
Lehrstuhl für Informatik
der Technischen Universität

München

The Metamodelling Language M2L

An Approach for Seamless Language Engineering and
Formal Metamodelling

Stefano M. Merenda

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen
Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Lehrstuhl für Informatik
der Technischen Universität

München

The Metamodelling Language M2L

An Approach for Seamless Language Engineering and
Formal Metamodelling

Stefano M. Merenda

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen
Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Hans-Joachim Bungartz

1. Prüfer der Dissertation: Univ.-Prof. Dr. Dr. h.c. Manfred Broy

2. Prüfer der Dissertation: Univ.-Prof. Dr. Mark Minas
Universität der Bundeswehr München

Die Dissertation wurde am 26.08.2011 bei der Technischen Universität
München eingereicht und durch die Fakultät für Informatik am 20.01.2012
angenommen.

Appropriateness is the only reason why we suffer about languages at all.
Otherwise we can use Turing machines for everything.

To my grandparents Ida and Paul,
and my son Lukas-Benedikt.

Abstract

The constantly increasing complexity of software demands increasingly higher abstractions
of the systems to be developed in order for them to remain ascertainable for humans. On
this occasion, the most divers modelling techniques in the field of systems engineering evolve
for the different aspects of a system, which is in most cases a combination of hardware and
software nowadays.

For this reason, a novel class of modelling languages is necessary, covering total system
development from requirements engineering over system development to testing. Thus, such
languages become very large and are called mega-languages in this work. In contrast to
traditional languages, such mega-languages consist of many sub-languages which have to
match in a sound way. In addition, many consistency conditions will arise within and
between these sub-languages. Each requirement, for example, will have to be implemented
by a part of the system developed. On the other hand in most situations, only an excerpt
of the model will be necessary for e. g. analysis or synthesis purposes due to the size of
the language. Thus, complex queries should be able to be requested to a model repository
in order to be able to work with the essential excerpt of the model. This makes it even
insufficient to store the models in conventional, textual-based repositories.

To overcome these problems, the very basic need is having a suitable metamodelling language
including a corresponding tooling environment. Hereby the tight integration of metamod-
elling language and tooling environment builds up the crucial issue of successful implemen-
tation of mega-languages in the industry. In such a scenario the metamodelling language
comprises not only the abstract syntax definition (which defines the structural relationships
between the concepts of the modelling language) but also concrete syntax definition (such
as textual, tabular or diagrammatical syntaxes), process definition, as well as semantics of
the modelling language. Altogether, such a metamodel which consists of these four meta-
modelling aspects exactly defines the behaviour of the tooling environment: The abstract
syntax says what can be modelled and what is the data-structure in behind; the concrete
syntax specifies how the models are presented to the user and how the models can be edited;
the process definition defines which process role is allowed to edit what part at what time;
and finally the semantics says how the built models can e. g. be simulated or what target
code should be generated. This vision in total we call Seamless Language Engineering.

Therefore, within the present work the metamodelling language M2L is developed. Hereby
M2 stands for metamodel and L stands for language. It is supposed to combine the clear
structural semantics of existing formal approaches to appropriate solutions already used in
industry in order to solve the above-mentioned issues.

Stefano Merenda ix

The essential part of this work concentrates on providing a theoretical foundation for build-
ing metamodelling languages which fulfils the above-mentioned requirements. Hereby we
focus on the first two aspects of metamodelling languages: abstract syntaxes and concrete
syntaxes. In the field of the concrete syntaxes we again focus on textual concrete syntaxes.
The major theoretical concepts and improvements are:

• The use of partially ordered multi-sets (pomsets) will allow for handling a mixture
of ordered sets as well as sets including duplicates in a sound way. Pomsets also
contribute significantly to the expressiveness of the query-language.

• Abstract and concrete syntax definition are strictly separated within a language spec-
ification. Nevertheless they are strongly related to each other. This also allows for an
easy definition of multiple concrete syntaxes, all related by abstract syntax in a sound
way.

• In analogy to a textual word in formal languages, a distinct definition of abstract words
is introduced by model-graphs (M-graphs), which can be defined independently of a
metamodel. This will form the basis for being able to define a metamodel as simply
being a set of constraints on such M-graphs.

• In order to define such constraints in an appropriate way, Edge Algebra is introduced.
Comprising the four core operators navigation, closure, edge inverse, and selection, it
provides a powerful query-language on M-graphs.

• Based on Edge Algebra, a set of useful metamodelling concepts on a formal basis will
additionally be introduced. In particular, these are conditional properties, context-
sensitive domains, local keys, namespaces, and instantiating properties.

All these concepts will result in the overall metamodelling language M2L. It allows for a
definition of both abstract and textual concrete syntaxes in a formal but also appropriate
way and is sufficient for creating a suitable tooling environment: The open-source project
OOMEGA [OOMEGA, 2010] provides a ready-to-use tooling environment based on M2L.
For example, the abstract and textual concrete syntaxes for the modelling languages FOCUS
[Broy and Stølen, 2001] and COLA [Kugele et al., 2007] are modelled in M2L. Based on
these language specifications OOMEGA provides sufficient IDEs in the form of Eclipse plug-
ins [Eclipse, 2010b] including a database back-end.

x Stefano Merenda

Acknowledgement / Danksagung

Since an acknowledgement is the most personal part in such a theoretical work, I have
decided to write it in my mother tongue. However this is the only section all my relatives
will read indeed – so German is even the better choice!

Eine Dissertation zu schreiben ist eine wirklich langwierige Angelegenheit – und zugegebener
Maßen auch langwieriger als ich zunächst angenommen hatte. Auf der anderen Seite muss
ich zugestehen, dass mir die Arbeit am Lehrstuhl, an den damit verbunden Projekten –
insbesondere auch BASE.XT zusammen mit BMW – sowie auch die eigentliche Arbeit
an meiner Dissertation mit der dazugehörigen Open-Source-Implementierung OOMEGA
einfach zu viel Spaß gemacht haben, als dass es mich früher von der Universität weggezogen
hätte. Und das verdanke ich Ihnen, Herr Broy! Sie haben mir immer den großzügigen
Freiraum für meinen Dickschädel in meinem wissenschaftlichen Arbeiten gegeben, den sich
so manch anderer nur wünschen kann – mit Sicherheit der Hauptgrund, warum ich die
Zeit bei Ihnen am Lehrstuhl immer in so guter Erinnerung behalten werde. Und trotz der
Tatsache, dass Ihr Terminkalender im Viertel-Stunden-Rhythmus getaktet ist, hatten Sie
immer ein offenes Ohr für meine Anliegen. Na ja – Du, liebe Silke, hast das Deinige dazu
beigetragen: “Oh nein, Stefano, schon wieder einen Termin?!?” – Und immer hast Du einen
gefunden! Und wenn ich dann – nein, eigentlich war es immer Herr Broy – den Termin
überzogen hatte, hast Du den Nachfolger immer erfolgreich beschwichtigt.

Es waren aber auch die Kollegen, die meinen Dissertationsalltag zu einer unvergesslichen
Zeit gemacht haben! Zunächst gab es die obligatorischen Fachsimpeleien am Gang, in der
Kaffeeküche und auch auf der Toilette (!). In diesem Zusammenhang möchte ich mich auch
bei allen Kollegen aus dem BASE-XT-Team für die tolle Zusammenarbeit bedanken. Ohne
Euch hätte das Projekt nur halb so viel Spaß gemacht.

Was die inhaltliche Arbeit meiner Dissertation angeht, waren die Diskussionen mit Dir, lieber
Markus, die spannendsten wenn auch – oder gerade weil – die anstrengendsten. Darüber
hinaus hast Du auch einen wesentlichen Beitrag zur Implementierung geleistet. Danke an
dieser Stelle nochmals für Deine Unterstützung!

OOMEGA und damit auch meine Dissertation wäre heute nicht das, was es ist, wenn mein
Bruder, Du, lieber Christian, nicht all das aus Überzeugung mit geschultert hätte. Es ist
immer wieder toll, mit Dir fachlich zusammenzuarbeiten! Auch Dir, lieber Sevi, danke für
Deine jahrelange und tatkräftige Unterstützung bei der Implementierung des Texteditors.

Aber auch die fachfremden Themen haben am Lehrstuhl große Freude bereitet: Ich weiß
nicht, wie oft ich mit Dir, lieber Bernd, beim “Weißwurschten” war – was ich aber noch
weiß, ist, dass ich erstens meine Heimarbeit am Freitag des öfteren wegen genau einem

Stefano Merenda xi

Termin unterbrochen habe: dem morgendlichen “Weißwurschten” und zweitens, dass ich
Dich von meiner Theorie überzeugen konnte, dass man mit einem Weißbier deutlich besser
wissenschaftlich arbeiten kann!

Es gab aber natürlich auch “ernstere” Themen: Allen voran meine Verlobung! Niemand
anderes als Ihr, liebe Doris, liebe Sabine, habt dafür gesorgt, dass ich endlich mal in die
Pötte komme. Sie sehen, Herr Broy, auch die wirklich wichtigen Dinge im Leben werden bei
Ihnen am Lehrstuhl diskutiert und auch tatsächlich erfolgreich bearbeitet. Dich, liebe Doris,
habe ich neben solchen Sonderthemen auch als meine treue Zimmerkollegin schätzen und
lieben gelernt. Denn es gab durchaus auch Momente beim Schreiben der Dissertation oder
auch der Projektarbeit, die – sagen wir einmal – nervig gewesen sind. Und diese Themen
konnte man wunderbar mit Dir diskutieren und danach ging’s mir auch gleich wieder besser.
Und auch unsere unterschiedlichen Ansichten zu Licht an/aus, Heizung an/aus oder Musik
an/aus haben wir – so denke und hoffe ich – wunderbar in den Griff bekommen.

Trotz all der tollen Erfahrungen kam der Wechsel in die Industrie doch noch vor dem Ab-
schluss meiner Dissertation. Ein – wie bekannt ist – gefährliches Unterfangen für die Fer-
tigstellung der Arbeit. Vielen Dank an dieser Stelle an BMW und allen Voran an Euch,
lieber Stefan, lieber Heiko, dass Ihr mir immer den Rücken freigehalten habt, um meine
Dissertation neben meiner Arbeit wie geplant fertig zu stellen.

In dieser finalen Phase, haben Sie, lieber Herr Minas, als Zweitgutachter nochmals wertvollen
Input geliefert. Vielen Dank für Ihre Bereitschaft, das Zweitgutachten zu übernehmen und
auch Ihr Interesse an meiner Arbeit einschließlich Ihrem detailliertem Feedback.

Zu guter letzt bleibt mir noch meine Familie ohne dessen Unterstützung – wie so oft –
nichts geht. Ihr, liebe Hildegard, lieber Ulf, habt uns immer wieder tatkräftig im Haushalt
unterstützt. Ohne Euren gezielten Eingriff wäre unser Garten sicherlich nur noch mit einem
Buschmesser zu betreten. Euch, liebe Mama, lieber Papa, danke für Euer unermüdliches
gutes Zureden. Wenn alle anderen die Hoffnung aufgegeben haben, habt Ihr die Fahne
immer noch hochgehalten und ich konnte mich daran hoch ziehen.

Du, meine allerliebste Alice, hast die Arbeit mit Sicherheit am stärksten zu spüren bekom-
men. Ich glänzte zuhause durch ständige Abwesenheit – und wenn mal nicht körperlich,
dann zumindest geistig! Zum Glück ist das Sprichwort “Löcher in die Wand starren” nicht
wörtlich zu nehmen, ansonsten wäre unser Zuhause nur noch ein Schweizer Käse. Danke
für Deine scheinbar nie endende Geduld! Hinzu kommt, dass Du noch während Deiner
Schwangerschaft die in Deutsch vorliegende Passagen für mich ins Englische übersetzt und
dann das komplette sprachliche Korrekturlesen übernommen hast. Du hattest damit die
undankbare Aufgabe, knapp 300 Seiten auf Punkt und Komma zu überprüfen. Danke auch
für diese tatkräftige und zugegebenermaßen langwierige Unterstützung!

Nun bleibt noch der jüngste im Bunde: Mein Sohn Lukas-Benedikt. Du, liebster Lukas,
hast mir mit Deiner Geburt am 22. April 2011, den finalen Schubs gegeben, dass ich nun
endlich meine Doktorarbeit zum Abschluss bringe – und das habe ich genau vier Monate
später am 22. August 2011 nun auch endlich getan. Danke dafür – und danke dafür, dass
es Dich gibt!

München, 22. August 2011

xii Stefano Merenda

Contents

1. Introduction 1
1.1. Current Situation . 1
1.2. Three levels of integration . 6
1.3. Approach . 8
1.4. Related work . 10
1.5. Contribution . 17
1.6. Overview of the present thesis . 18

2. Metamodels and Seamless Language Engineering 21
2.1. Metamodels – comprising the four vertical tooling aspects 21
2.2. The three dimensions of seamless language engineering 31
2.3. Requirements to a metamodelling language 34
2.4. Procedure specifying the (self-describing) metamodelling language M2L . . . 42

3. Running example: Modelling dataflow algorithms 45
3.1. Criteria for selecting a suitable running example 45
3.2. Industrial project context . 46
3.3. Informal description of the modelling language 49
3.4. A first, semi-formal abstract syntax . 50
3.5. Two exemplary dataflow diagrams . 53
3.6. Issues to be expressed by a formalised metamodel 58

4. Pomsets in the context of metamodelling 61
4.1. Relationship between different types of sets 61
4.2. Definition of pomsets . 62
4.3. Notations for pomsets . 63
4.4. Operators on pomsets . 66
4.5. Running Example . 80

5. Models as Abstract Words 81
5.1. M-graphs (Model-graphs) . 81
5.2. Defining M-graphs without using pomsets . 85
5.3. Graph-like notation for Abstract Words . 86
5.4. Node equivalence . 86
5.5. Mapping established metamodelling concepts to abstract words 88
5.6. Running Example . 92
5.7. Defining M2L – Step 1: M2L Meta-Metamodel in terms of an Abstract Word 94

Stefano Merenda xiii

Contents

6. Queries on abstract words - the Edge Algebra 95
6.1. Fundamental Edge Algebra . 95
6.2. Propositional Edge Algebra . 106
6.3. Defining abstract languages using Edge Algebra 111
6.4. Running Example . 113
6.5. Defining M2L – Step 2: M2L defined by Edge Algebra statements 117

7. Abstract Syntaxes in M2L 119
7.1. Relationship between model and metamodel 119
7.2. Semi-formal introduction of the abstract syntax 122
7.3. Basic approach defining semantics for Abstract Syntaxes 124
7.4. Semantics for Abstract Syntaxes – Part 1: Basic metamodelling concepts . . 125
7.5. Semantics for Abstract Syntaxes – Part 2: Extended metamodelling concepts 133
7.6. Running Example . 150
7.7. Defining M2L – Step 3: Relationship between Meta-Metamodel and Edge

Algebra . 152

8. Textual Concrete Syntaxes in M2L 153
8.1. Relationship between abstract and concrete syntaxes 153
8.2. Semi-formal introduction of the abstract syntax 155
8.3. Basic approach defining semantics for Concrete Syntaxes 157
8.4. Canonical textual syntax for M-graphs . 160
8.5. Semantics for Concrete Syntaxes – a template-based approach 162
8.6. Running Example . 167
8.7. Defining M2L – Step 4: M2L finally defined by M2L itself 169

9. The overall specification of M2L 171
9.1. Package ORG.Metamodels.BasicConcepts . 172
9.2. Package ORG.Metamodels.M2L . 183
9.3. Package ORG.Metamodels.M2L.AbstractSyntax 188
9.4. Package ORG.Metamodels.M2L.ConcreteSyntax 210
9.5. Package ORG.Metamodels.M2L.ConcreteSyntax.Textual 217
9.6. Package ORG.Metamodels.EdgeAlgebra . 233
9.7. Package ORG.Metamodels.EdgeAlgebra.EdgeExpressions 235
9.8. Package ORG.Metamodels.EdgeAlgebra.PredicateExpressions 248
9.9. Package ORG.Metamodels.EdgeAlgebra.NumericalExpressions 263

10. Summary, evaluation, and outlook 271
10.1. Summary . 271
10.2. Evaluation . 272
10.3. Outlook . 276

Bibliography 281

A. Meta-Metamodel – The Metamodel of M2L 291

B. Metamodel and exemplary models for the Running Example 307
B.1. Metamodel of the Running Example . 307
B.2. Exemplary Model: Basic Library . 312
B.3. Exemplary Model: Integrator Network . 313
B.4. Exemplary Model: Demonstration Vehicle . 315
B.5. Exemplary Model: Textual Syntax Demonstration 320

xiv Stefano Merenda

List of Figures

1.1. Today’s engineering environments: ad-hoc composed tool chains. 2
1.2. Vision of an integrated model engineering environment. 3
1.3. The tyranny of current tools. 3
1.4. The three levels of integration. 6

2.1. Decomposing development tools. 23
2.2. Extract horizontal tooling aspects. 24
2.3. Specific tools as language modules. 26
2.4. Horizontal and vertical tooling aspects. 27
2.5. Detailed relationship between generic tool frameworks and language modules. 27
2.6. Central position of abstract syntax. 28
2.7. Dimensions of seamless language engineering. 31
2.8. The four steps of specifying M2L. 43

3.1. The three architectural layers in software-intensive systems [Broy et al., 2008] 48
3.2. A first semi-formal abstract syntax for the running example 50
3.3. Exemplary model: integrator network (diagrammatic syntax) 54
3.4. Exemplary model: demonstration vehicle (diagrammatic syntax) 56

4.1. Inclusion relationships between the different types of sets 62

5.1. Example: abstract and textual concrete word of a signature 82
5.2. Example: abstract word including names for each vertex 83
5.3. Example: obfuscated abstract word of a signature 83
5.4. Example: Signature modeled with duplicate or same port 87
5.5. Example: Equal nodes seeing each other . 88
5.6. Example: Bidirectional link between ports and channels 89
5.7. Example: Compositional links . 89
5.8. Example: Boolean values in abstract words 90
5.9. Example: Two ways of modelling natural numbers 91
5.10. Example: Modelling the String “result” as an abstract word 91
5.11. Example: Modelling the String “ab” including the composite-edges 92
5.12. Exemplary model: integrator network (copy of Figure 3.3) 92
5.13. Example: Modelling the integrator network as an abstract word 93
5.14. Exemplary model: identity network (diagrammatic syntax) 93
5.15. Exemplary model: identity network as an abstract word 94
5.16. Overview - First of the four steps of specifying M2L. 94

Stefano Merenda xv

List of Figures

6.1. Example: dependsOn-edge for integrator network (reduced M-graph) 96
6.2. Illustration of the inverse edge to the property composite (in red) 96
6.3. Property edging: illustration of the edge function Pω :fromPort 97
6.4. Concept edging: illustration of the edge function Cω :Port 98
6.5. Vertex edging: illustration of the edge function Vω :pout 98
6.6. Star edging: illustration of the edge function ∗ω 99
6.7. Illustration of a derived pomset operator using the example of e⊕ f 100
6.8. Illustration of the reflexive edge operator 	 101
6.9. Illustration of the Edge Inverse-operator �Pω :composite 103
6.10. Illustration of the Navigation-operator (�Pω : toPort).(Pω :fromPort) 103
6.11. Illustration of the Navigation-operator preserving the order 104
6.12. Illustration of the Closure-operator ∧e (example 1) 105
6.13. Illustration of the Closure-operator ∧e (example 2) 105
6.14. Illustration of the Closure-operator ∧e (example 3) 105
6.15. Illustration of the Closure-operator ∧Pω :composite 106
6.16. Exemplary model: node valuation . 107
6.17. Exemplary model: node predicate . 107
6.18. Quantified edging ∀Pω : p \ {composite} : (Pω :p b Pω :composite) 109
6.19. Illustration of the Selection-operator σ(�P :composite = ∅) 109
6.20. Difference between bounded and unbounded Selection-operator 111
6.21. Illustration of the selection σv : (Vω :v b Pω :composite.∧Pω :composite) . . . 111
6.22. Valid and invalid abstract words for the exemplary tree language 112
6.23. Overview - Second of the four steps of specifying M2L. 117

7.1. Semi-formal abstract syntax for specifying abstract syntaxes in M2L 122
7.2. Illustration of a symmetric property by means of a married couple 132
7.3. Example: Invalid channels . 135
7.4. Example: assigning local keys . 137
7.5. Example: unique parts of the property lkey 138
7.6. Example: abstract word including lkey holes 139
7.7. Example: building canonical keys . 141
7.8. Example: demonstrating context sensitive keys 142
7.9. Example: referencing nodes by context-sensitive keys 143
7.10. Dataflow networks without instantiation . 146
7.11. Dataflow network including two identical instances 146
7.12. Dataflow networks with component instantiation 147
7.13. Dataflow network including instances of instances 148
7.14. Dataflow networks with component instantiation and instance qualifier 148
7.15. Example: specification of the concept Network in the form of an abstract word151
7.16. Overview - Third of the four steps of specifying M2L. 152

8.1. Semi-formal abstract syntax for specifying concrete syntaxes in M2L 156
8.2. Example: abstract word of a signature . 160
8.3. Example: specification of the concrete syntax for the concepts Signature and

Port in the form of an abstract word . 168
8.4. Overview - Last of the four steps of specifying M2L. 169

9.1. Example for compositions and instantiations 207

10.1. Overview of technologies. 278

xvi Stefano Merenda

List of Tables

4.1. Overview of pomset operators . 66

6.1. Overview of edge operators derived from pomset operators 100
6.2. Overview of the fundamental edge operators 101

7.1. Overview of the basic metamodelling concepts 125
7.2. Overview of the extended metamodelling concepts 133

8.1. Nine priority levels of finding the right syntax definition 164

9.1. List of concepts defined in ORG.Metamodels.BasicConcepts 172
9.2. List of concepts defined in ORG.Metamodels.M2L 183
9.3. List of concepts defined in ORG.Metamodels.M2L.AbstractSyntax 188
9.4. List of concepts defined in ORG.Metamodels.M2L.ConcreteSyntax 210
9.5. List of concepts defined in ORG.Metamodels.M2L.ConcreteSyntax.Textual . . 218
9.6. Complete list of template elements for describing textual syntax in M2L . . . 222
9.7. The sub-packages of ORG.Metamodels.EdgeAlgebra 233
9.8. List of concepts defined in ORG.Metamodels.EdgeAlgebra.EdgeExpressions . . 235
9.9. List of concepts defined in ORG.Metamodels.EdgeAlgebra.PredicateExpressions

(part 1) . 248
9.10. List of concepts defined in ORG.Metamodels.EdgeAlgebra.PredicateExpressions

(part2) . 249
9.11. List of concepts defined in ORG.Metamodels.EdgeAlgebra.NumericalExpressions263

Stefano Merenda xvii

Chapter 1
Introduction

The classic compiler construction with its programming languages was able to concentrate
entirely on programmers. In contrast to that, when introducing mega-modelling languages,
the potential user group of modelling languages scales up dramatically: Different levels of
abstraction are provided by such mega-modelling languages in order inspect the system to
develop by different process roles from different point of views: Some examples are require-
ments view, system architectural view, implementation view, testing view, or even a project
management view.

The goal is a novel class of modelling languages which finally aims at all roles of a model-
based development process involved. This dramatic expansion of the potential user groups
of modelling languages led to new requirements in the field of language engineering, which
shall be represented in the following. Note that parts of the two introductive chapters
Chapter 1, Introduction, p. 1 and Chapter 2, Metamodels and Seamless Language Engineer-
ing, p. 21 are published in [Broy et al., 2010].

Contents
1.1. Current Situation . 1

1.2. Three levels of integration . 6

1.3. Approach . 8

1.4. Related work . 10

1.5. Contribution . 17

1.6. Overview of the present thesis 18

1.1. Current Situation

Nowadays, model-based development is more or less consequently adopted in the practi-
cal development of automotive and avionic systems. The pervasive use of models allows
engineers to abstract from implementation details, thus raising the level of abstraction at
which the systems are developed. As a consequence, model-based development promises to
increase both productivity and quality of software development for embedded systems.

Stefano Merenda 1

1. Introduction

The following is cited from [Broy et al., 2010] page 526-528 including some minor
changes in order to adopt it to this work:

However, model-based development approaches often fall short due to the lack of
integration at both the conceptual and tooling level. Even if artefacts are mod-
elled explicitly, they are based on separate and unrelated modelling theories (if
foundations are given at all), which in turn renders the transition from one arte-
fact to another non distinctive and error-prone within the development process.
Current tools usually focus on particular development steps and support single
modelling paradigms (see Figure 1.1). Although many of these tools show good
results in their limited domain, many models have to be constructed during the
development of a system beginning with the initial requirements up to a running
implementation in hard- and software. In practice, several isolated tools are nec-
essary to construct these models, and the transition between them is often far
from being distinct. Consequently, engineers adopt ad-hoc integration solutions
that are far from being disciplined engineering. Both theories (whenever they
are applied) and tools do not fit to each other, which complicates the reuse of
models in different phases. Instead of refining and transforming the already ex-
isting models, they are often rebuilt from scratch which involves a lot of effort
and loss of information. The overall information about the developed product is
only implicitly available in the engineers’ minds.

Ad-hoc composed tool chain

Theory A

Theory B

Theory C

Theory DRequirements Tool

Design Tool

Implementation Tool

Veri!cation Tool

no
 c

om
m

on
 th

eo
ry

implicit product model se
pa

ra
te

d
re

po
sit

or
ie

s

no
 p

ro
ce

ss
 in

te
gr

at
io

n

Figure 1.1.: Today’s engineering environments: ad-hoc composed tool chains.

The real benefits of the models take effect if they are used throughout the entire
development process in a seamless way. Requirements, for instance, are the in-
puts for an initial system design and for test case generation. This workflow
requires a deep integration of the requirements, the system design, and the tests
in an integrated product model. Such integration can only be implemented in a
model engineering environment supporting the reuse of the information that is
captured within the models. To achieve the vision of seamless model-based de-
velopment (illustrated in Figure 1.2), we need the following three integral parts:
1) a comprehensive modelling theory serving as a semantic domain for the for-
mal definition of the models, 2) an integrated architectural model describing the
detailed structure of the product (product model) as well as the process for devel-
oping said (process model), and 3) an integrated model engineering environment
guaranteeing a seamless tool support for authoring and analysing the product
model according to the process defined in the process model. Instead of working
with isolated models, engineers access a common model repository which explic-
itly stores the overall product model via dedicated views. All required views are
formally defined and based on one comprehensive modelling theory which enables

2 Stefano Merenda

1.1. Current Situation

the construction and distinct semantic interpretation of the product architecture.
Compliance with the process model is ensured by a common workflow engine.

Common
Modeling
Theory

Common Model RepositoryReposi

Common Workflow Engine

Requirements View

Design View

Implementation View

Verification View

integration of artifacts

in
te

gr
at

io
n

of
 th

eo
ry

integration of methodology

se
am

le
ss

 e
ng

in
ee

rin
g

Figure 1.2.: Vision of an integrated model engineering environment.

One of today’s major impediments to the advent of seamless model-based devel-
opment in the industry is the lack of tools. Ideally, we should be able to define
the requirements for tooling (see Figure 1.3(a)) based on modelling theories and
a common product model. In reality, however, a small set of tools (most of the
time off-the-shelf) has to be used for a particular project. Thereby, these tools
impose the modelling aspects that are treated and consequently the product model
that is to be built (see Figure 1.3(b)). Due to the high costs with regard to devel-
oping and maintaining tools, the development of in-house tools that are specific
enough and tailored to a certain project is not an option. As a consequence, en-
gineers need to adapt their process to commercially available tools and often they
have to alter their desired product design in a way imposed by the tools at hand.
The top-down dependency between the modelling theory and its implementation
in tools (as promoted by the model-based development itself) is in reality inverted
by the already available tools that dictate the modelling technique that has to be
followed in a project.

 Ideal situation

well-defined modeling theory
common product model

appropriate process model

Tool support

define

(a) wanted

Situation today

no modeling theory
unclear product model

ad-hoc imposed process

 Currently available tools

impose

(b) unwanted

Figure 1.3.: The tyranny of current tools.

End of citation.

Stefano Merenda 3

1. Introduction

Modelling languages must be made as comprehensible as possible as many process roles – in
contrast to programmers – are only temporarily confronted with the modelling language and
training periods should be kept as short as possible. Graphic ways of representation, such
as utilised by UML for example, are therefore preferred to formal languages. Nowadays, the
syntax of such diagrammatic languages is mainly only defined in a semi-formal way. It has,
however, turned out to be practical to split syntax definition into two components.

Abstract syntax is to describe the elementary structure of the models, independent of the
concrete notation. That is exactly what the so-called meta-modelling is used for: Current
metamodels normally describe right the abstract syntax of modelling languages. At the
same time, abstract syntaxes are very well suited for building a taxonomy of the domain
to be modelled. Thus, correlations between domain and modelling language can be clearly
identified from the very beginning. Concrete syntax forms the second part of syntax defini-
tion: in general, concrete syntax lists the concrete graphic elements and maps each of them
to one of the metamodelling elements. This strict separation between abstract and concrete
syntax does not exist in the field of formal languages. Grammars only implicitly define
the abstract syntax of a word of the language by the application order of the productions.
This results in the so-called AST (abstract syntax tree) which does not only come closest to
abstract syntax due to its name.

As long as the textual representation so described is the only one necessary, this monolithic
syntax definition is sufficient. Nowadays, several concrete representations of the models
are, however, required ever more often. On the one hand, this results from the fact that
different representations are perceived to be more comprehensible by process roles due to
different qualifications and other background knowledge, which leads to the fact that it
must be possible to represent the same issue in different ways. On the other hand, there are
technical reasons why an encoding of models is required in different ways. An XML format
might be required for exchanging the models, while the models are to be managed within a
relational database system. Normally, a requirements engineer or system designer does not
want to create and process the models neither in XML nor in SQL. Rather, further textual
and diagrammatic syntaxes are required for the actual processing.

In terms of a tool architecture which can be maintained but also of a comprehensible syn-
tactical definition of the modelling language including all representations, the aim is to be
able to define several concrete syntaxes based on a mutual abstract syntax for the modelling
language. Herein, the conversions between the individual concrete syntaxes should already
be explicitly defined via the abstract syntax.

