset j. The conditional pairs (j, kj1 |S,M), ..., (j, kjm |S,M, kj1 , ..., kjm−1) are identified

by the utilized R-vine structure. We take absolute values, since dependence measures can also

take negative values and hence cancel out in the denominator, which would be counterintuitive.

Thus, Rj,S(δ) ∈ [0, 1] gives the fraction of all dependence, positive and negative, that is explained

by sector S. If Rj,S(δ) = 0, there is no sectoral dependence. Conversely, the behavior of asset j

is perfectly explained by sector S if Rj,S(δ) = 1.

Similar to (3.3) we can define the market risk conditionally on the sector, i.e., with all

dependence on the sector being removed, as

Rj,M |S(δ) =
|δj,M |S |

|δj,S |+ |δj,M |S |+ |δj,kj1 |S,M |+ ...+ |δj,kjm |S,M,kj1 ,...,kjm−1
|

and the idiosyncratic risk as Rj,ε(δ) = 1−Rj,S(δ)−Rj,M |S(δ) ∈ [0, 1], where Rj,S(δ)+Rj,M |S(δ)
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is interpreted as systematic risk. Note that the measures in the denominator could also be

weighted to take into account the conditioning.

Alternatively, the measures δj,S and δj,M |S may also be considered separately, then giving the

absolute dependence on the respective sector and on the market conditionally on the sector. In

particular for lower and upper tail dependence coefficients λ` and λu, respectively, this is sensible

because the joint tail behavior is often rather weak in higher order trees, so that Rj,S(λ`) and

Rj,M |S(λ`) (and similar for λu) would have only limited explanatory power.

3.4 Application to data

As indicated by the results in Section 2.3, vine market sector models may be useful to analyze the

Euro Stoxx 50. Since the independence assumptions of the CVMS model are quite restrictive, we

first carefully investigate these assumptions and assess whether they are appropriate. Further,

we compare the fitted vine market sector models to the fitted copulas from Section 2.3 and

analyze the systematic and the idiosyncratic risk of the stocks. When constructing the models,

we will not consider dynamical pair copula terms in order to limit the model complexity to a

reasonable degree. In Section 4.1 Value-at-Risk forecasting using the RVMS model will however

be based on rolling window estimates.

3.4.1 Independence assumptions

The CVMS model considered in Section 3.1 heavily relies on independence assumptions with

respect to the standardized residuals of returns to construct a C-vine structure. Here, these

assumptions can be explicitly stated as:

(i) the national indices conditioned on the market, i.e., on the Euro Stoxx 50, are independent,

and

(ii) conditionally on the market, the individual stocks are independent of national indices other

than their own, e.g., German stocks are independent of the French CAC 40 conditioned

on the Euro Stoxx 50.

The first independence assumption also applies to the RVMS model, while the second is not

needed there. This is the important difference between both models as shown in the following.

While the first root node of the CVMS model is obviously the Euro Stoxx 50 index, the

order of root nodes 2 to 6 is arbitrary (see Example 3.1). We choose the order according to the

number of stocks under consideration (see Table 2), i.e., we choose the CAC 40 as second, the

DAX as third, the FTSE MIB as fourth, the IBEX 35 as fifth and finally the AEX as sixth root

node. This also corresponds to the order selected for the C-vine copula fit in Section 2.3.

Independence assumption (ii) (for the stocks) is investigated in the columns of Table 5,

which displays the percentage of rejections of the independence hypothesis using a bivariate

independence test based on Kendall’s τ (see, e.g., Genest and Favre (2007)) for variable pairs

involving the respective national index (e.g., the null hypothesis of independence of a specific

German stock and the CAC 40 conditioned on the Euro Stoxx 50 is rejected for 33% of the

German stocks, where the CVMS model assumes 0%). The p-values of independence tests

between the national indices in order to check the first independence assumption are shown in

Table 6.
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CAC 40 DAX FTSE MIB IBEX 35 AEX

French - 42% 47% 32% 58%

German 33% - 42% 33% 33%

Italian 83% 50% - 33% 33%

Spanish 80% 100% 60% - 60%

Dutch 50% 25% 50% 50% -

total 56% 50% 47% 34% 48%

Table 5: Percentages of rejection at the 5% level of the independence hypothesis for stocks from

each country versus indices of countries other than their own conditioned on the Euro Stoxx 50.

The tests are based on the standardized residuals of the returns.

CAC 40 DAX FTSE MIB IBEX 35

DAX 0.26*

FTSE MIB 0.91* 0.00

IBEX 35 0.00 0.00 0.32*

AEX 0.00 0.86* 0.05* 0.00

Table 6: p-values of bivariate independence tests for national stock indices conditioned on the

Euro Stoxx 50. p-values indicated by ”*” imply that the independence hypothesis cannot be

rejected at the 5% level in accordance with the assumptions of the CVMS and RVMS models.

The tests are based on the standardized residuals of the returns.

Evidently, independence assumptions (i) and (ii) do not hold in general. In particular, con-

ditionally on the market, i.e., the Euro Stoxx 50, there is significant dependence of Italian and

Spanish stocks on the French CAC 40 as well as dependence of all Spanish stocks on the Ger-

man DAX, which contradicts independence assumption (ii). In total, the assumption is wrong

for about 50% of all variable pairs under consideration. Moreover, the null hypothesis of in-

dependence is pairwisely rejected for the Spanish IBEX 35, the Dutch AEX and the CAC 40

as well as for the Italian FTSE MIB and the IBEX 35 with respect to the DAX in contradic-

tion to independence assumption (i). That is, while the assumptions of the CVMS model are

clearly incorrect here, the (weaker) assumption of the RVMS model that sectors are pairwisely

independent is also only partly satisfied.

