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Abstract—In this paper, the optimization of the cut-set bound All information theoretic results that have been derived
(CSB) and the achievable decode-and-forward (DF) rate for for the relay channel hold whether the nodes are equipped
the half-duplex Gaussian multiple-input multiple-output (MIMO)  ith one or multiple antennas. However, multi-antenna sode
relay channel is considered. In particular, it is shown that | di hich devi havi inal ¢
evaluating the cut-set bound and the maximal achievable DFate may employ precoding, w 'C_ ) evices having a sing'e an_ enna
is equivalent to solving convex optimization problems if pdfect ~are not capable of. The additional degrees of freedom in the
channel state information (CSI) is available at all nodes. @r multiple-input multiple-output (MIMO) relay channel aré o
work therefore extends results for the full-duplex relay channel,  course reflected in the corresponding optimization problem
which we also revisit here, and it demonstrates that it is pagble  agq;ming Gaussian channel inputs, maximizing the achievab
to efficiently determine (generally loose) bounds on the caeity .
of the half-duplex MIMO relay channel. DF rate for the MIMO relay channel requires to solve an

Index Terms—Relay channel, MIMO, half-duplex, cut-set OPtimization problem with respect to the source covariance

bound, decode-and-forward, convex optimization. matrix Rs, the relay covariance matriRgr, and their cross
covariance matrixRsg, for example. If all nodes have a single
|. INTRODUCTION antenna, on the other hand, the same objective is maximized

with respect to a scalar correlation coefficient [0, 1].

Relaying has attracted a lot of interest in recent years dueSurprisingly, there are only few contributions that have
to the ability to provide increased throughput and extendéscussed on optimizing bounds on the capacity of the MIMO
coverage to a growing number of mobile users. Scenarigday channel. In [5], it is proved that Gaussian input dis-
in which relaying may be employed include for exampl&ibutions maximize the CSB and the achievable DF rate
multihop wireless networks and sensor networks where nodes the full-duplex relay channel. Furthermore, the aushor
have limited transmit power. In this work, we consider thprovide an upper bound on the CSB that is loose in general.
simplest relay channel where one source transmits infeomat Suboptimal lower bounds are also given based on point-to-
to one destination with the help of a single relay. It is assdmpoint transmission (source to destination) and the cascade
that this relay has no own information to transmit so thaglay channel (source to relay, relay to destination). Teudigl
its only purpose is to assist the communication between tHecode-and-forward (PDF) strategies, where the relay only
source and the terminal. A model for this particular relagiecodes part of the source message, using superposition or
channel was first studied by van der Meulen as early dity-paper coding [6] at the source are presented in [7].
1971 [1], but its general capacity is still unknown. While the achievable rates are shown to improve on the lower

However, substantial advances towards the information tHeounds of [5], the authors only formulate but do not solve
oretic understanding of the relay channel were made by Covke corresponding rate maximization problems for the ganer
and El Gamal. In [2], they derived upper and lower bounds aase.
the capacity of the full-duplex relay channel based on a thenWe were able to show that, for the full-duplex case, the
new cut-set bound (CSB) as well as two fundamental codiegt-set bound as well as the maximal achievable DF rate are
schemes that are now referred to as decode-and-forward (DBjained as the solutions of convex optimization probleis [
and compress-and-forward (CF), respectively. The DFegisat In this paper, we extend these results to the half-dupleyrel
requires the relay to decode the whole source message, whibannel, where a practical half-duplex constraint is ingglasn
is then re-encoded and sent to the destination. When thg reddl nodes. Similar work (for both the full-duplex and the fhal
uses CF, it reliably forwards an estimate, a compresseibversduplex case) is presented in [9]. However, it can be verified
of its receive signal, to the destination. In [3], these tvesib that the expressions resulting from those derivations ahg o
strategies were generalized to various relay channel rmodepper bounds to the optimal solutions.
that include multiple sources, relays, or destinationsotAar The remainder of this paper is organized as follows. The
relaying strategy of lower complexity than both DF and CF isystem models for the full-duplex and the half-duplex MIMO
called amplify-and-forward (AF), which is considered if [4relay channel are introduced in Section Il. Section Il s&ei
for example. When the relay uses AF, it is restricted to perfo the optimization of the CSB for the full-duplex case and
linear operations on its receive signal. shows how these results can be extended to the half-duplex
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Figure 1. Full-duplex MIMO relay channel.