The separation of abstract and concrete syntax allows for an introduction of so-called canon-
ical concrete syntaxes, a crucial class of concrete syntaxes. These syntaxes are characterised
by that their definition can be applied to any abstract syntax. Thus, the encoding rule is
already explicitly determined just by the abstract syntax. One major field of application
of canonical concrete syntaxes are technically-motivated model representations. It would
be helpful, for example, if the corresponding XML encoding and relational mapping would
already be explicitly defined by a given abstract syntax. Together with an also canonical
object representation in the programming environments for the tools (such as Java), the
foundation would be laid for generating the entire model management layer in the tools.
Only by that, for example the tool prototyping, which is so important in software engineer-
ing, could be performed much more efficient in the scientific field.

Most model representations which are well comprehensible to humans, however, cannot be
represented by canonical syntaxes. Nonetheless, canonical concrete syntaxes also result in
advantages here, too: language engineering normally is an iterative process. In the early
stages, the language designer wants to concentrate more on the conceptual design of the

4 Stefano Merenda

1.1. Current Situation

language and thus on the abstract syntax of the language. In order to be, however, able
to evaluate the viability of the concepts, it must be able to define instances of the abstract
syntax already at that early stage. Here, a canonical concrete syntax provides assistance. A
seamless transition to an improved (no longer canonical) syntax as regards legibility, could
then be ensured via customising the canonical syntax.

In particular with regard to the fact that the domain-specific portions of the languages in-
crease due to the high level of abstraction, thus considerably limiting the fields of application
at least in the first step, efficiency in language design plays an increasingly more vital role.
In return, the number of languages required also increases as each one of them is tailored
to very specific aspects. In particular the canonical syntaxes, no matter whether they are
technically driven in the back-end of the tools or whether they are a fast way of expressing
model instances, allow for the more efficient language engineering required.

All in all, an increasingly stronger trend away from grammarware towards modelware be-
comes obvious due to the reasons mentioned above. Accordingly, metamodels will be em-
ployed more and more often for the primary and relevant description of the modelling lan-
guage according to which all further representations will have to orient themselves, rather
than using a grammar, such as in form of a EBNF. In the same way, also the primary storage
format for models is changing. More and more development tools no longer store their mod-
els in a number of text files, but rely on for example a central database. Examples are tools
like IBM Rational Doors [IBM, 2010] or MetaEdit+ [Tolvanen, 2004]. A preliminary stage
is storing data in a set of XML-files: it can be more easily integrated in existing file-based
repositories like Subversion [Tigris.org, 2010].

Although modelling abstract syntaxes resembles data modelling in most parts, extended
data modelling concepts are required for metamodelling. Suitable metamodelling concepts
would have to be provided for common issues such as namespaces, definition of validity
ranges, encapsulation and re-use by instantiation or explicit sub-specifications by consistency
conditions in several steps. Today’s metamodelling languages are not yet characterised by
such concepts which is the reason why they do not significantly differ from data modelling
languages.

Basically, the use of UML class diagrams or comparable approaches has proved effective
in practice and is commonly used for describing abstract syntax. Up to now, these meta-
modelling languages only are semi-formal, however, which strongly limits the benefits of
metamodels in many situations. Nowadays, the metamodel cannot be used for the formal
definition of abstract syntax in the scope of the specification of a modelling language. As a
workaround, for example an EBNF is defined, but the correlation to the metamodel thereof
is compelled to be only loose, however. This renders for example the most important ques-
tion unclear, namely whether both language descriptions are consistent, i.e. whether each
instance of the metamodel can be explicitly be mapped to one word of the language defined
via grammar. In general, evidence regarding the metamodel cannot be obtained. Examples
hereof would be, whether a given instance is valid with regard to a given metamodel, or
whether a valid instance for a given metamodel does exist at all. Moreover, formal seman-
tics cannot be defined in a consistent manner based on abstract syntax in the form of the
metamodel. Instead, another formalism such as the EBNF is used.

Upon the implementation of a modelling tool, the metamodel is finally supposed to be
transformed into a suitable form for the respective programming environment. As has
already been described above, normally several transformations will be required, such as
into a Java object representation, a relational scheme and an XML scheme. Due to the lack
of formalisation, subtle deviations from abstract syntax will occur. This in turn will result
in models in a concrete tool which are not allowed in the abstract syntax of the modelling

Stefano Merenda 5

1. Introduction

language at all. Neither do such false models dispose of a defined semantics, nor can be
ensured that they can be processed without errors in the tool.

Due to the reasons mentioned above, the metamodel is nowadays often only used for a
better explanation of a different, formal definition of the modelling language. If, in addition
to the metamodel, an additional formalism is omitted, the entire specification will become
informal. According to the author, this is one of the main reasons why experts already
question the fundamental necessity of metamodels.

1.2. Three levels of integration

When discussing the term integration in industry, researchers intend to address a wide
range of issues in most situations. In the broadest sense, companies want to optimise
their development processes. Although many issues can be solved by coaching the persons
concerned, an appropriate tool support will become reasonable and necessary at a certain
point: The complexity of process artefacts – such as requirements documents containing
thousands of pages or implementations containing millions of lines of code – makes it difficult
to handle them manually. To sum it up, it can be stated:

The tool-supported re-use of artefacts in downstream process phases is indis-
pensable for a further process optimisation.

This major issue is in turn the starting point of the three layered levels of integration as
illustrated in Figure 1.4.

Integrated
Generic Tool Framework

Integrated
Modeling Language

Integrated
Artifacts

Reuse of artifacts in later project phases
Reuse of artifacts in later projects
Collaboration on artifacts of suppliers and OEMs
Preserving intellectual property rights
Product lines and variability
Relationships between modeling languages
Unclear Semantics
Creating a language out of a set of building blocks
Integration of heterogeneous tools
Managing change of modeling languages
Collaboration through Distributed Development
Consistency (and Quality) of Artifacts

M3
Meta-Metamodel Level

M2
Metamodel Level

M1
Model Level

!

!

Figure 1.4.: The three levels of integration.

These levels of integration can be directly associated to the metamodelling stack as e. g.
propagated in [Bézivin and Lemesle, 1999]:

• The level for integrated artefacts corresponds to the model level (M1) since the artefacts
which are modelled by the engineers are exactly the M1-models.

• The second level for integrated modelling languages corresponds to the metamodel
level (M2): metamodels specify and describe the modelling languages: An integrated
modelling language results from an integrated metamodel. Note that at the end a
product data model or artefact model will exactly describe a such integrated modelling
language and is thus also described by a metamodel. Nevertheless, product data

6 Stefano Merenda

1.2. Three levels of integration

models of today are often reduced to high level descriptions. The detailed metamodel
parts of the modelling languages such as how to exactly model automatons are skipped
by using the definitions of dedicated tools.

• The level for integrated generic tool framework corresponds to the meta-metamodel
level (M3): The meta-metamodel is the specific metamodel for describing metamod-
els themselves in a bootstrapping way, thus describing the metamodelling language.
Since a generic tool framework does not depend on a specific modelling language, such
a framework needs to be configured by a concrete metamodel which describes a con-
crete modelling language. Due to this fact the power of the generic tool framework
strongly depends on the power of the metamodelling language. If e. g. the generic tool
framework is supposed to be able to check complex consistency constraints, the meta-
modelling language will have to provide constructs to formulate such constraints. Or
if else the generic tool framework is supposed to be able to provide specific model edi-
tors, the metamodelling language will have to provide constructs to formulate concrete
syntaxes.

Nevertheless, the focus of companies designing their own products – such as OEMs or
suppliers in the automotive or avionic industry – is on the integration of artefacts which is
the first level of integration. Nonetheless, they also have to care about the other two levels
since the first level strongly depends on the others. This fact is often neglected, resulting in
unsatisfactory solutions:

One common example for reusing artefacts is generating test cases from the requirements
within the testing phase. In order to realise such a scenario, a semantically sound relation-
ship between formal requirements and test cases must be established within the modelling
language used.

Besides all the scientific questions concerning test case generation it is also a pragmatic
tooling issue in terms of an integrated modelling language: The generated test-cases should
have a link to their original requirements. This need results for example in an integration
of the partial modelling languages for requirements as well as test cases, since the test cases
are supposed to reference the requirements. If a company uses an integrated modelling
language, establishing such a link becomes relatively easy; if not, the result will be endless
integration discussions.

But even if an integrated modelling language exists in terms of a metamodel, this is no
guarantee that this metamodel can be easily adopted to the existing tooling platform. If
the metamodel is implemented by several heterogeneous tools – may be by their own model
repositories – such a link between requirements and test cases may fail because of imple-
mentation issues: The result might be that enabling such a link would be too expensive,
since a return on invest can not be achieved. Only a generic tooling platform which can be
easily configured by the metamodel itself can solve this problem in general.

This dependency between those three integration layers results in a huge number of issues
which, as it seems, have to be solved simultaneously. This fact makes it difficult for com-
panies to work out a clear tooling strategy since the field of issues is too large. Therefore,
the hierarchy of integration levels given herein allows for a clearer structuring of the issues
to be solved. It should also show that the levels strongly depend on each other even though
they seem to be far from the original issue of reusing artefacts in downstream phases of the
process.

Stefano Merenda 7

1. Introduction

Based on this differentiation of integration levels, another important aspect can be worked
out as well:

Different types of engineers have to solve the problems on different integration
levels: model engineers, language engineers and tool engineers.

Model engineers are responsible for creating integrated artefacts. Normally, these engineers
can be found at OEMs or suppliers. These engineers use the development tools provided.
Their know-how is very specific as regards the concrete products to be developed and the
corresponding development processes. Model engineers do rely on an appropriate modelling
language.

Language engineers are responsible for creating an integrated modelling language. Nor-
mally, these experts are to be found at business-domain specific tool vendors. In order
to achieve an optimal result, they receive their requirements from model engineers. Their
know-how focuses on a specific business domain, such as automotive industry, in order to
understand their detailed needs. In contrast to model engineers, they must have a detailed
knowledge of language engineering and metamodelling, thus how to develop an integrated
modelling language in general. In particular, language engineers need to know all details of
the metamodelling language used and thus rely on an appropriate metamodelling language.

Tool engineers are responsible for creating an integrated generic tool framework including an
appropriate metamodelling language configuring this framework. Normally, these experts are
to be found at general purpose tool vendors such as database vendors (e. g. Oracle or IBM).
Their knowledge is completely independent of a specific business domain. They concentrate
on solutions which can be adopted by various business domains. They are the specialists
in how to create efficient data backbones, how to support a model-based versioning or how
to support complex consistency checks in general. Especially this third integration layer
is neglected by OEMs and suppliers. The challenges of this layer are too far from their
mayor problems. Nevertheless, the quality of this third layer has great influence on the final
solution provided to the OEMs and supplies.

1.3. Approach

Up to now, a huge number of metamodelling approaches already exists, not to mention the
related domains such as databases, mark-up languages, and ontologies. All of them define
their own metamodelling language. Nevertheless, the degree of formalization is much lower
than in formal languages. In order to discuss semantics and expressiveness of metamod-
elling languages in a more sound way, we will have to increase the degree of formalization.
The crucial weak point of metamodelling is the lack of a formal and appropriate semantic
domain. There is a set of formal approaches, such as KM3 [Jouault and Bézivin, 2006], but
it is not suitable for industrial practice. Important needs to mention are the support of or-
ders and duplicates, uniqueness of canonical keys, context-sensitive domains for properties
(thus to restrict the set of possible values for one property), and an instantiation concept.
On the other hand, suitable approaches such as MOF [OMG, 2006a] are informal, or the
formalization is extremely complex, since these languages themselves provide a huge set of
constructs. Although, however, it is rather complex, MOF does not support all of the above
listed needs.

Informally, a metamodel defines the set of models which is valid according to the given
metamodel. This definition leads to the question about what a model is. In most cases it is
a graph-like structure, but the exact definition varies for each metamodelling approach. In
contrary, the theory of formal languages has a very clear understanding of what a model is:

8 Stefano Merenda

1.3. Approach

It is called word and is simply defined as a sequence of terminal symbols, which are elements
from the so-called alphabet. On that basis it is easy to discuss the definition of languages:
A language is defined by a set of valid words.

Up to now, no similar and suitable definition is available in the metamodelling domain. We
therefore intend to propose the corresponding terms abstract alphabet and abstract word in
order to allow for a clear definition of abstract languages. This is the reason why we are
going to introduce a special kind of graph which will represent an abstract word. In other
words we will define a semantic domain for metamodelling: Once we know the definition of
an abstract word, we will be able to discuss how to define an abstract language (which is
defined as a set of abstract words). To specify the semantics of a metamodelling language,
we need to define for each abstract word whether it is specified by a dedicated metamodel
within the abstract language or not.

As we will see, we strictly separate models (abstract words) from metamodels. Thus, a model
can exist without any metamodel. Formal languages follow this paradigm in a natural way:
We can write down a word based on a dedicated alphabet without knowing anything about
the grammar. Afterwards we can discuss whether it is part of a given language or not.
XML [Bray et al., 2006] follows the same paradigm: we can write down a XML document
without having any scheme definition. In contrast, most of the metamodelling approaches
do not have this separation. The most explicit formulation of the dependency of models to
metamodels is given in the formalization of KM3 in [Jouault and Bézivin, 2006]: “A model
M = (G,ω, µ) is a triple where [. . .] ω is a model itself (called the reference model of M).”
Thereby ω represents exactly the metamodel. Nevertheless there are some relevant reasons
why a separation of models from metamodels is crucial:

1. Support of bottom-up language engineering. When specifying a new language, writing
down a concrete model may often be the first step in order to get a clearer idea about
the language to be created. Afterwards the language definition (metamodel) itself
will be specified. This procedure is only possible if the metamodel is not required
for specifying a model. This is also an advantage of XML and textual languages in
general: Neither an XML scheme nor a grammar are necessary for defining models in
the first step.

2. Ability to correlate different metamodelling approaches. Often, model data has to be
transformed from one technical space as described in [Bezivin and Kurtev, 2005] to
another. For example, if we want to convert models stored within an object database
into an XML document for exchange reasons, or if we want to represent the same
model by a textual language. In such cases we will have to correlate the corresponding
approaches for defining the structure of models such as ODL [Cattell et al., 1999],
XML scheme [Fallside and Walmsley, 2004], and EBNF [ISO, 1996]. It is difficult to
correlate metamodelling approaches without a generic formal framework for models.
As a matter of course, such a definition cannot comprise metamodelling aspects, as
then, it could not be independent of a specific metamodel.

3. Avoidance of recursive model definition. When discussing metamodelling approaches,
different modelling levels are often introduced. In general, such definitions make sense,
of course. Nevertheless such approaches lead to self-describing meta-metamodels and
hence they cause a problem when we want to formally define the meta-metamodel by
itself, i. e. by something we do not know yet as we are still about to define it.

Stefano Merenda 9

1. Introduction

4. Suitability of metamodel evolution. An important aspect in metamodel evolution is
the migration of existing models. During the migration of models we have to deal with
a switch from one metamodel to another. To talk about the state of the model during
the migration between these two metamodels it is helpful to use a description of the
model which is independent of both metamodels.

Up to now, we have discussed the needs related to the formality of the semantic domain for
metamodelling. Now we want to motivate the needs related to the suitability in industrial
practice. Hereby, we want to address the gap between theory and practice. When analysing
the differences which are relevant for defining a semantic domain, the following two major
issues are currently not sufficiently addressed by formal metamodelling approaches although
they are necessary in real applications:

1. Dealing with attributes and enumerations. No practically feasible model can do without
attributes. Most of them also rely on enumerations. We want to show how they
can be mapped to our approach without explicitly extending it by such concepts.
This guarantees for an easy basic theory which covers these additional but important
concepts as well. All operators introduced for abstract words can also be applied to
attributes and enumerations.

2. Dealing with orders and duplicates. A second issue of practically feasible metamod-
elling environments is the support for orders and duplicates. In MOF for example
we can add {ordered} and {bag} to an association end in order to indicate that such
an association is (totally) ordered and allows duplicates, respectively [OMG, 2007].
Formal approaches are mainly based on the set theory and thus do not take orders
and duplicates into account. In contrast, our formal framework is based on partially
ordered multi-sets (pomsets). As we will see, pomsets allow you to handle orders and
duplicates as well as all combinations thereof.

1.4. Related work

As described in both sections above, metamodelling is of great importance for practice
when developing modelling languages. This is the reason why many solution approaches ex-
ist, wherein the most important of which will be represented in the following. Now that the
development of programming languages in compiler construction is already well-established
in the field of informatics, well-known and proven theories will have to be examined with
regard to their relevancy in metamodelling. The most important representatives influ-
encing the present work above-average are Relational Algebra [Codd, 1970], graph gram-
mars [Rozenberg, 1997], description logics [Nardi et al., 2003], MOF [OMG, 2006a] with
its formalization KM3 [Jouault and Bézivin, 2006], GME [Ledeczi et al., 2001], and OCL
[OMG, 2006b]. All in all, the following works and topics will have to be considered for the
individual questions:

• Definition of the term metamodelling. [Kurtev et al., 2006] provides a good
overview of the issues in metamodelling. Among the early approaches of systemati-
cally dealing with the topic of metamodelling are [Geisler et al., 1998] by Geisler and
[Bézivin and Lemesle, 1999] by Bezivin. The results were documented in the scope of
the specification of KM3 in [Jouault and Bézivin, 2006]. In [Harel and Rumpe, 2004],
Harel and Rumpe describe the elements of a language definition.

One vital branch in metamodelling is the transformation of models. Important
representatives of transformation languages which evolved specifically in the do-
main of metamodelling are GReAT [Agrawal et al., 2006] and [Vanderbilt, 2010], ATL

10 Stefano Merenda

1.4. Related work

[Jouault et al., 2006a], BOTL [Braun and Marschall, 2003] and QVT [OMG, 2005a].
These and other transformation approaches are compared in [Falkowski, 2005]. Model
transformation can be understood as a translational definition of semantics. The chal-
lenges are described in [Cleenewerck and Kurtev, 2007].

• Mathematical formalisation of abstract words. In the field of databases, re-
lational algebra form the general fundament based on sets and relations. Relational
Algebra was primarily introduced by Edgar F. Codd in 1970 [Codd, 1970]. Up to
now, it still forms the formal basis for most commercial database systems includ-
ing their query-language SQL [ISO, 2008]. A detailed introduction is provided in
[Abiteboul et al., 1995]. First, Codd defines a database state as a set of relations.
Based on that, the algebra on relations allows to alter the database state with a small
set of operators as well as to formulate consistency conditions. Due to that, Relational
Algebra mainly inspires the present work besides formal languages. The weak point
of relational approaches is dealing with e.g. multi-sets or ordered sets. Complex at-
tributes are also not provisioned in the original theory. Needless to say that for each
of the problems mentioned, extensions of Relational Algebra will evolve over time. A
good overview is provided in [Hull, 1986]. The embedded relation’s model is for ex-
ample discussed in [Jaeschke and Schek, 1982]. The semantics of the language Alloy,
described in [Edwards et al., 2004] and [Jackson, 2006], is for example defined on the
basis of sets and relations.

Dar and Agrawal introduce a closure operator for SQL in [Dar and Agrawal, 1993], and
Stephane Grumbach and Tova Milo extend the Relational Algebra to an algebra for
pomsets in [Grumbach and Milo, 1995]. Another approach from the field of databases
which resembles the techniques of metamodelling more than the relational approach,
is formed by object-oriented databases. Object-oriented databases as formalised by
Georg Gottlob, Gerti Kappel and Michael Schrefl in [Gottlob et al., 1990], allowing
for multivalued attributes. The corresponding counterpart to SQL is OQL which is
specified in [Cattell et al., 1999]. Object-oriented databases are, however, as yet not
established. This also the reason why ODMG, the standardising medium for OQL,
was cancelled. Many of these concepts were, however, not realised in object-relational
databases.

Nevertheless, the resulting theories loose the impressive simplicity of the Relational
Algebra. An exception is the mentioned in the work of Grumbach and Milo, but in
contrast to our approach they order the tupels partially, while our approach bases
on partially ordered edges which allow a one-to-one mapping to the metamodelling
domain. Another difference to the Relational Algebra is that in our approach, a model
is described by a set of edge-functions instead of a set of relations. This re-definition
allows you to easily solve the major weak points of the Relational Algebra that occur
upon adaption for the metamodelling domain without loosing its simplicity: 1. Multi-
valued attributes are fully supported, 2. a closure operator is provided, and 3. ordered
sets and multi-sets are supported.

Graphs are another possibility of representing instances of abstract syntaxes. Such
an approach is described in [Ebert and Franzke, 1994]. Based on these works, also
the Graph Exchange Language (GXL) was developed, the concepts of which being
described in [Holt et al., 2002] and [Winter et al., 2002].

• Description language for abstract syntaxes. As described in [HR00], the
definition of structural semantics is most important in connection with meta-
modelling. There are some works about formalising the structural seman-
tics of UML class diagrams, such as [Breu et al., 1997], [France et al., 1997] and

Stefano Merenda 11

1. Introduction

[Henderson-Sellers and Barbier, 1999]. In the scope of pUML, [CEK01, CEK02] also
formalised metamodelling amongst others. The concepts of UML are, however, very
comprehensive, resulting in an unnecessary complex formalisation.

The description language for metamodels which is cited most often is the Meta Ob-
ject Facility (MOF) of OMG. It is specified in [OMG, 2006a] along with [OMG, 2007].
MOF provides a standard for defining the abstract syntax of modelling languages.
There are a number of realizations of MOF, such as the Eclipse Modelling Framework
(EMF) [Budinsky et al., 2003], which is currently probably the one most widely used.
Due to the complexity of MOF these implementations rarely realise the entire specifi-
cation. As the MOF standard as such is lacking a formal foundation, several attempts
have been made to define a formalization.

Poernomo presents a formalization of MOF [Poernomo, 2006] which is based on con-
structive type theory (CTT). This formalization is particularly suited to prove the
correctness of metamodels through well-typedness. In [Boronat and Meseguer, 2008],
Boronat and Meseguer present an algebraic semantics for the MOF standard in mem-
bership equational logic (MEL). As they have operationalised this semantics within
the Maude language, it can be used to perform formal analyses on models and meta-
models. In contrast to these formalizations of MOF, we propose a formal framework
for metamodelling in general which can be instantiated to formalize MOF.

In [Jouault and Bézivin, 2006], Jouault and Bezivin present a formal semantics of
their textual language KM3 which addresses a subset of MOF called Essential MOF
(EMOF). This formal semantics is based on Prolog and defines a number of pred-
icates for nodes, properties and edges to relate a model to its metamodel. These
predicates relate a model element to its corresponding metamodel element. Due to
space constraints, they only show the formalization of classes including inheritance,
and references including bi-directionality. The authors claim that the attached Prolog
specification provides formalization of packages, primitive data types, enumerations
and attributes. The formalization of enumerations, however, seems to be missing in
the Prolog specification. KM3 comes closest to the approaches of this work, does, how-
ever, only provide few basic constructs which in turn leads to the fact that important
concepts required in language development, cannot be realised. For this reason, the
approach presented herein, goes far beyond KM3.

If graphs are chosen for representing abstract syntaxes, the graph grammars are the
most original form of description. Graph grammars have been invented in the early
seventies in order to generalize textual grammars [Rozenberg, 1997]. As a consequence,
they also advocate a strict separation between a graph and its corresponding grammar.
The linear and context-free forms thereof will be treated in [Pavlidis, 1972] and in detail
in chapter 3 of [Rosenberg and Salomaa, 1997]. However, graph grammars become
more constructive by providing rules to produce all graphs belonging to one language.
In contrast, our framework is more descriptive with regard to that it constrains the
graphs belonging to one language. While allowing the specification of duplicates, graph
grammars do not cater for orders. In practice, this way of description has not proven
to be effective, as the productions – similar to context-sensitive grammars – cannot be
grasped intuitively. Moreover, most questions cannot be answered in graph grammars.

Context-free grammars, as can be described in EBNF [ISO, 1996] for example, do not
differentiate between concrete and abstract syntax. By constructing the grammar, an
abstract syntax is instead defined implicitly, which will then manifest in the AST. As
context-free grammars also define an abstract syntax implicitly, the concepts can be
used on their own by withstanding from using terminal symbols. With the help of

12 Stefano Merenda

1.4. Related work

Zephyr, such an approach is provided in [Wang et al., 1997]. Only tree-like structure
can be described, however.

Another modelling environment tailored to language engineering is the General
Modelling Environment (GME), which is presented in [Ledeczi et al., 2001] and
[Davis, 2003]. The Generic Modelling Environment (GME) provides a metamodelling
formalism for defining a modelling environment [Ledeczi et al., 2001]. The underlying
multi-graph architecture emerged from a generalization of component-based embed-
ded systems [Biegl, 1995]. Even though the origin of this architecture is quite formal,
there is no up-to-date formalization of the approach. In addition, there is neither
support for duplicates nor for orders. A detailed documentation of version 5 can
be found in [Vanderbilt, 2005]. In the field of the XML, XML scheme, defined in
[Biron et al., 2004], [Fallside and Walmsley, 2004] and [Thompson et al., 2004] of the
W3C, has established. It is, however, tailored to the requirements of XML and not
to those of metamodelling. [Edwards et al., 2004] shows that the type theory is also
well-suited for describing abstract syntaxes.

The requirements to description languages for abstract syntaxes are pretty close to
those for ontology description languages. Description Logics (DL) is a family of
languages for knowledge representation to describe ontologies in a formally well-
understood way. D. Nardi, R. J. Brachman, F. Baader, and W. Nutt provide a
detailed insight into DL in [Nardi et al., 2003]. Most of the DLs are a decidable
subset of first order logic which makes them attractive for inferring new knowledge
from already existing knowledge. In contrast to our approach, the expressiveness is
much more restricted which makes it insufficient for metamodelling. DLs differen-
tiate between a terminological box (tbox) and an assertional box (abox). The first
describes the concepts of a domain, whereas the latter deals with knowledge about
concrete instances. This distinction corresponds to that of metamodels and mod-
els in our domain. Please note that a concept in our approach is not the same as
in DLs: In our approach each individual (node) is mapped to exactly one concept,
while an individual may belong to many concepts in DL. Thus, a concept in DL
can be seen as a node evaluation in our approach which makes it easy to use DLs
in our approach. The W3C proposes OWL along with RDF for ontologies. The
structural semantics of RDF is described in [Hayes and McBride, 2004], the one of
OWL in [Patel-Schneider et al., 2004]. An introduction to the theory of description
logics used is for example provided in [Nardi and Brachman, 2003]. Similarities and
differences between ontologies and metamodels are discussed in [Gitzel et al., 2004].
[Saeki and Kaiya, 2006], however, tries to establish a common basis for metamodelling
and ontologies. First approaches for a mutual development of ontologies are described
in [Hepp et al., 2006] or [WikiOnt, 2010].

Regardless of the concrete description technique, a differentiation must be made be-
tween textual and diagrammatic metamodelling languages. UML for example applies a
diagrammatic syntax. KM3 [Jouault and Bézivin, 2006] in contrast relies on a textual
description language. Emfatic represents a proposal for a textual description language
for Ecore models. Up to now, however, only a first draught exists, which can be found
at [IBM, 2004].

• Extension of metamodelling by context-sensitive concepts. Attribute gram-
mars, as presented by Knuth in [Knuth, 1968], [Knuth, 1971] and [Knuth, 1990], are
often proposed for describing context-sensitive concepts. [Hedin, 2000] describes the
problems arising thereupon and provides a respective solution. Context-sensitive pro-
portions are described by OCL [OMG, 2006b] in UML. The Object Constraint Lan-
guage (OCL) provides a standard for an expression language in order to navigate

Stefano Merenda 13

1. Introduction

and constrain models [OMG, 2006b]. As precise semantics is not part of the stan-
dard, there have been a number of attempts to formalise OCL. Brucker and Wolff
propose a semantics for OCL based on a shallow embedding in Isabelle/HOL in
[Brucker and Wolff, 2002]. In [Kyas et al., 2005], Kyas et al. present a mapping of
OCL constraints to the PVS theorem prover. In [Markovi and Baar, 2006], Markovi
and Baar propose a formal semantics for OCL constraints based on their evaluation
as QVT model transformations. While these formalizations map the OCL constraints
to a separate semantic domain, our approach provides an algebra directly working on
edges. In contrast to OCL, wherein constraints cannot be evaluated in a metamodel-
independent way, edge algebra does not require a metamodel to be present. In contrast
to OCL, edge algebra is a very tiny language which is therefore much easier to under-
stand as well as to be implemented. Nevertheless due to its pomset support, it is even
more powerful than OCL in constraining bags and lists. No metamodel is provisioned
for the language OCL itself. [Reichmann et al., 2004] introduces a respective OCL
metamodel. The metamodelling language Kermeta – described in [Fleurey et al., 2007]
– extends the concepts of EMF by methods and constraints in order to be able to ex-
press static semantics.

• Modularisation of language specifications. MOF provides basic coarse-grained
operators for the composition of modelling languages by for example importing, merg-
ing or combining packages [OMG, 2006a]. Blanc et al. motivate the need for a
new operator that allows to reuse and generalize concepts when combining pack-
ages [Blanc et al., 2005]. Clark et al. provide a new composition operator that al-
lows to equate concepts before merging the packages [Clark et al., 2002]. Karsai et
al. propose more fine-grained operators that allow for the composition of modelling
languages by for example uniting two concepts, or finer control over inheritance re-
lationships between two concepts [Karsai et al., 2004]. Balasubramanian et al. show
how to apply these operators to the integration of existing model-based development
tools [Balasubramanian et al., 2007]. Estublier et al. provide similar constructs, but
allow not only for the composition of the generated editors, but also consider a com-
position of corresponding model interpreters [Estublier et al., 2005]. Emerson and
Sztipanovits envision metamodel templates that enable a more flexible generalization
and customization of modelling languages [Emerson and Sztipanovits, 2006].

• Language evolution. When a specification changes, probably all existing instances
will have to be reconciled in order to conform to the updated version of said specifica-
tion. Since this problem of coupled evolution affects all specification formalisms (e. g.
database or document schemata, types or grammars) alike, numerous approaches for
coupled transformation [Lämmel, 2004] of a specification and its instances have been
proposed. The problem of schema evolution, which has been a field of study for several
decades, has probably received the closest investigation [Rahm and Bernstein, 2006].
Recently, literature provides some work that transfers ideas from other areas to the
problem of metamodel evolution. In order to reduce the effort for model migration,
Sprinkle proposes a visual, graph-transformation based language for the specification
of model migration [Sprinkle and Karsai, 2004]. Gruschko et al. envision to automat-
ically derive a model migration from the difference between two metamodel versions
[Becker et al., 2007, Gruschko et al., 2007]. Wachsmuth adopts ideas from grammar
engineering and proposes a classification of metamodel changes based on instance
preservation properties [Wachsmuth, 2007].

