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Abstract—In this paper, we analyze the approximation of the
outputs of linear time-invariant systems by sampling series that
use only the samples of the input signal. The samples are disturbed
by the threshold operator, which sets all samples with an abso-
lute value smaller than some threshold to zero. We do the anal-
ysis for the space of Paley–Wiener signals with absolutely inte-
grable Fourier transform and show for the Hilbert transform that
the peak approximation error can grow arbitrarily large for some
signals in this space when the threshold approaches zero. This be-
havior is counterintuitive because one would expect a better be-
havior if the threshold was decreased. Since we consider oversam-
pling and all kernels from a certain meaningful set, the results
are valid not only for one specific approximation process, but for
a whole class of approximation processes. Furthermore, we give
a game theoretic interpretation of the problem in the setting of a
game against nature and show that nature has a universal strategy
to win this game.

Index Terms—Approximation, game against nature, Hilbert
transform, Paley–Wiener space, sampling series, signal recon-
struction.

I. INTRODUCTION AND MOTIVATION

T HE vast majority of physical phenomena and signal pro-
cessing operations is linear. Linear problems have the ad-

vantage of being mathematically relatively easy to treat com-
pared to nonlinear problems. However, not all phenomena and
operations are linear. A frequent reason for nonlinearity in ap-
plications is the presence of a threshold operator.

One threshold operator is the operator that sets all signal
values, whose absolute value is greater or equal to some
threshold , to . This operator, which is often called the
clipping operator, has been widely analyzed [1]–[3], because of
its importance to many engineering applications, especially in
power amplifier design. We do not address the clipping operator
in this paper. Instead we do our analysis for the threshold oper-
ator that sets all signal values, whose absolute value is smaller
than the threshold , to zero, because it has several interesting
applications and still there are few results available for it.

Wireless sensor networks are one possible application
wherein the threshold operator is important. The sensors
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sample some bandlimited signal in space and time and transmit
the samples to the receiving signal processing unit. In order
to save energy, it is common to let the sensors transmit only
if the absolute value of the signal exceeds some threshold

. Then, using these samples, the signal processing unit
tries to approximate some transformation of the signal as good
as possible. Although we use this sensor network scenario to
motivate our analyses in this paper, the results are not limited
to it and still valid in a more general, abstract setting.

We do not restrain ourselves to the analysis of one specific
approximation process. Instead we treat the problem in a very
general fashion by considering oversampling and all possible
kernels in a meaningful class of reconstruction kernels.

A general approach to a problem is particularly useful when
the problem under consideration is not well defined. An often
encountered cause for this is the ambiguity in finding a suitable
mathematical model for a complex nonmathematical problem.
Using a general approach it is possible to solve a problem not
only for one specific situation but for many different situations
simultaneously. Apart from our approach to consider a whole
class of approximation processes, axiomatic approaches are yet
another possibility to achieve a high level of generality. Kuhn
prizes the axiomatic approach in [4] by explicitly highlighting
four game theoretical papers that use the axiomatic method.
These are Milnor’s paper “Games against nature” [5], Arrow’s
paper “A difficulty in the concept of social welfare” [6], where
he introduced his “impossibility theorem,” Shapley’s paper “A
value for n-person games” [7], and Nash’s paper “The bar-
gaining problem” [8]. We use the game against nature concept
in this paper to give a game theoretic interpretation of our main
result.

II. BASIC PROBLEM FORMULATION AND NOTATION

In order to continue, we need some notation and definitions.
Let denote the Fourier transform of a function , where is to
be understood in the distributional sense. , ,
is the space of all th-power Lebesgue integrable functions on

, with the usual norm , and is the space of all
functions for which the essential supremum norm is finite.

For , let be the set of all entire functions with
the property that for all there exists a constant with

for all . The Bernstein
space consists of all signals in , whose restriction to the
real line is in , . A signal in is called
bandlimited to . By the Paley–Wiener–Schwartz theorem, the
Fourier transform of a signal bandlimited to is supported in

. For , the Fourier transform is defined in
the classical and for in the distributional sense. It is well
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known that for . Hence, every signal
, , is bounded.