Relay
case. The maximization of the achievable DF rate for both the Hgrp
full-duplex and the half-duplex relay channel is addresised (2)
Section IV. Numerical results and a discussion of thesdtsesu
are presented in Section V before we conclude in Section Vé‘ource > Destination
Hsp
Il. SYSTEM MODEL (b) Relay transmit phase.

In the full-duplex relay channel, which is illustrated in
Figure 1, the signals received at the relay and the degsimati
can be expressed as

Figure 2. Half-duplex MIMO relay channel.

Yr = Hsres + 1R, (1) source transmits and the destination listens during batise
yp = Hspxs + HrpZr + np, which means that the half-duplex constraint basically cffe

where Hen € CNexXNs oo € CNoxNs Ff. ¢ CNoxNe only the relay. Furthermore, without loss of generalifyp is
SR » Hsp » HRD

; . aﬁsumed to be the same for both phases, and all channels are
represent the channel gain matrices assumed to be perfecC

known at all nodes, angg ~ Ne(0, In, ), o ~ Ne(0, Ing) asgumed to be perfectly known at all nodes again. Since only

denote complex white Gaussian noise of unit variance. Lt&e source transmits in the first phase, we have

Rs and Rr denote the covariance matrices of the zero-mean RY —E [2WMH — M @)
. .’BS .’BS S -
source and relay inputs, then the source and the relay are

subject to transmit power constraints given bylRg) < Ps The joint transmit covariance matrix of the source and relay
and t( Rg) < P, respectively. Furthermore, the joint transmitnputs for the relay transmit phase is given by

covariance matrix of the source and relay inputs is detezthin

2 2 H 2 2
by R® — g m(S : w(s : _ R(S ) R(SFg 8)
H R R cc(2) m(2) R(2),H R(2) )
R=E||"S||®s| | = |Z5 “ISR| ) R R SR R
IR IR RgR RR
Moreover, we have

Note that, by defining the two selection matrices

5= [Ins Onoxni] R = [Onwxns Ive] 3 Like in the full-duplex case, the source and the relay are
both the source and the relay transmit covariance matraes gubject to power constraints of the form(RS”) < P{Y,
be expressed as linear functions Bf tr( R(82>) < ps(2>, and t( R,(f)) < Péz)- respectively.

Rs= DsRDY, Rr= DrRDE. 4) [1l. CUT-SET BOUND

RY = DsRPDE, RY = DrRPDE.  (9)

Let us now consider the more practical case where a half-First, let us revisit the optimization of the cut-set bound f
duplex constraint is imposed on all nodes. In the half-dupl¢he full-duplex case. Cover and El Gamal [2] proved that the
relay channel, which is depicted in Figure 2, a relay receiwapacity of the full-duplex relay channel is upper bounded b

phase is followed by a relay transmit phase. These two phases. qp maxmin{I(X VYo  Xr), [(XsX: Vi >} (10)
S, IRID|AR), SAR, ID) >

are specified by cse —
(1) (1) 1) where the maximization is with respect to the joint disttibo
Yr = Hsrws™+ng of the source and relay signals. Furthermore, it is known
0 o, W ) y signas. more,
yé = Hsprg' +mnp, that the source and relay inputs that optimize the CSB are
and Gaussian [5]. Withes ~ N¢(0, Rs) andzg ~ N¢(0, RR), it
y|(32) _ HSDm(;) + HRDmg) + n|(32)7 (6) follows that