• Description of formal languages based on abstract syntaxes. Many ap-
proaches, such as [Efftinge and Völter, 2006] with xText or [Alanen and Porres, 2003]
describe a regulation which extracts the abstract syntax of a grammar in the form

14 Stefano Merenda

1.4. Related work

of a metamodel. The resulting metamodels do, however, not substitute for an indi-
vidually defined metamodel and therefore, they need to be converted into the target
metamodel. The other way round defines a concrete textual syntax based on a given
abstract syntax. As the abstract syntax does not contain any information about the
concrete notation, this approach results in a canonical textual syntax. One example
thereof is HUTN, which is specified in [OMG, 2004]. Experiences with HUTN are
reported in [Muller and Hassenforder, 2005]. [Gargantini et al., 2006] provides a first,
but rather technical approach defining a concrete syntax based on the abstract syntax.
The result thereof is a parser, providing a metamodel instance. The language TCS,
presented in [Jouault et al., 2006b], is an approach which reverts to the definition of an
abstract syntax (which, in this case, is defined in KM3) for describing textual concrete
syntaxes. An alternative but similar approach is described in [Muller et al., 2006],
wherein said approach bases on EMF. [Guerra et al., 2005] and [Baar, 2006] show that
besides concrete textual syntaxes even diagrammatic syntaxes can be defined. A really
good introduction is provided in [Viehstaedt and Minas, 1995] within the scope of the
project called DiaGen [Minas, 2010].

• Mapping to the technical spaces of XML, SQL and Java. [Kurtev et al., 2002]
describes the technical spaces in detail. [Bezivin and Kurtev, 2005] and [Bézivin, 2005]
describe the interaction of different technical spaces with the help of a higher-level
metamodelling language and respective technical projectors. [Bézivin et al., 2005] de-
scribes a concrete conversion between GME and EMF. The Java Metadata Interface
(JMI) [Microsystems, 2002] defines the mapping of MOF to a Java environment. XMI
[OMG, 2005b] defines a canonical XML encoding of any models specified in MOF. Un-
fortunately, said encoding is rather long and illegible. This was also one of the reasons
for the definition of HUTN. In contrast to the approach presented herein, XMI does
not offer a suitable metamodel for each given XML document. The works concern-
ing object-relational mappings, such as [Ambler, 1999], [Cabibbo and Porcelli, 2003]
and [Cabibbo and Carosi, 2005], are decisive for mapping metamodels to relational
databases. One of the most important implementations is the OpenSource project
Hibernate [Hibernate, 2010].

• Canonically binary encoded representation of model instances. The
XML Binary Characterization Working Group (XBCWG) of the W3C describes
the requirements to a canonical binary encoding, for which calls have long
since been issued, in [Goldman and Lenkov, 2005], [Williams and Haggar, 2005],
[Cokus and Pericas-Geertsen, 2005a] and [Cokus and Pericas-Geertsen, 2005b]. In the
context of BinaryXML, [Geer, 2005] discusses about the relevancy of efficient encod-
ings. [Merenda, 2005] defines a simple binary encoding and checks the properties
thereof with regard to the requirements of the XBCWG. In [Davis, 2003], GME as
well describes the support of an efficient binary encoding.

• Metamodelling as a means for model-based tool development. Examples for
approaches of integrated tool architectures are GeneralStore [Reichmann et al., 2004]
as well as the commercial further developments thereof in Aquintos [Aquintos, 2010]
or else the project Artwork [Artwork, 2002], [Artwork, 2003b] and [Artwork, 2003a]
within the scope of which the work [Günzler, 2005] evolved. All approaches are based
on a common metamodel having different levels of detail as regards the concept. Con-
ventional approaches, such as [Braun and Marschall, 2003], rely on coupling hetero-
geneous tools by model transformation. Upon the implementation of AutoFOCUS
[Hölzl, 2010], a dedicated metamodel is also defined in [AutoFocus, 2006], in order to
generate the code for the persistence layer of AutoFOCUS therefrom. As with all tool
implementations of that kind, the exact behaviour of the metamodel classes generated

Stefano Merenda 15

1. Introduction

can only be read in the generated code, as no suitable metamodelling language having
a formal structural semantics was available. Scientists tried to eliminate that problem
in AUTOSAR by explicitly defining a specification of the structural semantics of the
metamodelling constructs allowed in [Autosar, 2006] – although, this was only done in
prose.

• Integrated language engineering. In this context, the huge number of Language
Workbenches, Code-Generator Frameworks and also Greenfield’s Software-Factories
[Greenfield and Short, 2004] must be named. Important representatives are the Mi-
crosoft DSL Tools or the Eclipse Modeling Framework (EMF) [Budinsky et al., 2003].
Another important aspect of integrated language engineering is the re-use of meta-
models, which allows for the development of metamodel libraries. Concepts for the
re-use by composition are described in [Emerson and Sztipanovits, 2006]. Amongst
others, Charles Simonyi coined the term intentional programming in [Simonyi, 1995]:
In order to take the different intentions of the modellers into account, one and the same
model information is supposed to be represented in different ways, and thus it relies
on the concept of separating abstract and concrete syntax, in order to ensure an inte-
grated tool environment with regard to its editors. Being a former Microsoft manager,
Simonyi founded the company called Intentional Software [IntentionalSoftware, 2010].

In literature, some approaches for tool integration can already be found. In
[Becker et al., 2005], the authors propose a model-based approach to integrate tools
working on interdependent documents. Wrappers for each tool allow you to ab-
stract from technical details and provide homogenised access to documents by way
of graph models. The different documents are kept consistent by graph transfor-
mation rules which allow you to propagate changes in an incremental development
process. In [Becker et al., 2007], the authors provide a more detailed description of
their algorithm for incremental and interactive consistency management. The authors
of [Karsai et al., 2005] explain and compare two architectural design patterns which
allow for tool integration. The first architecture is based on an integrated model and
adapters for each tool translating the data to the integrated model. The second archi-
tecture is based on a messaging system, which routes data according to a workflow spec-
ification, and which implements a pairwise integration among tools. [Margaria, 2005]
presents the extension of the ETI (Electronic Tool Integration) platform by web service
technology. The integrated tools interact with each other by using web services, which
allow to decouple the different tools from each other and which therefore ease inte-
gration and maintenance activities. In [Königs and Schürr, 2006], the authors present
their rule-based approach MDI (Multi Document Integration) for data integration of
multiple data repositories. Metamodels are used to provide an abstract specification
of the different models, a separate model is used to specify correspondence links be-
tween the models, and rules are used to specify consistency between the models. The
declarative rules, specified in the form of triple graph grammars, are used to derive
code for creating and checking the consistency of correspondence links as well as for a
forward and backward propagation of changes. TOPCASED [Farail et al., 2006] is an
open-source CASE environment for model-based development of critical applications
and systems. Their ambition is to build an extensible and evolutive CASE tool that
allows its users to access various models and associated tools.

16 Stefano Merenda

1.5. Contribution

Besides these academic approaches, some tool developers already offer integrated
tool support. For the automotive domain, Vector has developed the tool eASEE
[Vector, 2010] which is intended to be a data backbone that stores the product data in
a central repository. This tool is not designed as a generic tool integration platform,
but focuses on supporting predefined modeling functionalities. The tool PREEVision
from Aquintos [Aquintos, 2010] follows a similar direction.

1.5. Contribution

Due to the reasons mentioned above, the present work is to formalise metamodelling in order
to develop an integrated, comprehensible and efficient language. The present work focuses
on a systematic separation between abstract and concrete syntax. This is the only way of
distinguishing the description of the structure and concepts of a metamodelling language
from the concrete representations of the models. The following questions will be dealt with
in detail:

• Definition of the term metamodelling. Nowadays, the term metamodelling is
unfortunately used inconsistently both in the field of science and in practice. Thus,
a somehow extended definition will be provided, clarifying which components a meta-
model exactly comprises, which properties will need to be fulfilled by the individual
aspects and how to describe them. This detailed description will result in a metamod-
elling language which can be described by its own in the sense of bootstrapping.

• Mathematical formalisation of abstract words. If the language modelling con-
cepts are abstracted from concrete encoding, the words of the modelling language
would also have to be abstracted from a concrete symbolism as a consequence. For
this purpose, a specific class of labelled, directed multi-graphs is proposed. They form
the mathematical basis for the formal definition of abstract syntaxes.

• Description language for abstract syntaxes. The set of all labelled, directed
multi-graphs in the sense of the definition for abstract words describes the most general
abstract language: Each abstract word possible is valid. Based on that, more specific
abstract languages can be defined by abstract syntaxes which only allow a subset of
all abstract words. Hereby, the modelling language developed uses concepts of well-
proven metamodelling approaches, similar to the UML class diagrams, extends them
and defines a formal structural semantics in the sense of valid abstract words of the
modelling language.

• Extension of metamodelling by context-aware concepts. When designing lan-
guages, there are some important and common concepts for which it is very difficult
or even impossible to be expressed in current metamodelling languages. Suitable
metamodelling concepts will be provided for namespaces, definition of validity ranges,
encapsulation and re-use by instantiation.

• Description of formal languages based on abstract syntaxes. Nowadays, ab-
stract syntax in the form of a metamodel and a grammar for defining the formal
language are facing each other in a rather independent manner. The present work
shows a way of defining textual concrete syntaxes on the basis of an abstract syntax.
Only the combination of abstract and textual concrete syntax will define the formal
language. Due to the context-sensitive concepts of the abstract syntax, this kind of
specifying formal languages is more expressive than context-free grammars.

Stefano Merenda 17

1. Introduction

• Metamodelling as a means for model-based tool development. The rules for
mapping and encoding as well as the formal definition of concrete syntaxes allows for
the development of respective code generators for tool development. Metamodelling
is therefore turned into a vital part of model-based tool development. All in all,
tool development becomes more systematic and more efficient due to that, which is
of major significance both for domain-specific languages and for early experiments of
newly developed languages in the scientific field.

• Integrated language engineering. The vital result of the present work is to enable
an integrated development of modelling languages. On the one hand, the abstract
syntax of the language describes a suitable taxonomy for the domain to be modelled.
On the other hand, this results in a formal definition of the structure of the language.
Concrete syntaxes – which are of textual nature in the present work – will be defined
as an extension of abstract syntax. In general, several concrete syntaxes may also be
given for different fields of application. The interaction will, in turn, be provided by
abstract syntax. Moreover, the formal language definition by abstract and concrete
syntax serves so as to generate parts of the corresponding tools.

1.6. Overview of the present thesis

Chapter 2, Metamodels and Seamless Language Engineering, p. 21 describes the components
of metamodelling and thus provides a definition of the terms metamodel and seamless lan-
guage engineering. The topics dealt with in the present work will be classified by way of the
above-mentioned definition.

Chapter 3, Running example: Modelling dataflow algorithms, p. 45 provides an informal in-
troduction to the running example which is a language for modelling dataflow algorithms. In
order to illustrate most of the M2L modelling constructs, it also contains some sophisticated
constructs such as instantiation. The concrete illustration model implements an integrator
over time.

Chapter 4, Pomsets in the context of metamodelling, p. 61 introduces partially ordered multi-
sets as a generalisation of sets and lists (which are totally ordered sets). Pomsets form the
basis for defining abstract words in the following chapter.

The next four chapters form the core specification of the metamodelling language M2L itself:

• Chapter 5, Models as Abstract Words, p. 81 provides a mathematical description for
abstract words in the form of a specific class of labelled, directed multi-graphs.

• Chapter 6, Queries on abstract words - the Edge Algebra, p. 95 describes an algebra
to derive new properties from already existing properties of abstract words. It forms
the basis for the description of conditions for models.

• Chapter 7, Abstract Syntaxes in M2L, p. 119 specifies the metamodelling language
tailored methodically to language engineering to define abstract syntaxes in the sense
of a restriction of the valid abstract words. It is characterised by its specific possibilities
to specify context-sensitive language properties.

• Chapter 8, Textual Concrete Syntaxes in M2L, p. 153 deals with describing formal
languages based on a given abstract syntax. The definition of a formal language
therefore consists of two components: abstract syntax as well as textual concrete
syntax. Only a combination thereof defines a formal language.

18 Stefano Merenda

1.6. Overview of the present thesis

Chapter 9, The overall specification of M2L, p. 171 provides the syntactical definition of
the metamodelling language M2L in a bootstrapping way. This overall picture could not be
presented in the previous chapters, as bootstrapping requires that the entire metamodelling
language is already known. This specification is also used to provide a first detailed case
study for M2L. The present chapter describes all concepts of the metamodelling language
in a systematic way.

Chapter 10, Summary, evaluation, and outlook, p. 271 concludes by illustrating the ad-
vantages resulting from the present work as regards the development of novel modelling
techniques and possible connecting factors for future research.

Stefano Merenda 19

Chapter 2
Metamodels and Seamless Language
Engineering

Since the present work deals with creating a suitable language to write down metamodels
in order to allow a seamless language engineering, these two topics will be discussed and
clarified in this chapter. Although in particular the term metamodel is wide-spread, in most
cases it is a more semi-formal way of usage. Nevertheless, the rough understanding is quite
consistent: A metamodel defines the abstract syntax of a language. Apart from that, a
language definition consists of much more than abstract syntax. This chapter will reveal,
however, that a metamodel should also comprise concrete syntaxes, process definitions, and
semantics.

These four aspects of a metamodel form the first dimension of a seamless language en-
gineering. Seamless language engineering focuses on integration and consistency in three
dimensions: 1. integration of the four already mentioned metamodel aspects, 2. consistency
of the three metamodel purposes specification, documentation, and tooling, as well as 3.
integration and tailoring steps in order to achieve modularisation.

This detailed point of view leads to the requirements to a metamodelling language and also
to a formal top-level definition of a metamodel.

Contents
2.1. Metamodels – comprising the four vertical tooling aspects . . 21

2.2. The three dimensions of seamless language engineering 31

2.3. Requirements to a metamodelling language 34

2.4. Procedure specifying the (self-describing) metamodelling lan-
guage M2L . 42

2.1. Metamodels – comprising the four vertical tooling aspects

When looking at the very basic meaning of the term metamodel, we come to the prefix meta
which has its origin in the Greek word of μετά, which can be literally translated by with,
amidst or as regards time after, and figuratively also above or behind. As a conclusion,

Stefano Merenda 21

2. Metamodels and Seamless Language Engineering

metamodels would therefore be models above models, thus describing models which finally
corresponds to a language definition.

In order to get a more precise understanding of which aspects should be part of a meta-
modelling language, in this section we will return to development tools which can be seen
as implementations of modelling languages. A consequent realisation of a seamless language
engineering results in the fact that such development tools are automatically generated from
of the language definition and thus from a metamodel. Due to the foregoing, the concepts of
model-based development are applied to the engineering of development tools themselves.

In the first step, we will decompose the more or less monolithic development tools of today
into the four generic components Repository, Editors, Workflow, and Analysis/Synthesis
(Section 2.1.1, Decomposing monolithic development tools, p. 22). Based on this, we are
able to extract parts of development tools, that are independent of the concrete modelling
language (Section 2.1.2, Extraction of horizontal tooling aspects, p. 24). Such non-variable
parts are called horizontal tooling aspects, which will be Common Model Repository, Generic
Editor Framework, Workflow Engine, and Model Interpretation Engine. These horizontal
tooling aspects are generic and must therefore be configured by the language specific as-
pects: As a result, a corresponding vertical tooling aspect has to be defined for each of the
horizontal tooling aspects (Section 2.1.3, Vertical tooling aspects: the four aspects of a meta-
model, p. 26). These will be Abstract Syntax (configuring the common model repository),
Concrete Syntax (configuring the generic editor framework), Process Definition (configuring
the workflow engine), and Semantics (configuring the model interpretation engine).

Based on these four vertical tooling aspects, we are now able to configure a complete de-
velopment tool. According to that, these four aspects in combination form the necessary
information in order to build a concrete development tool in the sense of model-based de-
velopment for development tools themselves. The author therefore proposes to enrich meta-
models to all of these four aspects. Thus, the term metamodel will be used that way in the
following.

2.1.1. Decomposing monolithic development tools

To all intents and purposes, the integrated modelling language should be operationalised by
a tooling environment that supports the creation, transformation, analysis and subsequent
processing of all artefacts needed. Due to the fact that tool development is extremely
expensive, industry sees no alternative to already existing commercial tools. These tools are
often of general nature only and are not tailored to the specific needs of the engineers of a
specific industry. Many efforts trying to develop their own tailored integrated engineering
environment fail because of huge development efforts but even more due to substantial
maintenance costs. This is due to the fact that besides the core business functionality, tools
require a lot of infrastructure for the management of models.

Nowadays, development tools mostly have a very monolithic character. Most tools do there-
fore not require any special platform besides an operating system. The internal structure
of commercial tools is often not visible to users and thus a deep integration of two differ-
ent development tools (e.g. to optimise development processes) results in huge efforts and
sometimes turns out to be even impossible as no APIs are available.

Nevertheless, functionality of every development tool can, from a conceptual point of view,
be classified in four classes, namely Repository, Editors, Workflow, and Analysis/Synthesis
as shown in Figure 2.1:

22 Stefano Merenda

2.1. Metamodels – comprising the four vertical tooling aspects

Monolithic
Development Tool

Development Tool

Repository

Editors

Workflow

Analysis / Synthesis

decomposing

Figure 2.1.: Decomposing development tools.

• Repository subsumes all data handling, such as loading or saving models, handling
files or accessing databases. It also includes for example all export and import func-
tionality.

• Editors address all editing and viewing functionality. Note that not the entire GUI
should be considered here, as all four parts also result in GUI elements. Menu items
for saving models, for example, belong to Repository.

• Workflow addresses all process support of development tools. Most of today’s de-
velopment tools no longer represent a workflow support for a comprehensive systems
engineering process. Nevertheless some functionality – such as deactivation of menu
items – can be considered as a workflow support. If, for example, a model remains
unchanged, the Save item is deactivated. Hence, the user is guided (at least somehow)
depending on the current situation.

• Analysis/Synthesis addresses all functions which e. g. check the correctness of code,
consistency of models or modelling guidelines (Analysis). Synthesis subsumes all com-
piler and code generation functionality in particular.

In order to reduce development costs, the tooling platform has to factor out that functionality
which is independent of the specific product model. The tooling platform can then be
parametrised by a modelling language which operationalises a certain product model. Our
aim is therefore to achieve a strict separation of horizontal and vertical tooling aspects
by means of an integrated tooling platform. Tooling aspects, such as the central model
repository, which are independent of a specific modelling language, are termed horizontal.
Tooling aspects, such as the syntax of a certain modelling language, which are specific
to a certain modelling language, are called vertical. In today’s development tools, these
horizontal tooling aspects are interwoven with the implementation of the vertical tooling
aspects. The lack of a separation between horizontal and vertical tooling aspects hampers the
implementation of a central model repository which is crucial for introducing an integrated
engineering environment.

Stefano Merenda 23

2. Metamodels and Seamless Language Engineering

2.1.2. Extraction of horizontal tooling aspects

The following is cited from [Broy et al., 2010] page 537 including some minor
changes in order to adopt it to this work:

Tooling aspects are called horizontal if they are independent of a certain modelling
language. Horizontal tooling aspects, such as a model repository, are often re-
implemented by each isolated tool. However, using different technologies for one
model repository complicates seamless tool integration, as models must be trans-
formed to enable data exchange between the tools. We therefore propose a tooling
platform that factors out horizontal tooling aspects. As shown in Figure 2.2, we
identified the following horizontal tooling aspects required for large-scale seamless
system development: Common Model Repository, Generic Editor Framework,
Workflow Engine, and Model Interpretation Engine. In the following, we will
deal with the different horizontal tooling aspects and their requirements in more
detail:

Horizontal tooling aspects:
Generic Tool Framework

Common Model Repository

Generic Editor Framework

Workflow Engine

Model Interpretation Engine

…Tool 1 Tool 2 Tool N

Repository

Editors

Workflow

Analysis /
Synthesis

Repository

Editors

Workflow

Analysis /
Synthesis

Repository

Editors

Workflow

Analysis /
Synthesis

Figure 2.2.: Extract horizontal tooling aspects.

• Common model repository. A central model repository is crucial for
maintaining the dependencies between the different models produced during
the development process. As the models of industrial systems are becoming
quite large, a database system is required to store all models and their re-
spective dependencies. The central model repository is also responsible to
ensure the overall consistency of the models. A model is consistent if it
fulfils the constraints defined by the modelling language.

In order to efficiently handle a distributed development of systems, the
database system has to be distributed. The models may be partitioned accord-
ing to the different companies participating in the development of a system
as each company needs to have sovereignty over its own models. Further-
more, as some companies may not be permitted to access or modify the
models of other companies, the model repository has to provide individual
rights by access control.

When distributed parties are simultaneously working on the same models,
conflicts will arise, leading to inconsistencies. In order to prevent or repair
conflicts, configuration management is to keep track of the different versions
of the model. Furthermore, configuration management is to define which
version of different models fit together.

Object-oriented database systems are best suited for implementing common
model repositories, as they can efficiently handle graph-like model structures.

24 Stefano Merenda

2.1. Metamodels – comprising the four vertical tooling aspects

Traditional file-based configuration management systems such as CVS and
SVN do not meet the needs of model-based development. Current configura-
tion management systems for models such as Odyssey-VCS mainly support
a certain modelling language such as UML [Oliveira et al., 2005]. However,
there is also research on configuration management systems which can be
parametrised by a modelling language (e. g. ModelCVS [ModelCVS, 2010]).

• Generic editor framework. A front-end provides a user interface for au-
thoring models in the repository. The front-end should constitute a generic
framework that can be parametrised by the modelling languages applied. The
front-end provides editors to author a model in its concrete representation
by using the concrete syntax of the modelling language. Furthermore, the
front-end offers the modeller those operations which are defined by the mod-
elling language (vertical) and operations that are common to all languages
(horizontal).

These operations have to be intuitive to support the engineers in working
with the models in an efficient manner. Those operations that support con-
figuration management for example, should allow engineers to commit the
changes on models and to update parts of the models. In case of a conflict,
a merge operation is required that allows the visualisation of the differences
between models in their concrete syntax. The Eclipse platform is a perfect
example for a front-end, as its service-oriented architecture renders it highly
extensible [Eclipse, 2010b].

• Workflow engine. Our experiences show that most often, a defined pro-
cess is not followed by its participants as long as it is not supported by the
modelling tool. To prevent deviation from the process, developers should
be guided through the defined process by the tooling platform. In order to
operationalise the process, the workflow engine interprets the process defini-
tion of the modelling language. When interpreting a process model, progress
and current activities that need to be performed are always available by the
workflow engine. To force a modeller to perform the current activities,
all operations and interpreters not required for the activity have to be sup-
pressed. The rights management of the tooling platform has to ensure that
certain activities are only performed by certain roles. When modellers log
on to the tooling platform, they can only perform activities which are cur-
rently available based on the process definition and which correspond to one
of the roles they own.

• Model interpretation engine. It provides the facilities to perform com-
plex tasks such as analysis and synthesis based on the semantical defini-
tion of the language. To perform complex editing and refactoring facilities,
an in-place model-to-model transformation engine is necessarily integrated
in the front-end. For an automated generation of code and other process
artefacts, an out-of-place model-to-model as well as a model-to-text trans-
formation engine is required. As such generation tasks might require a lot
of time and computing power they should be located at a different machine
in the back-end. In order to be able to execute an operational semantics, a
generic simulation framework is necessary which should also be located in
the back-end because of resource consumption issues.

End of citation.

Stefano Merenda 25

2. Metamodels and Seamless Language Engineering

By extracting the horizontal tooling aspects as described above, a generic tool framework
as shown in Figure 2.3 is formed:

…

Integrated Model Engineering
Environment

Horizontal tooling aspects:
Generic Tool Framework

Common Model Repository

Generic Editor Framework

Workflow Engine

Model Interpretation Engine

La
ng

ua
ge

 M
od

ul
e

1

La
ng

ua
ge

 M
od

ul
e

2

La
ng

ua
ge

 M
od

ul
e

N

…

Figure 2.3.: Specific tools as language modules.

The specific tools become language modules which are plugged into that framework. These
language modules are just a formal description of the corresponding modelling languages and
thus metamodels. However, an integrated modelling language is rather complex and thus
difficult to develop in one step. In order to ease language development, an integrated mod-
elling language should result from the composition of reusable, modular modelling languages
which can be customised to the specific needs of engineers. Furthermore, appropriate tool
support is required for model migration in order to be able to improve a modelling language
that is already under use.

2.1.3. Vertical tooling aspects: the four aspects of a metamodel

In the previous section it was already described that we are generally able to extract hor-
izontal tooling aspects in form of a generic tooling platform. In order to configure this
generic platform, a set of metamodels forming the language modules will be necessary now.
As shown in Figure 2.4, these language modules build the vertical tooling aspects. For each
horizontal tooling aspect, a corresponding vertical tooling aspect exists: Abstract Syntax
configures the Common Model Repository, Concrete Syntax configures the Generic Editor
Framework, Process Definition configures the Workflow Engine, and Semantics configures
the Model Interpretation Engine.

While horizontal tooling aspects are independent of a business domain, vertical tooling
aspects are specific for the concrete business domain. Thus, the generic tool framework can
be used for various applications; by plugging in a specific language module, the engineering
environment is configured for a specific purpose. The separation of horizontal and vertical
tooling aspects also points out the different skills for developing an integrated engineering
environment: A generic but deep tool development know-how including DBMS and GUI
implementation is necessary for the horizontal aspects. In contrast to vertical aspects, a
dedicated know-how for the concrete business domain, their development processes and
even company specific issues are crucial. This separation of skills – especially concerning
horizontal aspects – is often neglected when implementing such an integrated engineering
environment resulting in a tool architecture of minor value.

26 Stefano Merenda

2.1. Metamodels – comprising the four vertical tooling aspects

Integrated Model Engineering
Environment

Horizontal tooling aspects:
Generic Tool Framework

Common Model Repository

Generic Editor Framework

Workflow Engine

Model Interpretation Engine

V
er

tic
al

 to
ol

in
g

as
pe

ct
s:

La
ng

ua
ge

 M
od

ul
es

A
bs

tr
ac

t S
yn

ta
x

C
on

cr
et

e
Sy

nt
ax

Pr
oc

es
s

D
ef

in
iti

on

Se
m

an
tic

s

domain
specific

domain
independent

Figure 2.4.: Horizontal and vertical tooling aspects.

Figure 2.5 shows again the four parts Repository, Editors, Workflow, and Analysis/Synthe-
sis into which a development tool can be decomposed. It also provides a more detailed
overview of how these parts are made up of a generic and a specific fragment. The generic
fragment is outside the Generic Tool Framework (horizontal aspect) and a specific one is
provided by the Language Module which configures the generic framework (vertical aspect).
Thus, tooling aspects are called vertical if they are specific for a certain modelling language.
The generic tool framework on the other hand supports tool builders to implement vertical
aspects easily. It should be easily possible for a company to adapt or develop a modelling
language appropriate to its needs. In order to enable a cost-effective development of such
modelling languages, so-called meta languages are required to describe the different elements
of a modelling language. The tooling aspects related to supporting modelling languages are
partitioned into the following elements: Abstract Syntax, Concrete Syntax, Process Defini-
tion, and Semantics.

Development Tool

Language ModulesGeneric Tool Framework

Abstract Syntax
- Structure (concepts and properties)
- Context sensitive constraints
- Configurable units

Repository
Common Model Repository
- Complex constraint checking
- Configuration management
- Language evolution

Concrete Syntax
- Types: diagram / text / table
- Based on canonical syntaxes
- Combination of syntax types

Editors
Generic Editor Framework
- Searching and browsing
- Editing and refactoring
- Comparing and merging

Process Definition
- Roles and access rights
- Artifact as constrained concept
- Activity as in-place transformation

Workflow
Workflow Engine
- Task distribution and to-do lists
- Automated change management
- Quality gates and access control

Semantics
- Refactoring transformations
- Code generation templates
- Operational semantics

Analysis / Synthesis
Model Interpretation Engine
- In-place M2M transformation
- Out-of-place M2M and M2T transf.
- Generic Simulation Framework

Figure 2.5.: Detailed relationship between generic tool frameworks and language modules.

Stefano Merenda 27

2. Metamodels and Seamless Language Engineering

The following is cited from [Broy et al., 2010] page 535-536 including some minor
changes in order to adopt it to this work:

The different elements of modelling languages and their requirements will be ex-
amined in more detail:

• Abstract syntax. Abstract syntax defines the concepts of a modelling lan-
guage and their respective relationships. When a modelling language cor-
responds to a domain, it enables engineers to directly reflect the domain
concepts and relations in their models. By using domain appropriate lan-
guages, engineers can work on a higher level of abstraction and in direct
analogy to domain knowledge.

Abstract syntax determines the validity of models and can therefore be used
to enforce the construction of valid models. Domain semantics of languages
can be encoded in an abstract syntax by restricting syntactically correct mod-
els to those that are meaningful in the domain [Evermann and Wand, 2005].
Abstract syntax usually consists of constructive and descriptive parts: con-
structive parts describe how valid models are to be built and descriptive parts
further restrict the number of valid models by constraints. As an integrated
modelling theory needs to describe the relationship between different models,
a model is required to have a graph-like structure.

Abstract syntax in the centre of a modelling language definition as shown
in Figure 2.6. Other elements of a modelling language definition (concrete
syntaxes, process definition and semantics) are then specified in relation to
abstract syntax. This enables the rapid development of modelling languages
and provides a very clear structure of a language specification. Furthermore,
different modelling languages are best integrated in terms of their abstract
syntax.

Concrete Syntax

Abstract Syntax

SemanticsProcess Definition

refers to
refers to

refers to

Figure 2.6.: Central position of abstract syntax.

Literature provides a large number of examples for languages to define
the abstract syntax of a modelling language. The Object Management
Group (OMG) even standardised languages to define the abstract syntax
of object-oriented modelling languages: the Meta Object Facility (MOF)
[OMG, 2006a] representing the constructive part and the Object Constraint
Language (OCL) [OMG, 2006b] representing the descriptive part. MOF,
however, provides too many constructs to be entirely understood and imple-
mented. The most commonly known implementation of a subset of MOF,
called EMOF (Essential MOF), is the Eclipse Modelling Framework (EMF)
[Budinsky et al., 2003].

