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Abstract— This video presents a robot capable of playing pool
on a normal sized pool table using two arms. For successfully
completing this task several issues need to be addressed,
including the perception of relevant environment information,
planning of actions and finally an efficient execution. The video
outlines how the robot accurately locates the pool table, the
balls on the table and the cue and subsequently plans the next
shot. In order to improve the stroke speed, an optimization
algorithm for the arm configuration is described. Finally, it
is shown how all these modules are integrated to achieve a
working two-handed robotic pool play.

I. INTRODUCTION

During the past two decades autonomous robotic systems
for entertainment purposes have started to appear. One pop-
ular domain is pool robots. Presumably the first one was
developed at Bristol University from the mid-80s until the
mid-90s [1], [2]. The history of pool robots continued 2004
with Roboshark [3] and 2008 with Deep Green [4]. At
the moment, Deep Green seems to be the most advanced
one when it comes to playing ability. Based on a four DOF
ceiling-mounted gantry robot, it is able to play at a “better-
than-amateur level, with the ultimate goal of challenging
a proficient human opponent at a championship level” [4].
Most of these systems have in common that they are mounted
on the ceiling above the pool table without the ability to use
a standard cue but rather a pneumatically driven stub [2],
[4]. Very recently a different approach has been presented
by WillowGarage [5]: Using their PR2 platform, the robot
is able to move around the table and pocket balls using two
hands with modified extensions for a proper cue hold and a
normal cue.

Similar to the results presented by WillowGarage our aim
in this work is to develop two-handed pool play with a
standard cue on our robot. The four basic functionalities to
be developed are:

• accurate localization of the pool table, balls and cue;
• deciding which ball to pocket next;
• navigation of the robot to an appropriate striking posi-

tion;
• achieving the accuracy and dynamics required for a

successful stroke.

As our work focuses on the first and last point, only they
will be described more in detail together with some final
results in the following section.
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Fig. 1. Overview of the complete system

II. THE POOL PLAYING ROBOT

A. Hardware

The setup consists of a normal sized pool table with a
camera with a resolution of 640x480 pixels mounted on the
ceiling approximately2.5m above the table. The robot con-
sists of an omni-directional platform and two 7 degrees-of-
freedom (DOF) manipulators mounted in a mirrored configu-
ration with special endeffectors. Each endeffector consists of
a two-axis gimbal set, which allows it to rotate freely while
keeping the cue mounted on the innermost gimbal immobile.
The left arm serves as support for the cue tip and also for an
accurate positioning of the cue, while the right arm executes
the stroke.

B. Perceiving the environment

Only the ceiling mounted camera and the arm joint po-
sition data are used to extract all the relevant information
for playing pool. By using a model based approach, where
the dimensions and the color of the borders and the play
area of the pool table are known, the position of the table,
all balls and the cue are determined. First a combination
of background subtraction and histogram comparison based
on the predominant color in an area around the center of
the image for distinguishing between the table and balls
on the image is used. Subsequently a Hough transform for
lines and circles is applied to detect the table edges and the
balls respectively. By merging information of a sequence of
images, balls can be detected with subpixel accuracy (one
pixel is about 4mm x 4mm on the table, a ball has a diameter
of approx. 18 pixels).

To detect the cue, a combination of the cue’s geometry and
its previously learned color is used. The image is thresholded
with respect to the cue color in the HSV color space. Next,
a Hough transform for lines is performed. By taking only
the longest lines into consideration, the approximate cue
direction and position is detected. To refine detection, a
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Fig. 2. Allowed angular deviation (AAD) in degrees for several balls and
the corresponding pocket. The higher this value is, the easier the ball can
be pocketed. The black circle segment emerging from the white ball shows
the allowed deviation. The angle is 2·AAD - in this special case 1◦

regression line along the cue direction based on the left and
right boundary of the cue in the binarized image is calculated.
Last, by extracting the endeffector height of both arms from
the robot a 3D position of the cue is obtained. If the cue’s
exact position with respect to the table and the way the robot
holds the cue is known, one is able to calculate the position
of the robot with respect to the table.

C. Stroke Optimization

The 7 DOF design of the arms in addition to the gim-
bal based mounting system for the cue results in three
redundant degrees of freedom. By taking advantage of the
additional degrees of freedom the goal is to find an arm
configuration that maximizes the achievable stroke speed.
The optimization algorithm samplesn points along the stroke
trajectory, calculates the maximal achievable velocitiesẋmax

and accelerations̈xmax for each point and maximizes the
following cost functionc, while keeping the joint velocity
and torque limits

c =

n∏

i=1

(‖ẋi max‖ · ‖ẍi max‖) . (1)

The velocities in task space required for the optimization
are coupled to the robot joint velocity limits through

ẋ = Jq̇, (2)

and the accelerations required for the optimization are cou-
pled to the torque limits through the dynamic manipulability
equation [6]

ẍ = JM−1 · (τ − C − g) + J̇q̇. (3)

The optimization is performed using the Nelder-Mead
algorithm [7].

D. Results

In addition to the above described algorithms a simple
path planner for the platform movement around the table has
been integrated, which allows the appropriate positioningof
the robot for executing a stroke. Moreover, a planner which
computes the stroke difficulty is used to determine the best
next stroke.

For performing each stroke, first the easiest shot is chosen.
The allowed angular deviation (AAD) is used to determine
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Fig. 3. Success probability to pocket a ball over allowed angular deviation
(AAD) for a total of 463 strokes at various positions.

the difficulty of each stroke. It denotes how much (in
degrees) one can deviate from the optimal cue position still
being able to pocket a ball without cushion contact (see Fig.2
for a sample scenario). Subsequently for a given stroke,
the optimization of the arm configuration is performed.
Once the platform has reached the desired pose to execute
the stroke, a first positioning of the cue on the table is
performed. However, due to small position errors after the
first positioning, fine positioning has to be performed in
addition. Finally, the stroke is executed.

In order to evaluate the pocketing success rate an exper-
iment with 463 executed strokes for randomly chosen ball
configurations has been performed. The success probability
for the easiest stroke class (AAD≥0.70◦) is more than
80% and it almost linearly decreases with increasing stroke
difficulty, see Fig. 3.

III. CONCLUSIONS

This video presents a two-armed robot capable of playing
pool. The main focus in this work was on the perception
of the pool environment and on the actuation of the robot to
efficiently perform the strokes. The vision algorithms provide
the accuracy required to successfully pocket the balls. In
addition, the optimization of the arm configuration improves
the dynamics of the robot.
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