3.4.2 Model comparisons

We now compare the CVMS model as well as the RVMS and the RVS model to the R- and

C-vine copulas fitted in Section 2.3. For comparison to the first R-vine tree shown in Figure 2,

the first tree of the RVMS and the RVS model is shown in Figure 4.

As indicated by the problematic independence assumptions, there are important dependen-

cies that are neglected in the first trees of the CVMS model. It further aims at capturing all

remaining dependencies with a multivariate Gaussian copula. This means that the transformed

variables (2.5) obtained from the pair copulas of tree T6 are modeled as jointly normal, which

is a rather strict assumption given that the data might exhibit, e.g., asymmetric dependence

or strong joint tail behavior. Hence, we used the copula goodness-of-fit test based on Rosen-

blatt’s transformation (Breymann et al. 2003) to investigate the hypothesis of joint normality,

since this test performs particularly well against heavy tailed alternatives, as they often occur
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Figure 4: First tree of the RVMS and RVS models for the Euro Stoxx 50 data. The thickness

of the edges corresponds to the Kendall’s τ implied by the respective pair copula parameters.

in financial applications (Berg 2009), and since it is computationally less demanding than alter-

native multivariate tests. Here, the test clearly rejected the null hypothesis of normality with

an approximate p-value of 0.00, i.e., a multivariate Gaussian copula is not appropriate, which

again contradicts the assumptions of the CVMS model.

The use of Gaussian pair copulas in higher order trees of the RVMS and the RVS models

cannot be validated that easily. We can however employ the heuristic procedure developed by

Brechmann et al. (2012) to investigate an appropriate vine tree after which remaining pair

copulas can be set to Gaussian. Its parsimonious version based on the Vuong test with Schwarz

correction confirms the assumption of the RVMS model, while using Gaussian pair copulas

already after the first tree as in the RVS model seems inappropriate.

Table 7 compares the vine market sector models to the R- and the C-vine copula as well as

the Gaussian and the Student’s t copula fitted in Section 2.3. As before, log likelihoods obtained

by maximum likelihood estimation, AICs, BICs and Vuong tests with respect to the R-vine and

the Student’s t copula are shown. For reasons of comparison, we also consider an alternative

specification of the CVMS model: Instead of using a multivariate Gaussian copula for the CVMS

model, we fit all remaining C-vine trees with Gaussian pair copulas as in the RVMS models,

which allows for bivariate independence tests for the pairs of transformed variables (2.5) in each

tree. The resulting model is denoted by CVMS-P to indicate the pairwise modeling.

In contrast to Heinen and Valdesogo (2009), we also compute the maximum likelihood copula

parameter estimates of our new vine market sector model, the RVMS model. The full maximum

likelihood estimates provide the basis for bootstrapping to obtain confidence intervals.

To summarize, the CVMS model of Heinen and Valdesogo (2009) is inappropriate to explain

the dependence of the Euro Stoxx 50. It requires a lot of parameters, since a 46-dimensional

correlation matrix has to be fitted for the remaining dependency after the sixth C-vine tree.
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Copula Log No. of AIC BIC Vuong: R-vine Vuong: Student’s t

likelihood param. no Schwarz no Schwarz

R-vine 30879.60 596 -60567.20 -57651.19 - - -1.61* -23.09*

C-vine 30839.68 685 -60309.36 -56957.90 0.50* 4.35 -1.55* -24.68*

Student’s t 30691.36 1327 -58728.72 -52236.18 1.61* 23.09 - -

Gaussian 29253.73 1326 -55855.45 -49367.81 13.89 25.27 14.96 14.94

CVMS 30375.26 1212 -58326.52 -52396.65 5.18 26.98 3.56 -0.90*

CVMS-P 29935.25 495 -58880.50 -56458.63 9.29 5.87 7.36 -20.55*

RVS 30002.32 506 -58992.64 -56516.97 8.41 5.44 6.77 -21.02*

RVMS 30168.06 535 -59266.12 -56648.56 7.38 5.20 5.56 -23.46*

Table 7: Log likelihoods, number of copula model parameters, AICs and BICs of the copula

and the vine market sector model fits for the Euro Stoxx 50 data (extended version of Table 3).

Estimates are obtained using maximum likelihood estimation. Vuong test statistics (with and

without Schwarz correction for the number of model parameters used) indicated by asterisks

imply that the considered model is indistinguishable from or superior to the R-vine copula

(columns 5 and 6) or the Student’s t copula (columns 7 and 8), respectively, at the 5% level.

This over-specification leads to a high log likelihood, but, taking into account the number of

model parameters, the model fit is clearly inferior to the competitive models. Moreover, the

model assumptions of the CVMS model were shown to be not satisfied. Although the CVMS-P

improves in some regard, in particular in terms of parsimony, R-vine based models are still

superior. Again taking into account the number of model parameters, the current state-of-the-

art dependence model, the Student’s t copula can be regarded as inferior to all vine copula

models and only the Gaussian copula provides a worse fit.

3.4.3 Systematic and idiosyncratic risk

The RVMS model can be used to separate the systematic and the idiosyncratic risk of stocks as

discussed in Section 3.3. We therefore computed the sectoral risk Rj,S , i.e., the risk captured by

the national index, and, conditionally on the respective sector, the market risk Rj,M |S for each

stock j. As dependence measures we use Kendall’s τ and product-moment correlations, which

we obtained from an RVMS model with only Gaussian pair copulas. The results for the stocks

from each country are shown in Figure 5.