28 Stefano Merenda

2.1. Metamodels – comprising the four vertical tooling aspects

• Concrete syntax. Concrete syntax defines the representation of a model
in a human-readable manner. There are different forms of concrete syntax:
diagrammatic, textual and tabular. Diagrammatic syntax shows the model
in the form of diagrams with layout information, textual syntax visualises
the model as linear texts, and tabular syntax illustrates the model in the
form of two-dimensional tables.

As real-world models can become quite large, the concrete representation of
a whole model becomes incomprehensible. As a consequence, we need to be
able to define a concrete syntax only for viewing the model. Only the direct
sub-components of a component, for example, are visualised in a diagram.
Furthermore, the representations of the different views need to be related to
each other. The black-box of a component is depicted in the diagram for its
parent component, whereas the white-box is shown in a different diagram.

Some modellers may prefer diagrammatic concrete syntax, while others pre-
fer the textual one. As a consequence, there might be several representations
of the same view in different variations of concrete syntax. The consistency
between different representations has to be ensured by means of abstract
syntax. Furthermore, it should be possible to combine several variations
of concrete syntax for one view. A diagrammatic representation of a state
machine for example may contain textual representations of the transition
guards.

As we place abstract syntax in the centre of language definition, concrete
syntax has to be defined as a function that maps an abstract representation
of a model into a concrete representation. If this function is bidirectional, it
can be employed to provide authoring for the model. Otherwise, it provides
just a read-only representation of the model. Note that there may be more
than one concrete syntax defined for the abstract syntax.

There are already some approaches to define concrete syntax on top of an ab-
stract syntax. Textual Concrete Syntax (TCS) provides a template language
to define a bidirectional function that maps EMF models into textual rep-
resentations [Jouault et al., 2006b]. The Graphical Modelling Framework
(GMF) provides a language to specify a diagrammatic syntax for EMF mod-
els and allows for a generation of an authoring tool from that specification
[Eclipse, 2010a]. Diagram Interchange Mapping Language (DIML) provides
a language to define a mapping from abstract syntax to a diagrammatic
syntax, and a tool architecture to reconcile the diagrams based on model
transformations [Alanen et al., 2007]. Most of the approaches towards con-
crete syntax definition do not provide a distinct separation between abstract
and concrete syntaxes. This makes it difficult to define alternative concrete
syntaxes for the same abstract syntax.

• Process definition. Part of language definition is also the methodical way
of modelling, defining at what time which parts of the model need to be de-
veloped. For each development phase it defines both which operations are
available and what properties need to be fulfilled at the end of the phase.
Process definition is interpreted by (and thus parametrises) a workflow en-
gine.

A process definition consists of the activities that need to be performed, the
roles responsible for certain activities, and the artefacts produced in the
course of certain activities. Abstract syntax defines the possible structure of

Stefano Merenda 29

2. Metamodels and Seamless Language Engineering

artefacts, whereas concrete syntax defines the different views to the model.
The roles come along with access rights which regulate the access to certain
views to the model. Activities may be performed sequentially, in parallel as
well as iteratively. For a better overview, activities should be structured hier-
archically. A basic activity may be fully automated, such as code generation,
and may then be specified by an interpreter of the modelling language. On
the other hand, a basic activity may have to be performed manually, such
as requirements elicitation, and may then be supported by the operations
defined by the modelling language. Furthermore, the transition from one
activity to the next may be protected by quality gates which ensure the qual-
ity of the activity’s result. This can be achieved by integrity constraints or by
the execution of complex analyses by interpreters. Integrity constraints do
actually not only depend on the modelling language, but also on the progress
of the process. Each requirement has to be implemented at the end of the
process for example, but is not implemented after requirements elicitation,
of course.

• Semantics. Generally, there are three ways of specifying semantics: The
first one is to describe the semantics of the modelling language by a calculus
(axiomatic semantics), the second one is to define the relationship to an-
other formalism (denotational and translational semantics), and the third
one is to specify a model interpreter (operational semantics).

The first way results in syntactical transformation rules preserving the se-
mantics. It is possible to provide these rules with regard to tool support
in the form of refactoring functionality which is being realised via an in-
place transformation engine (the original model is thus altered directly).
In general, it must be differentiated between postulated rules (axioms) and
deducible rules (theorems). In the scope of a language definition, however,
axioms would be sufficient in principle. As theorems are, however, generally
not deducible in an automated way but are particularly relevant in practice
for refactoring, they should nonetheless be formulated explicitly in language
definition. From a formal point of view, the syntactic transformation rules
complete syntax definition to form a calculus.

The second way maps each model to a model of another formalism accord-
ing to syntax definition (referred to as semantic domain). This may be a
mathematical formalism such as logic or set theory (denotational seman-
tics), but also a programming language such as C or Java (translational
semantics). Note that this kind of semantical definition always depends on
another formalism which needs to be formalised itself. All in all, this re-
sults in a system of modelling languages which are correlated to each other
by semantical mapping. According to our integrated tooling framework, the
specified transformation rules are performed by an out-place transformation
engine, i. e. the original model is not altered.

The third way describes how a valid model is interpreted as sequences of
computational steps. Afterwards, these sequences make up the meaning of
the model. In the context of generic tooling environments, it is therefore
possible to use operational semantics to parameterise a generic simulation
framework. Kermeta [Drey et al., 2008] is aiming at such a solution.

End of citation.

30 Stefano Merenda

2.2. The three dimensions of seamless language engineering

2.2. The three dimensions of seamless language engineering

In the last section, it was discussed in detail what aspects should be part of a language defi-
nition in order to be able to create a comprehensive engineering environment. When talking
about a seamless language engineering this is only one of three dimensions – illustrated in
Figure 2.7 – in which consistency and integration must be ensured:

consistency

co
ns

is
te

nc
y

co
ns

ist
en

cy

Specification

Documentation

Tooling

Abs
tra

ct

Syn
tax

Con
cre

te

Syn
tax Proc

es
s

Defi
nit

ion

Sem
an

tic
s

Metamodeling

purpose

aspect
Description Techniques

Common Architecture
Framework

Tailored Business Domain
Architecture

modularization

Figure 2.7.: Dimensions of seamless language engineering.

• In the first dimension, (aspect) consistency and integration means that the specifica-
tion of each of the four language aspects fits to each other. If, for example, abstract
syntax is described by a MOF diagram and textual syntax by an EBNF, the relation-
ship between these two specifications is not clearly defined (thus resulting in a bunch
of glue code which has to be written by hand). The claim for a seamless language
engineering is already shown in Figure 2.6 which illustrates that this integration is
done by the abstract syntax in the centre. Because of its importance, this dimension
has already been discussed in the previous section in detail and no additional section
will be addressed to said herein. Please refer to Section 2.1.3, Vertical tooling aspects:
the four aspects of a metamodel, p. 26 for further details.

• The second dimension focuses on the modularisation of modelling languages. When
talking about integrated modelling languages beginning at requirements and continu-
ing with system design and implementation up to testing, a extremely huge modelling
language arises. Such a language (should) have an internal structure from a more top-
level structure down to the detailed basic languages in order to describe concepts such
as interfaces or state machines. In order to handle the complexity of such a language it
must be decomposed into language modules. A seamless language engineering claims
that these language modules fit together in a way that relationships and dependencies
are defined in a fine-grained way. Nowadays, the top-level structure is often defined
by a file directory structure on the contrary. The detailed models are stored in pro-
prietary file formats and thus, it is nearly impossible to define relationships between
elements within two of these files.

Section 2.2.1, Modularisation Dimension: Steps creating an integrated domain-
appropriate modelling language, p. 32 provides a way of how to build such a language
step-by-step by building and using language modules.

• The third dimension concentrates on the purpose of defining a metamodel. On the one
hand, a metamodel can be used to specify a modelling language. When, for example,

Stefano Merenda 31

2. Metamodels and Seamless Language Engineering

an EBNF is defined, the (context-free part of) textual syntax is specified. Note that at
the beginning, said EBNF is only a specification. Based on this specification, a more
specific input for e. g. a parser generator can be manually created. Often additional
information (such as context-sensitive additions of the language) is also necessary for
this implementation step. On the other hand, a metamodel can be used to provide a
documentation of a modelling language. UML class diagrams, for example, are used
to describe taxonomies for a concrete modelling language. Finally, a metamodel is
directly used to implement a development tool. EMF models are examples used for
that purpose in most cases.

A seamless language engineering asks for a strong relationship between these different
purposes in order to ensure better consistency and re-usability. In Section 2.2.2, One
language description resulting for specification, documentation, and tooling, p. 33, an
overview of these purposes is provided.

2.2.1. Modularisation Dimension: Steps creating an integrated
domain-appropriate modelling language

It is obvious that integrated as well as domain-appropriate modelling languages can be
extremely large. Due to that we have to think about how to modularise language definition.
One important issue within this context is the re-use of language modules such that different
stakeholders can utilise them (maybe even for different purposes). The following three steps
will therefore be proposed:

• First of all, the basic language models are built (see Step 1: defining a set of available
description techniques (basic languages)).

• Secondly, the basic languages are combined to form a domain-agnostic integrated lan-
guage (see Step 2: relating modelling techniques to a set of engineering views (common
architecture framework)).

• Finally, that integrated language is tailored to a specific company or even a prod-
uct (see Step 3: tailoring of the common architecture framework (business-domain
languages)).

Step 1: defining a set of available description techniques (basic languages). During a com-
prehensive system development process, a huge set of different engineering views becomes
necessary. Each of these engineering views can be described by one or more description
techniques. All available description techniques are defined in this first step. They can be
seen as the basic language modules which are used to build more complex languages. For
example, such a basic language may be dataflow networks or automata. It is obvious that
the term basic is subjective: A language which is built from other basic languages may be
used as a basic language itself. Whenever a new description technique is necessary, this set
of basic languages is extended.

Step 2: relating modelling techniques to a set of engineering views (common architecture
framework). Up to now, a set of description techniques has been defined which are (mainly)
unrelated to each other. In this second step, the entire set of all engineering views provided
is defined. Main focus is laid on the integration aspect: all different engineering purposes
during the course of engineering from the problem domain to the solution domain have to
be related to each other. Nevertheless, the resulting language called common architecture
framework is still domain-agnostic and can thus be used in a generic way. It forms the basis

32 Stefano Merenda

2.2. The three dimensions of seamless language engineering

of the tailing within the third and last step. A system comprising three architectural views
(functional, logical, and technical architecture), for example, builds a very simple common
architecture framework.

Step 3: tailoring of the common architecture framework (business-domain languages). The
concepts from the generic language, such as component, which are defined by the common ar-
chitecture framework will now be linked to concepts from the business-domain such as wing.
In addition, the new concepts are more restricted than generic ones as a concept’s proper-
ties such as wing are more specific than those of a concept such as component. Tailoring
of DOORS according to the ATA chapters would make DOORS a requirements engineering
language tailored to the avionics domain for example.

A stepwise domain tailoring from generic to more and more domain-appropriate languages
is proposed, which leads to several levels of architectures and architectural frameworks.
(The term architecture will be used instead of architecture frameworks when approaching a
concrete system to be developed.) Similar to other approaches, the following levels ordered
by generality will be distinguished, beginning with the most concrete one:

• Product Architecture (pA) defines the architecture for a concrete product (e. g.
X3 hybrid car, having 180 PS).

• Product-line Architecture (plA) defines the architecture for a specific product
line (e. g. X3 series).

• Organisation-specific Architecture Framework (oAF) tailors the domain-
specific Architecture Framework for a concrete company, such as BMW or Toyota.

• Industry-specific Architecture Framework (iAF) adds concepts, which are spe-
cific for a dedicated domain (e. g. automotive industry as opposed to avionic industry).
The AUTOSAR architecture is an element of this level.

• Common Architecture Framework (cAF) defines concepts, which are necessary
for any kind of system (e. g. the architecture as is known from software engineering
textbooks). Important representatives comprise functional, logical and technical ar-
chitecture.

• Meta Architecture Framework (mAF) is the most generic layer, which is fully
independent of any type of system to be developed. It introduces terms such as
component, interface, view, viewpoint and concern.

2.2.2. One language description resulting for specification, documentation,
and tooling

The result of the previously defined steps in Section 2.2.1, Modularisation Dimension: Steps
creating an integrated domain-appropriate modelling language, p. 32 is an integrated mod-
elling language covering all necessary views in the course of engineering. Due to its tailoring
to a specific company or even a product, it is business-domain-appropriate as well. Due
to this, language description already covers the first two categories of conceptualisations,
namely reality and purpose. In addition, it is recommended to use this language definition
for configuring both the tools as well as the repository. As our language definition covers all
four language aspects now, namely abstract syntax, concrete syntaxes, process definition, and
semantics, this configuration can be done more extensively. Due to the foregoing, the two
remaining categories of conceptualisations, namely tool and repository, can also be covered.

Stefano Merenda 33

2. Metamodels and Seamless Language Engineering

In summary, the metamodel for integrated and domain-specific modelling language is used
as language specification, documentation, and implementation:

Language specification. The specification should provide a precise definition of the mod-
elling language concerning all four language aspects. Target group of the language specifica-
tion are tool vendors who want to implement a development tool supporting this language.
A requirement specification document for such a development tool for example becomes
much more precise when adding a formal and detailed definition of abstract syntax. This
advantage can be additionally improved when the other three language aspects can also be
provided.

Language documentation. The documentation should provide a detailed description of the
modelling language concerning all four language aspects. Target group of the language
documentation are those engineers who will use the modelling language. A precise taxonomy
for the conceptualisations of the modelling language provided can be given by abstract syntax
in particular.

Language Implementation/Tooling. Assuming that a generic tool framework exists that is
able to interpret the metamodel including all four language aspects, a (basic) language
implementation can be derived in a straightforward manner. Such an approach would ensure
a break-down of the tyranny of tools as both the tools as well as the repository will now
always be based on the conceptual language definition itself.

2.3. Requirements to a metamodelling language

Before beginning to define the metamodelling language M2L, the requirements to such a
language shall be discussed. On the one hand, these requirements result from previously
discussed ideas about metamodelling and seamless language engineering in particular. On
the other hand, requirements result from defining concrete modelling languages using exist-
ing metamodelling approaches such as MOF or KM3. During these activities many weak
points of those approaches come up and result in these requirements. They are basically
classified in the following six main categories:

• Simplicity. Using the metamodelling language should be as simple as possible. Es-
pecially as it should not only specify a language for implementation but should also
be used as a readable documentation.

• Formality. The metamodelling language has to provide a clear semantics for all
syntactical elements of the metamodelling language. This forms the basis for using
this language for formal specifications as could be done by a formal grammar.

• Homogeneity. All four metamodel aspects (abstract syntax, concrete syntax, process
definition, and semantics) must fit together in a formal way. A fully automated tool
generation is impossible without a homogeneity like this.

• Expressiveness. Informally, each language to be described can be described by this
metamodelling language. If a metamodelling language does not fulfil such a require-
ment, every use of this metamodelling language holds the risk that it will be impossible
to express desired future extensions.

34 Stefano Merenda

2.3. Requirements to a metamodelling language

• Appropriateness. Those metamodelling language support mechanisms necessary
from a methodological point of view. Here, for example metamodel evolution and
metamodel modularisation are important issues.

• Autonomy. The metamodelling language is independent of a concrete tool imple-
mentation platform. EMF for example is closely related to Java and Eclipse which
makes it difficult to use EMF in other environments such as C#.

In the following, each of these categories shall be discussed in more detail.

2.3.1. Simplicity

First of all it must be noted that the question whether a modelling language – in this case
a metamodelling language – is simple or not, strongly depends on the background of the
respective person. The different technical spaces in metamodelling (in particular XML,
ontologies, relational databases or MOF) are a good example. For an XML expert, for
example, writing down an XML scheme definition is simple. Defining a set of SQL create
table statements might be much more difficult for him/her. If the respective person is a
database expert it will be exactly the other way round.

Modern language engineering affects each of the different technical spaces because an inte-
grated development environment requires them all: Databases are necessary for persistence,
XML for data exchange, ontologies for taxonomies, and so on. So when talking about
simplicity of a metamodelling language, the average of all different specialists has to be
considered. This point is also much concerned with appropriateness as described in Sec-
tion 2.3.5, Appropriateness, p. 39. In detail, the following is desired:

Common issues are easy to express. When defining a modelling language there are a lot of
issues you come across every day. Examples thereof are definition of orders or multiplicities,
using characters and numbers, but also issues such as namespaces or concepts as regards
re-use. All these day to day issues must be easy to model. It is also important that this can
be done in an explicit way such that another person, but also code generators, can easily
recognise these concepts and then act in an appropriate way.

Rare issues may be more complex to express. On the other hand, we can think about a
huge number of issues that are more specific for a dedicated language. An example may be
the use of white-spaces in order to influence semantics.

So as to avoid extending the metamodelling language, the addition of special solutions
for such special cases should be avoided. Otherwise the complexity of the language will
increase dramatically. An applicable metamodelling language should nevertheless allow for
a handling of such issues, although it might be a little more complicated to define said as
there is no special construct for it.

Homogeneity of resulting languages. Simplicity not only concentrates on tasks when defin-
ing new languages but also on using the newly defined languages. In this context an im-
portant issue is the homogeneity over a set of languages created. When coming across a
canonical name, for example, it should always be presented the same way (for example using
a dot to separate elements of the name). If things like these are not uniform for different
languages (e. g. one uses a dot in canonic names, others use a slash or a backslash), a user

Stefano Merenda 35

2. Metamodels and Seamless Language Engineering

gets confused when using more than one language. This is particularly true when a large
integrated language is created by combining a set of sub-languages.

No redundancy. Languages often comprise more than one way to express a special issue.
One common example is to allow a user to skip a parameter resulting in a default value. An
example from the metamodelling domain is skipping the lower limit of multiplicity. Thus,
a valid multiplicity is [1]. Problem occur upon reading such a multiplicity as the question
arises whether this notation means [0..1] or [1..1]. As such a short-cut only serves three
characters, it should be avoided. This procedure does not only prevent misunderstandings
but also forces the modeller to think explicitly about the lower limit. Another example is a
reserved word notnull to indicate that the lower limit is at least 1. Again, such a construct
does not simplify modelling but only extends the complexity of the modelling language.

Multiple views. In order to fulfil the requirements of different types of users of a meta-
modelling language, the metamodel specification should be capable of being presented in
different ways. These views should in particular cope with the three metamodel purposes,
namely specification, documentation, and tooling. There should be both a graphical as well
as a textual representation for example. One textual representation may be a very formal
and short one which is tailored especially to metamodelling specialists. Another textual
representation is a little longer in representation as more reserved words are used instead of
symbols. It contains also all information of the short representation but can be read a little
more intuitively because of the use of reserved words. A graphical representation may focus
on the taxonomical content and thus may skip all formal details.

At first sight, a call for multiple views contradicts the request for no redundancy. Indeed,
the call for multiple views results in redundancy. The difference is that here, redundancy is
performed in a very explicit way and focuses on different types of users. When concentrating
on one view there should still be no redundancy.

2.3.2. Formality

In the past, one of the major weak points of metamodelling approaches was the lack of
formality. Whenever a metamodel is depicted in the form of a UML-like diagram it always
brings along its informality. This is also one of the major reasons why the present thesis
came actually into being. Note that formality does not only include syntactical parts (which
would only result in semi-formality) but also semantics.

Formal syntactical definition. The basis for each formal definition is a formal syntax. Al-
though a diagrammatic syntax can even be formal, a textual representation is often much
easier to handle when talking about formal syntax. In particular if the number of concepts
rises in order to capture all details of the metamodelling language, a textual syntax becomes
essential. (Note that in most graphical representations the textual portion is also signifi-
cant.) In addition to large metamodels containing a lot of concepts, a textual representation
is more useful. Nonetheless an additional graphical syntax is helpful.

Formal semantics. While formal syntax only defines the structure of a language nothing is
stated about its meaning. Therefore a formal semantics becomes necessary. Note that in
the context of metamodelling (as we are concentrating on abstract and concrete syntax in
the present work), semantics is a pure structural semantics, thus only defining the impact

36 Stefano Merenda

2.3. Requirements to a metamodelling language

of the metamodel on the structure of a model. Semantics of process definition defines how
the structure of a model evolves over time. Even the semantics of the semantical definition
within a metamodel can be reduced to a model-to-model transformation which is also of
syntactical nature.

Once a formal semantics exists, the door is open for various topics: First, as there is a
clear understanding of what a concrete metamodel means, it is much easier to abstract
from a concrete implementation (and thus tooling). Not till then a metamodelling language
can be used as a basis for multiple implementations and thus allows to switch more easily
between different tool frameworks. Secondly, retrieving information from a large model,
e. g. within a database, can be optimised by a formal query optimisation. Thirdly, arbitrary
formal proofs can be performed as e. g. check for language emptiness (which is important for
combining languages in particular). Moreover, a disjunction and conjunction of languages
can afterwards be defined easily which is e. g. important for language evolution.

Bootstrapping. Another important aspect of a formal metamodelling approach is the boot-
strapped way of defining the metamodelling language itself. Upon that, the metamodelling
language is entirely defined by its own constructs. Thus, no other mechanism for defining
a language is necessary than the one defined itself. This approach has an intrinsic prob-
lem, of course: The definition is useless as the definition itself is required to understand the
definition. This is again one of the major issues to be solved when formalising a metamod-
elling language. Although a bootstrapping definition is sensitive and desired, there must
be a mathematical way of defining the metamodelling language without using the language
itself. One of the crucial points of the present work is to find a suitable solution for the
above-mentioned problem.

2.3.3. Homogeneity

It has already been assumed that a language specification consists of four aspects, namely
abstract syntax, a set of concrete syntaxes, process definition, and semantics. Homogeneity
claims that these four aspects are tightly connected to each other as already discussed in Sec-
tion 2.1.3, Vertical tooling aspects: the four aspects of a metamodel, p. 26 and Section 2.2, The
three dimensions of seamless language engineering, p. 31. Thus, the relationship between
the four aspects is clearly defined and redundancies are minimised. As the multiplicities
of properties should have already been defined within the abstract syntax, a concrete syn-
tax does not need to define said again. Operators such as * or + as, known from regular
expressions, will not be necessary when defining a concrete syntax.

Abstract syntax in the centre. In compiler construction textual syntax was always the cen-
tral representation of a model. The abstract syntax tree only was a means to an end. When
time diagrammatical syntaxes came up, abstract syntaxes became more important. Once
alternative concrete syntaxes are required, a common abstract syntax is indispensable. An
abstract syntax concentrates on the concepts of a language provided and their respective
relationships independent of a concrete notation. As both aspects, namely process definition
as well as semantics, can (and should) be described independently from a concrete notation,
abstract syntax is the right and common abstraction from various concrete notations. In a
homogeneous metamodelling language, abstract syntax holds together all language aspects.
Please refer to Figure 2.6 as well.

Stefano Merenda 37

2. Metamodels and Seamless Language Engineering

Concrete syntaxes based on abstract syntax. As already mentioned, an EBNF describes a
textual language in such a comprehensive way that no other additional specification will be
necessary. Thus, having an EBNF, it can be decided whether a textual representation is part
of the language or not – assuming of course that the language is context-free. If a language
contains context-sensitive restrictions (as most languages do), a context-free skeleton of the
language may nonetheless be obtained. On the other hand, the relationship to an abstract
syntax is not obvious in such a scenario. Here, in most situations some kind of glue code
will therefore be necessary. As in addition some coding information (such as multiplicities)
is redundant from a syntactical point of view, abstract syntax and EBNF may be entirely
contradictory.

When talking about a homogeneous metamodelling language, concrete syntax should be
entirely based on abstract syntax. Thus, only the delta information is coded within concrete
syntax. When following these specifications, redundancies will be completely avoided on the
one hand, and on the other, the relationship between abstract and concrete syntax will be
defined in such an obvious way that no glue code will be necessary at all. As a result of the
tight integration of abstract and concrete syntaxes, the more powerful concepts for context-
sensitive restrictions of abstract syntax can be used for concrete syntax. Note that because
concrete syntax relies on abstract syntax, concrete syntax itself does not need to define a
language at all (such as an EBNF does).

Process definition based on abstract syntax. Nowadays, a process is defined in many situ-
ations without talking of any concrete product model (and thus a metamodel). Thus, the
artefacts involved in such a process definition are defined informally to a large extent. These
situations make it difficult to operationalise such a process definition in a straightforward
way.

In a homogeneous metamodelling language, the artefacts involved in the process definition
should rely directly on the concepts defined from abstract syntax. If a suitable constraint
language is at hand, process quality gates can be defined. Thus, depending on a concrete
process phase, a set of corresponding conditions has to be valid. (The implementation phase
cannot be left until each requirement is implemented.)

This approach also leads to a new understanding of activities within a process definition:
Activities can be defined in a formal way by dedicated in-place transformations. Thus, an
activity is nothing but a dedicated altering of the model (which, in turn, is an instance of
the metamodel). Top-level and thus coarse-grained activities can be refined by more fine-
grained activities. In the end, basic activities such as Adding a new state to an automaton
or Renaming a state will be described. Note that each of these basic activities is linked to
more high-level activities and thus cannot be invoked any time but only within the process
phases intended for them.

Semantics based on abstract syntax. Here, the term semantics shall not be discussed in a
highly scientific way. It shall be noted that semantics should be described in a way that
corresponds to abstract syntax and not – as common in the past – to textual concrete syntax.
In practice, semantics is often described by transforming a language to another – already
known – language as e. g. compilers or code generators do. Thus, formal compilers and code
generators are just transformation engines.

The present thesis wants to claim that they operate solely on abstract syntax. Nowadays,
the input for common compilers represents a textual file, and the output of code generators
in turn are most often textual files. The desired scenario for a homogeneous metamodelling
language is that both source and target language are described by abstract syntax as claimed

38 Stefano Merenda

2.3. Requirements to a metamodelling language

by the metamodelling language (and some concrete syntaxes in addition but right that
should not be of any importance at that point). Then, semantics is simply defined by a
model-to-model transformation which transforms a given source model to a corresponding
target model – wherein both models are based on an abstract syntax level. Note that this
transformation is called out-place as the source model itself is not altered but a new model
is created.

Another important way of defining semantics is to provide transformation rules which pre-
serve semantics. Formally, the result is a calculus. Here again, these model-to-model trans-
formation rules are claimed to be defined on the basis of an abstract syntax. This time it
is an in-place transformation as the source and target model, upon which these transfor-
mations operate, are the same: The transformations alter the model directly. Note that
such transformation rules have a highly practical field of application: They can be used in
a straightforward way for refactoring issues.

2.3.4. Expressiveness

Requirements on expressiveness are often difficult to formulate. A simple answer would, of
course, be to require Turing completeness. In most cases, however, this is much too general
and leads to other problems such as undecidability. When talking about expressiveness from
a language engineering point of view, two extremes will have to be considered: The first one
is to handle everything by semantics. The second is to handle as much as possible by syntax.

Now, a simple example for this from compiler construction (in particular the programming
language C) will be provided: The former one states that any arbitrary combination of
characters is a valid C program (thus the syntax states nothing). In such a situation,
semantics has to care about everything. The behaviour for every meaningless combination
of characters is supposed not to terminate. For all the correct C programs (the term correct
is informal here) known semantics is defined. The latter one may state that a C program is
only valid from a syntactical point of view if the program terminates. This time the syntax
cares about a maximum of restrictions and thus semantics only has to care about the valid
C programs. Obviously the syntax of the former one is not useful as it states nothing and
the latter one is not useful as it is undecidable. Because of this situation, in practise the
truth is somewhere in the middle. This vague border between syntax and semantics may
also be the reason why the context-sensitive, syntactical characteristics of a language are
often called static semantics.

After this discussion, the questions comes up of how much should be covered by syntax
and what should remain in the field of semantics. A very informal answer may be: All
that can be checked within a short time such that it can be e. g. visualised within an editor
within seconds. Thus, in a formal way it can be said that syntactical restrictions must be
1) decidable and 2) of a complexity of at most e. g. O(n3). A suitable requirement could be
that the metamodelling language allows an exact modelling of context-sensitive languages.

2.3.5. Appropriateness

Appropriateness is the only reason why we suffer about languages at all. Otherwise, Turing
machines can be used for every purpose. In the present case it must be ensured that the
metamodelling language supports engineering of new languages even from a methodical
point of view. Important issues within this context are:

Stefano Merenda 39

2. Metamodels and Seamless Language Engineering

Intuitive for language and product model engineers. As computer languages have been de-
signed as long as computers are invented themselves, there are of course various techniques
for describing such languages. Up to now, these languages have been used by language
engineers as well as product model engineers. When introducing a new metamodelling lan-
guage it should not neglect these already existing languages although the new language
may have great advantages. The power of common knowledge along with widely-proven
concepts must not be underestimated. Because of that, an appropriate metamodelling lan-
guage should combine the good and proven concepts of earlier metamodelling techniques.
These are UML class diagrams, in particular MOF [OMG, 2006a], the Standard Query Lan-
guage (SQL) [ISO, 2008], the Extended Backus-Naur Form (EBNF) [ISO, 1996], the pro-
gramming language Java [Microsystems, 2010], and the Object Constraint Language (OCL)
[OMG, 2006b].

Suitable for creating models prior to a metamodel. In language engineering it is often vital
to define a model before having defined any metamodel. This advantage comes up upon
defining a textual or in particular an XML language. Basically, a semi-structured paradigm
of the underlying formalism is claimed. An XML file can be written down without having
any XML scheme definition. This might be particularly helpful in early stages of language
engineering. Language engineers, for example, may show the customer a prototype model
and may thereupon validate the requirements for the language to be designed. These pro-
totype models may help even the engineers themselves a lot to get a better understanding.
Note that this advantage it not a matter of course: In traditional metamodelling environ-
ments, such as in Eclipse EMF [Budinsky et al., 2003], it is not possible to create a model
without a metamodel.

No ”contamination” of technical details. When claiming that a metamodel should be usable
for all three purposes, namely specification, documentation, and tooling, the metamodelling
language must be powerful enough such that the most detailed metamodel (which is intended
for the purpose of tooling) is not contaminated by technical details. Note: The fact that
there may be various views of one and the same metamodel having different detailing levels
for documentation, specification, and tooling does not contradict this requirement.