For and , we denote by the
Paley–Wiener space of signals with a representation

, , for some . If

, then . The norm for ,

, is given by . As a
consequence of Parseval’s equality, we have . Fur-
thermore, the Hausdorff–Young inequality leads to
for , and Hölder’s inequality to

for . Moreover,
.

A. Signal Reconstruction Without and With Oversampling

For signals in , the behavior of sampling series is often
very different compared to their behavior for signals in .
A well-known fact is the uniform convergence of the Shannon
sampling series on compact subsets of for all
[9]–[11], [15]. That is, we have for all and

It would be of practical relevance to have the uniform conver-
gence on all of . Then, it would be possible to bound the recon-
struction error, which is made by the finite Shannon sampling
series, on the whole real axis. Unfortunately, the Shannon sam-
pling series is not uniformly convergent on all of in general
for . Even worse, there exists a signal ,
such that

i.e., the peak reconstruction error can grow arbitrarily large [12].
It is well known that oversampling improves the convergence

behavior of the Shannon sampling series. Indeed, the applica-
tion of oversampling leads to stable reconstruction processes
and even the Shannon sampling series with the sinc-kernel and
a slightly increased bandlimit is uniformly convergent on all of

. For all and , we have

Due to oversampling many different reconstruction kernels are
possible, not only the sinc-kernel.

In particular, all kernels in can be used.
Definition 1: , , is the set of functions

with for .
The functions in , , are suitable kernels for the

sampling series, because for all and , we have

if .

Two well-known classes of kernels in , , are the
kernels with a trapezoidal shape in the frequency domain and
the kernels with a cosine roll-off characteristic.

One important property of the kernels , , is
stated in the following lemma.

Lemma 1: For all and , there exists a constant
such that for all .
Proof: For with and

, , we have

and

Furthermore, since it follows:

The class of kernels is very important in the theory of
systems, because, for all , the sampling series

is bounded-input–bounded-output (BIBO) stable, which means
that any bounded input signal leads to a bounded output signal

.
By considering all kernels from in our analysis, the

obtained results are valid not only for one specific reconstruction
process but for a whole class of reconstruction processes.

B. Thresholding Without and With Oversampling

In Section II-A, we have seen that the peak reconstruction
error can grow arbitrarily large, when using the Shannon sam-
pling series without oversampling as reconstruction process.
However, if certain operators are applied on the samples of
the signal before the reconstruction, the situation might be
different. Before we extend our discussion to the case where
the samples are disturbed by the nonlinear threshold operator,
we precisely introduce the threshold operator. For complex
numbers , the threshold operator , , is defined by

.

Furthermore, for continuous signals , we define
the threshold operator , , pointwise, i.e.,

, .
In this paper, the threshold operator is applied on the sam-

ples of signals , which gives the disturbed
samples . This is, of course, equivalent to applying
the threshold operator on the signal itself and then taking
the samples, i.e., .
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The resulting samples , , can be used to
build the approximation

(1)

of the original signal . The reconstruction process (1) uses only
the samples that are larger or equal to the threshold , and since
the samples are taken at Nyquist rate, no other kernel than the
sinc-kernel can be used. By , we denote the operator that
maps to according to (1). Since , we
have by the Riemann–Lebesgue lemma, and
it follows that the series in (1) has only finitely many summands,
which implies .

In general, is only an approximation of , and we want
the reconstructed signal to be close to if is sufficiently
small. We use the peak reconstruction error

(2)

to measure this closeness. Since all signals are
uniquely determined by their samples, and the series ,

, uses all “important” samples of the signal, i.e., all samples
that are larger or equal than , one could expect to be a
good approximation for , at least if is small. However, this is
not the case, because there exists a signal such that

(3)

Hence, a reduction of the threshold leads to an unbounded
increase of the peak reconstruction error for some signals in

. This behavior is counterintuitive, because one would sus-
pect that the reconstruction behavior of (1) gets better as the
threshold is reduced.