Apparently, sectoral risk is quite variable across different stocks. Overall, the mean sectoral

risk among German stocks is higher than that of the other four countries, which is approximately

similar. That is, the German stock market is more strongly self-contained. Conditionally on the

respective sectors, the market risk is very small for all stocks. In the copula model selection we

always investigated if variables were independent, and hence the market risk is even zero for some

stocks, where the test detected independence between a stock and the Euro Stoxx 50. The rather

high idionsyncratic risk of most stocks can be explained by major dependencies on other stocks

as identified, e.g., in the first R-vine tree shown in Figure 2. Moreover, these results correspond

to the analysis of Drummen and Zimmermann (1992) who, using a multi-factor model, find that

the country effect is much stronger than that of the European market—which also confirms the

assumed structure of the RVMS model—, while the proportion of idiosyncratic risk is about

50%, even when more factors are used than in our model. The findings are also in line with the
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Figure 5: Sectoral and market risk of the stocks from each country in the Euro Stoxx 50 data

according to the general RVMS model (Rj,s(τ), Rj,M |S(τ)) and an RVMS model with only

Gaussian copulas (Rj,s(ρ), Rj,M |S(ρ)). Horizontal lines indicate the mean sectoral risk Rj,s(τ).

fit of a two-factor model with factors for the market and the respective sector of an asset. This

extended CAPM identifies an idionsyncratic risk of about 45% and a (conditional) market risk

close to zero. Finally, Rj,S(δ) and Rj,M |S(δ) appear to be rather robust measures in terms of

the chosen dependence measure δ, since the results using Kendall’s τ and the product-moment

correlation are very similar.

Furthermore, we also used the RVMS model to obtain lower and upper tail dependence

coefficients with respect to the sector λ`j,S and λuj,S and to the market λ`j,M |S and λuj,M |S for

each stock j in order to assess the strength of the joint tail behavior, which is not possible using

a classical factor model. Note that λ`j,kjr |S,M,kj1 ,...,kjr−1
and λuj,kjr |S,M,kj1 ,...,kjr−1

(see Equation

(3.3)) are often zero and hence the corresponding risk measures Rj,S and Rj,M |S have only

limited information value and are not considered here.

Figure 6 shows the tail dependence coefficients for the stocks from each country. Lines

indicating the lower tail dependence are mostly not distinguishable from the lines indicating

upper tail dependence, since most dependence is modeled as symmetric. This is because often

Student’s t copula produced the best fit, also compared to BB1 and BB7 copulas, which allow for

asymmetric tail dependence (see Nikoloulopoulos et al. (2012)). These findings are interesting in

light of studies indicating different tail behavior in bull and bear markets (see, e.g., Longin and

Solnik (2001) and Ang and Bekaert (2002)). Only Repsol YPF (REP.MC) exhibits asymmetric
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Figure 6: Sectoral and market tail dependence coefficients of the stocks from each country in

the Euro Stoxx 50 data according to the RVMS model.

sectoral tail dependence indicating an increased risk if the Spanish stock market is going down.

Deutsche Telekom (DTE.DE), on the other hand, is the only company with no sectoral tail

dependence but instead an increased and asymmetric market tail dependence, which is generally

very low if present at all. Overall, the tail dependence patterns are rather heterogeneous.

4 Portfolio management

So far, all analyses have been static and mainly serve the purpose of better understanding the

dependence structure of a data set. Now, we describe how the vine copula methodology can be

used for portfolio management.

4.1 Passive portfolio management

We begin with passive portfolio management. The aim is to forecast the Value-at-Risk (VaR)

of a given portfolio of assets 1, ...,K on a daily basis. To start with, we select a window size

T (e.g., three years), a sample size N (e.g., 100 000) and portfolio weights ωj , j = 1, ...,K,

with
∑K

j=1 ωj = 1 (the long-only constraint ωj ≥ 0 is not required here). Using a copula

dependence model with ARMA-GARCH margins, we proceed as follows to forecast the one day

ahead Value-at-Risk (see also Berg and Aas (2009) and Nikoloulopoulos et al. (2012)).
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(i) We specify ARMA(p,q)-GARCH(r,s) models with appropriate error distribution for the

marginal time series, i.e., for j = 1, ...,K and t = 1, ..., T we estimate the parameters of

the following model:

rt,j = µj +

p∑
k=1

φk,jrt−k,j + εt,j +

q∑
k=1

θk,jεt−k,j , σ2t,j = ωj +

r∑
k=1

αk,jε
2
t−k,j +

s∑
k=1

βk,jσ
2
t−k,j ,

where εt,j = σt,jZt,j and (Zt,j) follows the white noise error distribution Fj . Standardized

residuals are given by

ẑt,j =
1

σ̂t,j

(
rt,j − µ̂j −

p∑
k=1

φ̂k,jrt−k,j −
q∑

k=1

θ̂k,j σ̂t−k,j ẑt−k,j

)
.

(ii) We use the estimates to compute the ex-ante GARCH variance forecast for j = 1, ...,K,

σ̂2T+1,j = ω̂j +
r∑

k=1

α̂k,j σ̂
2
T+1−k,j ẑ

2
T+1−k,j +

s∑
k=1

β̂k,j σ̂
2
T+1−k,j . (4.1)

(iii) Using the estimated error distribution functions F̂j , we fit a copula to the standardized

residuals.

(iv) For each n = 1, ..., N :

(a) Using the estimated copula parameters and the inverse error distribution functions,

we simulate a sample of standardized residuals (ẑT+1,1, ..., ẑT+1,K)′.

(b) The samples, the estimated ARMA parameters and the ex-ante GARCH variance

forecasts (4.1) are used to compute the ex-ante return forecast for j = 1, ...,K,

r̂T+1,j = µ̂j +

p∑
k=1

φ̂k,jrT+1−k,j + σ̂T+1,j ẑT+1,j +

r∑
k=1

θ̂k,j σ̂T+1−k,j ẑT+1−k,j .