. _ H
where the noiseng) ~ N (0, In,), n.gl) ~ N¢(0, Iy,), and T(Xs; Ya¥p|Xg) = log det (I i HlRSm:Il) 7 oy
nS ~ Ng(0,Iy,) is independent o). Note that the I(XsXg; Yp) = logdet (I + H>RHY), (12)



where H, = [H, HSHD}H ,Hy, = [Hsp Hgp|, and given by

Rgr = Rs — RsgRLRY, is the conditional covariance max

matrix of Xs given Xg. HereRTR denotes the Moore-Penrose RM R g,

pseudoinverse oRg. 71,72 20,T1 472 <1
Remark 1: Note thatRg is equal to the covariance matrixCi8s < 71 log ‘I + HlR(”H{*‘ + 75 log ‘I + HSDR(STQH'S*D‘ ,

oAf the random vectorXg — XS(XR) in this case, where _ .. (1) g7H @) M

Xs(Xr) = RsrRLXg is the linear minimum mean square“css = 71 10g ’I+ HspR HSD’ +m2log ’I+ H,R™ H, "

error (MMSE) estimator ofXg givgn XR. However, thi§ tr(R(Sl)) < Ps(l),tr(R(SQ)) < PS(Q),tr(Réf)) < Png)' (16)

is only because we have Gaussian inputs and the linear

MMSE estimator is equal to the MMSE estimator for Gaussiatis IS again a nonconvex optimization problem, where the

random vectors. For general inputs, it does not hold that tﬁ@nconvexgy is caused by the conditional covariance matri

cHY, st

conditional covariance matrix os given Xg is equal to R(SQQQ = R — RGRYTRY™ in the first constraint on
Rs — RSRR,LRQR. CHS,. However, after reformulating this problem using the

We see that computing the cut-set bound for the fulblack variableQ and the properties of the generalized Schur
duplex MIMO relay channel requires to solve the nonconved@mplement, we obtain the following equivalent optimiaati

optimization problem problem:
HD
S.t.
P 0 A O
s.t. CE8g < logdet (I + HiRgrHY), (13) CHD, < 11 log ‘I + H;R®M H{*‘ + 72 log [T + HspQHEp|

CE8s < logdet (I + HRHY),

; ] CE8s < milog | I + HsoR™ Hp| + 7210g |T + HyR® HY|
tr(DsRDS) < Ps, tr(DRRDR) < PR,

Q= 0,RY ~0,R?® - D{QDs ~ 0,

where Ds and Dgr denote the selection matrices define (1) (1) (2) (2) 2) 2)

in (3). Observe that the nonconvexity is caused only tgr/(RS )= Fs L u(RsT) < Ps7 U(Re) < Fry

the conditional covariance matriRss in the first inequality ™ 20n20n+n<l (17)
constraint. However, by means of introducing a slack végiabsince the nonnegative weighted sum of concave functions is
Q and applying the Schur complement condition for positiveoncave [10], we can follow the same arguments as for the
semi-definite matrices [10, A.5.5], it is shown in [8] thakth fyll-duplex case and conclude that this problem is convex (i
following is an equivalent optimization problem: Q,RM,R?® = 0, where the latter is implied b} = 0

and R® — DEQDs - 0) for fixed 7, 7. However, joint

FD_ . H
Ccss —Ig%mm{log det (I + H1QHTY'), convexity in @, RV, R® r, andr, cannot be claimed in

log det (I + HQRHQH)} this formulation. .Nevertheless, letting = 7 a}nd T =1-—T,
(14) the optimal solution can be found by sampling over one scalar
st. t(DsRDY) < Ps, tr(DrRRDR) < Pr, parameterr € [0, 1] and convex programming.
Q>=0, R-D{QDs>o0. Beyond that, it is also possible to formulate an equivalent

optimization problem that is jointly convex in all paranrste
Note that the last two constraints implig = 0. As the To this end, we introduce the new variables
objective function is the pointwise minimum of two concave (1) 1) ~(2) @)

. ) T CYV =RV, CY=nRYQ = ) 18
functions (inQ, R = 0), it is also concave [10]. Furthermore, L 2 Q=nQ (18)
all constraints are affine so that this optimization prohlenthe resulting optimization problem hence reads as
which determines the cut-set bound, is convex. HD

. .. . max CCSB S.t.
Now, consider the optimization of the cut-set bound for the c®,c® Q' ;7.7
half-duplex case. In [11], it was shown that the CSB for the

c®
half-duplex relay channel reads as Cesg < i log|I + Hy

1

HY

+ 15 log

)

!
I+ HSDQHSHD
T2

(2)
I+HQC

T2

c®
I+ Hsp H'S"D

(!