If nowadays re-use concepts shall be implemented within a language, these attempts often
extend the metamodel until it becomes unreadable. Here, the metamodelling language would
not be sufficient for serving both documentation and implementation.

Because of that, a metamodelling language should support concepts such as instantiation,
namespaces, ordered sets, or a closure operator. As such concepts are often syntactical
sugar, this issue leads to a trade-off to the simplicity of the metamodelling language (see
Section 2.3.1, Simplicity, p. 35).

From rough to detailed specification. Developing a comprehensive modelling language is a
tough and time-consuming process. In order to structure such a process in a much clearer
way, language engineering should be performed step-by-step. In the first step, for example,
the concepts involved will be defined. In the next step the relationships between the concepts
will be specified. Then the multiplicities will be defined, and so on. Upon that a language
becomes more and more precise over time. Finally, the very specific constraints will be
added to the language specification. Such a stepwise language engineering should be fully
supported by a metamodelling language.

40 Stefano Merenda

2.3. Requirements to a metamodelling language

Customising of canonical concrete syntaxes. As claimed in Section 2.3.3, Homogene-
ity, p. 37, concrete syntax definitions are based on abstract syntax. Thus, abstract syntax
must be defined first. In order to start testing the language by creating first models, it is nec-
essary to have a concrete syntax in very early stages of language engineering. At this stage,
the definition of a concrete syntax does not make sense, which renders a canonical concrete
syntax extremely useful. Such a canonical concrete syntax may be of textual, diagrammati-
cal or tabular nature. It is named canonical because it can be derived from abstract syntax
without any additional concrete syntax specification. One possible way might, for example,
be bracketed property value pairs in the form of a textual syntax. Based on that, it becomes
very easy to write down first models.

In order to allow a migration from canonical concrete syntaxes to individually defined con-
crete syntaxes, the individually defined ones should be handled as customisations of the
canonical ones. Then, an individual syntax can evolve from the initial canonical one step-
by-step.

Language modularisation. In order to operationalise an integrated model theory for prac-
tice, a company may aim at defining an integrated modelling language covering the entire
development process. As a consequence, such an integrated modelling language is quite
extensive and thus difficult to develop. The development costs are reduced by developing
an integrated modelling language that can be re-used for several companies. This approach
is, however, usually not feasible, as a company may request a modelling language tailored
to its specific needs.

Nevertheless, integrated modelling languages of different companies will be identical in some
parts or similar in others. Many automotive companies, for example, prefer to use dataflow
networks for modelling embedded systems. Re-using these parts can be achieved by mod-
ularising modelling languages. An integrated modelling language will then be built by a
number of predefined modelling language modules.

A modelling language module consists of the elements that have already been described:
abstract syntax, concrete syntax, process definition and semantics. In addition, a modelling
language module must provide an interface so that it can be connected to other modules. A
module for modelling software design provides e. g. a connector for deployable units which
can be connected to a suitable connector in a module for modelling deployment on hardware.
As abstract syntax is placed in the centre of language development, the interface of a module
is defined in terms of abstract syntax.

Furthermore, companies might want to adapt a modelling language module to fit their spe-
cific requirements. Because of the associated costs, companies do not want to rebuild the
adapted modelling language from scratch. For this reason, a means has to be provided
that allows for the customisation of modelling language modules. There are several possi-
bilities for fulfilling this purpose: a language can be customised by constraints (lightweight
extensions), sub-concepts (heavyweight extensions) or parameters of the module.

Supporting language evolution. With appropriate support for language evolution, mod-
elling languages can be developed in an evolutionary way. A version of a modelling language
is created and deployed to be assessed by the modellers. The feedback of the modellers
can then easily incorporated in a new version of the modelling language which, again, will
be deployed for further assessment. Elements of a modelling language other than abstract
syntax do not have to be defined in a first version of the modelling language, but will be
completed in later versions. By way of an evolutionary development of modelling languages,
domain appropriateness can thus be reached iteratively.

Stefano Merenda 41

2. Metamodels and Seamless Language Engineering

In order to be prepared for the inevitable evolution of modelling languages, appropriate
support is required to safely change or extend a modelling language when already deployed
[Herrmannsdoerfer et al., 2008]. Abstract syntax will be modified first to meet the new
requirements. As the other elements of a modelling language all depend on abstract syntax,
they need to be adapted to the modified abstract syntax and maybe extended with respect
to the new requirements. It is, however, most important to migrate existing models so that
they can be used with the modelling language evolved.

As there may be a large number of models, model migration has to be automated. Further
automation can be provided by reusing recurring migration scenarios. However, model
migration becomes quite complex, when it is motivated by changes in the semantics of the
modelling language. For this reason, appropriate tool support also needs to account for
manual, expressive migrations.

Suitable for generating comprehensive development tools. As described in Sec-
tion 2.1.3, Vertical tooling aspects: the four aspects of a metamodel, p. 26, a language specifi-
cation should in particular be suitable for configuring a generic tool framework such that the
result is a comprehensive development tool in the form of an integrated model engineering
environment. To achieve the foregoing, the model-based engineering paradigm is applied to
the development of development tools themselves. Note that it will not be distinguished be-
tween configuring a generic tool framework (metamodel is being interpreted) and generating
a development tool (metamodel is being ”compiled”).

In order to achieve this requirement, all necessary information for tool generation must
be extracted from the metamodel. No additional information sources should be present
simultaneously. Information of how to pretty print a textual representation for a given
abstract syntax must also be defined for textual concrete syntaxes. Up to now, it has been
uncertain whether such a requirement could be achieved at all.

2.3.6. Autonomy

As described above, a metamodel should be suitable for creating a concrete tooling envi-
ronment. On the other hand, it is important to remain independent of a concrete tooling
environment. Eclipse EMF, for example, focuses on both Java and the Eclipse framework.
Even if these technologies are wide-spread, other technologies such as Visual Studio and C#
by Microsoft and Java Netbeans by Sun Microsystems are also available. An integrated de-
velopment platform has to support all different technologies and must thus be independent
of a concrete one. The modelling language for example must not be based on constructs
provided by specific platforms such as basic data types as they may be different from one
platform to another. Note that the requirement of a general autonomy does not demand
more than one implementation at the beginning. It only states that another implementation
on another platform is possible without restrictions.

2.4. Procedure specifying the (self-describing) metamodelling
language M2L

As described above, a metamodel consists of the four aspects called abstract syntax, concrete
syntax, process definition, and semantics. As the present work will concentrate on the first
two aspects, namely abstract syntax and concrete syntax (in the case of concrete syntaxes

42 Stefano Merenda

2.4. Procedure specifying the (self-describing) metamodelling language M2L

the present thesis focuses on textual concrete syntaxes), the procedure of how to formally
define the metamodelling language M2L shall be described in the following.

M2L simply stands for Metamodelling Language and is structured into abstract syntax and
concrete syntax. M2L itself also is – as the name already suggests – a language that needs
to be well-defined. As M2L represents the language used for describing languages, it would
be necessary to already use the language M2L for describing itself (bootstrapping). This
cyclical language description leads to the commonly known exceptional position, always
taken by metamodelling languages: The metamodel describing the metamodelling language
itself is often called meta-metamodel and is characterised in that it describes itself by its own
means. Cyclical language definition has up to now not yet been entirely solved in the field
of metamodelling, also resulting in approaches within metamodelling which are described in
a rather semi-formal way.

The formalisation which will be presented in the following, allows for a cycle-free language
definition. It is mainly based on decoupling a model from its metamodel. In current ap-
proaches within metamodelling, models cannot exist without their respective metamodel.
The most explicit formulation of the dependency of models to metamodels is given in the
formalisation of KM3 in [Jouault and Bézivin, 2006]: “A model M = (G,ω, µ) is a triple
where [. . .] ω is a model itself (called the reference model of M).” Thereby ω represents
exactly the metamodel. In contrast to that, the model concept will be defined independent
of another model, and in particular independent of a metamodel as well. This procedure
allows for a definition of the model concept independent of metamodels. In the end, this
procedure will be adopted from the field of formal languages: The set of all words will be
defined entirely independently of a concrete language. Only an alphabet will be assumed.
This concept will be transferred in the form of abstract words to our needs. The respective
alphabet will be composed of a given set of concepts C and properties P .

A strict separation between model and metamodel is also closely correlated to the concepts
of XML: The term well-formedness allows for a definition of an XML document – which
would correspond to a model – without an XML scheme or a DTD having been described.
At the same time, a superset of any kind of languages possible will therefore be defined
by the set of all well-formed XML documents. Only in a second step will the valid XML
documents be marked as valid words of the language by a specific XML scheme.

The problem of the cycle-free language definition does, however, not only come up in connec-
tion with a definition of abstract syntaxes. A similar phenomenon occurs upon definition of
a concrete textual syntax for M2L. The concrete textual syntax can only be defined as soon
as the second part of M2L has been defined for the definition of concrete textual syntaxes.
Due to that, focus shall at first be on the abstract syntax of M2L.

As shown in Figure 2.8, the following stepwise definition of M2L will result:

Queries on
abstract words:
the Edge Algebra

Specifying abstract
languages:
Abstract Syntaxes

Models as
Abstract Words:
M-graphs

Specifying concrete
languages:
Concrete Syntaxes

Step 1 Step 2 Step 3 Step 4

Figure 2.8.: The four steps of specifying M2L.

1. Models as abstract words: M-graphs. After some mathematical basics, a for-
malisation of models will first be given. In the style of formal languages they are

Stefano Merenda 43

2. Metamodels and Seamless Language Engineering

called abstract words. The formalisation is done by a special type of directed, labelled
multi-graph, which is called model-graph or just M-graph. (See Chapter 5, Models as
Abstract Words, p. 81.)

2. Queries on abstract words: Edge Algebra. Once the M-graphs are introduced,
an algebra on edges of such graphs will be defined. This allows for a powerful inspec-
tion of models including information extraction and constraint valuations. Until now,
metamodels have not been mentioned at all – we were just talking about models. (See
Chapter 6, Queries on abstract words - the Edge Algebra, p. 95.)

3. Specifying abstract languages: Abstract Syntaxes. Based on Edge Algebra,
it will now be possible to define the meaning of abstract syntaxes by formulating
constraints on abstract words. Thus, an abstract syntax can be completely transformed
to an according Edge Algebra statement. As a concrete syntax is not available up to
now, a canonical textual syntax will be introduced. Later on, this canonical textual
syntax can be customised as requested in Section 2.3.5, Appropriateness, p. 39. (See
Chapter 7, Abstract Syntaxes in M2L, p. 119.)

4. Specifying concrete languages: Concrete Syntaxes. Finally, it shall be defined
how to specify textual concrete syntaxes using M2L. As the concrete syntax of M2L
cannot be used because it currently being defined, every step must be performed on
the basis of abstract syntaxes and abstract words. (See Chapter 8, Textual Concrete
Syntaxes in M2L, p. 153.)

Up to now, the metamodelling language has not been described in a bootstrapping way.
This important step will finally be performed in Chapter 9, The overall specification of
M2L, p. 171. The overall metamodelling language M2L will therefore be postulated as a
known language and thus this step cannot be performed until the overall specification has
already been provided.

44 Stefano Merenda

Chapter 3
Running example: Modelling dataflow
algorithms

In order to get a better impression of what the benefits of a suitable metamodelling lan-
guage are, a suitable running example shall be introduced. It should go along with all
explanations and definitions throughout the following chapters. The present thesis is not
aiming at providing a proof that the metamodelling language M2L is suitable for defining
all different kinds of languages. Instead, the reader should get a clear idea of the strengths
and weaknesses of M2L.

First of all, an overview of the criteria for selecting a suitable running example will be
provided. Secondly, the industrial project context for dataflow diagrams will be introduced
to provide an understanding of practical relevance. Having given an informal description
of the language to be defined, a first semi-formal metamodel in the form of a UML class
diagram will be introduced in order to provide a first structural understanding of abstract
syntax. Finally, two concrete dataflow models will be introduced as examples, followed by
a set of issues that shall be expressed by a formalised metamodel such as M2L.

Contents
3.1. Criteria for selecting a suitable running example 45

3.2. Industrial project context . 46

3.3. Informal description of the modelling language 49

3.4. A first, semi-formal abstract syntax 50

3.5. Two exemplary dataflow diagrams 53

3.6. Issues to be expressed by a formalised metamodel 58

3.1. Criteria for selecting a suitable running example

When selecting a running example, it must be discussed what example the right choice for
such a exemplary language might be. For the present work, the following five (contradictory)
aspects are taken into account in order to find a suitable running example:

Stefano Merenda 45

3. Running example: Modelling dataflow algorithms

• Widely known kind of language. The reader should easily understand the purpose
of the language. There should be as less explanations necessary as possible. Focus
is not on the language but its language description. Thus, the reader should not be
confronted with a completely unknown domain. As the target audience is independent
of a particular modelling domain, only few kinds of languages are feasible. A viable
language is for automatons, of course. Nevertheless, not all relevant issues can be
illustrated.

• Manageable in complexity. The complexity of the given exemplary modelling
language should not be too complex. Thus, as few concepts as possible should be
defined within the language. In case the exemplary language is too complex, the
detailed concepts will divert from essential aspects. This is the reason, why the present
running example will do without data-types.

• No trivial examples. Although complexity should be manageable, trivial examples
are not what the present thesis is aiming at. These examples are not reliable at all.
Moreover, it will be impossible to show all issues within one running example in case of
trivial examples. It will then also be not feasible to show the collaboration of different
aspects of modelling a language.

• Practical relevance. The running example should be of practical relevance. If we
are able to demonstrate the metamodelling concepts by a practically relevant example,
the metamodelling concepts themselves become of practical relevance. Although this
procedure cannot be seen as a profound proof for practical relevance, it does, however,
provide an indication for it.

In addition to this running example, the bootstrapping mechanism of M2L leads to the
meta-metamodel of M2L. In contrast to the running example, this meta-metamodel
defines a complete and ready-to-use language (namely the metamodelling language
itself). And thus, it forms the proof-of-concept for M2L in the present work. For
further details please refer to Chapter 9, The overall specification of M2L, p. 171 and
Appendix A, Meta-Metamodel – The Metamodel of M2L, p. 291.

• Ability of demonstrating relevant issues. M2L offers a substantial set of extended
metamodelling concepts. In order to demonstrate of how they are to be used, this
running example should be utilised. All different metamodelling concepts should thus
be able to be shown by one suitable running example. This is, of course, not always
true. Although the metamodelling language M2L, for example, builds a complex and
ready-to-use modelling language, not all concepts are necessary to describe its meta-
metamodel.

When considering all those five aspects, the most suitable modelling language for being our
running example is a language for modelling dataflow algorithms. This language will be
introduced in the following sections.

3.2. Industrial project context

Designing software-intensive systems – e. g. in a vehicle – is subject to particular challenges.
Such issues are described in [Broy, 2006] and [Grimm, 2005] in particular. First of all, an
insight in these issues shall be given in Section 3.2.1, Challenges in designing software-
intensive systems, p. 47. In Section 3.2.2, The three architectural layers, p. 47, the generic
architectural approach as presented in [Broy et al., 2008] shall be introduced. Finally, the

46 Stefano Merenda

3.2. Industrial project context

concrete relevance of dataflow diagrams shall be discussed in Section 3.2.3, Relevance of
dataflow diagrams, p. 48.

3.2.1. Challenges in designing software-intensive systems

A high percentage of competitive-relevant innovation in automotive industry is based on
software. This brings along an increasing number of functions being distributed via a het-
erogeneous network of electronic control units (ECUs). The complexity of developing the
functions is increased due to the intensive distribution of these functions. At the same time,
it is harder to detect undesired dependencies of the functions among each other.

Moreover, cost pressure within the automotive industry remains very high. This results in
the fact that cost-effective hardware is used, which does not only have a tight memory size
but also a very poor processing speed. Some of the functions in the vehicle need to fulfil
tough real-time requirements, wherein two contradictory requirement classes oppose each
other which need to be met both, however.

Re-use and variability also play a pivotal role in automotive industry. On the one hand,
there are basic functionalities such as controlling the power window lift, which can be found
in all vehicles of an automotive manufacturer, and, on the other hand, there are variable
functionalities, which can be found – depending on the equipment version selected – at
various stages of design in individual vehicles, such as in the park distance control system.
In both cases the level of re-use is intended to be kept as high as possible, e. g. to avoid that
functionality will have to be entirely re-designed and altered respectively with enormous
effort for each equipment version and each possible hardware platform.

The specifics mentioned are not only valid in automotive industry. Most challenges in
designing software-intensive systems in a vehicle can be transferred to many other domains
using embedded systems. Emphasis can be placed on manufacturers of mobile phones in this
context. Although a mobile phone does not dispose of a heterogeneous electronic control
unit network, its complexity is correspondingly high due to the enormous multi-functionality
and thus the risk of undesired interactions between functions is substantial. Here as well
the systems need to be highly efficient, e. g. small code size and compliance with real-time
requirements, although cost-effective hardware resources represent a requirement in this
domain as well.

3.2.2. The three architectural layers

Figure 3.1 presents an overview of the architectural model for software-intensive systems. It
is basically subdivided into the following three architectural layers: Functional Architecture,
Logical Architecture, and Technical Architecture. The level of abstraction decreases herein
from top to bottom.

The layers were separated such that the special challenges in developing software for embed-
ded systems and in particular those for the automotive industry can be met. Using these
models, the aspects of individual challenges can be described in a particularly good manner.

• Functional Architecture offers models which allow for a formalisation of functional
requirements, representing them in the form of hierarchical structures, additionally
illustrating dependencies between these functional requirements. Functional architec-
ture therefore provides the basis to detect undesired interactions between functions at
an early stage of the development process. Thanks to this basis and its high level of

Stefano Merenda 47

3. Running example: Modelling dataflow algorithms

functional
architecture

logical
architecture

technical
architecture

ECU ECU

ECU

ECUECU

relationships between
layers

Figure 3.1.: The three architectural layers in software-intensive systems [Broy et al., 2008]

abstraction, functional architecture is also well suited for an extension by product line
concepts.

• Logical Architecture offers models which allow for a structuring of functionality
into domain-specific components. The functional requirements formalised in functional
architecture are realised by a network of hierarchical components, which are, however,
independent of the underlying hardware. The model of the system on the layer of
logical architecture can be executed and simulated. It is thus amenable to an earlier
architectural verification. Due to the modular design and this layer’s independence of
hardware, the complexity of the model is reduced and a high potential for re-use is
created.

• Technical Architecture finally describes the realisation consisting of hardware and
software in an abstract way. It offers suitable models which describe the behaviour
of hardware and software uniformly and which allow to describe the influence of the
hardware used on the behaviour of the entire system. Here, the level of abstraction is
chosen such as to make it possible to conclude whether real-time requirements can be
met and such that at the further transition from technical architecture to implemen-
tation only software-technical transformations will take place, but no modifications of
the behaviour.

A more detailed picture including the link to a concrete tooling support can be found in
[Broy et al., 2010].

3.2.3. Relevance of dataflow diagrams

For each of the architectural layers specific modelling techniques exist which are – at best
– connected to each other by an integrated modelling language. Among the most essential
language elements are dataflow diagrams. Strictly speaking, it must be distinguished be-

48 Stefano Merenda

3.3. Informal description of the modelling language

tween two types of dataflow: weak causal and strong causal ones. This fact is, however,
of minor importance for our interests within the present work. A system in each of these
architectural layers is basically hierarchically decomposed into subsystems for implement-
ing the divide-and-conquer principle. Systems (and subsystems) in particular dispose of a
syntactical interface which again consists of a set of input and output ports. As these ports
are connected by channels, this results in (various types of) dataflow diagrams.

In [Sutherland, 1966] Sutherland created one of the first graphical dataflow program-
ming frameworks. Nowadays, most of the modern system engineering languages use
dataflow networks because of the reasons mentioned above. Formal foundations are
Lustre [Caspi et al., 1987, Halbwachs et al., 1991], Signal [Houssais, 2002], and Focus
[Broy and Stølen, 2001]. Scientific and industrial implementations are Matlab/Simulink
[Mathworks, 2010], Scade [Esterel, 2010, Scade, 2010, Berry et al., 2000], AutoFOCUS
[Hölzl, 2010], as well as the Component Language (COLA) [Kugele et al., 2007].

The running example within the present work depends on the Component Language
(COLA). COLA is an integrated modelling language for embedded reactive systems pro-
viding specification techniques for requirements, system design, implementation, and test.
The language has been developed for the automotive industry and its specification is entirely
based on the theoretical foundation. Via OOMEGA [OOMEGA, 2010], this formal language
is available as an eclipse-based [Eclipse, 2010b] tool including a common database back-end.

As COLA represents an extensive language, focus shall be on a very small and simplified
part of COLA in our example: dataflow networks. For our purposes it is not necessary to
go into details of COLA. Instead, a short and informal explanation of what our exemplary
language does shall be provided. In order to get a clear understanding of the syntax and
semantics of COLA, please refer to [Kugele et al., 2007].

3.3. Informal description of the modelling language

As already mentioned above, the exemplary language, which will be further used as running
example, is suitable for modelling dataflow networks. According to COLA, a weak-causal
semantics forms the basis. The processing units within such dataflow networks are called
components and may again be networks. Due to that, a system can be hierarchically de-
composed into sub-components (and thus subsystems). A component which should not be
decomposed any further is called a block. Arithmetic operators, such as an addition or
multiplication, are typically modelled as blocks.

Each component (i. e. both networks and blocks) comprises a syntactical interface which is
called signature, which again consists of a set of input and output ports. For simplicity our
exemplary language is – in contrast to COLA – untyped. Hence, a port is simply described
by its name and does, for example, not include a data type.

Ports of the signature as well as those of its sub-components are connected via channels
within a network. Each channel connects exactly one source port to at least one destination
port. Herein, a source port could be an input port of the signature or an output port of a
sub-component. Similarly, a destination port could be an output port of the signature or an
input port of a sub-component. In order to prevent fix-point arithmetic, cyclic connections
are not allowed unless a particular pre-block is located in between. This pre-block has one
input and one output port. It delays input for one cycle.

In order to allow re-use of previously defined networks, an additional differentiation between
the definition of a component (i. e. a network or a block) and its (possibly multiple) use within

Stefano Merenda 49

3. Running example: Modelling dataflow algorithms

other networks shall be provided. On the one hand, components can be defined within other
components. Such inline-defined components can only be used inside these components.
On the other hand, it shall be possible to define components within libraries. Whenever a
component from a library should be used in another network this library must be imported.
Libraries can be hierarchically structured. Thus, each library may contain sub-libraries. An
import of a library should automatically include its sub-libraries.

3.4. A first, semi-formal abstract syntax

Within the present work, a formal metamodelling approach shall be generated to be able to
define a precise metamodel for e. g. such a running example. Obviously, this formal approach
is not yet available at this point. Anyway, in order to give the reader a more precise idea of
the running example, an abstract syntax will be provided in the following by using commonly
known UML class diagrams (the MOF subset in particular will be sufficient), as defined in
[OMG, 2006a].

In Figure 3.2, the abstract syntax for the previously introduced dataflow modelling language
will be defined. It shows all necessary concepts (known as classes in UML), including their
relationships and attributes (which will be called properties from now on).

DefContainer

name: Identifier

Library

Component

Block Network Channel

name: Identifier

Signature Port

name: Identifier
signature

1..1

inPort
0..*

outPort
0..*

fromPort
1..1

toPort
1..*

channel
0..*

includedLib
0..*

includedBy
0..*

componentDef
0..*

subcomponent
0..*

sublibrary
0..*

Figure 3.2.: A first semi-formal abstract syntax for the running example

In the following, each of the concepts shown shall be introduced including their properties.
Note that here, focus will only be on abstract syntax. As defined above, a metamodel also
consists of other elements, e. g. concrete syntax, which will be omitted herein.

As this definition can only be semi-formal at this point, a formal definition will be provided
later on by using M2L. Section B.1, Metamodel of the Running Example, p. 307 provides an
overall specification – including concrete syntax as well.

50 Stefano Merenda

3.4. A first, semi-formal abstract syntax

3.4.1. Concept DefContainer

DefContainer is a common concept for Library and Component . It mainly deals with
the fact that both libraries and components are able to contain definitions of components.
Moreover, it provides the include mechanism so as to be able to use components defined in
other libraries within new dataflow networks.

The properties of the concept DefContainer are:

• name: The name of a DefContainer and thus of a library or a component, which
may be any kind of a non-empty character sequence. Initially, these names should
not be globally unique. Instead, there should be a kind of local uniqueness such that
canonical names in the form of <name1>.<name2>.<name3> can be used as globally
unique identifiers.

• includedLib: All libraries which should be included to be able to use the components
defined within them for creating new dataflow networks. If a library is not included,
its defined components cannot be used, unless the library is transitively included (i. e.
the library is a sub-library of an included library).

• componentDef: The set of components which are defined within a library or compo-
nent. Note that if a component is defined within a network (a network is a component
and thus also a DefContainer) it is not automatically part of the network in terms of
a sub-component. Please refer to the property subcomponent in the concept Network .

3.4.2. Concept Library

By specialising the concept DefContainer , a library is able to contain a set of defined com-
ponents in order to be used in other component definitions. Libraries can be hierarchically
structured and thus may contain sub-libraries. This sub-library relationship has major in-
fluence on the include mechanism: When a library is included, all sub-libraries thereof will
be included as well. Note that this approach differs from e. g. Java [Microsystems, 2010]: If
a package is included in Java, the sub-packages thereof will not be included automatically.

The properties of the concept Library are:

• includedBy: This property defines the opposite of the property includedLib in Def-
Container and thus it contains all libraries and components which include this library.
Note that cyclic includes should not be allowed.

• sublibrary: The sub-libraries of said library. A sub-library may again comprise sub-
libraries.

3.4.3. Concept Component

A component forms the re-usable unit within our exemplary modelling language. In detail,
a component may be a network of other components or just a block which cannot be decom-
posed any further. Thus, each component comprises a syntactical interface which is called
signature.

The properties of the concept Component are:

• signature: The signature of the component. Each component must have exactly one
signature.

Stefano Merenda 51

3. Running example: Modelling dataflow algorithms

3.4.4. Concept Signature

The Signature represents the syntactical interface of a Component . It consists of a set of
input ports and a set of output ports.

The properties of the concept Signature are:

• inPort: The set of all input ports.

• outPort: The set of all output ports.

3.4.5. Concept Port

The concept Port represents a single input or output port. Note that there are no dedicated
sub-concepts such as InputPort and OutputPort as this is modelled as a role of the port.
Thus, the decision on whether a port is an input or an output port depends on whether it
is referenced by the property inPort or outPort within the signature. As mentioned above,
our exemplary language is untyped for simplicity. Hence, a port is simply described by its
name and does, for example, not include a data type.

The properties of the concept Port are:

• name: The name of a port. This name must be unique within a signature over input
and output ports.

3.4.6. Concept Block

The concept Block defines a component which can be seen as a primitive within the language.
Arithmetic operators such as add, sub, mult, or div are normally modelled as blocks. The
pre-operator is also modelled as a block. It delays its input for one cycle.

Blocks are also used for modelling sensors and actuators in the form of data sources and
data sinks. Such blocks either have input ports (i. e. actuators/data sinks are modelled) or
output ports (i. e. sensors/data sources are modelled). A prominent source block is dT. It
returns the physical delta time (e. g. in milliseconds) between two cycles.

Additional properties to the inherited ones of the concept Component are not necessary.

3.4.7. Concept Network

The concept Network is the core of our exemplary modelling language. As the name suggests,
it specifies the dataflow network itself. Ports of the signature as well as those of its sub-
components are connected via channels within a network. In order to prevent fix-point
arithmetic, cyclic connections are not allowed unless a particular pre-block is located in
between.

The properties of the concept Network are:

• subcomponent: The sub-components of the present network. In order to implement
re-use, sub-components must be already specified (see property componentsDef in
concept DefContainer). Then, the property subcomponent must contain a clone of such
a component definition to be able to reference their ports of the signature correctly.
Please refer to Chapter 7, Abstract Syntaxes in M2L, p. 119 for further details.

52 Stefano Merenda

3.5. Two exemplary dataflow diagrams

• channel: The channels connecting the ports within this dataflow network.

3.4.8. Concept Channel

The concept Channel represents a channel within a dataflow network. Each channel connects
exactly one source port to at least one destination port. Herein, a source port could be an
input port of the signature or an output port of a sub-component. Similarly, a destination
port could be an output port of the signature or an input port of a sub-component.

The properties of the concept Channel are:

• name: Name of the channel.

• fromPort: Source port of the channel.

• toPort: Destination ports of the channel.

3.5. Two exemplary dataflow diagrams

As the structural design of the language has been illustrated above by introducing abstract
syntax, two concrete dataflow networks shall now be introduced. Most of the ongoing
illustrations within the present work are based on these two examples.

In this section, the two desired textual concrete syntaxes for dataflow networks, named
Structural and Functional, shall be introduced as well:

• The textual concrete syntax Structural focuses on the basic idea of dataflow networks:
A network consists of sub-components which are connected via channels.

• In contrast to the first one, the textual concrete syntax Functional concentrates on
the fact that each dataflow network can be seen as a mathematical function mapping
input ports to output ports.

One or the other syntax will be more adequate depending on the circumstances. Although
the decision on which one will be preferred is subjective, the following two examples will
show that in case of the first example (see Section 3.5.1, Integrator, p. 53) functional syn-
tax might be preferred in many situations, whereas in case of the second example (see
Section 3.5.2, Demonstration Vehicle, p. 55) structural syntax might be more useful.

Although the present work focuses on textual concrete syntaxes, the examples will first of
all be presented in a diagrammatic way – as defined for COLA – in order to allow for a
faster understanding of what each of the models does.

3.5.1. Integrator

Our first example is a simple integrator over time. It consists of one input port x and one
output port y. As our language is untyped, the type of each port is always denoted by Any.
First of all, it multiplies the input value by the delta time of the last cycle. Afterwards, the
result value is summed up with the result value of the last cycle (done via the pre-operator).
Note that it is not possible to define an initial value for the pre-operator in our simplified
modelling language. It is assumed to be zero for the first cycle.

Figure 3.3 shows the implementation of the integrator over time in a diagrammatic way: It
consists of four sub-components: dT, pre, mult (denoted by ∗), and add (denoted by +). To

Stefano Merenda 53

3. Running example: Modelling dataflow algorithms

sum it up, five channels c1 to c5 connect all ports. Here, c1 to c4 are 1-to-1 channels, and
c5 is a 1-to-many channel.

dT

integrator

pre

y:Anyx:Any
c1

c2 c5c4

c3

Figure 3.3.: Exemplary model: integrator network (diagrammatic syntax)

In the following, this dataflow network shall be encoded by the two textual concrete syntaxes,
namely Structural and Functional.