(c) The portfolio return forecast is then given by r̂T+1,P =
∑K

j=1 ωj r̂T+1,j .

(v) Finally, we compute the (1 − α)-VaR of the portfolio return, VaR1−α
T+1(r̂T+1,P ), by taking

the sample quantile at level α of the portfolio return forecasts.

This procedure can easily be repeated on a daily basis using rolling windows. This means

that the copula and the ARMA-GARCH margins are re-estimated for each window. For this, we

recommend to use sequential estimates for vine copulas, since they are quickly obtained and can

be seen as reliable approximations to joint maximum likelihood estimates as discussed earlier.

In step (v) any other risk measure such as the expected shortfall could, of course, easily be used.

Evidently, one could also directly fit a time series model to the portfolio return series (rt,P =∑K
j=1 ωjrt,j) and forecast based on it. The virtue of our approach is that it allows to compute the

VaR of any possible portfolio involving the assets 1, ...,K based on the samples obtained in step

(iv)(b). In other words, we can compute the VaR for any set of weights ωj , j = 1, ...,K, with∑K
j=1 ωj = 1, without having to refit the model after each rebalancing of the weights. This will

prove useful for active portfolio management as discussed in Section 4.2. Moreover, the approach

allows to explicitly determine the diversification benefit of computing the portfolio VaR rather
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than summing up the individual VaRs of each return series. We define the diversification benefit

DBt at time t and level 1− α as

DB1−α
t := 1−

VaR1−α
t (

∑K
j=1 ωjrt,j)∑K

j=1 ωjVaR1−α
t (rt,j)

, (4.2)

which quantifies the percentage increase in wealth of the investor, since he has to set aside less

risk capital.

In terms of statistical modeling, VaR forecasting serves an additional purpose. By predicting

the VaR for historical data (testing data set) we can assess the prediction accuracy of our models.

For this, we consider the hit sequence of ex-post exceedances (Christoffersen 1998),

It =

{
1, if rt,P < VaR1−α

t (r̂t,P )

0, else
, (4.3)

where rt,P denotes the ex-post observed portfolio return at time t. This sequence should exhibit

two properties if the forecasts are accurate. First, the exceedances should occur independently,

i.e., not in clusters, and second, the proportion of exceedances should approximately equal the

VaR confidence level α (unconditional coverage). The term “conditional coverage” encompasses

both properties.

In the literature, a wide range of tests for these properties has been proposed (see, e.g.,

Campbell (2007) for a review). Since each test exhibits certain advantages and disadvantages

and there are no general guidelines of which test to use, we recommend applying a battery of

such tests to ensure that results are not biased in one or the other direction. For example, the

following tests may be considered.

• The proportion of failures (POF) test of unconditional coverage by Kupiec (1995).

• The Markov test of independence by Christoffersen (1998).

• The joint test of conditional coverage by Christoffersen (1998), which combines the first

two tests.

• The duration based mixed Kupiec test of conditional coverage by Haas (2001), where

durations are the time between two exceedances.

• The duration based Weibull test of independence by Christoffersen and Pelletier (2004).

• The duration based GMM test of conditional coverage by Candelon et al. (2011) with

orders 2 and 5.

4.2 Active portfolio management

Vine copulas are useful not only for passive but also for active portfolio management. In partic-

ular, we discuss how vine copula models can be used for conditional asset allocation. Classically,

asset allocation follows the mean-variance approach by Markowitz (1952). As in Section 4.1

we consider K assets. The aim of conditional asset allocation is to find the optimal portfolio

allocation for the next day, i.e., the optimal weight ωj of each asset j ∈ {1, ...,K}. In the mean-

variance methodology, an optimal portfolio means a portfolio with minimum variance for a given
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return r0. Let rT+1,j denote tomorrow’s return of asset j = 1, ...,K and similarly ΣT+1 the co-

variance matrix of tomorrow’s returns. Then, the optimal portfolio weights are the solution of

the following quadratic optimization problem:

minω′ΣT+1ω s.t. rT+1,P = ω′rT+1 = r0,
K∑
j=1

ωj = 1, (4.4)

where ω = (ω1, ..., ωK)′ and rT+1 = (rT+1,1, ..., rT+1,K)′. The collection of portfolios with

different given returns r0 is called efficient frontier. If no short-selling is allowed, we can add the

long-only constraint ωj ≥ 0, j = 1, ...,K. Further, we refer to a portfolio as the minimum-risk

portfolio if the constraint ω′rT+1 = r0 is dropped.

Obviously, return and variance of the next day are not known. Here, the vine copula models

come into play: By following the approach presented in Section 4.1, we obtain N predicted

returns for the next day (in step (iv)(b)). Based on these forecasts we can easily compute the

empirical means r̂T+1 and covariance matrix Σ̂T+1 and plug them into (4.4) to obtain optimal

portfolio weights.

Since only the first two moments are taken into account, this approach looses a lot of in-

formation about the dependence structure, especially about the tails as modeled by the vine

copula. Alternative approaches such as mean-VaR portfolio selection,

min VaR1−α
T+1

(
ω′rT+1

)
s.t. ω′rT+1 = r0,

K∑
j=1

ωj = 1,

therefore may be more appropriate and can easily be carried out using the vine copula method-

ology, which provides N predicted returns for each assets, so that quantities such as the VaR are

straightforward to obtain for any possible set of weights. In the end, the choice of risk measure

still depends on the investor.