Q' =0,c" - 0,C® - DEQ'Ds - 0,

wherer; andr, denote the durations of the relay receive angl(C{") < 7, P{" tr(C{?) < n P tr(C{?) < 7, PP,

the.relay transmit phase, respectively. The same argumeTnt§ 0.7 > 0,71 +75 < 1. (19)

as in the full-duplex case may be put forward to show that

CH; is also maximized by Gaussian source and relay inputSote thatg : (CV, 7,) ~— 7 log |I + H; €~ H'| defined on

. 71

Assuming :c(sl) ~ NC(O,R(S”),:BEQ?) ~ Nc(O,Rg)), and domg = {(CV), 7)) : CM = 0,7, > 0} is the perspective

xn ~ Nc(0, , the optimized cut-set bound is hencef the functionf : — log |I + H; efined on
@~ Ne(0,RY), the optimized bound is hencef the functionf : CV) — log|T + H;CV) HY| defined

. 1 1 1 2 2 2
CES, = maxmln{ﬁI(Xé ); YRS )YD( )) + TQI(Xé ); YD( )|Xé ))’CESDB < 7 log
nI(X{O; Vi) + Rl (X X Vi)Y, (15)

H

+ 75 log

3




the cone of positive semi-definite matrices. Furthermgres Remark 3: This assumes that the source may transmit new
concave inC'!) > 0. The convexity preserving property of theinformation to the destination in the relay transmit phakse.
perspective operation [10, Sec. 3.2.6], which was used]ito[9 the relay does not receive (and thus decode) all the infoomat
convexify a very similar problem, thus implies thais jointly the source communicates due to the imposed half-duplex
convex inC'") andr, on its entire domain. Analogous resultonstraint, this strategy is sometimes termed a partial DF
hold for the other log-det functions. In addition, obserliatt scheme in the literature, including [9] for example. We agre
all other constraints are affine. Therefore, we have obtieame with [11], however, and consider this as a DF strategy since
optimization problem that is jointly convex in all paranmste the relay decodes everything it can receive.
Q.CY . C 1, 1. Like in the full-duplex caseCHS; and RER differ only
Rg.”nark 2. The perspective fupction is defined only fo_rm one term. For Gaussian source and relay inm@ ~
positive real numbers. However, |f we assume the conve.ntlm(o’R(SD)’m(S?) -~ Nc(O,R(SQ)), and wéf) - NC(O,R,(QQ)),
thatOlog g = 0 for all = € R, which is commonly used in the achievable DF rate is hence maximized by
information theory based on continuity arguments [12, g, 19

then it is not necessary to exclude the cases 0 andm, =0 ., Jmax REP st
as the problematic terms vanish. ROV.R®,Q.11,72

)

RY2 < 7 log ‘I + HSRR(“HSR‘ + 7o log [T + HspQHE,

IV. ACHIEVABLE DECODE-AND-FORWARD (DF) RATE
A lower bound on the capacity of the relay channel i®52 < 7 log‘I—i—HSDR(l)HSHD‘ + 72 log‘I+H2R(2)H§
given by the rate that can be achieved with the decode-and- (1) @ _ pHoD
forward protocol derived by Cover and EI Gamal [2]. Befor& = -2 = 0, B — DsQDs = 0,
we address the half-duplex case, let us first revisit the futt(RS)) < PV tr(RY) < PP tr(RY) < P,
duplex relay channel again. If the relay uses DF, all actieva . > -, > 0,7, + 7, < 1, (24)
rates in the full-duplex case satisfy

RE? < maxmin{I(Xs; Yr|Xr),/(XsXr; YD)},  (20)