Next we take a look on what happens in the case of thresh-
olding and oversampling, i.e., we consider . Using kernels

, the reconstruction process with threshold has the
shape

(4)

Again, as in the case without oversampling, for ,
the series (4) has only finitely many samples, which implies

. In contrast to reconstruction without
oversampling, we now have a good approximation behavior of
the reconstruction process (4). In [13], it has been shown that,
for all , , and , we have

(5)

Equations (3) and (5) show that exhibits a good approx-
imation behavior for all as goes to zero only if
oversampling is used.

C. Thresholding and Stable LTI Systems

However, in many signal processing applications, the task is
to approximate some processed version of and
not itself. One frequently used type of processing is the fil-
tering of a signal by a stable linear time-invariant (LTI) system

. So, another problem with an even higher practical relevance
than the mere signal reconstruction is the approximation of
and therefore the behavior of

(6)

for stable LTI systems and . As
before, is the threshold and is the operator, defined in
(4).

Before we continue the discussion, we briefly review some
definitions and facts about stable LTI systems and introduce
the Hilbert transform. A linear system
is called stable if the operator is bounded, i.e., if

. Furthermore, it is called time

invariant if for all and
.

Note that our definition of stability is with respect to the
-norm and thus is different from the concept of BIBO sta-

bility. Our definition of stability is equivalent to the concept of
energy stability, i.e., stability with respect to the -norm.

The Hilbert transform is one example of a stable LTI system,
which has many applications [14]. The Hilbert transform of
a signal is defined by

where denotes the signum function. Note that the Hilbert
transform is stable with respect to our definition of stability, but
not BIBO stable. In Theorem 1, we use the Hilbert transform
as one specific stable LTI system, however, the result is not re-
stricted to the Hilbert transform, but also valid for other LTI sys-
tems that are stable with respect to our definition above.

III. INTERPRETATION AS A GAME AGAINST NATURE

The problem, which is analyzed in this paper, is depicted in
Fig. 1. Suppose that, according to the specific problem at hand,
some arbitrary signal from the signal space is given. In
our wireless sensor network setting, this signal could be some
physical quantity. By our measuring procedure, this signal is
sampled in space with some oversampling factor , and all
samples with an absolute value below the threshold are set to
zero. Next, the resulting samples are trans-
mitted to the signal processing unit. In practical applications, we
always have to deal with transmissions errors, which can lead to
missing or erroneous samples at the receiver. For simplicity, we
do not treat those problems and assume that the transmission is
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Fig. 1. Model of the game against nature.

error free. The signal processing unit uses the received samples
to compute an approximation

(7)

of . As can be easily seen from (7), by the choice of
, we have a degree of freedom, which we can use to adapt

the approximation process such that the approximation is as
good as possible. For practical applications, we have to control
the peak approximation error

for all possible thresholds , i.e.,

(8)

has to be bounded. Intuitively one could suppose that the ap-
proximation error is reduced if the threshold is decreased. How-
ever, this is, as we will see in Theorem 1, not true in general.

In order to make the problem well posed, we have to bound
the norm of the signals . Otherwise, a simple scaling
of could increase (8) unboundedly. We consider the set

. The choice to upper bound
by one in the definition of the set is somehow ar-

bitrary and only motivated by our special construction of the
signal in the proof of Theorem 1.

The whole problem can be interpreted as a game, played be-
tween nature and some intelligence, called player in the fol-
lowing. In this game, nature can choose an arbitrary signal

and the player can choose an arbitrary kernel
for the approximation process. The oversampling factor
is supposed to be fixed in this game. Ideally, the player’s goal
would be to choose so that (8) is minimized. How-
ever, the player has no direct access to the signal ; he knows
only the sequence of disturbed samples . So
all he can do is to minimize

(9)

In contrast, nature tries to maximize (9) by its choice of .
Finally, the player has won the game if

, i.e., if the approximation error is bounded, and nature has
won the game if .

