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Abstract—We consider coordination of transmission strategies
in interference networks, where multiple antennas at the trans-
mitters can be used to adjust the spatial signature of the trans-
mitted signal. For single antenna receivers the interference power
received can be constraint by so-called interference temperatures,
which can be used to coordinate the amount of interference
in the network. We recapitulate recent research results on this
topic and discuss methods to select interference temperatures
that lead to performance gains compared to uncoordinated
transmission. A special configuration is to demand interference to
be completely eliminated, so-called zero-forcing. Methods based
on zero-forcing allow for simple computation of the transmit
strategies, while for general temperatures iterative algorithms are
required. Strictly enforcing completely orthogonalized transmis-
sion drastically reduces the number of active users in the network
and is therefore too restrictive for larger networks. We suggest
an efficient algorithm that enforces orthogonal transmission only
in part, which leads to an increased number of users and
significant performance gains, while maintaining the low complex
computation of the transmit strategies. The method is based
on successive user allocation, that avoids an exhaustive search
for the active user set and the user transmitter pairs for which
interference should be eliminated.

I. I NTRODUCTION

In the downlink of a cellular network inter-cell interference
(ICI) can be a severely limiting factor, especially users atthe
cell edge are affected and might be excluded from network
service. A possible solution to completely eliminate ICI is
the joint encoding of information over multiple transmitters
[1], [2], so-called network MIMO. In case full channel state
information and all data is available at a central controller, joint
encoding over geographically distributed antennas renders the
network into a super-cell, and network MIMO can efficiently
exploit all spatial degrees of freedom to eliminate ICI. Net-
work MIMO requires a huge amount of additional complexity
and signaling compared to single cell signal processing and
might be difficult to implement in practice. Therefore, methods
aiming at elimination of interference by cooperation of the
transmitters, while every user is served by a single transmitter,
are attractive for deployable networks. In order to cancel
interference, user signals are orthogonalized in the signal
space constituted by the available resources, for example time,
frequency, and space. The availability of multiple antennas
at transmitter (and receiver) allows to serve multiple users

interference free at the same time on the same frequency
by spatial multiplexing. Interference coordination by adjust-
ing the transmission space of each user is well understood
and can be solved optimally for a single cell [3], [4]. In
conventional cellular network design, signal processing in the
spatial domain is only performed per cell, but interesting
research towards extending spatial multiplexing over multiple
transmitters is emerging. For networks where the transmitters
have multiple antennas and the receivers are equipped with
a single antenna (MISO), the optimal solution is known [5],
however the presented algorithm has prohibitive complexity
for larger networks. In [6] a local optimization on the transmit
covariance matrices is used, a similar approach for beamform-
ing can be found in [7].

Other less complex approaches for coordinating the trans-
mission spaces of each transmitter are proposals that perform
a joint decision on the users to schedule [8], [9], where at
each time slot only a single user per cell is active. Each useris
served using a transmit filter matched to the MISO channel and
by the joint scheduling decision transmit filters are combined
such that interference is reduced. Clearly, it is advantageous
to select transmit filters that are not optimal for the user, but
reduce the interference caused to other users. Methods based
on pricing for the interference caused [10], thresholds fora
forbidden interference direction [11], or so-called interference
temperatures [12], [13] have potential for implementationwith
reasonable complexity. Methods based on zero-forcing [14],
[15] allow for simple computation of the transmit strategies
and are therefore especially attractive.

After introducing the system model, stating the problem
formulation, and discussing solution strategies in Section II,
we investigate some resent research results on interference
temperatures in Section III. In Section IV, we illustrate how
zero-forcing constraints can be established as a special class
of binary interference temperatures. Based on successive user
allocation and binary temperatures, we present a low complex-
ity algorithm for interference coordination in Section V, and
show significant gains compared to uncoordinated approaches
by numerical results in Section VI. Finally we draw some con-
clusions and make suggestions for future research directions
in Section VII.



II. SYSTEM MODEL AND PROBLEM FORMULATION

The cellular system is given by a set of transmit arrays
T , T = |T |, and a set of usersK,K = |K| distributed
throughout the covered area. User assignment to a transmitter
is done by a cell selection scheme formally described by a
mappingf : K → T . The assignment to a transmitter is fixed
for each user and thereforef partitions the users such that

K = K1 ∪ K2 ∪ . . . ∪ KT andKi ∩ Kj = ∅ if i 6= j.