Structural syntax. As mentioned above, the textual concrete syntax Structural focuses on
the fact that a network consists of sub-components which are connected via channels. List-
ing 3.1 shows the encoding of our integrator example.

Listing 3.1: Exemplary model: integrator network (structural syntax)

1 network i n t e g r a t o r (x :Any −> y :Any) {
2 include bas i c ;
3

4 subcomponent dT[dT0] ;
5 subcomponent pre [pre0] ;
6 subcomponent mult [mult0] ;
7 subcomponent add [add0] ;
8

9 channel c1 : x => mult0 . x ;
10 channel c2 : dT0 . out => mult0 . y ;
11 channel c3 : mult0 . r e s u l t => add0 . x ;
12 channel c4 : pre0 . out => add0 . y ;
13 channel c5 : add0 . r e s u l t => pre0 . in , y ;
14 }

In the beginning, a reserved word network indicates that a dataflow network is encoded,
followed by the name of said network. Then, signature within parentheses is required: The
input ports – generally separated by commas – will be encoded first. The output ports –
again, generally separated by commas – follow after an arrow encoded by −>.

After the signature the actual definition of the network begins, which is embedded within
curly brackets. It starts with an include statement indicating that the library basic is
required. This library is not shown herein and defines the blocks necessary for dT, pre,
mult, and add, as the sub-components are only references to their definitions.

After the include statement the sub-components are referenced or more precisely: instan-
tiated. The first name (e. g. dT) is the name of the instantiated component’s name. The
second name within the square brackets defines an instance name. This is generally neces-
sary in order to distinguish two instances of the same block. This is for example the case if
two add -blocks are present within one network.

54 Stefano Merenda

3.5. Two exemplary dataflow diagrams

In the end, the channels are encoded: After the reserved word channel, the name is required.
Then, the source port is encoded followed by an arrow encoded as =>. Afterwards, the
destination ports – generally separated by commas – are encoded. If the referenced port
belongs to a sub-component, the instance name is necessary in front and separated by a dot.

Functional syntax. As mentioned above, in contrast to the syntax Structural, the textual
concrete syntax Functional concentrates on the fact that each dataflow network can be seen
as a mathematical function mapping input ports to output ports. Listing 3.2 shows the
encoding of our integrator example:

Listing 3.2: Exemplary model: integrator network (functional syntax)

1 network i n t e g r a t o r (x :Any −> y :Any) {
2 include bas i c ;
3

4 y := add (mult (x , dT()) , pre (y)) ;
5 }

Here it can be seen that, although the header of both representations is the same, the
functional representation is much shorter than the structural one: The output port y is
assigned to the corresponding functional statement. In this special case no channel names
will be required. Even the instance names are omitted herein.

This example shows that not every textual syntax has to represent all information as in our
context a textual syntax is only a view to overall abstract syntax (which is e. g. stored in a
database or XML file). Shortness is therefore not only based on the syntactical definition
but also on the fact that part of the information (especially instance names and channel
names) is not defined therein.

All in all, defining the functional syntax is much more tricky than defining the structural.
The reason is that the given structure of abstract syntax is much closer to structural syntax
which allows for a straight-forward definition. Not all details of functional syntax will be
presented herein as it contains a lot of exceptional cases. At this point it is important to
understand that different syntaxes may be useful for different situations. On the other hand,
the requirement shall be formulated that it should also be possible to define a more complex
textual syntax (as the syntax Functional).

3.5.2. Demonstration Vehicle

Our second example models a top-level view of a demonstration vehicle which was developed
as a case-study for COLA. This example was selected to show the ubiquitous applicability of
dataflow networks: They can be used for both extremely low-level and extremely high-level
modelling. It will also be shown that for such a high-level example – in contrast to our fist
example – the syntax Structural will be better suited than the syntax Functional.

Figure 3.4 shows the implementation of a top-level view of the demonstration vehicle in a
diagrammatic way.

In total it consists of six sub-components: three data sources, namely User Interface, Ro-
tation Sensor, and Radar Sensor ; two data sinks, namely Display, and Engine; and one
complex behavioural component, namely Adaptive Cruise Control which provides the ac-
tual functionality of the system.

Stefano Merenda 55

3. Running example: Modelling dataflow algorithms

Demonstration Vehicle

User
Interface

mode
desired speed

Adaptive Cruise
Control

status
target speed

mode
desired speed
current speed
distance

Rotation
Sensor

current speed

Radar
Sensor

distance

Displaystatus

Enginetarget speed

Figure 3.4.: Exemplary model: demonstration vehicle (diagrammatic syntax)

The six channels mode, desired speed, current speed, distance, status, and target speed connect
all sub-components. In contrast to our first example, the present one represents a closed
system and does therefore not have an external signature. Note that the channel names are
not visible in the diagram. Only the port names which are chosen so as to be the same on
both sides of the channel can be seen. The channel itself is also named the same way.

In our context the detailed meaning of the sub-components and ports is not that important.
Thus, a detailed explanation will be skipped. As it was done in the first example, this
dataflow network shall be encoded by the two textual concrete syntaxes, namely Structural
and Functional in the following.

Structural syntax. Listing 3.3 shows the encoding of our demonstration vehicle example by
using the textual concrete syntax Structural. As most details have already been introduced
during our fist example (see Section 3.5.1, Integrator, p. 53), only the deltas will be dealt
with.

Listing 3.3: Exemplary model: demonstration vehicle (structural syntax)

1 network ”Demonstration Vehicle” (−>) {
2

3 network ”Adaptive Cruise Control” (mode :Any, ”desired speed” :Any,
4 ”current speed” :Any, d i s t ance :Any −> s t a t u s :Any,
5 ”target speed” :Any) {
6 . . .
7 }
8 block Display (s t a t u s :Any −>) {}
9 block Engine (”target speed” :Any −>) {}

10 block ”Radar Sensor” (−> d i s t anc e :Any) {}
11 block ”Rotation Sensor” (−> ”current speed” :Any) {}
12 block ”User Interface” (−> mode :Any, ”desired speed” :Any) {}
13

14 subcomponent ”Adaptive Cruise Control”
15 [”Adaptive Cruise Control0”] ;
16 subcomponent Display [Display0] ;
17 subcomponent Engine [Engine0] ;
18 subcomponent ”Radar Sensor” [”Radar Sensor0”] ;
19 subcomponent ”Rotation Sensor” [”Rotation Sensor0”] ;

56 Stefano Merenda

3.5. Two exemplary dataflow diagrams

20 subcomponent ”User Interface” [”User Interface0”] ;
21

22 channel ”current speed” : ”Rotation Sensor0” . ”current speed”
23 => ”Adaptive Cruise Control0” . ”current speed” ;
24 channel ”desired speed” : ”User Interface0” . ”desired speed”
25 => ”Adaptive Cruise Control0” . ”desired speed” ;
26 channel d i s t anc e : ”Radar Sensor0” . d i s t ance
27 => ”Adaptive Cruise Control0” . d i s t ance ;
28 channel mode : ”User Interface0” . mode
29 => ”Adaptive Cruise Control0” . mode ;
30 channel s t a t u s : ”Adaptive Cruise Control0” . s t a t u s
31 => Display0 . s t a t u s ;
32 channel ”target speed” : ”Adaptive Cruise Control0” . ”target speed”
33 => Engine0 . ”target speed” ;
34 }

First of all, the empty signature (−>) attracts attention which results from the fact that
this system is a closed one.

Secondly, instead of an include-statement, a set of inline-defined networks and blocks will be
found: As mentioned above, a network or block must be defined before it can be instantiated.
Components have been used in the first example, which were defined in the library basic, as
the required components were standard components. Herein, the required components are
specifically tailored to the vehicle to be modelled. The components are therefore defined
inline.

Note that an implementation of the network Adaptive Cruise Control is obvious. To simplify
the example, this implementation will be omitted herein. The second example also shows
that identifiers may contain arbitrary characters. In such situations the identifiers are put
into quotes.

Functional syntax. Although functional syntax is not that intuitive in case of the present
example, it is, however, possible to encode it this way as well. Listing 3.4 shows the encoding
of our demonstration vehicle example by using the textual concrete syntax Functional :

Listing 3.4: Exemplary model: demonstration vehicle (functional syntax)

1 network ”Demonstration Vehicle” (−>) {
2

3 network ”Adaptive Cruise Control” (mode :Any, ”desired speed” :Any,
4 ”current speed” :Any, d i s t ance :Any −> s t a t u s :Any,
5 ”target speed” :Any) {
6 . . .
7 }
8 block Display (s t a t u s :Any −>) {}
9 block Engine (”target speed” :Any −>) {}

10 block ”Radar Sensor” (−> d i s t anc e :Any) {}
11 block ”Rotation Sensor” (−> ”current speed” :Any) {}
12 block ”User Interface” (−> mode :Any, ”desired speed” :Any) {}
13

14 (mode , ”desired speed”) := ”User Interface” () ;
15 (s tatus , ”target speed”) := ”Adaptive Cruise Control”(
16 mode , ”desired speed” , ”Rotation Sensor” () , ”Radar Sensor” ()) ;

Stefano Merenda 57

3. Running example: Modelling dataflow algorithms

17 Display (s t a t u s) ;
18 Engine (”target speed”) ;
19 }

The first part including the definitions of networks and blocks is quite similar. Then, there
are four assignments whereupon the last two will be degenerated as the sub-components
Display and Engine are assigned to nothing. Note that the order of the four assignments is
arbitrary.

For coding reasons, some of the channels are seen explicitly (in particular mode, desired
speed, status, and target speed) in this example. The channels current speed and distance
are still not necessary.

3.6. Issues to be expressed by a formalised metamodel

Having introduced all three abstract syntaxes, concrete syntaxes, and two exemplary models,
the issues in the context of our exemplary modelling language shall be listed so as to be solved
by a formalised metamodel, such as M2L, as will be described in the following chapters.
The issues will be classified into three types: those affecting abstract syntax, those affecting
concrete syntax, and finally those affecting the inspection of the model.

3.6.1. Issues affecting abstract syntax

Up to now, abstract syntax has only been defined in a semi-formal way. Besides that it only
defines the basic structure. Many detailed consistency conditions are not expressed at all.
All in all, the following major issues regarding our exemplary language affecting abstract
syntax should be solved:

• No cyclic re-use of components. When a network is defined, a set of other sub-
components is used. It should be guaranteed that there is no cyclic definition – even
when sub-components are decomposed recursively.

• No cycle without a pre-component. A directed cycle is not allowed within a
network unless at least one pre-block is located inbetween.

• Each output port must be connected. All output ports within a network must
be connected via a channel in order to prevent undefined values.

• Local uniqueness of identifiers. The names of identifiers for ports and sub-
components must be locally unique such that there is a canonical name which is
unique.

• Channels always define valid connections. According to the abstract syntax de-
fined, a channel may connect arbitrary ports to each other. At first it must be ensured
that only ports of that network to which also the channel belongs, are connected to
each other. Secondly, only correct source and destination ports should be connected.
It should, for example, be prevented that two output ports are connected to each other.

• Valid instantiation of components. As described above, instantiation is realised by
cloning the original component. Here, it must be ensured that the original component
is exactly the same as the cloned component.

58 Stefano Merenda

3.6. Issues to be expressed by a formalised metamodel

• Correct include mechanism. As defined above, components can only be referenced
if they are part of a library that is included. This mechanism should be defined in a
formal way.

3.6.2. Issues affecting concrete syntax

Besides those regarding abstract syntax, there are also issues concerning concrete syntax.
The following major issues affecting concrete syntax should be solved by a formalised meta-
modelling approach:

• No impact on abstract syntax by concrete syntax. When a concrete syntax is
defined, reserved words normally restrict possible values for identifiers. This should
not be true for this language. If, on the other hand, a new concrete language is defined
for an abstract syntax, the abstract syntax itself is altered.

• Local references to ports and components. The canonical name is much too
long when a port or a component are referenced. Due to that, a formal definition is
required of how to achieve unique shortcuts.

• Identifiers including arbitrary characters. In order to allow arbitrary characters
within identifiers, a well-defined way of quoting identifiers becomes necessary.

3.6.3. Issues affecting model inspection

Finally, there are a lot of necessary model inspections which are required. Focus will be on
two major issues regarding our exemplary language:

• Correct execution order of components. When a dataflow network is evaluated,
a partial execution order must be followed. It should be possible to calculate said
execution order.

• All components involved in a network definition. It is necessary to know all
components that will recursively be used for defining the network when generating a
code.

In the following chapters it shall be illustrated how all these requirements can be addressed
by the metamodelling language M2L.

Stefano Merenda 59

Chapter 4
Pomsets in the context of metamodelling

Pomsets themselves have been known for many years and have originally been in-
vented for process modelling in particular. Pratt introduced them in [Pratt, 1985]. In
[Grumbach and Milo, 1995] an algebra of pomsets is defined in order to create a generalisa-
tion of the traditional algebras for (nested) sets, bags and lists.

Nevertheless, they have not been used in the domain of metamodelling up to now, although
sets, bags as well as lists have to be combined within one (meta-)model. To support this
combination in a sound way, it will be shown that pomsets are the right concept in the meta-
modelling domain, too. In addition, pomsets will allow a much more powerful model query:
E. g. in the context of weak-causal dataflow networks – as introduced in Chapter 3, Running
example: Modelling dataflow algorithms, p. 45 – the calculation of the execution order would
result in a partially ordered set. This can easily be handled in the case of pomsets, of course.
(See Section 4.5, Running Example, p. 80 for details.)

This chapter will provide a short overview of pomsets and will introduce the operators
defined in [Grumbach and Milo, 1995] complemented by a set of additional operators which
are particularly important for the present work and for the metamodelling domain in general.

Contents
4.1. Relationship between different types of sets 61

4.2. Definition of pomsets . 62

4.3. Notations for pomsets . 63

4.4. Operators on pomsets . 66

4.5. Running Example . 80

4.1. Relationship between different types of sets

As mentioned in Section 1.3, Approach, p. 8, MOF introduces two modifiers required for sets:
{ordered} and {bag}. According to that, it is possible to describe the four types, namely set,
totally ordered set (toset), bag, and list. In order to formulate an appropriate mathematical
foundation, a common set type generalising all four types is necessary. Unfortunately, none
of the four is mostly general. In particular, Bag generalises Set (to be written Set ⊂ Bag)

Stefano Merenda 61

4. Pomsets in the context of metamodelling

Pomset

∩

Bag Poset List

Set Toset

∩

∩∩ ∩

∩∩

∩

Singleton

∩

Figure 4.1.: Inclusion relationships between the different types of sets

and List generalises Toset (to be written Toset ⊂ List), but besides these two there is no
further generalisation relationship.

In some approaches, lists are seen as the most general set type: In case of a (normal) set, the
order is simply ignored. When having a closer look at it, it will be realised that an additional
boolean attribute has to be taken into account implicitly, indicating whether the list should
be seen as a set or not. This leads to many problems: Two different equation operators –
one ignoring the order, whereas the other does not – will therefore become necessary.

To get an exact picture in a mathematical sound way, the partially ordered multi-set (pomset)
and its specialisation partially ordered set (poset) have to be introduced. As can be seen in
Figure 4.1, pomset is a common generalisation for all set types mentioned.

Singleton will also be illustrated to show that single valued sets and single valued lists are
equal in the sense of pomsets. This corresponds to the fact that for single-valued properties
in MOF the modifiers {ordered} and {bag} are not allowed.

On the other hand, there are many programming environments where single-valued lists and
sets are not equal. This is for example true in the Java Collection API. Besides that, there
is a third way of describing a single value by omitting the set type around the value. Again,
this complicates the expressions as we have to take explicit care of both concepts. This leads
to many case differentiations especially in generic modelling environments.

Thus, in our approach there is no distinction between a single-valued set and a single-valued
list. In addition to that, single values themselves will be omitted entirely. They are always
represented as a single-valued pomset. For this reason, a single value can also be given
whenever a pomset is expected, so it can be written a = {a}.

4.2. Definition of pomsets

As could be seen in the previous sections, pomsets can provide a unified view of sets, lists
as well as single values. Although pomsets are already known, they shall be introduced
herein again, concentrating on a different focus, however, namely the metamodelling domain.
Informally spoken, a pomset is a multi-set in which the elements are additionally partially
ordered. If the partial order is total a so-called totally ordered multi-set (tomset) will be
obtained which is also known as list. A formal definition for a pomset is given as follows:

Definition 1 (Pomset). A partially ordered multiset (pomset) over a set E is a quadruple
〈E, V, λ,≺〉 where E is a basic set of elements, V is a set of vertices, λ : V → E is a total
function labelling each vertex with an element from the basic set, and ≺ ⊆ V × V is a strict
(irreflexive) partial order over V .

62 Stefano Merenda

4.3. Notations for pomsets

Two pomsets A = 〈EA, VA, λA,≺A〉 and B = 〈EB , VB , λB ,≺B〉 are equal (denoted by A = B)
if, and only if, a bijection ϕ : VA →bij VB exists, such that ∀v ∈ VA : λA(v) = λB(ϕ(v)) and
∀u, v ∈ VA : u ≺A v ⇔ ϕ(u) ≺B ϕ(v). The set of all partially ordered multisets over a basic
set E is denoted by Ppomset (E).

Due to the given equivalence relation, the concrete set of vertices is irrelevant. Thus, disjoint
sets of vertices can be assumed for any two pomsets if needed.

Note that an equation over pomsets is deliberately defined instead of an isomorphism al-
though pomsets can be seen as directed graphs, as the concrete set of vertices has absolutely
no influence on the pomset. This equation operator also corresponds to those over sets,
bags, lists or even singletons.

Now, different types of sets can be defined based on this pomset definition. It is easy to
verify that the relationships given in Figure 4.1 result from these definitions.

• Pbag (E) = {〈E, V, λ,≺〉 ∈ Ppomset (E) | ≺ = ∅}

A pomset is a bag if, and only if, the order ≺ over the pomset vertices V is empty.
Thus, the elements are completely unordered but may contain duplicates.

• Plist (E) = {〈E, V, λ,≺〉 ∈ Ppomset (E) | ≺ is total}

A pomset is a list if, and only if, the order ≺ over the pomset vertices V is total. Thus,
the elements are completely ordered but may contain duplicates.

• Pposet (E) = {〈E, V, λ,≺〉 ∈ Ppomset (E) | λ is injective}

A pomset is a partially ordered set if, and only if, the labelling function λ is injective.
Thus, there do not exist two vertices which are mapped to the same element from E.
Hence, the pomset does not contain duplicates.

• Ptoset (E) = Plist (E) ∩ Pposet (E)

A pomset is a totally ordered set if, and only if, the pomset is both a list and a partially
ordered set. Hence, the pomset is totally ordered but does not contain duplicates.

• Pset (E) = Pbag (E) ∩ Pposet (E)

A pomset is a set if, and only if, the pomset is both a bag and a partially ordered set.
Hence, the pomset is unordered but does not contain duplicates.

• Psingleton (E) = {〈E, V, λ,≺〉 ∈ Ppomset (E) | |V | ≤ 1} = Pset (E) ∩ Ptoset (E)

A pomset is a singleton if, and only if, the set of vertices V is empty or contains exactly
one element. Another definition is: A pomset is a singleton if, and only if, the pomset
is both a set and a totally ordered set.

4.3. Notations for pomsets

As previously defined, pomsets are a generalisation of sets and lists. Nevertheless, the
internal structure is much more complex. Thus, it is important to have suitable notations
for pomsets. Adequate notations for pomsets, which will be used in the following sections
and chapters, will now be introduced. At first, the mathematical, straight-forward notation
will be illustrated as a quadruple. Then, the graphical notation will be defined based on
transitively reduced graphs. Finally, a linear textual notation, which is more convenient
than the quadruple, will be provided.

Stefano Merenda 63

4. Pomsets in the context of metamodelling

4.3.1. Pomsets as quadruples

Using Definition 1, a pomset can be specified explicitly by a quadruple, as in the following
example (4.1): At first, the set of elements {a, b, c} will be defined. Then, an arbitrary set of
vertices {v1, v2, v3, v4, v5} will be given. In order to identify the vertices easily, vi will always
be used from now on. Next, the labelling function {(v1 7→ a), (v2 7→ a), (v3 7→ b), (v4 7→
b), (v5 7→ c)} will be defined in the given notation. And in the end, the partial order over
the vertices {(v1, v2), (v2, v3), (v2, v5), (v1, v3), (v1, v5)} will be given by a set of tuples.

A = 〈{a, b, c} , {v1, v2, v3, v4, v5} ,
{(v1 7→ a), (v2 7→ a), (v3 7→ b), (v4 7→ b), (v5 7→ c)} ,
{(v1, v2), (v2, v3), (v2, v5), (v1, v3), (v1, v5)}〉

(4.1)

As the ≺-relation has to be transitive, tuples resulting from transitivity can be omitted.
Hence, orders can be defined by transitively reduced relations. They are defined as the
smallest subset of the relation wherein its transitive closure results in the original relation.
In our example (4.1) it is now possible to skip the last two tuples, namely (v1, v3) and
(v1, v5). Our example (4.1) will now be simplified to (4.2):

A = 〈{a, b, c} , {v1, v2, v3, v4, v5} ,
{(v1 7→ a), (v2 7→ a), (v3 7→ b), (v4 7→ b), (v5 7→ c)} ,
{(v1, v2), (v2, v3), (v2, v5)}〉

(4.2)

4.3.2. Pomsets as transitively reduced graphs.

A more intuitive notation for pomsets based on a graph representation and which is closer
related to the basic idea of pomsets shall now be introduced: By way of this notation, a
pomset is represented by a directed graph. Hereby the vertices are labelled with the pomset
elements. If the pomset contains duplicates, two vertices are labelled by the same element.
The partial order of the pomset is represented by the directed edges of the graph: If a
directed edge exists from one element to another (e1 → e2), it is indicated that e1 ≺ e2.
In accordance to transitively reduced relations the transitively reduced graph will be shown
for clarity. In order to indicate that the graph represents a pomset, it is placed into curly
brackets. Our example (4.2) can now be specified by (4.3):

A =

 a a
b

b

c

 (4.3)

4.3.3. Pomsets as linear text.

Although the pomset notation by transitively reduced graphs is the most intuitive and con-
venient one, in some situations – in programming environments or textual concrete syntaxes
in general – a representation as linear text will be necessary. The notation as a quadruple is
also linear, of course. The focus concerning notation herein is less mathematical but more
intuitive. It should also be a little shorter than the quadruple.

64 Stefano Merenda

4.3. Notations for pomsets

The set of elements will therefore be enriched by adding the mapped identifiers of the vertices
within square brackets behind each element. vi with ascending indices will again be used
for these identifiers. If a pomset element comes up within this pomset more than once, only
the first and the last indexed identifier – separated by ”..” – will be denoted. In the present
example, the two vertices v1 and v2 are mapped to the element a, resulting in a[v1..v2].
After all elements have been enumerated, separated by a ”|”, the transitively reduced order
is denoted by simply stringing together the relationships such as v1≺v2. If the pomset is
unordered – i. e. no relationship does exist – the separating ”|” has to be skipped. Our
example (4.3) can now be described by (4.4):

A = {a[v1..v2], b[v3..v4], c[v5] | v1≺v2 v2≺v3 v2≺v5} (4.4)

When depending on ASCII characters, the notation is simplified by skipping the indexed
notation and replacing ”≺” by ”<”, as illustrated in (4.5):

A = {a[v1..v2], b[v3..v4], c[v5] | v1<v2 v2<v3 v2<v5} (4.5)

4.3.4. Special notations for bags and lists

If a pomset is totally ordered or unordered it can be described in a much easier way. For
bags it is sufficient to list the elements separated by commas. If one element comes up in
the pomset more than once, it will accordingly come up more than once in the listing, too:

{a, a, b, b, c} =
def
{a[v1..v2], b[v3..v4], c[v5]} (4.6)

Lists can be encoded quite similar to bags: The elements are listed again – separated by
commas. In order to distinguish lists from bags, the curly brackets are replaced by angle
brackets. In contrast to bags, the order of the listed elements is relevant:

〈a, b, a, c, b〉 =
def
{a[v1..v2], b[v3..v4], c[v5] | v1≺v3 v3≺v2 v2≺v5 v5≺v4} (4.7)

4.3.5. Bags specified by a multiplicity function

Finally, a common notation shall be extended by defining sets in order to define bags. When
specifying a set S, the following notation S = {e ∈ E | p(e)} will often be used, whereas
p(e) is a predicate over E. The meaning of this notation is that the resulting set S contains
all those elements from E for which the predicate p(e) is true. Based on this definition, this
notation can be extended to bags:

B = {e ∈ E | m(e)} (4.8)

Instead of defining a predicate p(e), a multiplicity function m(e) is defined, specifying the
multiplicity of each element out of E for the bag. Thus, the function m : E → N is exactly
the multiplicity function of the specified bag B. An example might be:

{e ∈ {1, 2, 3} | e− 1} = {2, 3, 3} (4.9)

Stefano Merenda 65

4. Pomsets in the context of metamodelling

4.4. Operators on pomsets

Having introduced the pomset itself as a generalisation of sets and lists, the pomset operators
shall now be defined in the following section. According to the complexity of the structure,
much more operators will be required than for sets, for example. Although some of these
operators have already been defined in [Grumbach and Milo, 1995], those operators which
turn out to be useful in the metamodelling domain shall be quoted and combined with some
new ones. Table 4.1 gives you an overview of the operators.

operator notation

CC-Extraction κA
Expansion Aχf
Order Expansion A−→χ B
Additive Union A]B
Concatenation A⊕B
Projection A ↓ B
Complement Projection A ↓∗B
Consists Of A b B
Union A ∪B
Intersection A ∩B
Difference A \B
Subset A ⊆ B
Cardinality |A|
Depth ‖A‖
Multiplicity a ∈m A
Path πA
Totalise τA
Sub-Pomset [i; j]A
First 1A
Order Inverse ≷A
Order Destroy µA
Duplicate Destroy εA
Duplicate Destroy Over CCs ε⊂A
Is Empty empty?A
Is Singleton singleton?A
Is Set set?A
Is Bag bag?A
Is List list?A
Is Toset toset?A
Is Poset poset?A

Table 4.1.: Overview of pomset operators

For each operator, a short motivation shall be provided of why and in which context this
operator is necessary (or at least helpful). After the formal definition, an example will be
provided to illustrate the operator. For some very intuitive operators a formal definition
will be skipped due to complexity.

For all following definitions we define A = 〈EA, VA, λA,≺A〉 and B = 〈EB , VB , λB ,≺B〉 as
being two pomsets. It is assumed without loss of generality that the two sets of vertices VA
and VB are disjoint.

66 Stefano Merenda

4.4. Operators on pomsets

4.4.1. CC-Extraction, κ

As pomsets allow for a partial order, there are pairs of elements related to each other, and
there are pairs of elements unrelated to each other. This allows to represent a set (or even
bag) of lists in one pomset, for example. An example may be:

A =

{
a c c a

b b d
}

(4.10)

The pomset A can be seen as a bag containing the two lists, namely 〈b, b, d〉 and 〈a, c, c, a〉.
In some situations an explicit representation of this set of lists will now be desired, such
that:

B =


{

b b d
}{

a c c a
} (4.11)

The CC-Extraction operator κ will therefore be used, such that:

B = κA

In order to provide a general definition for arbitrary pomsets, connected components (ab-
breviated by CC) will have to be introduced, as in [Grumbach and Milo, 1995]. The easiest
way to understand connected components is to look at the transitively reduced graph which
represents a pomset:

Definition 2 (Connected Component, CC). The connected components of a pomset are ex-
actly those connected sub-graphs of the transitively reduced graph which represent the pomset.

Based on the definitions of connected components, it will now be possible to define the
CC-Extraction operator:

Definition 3 (CC-Extraction, κ). The CC-Extraction operator κ : Ppomset (E) →
Pbag (Ppomset (E)) returns a bag of pomsets, each containing one connected component of
the original pomset. It is written as κA.

Example

A more generalised example than given in (4.10) and (4.11) is:

κ

{
a

b

b
a

b

b
a c

}
=


{

a
b

b

} {
a

b

b

} {
a c

}
Note that in the present example the result is a bag and not a set as one pomset comes up
twice.

Stefano Merenda 67

4. Pomsets in the context of metamodelling

This operator will also help to extend the operators on the sets union, intersection, subset,
and difference to pomsets. For further details please refer to Section 4.4.9, Union, ∪, p. 73
and the following.

4.4.2. Expansion, χ

Let A = 〈a, c, c, a〉 be a list of elements. If each of the elements shall be replaced by
others, e. g. a should be replaced by a, b and c should be replaced by c, d, the result will be
B = 〈a, b, c, d, c, d, a, b〉.

Formally, a replacement function f : E → Ppomset (E) will be required. For our example
this replacement function will be f = {(a 7→ 〈a, b〉), (b 7→ 〈c, d〉)}.

If we would deal with sets, the formal definition of such a replacement is easy to formulate:

B =
⋃
e∈A

f(e)

In the context of lists (or even pomsets in general) replacing elements is more complicated.
Nevertheless, it could be defined by a replacement function f :

Definition 4 (Expansion, χ). Let f be a function f : EA → Ppomset (Ef). f(e) =〈
Ef(e), Vf(e), λf(e),≺f(e)

〉
denotes the pomset quadruple that results from applying f to

e ∈ EA. Without loss of generality, disjoint sets of vertices are assumed for all these pom-
sets. Aχf is a pomset where all elements e ∈ A are replaced by the pomset f(e), preserving
the order:

Aχf =
def
〈E′, V ′, λ′,≺′〉

where

E′ =
⋃
e∈EA

Ef(e) ⊆ Ef

V ′ =
{

(v, w)
∣∣ v ∈ VA ∧ w ∈ Vf(λA(v))

}
λ′ : V ′ → E′, (v, w) 7→ λf(λA(v))(w)

≺′ =
{

((v, w), (v′, w′))
∣∣ (v ≺A v′) ∨ (v = v′ ∧ w ≺f(λA(v)) w

′)
}

(4.12)

Thus, the expansion operator can be seen as a graph transformation wherein f defines the
replacement rules.