If , we have
and consequently

(10)

by applying the triangle inequality. Therefore, it is enough to
control (9), because (10) automatically gives an upper bound
on (8). In contrast, if nature has a strategy that increases (9)
unboundedly, then the supremum of the approximation error (8)
grows also arbitrarily large.

In Fig. 2, the game is illustrated as a matrix game. Note that
the player’s action space and nature’s action space
are both uncountable. Thus, the interpretation of the game as a
matrix game is only for illustrative purposes and not based on a
mathematical justification.

The game can be played in two variants. In the fist variant,
the player chooses without any additional knowledge. In the
second variant, the player chooses with full knowledge about
the sequence of disturbed samples . The first
situation might occur either if the player potentially has access
to the information about the samples but decides, due to what-
ever reason, not to use it, or if it is impossible for the player
to get the information because he has to make his choice of
before nature chooses . The second variant is typical for the sit-
uation where nature chooses first. Of course, the second variant
is advantageous for the player because he has additional infor-
mation in form of the sequence of disturbed samples, which he
can use to adapt his choice of to nature’s choice of . Note
that the player can neither deduce the threshold nor the orig-
inal signal from the sequence of disturbed samples, because
of the threshold operator.

In the first variant of the game, where the player has no addi-
tional knowledge, the best performance he can achieve—under
the assumption that nature plays optimally—is given by

(11)

The reason can be seen in Fig. 2. For every ,
i.e., every row that the player chooses, nature can choose the



1086 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 3, MARCH 2010

signal , i.e., the column for which
is maximized. So the best the player can do is to minimize

by his choice of .
In the second variant of the game, the player can adapt his

choice of to nature’s choice of , which leads to

(12)

as the best possible performance—again assuming that nature
plays optimal. As before, the reason can be seen in Fig. 2. For
every , i.e., every column that nature chooses, the player
can choose the function , i.e., the row for which

is minimized. So the best nature can do is to
maximize by its choice of

. Note that although the player has only access to the disturbed
samples , and not to the full signal , it is
possible to achieve , because the approximation process
only uses the disturbed samples, which are known to the player.

Remark 1: Since we deal with infinite-dimensional spaces
and , it is not clear whether an and a
exist such that the supremum and infimum in (11) and (12) are
actually attained. However, it turns out that this problem is not
present in our case.

Obviously, from (11) and (12), we see that . The po-
tentially better performance in the second variant of the game
comes with the price of higher complexity: For every , a
new kernel has to be determined, whereas in the first
variant, the player uses only one single kernel for all .

We will see in Theorem 1 that nature has a universal strategy,
which is independent of the player’s choice of . This
strategy is given by playing always one universal signal .
For this signal, we have

for all , and hence as well as . This
shows that an adaptive choice of the kernel is useless.

In some applications, the threshold is known a priori.
Then both the player and nature can adapt their strategy to
the threshold , and the corresponding expressions for the
best performance in the first and second variants of the game
become

and

respectively. However, as we will see in Corollary 1, there exists
a signal such that

and hence as well as . Therefore, additional
side information in form of the threshold is useless for the
player.

IV. MAIN THEOREM

In this section, we state and prove the main theorem. An in-
terpretation of it in the form of a game against nature has already
been given in the previous section.

Theorem 1: Let be arbitrary. There exists a universal
signal with such that for all

and consequently

Remark 2: Theorem 1 immediately points out a universal
strategy for nature in the game. If nature chooses the signal
the player has no chance to bound by a
suitable choice of . As for the discussion in Remark 1,
this means that the situation where the supremum and infimum
in the expressions (11) and (12) are not attained at some
and cannot occur in our scenario.

A direct consequence of the proof of Theorem 1 is the fol-
lowing corollary.

Corollary 1: Let be arbitrary. There exists a signal
with such that

and consequently

The divergence results of Theorem 1 and Corollary 1 are also
valid for other LTI systems that are stable with respect to the

-norm. For BIBO-stable LTI systems, i.e., for LTI sys-
tems with absolutely integrable impulse response, the diver-
gence phenomena, which we have encountered in Theorem 1
and Corollary 1, cannot occur.