)

where we have already introduced the slack varia@land

reformulated the problem. This optimization problem is ba-

where the maximization is again with respect to the joirsically obtained by replacindgZ; in (17) by Hsg, and like

distribution of the source and relay signals. Observe RE& problem (17), it is convex iR)), R(?), andQ for fixed time

differs from CE2g only in the first mutual information term, allocation parameters, and ..

whereas the second one is the same. If we further introduce the variable€), C®), and Q'

Beyond that, it has also been proved that Gaussian in@st defined in (18), then, not surprisingly, it is also possibl

distributions optimize the achievable DF rate [5]. Therefo to express the maximal achievable DF rate for the half-

letting zs ~ N¢ (0, Rs) andxg ~ N (0, RR), it follows that duplex MIMO relay channel as the solution of an optimization
roblem that is jointly convex in all parameters. We state it

I(Xs; Yrl Xr) = log det (I + HsrRsrHSR) (21) Eere for reasonsJ of c%mpleteness: P
where the only difference to (11) is thaf; = [HE, HSHD}H

. . max R st
is replaced byHsg. Using the same arguments as for the  cm .c® @/ n m

calculation of the cut-set bound, it is thus shown in [8] that o cv . Q
REE < Igaéc min{log det (I + HSRQHSHR), For < milog T + HSRT—lHSR +rzlog I+ HSDT_QHSD ’
' c Cc®
log det (I + H,RHY') } (22) RER < 7 log|I + Hsp—— HEL| + 2 log |I + Hy—— HY' |,
1 T2
s.t. t{DsRDY) < Ps, tr(DrRRDf) < P, Q' =0,cV = 0,c? - DYQ'Ds > 0,
H
Q=0 R-DsQDs=0. r(CY) < n PV r(C?)) < PP () < P,
Consequently, the maximal achievable DF rate for the full; > o 7, >0, 7 + 7 < 1. (25)
duplex MIMO relay channel is also obtained as the solution B B
of a convex optimization problem. V. NUMERICAL RESULTS AND DISCUSSION

A rather straightforward application of the decode-and-

forward scheme to the half-duplex relav channel vields th tIn this section, we provide numerical results for the cut-se
S P y y Bound and the best achievable DF rate for both the full-duple
the best DF rate is given by

and the half-duplex case and several antenna configurations
RER = maxmin{r [(X$"; YAV) + (X viP|x§),  Considering the full-duplex relay channel, we compare the
- I(X(l)- Y(l)) g I(X(Q)X(Q)- Y(Q))} 23) CSB to the upper bou_nd thgt was derived in [5], and we discu_ss
1Hits 7D 2%s AR 0TD conditions under which this generally loose upper bound is
where; and 7» again denote the lengths of the time slotequal to the cut-set bound. For the half-duplex relay chianne
allocated to the relay receive and the relay transmit phase compare our results to those presented in [9]. Finally, we
respectively. comment on why it is not possible to directly apply standard
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Figure 3. Line Network.

semi-definite program (SDP) solvers like SDPT3 or Sedumi

to the half-duplex optimization problems. 1k — Cess
The example scenario we consider here is the line network ---Ror
depicted in Figure 3. This is a commonly used geometry —p
where dsp = 1 is fixed and the relay is positioned on 0— ‘ ‘ : ;
the line connecting the source and the destination such that 0 02 04 d 06 08 1

dsr = |d| anddrp = |1 — d|. The entries of the channel gain . cound and | chiovist
; ; igure 4. Comparison of cut-set bound and maximal achiev rate

matrllcesHSR, H;D, _andHRD are assumeq to be mdepen_derfgr full-duplex relay channelNs — Nr = Np — 1 and Ps = Fr = 10

and identically distributed complex Gaussian random W¥e® (averaged over 5000 realizations).

with zero mean and varianeg’, dgpy', anddyp , respectively,

where the pass loss exponent is chosen as2. Note that all

numerical results are averaged over a number of independent

channel realizations, where perfect CSI at all nodes isnasdu

for every realization.