The receivers are equipped with a single antenna andN is the
number of transmit antennas. The channel matrices are

{hH
kt}

k∈K,t∈T ∈ C
1×N ,

wherehH
kt is the channel matrix between transmittert and user

k. To have a more pleasant notation, we writeh
H
kj as a short

cut forhH
kf(j), the channel between userk and the transmitter

userj is assigned to. The received signal of userk consists
of the desired signal, intra-cell, and inter-cell interference and
can be expressed as

yk = hH
kkxk +

∑

i∈Kf(k)\k

hH
kkxi

︸ ︷︷ ︸

intra-cell interference

+
∑

i∈K\Kf(k)

hH
kixi

︸ ︷︷ ︸

inter-cell interference

+η,

where xi ∈ CN×1 is the transmit signal for useri,
η ∼ CN (0, σ2) represents white Gaussian noise andσ2 is the
noise power. Assuming Gaussian modulation, the covariance
matrix of the transmit symbolxi is E{xix

H
i } = Qi ∈ CN×N ,

a Hermitian and positive semi-definite matrix, denoted as
Q � 0. Considering linear precoding, the information theoretic
rate for userk is given by

rk = log2

(

1 +
hH
kkQkhkk

σ2 +
∑

j∈K\k h
H
kjQjhkj

)

.

Coordination of transmission strategiesQ1, . . . ,QK , subject
to a per transmitter power constraintP , in order to maximize
performance of the network, here the sum-rate of all users, is
captured by the following optimization problem:

Q : maximize
Q1,...,QK

∑

k∈K

log2

(

1 +
hH
kkQkhkk

σ2 +
∑

j∈K\k h
H
kjQjhkj

)

subject to
∑

k∈Kt

tr{Qk} ≤ P ∀ t ∈ T ,

Qk � 0 ∀ k ∈ K.

In [16] the optimality of beamforming for MISO systems is
proven, meaning a solution to Problem (Q) can be found
where all transmit covariances are rank 1, i.e.Qk = wkw

H
k ,

which implies an equivalent formulation in the precoders
w1, . . . ,wK ∈ CN×1,

W : maximize
w1,...,wK

∑

k∈K

log2



1 +

∣
∣h

H
kkwk

∣
∣
2

σ2 +
∑

j∈K\k

∣
∣hH

kjwj

∣
∣
2





subject to
∑

k∈Kt

wH
kwk ≤ P ∀ t ∈ T .

The transmission coordination Problems (Q) and (W ) can be
solved by changing the optimization domain to a rate space
problem, which results in a monotonic optimization prob-
lem, see [5]. The complexity of solving monotone program
prohibits to compute the solution for larger networks, which
demands methods that have potential for implementation
with reasonable complexity while accomplishing good perfor-
mance. In [6] a gradient projection method on the covariance
matrices is used to compute a local maximum of Problem(Q),
a similar approach for beamforming, Problem(W ), can be
found in [7].

III. I NTERFERENCETEMPERATURES

From the area of cognitive radio stems the concept to
constrain the interference power on other users, called in-
terference temperatures [12], [11], [13]. These approaches
essentially exploit the fact that the interference power a user
exhibits can be described by a scalar, which allows for a
new parametrization of the coordination problem. In [11] the
interference temperature constraint for userk is given by

∑

j∈K\k

hH
kjQjhkj ≤ γk.

Adding the temperature constraints to Problem(Q) implies
that the interference power a user receives is certainly smaller
than the users temperature. Using a worst case rate allocation,
assuming the temperature constraints are fully utilized, the new
coordination problem is

C : maximize
Q1,...,QK

∑

k∈K

log2

(

1 +
h

H
kkQkhkk

σ2 + γk

)

subject to
∑

k∈Kt

tr{Qk} ≤ P ∀ t ∈ T ,

Qk � 0 ∀ k ∈ K
∑

j∈K\k

hH
kjQjhkj ≤ γk ∀ k ∈ K,

which is a convex optimization problem and can be solved
efficiently. In [13] interfering MISO point-to-point linksare re-
garded and the interference temperatures constrain the amount
of interference from an individual transmitter to a user.
Adopting the same principle for multi-user scenario, we can
constrain the interference users generate among each other.
The interference power at userk from userj is constraint by

hH
kjQjhkj ≤ δkj .