Before we can prove Theorem 1, we need an additional
Lemma.

Lemma 2: For all , , , and ,
we have

where
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Fig. 2. Infinite matrix game.

Proof: The simple sequence of inequalities

proves Lemma 2.
Now we are in the position to prove Theorem 1.
Proof of Theorem 1: Before we start with the proof, we

shortly summarize the main steps. The central idea is to con-
struct the desired signal as an infinite weighted sum of
scaled and translated versions of one basic function. This basic
function is the squared sinc function

(13)

For the proof, it is essential that this function is positive. Let

, denote the scaled version of (13). Two facts are im-
portant. First, the -norm of is 1, indepen-
dently of . Second, for every fixed with

, goes to infinity as . By appropriately
adding weighted and translated versions of with increasing

, we can construct a signal with and a de-
creasing sequence such that .
The construction of is done iteratively.

Fig. 3. Definition of �� (solid line) and �� (dashed line).

Now, we start with the proof. Let and be arbitrary
but fixed. Furthermore, let and be the functions defined
in Fig. 3 and some arbitrary reconstruction kernel.
Then, we have

and

Since , it follows that .
Moreover, for all , , , and ,

we have

(14)
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where we used Lemma 1 in the last inequality. Since we can
upper bound the difference (14), it is enough to analyze

in the following. For , we can simplify , using
integration by parts, according to

(15)

and for , we have .
Basic elements of the proof are the functions

(16)

Every is the product of two sinc functions, and thus, in the
frequency domain, is the convolution of two rectangular
functions, which implies for all . The non-
negativity of can be used to calculate the -norm of ,
because

(17)

for all , . Since

(18)

for all , we have for all . For
and , let denote the smallest natural

number that fulfills

Moreover, the function , which equals 1 for
and 0 for , is monotonically decreasing in and

smaller than for . Thus, for all , we
know that the equation

has a unique solution in the positive real numbers, which we will
denote by in the following, and that satisfies .
Obviously

and

Next, we inductively construct a sequence of
-functions. First, we set and choose some

satisfying . Then, we choose ,
, so large that

(19)

where . The condition is only a
technical condition ensuring that is large enough such that

for all . For convenience,
we introduce the abbreviation . As the first func-
tion in the sequence, we set .

Next, we need the constant

(20)

where the positivity of follows by the definition of . Now,
we choose some satisfying

(21)

and then some satisfying . Furthermore, let
be the smallest natural number such that

(22)

where . Again, we introduce the abbreviation
. As the second function in the sequence, we set

, where is the smallest
natural number for which

(23)

The first important property of is that for , we have

(24)

In the last inequality, we used (20) and (21). The second impor-
tant property of is that for , we have

(25)
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because of (23). A direct consequence of (24) is that

(26)

Evaluating the expression (26) for and
inserting (15) leads to

where we used the fact that for all . Since

by Lemma 2, it follows that

where we used (19) in the last line. For ,
we have

(27)

Since according to (25), every
summand of the first sum on the right-hand side of (27) is pos-

itive, and therefore, leaving out some summands only reduces
the sum. Using , , we obtain

Since

by Lemma 2, it follows that

where we used (22) in the last line.
Next, we need the constants

(28)

and

(29)

where the positivity of follows from (25). Now, we choose
some satisfying

(30)

and then some satisfying . Furthermore, let
be the smallest natural number such that

(31)

where . Again, we introduce the abbreviation
. As the third function in the sequence, we set

, where is the smallest natural
number for which

(32)
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The first important property of is that for , we have

(33)

In the second to last inequality, we used (24), and in the last
inequality, we used (29) and (30). A direct consequence of (33)
is that for

where we used the fact that and for all
. Since

by Lemma 2, it follows that

where we used (19) in the last line. The second important prop-
erty of is that for , we have

(34)

because of (28) and (30). Consequently, for

(35)

Since according to (34), every
summand of the first sum on the right-hand side of (35) is pos-
itive, and therefore, leaving out some summands only reduces
the sum. Using Lemma 2, it follows that

by applying (22) in the last inequality. The third important prop-
erty of is that for , we have