4.3 Application to data

We use the above procedure to forecast the VaR of the portfolio of the 46 Euro Stoxx 50 stocks in

our data set with weights according to the index composition as of February 8, 2010. For market

risk, as we consider it here, one typically uses a testing period of 250 days, which is approximately

one year of trading. To obtain more reliable results, we use a forecasting period of two years

from December 30, 2009 to December 20, 2011 with 500 daily observations and a window length

of 900 observations, corresponding to approximately 3.5 years of daily observations. For this

two year testing period we forecast the one day ahead VaR for the RVMS model and the general

R-vine copula model, which are re-estimated on a daily basis as described above. As benchmark

models we use Gaussian and Student’s t copulas as well as the DCC model by Sheppard and

Engle (2001) and Engle (2002) with Gaussian and Student’s t innovations. In particular, the

DCC model is very popular and therefore constitutes the most relevant benchmark for the vine

copula models.

An extended non-diagonal DCC model, which can account for the volatility spillover effect,

is not considered here, since the large number of model parameters renders estimation infeasible.

When combining the extended DCC model with ARMA(1,1) models with mean (52 × 3 = 156

parameters), one ends up with the immense number of 156+52+2×522+2 = 5618 parameters. A

standard DCC model has clearly less parameters. Moreover, under this impression, the number
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Figure 7: Log return time series of the Euro Stoxx 50 porfolio return with 90%/95%/99%-

VaR forecasts of the RVMS model, the Student’s t copula, the DCC model with Gaussian

innovations and the independence copula. VaR exceedances (4.3) are marked by squares, circles

and triangles, respectively.

of parameters of a vine copula model also appears much less awkward: Vine copula models,

which may appear grossly overspecified at first glance (see Tables 3 and 7), also have much less

parameters, even if complex marginal models are chosen (the models in Sections 2.3 and 3.4

have 305 marginal parameters; see Table 9). This number of parameters is still well manageable

using the techniques discussed in this paper.

Here, we preliminarily decide to fit ARMA(1,1)-GARCH(1,1) models with Student’s t error

distribution to all marginal time series in contrast to the more detailed analysis before (see

Appendix A). This is done in order to limit the complexity of the approach and this is also

approximately accurate according to Table 9. Moreover, we use sequential estimation because

of the high computational effort of fitting 500 R-vine models for the full general model and the

RVMS model each.

The return time series and the VaR forecasts of some of the models under consideration are

displayed in Figure 7 (the sample size is N = 100 000). For a testing period of 500 observations

and confidence levels of 10%/5%/1%, we expect 50, 25 and 5 exceedances, respectively. As

expected, VaR forecasts of the multivariate independence copula model, which we include for

comparison, are completely inaccurate. However, we would like to evaluate them using the

above tests in order to compare them directly to the forecasting accuracy of the general R-vine

copula, the RVMS model, the Gaussian and the Student’s t copula as well as the DCC models.

For our testing period, the Gaussian and the Student’s t copula produce the same hit sequences

and hence are considered together.
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Tests of independence, unconditional and conditional coverage

Model Level % of POF Markov Joint Mixed Weibull GMM GMM

exceed. (uncond.) (indep.) Christoff. Kupiec (indep.) (order 2) (order 5)

R-vine 90% 13.2% 0.022 0.626 0.065 0.014 0.735 0.054 0.173

95% 7.0% 0.052 0.716 0.142 0.027 0.468 0.130 0.312

99% 1.2% 0.663 0.702 0.845 0.189 0.834 0.771 0.796

RVMS 90% 13.2% 0.032 0.553 0.084 0.011 0.750 0.065 0.157

95% 7.0% 0.052 0.716 0.142 0.027 0.464 0.130 0.312

99% 1.2% 0.663 0.702 0.845 0.189 0.833 0.771 0.796

Gaussian/ 90% 12.4% 0.083 0.361 0.147 0.015 0.728 0.161 0.307

Student’s t 95% 7.0% 0.052 0.716 0.142 0.027 0.462 0.130 0.312

99% 1.2% 0.663 0.702 0.845 0.189 0.833 0.771 0.796

DCC 90% 10.4% 0.767 0.464 0.732 0.179 0.463 0.906 0.969

(Gaussian) 95% 5.8% 0.423 0.547 0.605 0.364 0.355 0.672 0.962

99% 1.6% 0.215 0.610 0.407 0.249 0.642 0.503 0.904

DCC 90% 8.4% 0.221 0.418 0.341 0.110 0.526 0.429 0.323

(t, df=7) 95% 4.4% 0.530 0.154 0.298 0.520 0.585 0.920 0.861

99% 0.4% 0.125 0.899 0.306 0.494 0.162 0.328 0.666

DCC 90% 7.8% 0.089 0.570 0.201 0.045 0.718 0.069 0.321

(t, df=4) 95% 2.8% 0.014 0.369 0.033 0.177 0.390 0.024 0.146

99% 0.0% - - - - - - -

Indep. 90% 38.6% 0.000 0.204 0.000 0.000 0.039 0.000 0.000

95% 34.2% 0.000 0.181 0.000 0.000 0.009 0.000 0.000

99% 28.6% 0.000 0.014 0.000 0.000 0.002 0.000 0.000

Table 8: p-values of the VaR backtests described in Section 4.1 for the Euro Stoxx 50 data.

The p-values of the VaR backtests described in Section 4.1 are shown in Table 8. According

to the tests, the forecasts of the copula models show a weak lack of coverage at the 90% and

95% levels, but this is not the case at the important 99% level, which is frequently used in

practice. For the DCC models, it is the other way round. While the DCC model with Gaussian

innovations shows good results in terms of the backtests, using Student’s t innovations in the

DCC model leads to too cautious forecasts and the rejection of the coverage hypotheses at

the most relevant 99% level, where the copula models better capture the tail risk. The null

hypotheses of independence cannot be rejected for any of the models. Finally, the use of the

independence copula to forecast VaR numbers fails completely, since it entirely neglects the

dependence among assets. As already noted above, the numbers of exceedances are much too

large and the hypotheses of (un)conditional coverage are strongly rejected.