Adding these constraints to Problem(Q), the problem decou-
ples intoT individual problems per transmitter. The problem
for transmittert and its usersKt is:

D : maximize
∑

k∈Kt

log2

(

1 +
hH
kkQkhkk

σ2 +
∑

j∈K\k δkj

)

subject to
∑

k∈Kt

tr{Qk} ≤ P,

Qk � 0 ∀ k ∈ Kt

hH
kjQjhkj ≤ δkj ∀ kj ∈ K ×Kt.



By adjusting the values of the interference temperatures both
approaches have the potential to achieve the same objective
as the original problem, as one can simply measure the
interference powers of a solution to Problem(Q) and set the
temperatures to these values. Having observed the potential
of the interference temperature approaches, the important
question is on how to choose temperatures that achieve optimal
or close to optimal performance with reasonable complexity.
For the one user per transmitter case, it has been shown
that all pareto optimal user rate points can be parametrized
by interference temperatures and a distributed scheme, where
transmitters update the temperatures pairwise, which guaran-
tees to converge to a pareto efficient rate point is suggested,
see [13] for details. The resulting rate configuration depends
on the initialization, however a mechanism to steer the rate
configuration to specific points, in order to maximize a utility
of the user rates, is missing. We briefly discuss a method on
how to find the optimal temperatures and compare it to the
approach in [5]. By relating the actual interference temperature
to the maximal possible interference power,

γ̂k =
∑

j∈K\k

hH
kjhkjP,

we are able to use normalized temperatures{κk}
k∈K ∈ [0, 1]

and restate Problem(C ) as

K : maximize
Q1,...,QK

∑

k∈K

log2

(

1 +
hH
kkQkhkk

σ2 + γ̂k (1− κ̄k)

)

subject to
∑

k∈Kt

tr{Qk} ≤ P ∀ t ∈ T ,

Qk � 0 ∀ k ∈ K
∑

j∈K\k

hH
kjQjhkj ≤ γ̂kκk ∀ k ∈ K,

whereκ̄k = 1−κk. The functionK (κ1, . . . , κK , κ̄k, . . . , κ̄K)
computes the objective of Problem(K ) and is obviously non-
decreasing in all its parameters. Therefore finding the optimal
temperatures is expressed by the following monotone program

M : maximize
κ1, . . . , κK
κ̄k, . . . , κ̄K

K (κ1, . . . , κK , κ̄k, . . . , κ̄K)

subject to κ̄k = 1− κk ∀ k ∈ K.

As the feasible set is a normal set we can employ the
polyblock algorithm, as in [5]. The polyblock algorithm outer
approximates the constraint set by polyblocks, whose vertices
correspond to upper bounds on the utility. The algorithm
needs a membership test for the feasible set, which is a
costly optimization in [5] however is trivial for Problem(M ).
Contrary, calculating the values of the vertices is cheap in[5]
and requires to solve Problem(K ) for the temperature formu-
lation. As in general for the polyblock algorithm, the number
of vertices is much higher than the number of feasibility tests,
one should alternatively consider a branch-and-bound method
for the temperature formulation, as they require only two upper
bounds per update, usually at the price of more iterations.

However, both approaches have a non-polynomial worst-case
complexity and are therefore not suitable for practical imple-
mentation and sub-optimal choices must be considered.

In [11] the authors refer use rule of thumb for choosing
the global temperatures by setting all temperatures to the
thermal noise power, a rule that did not perform well in
the scenarios we regarded in Section VI. However, having
a single scalar to adjust the amount of interference in the
network is an appealing approach. By setting all temperatures
to the same valueγ and performing a search for the best
value γ ∈ [0,maxk∈K{γ̂k}] we achieved surprisingly good
performance. The draw back however is that Problem(C )
has to solved for every valueγ we check, which is costly and
motivates to search for less complex methods.