The upper bound for the full-duplex MIMO relay channel

presented in [5] is given by

Cip = Rg}%ﬁpmm{log det (I + (1 —p*)H,RsHY),

inf log det (T + (1 + £) HspRsHY, 5
>0 a —Ccse
+ (1 + a)HrpRrHEp) } —-Cus
st t(Rs) < Ps, tr(RR) < Pr, ~~~Fior
—p
Rs>=0. Rr>=0. 0<p<l1. 26 ‘ ‘ ‘ ‘
st SRZE USPS (26) 00 02 04 .06 08 1

d
In order to arrive at this result, the authors introducedsttadar

parametenp € [0, 1] to capture the cross correlation betweenRigure 5. Comparison of cut-set bound, upper bound (froi gid maximal
the source and relay inputs (instead of the mafixz) and achievable DF rate for full-duplex relay channéls = Ng = Np = 2 and
. . Ps = Pr = 10 (averaged over 1000 realizations).
subsequently made smart use of matrix inequalities. Atghou
the derivation is very elegant, the bound suffers from sadver
restrictions that are pointed out in [9]. Most importantlyis 20
bound is loose in general. Moreover, it is only valid for amta
configurations that satisfiVs < Ng, which will most likely be
violated if the source is a base station and the relay is some 152
device of lower complexity for example. However, in order
to compare our results to this upper bound, we restrict our
scenarios to those which satisfy this condition.

For the simplest case of single antenna nodes, i.e., when all
channels are scalars, the cross covariance mdg boils
down to a scalar. As a consequen€gg is equal toCE2g in 5
this case [5]. Figure 4 thus compares only the cut-set bound
with the achievable DF rate given thals = Ng = Np = 1.

We can observe the well known result that the DF scheme o= ‘ ‘ ‘ ‘ -
achieves the CSB when the relay is very close to the source, 0 02 04 d 06 08 1

i.e., when the probability that the source-relay link is the

bottleneck goes to zero. The value pthat maximizesC{} FicghLigaGb'leCS??;gS?onr ?Lﬁlgjﬁéfizlf;d' léﬁgﬁrzgfuid ](\fffoy fldeai"gal
(and thusC¢Zg) s close to 1 in this case, which means thal {7 "> % " T averaged over 1000 realizations).
source and relay can realize multi-antenna transmission.




When some nodes are equipped with multiple antennas, on 2.5
the other hand, the@ is not tight for all channel conditions.
This is illustrated in Figures 5 and 6 fo¥s = Ng = Np = 2
as well asNs = Ng = 2, Np = 3, respectively. We see
that C{R = CEZg only if p = 0. In fact, it can be shown
that the upper bound is equal to the cut-set bound if the
optimal solution requires that the source and relay inptas a
independent, i.e., ib = 0 and Rsg = 0 are optimizers of the 1t
respective optimization problems. This is because thetsire

1.5 - -

>

(&)

o
o]

of the optimal correlation is completely captured by thdarca —
L - - 0.5 Ccss
p = 0 in this case. In general, this does not hold, which g
explains why the upper bound is not always tight. ---Rpe
For the half-duplex MIMO relay channel, no such upper 0 0 0‘2 0‘4 0‘6 0‘8 1
bound that relies on the introduction of a scalar corretatio ' d T '

parameter and utilizes matrix inequalities has been derive

; ; ; : Jrigure 7. Comparison of cut-set bound, upper bound (frorp f81d maximal
However, a different upper bound is presented n [9]’ Whlcgj:hievable DF rate for half-duplex relay channsk = Ng = Np = 1 and

reads as PSU) = PS(Q) = Péf) = 10 (averaged over 500 realizations).
HD
R(l)Iylll;%g()>0_’ CUB S.t.
T1,7220,71+;2S1 12’
CB < milog [T+ HiRV HY| + 7310 |1 + HeoRG HE|, =N
CUB < milog |1+ HsoRY H| + mlog |1 + HR® HY|, . e ?
r(RS) < PV w(RY) < PO w(REY) < PP (27) 3
Q- |-
Remark 4: Note that a bound of the same structure was < 6
also presented for the full-duplex case in [9]. However hes t 4
differences to our results are of the same kind, we discuss al
properties on the basis of the half-duplex relay channel. o : —CcsB
Observe that the conditional covariance maﬂgg{ in (16) —-Cus
must be replaced bR to obtain (27), which is the only o ‘ ‘ ‘ L= For
difference between these two optimization problems. Bseau 0 02 04,06 08 1