We also have a look at the diversification benefit (4.2). For all models under consideration

the diversification benefit is almost constant over time (time series plots are not shown here).

On average, it varies between 21% and 25% depending on the model and on the VaR level.

To illustrate asset allocation using vine copula models, we use the RVMS model to com-

pute minimum-risk portfolios with long-only constraint based on the 100 000 samples for each

return time series, so that estimates can be regarded as quite accurate. For stocks with average

weight larger than 5%, smoothed weights over time are shown in Figure 8. Not surprisingly,

the minimum-risk portfolios are constituted to a large part of stocks that are robust to high

volatility in the market such as Munich Re (MUV2.DE, reinsurance), Unilever (UNA.AS, con-

sumer products) or Sanofi (SAN.PA, pharmaceuticals). For the time series under consideration

we even observed that the minimum-risk portfolios achieve a better return than the Euro Stoxx
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Figure 8: Smoothed weights of minimum-risk portfolios using the mean-variance approach ac-

cording to the RVMS model for the Euro Stoxx 50 data. Only stocks with average weight larger

than 5% are shown.
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Figure 9: Conditional mean-variance efficient frontiers at March 11, 2010, at May 24, 2010 and

at August 2, 2010 (from left to right) according to the RVMS model and the Gaussian and the

Student’s copula for the Euro Stoxx 50 data. The minimum-risk portfolios are marked with a

solid point, minimum-risk portfolios with respect to the VaR (according to the RVMS model)

with a solid square. The x-axis shows the predicted standard deviation (scaled according to the

market conditions), the y-axis the predicted return.

50 index (+32%).

Furthermore, we compute the mean-variance efficient frontiers for each time point. Figure 9

shows them for the 50th, 100th and the 150th time point in the forecasting period. Their shape

varies substantially based on the market conditions, which are also reflected in the minimum-risk

portfolio weights shown above. Further, the frontiers according to the RVMS model are shifted

to the left compared to those of the Gaussian and the Student’s t copula, which are very similar.

This indicates that the RVMS model identifies less risky portfolios. In addition, Figure 9 shows

minimum-risk mean-VaR portfolios, which are substantially different from the minimum-risk

mean-variance portfolios and hence illustrate the influence of another risk measure than the

variance.

In conclusion, we can state that vine copula based models are quite useful for portfolio

management. Both vine copula based models considered here produce sufficiently accurate VaR

forecasts especially at the frequently used 99% level and are clearly superior to an independence

copula. With respect to the Gaussian and the Student’s t copula benchmarks, no significant
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difference could be determined. This also holds for the DCC model with Gaussian innovations,

while Student’s t innovations are not appropriate here. Also note that the RVMS model per-

forms just as well as the general R-vine copula, but at the same time forecasts are computed

approximately 40% faster, i.e., the RVMS model is more efficient computationally due to its

more specific structure. In terms of active portfolio management, this can easily be exploited

for asset allocation and extensions beyond the mean-variance approach are straightforward, since

large samples of each asset are given and thus arbitrary risk measures can be estimated. The

calculation of efficient frontiers indicates that the RVMS model is able to identify less risky

portfolios than the Gaussian and the Student’s t copula.

5 Summary and conclusion

The aim of this paper is to present the use and usefulness of vine copulas in financial risk

management. We develop a flexible R-vine based factor model for stock market dependencies,

the RVMS model, and discuss passive and active portfolio management using vine copula mod-

els. The developed methodology is used to analyze the dependence structure among important

European stocks as represented in the Euro Stoxx 50 index. In these analyses our models are

critically compared to relevant benchmark models such as the DCC model and the state-of-the-

art dependency model, the Student’s t copula. It turns out that vine copula models provide

good fits of the data and accurately and efficiently forecast the Value-at-Risk at the high levels,

as they are frequently used in practice. Similarly, active portfolio management can benefit from

the more accurate assessment of tail risk using vine copulas.

In future, the RVMS model has to be investigated more closely in various applications. In

particular, when asymmetric dependencies are present, we expect the RVMS model to be clearly

superior to models that can only capture symmetric dependence such as the Student’s t copula.

Extensions to more factors or completely different factor structures are also to be investigated.

The dependence structure of sectors in the RVMS model might, e.g., be decomposed into sub-

sectors. As an example, one might think of the S&P 500 index and its different sub-sectors

according to the Global Industry Classification Standard (GICS) or of a decomposition of the

MSCI World index into continental indices, which again can be decomposed into national indices.

Vine based factor models in the light of the studies by Fama and French (1992) and Drummen

and Zimmermann (1992) are interesting extensions, too.

Another important direction of future research is the consideration of dynamic copula pa-

rameter structures for the RVMS model. Research in this direction is still at a rather early stage

(see Ausin and Lopes (2010), Manner and Reznikova (2012) and Almeida and Czado (2012)).

While the present work constitutes one of the first applications of vine copulas in dimensions 50

or higher (and, to the best of our knowledge, is the first to perform joint maximum likelihood

estimation in such dimensions), dynamic (vine) copula models in such dimensions are not yet

feasible.
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ate dependence parameters. In L. Rüschendorf, B. Schweizer, and M. D. Taylor (Eds.),

Distributions with fixed marginals and related topics, pp. 120–141. Hayward: Institute of

Mathematical Statistics.