IV. Z ERO-FORCING

Zero-forcing methods are especially attractive as they allow
low complex solutions. An example can be found in [14],
where the interference of an uncoordinated approach is first
measured and the strategy of each transmitter is then up-
dated such that the worst interference caused is zero-forced.
Depending on the network regarded, complete cancellation
of interference is not desired, as it drastically reduces the
number of data streams transmitted. While the interference
temperature approach inherently considers the gains of the
cross channels, and therefore implements a spatial reuse, the
zero-forcing based approaches will avoid interference to all
other users regardless of the cross channel gain. In [15] higher
layer decisions are used to apply a zero-forcing algorithm
only to the cell-edge users, while the other users are served
by an uncoordinated approach. Here, we follow a different
approach and suggest that zero-forcing constraints are only
established in part and therefore the number of active userscan
be increased. We will see that this partial zero-forcing canbe
interpreted as special choice of the interference temperatures,
an observation which will guide us to efficient coordination
algorithm in Section V. Corresponding to the definition of the
normalized per user temperaturesκ1, . . . , κK in Section III,
we define the normalized individual temperatures

ηkj =
δkj

δ̂kj
, (1)

whereδ̂kj = hH
kjhkjP andη̄kj = 1− ηkj. Zero-forcing refers

to a special binary selection of the normalized temperatures
and has a simple solution for the transmission strategies.
Clearly, for all usersk ∈ K where

∑

j∈K\k η̄jk ≥ N are shut
down and we can use binary temperatures to perform a user
selection. The solution for the other users can be calculated
as follows:Jk = {j ∈ K : ηjk = 0} is the set of users that
need to be zero-forced by userk. The stacked cross-channels
to the interfering users are

Hk =
[
hk1, . . . ,hk|Jk|

]
.

TheN ×N identity matrix is denoted byI and by using the
projection matrix

Uk =
(

I −Hk

(
HH

kHk

)−1
HH

k

)

,



the solution for userk is expressed as

Qk = Uhkk

Pk

hH
kkUhkk

hH
kkU , (2)

wherePk is the transmit power used for userk. The power
allocation is found by waterfilling.

As soon as the normalized temperatures are fixed to binary
values, computation of the transmission strategies is cheap.
However an exhaustive search among all binary allocations is
prohibitive and in Section V we therefore propose an efficient
coordination algorithm avoiding an exhaustive search.

V. SUCCESSIVEUSERALLOCATION AND BINARY

TEMPERATURES

The cross-channel gains play an important role when de-
ciding if to avoid interference by zero-forcing to some useror
to allow interference and thereby implement spatial reuse.A
simple attempt would be to setηkj to zero in casêδkj exceeds
a certain threshold, to one otherwise. However, this attempt
fails as the resulting binary temperatures rarely provide useful
solutions as they miss an efficient user selection. Next, we
present an efficient and low complexity algorithm based on a
successive user allocation and binary temperatures.

Given a set of active usersD = {1, . . . , D} and binary
temperatures{ηkj}k∈D,j∈D, as defined in Equation (1), a
worst case rate allocation for userd is

rd = log2







1 +

h
H
ddQdhdd

σ2 +
∑

i∈D\d

ηdiδ̂di
.








, (3)

As the constraints on the interference are either zero-forcing
constraints or can be dropped, the transmit covariance matrices
are chosen according to Equation (2). We now develop a
scheme that selects the user setD, aiming at the maximiza-
tion of the sum-rate utility, where interference is controlled
according to the choice of binary temperatures, meaning that

hH
diQihdi ≤ ηdiδ̂di ∀ i ∈ D \ d,

for all d ∈ D. In each step the set of selected users served by
transmittert is Dt = {k ∈ D : f(k) = t} and the user set

K+ =






k ∈ K :

∑

j∈Dt

η̂kj < N ∀ t ∈ T







are the users which can be added, such that the transmitters of
the already active users can still fulfill all required zero-forcing
constraints. Out of this set we select the user that promisesthe
most gain in sum-rate

e = argmax
k∈K+

h
H
kkU

(m)
k hkk

P
1+|Df(k)|

σ2 +
∑

d∈D ηkdδ̂kd
.