log det(I + HRH") is an increasing function in the transmit

covariance matrixR given the channel gain matriff, and Figure 8. Comparison of cut-set bound, upper bound (frofj) §8id maximal

since R(STge _ R(S2) _ R(SQFg R|(q2)’TR(32Fg’H < R(SQ)' it follows ac(f}i)evable DF rate for half-duplex relay chann® = Ng = Np = 2 and

_p@ _ p@ _ At
that CHS; < CHP. Therefore,CfY is loose in general, and P = P57 = F = 10 (averaged over 200 realizations).
CHS, = CHP only if the optimal solution of (16) requires
that R(SQFQ =0, i.e., if the optimal source and relay inputs are 15
independent. Note that this condition for the tightnesshef t
upper bound is the same as for the bound derived in [5] for A3
the full-duplex case, although the reasons for the bountls no b AN
being tight in general are completely different. 10 STl i

Irrespective of these properties, (16) poses a much more @ |  TTTTTTTC
complicated optimization problem than (27). In particu(2i7)
is already convex in the transmit covariance matrices fadfix

bpcu

71 and 7». It is hence not necessary to introduce a slack 5

variable and to apply the Schur complement condition. Rathe — Cess

only the convexity preserving property of the perspective Oy

function is needed to reformulate (27) as a convex optirntnat ---Rpr

problem. 0 ; ‘ ‘ ‘ ‘ ‘
Figures 7-9 compar€Ss, CHE, and REE for different 0 02 04,06 08 1

antenna configurations, which are actually the same as for

. : : Figure 9. Comparison of cut-set bound, upper bound (frofy §id maximal
the full-duplex case. First, observe that there is no argenpiy. = r' o tor half-duplex relay channdl — Ng = 2, Np — 3,

configuration for whichCHR = CEL; in general, not even the and PV = P — p{) — 10 (averaged over 200 realizations).
single antenna case. In fact, the relative gap betw@gl



and C{{f among the three configurations considered here is VI. CONCLUSION

largest forNs = Ng = Np = 1. Furthermore, it can be seen |n this paper, we extend previous results for the full-duple
that the gap between the cut-set bound and the upper boyngio relay channel and show that the cut-set bound and
decreases witld. From this, we can conclude that the bettefhe achievable DF rate can also be obtained as the solutions
the relay-destination link is compared to the source-d@son  of convex optimization problems in the half-duplex case. It
link, the less correlated the optimal source and relay Bpy§ therefore possible to efficiently determine these (galhyer
must be. Moreover, the simulation results shown in Figureq@bse) upper and lower bounds on the capacity of the MIMO
and 9 suggest that the gap betwe&; and C{j§ decreases rejay channel, which may serve as benchmarks for achievable
faster withd for larger Np if the number of source and relayrates of various relay strategies for example. Additionall
antennas is not changed, which means that more degreesvefdiscuss how our results for the cut-set bound compare to
freedom at the destination also favor less correlated scamd the upper bounds presented in [5] and [9]. In particular, we
relay input distributions. point out why these upper bounds are not tight in general,
Comparing the full-duplex to the half-duplex results, itind we identify cases in which they are equal to the CSB.
stands out that the relative gap betwe€fiy; and RSP  Finally, simulation results for various antenna configiorzs
increases less than that betwe€fi2; and RE? when the demonstrate the importance of our work as they reveal non-
relay is moved closer to the destination, especially for theegligible gaps between the CSB and the addressed upper
single antenna case. This may be explained by the fact thaunds.
in the half-duplex case the optimization is with respect to
the source and relay inputs and the time-sharing between the
relay receive and the relay transmit phase. The optimal tim@] E. C. van der Meulen, “Three-Terminal Communication Qfels,”
allocation for the achievable DF rate need not be the same TAd",\jncf in Applied Probability, vol. 3, no. 1, pp. 120-154, 1971.

