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ABSTRACT
We consider spatio-temporal Tomlinson Harashima Precoding

where the feedforward filter is located at the transmitter and an

additional scalar gain is employed as receive filter. In contrast to

other works, we allow channel, feedforward, and feedbackward

filters to have one-sided but infinite impulse responses. The optimal

filters with respect to a minimum mean square error criterion are

derived. We elaborate several interesting properties of our solution

and discuss a fast implementation with only quadratic complexity

in the latency time.

I. INTRODUCTION

Precoding is an attractive approach to fight typical impairments

in communication systems such as intersymbol interference when

low complexity receivers are sought and the channel is known

at the transmitter. An especially popular precoding technique is

Tomlinson Harashima Precoding (THP; see [1], [2]), which is

well-known for its good compromise between performance and

complexity. The basic idea of THP is to extend the modulation

alphabet to an infinite lattice in the complex plane and to modify the

data signal such that when the (probably unstable) inverse channel

is applied to this modified data signal, a precoded signal of fixed

average power results. The receiver can revert the modification

of the data signal with a simple modulo operation. A typical

THP basically consists of three components: modulo operators, a

feedforward filter (FFF) which is used to shape the channel impulse

response, and a feedbackward filter (FBF) which is used to compute

the signal that neutralizes the interference in the shaped channel.

In the literature, several variants of THP can be found. The

classical THP was designed for single-input single-output (SISO)

channels and incorporates transmitters that only employ modulo

operators and a FBF [1], [2]. Many authors chose to include an FFF

at the receiver, e.g., [3]. Various works have extended this concept

to multiple-input multiple-output (MIMO) channels by addition

of spatial feedback, e.g., [4], [5]. A more recent variant of the

THP considers systems where also the FFF has been moved to the

transmitter, e.g., [6]. This has the advantage that the complexity

at the receiver is reduced, but there is the expense that the FFF

has to be designed subject to a transmit power constraint. Finally,

Joham et. al. [7] have recently proposed to add an additional scalar

receive filter. They derived the optimal THP in this scenario with

respect to the minimum mean square error (MMSE) criterion (under
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Fig. 1. System model.

some simplifying assumptions) for FIR MIMO channels. However,

although FIR channel models are predominant in communications,

it is well-known that the use of IIR channel models can be

advantageous in some applications, e.g., DSL [8], [9]. Furthermore,

also the FFF and FBF in [7] were constrained to be FIR. The

goal of this paper is to address these issues. We make following

contributions.

1) We derive the MMSE THP for IIR MIMO channels, where

we also allow the FFF and the FBF to be IIR.1

2) We establish several properties of the IIR-MMSE THP. Our

most striking finding is that the IIR-MMSE THP reduces to

a FIR-MMSE THP if the channel is FIR.

3) We give a fast implementation of our results with only

quadratic complexity in the latency time.

The paper is structured as follows. We start with the system model

(Sec. II) and the problem statement (Sec. III). Then, we present our

results in Sec. IV. We close the paper with a numerical example

(Sec. V) and a conclusion (Sec. VI).

Notation and basic definitions: We denote the space of complex

m × n matrices by C
m×n and equip it with the Frobenius norm

‖A‖2F := trace{A∗A}, where A∗ is the hermitian and A ∈ C
m×n.

AT means transposition. The space of stable and causal rational

m × n matrices (i.e., no poles in |z| ≥ 1) will be denoted by

RHm×n
∞ . We equip it with the norm ‖B‖22 :=

´ 2π
0

‖B(eiθ)‖2F dθ
2π

,

B ∈ RHm×n
∞ . The impulse response of B is the unique sequence

{Bk}k∈N ⊂ C
m×n such that B(z) =

∑∞
k=0 Bkz

−k for |z| ≥ 1.

O denotes the Landau symbol.

1Note that we do so under the same simplifying assumptions as in [7].
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Fig. 2. Auxiliary system model

II. SYSTEM MODEL

The system model of a communication system employing Tom-

linson Harashima Precoding is depicted in Fig. 1. The transmitter

consists of a permutation matrix Π ∈ C
p×p, a strictly lower

triangular spatial FBF F ∈ C
p×p, a strictly causal temporal FBF

T ∈ RHp×p
∞ , and a causal FFF filter P ∈ RHp×q

∞ . The Mod block

denotes the modulo operator Mod : Cq → C
q, [v1, . . . , vq]

T �→
[w1, . . . , wq]

T , where wk := vk − τ floor
(
τ−1 real(vk) + 0.5

)−
iτ floor

(
τ−1 imag(vk) + 0.5

)
for all k = 1, . . . , q, and some

τ > 0.2 The channel H ∈ RHq×p
∞ , q ≤ p, and the noise model

0 	≡ Ψ ∈ RHq×l
∞ are also assumed causal. At the receiver, we

encounter the scalar gain α ≥ 0, another Mod block, and an

quantizer Qnt which maps the estimates to the nearest element

of the modulation alphabet used in the signal generation.