Example

{
a

b

b
a c

}
χ

(a 7→ {a, b}),
(b 7→ 〈b, c〉),

(c 7→ ∅)

 =


a

b

b

b

c

c
a b


In particular, the expansion operator will be used for defining the navigation operator of
the Edge Algebra. For further details please refer to Chapter 6, Queries on abstract words
- the Edge Algebra, p. 95.

A special situation occurs if the replacement function is an identity function over pomsets
fid. In this case the expansion operator does not – as might be assumed – result in an

68 Stefano Merenda

4.4. Operators on pomsets

equal pomset. Instead, this only makes sense if the elements of the pomsets are pomsets
themselves (and thus also the identity function is defined over pomsets). Then, the expansion
operator removes internal pomsets. The expansion operator in particular will, together with
the identity function, invert the CC-Extraction operator:


{

a
b

b

} {
a

b

b

} {
a c

} χfid =

{
a

b

b
a

b

b
a c

}

4.4.3. Order Expansion

The previously defined expansion operator allows for a replacement of a pomset’s elements.
In an analogous way, the Order Expansion operator replaces the edges of the transitively
reduced graph representation of a pomset.

This operator will be used in particular when infixes will be defined within a textual syntax.
(For further details please refer to Chapter 8, Textual Concrete Syntaxes in M2L, p. 153.)
For a given sequence of symbols 〈a, b, c〉, for example, it will then be possible to insert an
infix element x very easily:

〈a, b, c〉 −→χ {x} = 〈a, x, b, x, c〉

Definition 5 (Order Expansion, −→χ). A−→χ B is a pomset containing all elements out of
A preserving the order, and additionally adds the pomset B for each transitively reduced
relationship between two elements e1 ≺ e2, such that ∀b ∈ B : e1 ≺ b ≺ e2:

A−→χ B =
def
〈E′, V ′, λ′,≺′〉

where

E′ = EA ∪ EB
V ′ = VA ∪ (tr(≺A)× VB)

λ′ : V ′ → E′, v 7→

{
λA(v) if v ∈ VA
λB(vB) if v = 〈·, vB〉 ∈ (tr(≺A)× VB)

≺′ = ≺A ∪{〈
vA,
〈〈
v1
A, ·
〉
, ·
〉〉 ∣∣ vA �A v1

A

}
∪{〈〈〈

·, v2
A

〉
, ·
〉
, vA
〉 ∣∣ v2

A �A vA
}
∪{〈〈〈

·, v2
A

〉
, ·
〉
,
〈〈
w1
A, ·
〉
, ·
〉〉 ∣∣ v2

A �A w1
A

}
∪{〈〈〈

v1
A, v

2
A

〉
, vB

〉
,
〈〈
w1
A, w

2
A

〉
, wB

〉〉 ∣∣ 〈v1
A, v

2
A

〉
=
〈
w1
A, w

2
A

〉
∧ vB ≺B wB

}
tr(≺A) is the transitively reduced relationship of ≺A

(4.13)

Example

{
a b c

} −→χ { d
e

e

}
=

{
a d

e

e
b c

}

Stefano Merenda 69

4. Pomsets in the context of metamodelling

4.4.4. Additive Union,]

This binary operator is already known from bags. In contrast to the ordinary union operator,
multiplicities are added instead of building the maximum. Thus, each single element of both
pomsets – even if there are duplicates – occurs separately in the resulting pomset. This allows
to preserve the internal order of the given pomsets. In contrast to the concatenation (see
Section 4.4.5, Concatenation, ⊕, p. 70) no additional ordering is defined.

Definition 6 (Additive Union,]). A]B is a pomset containing all elements in A and B,
which preserve the order of those elements and do not add any additional order. Thus, all
elements in A are unrelated to those in B.

A]B =
def
〈EA ∪ EB , VA ∪ VB , λA ∪ λB ,≺A ∪ ≺B〉 (4.14)

Example{
a c a

a

b

}
]

{
a

a

b
b d

}
=

{
a c a

a

b
a

a

b
b d

}

For bags, the additive union operator works as usual:

{a, a, b}] {a, b, c} = {a, a, a, b, b, c}

4.4.5. Concatenation, ⊕

Whereas additive union is known from bags, this operator is already known from lists (and
sequences). As pomsets build a unifying concept for both bags and lists, both operators
are sensitive to pomsets. This binary operator therefore represents the second type for
unifying two pomsets. The behaviour is quite similar to additive union: It also sums up
the multiplicity of elements and the internal order is also preserved. In contrast to additive
union, concatenation also preserves the order of the operands as known from concatenating
sequences.

Definition 7 (Concatenation, ⊕). A ⊕ B is a pomset containing all elements in A and
B, which preserve the order of those elements and additionally make up all elements in A
smaller than those in B.

A⊕B =
def
〈EA ∪ EB , VA ∪ VB , λA ∪ λB ,≺A ∪ ≺B ∪(VA × VB)〉 (4.15)

Example {
a c a

a

b

}
⊕

{
a

a

b
b d

}
=


a c

a
a

b

a
a

b

b d


For lists, the concatenation operator works as usual:

〈a, a, b〉 ⊕ 〈a, b, c〉 = 〈a, a, b, a, b, c〉

70 Stefano Merenda

4.4. Operators on pomsets

4.4.6. Projection, ↓

Later on, it will be seen that a symmetric intersection operator for pomsets cannot be
defined element by element but has to be defined on connected components. The projection
operator should be an adequate substitute for this lack.

In many situations it is required for the elements of an arbitrary resulting pomset to be
restricted to a defined set of elements. This is done by the projection operator:

Definition 8 (Projection, ↓). A ↓ B is the pomset A in which all elements are removed
that are not in B – independent of their exact multiplicity in B. Order and multiplicities
within A are preserved.

A ↓ B =
def

Aχr

where

r : EA → Ppomset (EA ∩ EB) , e 7→

{
{e} if e ∈ B
∅ if e /∈ B

e ∈ B ⇔ ∃v ∈ VB : λB(v) = e

(4.16)

Note that the projection operator is not symmetric: While order and multiplicity of the
left operand are preserved in the end, order and multiplicity are irrelevant for the second
operand. It is therefore sufficient for the right operator to be defined as a set. Nevertheless
the operator allows pomsets on the right side but ignores additional information.

Example

{
a c a

a

b

}
↓

{
b

a

d

}
=

{
a c a

a

b

}
↓ {a, b, d} =

{
a a

a

b

}

The projection operator does the same for sets as the intersection:

{a, b, c} ↓ {a, b, d} = {a, b, c} ∩ {a, b, d} = {a, b}

Note that such an equation is not correct for bags!

4.4.7. Complement Projection, ↓∗

The pomset operator for Complement Projection is defined in an opposite way to projection:
Whereas the projection operator removes those elements not contained by the right operand,
the difference operator removes those elements that are contained by the right operand.
Apart from that, the two operators are quite similar: Both operators preserve order and
multiplicities of the left operand and both operators ignore order and multiplicities of the
right operand.

Stefano Merenda 71

4. Pomsets in the context of metamodelling

Definition 9 (Complement Projection, ↓∗). A ↓∗B is the pomset A in which all elements are
removed that are in B – independent of its exact multiplicity in B. Order and multiplicities
within A are preserved.

A ↓∗B =
def

Aχr

where

r : EA → Ppomset (EA ∩ EB) , e 7→

{
{e} if e /∈ B
∅ if e ∈ B

e ∈ B ⇔ ∃v ∈ VB : λB(v) = e

(4.17)

Example

{
a c a

a

b

}
↓∗
{

c
c

d

}
=

{
a c a

a

b

}
↓∗ {c, d} =

{
a a

a

b

}

4.4.8. Consists Of, b

It will be seen that whenever a domain will be specified for a property to be defined (e. g.
a property name should be a list of strings) that a pomset only consists of elements out
of a given set of elements. For sets that can be easily realised by the subset predicate.
The corresponding generalisation of this subset predicate for pomsets as defined in Sec-
tion 4.4.12, Subset, ⊆, p. 74 does, however, not even fulfil these requirements for lists:

{a, b} ⊆ {a, b, c}

But:

〈a, b〉 6⊆ {a, b, c}

Because of these facts, the consists-of operator will be defined:

Definition 10 (Consists Of, b). A b B if, and only if, all elements occurring in A also
occur in B, independent of order and multiplicity of the elements.

A b B ⇔
def

A ↓ B = A (4.18)

Example

{
a c a

a

b

}
b

{
a

b

c
d

}

In many situations, the right operand is specified as a set:

{
a c a

a

b

}
b {a, b, c, d}

72 Stefano Merenda

4.4. Operators on pomsets

But: {
a c a

a

b

}
6b {a, b}

4.4.9. Union, ∪

As pomsets are a generalisation of sets and bags, even the fundamental operators/predicates
Union ∪, Intersection ∩, and Subset-Of ⊆ shall be generalised. This should be done such
that the common meaning of those operands for sets and bags is kept unchanged. In addition,
the following rules should also be true over pomsets:

A = B ⇔ (A ⊆ B ∧B ⊆ A)

(A ∩B) ⊆ A

A ⊆ (A ∪B)

(4.19)

In order to achieve this, these operators are reduced to those of bags in case of pomsets,
whereas the elements of bags are the connected components of the pomsets.

Definition 11 (Union, ∪). A∪B is a pomset containing the connected components of A and
B such that the quantity of each connected component represents the maximum of quantities
in each pomset A and B.

A ∪B =
def

(κA ∪bag κB) χfid (4.20)

Example

{
a c a

a

b

}
∪

{
a

a

b
a

a

b
a

}
=

{
a c a

a

b
a

a

b
a

}

For bags and sets, the union operator works as usual:

{a, a, b} ∪ {a, b, c} = {a, a, b, c}

4.4.10. Intersection, ∩

For the same reason as described for unions in Section 4.4.9, Union, ∪, p. 73 intersections
are defined over pomsets as follows:

Definition 12 (Intersection, ∩). A ∩ B is a pomset containing the connected components
of A and B such that the quantity of each connected component represents the minimum of
quantities in each pomset A and B.

A ∩B =
def

(κA ∩bag κB) χfid (4.21)

Stefano Merenda 73

4. Pomsets in the context of metamodelling

Example

{
a c a

a

b

}
∩

{
a

a

b
a

a

b
a

}
=

{
a

a

b

}

For bags and sets, the union operator works as usual:

{a, a, b} ∩ {a, b, c} = {a, b}

4.4.11. Difference, \

For the same reason as described for unions in Section 4.4.9, Union, ∪, p. 73 the difference
over pomsets is defined as follows:

Definition 13 (Difference, \). A \ B is a pomset containing the connected components of
A and B such that the quantity of each connected component represents the subtraction of
quantities in each pomset A and B (or zero if the result is negative).

A \B =
def

(κA \bag κB) χfid (4.22)

Example

{
a c a

a

b

}
\

{
a

a

b
a

a

b
a

}
=
{

a c
}

For bags and sets, the union operator works as usual:

{a, a, b} \ {a, c} = {a, b}

4.4.12. Subset, ⊆

For the same reason as described for unions in Section 4.4.9, Union, ∪, p. 73 the difference
over pomsets is defined as follows:

Definition 14 (Subset, ⊆). A ⊆ B is true if, and only if, the quantity of each connected
component in pomset A is greater than in pomset B.

A ⊆ B ⇔
def

κA ⊆bag κB (4.23)

Example

{
a c

}
⊆

{
a c a

a

b

}

74 Stefano Merenda

4.4. Operators on pomsets

But:

{a} 6⊆

{
a c a

a

b

}

For bags and sets, the subset operator works as usual:

{a, b} ⊆ {a, a, b}

4.4.13. Cardinality, |·|

In order to get the size of a set or the length of a list, the cardinality operator is defined.

Definition 15 (Cardinality, |·|). |A| returns the total number of elements within pomset A
taking duplicates into account.

|A| =
def
|VA| (4.24)

Example ∣∣∣∣∣
{

a
b

a

b
c

}∣∣∣∣∣ = 5

4.4.14. Depth, ‖·‖

The depth operator is related to the cardinality operator which has previously been intro-
duced. In contrast to cardinality, the depth operator takes the order of the elements into
account: The depth of a pomset equals the length of the longest path of the transitively
reduced graph representing the pomset. For a formal definition, the depth of a vertex will
be defined first:

Definition 16 (Depth of a vertex vi, ‖vi‖). For a given pomset A, the depth of a vertex vi,
denoted by ‖vi‖, returns the length of the longest path from the root vertex of the correspond-
ing connected component to the vertex vi. Hereby, the length of a path meets the number of
nodes therein. The depth of root vertices themselves therefore equals 1.

Now, the depth of a pomset can be defined:

Definition 17 (Depth, ‖·‖). ‖A‖ returns the maximum depth over all vertices vi ∈ VA. For
empty pomsets, ‖∅‖ = 0 holds.

‖A‖ =
def

{
maxvi∈VA

‖vi‖ ifA 6= ∅
0 ifA = ∅

(4.25)

Example ∥∥∥∥∥
{

a
b

a

b
c

}∥∥∥∥∥ = 3

Stefano Merenda 75

4. Pomsets in the context of metamodelling

4.4.15. Multiplicity, ∈m

The multiplicity operator represents the generalisation of the element-of predicate of the set
theory. While the element-of predicate only indicates whether an element is part of a pomset
or not, the multiplicity operator returns the number of occurrences. If the multiplicity is
zero, the element is not an element of the pomset.

Definition 18 (Multiplicity, ∈m). a ∈m A returns the number of occurrences of a in the
pomset A.

a ∈m A =
def
|A ↓ {a}| (4.26)

Example

b ∈m

{
a

b

a

b
c

}
= 2

4.4.16. Path, π

The partial order of a pomset can be interpreted in different ways. One interpretation states
that if two elements of a pomset are unordered to each other, these two elements are seen
as alternatives.

In case an encoding shall be defined such that an ”a” or ”b” stands within round brackets,
it can be defined by the following pomset:

 ”(”

”a”

”b”

”)”

 (4.27)

Again, the interpretation of this pomset is that ”a” and ”b” are encoded alternatively. Thus
the explicit codings are 〈 ”(”, ”a”, ”)” 〉 and 〈 ”(”, ”b”, ”)” 〉. The path-operator – denoted
as a π – should return this interpretation explicitly:

π

 ”(”

”a”

”b”

”)”

 =

 ”(”

”(”

”a”

”b”

”)”

”)”


The path operator therefore returns a pomset of which each connected component is totally
ordered and represents one possible encoding.

Definition 19 (Path, π). πA is a pomset of which each (totally ordered) connected compo-
nent represents one path by the transitively reduced graph representing the pomset A. Equal
connected components are preserved as duplicates within the resulting pomset.

76 Stefano Merenda

4.4. Operators on pomsets

Example

π

 a
b

a
b c

d

d
 =



a a b

a b b

c d

c d


4.4.17. Totalise, τ

In the previous section (Section 4.4.16, Path, π, p. 76), the partial order was interpreted as
alternatives. Another, more straight-forward interpretation states that if two elements of a
pomset are unordered to each other, these two elements are not seen as alternatives, but
must both occur in e. g. an encoding and only the order thereof is not fixed.

In case an encoding shall be defined such that an ”a” and a ”b” stands within round brackets
in an arbitrary order, this can be defined by the same pomset (4.27) from the last section.

This time the interpretation states that the explicit encodings are 〈 ”(”, ”a”, ”b”, ”)” 〉 and
〈 ”(”, ”b”, ”a”, ”)” 〉. The totalise-operator – denoted as a τ – should return this interpre-
tation explicitly:

τ

 ”(”

”a”

”b”

”)”

 =

 ”(”

”(”

”a”

”b”

”b”

”a”

”)”

”)”


The totalise operator therefore returns a pomset of which each connected component is
totally ordered and represents one possible encoding.

Definition 20 (Totalise, τ). τA is a pomset of which each (totally ordered) connected com-
ponent represents one possible totalisation of the ordering of the pomset A. Equal connected
components do not occur.

Example

τ

{
a

b

a
c

}
=

 a a b c

a b a c


4.4.18. Sub-Pomset, [i; j]·

The Sub-Pomset operator is a generalisation of a common operator on sequences/lists:
namely an operator to get a sub-sequence beginning and ending at a dedicated index. For
a given sequence 〈 ”(”, ”a”, ”b”, ”c”, ”)” 〉, for example, the three inner characters shall be
obtained. The Sub-Pomset operator should allow such a use-case:

[2; 4] 〈 ”(”, ”a”, ”b”, ”c”, ”)” 〉 = 〈 ”a”, ”b”, ”c” 〉

Stefano Merenda 77

4. Pomsets in the context of metamodelling

The generalisation of the operator is based on the depth of a vertex as defined in Defini-
tion 16:

Definition 21 (Sub-Pomset, [i; j]·). [i; j]A is a pomset that is restricted to the vertices v of
A, such that i ≤ ‖v‖ ≤ j. If j = ∗, no upper limit is defined.

[i; j]A =
def
〈EA, {v ∈ VA | i ≤ ‖v‖ ≤ j } , λA,≺A〉

[i; ∗]A =
def

[i; ‖A‖]A
(4.28)

Example

[2; 4]


a

b

b

c c
d

e f

 =


b

b

c c

f


4.4.19. First, 1

The First operator is a special case of the Sub-pomset operator. It returns the first element
for sequences. The general definition for a pomset is defined as follows:

Definition 22 (First, 1). 1A is a set of those elements out of A which have no predecessor
according to the partial order in A.

1A =
def

[1; 1]A (4.29)

Example

1


a

b

b

c c
d

e f

 = {a, e}

4.4.20. Order Inverse, ≷

Definition 23 (Order Inverse, ≷). ≷A is the same pomset as A except that the order is
inversed. If A is completely unordered, this operator has no effect.

≷A =
def
〈EA, VA, λA, {(v, w) | w ≺A v }〉 (4.30)

Example

≷

{
a

c

b
a

c

b
c

}
=

{
c

b
a

c

b
a c

}

78 Stefano Merenda

4.4. Operators on pomsets

4.4.21. Order Destroy, µ

Definition 24 (Order Destroy, µ). µA deletes the order of the pomset A. Thus, the result
is a bag.

µA =
def
〈EA, VA, λA, ∅〉 (4.31)

Example

µ

{
a

c

b
a

c

b
c

}
= {a, a, b, b, c, c, c}

4.4.22. Duplicate Destroy, ε

Definition 25 (Duplicate Destroy, ε). εA is a pomset wherein all vertices v ∈ VA being
mapped to the same label by λA will collapse to form one unique vertex with that label, and
wherein the order on these new objects is the order consistent with that of the sources of the
elements. Thus, the result is a poset.

εA =
def
〈EA, EA, fid,≺′〉

where

fid is the identity on EA

≺′ =

{
(e, e′)

∣∣∣∣ (∃v, v′ : (λA(v) = e) ∧ (λA(v′) = e′) ∧ (v ≺A v′))
∧ (∀v, v′ : (λA(v) = e ∧ λA(v′) = e′)⇒ ¬(v′ ≺A v))

} (4.32)

Example

ε

{
a

c

b
a

c

b
c a

}
=
{

a b c
}

4.4.23. Duplicate Destroy Over CCs, ε⊂

Definition 26 (Duplicate Destroy Over CCs, ε⊂). ε⊂A is pomset wherein duplicate con-
nected components are removed.

ε⊂A =
def

(εκA)χfid (4.33)

Example

ε⊂

{
a

c

b
a

c

b
c a

}
=

{
a

c

b
c a

}

Stefano Merenda 79

4. Pomsets in the context of metamodelling

4.4.24. Predicates for pomset types

As defined in Section 4.1, Relationship between different types of sets, p. 61, a set of different
pomset types exists. In order to be able to check easily whether a pomset is of a special
type, the following predicates will be defined:

Definition 27 (Predicates for pomset types).

empty?A⇔
def
|A| = 0

singleton?A⇔
def
|A| ≤ 1

set?A⇔
def

µεA = A

bag?A⇔
def

µA = A

list?A⇔
def

τA = A

toset?A⇔
def

(τA = A) ∧ (εA = A)

poset?A⇔
def

εA = A

(4.34)

Example

toset? 〈a, b, c〉 = >
bag? 〈a, b, c〉 = ⊥

4.5. Running Example

As described in Section 3.3, Informal description of the modelling language, p. 49, the present
exemplary modelling language describes weak-causal dataflow networks. Due to the weak
causality thereof upon an evaluation of such a network, the order of said evaluation is crucial.
As has also been described, cycles are not allowed within a network except a pre-Block is
located inbetween.

Such an evaluation order is, in general, not total all the time as some sub-components do
not depend on each other whereas others do. The result is a partial order over all sub-
components. As already mentioned, the pre-Blocks play a special role: As it has been
possible to create cycles by using that block, these cycles need to be broken up.

By using pomsets, the evaluation order can easily be described by the following pomset:

evalOrder =


dT0 mult0

pre0

add0

 (4.35)

The pomset states that dT0 must be evaluated before the evaluation of mult0, add0 cannot
be evaluated before the evaluation of mult0 and pre0. The evaluation order of dT0 and pre0
is left open, for example.

The following chapters will show, how to calculate this pomset formally by inspecting the
model in terms of abstract syntax.

80 Stefano Merenda

Chapter 5
Models as Abstract Words

In order to formalise metamodelling languages e. g. for comparing two different types
thereof, models will have to be introduced first. Models are often defined as instances
of metamodels. Independent of the concrete meaning of what an instance is, this definition
leads to the undesired strong coupling between model and metamodel. The idea of formal
languages will be followed instead: The definition of the principal superstructure of words (a
sequence of terminal symbols) is completely independent of the way of defining the language.
Influenced by that idea, a general superstructure for models will be defined, independent
of a metamodelling language. A model defined within such a superstructure will be called
an abstract word. Whereas words, as defined in formal languages, represent a model in a
concrete textual way (which will be called textual concrete words for a better distinction),
abstract words concentrate on the underlying concepts including their properties which de-
scribe the links inbetween. In the following section, a formal definition of these abstract
words will be provided.

Contents
5.1. M-graphs (Model-graphs) . 81

5.2. Defining M-graphs without using pomsets 85

5.3. Graph-like notation for Abstract Words 86

5.4. Node equivalence . 86

5.5. Mapping established metamodelling concepts to abstract words 88

5.6. Running Example . 92

5.7. Defining M2L – Step 1: M2L Meta-Metamodel in terms of an
Abstract Word . 94

5.1. M-graphs (Model-graphs)

While textual concrete words are defined as a sequence of symbols out of an alphabet, an
abstract word will be defined by a special type of directed graph where the vertices are
labelled by concepts and the directed edges are labelled by properties. Thus, the basic ele-
ments for abstract words are not characters but a set of concepts and properties. According
to that, an abstract alphabet is defined as follows:

Stefano Merenda 81

5. Models as Abstract Words

Definition 28 (Abstract alphabet). An abstract alphabet Σ is a pair 〈C,P 〉 where C is
a partially ordered set of concepts and P is a set of properties. Furthermore, the two
sets C and P must be disjoint. The partial order over concepts represents the refinement
hierarchy and thus reflects the specialisation/generalisation principle. When a concept A is
a specialisation of the concept B we denote A ≺ B.

In the running example there e. g. exists the refinement relationship Network ≺ Component
which means that every network is a component. For a better readability concepts will
always be written by starting with a capital letter, whereas properties begin with a small
letter. Before providing the complete formal definition of an abstract word, a short example
(Figure 5.1) shall be introduced describing the signature for e. g. an add -block out of our
running example as described in Section B.2, Exemplary Model: Basic Library, p. 312 by
both a textual concrete as well as an abstract word which are closely related to graphs
wherein the edges are partially ordered (which is denoted by dashed arrows).

(x : Any , y : Any −> r e s u l t : Any)

(a) textual concrete word

Signature

Port

Port

Port

Identifier : x

Identifier : y

Identifier : result

inPort

inPort

outPort

name

name

name

(b) abstract word

Figure 5.1.: Example: abstract and textual concrete word of a signature

In particular when having a look at the alphabets, the difference becomes transparent:
For the textual concrete word the alphabet of terminal symbols in the form of tokens is
Σ = {”(”, ”)”, ”,”, ”:”, ”−>”, ”Any”, ”x”, ”y”, ”result”}, whereas the abstract alpha-
bet for the abstract word is Σ = 〈{Signature, Port, Identifier} , {inPort, outPort, name}〉.
While the textual concrete word is just a collection of characters and strings, the abstract
word represents the structure of the language in an explicit way. Even a taxonomy can
be derived. The concepts Signature, Port, and Identifier label the vertices, whereas the
properties inPort, outPort, and name label the edges. The type Any, denoted in the textual
concrete word, is skipped in the abstract word, because the present running example is un-
typed in general. Thus, the reserved word Any does not contain any additional information
and is therefore skipped in abstract syntax.

Figure 5.1(b) illustrates already that abstract words are closely related to traditional graphs
with their common definitions for e. g. vertex or label. As usual for graphs, a set of vertices
is necessary in addition to the set of concepts and properties. In some situations it is helpful
to explicitly write down the element out of the set of vertices in the graphical representation.
The vertex element is denoted after the concept name, separated by a colon. In the present
example, this is done for the three identifier nodes. This procedure could, of course, be
performed for all vertices as shown in Figure 5.2. In case of identifiers, the vertex element is
named as the identifier itself. As described in Section 5.5.3, Attributes, p. 89, this notation
is only a shortcut for modelling attributes such as strings – as in this case.

82 Stefano Merenda

5.1. M-graphs (Model-graphs)

Signature : s

Port : p0

Port : p1

Port : p2

Identifier : x

Identifier : y

Identifier : result

inPort

inPort

outPort

name

name

name

Figure 5.2.: Example: abstract word including names for each vertex

Note that the implicit meaning of the concepts and properties is not defined in a formal
way herein. Thus, a replacement of the abstract alphabet by e. g. Σ = 〈{A,B,C} , {a, b, c}〉
including the replacement of the vertex names by c0, c1, c2 will render the abstract word (as
shown in Figure 5.3) meaningless although the structure is preserved. Such a replacement
can be interpreted as an obfuscation:

A

B

B

B

C : c0

C : c1

C : c2

a

a

b

c

c

c

Figure 5.3.: Example: obfuscated abstract word of a signature

As the input ports should be defined in an ordered way, the order in the present example
(Figure 5.1(b)) is reflected by a dashed arrow between the two edges. Abstract words should
generally allow a partial order between edges wherein both of which have the same source
vertex and are labelled by the same property. Thus, an order between edges that are not
labelled by the same property is not allowed. In the present example, an arrow (thus an
ordering) between one of the input ports and the output port, for example, is not allowed.
Similar to the notation for pomsets only the transitively reduced arrows are shown.

According to these requirements, the set of edges labelled by the same property by a function
mapping each vertex to a pomset of vertices, can be specified from a mathematical point of
view. This function is called an edge function:

Definition 29 (Edge function). An edge function over a set of vertices V is a total function
mapping each vertex to a pomset of target vertices. The set of all edge functions is denoted
by EV = V → Ppomset (V).

According to the present example, e. g. for the edge function which describes the property
inPort can be defined by:

{
(s 7→ {p0 → p1}), (p0 7→ ∅), (p1 7→ ∅), (p2 7→ ∅),

(x 7→ ∅), (y 7→ ∅), (result 7→ ∅)

}
Thus, for the vertex s the given edge-function evaluates to the two input ports. For all other
vertices it evaluates to an empty set, indicating that there is no outgoing edge labelled by
inPort for these vertices.

Stefano Merenda 83

5. Models as Abstract Words

Thanks to the edge functions, a formal definition of the superstructure for graphs such as
given in Figure 5.1(b) becomes possible:

Definition 30 (M-graph). A model graph (M-graph) is a Σ-labelled, directed, partially
ordered multi-graph which is described as a quadruple 〈Σ, V, type, edge〉 wherein

• Σ = 〈C,P 〉 is an abstract alphabet,

• V is a set of vertices which is disjoint to both sets C and P ,

• type : V → C is a total function which labels each node with a concept out of the
alphabet, and

• edge : P → EV is a total function which assigns an edge function out of EV to each
property.

For a given M-graph a directed multi-graph 〈V,E〉 with the identical set of vertices can be
derived by defining the bag E as follows:

E =
def

(v1, v2) ∈ V × V

∣∣∣∣∣∣
∑
p∈P

v2 ∈m edge(p)(v1)

 (5.1)

Note that the notation used is defined in (4.8). The mapping to directed multi-graphs allows
for an adoption of terms and definitions – such as cycle and path – from graph-theory to
M-graphs.

In some situations, an inverse type-function is useful. It is defined as:

type−1 : C → V, c 7→ {v ∈ V | type(v) = c} (5.2)

According to Definition 30, the abstract word shown in Figure 5.1(b) can now be written as
an M-graph ω = 〈Σ, V, type, edge〉 wherein Σ = 〈C,P 〉 and

• C = {Port, Signature, Identifier}

• P = {inPort, outPort, name}

• V = {s, p0, p1, p2, x, y, result}

• type =

{
(s 7→ Signature), (p0 7→ Port), (p1 7→ Port), (p2 7→ Port),

(x 7→ Identifier), (y 7→ Identifier), (result 7→ Identifier)

}

• edge =



(
inPort 7→

{
(s 7→ {p0 → p1}), (p0 7→ ∅), (p1 7→ ∅), (p2 7→ ∅),

(x 7→ ∅), (y 7→ ∅), (result 7→ ∅)

})
,

(
outPort 7→

{
(s 7→ {p2}), (p0 7→ ∅), (p1 7→ ∅), (p2 7→ ∅),

(x 7→ ∅), (y 7→ ∅), (result 7→ ∅)

})
,

(
name 7→

{
(s 7→ ∅), (p0 7→ {x}), (p1 7→ {y}), (p2 7→ {z}),

(x 7→ ∅), (y 7→ ∅), (result 7→ ∅)

})


Note that the partially ordered set C in this example is unordered. As is usual in the context
of graph theory, the concrete set of vertices is irrelevant. An equivalence over M-graphs will
therefore be defined in Definition 31:

84 Stefano Merenda

5.2. Defining M-graphs without using pomsets

Definition 31 (M-graph equivalence). Two M-graphs ω1 = 〈Σ1, V1, type1, edge1〉 and ω2 =
〈Σ2, V2, type2, edge2〉 are equivalent (denoted by ω1

∼= ω2) if, and only if, a bijection ϕ :
V1 →bij V2 exists, such that

• ∀v ∈ V1 : type1(v) = type2(ϕ(v)),

• ∀p ∈ P1 ∩ P2, v ∈ V1 : edge1(p)(v)χϕ = edge2(p)(ϕ(v)),

• ∀p ∈ P1 \ P2, v ∈ V1 : edge1(p)(v) = ∅, and

• ∀p ∈ P2 \ P1, v ∈ V2 : edge2(p)(v) = ∅.