Explanation: the factor P
1+|Df(k)|

accounts for the number of
users that have to share a power budget of a transmitter.
Additionally the projection matricesU (m)

1 , . . . ,U
(m)
K account

for the zero-forcing constraints to the already active users.
The projector matrices are initialized by identity matrices and
updated after each step of the stream allocation. Assuming the
m-th stream is allocated to usere the projection matrices are
updated as follows:

U
(m+1)
K = U

(m)
k − η̂ek

U
(m)
k hekh

H
ekU

(m)
k

hH
ekU

(m)
k hek

∀ k ∈ K+

When a new user is added, all users that are already inD
have to update their transmission strategy in case they havea
zero-forcing constraint on the new user. Further, the new user
might cause interference to some users inD for which he is
allowed to interfere with. Therefore before we add the user
e to D we check if the user actually improves the sum-rate,
otherwise he is dropped. The algorithm ends as soon as the
setK+ is empty.

For a more consistent notation we formulated our new
coordination algorithm in the covariance matrices, which have
rank 1 due to the way they are selected. Therefore we directly
do provide a beamforming solution, which has to be calculated
by an iterative algorithm on the interference temperature
solutions of Problem(C ) and Problem(D).

VI. SIMULATION RESULTS

For the numerical simulations, we regard a very simple
model where the transmitters are placed on a line with a
distance of500m. The line is connected at the two ends such
that the distance between the first and the last transmitter is
again500m. Each transmitter serves one user, that is located
half way between the serving cell and the next transmitter. This
means increasing the number of transmitters also increasesthe
area covered by the network. We assumeN = 4 antennas at
each transmitter and the channels are drawn from a complex
Gaussian distribution, where the attenuation due to distance
is accounted by a pathloss factor of3. As the scenario
is completely symmetric, every users has the same channel
statistics and when preforming Monte Carlo simulations we
can plot over the average receive SNR, which is the same for
every user. First we investigate a scenario with4 transmitters.
We compute a solution of Problem(Q) and compare it to
the temperature approach where we set all temperatures to the
same value. We used an exhaustive search for the best common
temperatures for each realization and SNR value. For fixed
temperatures the resulting Problem(C ) is directly supported
by SDPT3 [17], which we used to compute the solution.
Additionally, we include an uncoordinated approach and a
strict zero-forcing solution where all temperatures are zero
and up toN active users; the best performing set is found by
trying all combinations. For our low complexity coordination
algorithm the binary temperatures ares selected by a simple
threshold on the maximal interference power. Figure 1 shows
the performance in terms of average spectral efficiency per
user. The interference temperature approach performs close to
optimal. The zero-forcing approach clearly does outperform
the uncoordinated approach in the high SNR regime, while
having a performance penalty in the low SNR regime. Our



−10 −5 0 5 10 15 20 25 30

1

2

3

4

5

6

7

8

Avg. Receive SNR in [dB]

A
vg

.
S

p
.

E
ffi

ci
en

cy
p

er
U

se
r

[b
p

s/
H

z]
Optimal
Int. Temperature
Uncoordinated
Zero-Forcing
Low Complexity

Fig. 1. Simulation Results – 4 Users

low complexity algorithm performs at least as good as the
uncoordinated approach in the low SNR and matches the
zero-forcing in the high SNR regions. The situation changes
drastically when we investigate a scenario with ten users,
where computing the optimum is intractable due to the high
complexity of the monotone programming, so we include the
interference free the single user rates as an upper bound.
Regarding Figure 2, we can see that the zero-forcing approach
is not competitive with the uncoordinated transmission, as
it is to restrictive. The interference temperature approach
provides the best performance however saturates as the single
temperature approach does not allow to shut down some of the
users and violate their temperature constraints, which would
be beneficial in the high SNR. Our low complexity algorithm
provides significant gains to the uncoordinated approach in
the mid and high SNR regions, and the approach is no more
limited by interference. Our algorithm performs within onebit
to the temperature approach that has drastically higher com-
plexity. We therefore consider our approach as a reasonable
trade-off between performance and complexity, that might be
suitable for practical implementation.

VII. C ONCLUSIONS

Our main contribution is a low complexity algorithm for
interference coordination in MISO interfering networks. It
is based on a successive user selection and transmission
strategies based on zero-forcing, which allow for efficient
computation. Numerical simulations show significant gains
compared to uncoordinated approach and reasonable perfor-
mance compared to interference temperature approach that
requires to run a sequence of costly iterative optimizations.
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