III. PROBLEM STATEMENT

Computation of the optimal THP in the sense that the mean

square error (MSE) between z−Ls and ŝ in Fig. 1 is minimized

is an intricate problem. Therefore, we perform some common

simplifications [7]. We replace the modulo operators with two

auxiliary signals a and â (which depend on s and ŝ), see Fig. 2.

Note that this replacement can be made exact by proper choice of

a and â. Instead of trying to minimize the MSE between z−Ls and

ŝ in Fig. 1, we will minimize the MSE between z−Ld and d̂ in Fig.

2. We will do so under the assumption that the output v = {vk}k∈N

of the modulo operator is a temporally and spatially uncorrelated

random sequence with zero mean and variance σ2
v := τ2

6
[7], i.e.,

E[vkv
∗
k+j ] = σ2

vIq if j = 0 and E[vkv
∗
k+j ] = 0q if j 	= 0. We

furthermore also assume that the unfiltered noise η = {ηk}k∈N is

a temporally and spatially uncorrelated random sequence with zero

mean and variance σ2
η > 0.

Problem 1. Let the channel H ∈ RHq×p
∞ , the noise model

0 	≡ Ψ ∈ RHq×l
∞ , a permutation matrix Π ∈ C

q×q , the signal

and noise powers σ2
v > 0 and σ2

η > 0, and a latency time L ∈ N

be given. Our goal is to find P ∈ RHq×p
∞ , F ∈ C

q×q , T ∈ RHq×q
∞

and α > 0 such that the expectation of the mean square error (MSE)

in the auxiliary model, e := E[‖z−Ld− d̂‖22], is minimized subject

to the transmit power constraint σ2
v‖P‖22 ≤ Etr , the temporal

causality constraint that T is strictly causal, and the spatial causality

constraint that F is strictly lower triangular.

2The exact value of τ depends on the modulation used. See [7] for details.

IV. OPTIMAL THP
IV-A. Main result
Theorem 2. Let {Hk}k∈N denote the impulse response of H and
assume that Hk0 	= 0 for some k0 ∈ {0, . . . , L}. Furthermore, set

M :=

⎡
⎢⎢⎢⎢⎢⎣

ΠH0

ΠH1 ΠH0

ΠH2 ΠH1 ΠH0

...
. . .

. . .
. . .

ΠHL . . . ΠH2 ΠH1 ΠH0

⎤
⎥⎥⎥⎥⎥⎦
∈ C

(L+1)q×(L+1)p

(1)

as well as

P̃ (z) :=
[
z−0Ip . . . z−LIp

] [
u1 . . . uq

]
where, for all k = 1, . . . , q, the uk are given by

uk :=

(
M∗

[
ILq+k

0q−k

]
M +

σ2
η‖Ψ‖22
Etr

I

)−1

M∗eLq+k

and ej denotes the jth column of the identity matrix I(L+1)q .
Finally, let {Nk}k∈N denote the impulse response of ΠHP̃ . Then,

αopt :=
σv‖P̃‖2√

Etr

(2)

Popt :=
1

αopt
P̃ (3)

Fopt := strictly lower triangular part of −NL

Topt := −
∞∑

k=1

Nk+Lz
−k

(4)

are well-defined and solve Problem 1.

Proof: See the appendix.

IV-B. Remarks and Discussion
FIRness: The optimal FFF Popt in Theorem 2 clearly is a FIR

filter of order L. Moreover, if H is a FIR channel of order N , then

also the temporal FBF Topt is a FIR filter of order N . Interestingly,

this observation is independent of the noise model Ψ. This is a

contrast to the optimal DFE where the optimal filters are FIR only

if the noise model is all-pole [10]. The reason is that we cannot

influence the noise at the receiver.

State-space realizations for IIR channels: The question remains

how we can realize THP if the channel is IIR. The FFF obviously

still is FIR even if the channel is IIR. However, the temporal

FBF will be IIR. A simple way to realize the temporal FFF

Topt is via state-space realizations [11]. Let the channel have

the state-space realization H(z) = D + C(zI − A)−1B and

expand the FFF as Popt(z) =
∑L

k=0 P
(k)
optz

−k. Then, by [12,

Lem. 5], Topt(z) = −αopt[CX + C(zI − A)−1BX], where

X :=
∑L+1

k=1 Ak−1BP
(L+1−k)
opt simply is a complex q × q matrix.