: . ) ?‘]:' . M. Cover and A. El Gamal, “Capacity Theorems for the &el
for the cut-set bound. Since the source transmits during bot * channel,” IEEE Trans. Inf. Theory, vol. 25, no. 5, pp. 572-584, Sep.
phases and the source-destination channel does not cteange, 1979. ) _ ,
weak source-relay channel can thus partly be compensated 3 gépﬁrc"}tn;e%hg"dr;fl":t?grr' RaenIgyPN f&gﬁ%y;&“}fﬁgvﬁnfslg"ﬁ?:o?;d
by prolonging the relay receive phase. In the full-duplesesa vol. 51, no. 9, pp. 3037-3063, Sep. 2005.

this is not possible as both the source and the relay transnift J. N. Laneman, D. N. C. Tse, and G. W. Wornell, “Coopeafdiversity
the whole time in Wireless Networks: Efficient Protocols and Outage BebgviEEE
’ . . Trans. Inf. Theory, vol. 50, no. 12, pp. 3062—-3080, Dec. 2004.
Across-the-board, all simulation results show that thesrat [5] B. wang, J. Zhang, and A. Hast-Madsen, “On the Capacithgflo
achieved using the DF scheme approach the CSB when the Relay Channels1EEE Trans. Inf. Theory, vol. 51, no. 1, pp. 29-43,

; ; Jan. 2005.
relay is close to the source. Furthermore, it can be seen t M. H. M. Costa, “Writing on Dirty Paper/IEEE Trans. Inf. Theory,

substantial rate gains can be achieved when multiple aagenn = |, 29, no. 3, pp. 439-441, May 1983.
are used at each node without increasing the power at tfi@ C. K. Lo and R. W. Heath, Jr, “Rate Bounds for MIMO Relay

; ; ; Channels,”Journal of Communications and Networks, vol. 10, no. 2,
source or the relay. These results are certainly not simgrés bp. 194-203, Jun. 2008,

they are in accordance with previous knowledge about decodg) L. Gerdes and W. Utschick, “Optimized Capacity Bounds the
and-forward relaying and MIMO channels. MIMO Relay Channel,” accepted for publication at IEEE Imional

; : Conference on Acoustics, Speech and Signal Processings@BA2011.
Before we conclude this section, a few comments abo%] S. Simoens, O. Mufioz-Medina, J. Vidal, and A. del Cos®n“the

problems (19) and (25) are in order. Note that these twO™ Gaussian MIMO Relay Channel With Full Channel State Infdiome’
convex optimization problems do not satisfy the ruleset of |EEE Trans. Sgnal Process., vol. 57, no. 9, pp. 3588 —3599, Sep. 2009.

ol : [10] S. Boyd and L. VandenbergheZonvex Optimization. Cambridge
disciplined convex programming (DCP) [13]. Problems that University Press, 2004,

adhere to this ruleset can automatically be verified as convg1] A. Hgst-Madsen and J. Zhang, “Capacity Bounds and PéMlecation
and converted to solvable form, which allows to directly use for Wireless Relay Channels|EEE Trans. Inf. Theory, vol. 51, no. 6,

; pp. 2020-2040, Jun. 2005.
standard SDP solvers. This does not apply to pmblems t T. M. Cover and J. A. Thomag|ements of Information Theory, 2nd ed.

violate the ruleset, even if they are convex. That is not {o John Wiley & Sons, 2006.
say that there does not exist a suitable reformulation ofi suid3] M. Grant, S. Boyd, and Y. Ye, “Disciplined Convex Progmaing,” in
problems. However, if no applicable reformulation can be Global Optimization, ser. Nonconvex Optimization and Its Applications,

. . P. Pardalos, L. Liberti, and N. Maculan, Eds. Springer US)620
found, other solution methods need to be considered. vol. 84, pp. 155-210.
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