Joe, H. (1997). Multivariate Models and Dependence Concepts. London: Chapman & Hall.

Joe, H. (2005). Asymptotic efficiency of the two-stage estimation method for copula-based

models. Journal of Multivariate Analysis 94, 401–419.

Joe, H., H. Li, and A. K. Nikoloulopoulos (2010). Tail dependence functions and vine copulas.

Journal of Multivariate Analysis 101 (1), 252–270.

Joe, H. and J. J. Xu (1996). The estimation method of inference functions for margins for

multivariate models. Technical Report 166, Department of Statistics, University of British

Columbia.

Kupiec, P. H. (1995). Techniques for verifying the accuracy of risk measurement models. The

Journal of Derivatives 3 (2), 73–84.

Kurowicka, D. and R. M. Cooke (2006). Uncertainty Analysis with High Dimensional Depen-

dence Modelling. Chichester: John Wiley.

Kurowicka, D. and H. Joe (2011). Dependence Modeling: Vine Copula Handbook. Singapore:

World Scientific Publishing Co.

Lintner, J. (1965). The valuation of risk assets and the selection of risky investments in stock

portfolios and capital budgets. Review of Economics and Statistics 47 (1), 13–37.

Liu, Y. and R. Luger (2009). Efficient estimation of copula-GARCH models. Computational

Statistics & Data Analysis 53 (6), 2284–2297.

Longin, F. and B. Solnik (1995). Is the correlation in international equity returns constant:

1960-1990? Journal of International Money and Finance 14, 3–26.

Longin, F. and B. Solnik (2001). Extreme correlation of international equity markets. Journal

of Finance 56 (2), 649–676.

Mandelbrot, B. (1963). The variation in certain speculative prices. Journal of Business 36,

394–419.

Manner, H. and O. Reznikova (2012). A survey on time-varying copulas: Specification, simu-

lations and estimation. Econometric Reviews 31 (6), 654–687.

Markowitz, H. M. (1952). Portfolio selection. Journal of Finance 7 (1), 77–91.

Mashal, R. and A. Zeevi (2002). Beyond correlation: Extreme co-movements between financial

assets. Working Paper, Columbia University.

Mendes, B. V. d. M., M. M. Semeraro, and R. P. C. Leal (2010). Pair-copulas modeling in

finance. Financial Markets and Portfolio Management 24 (2), 193–213.

Min, A. and C. Czado (2010). Bayesian inference for multivariate copulas using pair-copula

constructions. Journal of Financial Econometrics 8 (4), 511–546.
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A Marginal models of Euro Stoxx 50 data

As discussed in Section 2, marginal time series models for the Euro Stoxx 50 data have to be

found in the first step of our two step estimation approach. Here, time series models are selected

according to a stepwise procedure:

(i) We fit ARMA(1,1)-GARCH(1,1), AR(1)-GARCH(1,1), MA(1)-GARCH(1,1) and GARCH(1,1)

models to the univariate time series. As error distribution we use a Student’s t distribution

to account for heavy tails, while a skewed Student’s t error distribution is not needed, since

no significant skewness is found in the data. For all four time series models we then per-

form Kolmogorov-Smirnov goodness-of-fit tests for the standardized residuals and choose

the model with the highest p-value if this value is at least larger than 5%.

(ii) If the degrees of freedom of the Student’s t error distribution are larger than ten, we choose

a standard normal distribution instead (if the p-value of the corresponding Kolmogorov-

Smirnov test is larger than 5%).

(iii) Since the Kolmogorov-Smirnov test sometimes lacks power, we also perform Ljung-Box

tests with lag 30 for all residuals. If a p-value is smaller than 5%, we stepwisely increase

the corresponding ARMA(p,q) terms, so that the model remains rather parsimonious, until

both the Ljung-Box test and the respective Kolmogorov-Smirnov test for the residuals have

p-values larger than 5%.

The resulting marginal time series models are shown in Table 9.
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Time series model µ̂ φ̂1 θ̂1 ω̂ α̂1 β̂1 ν̂ KS LB