Note that this in particular shows that the McMillan degree (see,

e.g., [11]) of the temporal FBF is independent of the latency time.

This is in contrast to the FIR FFF whose McMillan degree Lq
obviously grows with the latency time.

The assumption Hk0 	= 0: Similar arguments as for linear

precoding [13] show that precoding requires that the first arrival

delay of the channel is not larger than the latency time. Otherwise,

one can show that Popt = 0p×q , Topt = Fopt = 0q×q and

αopt = 0 solve Problem 1 if Hk = 0 for all k ∈ {0, . . . , L}.
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Influence of L: Similar arguments as for linear precoding [13]

show that the MSE is non-increasing in the latency time.

Choice of Π: In general, the optimal permutation matrix Π can

only be found by exhaustive search, i.e., we have to compute the

MMSE of Π =
∑q

k=1 eke
∗
π(k) for all possible permutations π :

{1, . . . , q} → {1, . . . , q} and then use the Π which gave the best

MSE. (Here, ek denotes the kth column of Iq .) The exhaustive

search becomes very costly with growing q because there are q!
possible permutations. However, note that suboptimal schemes with

lower complexity often give close-to-optimal performance [7].

IV-C. Fast computation
The main computational complexity in Theorem 2 arises in

the determination of the u1, . . . , uq . When implemented naively,

the computational cost is O(qp3(L + 1)3), which can be quite

expensive. In contrast, we propose Alg. 1, which, if implemented

correctly, has the much lower complexity of O(p3L2).
Let us give some remarks on algorithm and implementation.

• The correctness of the algorithm is a simple consequence of

RR∗ = V ∗V = M∗
[

ILq

0q

]
M +

σ2
η‖Ψ‖22
Etr

I

and the Sherman-Morrison-Woodbury formula [14, §2.1.3].

• The only computationally demanding task in Alg. 1 is the

Cholesky decomposition RR∗ = V ∗V . Note that V is a full

rank block Toeplitz matrix. Thus, the results in [15], [16] can

be applied to compute the decomposition in O(p3L2).
• If the channel H is FIR, we could in principle also use the

approach in [7] because we have seen that the optimal filters

then will also be FIR. However, this may be less efficient

because no similarly fast implementation (i.e., with quadratic

complexity in the latency time) of the results in [7] is known.

• The linear equation system in Step 3b) should be solved with

forward and backward substitution [14, §3.1].

• The low rank of the matrix W in Step 3c) should be exploited.

V. NUMERICAL EXAMPLE
In this section, we illustrate a case where the IIR channel model

has advantages over the FIR channel model. We consider 2×2 IIR

channels of the form

H(z) =
H0 +H1z

−1 +H2z
−2

1− z/0.95

where the real and imaginary parts of the entries of each Hk

are normally distributed random variables with mean zero and

variance one. The pole at 0.95 ensures that the channel has a long

impulse response although it has a low McMillan degree. Typical

examples for such “pole-zero channels” are, e.g., DSL lines [8],

[9]. The standard approach to such a channel would be to use

a FIR approximation of the channel. The FIR THP filters would

then be derived from this FIR approximation. We will compare this

approach with our direct IIR solution.

In our simulations, we chose Etr = 1, τ = 2
√
2, σ2

v = τ2

6
, L =

6, Π = I . We transmitted 1000 QPSK modulated data vectors per

channel realization, i.e., 1√
2
sk ∈ {1±i,−1±i}2, and averaged the

resulting uncoded bit error rates over 1000 realizations for various

signal to noise ratios σ2
vEtrσ

−2
η . We computed the optimal THP

as given in Theorem 2 for the FIR approximations of the channel

Algorithm 1 Fast computation of the u1, . . . , uq in Theorem 2

Input: M in Theorem 2, H0, . . . , HL, ση‖Ψ‖2E−1/2
tr

Output: u1, . . . , uq in Theorem 2

1) compute the Cholesky decomposition RR∗ = V ∗V , where

V :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ση‖Ψ‖2√
Etr

Ip

. . .
ση‖Ψ‖2√

Etr
Ip

V0

...
. . .

VL−1 . . . V0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ C

(2L+1)p×(L+1)p

and, for k ∈ {0, . . . , L− 1},

Vk :=

[
Hk

0(p−q)×q

]
∈ C

p×p.