(36)

where we used (32) in the last inequality.
For , we have

(37)
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Since according to (36), every
summand of the first sum on the right-hand side of (37) is pos-
itive, and therefore, leaving out some summands only reduces
the sum. Using , , we obtain

(38)

Since

by Lemma 2, it follows that

where we used (31) in the last line.
Now suppose that we have already constructed func-

tions and numbers , , and
, where we set for convenience, and

, . Then,
we set for

and choose some satisfying

and some satisfying . Further-
more, let be the smallest natural number for which

where . Then, we set

where is the smallest natural number for which

(39)

Because of the special construction of , we have for arbi-
trary that

(40)

for all and consequently for all . It follows
for and that

(41)

Since according to (36),
every summand of the first sum on the right-hand side of (41)
is positive, and therefore, leaving out some summands only re-
duces the sum. Using , , ,
we obtain

(42)

Since

by Lemma 2, it follows that

Note that according to our construction of , , we have

which implies that

for all .
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The sequence of functions , where

with for all , converges to a function

which is in , because

Since (40) is valid for all , we have for all ,

and therefore, it follows that

This implies

for all and consequently

Finally, we can divide by its norm to obtain the signal

Since

we obtain

which completes the proof.

V. NUMERICAL EXAMPLE

In this section, we illustrate the divergence phenomenon en-
countered in Theorem 1. Although the proof of Theorem 1 pro-
vides an explicit procedure for the construction of the diver-
gence creating signal , it is numerical problematic to com-
pute this signal, because it is created through an infinite iter-
ative process and the numbers involved in its construction in-
crease rapidly. Therefore, we use a slightly different signal for
the simulation.

For the simulation, we use the signal

with and , where was
introduced only for numerical purposes to reduce the magnitude
of the numbers in the simulation. The functions

are the same basic elements as in the proof of Theorem 1.
The only difference is that we allow to be any positive real
number here. The translations are chosen such that
the basic functions are separated far enough not to disturb
each other. In particular, we require that for all

for all (43)
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TABLE I
LOWER BOUND �� � � ����� � ����� FOR DIFFERENT VALUES OF �

where

and . This can be achieved using the same pro-
cedure as in the proof of Theorem 1. We will see that the specific
values of the translations do not matter for the numerical sim-
ulation.

Next, we show numerically what we have proved in Theorem
1: the peak value of the approximation increases
as is increased, i.e., as the threshold is decreased. Since

, for , it is suf-
ficient to evaluate numerically. However, the nu-
merical evaluation can be further simplified, because

(44)

according to (43). Since for , which follows
directly from (15), and for all , , all
summands in (44) are positive and leaving out some summands
only reduces the sum. Thus, we obtain

Hence, is a lower bound for the peak
value of the reconstruction . In Table I, we see that
this lower bound increases as is decreased along the sequence

.
Note that is only a lower bound for

the peak value of the reconstruction . So the increase
of this lower bound for a finite number of thresholds does not
necessarily imply the increase of . However, this nu-
merical example is only meant to illustrate what we have math-
ematically proven in Section IV. From the proof of Theorem 1,
we know that the lower bound increases
unboundedly, which in turn implies the unbounded increase of

as the threshold tends to zero. Of course, we cannot

show the unbounded increase of the lower bound numerically in
a finite number of simulation runs. Nevertheless, Table I shows
the increasing trend of the lower bound.

It is interesting to discuss the divergence of a
little further and to compare its divergence speed with the diver-
gence speed of the peak value of the Shannon sampling series. In
Section II-A, we have seen that there exists a signal
such that , where

denotes the finite Shannon sampling series. In [12], it was shown
that the divergence speed of is at most of the order

. If we have a look at the construction of the signal ,
we see that the situation is different here. The determining factor
for the divergence speed of is the growth rate of the
sequence . However, this rate can be made arbitrarily
large. Hence, for any desired divergence speed order, it is pos-
sible to construct a signal such that di-
verges with this order.
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