^STOXX50E GARCH(1,1) 0.001 - - 0.000 0.104 0.891 8.437 0.317 0.615

^GDAXIP GARCH(1,1) 0.001 - - 0.000 0.090 0.904 7.935 0.103 0.589

^AEX GARCH(1,1) 0.001 - - 0.000 0.114 0.881 -a 0.142 0.399

^FCHI GARCH(1,1) 0.001 - - 0.000 0.096 0.898 9.310 0.409 0.400

FTSEMIB.MI GARCH(1,1) 0.000 - - 0.000 0.102 0.897 9.464 0.206 0.376

^IBEX GARCH(1,1) 0.001 - - 0.000 0.107 0.889 6.947 0.393 0.503

ACA.PA GARCH(1,1) -0.000 - - 0.000 0.084 0.915 6.590 0.921 0.749

AGN.AS GARCH(1,1) 0.000 - - 0.000 0.123 0.876 7.616 0.662 0.180

AI.PA MA(1)-GARCH(1,1) 0.001 - -0.113 0.000 0.095 0.872 5.956 0.923 0.060

ALO.PA AR(1)-GARCH(1,1) 0.001 -0.065 - 0.000 0.059 0.934 6.738 0.810 0.602

ALV.DE ARMA(5,0)-GARCH(1,1)b 0.001 0.012 - 0.000 0.094 0.902 6.468 0.240 0.078

BAS.DE ARMA(1,1)-GARCH(1,1) 0.001 -0.967 0.960 0.000 0.097 0.899 5.501 0.760 0.612

BAYN.DE ARMA(1,1)-GARCH(1,1) 0.001 0.910 -0.944 0.000 0.110 0.844 6.433 0.951 0.787

BBVA.MC GARCH(1,1) 0.000 - - 0.000 0.115 0.879 7.148 0.711 0.085

BN.PA ARMA(1,1)-GARCH(1,1) 0.001 0.770 -0.831 0.000 0.090 0.892 7.976 0.958 0.640

BNP.PA GARCH(1,1) 0.000 - - 0.000 0.089 0.909 7.124 0.554 0.864

CA.PA GARCH(1,1) 0.000 - - 0.000 0.069 0.926 5.612 0.860 0.208

CS.PA MA(1)-GARCH(1,1) 0.000 - 0.018 0.000 0.106 0.890 9.625 0.486 0.171

DAI.DE AR(1)-GARCH(1,1) 0.001 0.011 - 0.000 0.103 0.895 5.297 0.552 0.251

DB1.DE GARCH(1,1) 0.001 - - 0.000 0.086 0.908 7.671 0.730 0.079

DBK.DE AR(1)-GARCH(1,1) 0.000 0.028 - 0.000 0.108 0.891 6.881 0.576 0.408

DG.PA GARCH(1,1) 0.001 - - 0.000 0.094 0.902 8.412 0.256 0.254

DTE.DE GARCH(1,1) 0.000 - - 0.000 0.074 0.918 5.192 0.647 0.956

ENEL.MI MA(1)-GARCH(1,1) 0.001 - -0.073 0.000 0.124 0.870 6.300 0.356 0.078

ENI.MI ARMA(1,1)-GARCH(1,1) 0.001 -0.819 0.776 0.000 0.113 0.872 8.370 0.470 0.484

EOAN.DE GARCH(1,1) 0.001 - - 0.000 0.101 0.881 4.742 0.179 0.781

FP.PA AR(1)-GARCH(1,1) 0.001 -0.002 - 0.000 0.092 0.890 8.932 0.944 0.161

FTE.PA MA(1)-GARCH(1,1) 0.000 - -0.022 0.000 0.036 0.954 5.802 0.936 0.274

G.MI GARCH(1,1) 0.000 - - 0.000 0.102 0.884 5.559 0.922 0.263

GLE.PA ARMA(1,1)-GARCH(1,1) -0.000 -0.351 0.434 0.000 0.111 0.888 7.620 0.770 0.305

GSZ.PA AR(1)-GARCH(1,1) 0.001 -0.032 - 0.000 0.090 0.894 8.605 0.272 0.443

IBE.MC ARMA(1,1)-GARCH(1,1) 0.001 -0.925 0.944 0.000 0.183 0.792 4.925 0.152 0.558

INGA.AS GARCH(1,1) 0.000 - - 0.000 0.149 0.850 6.266 0.746 0.137

ISP.MI ARMA(1,1)-GARCH(1,1) -0.000 -0.089 0.122 0.000 0.103 0.893 6.311 0.398 0.250

MC.PA GARCH(1,1) 0.001 - - 0.000 0.060 0.933 6.903 0.990 0.581

MUV2.DE ARMA(1,1)-GARCH(1,1) 0.001 -0.820 0.783 0.000 0.117 0.867 5.896 0.145 0.062

OR.PA MA(1)-GARCH(1,1) 0.001 - -0.088 0.000 0.083 0.892 8.166 0.983 0.405

PHIA.AS MA(1)-GARCH(1,1) 0.001 - -0.037 0.000 0.071 0.924 7.011 0.358 0.846

REP.MC ARMA(1,1)-GARCH(1,1) 0.000 0.831 -0.840 0.000 0.113 0.869 5.950 0.792 0.223

RWE.DE GARCH(1,1) 0.001 - - 0.000 0.067 0.906 5.654 0.886 0.087

SAN.MC MA(1)-GARCH(1,1) 0.001 - -0.018 0.000 0.125 0.873 8.230 0.677 0.052

SAN.PA GARCH(1,1) 0.000 - - 0.000 0.050 0.946 4.991 0.975 0.586

SGO.PA ARMA(1,1)-GARCH(1,1) 0.001 -0.729 0.676 0.000 0.092 0.907 8.103 0.375 0.779

SIE.DE GARCH(1,1) 0.001 - - 0.000 0.058 0.936 5.110 0.700 0.063

SU.PA ARMA(3,0)-GARCH(1,1)c 0.001 -0.053 - 0.000 0.073 0.920 7.507 0.396 0.435

TEF.MC AR(1)-GARCH(1,1) 0.001 -0.006 - 0.000 0.094 0.881 7.507 0.714 0.451

TIT.MI ARMA(1,1)-GARCH(1,1) -0.000 0.824 -0.869 0.000 0.111 0.869 8.476 0.256 0.217

UCG.MI AR(1)-GARCH(1,1) 0.000 -0.023 - 0.000 0.098 0.901 9.466 0.218 0.128

UL.PA GARCH(1,1) 0.001 - - 0.000 0.098 0.890 8.592 0.677 0.115

UNA.AS GARCH(1,1) 0.001 - - 0.000 0.083 0.903 5.744 0.922 0.064

VIV.PA GARCH(1,1) 0.001 - - 0.000 0.091 0.903 -a 0.250 0.544

SAP.DE MA(1)-GARCH(1,1) 0.000 - 0.009 0.000 0.027 0.961 3.965 0.898 0.251

Table 9: Marginal time series models for the log returns of the considered six indices and 46

stocks of the Euro Stoxx 50 data (see Table 2).

aNormal error distribution.
bφ̂2 = −0.001, φ̂3 = −0.036, φ̂3 = 0.010 and φ̂4 = −0.039.
cφ̂2 = −0.017 and φ̂3 = −0.093.
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