2) W ← 0(L+1)q

3) for k = 1, . . . , q do

a) v ← M∗eLq+k

where ej is the jth column of I(L+1)q

b) solve RR∗u = v for u
c) w ← u−Wv
d) W ← W + ww∗

1+v∗w
e) uk ← w − ww∗

1+v∗w v

H with orders N ∈ {20, 40, 60, 80, 100}. The results are shown

in Fig. 3. Note that only the approximations N ∈ {80, 100} give a

reasonable performance. However, while the FFF always simply is

FIR of order L = 6, the temporal FBFs become very complicated

in these cases: they have order N . We have also computed the

optimal IIR THP for the exact IIR channel using the method in

Sec. IV-B. In contrast to the FIR cases we now obtain optimal

performance and a low complexity FBF at the same time. (The

FFF is the same in all cases.)

We point out that similar observations have been made for the

DFE, where Crespo and Honig showed that IIR FBFs may be of

much lower complexity than FIR FBFs [9].

VI. CONCLUSION

We have derived the optimal spatio-temporal IIR Tomlinson

Harashima Precoder, both for FIR and IIR channels. We found

that the optimal feedforward filter is always FIR, while the optimal

temporal feedback feedback filter is FIR if the channel is FIR. We

also derived a fast algorithm to compute the optimal filters, which is

about an order of magnitude faster than the naive implementation.

A numerical example illustrated potential complexity reductions

compared to the conventional FIR approach.
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APPENDIX

Proof: (of Theorem 2) Ansatz: Our approach is as follows. We

first show that for any P and α the optimal T and F are trivial to

find, and that when they are applied we obtain a simpler expression

for the MSE which only depends on P and α. We then find the

optimal P and α which minimize this semi-optimal MSE. Finally,

the according T and F can be obtained from the relations in the

first part of the proof. We can only sketch the proof because of

space limitations.

Optimal T and F : We have d̂ = αHPv + αΨη and v = Πd+
Fv+Tv ⇔ d = Π∗(I−F −T )v. The stochastic interpretation of

the energy norm (see, e.g., [17, 10.3.1]) together with Π−1 = Π∗

Fig. 3. Numerical Example

allows us to rewrite the MSE in Problem 1 as e = σ2
v‖z−L(I −

F − T )− αΠHP‖22 + α2σ2
η‖Ψ‖22. The fact that the energy norm

‖ · ‖2 decomposes spatially and temporally can be used to show

e = σ2
v

∥∥∥∥∥∥∥∥∥
E −

⎡
⎢⎢⎢⎣

0
...

0
F

⎤
⎥⎥⎥⎦

∥∥∥∥∥∥∥∥∥

2

F

+σ2
v

∞∑
k=0

‖−Tk−Nk+L+1‖2F+α2σ2
η‖Ψ‖22,

E :=
[
0 . . . 0 Iq

]∗ − αM
[
P ∗
0 . . . P ∗

L−1 P ∗
L

]∗
,

where M was defined in (1) and {Nk}k∈N is the impulse response

of ΠHP . This representation implies that the choices T (z) =
−∑∞

k=L+1 Nkz
−k and F = strictly lower triangular part of −

NL are optimal for all P and α.

Semi-optimal MSE: When we insert the optimal T and F ,

we obtain the semi-optimal MSE es := σ2
v

∑q
k=1 ‖Rq−k(vk −

αMuk)‖2F+α2σ2
η‖Ψ‖22, where we have vectorized [u1, . . . , uq] :=

[P ∗
0 , . . . , P

∗
L]

∗ and [v1, . . . , vq] := [0, . . . , 0, Iq]
∗, and introduced

Rk := [I(Lq+q−k), 0(Lq+q−k)×(L+1)q] to model the optimal spatial

FBF. We can rewrite the semi-optimal MSE as

es = σ2
v

∥∥∥∥∥∥∥

⎡
⎢⎣

Rq−1v1
...

R0vq

⎤
⎥⎦− αMlarge

⎡
⎢⎣

u1

...

uq

⎤
⎥⎦
∥∥∥∥∥∥∥

2

F

+ α2σ2
η‖Ψ‖22,

Mlarge := blockdiag(Rq−1M, . . . , R1M,R0M).

Optimal P and α: Note that the semi-optimal MSE es is very

similar to the MSE which arises in linear precoding [13]. Thus,

after some modifications, the optimal P that minimizes es subject

to the power constraint σ2
v‖P‖22 ≤ Etr is found to be

Popt = α−1
opt

[
z−0Ip . . . z−LIp

] [
u1 . . . uq

]
,⎡

⎢⎣
u1

...

uq

⎤
⎥⎦ :=

(
M∗

largeMlarge +
σ2
η‖Ψ‖22
Etr

I

)−1

M∗
large

⎡
⎢⎣

Rq−1v1
...

R0vq

⎤
⎥⎦

and αopt :=
√
Etrσ

−1
v ‖[u1, . . . , uq]‖−2

F . These expressions reduce

to (3) and (2) because Mlarge is block diagonal.
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