Note that ϕ can be used as a replacement function for the pomset expansion operator,
as single values and singleton pomsets, as introduced in Section 4.1, Relationship between
different types of sets, p. 61, are treated in a unique way.

According to this definition, unused concepts and properties can be added to the alphabet
without influencing the equivalence relation. This characteristic of the abstract alphabet
is similar to that of formal languages: A word does not change when adding additional
(unused) symbols to the alphabet. Having introduced M-graphs, a formal definition of the
term Abstract word will now be possible:

Definition 32 (Abstract word). An abstract word is an M-graph.

5.2. Defining M-graphs without using pomsets

In order to illustrate the relationship to traditional graph theory, we will show in this
section how to define M-graphs without using pomsets. Instead of using pomsets as done
in Definition 30, the following definition should only use the concepts out of the traditional
graph theory. This can be easily achieved by defining an explicit set of edges E combined
with two functions α and β with maps these edges to the according source and target
vertices. As done in the original definition, the function type defines the labels for vertices
out of the set of concepts C. In a similar way the edges are labelled by the function prop
with a property out of the set of properties P . Finally, the ordering is modelled explicitly
by a partial order over the set of edges E. Since the partial ordering is only allowed between
edges which have the identical source vertex and the same property label, an additional
constraint is defined for the order.

Definition 33 (M-graph without using pomsets). A model graph (M-graph) is
a Σ-labelled, directed, partially ordered multi-graph which is described as a 7-tuple
〈Σ, V, E, α, β, type, prop,v〉 wherein

• Σ = 〈C,P 〉 is an abstract alphabet,

• V is a set of vertices,

• E is a set of nodes,

• α : E → V is a total function which defines the source vertex for each edge,

• β : E → V is a total function which defines the target vertex for each edge,

• type : V → C is a total function which labels each node with a concept out of the
alphabet,

Stefano Merenda 85

5. Models as Abstract Words

• prop : V → P is a total function which labels each edge with a property out of the
alphabet,

• v ⊆ {〈e1, e2〉 ∈ E × E |α(e1) = α(e2) ∧ prop(e1) = prop(e2)} is the partial order over
edges which have the identical source vertex and the same property label.

Based on this definition we now want to compare both ways of describing M-graphs by
a common use-case in the metamodelling domain: For a given vertex v ∈ V and a given
property p ∈ P we want to get all target vertices including the correct ordering. By example,
we want to find out all input ports for a given signature in the right order. For an abstract
word as defined in Figure 5.2 the given vertex v is the signature s, and the given property
p = inPort. The expected result would be {p0 → p1}. When using Definition 30 the
requested function is defined as follows:

V × P → Ppomset (V)
〈v, p〉 7→ edge(p)(v)

(5.3)

When using Definition 33 the requested function can not return a set of vertices since both
duplicates and ordering should be preserved. Instead, we have to go back to a set of edges
which are unique on the one hand and are ordered on the other.

V × P → Pset (E)
〈v, p〉 7→ {e ∈ E |α(e) = v ∧ prop(e) = p} (5.4)

Let F ⊆ Pset (E) be the resulting set of the function. In order to get the full information
additionally the set of vertices V , the mapping function α, and the partial order v is
necessary. Finally, the quadruple 〈V, F, α,v〉 builds the wanted result. When comparing
this quadruple with the definition for pomsets (Definition 1), it shapes up exactly as a
pomset while V meets the basic set of elements, F meets the set of vertices of the pomset, α
meets the pomset labelling function, and finally v meets the partial ordering of the pomset.

5.3. Graph-like notation for Abstract Words

As can be seen in Figure 5.1(b), a traditional graph notation is used for visualising abstract
words. The edges are labelled by properties. The label of each node always shows the
assigned concept. If the vertex out of V is of interest for a node, it can optionally be shown
after the concept, separated by a colon. The node labelled by String : x, for example,
implies that the concept is String and the vertex element is x.

Strictly speaking, the vertex element x has nothing to do with the fact that this element
should represent a string “x”. In fact, the two nodes String : x and String : y, for example,
out of the example are equal as the concrete vertex element is irrelevant. This notation
is basically a shortcut to avoid an explicit modelling of the strings “x”, “y” or “result”.
Section 5.5.3, Attributes, p. 89 shows the realisation thereof.

5.4. Node equivalence

According to Definition 30, a property may contain duplicates, because the co-domain of
edge functions is Ppomset (V). As edges are defined over the set of vertices, duplicates in the

86 Stefano Merenda

5.4. Node equivalence

resulting pomset of an edge-function occur if, and only if, multiple edges from one node to
another labelled by the same property exist.

Signature : s

Port : p0

Port : p2

Identifier : x

Identifier : result

inPort

inPort

outPort

name

name

(a) Signature with duplicate port p0

Signature : s

Port : p0

Port : p1

Port : p2

Identifier : x

Identifier : result

inPort

inPort
outPort

name

name

name

(b) Signature with equal ports p0, p1

Figure 5.4.: Example: Signature modeled with duplicate or same port

In Figure 5.4(a) a signature with a duplicate port is shown. In Figure 5.4(b) the same
signature is modelled but without having multiple edges from the signature to one port. For
simplicity, the order of the input ports is skipped herein.

Although the signature in Figure 5.4(b) has duplicate ports, it is not possible to detect them
by just inspecting the two vertices p0 and p1: Informally spoken, two ports can be seen as
equal if the “internal structure” is the same. Formally, the internal structure consists of all
vertices that can be reached by a respective vertex. In order to achieve a formal definition,
reachable sub-graphs will be introduced.

The idea behind this definition is that two nodes are equal if the sub-graph, which can be
reached by a respective vertex, is equal. Herein a vertex can be reached if it can be navigated
thereto transitively. In Figure 5.4, for example, the signature can reach every vertex while a
port cannot reach the signature or the other ports. As the sub-graphs, which can be reached
by the two ports p0 and p1 in Figure 5.4(b), are exactly the same, the two ports should be
seen as being equal. Formally, it is defined as follows:

Definition 34 (Reachable sub-graph). For a given M-graph ω = 〈Σ, V, type, edge〉
and a node v ∈ V the reachable sub-graph is defined for v in ω as rsubω (v) =

def

〈Σ, VR, type ∩ (VR → C), edge ∩ (P → EVR
)〉, wherein VR is the set of all reachable nodes

starting from v, thus VR =
{
v′ ∈ V

∣∣ it exists a path v ∗−→ v′ in ω
}

.

Based on this definition, the node equivalence can be defined:

Definition 35 (Node equivalence). Given a M-graph ω = 〈Σ, V, type, edge〉, two ver-
tices v1, v2 ∈ V are equal (denoted by v1 ' v2), if, and only if, a bijection ϕ ex-
ists, representing a M-graph equivalence between the two reachable sub-graphs, such that
rsubω (v1) ∼= rsubω (v2), and the bijection ϕ for this M-graph equivalence maps v1 to v2,
thus ϕ(v1) = v2.

Note that according to these definitions, two equal nodes may also see each other, such as

Stefano Merenda 87

5. Models as Abstract Words

in Figure 5.5.

Node : v0 Node : v1

other

other

Figure 5.5.: Example: Equal nodes seeing each other

Please keep in mind that due to this definition for equality of nodes said equality of nodes will
be influenced by each and every outgoing edge which is added to a model. This will partic-
ularly help taking a decision about which direction an association should have and whether
an association should be bidirectional or not. Please refer also to Section 5.5.1, Bidirectional
associations, p. 88.

5.5. Mapping established metamodelling concepts to abstract
words

In the following section, it shall be outlined of how to model usual constructs of the meta-
modelling domain by abstract words. It will be shown that the definition for M-graphs in
Definition 30 is powerful enough to model all desired constructs, it shall, however, also be
shown what the restrictions are. In particular they are Bidirectional Associations, Compo-
sitions, and Attributes.

Note that at this point, it is not metamodels that are discussed: We are still talking about
models. So when it’s, for example, about compositions, it will not be discussed of how to
model them within a metamodel, but within a model.

In this situation the question arises whether a construct is explicitly represented in a model
or not. If not, the construct is only represented within the metamodel. In many situations it
is a combination of both. In the case of multiplicities, for example, the concrete cardinality
of a pomset can, on the one hand, be read out of the abstract word. On the other hand,
the restriction of what valid cardinalities for a given property are, is only represented in the
metamodel.

5.5.1. Bidirectional associations

Bidirectional associations in metamodelling represent links between nodes that are navigable
in both directions. Additional properties sourceChannel and destChannel representing the
other direction of the association can be assumed, for example, for the fromPort- and
toPort-property of our exemplary model. As edges in M-graphs are always directed, a
bidirectional link is represented by two separate edges. Figure 5.6 illustrates a bidirectional
link between channels and ports: The source port p0 is connected to the destination port p1

via a channel ch.

Note that two properties like these are not marked as being the opposite of each other.
Additionally, the condition that for each property an opposite one exists is not guaranteed
at the level of abstract words. Therefore an adequate construct within the metamodel will
be necessary. As mentioned in Section 5.4, Node equivalence, p. 86 above, modelling a link
in a bidirectional way has an influence on the node equivalence as defined in Definition 35.

88 Stefano Merenda

5.5. Mapping established metamodelling concepts to abstract words

Port : p0 Channel : ch Port : p1

fromPort

destChannel

toPort

sourceChannel

Figure 5.6.: Example: Bidirectional link between ports and channels

5.5.2. Compositions

A Composition is a special kind of association wherein one node is seen as a part of another
one. A port can be seen as a part of a signature, for example. In order to express this
fact in an abstract word explicitly, a special property composite is introduced: If a node
is part of another one, an additional edge labelled by this composite property points from
the containing node to the contained node. Figure 5.7 illustrates a signature containing two
ports.

Signature : s

Port : p0

Port : p1

inPort

optio
nal

composite

outPortcomposite

Figure 5.7.: Example: Compositional links

By this approach, the compositional link becomes an explicit part of abstract words. As
for bidirectional associations, the specific characteristics of compositional links (e. g. that a
node must have at least one parent) are, again, not specified at the level of abstract words.
Thus, characteristics such as the lack of cycles within compositional relationship, have not
yet been described.

Note that this way of modelling compositional links does not allow to bind the composition
to a specific property: Imagine a signature in which some ports may be optional. A way to
model this fact is to add an edge labelled by e. g. a property optional that points to each
optional port. In Figure 5.7 the port p0 is marked as such an optional port. In such a
scenario, it can not be determined whether the property inPort or the property optional
is the compositional property. In fact, a property is not compositional at all. Instead, the
nodes are in a compositional relationship independent of any other property. In particular,
no additional relationship is necessary at all.

5.5.3. Attributes

Some attributes, such as identifiers modelled as character strings, have already been used
in the present examples. Another example relevant in practice are natural numbers. Up to
now, only the shortcut notation for attributes has been introduced. Most metamodelling
approaches introduce a set of primitive types in order to solve this requirement. In order
to prevent the need of additional theories, it shall be shown in this section that attributes

Stefano Merenda 89

5. Models as Abstract Words

themselves can be described by the constructs that have already been introduced without
introducing any primitive type. Thus, this approach also allows a flexible treatment of the
set of primitive types: In different environments different primitive types can be introduced.

Attributes with a finite domain: Enumerations

In principle, types wherein the domain of which is a finite set, can be modelled by adding a
concept for each value of the type. In general, enumerations as used in metamodelling are
of that kind. A relevant example is the type Boolean: An individual concept is added to
the abstract alphabet for each logical value: True and False. Thus, an optional port out
of our example in Figure 5.7 can be modelled in a different way, such as demonstrated in
Figure 5.8.

Signature : s

Port : p0

Port : p1

True

False

inPort
composite

outPortcomposite

optional

optional

Figure 5.8.: Example: Boolean values in abstract words

Instead of having an edge from the signature node to those port nodes which are marked
as optional, an additional outgoing edge labelled again by the property optional exists for
each port, but targets to a node labelled by one of the two concepts True or False.

In analogy to the type Boolean arbitrary other enumeration types can be modelled. An
example may be a type SignalLightColors with the elements {Red, Y ellow,Green}.

Attributes with an infinite domain

For attributes wherein the domain of which is an infinite set, such as for natural numbers
or character strings, the way of modelling shown above is not sufficient. As most data
structures can be modelled by natural numbers, it will first be shown of how to model this
special kind of attribute. Basically it must be noted that there are arbitrary ways to model
natural numbers by an M-graph. In this context, two of those shall be presented:

The first one follows the mathematical definition which defines natural numbers by the
predecessor function. In terms of an M-graph, a node representing a natural number simply
points to its predecessor. The corresponding edge is labelled by the property pred. Zero is
marked by having no predecessor. Figure 5.9(a) models the natural number 3 by using the
predecessor construct.

The second way of modelling natural numbers simply counts the increments which are mod-
elled by multiple edges from the node representing the natural number to a node labelled by
the concept Increment. The corresponding edge is labelled by a property inc. Figure 5.9(b)
models the natural number 3 by using the increment construct.

Based on natural numbers, elements of arbitrary data structures can be modelled now. An
important example will be the character strings: Character strings can be modelled as a list
of characters. A character itself is modelled as a natural number being the Unicode for the
character.

90 Stefano Merenda

5.5. Mapping established metamodelling concepts to abstract words

Natural : 3 Natural : 2 Natural : 1 Natural : 0
pred pred pred

(a) Natural number modelled by predecessor

Natural : 3 Increment

inc

inc

inc

(b) Natural number modelled by increments

Figure 5.9.: Example: Two ways of modelling natural numbers

This encoding shall be shown for the character string “result” which is used in our example
in Figure 5.1(b) as an identifier for a port. The abstract word representing the character
string “result” is modelled as shown in Figure 5.10.

String : result

Character : r

Character : e

Character : s

Character : u

Character : l

Character : t

Natural : 114

Natural : 101

Natural : 115

Natural : 117

Natural : 108

Natural : 116

character

character

character

character
charactercharacter

unicode

unicode

unicode

unicode

unicode

unicode

Figure 5.10.: Example: Modelling the String “result” as an abstract word

The node representing the character string is labelled by the concept String. It contains a
list of character nodes which are labelled by the concept Character. The edges are labelled
by character and are totally ordered.

Attributes as a specialisation of compositions

The composition construct has been introduced in Section 5.5.2, Compositions, p. 89. It will
be shown that an attribute is treated as a specialisation of compositions in this approach.
Thus, the composite-edge will have to be added in the previous diagrams in parallel to e. g.
the character-edges or unicode-edges, as the characters modelled are part of the string. Also
the natural number representing the Unicode for a character is seen as being a composition
of the character. Figure 5.11 shows an M-graph of a string including the composite-edges.

Stefano Merenda 91

5. Models as Abstract Words

String : AB

Character : A

Character : B

Natural : 65

Natural : 66

character
composite

character
composite

unicode

composite

unicode

composite

Figure 5.11.: Example: Modelling the String “ab” including the composite-edges

Note that up to now there has been no difference between compositions and attributes.
Nevertheless, it will be shown in Chapter 7, Abstract Syntaxes in M2L, p. 119 that a differ-
entiation will be necessary.

5.6. Running Example

Having introduced M-graphs for representing abstracts words in a mathematical way, a
more complex abstract word shall now be shown to get a better idea of how a model is
represented by M-graphs. The integrator network as shown in Figure 3.3 has been introduced
in Chapter 3, Running example: Modelling dataflow algorithms, p. 45. For convenience, it
will be illustrated here again. The M-graph representing this network is shown in Figure 5.13.

dT

integrator

pre

y:Anyx:Any
c1

c2 c5c4

c3

Figure 5.12.: Exemplary model: integrator network (copy of Figure 3.3)

As can be seen, the size of M-graphs increases rapidly. Larger M-graphs become more and
more confusing because of the huge number of edges. Thus, even in the given example, a
number of edges and nodes will be omitted for clarity:

• Except for the node representing the total integrator network nint and the two ports
p1 and p2 thereof, the explicit identifier nodes (labelled by the concept Identifier and
reachable via an edge labelled by the property name) are omitted.

• Even for the three modelled identifiers “x”, “y”, and “integrator” the detailed mod-
elling of the character strings as presented in Section 5.5.3, Attributes, p. 89 is omitted.

• All composite edges are omitted.

• For the two lower Channel-nodes ch2 and ch4 the incoming property channel from
nint is omitted.

• For the two lower Block-nodes bdT and bpre the incoming property subcomponent from
nint is omitted.

92 Stefano Merenda

5.6. Running Example

Network : nint

Identifier : integrator

SignaturePort : p1 Port : p2

Identifier : x Identifier : y

Block : bmult

Signature

Port

Port

Port

Block : badd

Signature

Port

Port

Port

Block : bdT

SignaturePort

Block : bpre

SignaturePort Port

Channel : ch1 Channel : ch5

Channel : ch3

Channel : ch2 Channel : ch4

signature

name

inPort outPort

name name

subcomponent

signatureinPort

inPort
outPort

subcomponent

signatureinPort

inPort
outPort

signature

outPort

signature

inPortoutPort

channel

fromPort

toPort

fromPort

toPort

channel

fromPort toPort

fromPort

toPort

channel

fromPort

toPort

toPort

Figure 5.13.: Example: Modelling the integrator network as an abstract word

Due to the complexity of this example, a second, more trivial model will be introduced which
will be used in the following chapter for demonstrating edge algebra (see Chapter 6, Queries
on abstract words - the Edge Algebra, p. 95). This simplified example is the easiest network
that can be imagined: The identity simply connecting its single input port directly to its
single output port. Figure 5.14 will show such a network in diagrammatic syntax. The
M-graph representing this identity network is shown in Figure 5.15.

identity

out:Anyin:Any ch1

Figure 5.14.: Exemplary model: identity network (diagrammatic syntax)

In contrast to the first example, the composite edges are modelled explicitly in this second
example.

Stefano Merenda 93

5. Models as Abstract Words

Network : nid

Signature : sPort : pin Port : pout

Channel : ch1

signature composite

inPort

composite

outPort

composite

channel composite

to
P

or
t

from
P

ort

Figure 5.15.: Exemplary model: identity network as an abstract word

5.7. Defining M2L – Step 1: M2L Meta-Metamodel in terms of an
Abstract Word

Arbitrary abstract words can now be defined in terms of M-graphs. This brings the reader to
the first step of defining the metamodelling language M2L. As described in Section 2.4, Pro-
cedure specifying the (self-describing) metamodelling language M2L , p. 42, the difficulty of
defining the metamodelling language itself is that it is defined by its own constructs. This
results in a chicken-and-egg problem. Nevertheless it will now be possible to initialise the
definition as illustrated in Figure 5.16.

Queries on
abstract words:
the Edge Algebra

Specifying abstract
languages:
Abstract Syntaxes

Models as
Abstract Words:
M-graphs

Specifying concrete
languages:
Concrete Syntaxes

Step 1 Step 2 Step 3 Step 4

Figure 5.16.: Overview - First of the four steps of specifying M2L.

As every language, also the metamodelling language itself is described by a metamodel.
In this special case, it will be called meta-metamodel. As the term already suggests, a
metamodel (and thus the meta-metamodel as well) is also a (special kind of) model. Hence,
the meta-metamodel can formally be written down as a M-graph. This can be done for the
entire and final meta-metamodel of M2L as described in Chapter 9, The overall specification
of M2L, p. 171.

The present work will skip the explicit representation of this M-graph which describes the
meta-metamodel of M2L as it would be extremely large and thus very hard to read.

Note that although the meta-metamodel can be written down, nothing can be stated about
the meaning of this model. This is the reason why the further steps in the following chapters
will be required.

94 Stefano Merenda

Chapter 6
Queries on abstract words - the Edge Algebra

In the previous section it has been shown how it is possible to describe models as abstract
words in the form of M-graphs, which has solely been introduced for that purpose. In model-
based engineering it is now necessary to be able to infer new properties from the basis of a
given model or to check consistency conditions in many situations. In analogy to relational
data bases, a query and constraint language will be essential in both cases. Whereas the
well-known Relational Algebra [Codd, 1970] offers a formal basis for SQL [ISO, 2008], a
corresponding suitable approach for the metamodelling domain is still missing. The Edge
Algebra presented herein is supposed to bridge this gap.

The Edge Algebra will be introduced in two steps: At first, focus shall be on fundamental
Edge Algebra which concentrates exclusively on navigation across edges. Secondly, the Edge
Algebra will be extended in order to be able to deal with predicates which allows to describe
consistency conditions.

Contents
6.1. Fundamental Edge Algebra . 95

6.2. Propositional Edge Algebra . 106

6.3. Defining abstract languages using Edge Algebra 111

6.4. Running Example . 113

6.5. Defining M2L – Step 2: M2L defined by Edge Algebra state-
ments . 117

6.1. Fundamental Edge Algebra

In our examples from Figure 5.12 and Figure 5.13 the question might come up, which of the
sub-components do directly depend on a given one. The answer would come in the form
of a newly, calculated edge function. The result is intuitionally easy to indicate: E. g. badd
depends on bpre and bmult, meaning that dependsOn(badd) = {bpre, bmult}. In the graphical
notation it will be possible to present the intuitive result in Figure 6.1. For clarity, all nodes
except the Block-nodes will be omitted.

Stefano Merenda 95

6. Queries on abstract words - the Edge Algebra

Block : bmult Block : badd

Block : bdT Block : bpre
d
ep

en
d
sO

n

d
epen

d
sO

n

dependsOn

d
ep

en
d
sO

n

Figure 6.1.: Example: dependsOn-edge for integrator network (reduced M-graph)

The question might also be what the correct execution orders of the sub-components in the
network stand for, thus leading to the causal order of the sub-components. It will be shown
that, as it is possible to deal with partial orders, such computations considering orders and
duplicates can also be expressed in an elegant way.

6.1.1. Carrier set

As already the name reveals, edge algebra forms an algebra across edges as defined in
Chapter 5, Models as Abstract Words, p. 81 for abstract words. More precisely, the algebra
is defined across edge functions V → Ppomset (V) to a given set of vertices V . The carrier
set is therefore defined as follows:

Definition 36 (Carrier set for the fundamental Edge Algebra). The carrier set of the
fundamental edge algebra is the set of all edge functions EV .

From our example in Figure 5.13 all edges labelled by one property such as subcomponent
or fromPort would correspond to exactly one element of this carrier set. Edge Algebra
now defines operators to deduce new edge functions (such as dependsOn) from given edge
functions (such as subcomponent or fromPort).

One example of a simple but important operator is the edge inverse. (Details will be de-
scribed in Section 6.1.4, The fundamental edge operators: Empty Edge, Reflexive, Equality,
Inverse, Closure, and Navigation, p. 100.) The edge inverse to the property composite,
for example, corresponds to exactly that edge function wherein all directions are inverted.
Thus the inverse edge to the property composite always directs towards the parent node.
Figure 6.2 illustrates the resulting edge by using the example introduced in Figure 5.15.

Network : nid

Signature : sPort : pin Port : pout

Channel : ch1

signature composite

inPort

composite

outPort

composite

channel composite

to
P

or
t

from
P

ort

Figure 6.2.: Illustration of the inverse edge to the property composite (in red)

96 Stefano Merenda

6.1. Fundamental Edge Algebra

6.1.2. From abstract words to edge-functions: The Edging Operator

The alert reader will have noticed that the properties subcomponent or fromPort do, how-
ever, correspond to one edge function respectively, but according to the definition of abstract
words they are at first only an identifier for elements from the set of properties P . Moreover,
individual vertices from V and concepts from C respectively cannot be used directly in the
edge algebra as they do not dispose of the form of an edge function V → Ppomset (V). In the
following, concepts, properties as well as vertices are supposed to be transferred into edge
functions for edge algebra. Therefore, the edging operators will be introduced:

Definition 37 (Edging Operators). For a given M-graph ω = 〈Σ, V, type, edge〉 wherein
Σ = 〈C,P 〉 and the set of vertices V is disjoint to both C and P , the edging operators are
defined as follows:

Pω :x =
def

{
edge(x) if x ∈ P
V → Ppomset (V) , v 7→ ∅ otherwise

Cω :x =
def

{
V → Ppomset (V) , v 7→ {w ∈ V | type(w) � x} if x ∈ C
V → Ppomset (V) , v 7→ ∅ otherwise

Tω :x =
def

{
V → Ppomset (V) , v 7→ {w ∈ V | type(w) = x} if x ∈ C
V → Ppomset (V) , v 7→ ∅ otherwise

Vω :x =
def

{
V → Ppomset (V) , v 7→ {x} if x ∈ V
V → Ppomset (V) , v 7→ ∅ otherwise

(6.1)

The edging operator thus maps the identifiers for concepts, properties and vertices in the
context of a given abstract word to edge functions. It is hereby differentiated between four
cases:

1. As has already been indicated, properties are mapped to edge functions one-to-one.
If our exemplary model is given by ω, Pω : subcomponent and Pω : fromPort would
consequently be the corresponding edge functions. Figure 6.3 illustrates the edge
function Pω :fromPort with the help of our exemplary model.

Network : nid

Signature : sPort : pin Port : pout

Channel : ch1

signature composite

inPort

composite

outPort

composite

channel composite

to
P

or
t

from
P

ort

Figure 6.3.: Property edging: illustration of the edge function Pω :fromPort

2. Concepts are mapped to edge functions that return the set of all vertices that are
labelled by the given concept for each vertex. In detail there are two different edging

Stefano Merenda 97

6. Queries on abstract words - the Edge Algebra

operators for concepts. Tω : returns all nodes that are exactly labelled by the given
concept. In contrast Cω :includes also those nodes that are labelled by refining concepts
according to the partial order of the concepts. An example from the abstract word is
Cω :Port. The resulting edge function directs from every vertex to those vertices that
are labelled with the concept Port. Figure 6.4 illustrates the edge function Cω :Port
with the help of our exemplary model.

Network : nid

Signature : sPort : pin Port : pout

Channel : ch1

signature composite

inPort

composite

outPort

composite

channel composite

to
P

or
t

from
P

ort

Figure 6.4.: Concept edging: illustration of the edge function Cω :Port

3. Vertices are mapped to constant edge functions as well. The result will be a single-
valued set with the respective vertex for each vertex. Note that the set of vertices
becomes relevant for the edging operator. Thus, although the concrete set of vertices
is irrelevant concerning the equality of M-graphs, it must be agreed upon a concrete
set of vertices when using the edging operator over a vertex. An example is Vω : pout
which directs from every vertex to the vertex pout. Figure 6.5 illustrates the edge
function Vω :pout with the help of our exemplary model.

Network : nid

Signature : sPort : pin Port : pout

Channel : ch1

signature composite

inPort

composite

outPort

composite

channel composite

to
P

or
t

from
P

ort

Figure 6.5.: Vertex edging: illustration of the edge function Vω :pout

4. In all other cases (the identifier is not contained in the respective set C, P , or V) the
resulting edge function assigns the empty pomset to every vertex. Thus, no vertices
are connected via this edge function. It is thus possible to apply any identifier at the
edging operator without demanding them explicitly in one of the sets C, P , and V .

98 Stefano Merenda

6.1. Fundamental Edge Algebra

If it can be seen from the context that an edge function is expected and which abstract
word it refers to, the operators C :, P :, and V : can be used without denoting the subscript
identifier for the abstract word.

Finally, the Star Edging Operator will be introduced, which is defined as the additive union
of all properties of the abstract alphabet. Here as well the subscript ω may be omitted in
case it already becomes obvious from the context:

Definition 38 (Star Edging Operator). For a given M-graph ω = 〈Σ, V, type, edge〉 the star
edging operator is defined as follows:

∗ω =
def

V → Ppomset (V) , v 7→
⊎
p∈P

edge(p)(v) (6.2)

Figure 6.6 illustrates the edge function ∗ω with the help of our exemplary model.

Network : nid

Signature : sPort : pin Port : pout

Channel : ch1

signature composite

inPort

composite

outPort

composite

channel composite

from
P

ort to
P

or
t

Figure 6.6.: Star edging: illustration of the edge function ∗ω

6.1.3. Derived pomset operators

Having finished the description of how a given abstract word is formalised as a set of edge
functions, the operators of the algebra will be addressed now. Most of the operators can
be canonically deduced from pomset operators. This is achieved by applying the pomset
operator as defined in Section 4.4, Operators on pomsets, p. 66 for each vertex to the resulting
pomsets of the given edge functions. Due to the carrier set of the Edge Algebra, only
those pomset operators are relevant of which both the domain and co-domain are purely
pomsets. Table 6.1 provides an overview of the operators. The formal definition is given by
Definition 39.

Definition 39 (Derived pomset operators).

op : EV n → EV
e1, . . . , en 7→ op(e1, . . . , en) =

def

(
V → Ppomset (V) ,
v 7→ op(e1(v), . . . , en(v))

)
where

op ∈ {],⊕, ↓, ↓∗ ,∪,∩, \, π, τ, 1,≷, µ, ε, ε⊂}
n is the arity of the operator op

(6.3)

Stefano Merenda 99

6. Queries on abstract words - the Edge Algebra

operator notation

Additive Union e] f
Concatenation e⊕ f
Projection e ↓ f
Complement Projection e ↓∗ f
Union e ∪ f
Intersection e ∩ f
Difference e \ f
Path πe
Totalise τe
First 1e
Order Inverse ≷e
Order Destroy µe
Duplicate Destroy εe
Duplicate Destroy Over CCs ε⊂e

Table 6.1.: Overview of edge operators derived from pomset operators

It must be taken into consideration that the elements of the carrier set EV = V →
Ppomset (V) are functions themselves. This results primarily in the somehow unfamiliar
definition of operators which is to be explained in short by means of additive union: For
two edge functions e, f ∈ EV the resulting edge function given by e] f maps each vertex
v ∈ V to e(v)] f(v).

Thus, the respective pomset operator is applied to the result pomset of the edge function of
each node. In case of the additive union of two edge functions, the outgoing edges of the first
edge function are added to the outgoing edges of the second edge function for each node
by additively uniting the two respective pomsets of target nodes. The abstract example
provided in Figure 6.7 shall illustrate this procedure.

: v1

: v2

: v3

: v4

e
e

f

ff

e

: v1

: v2

: v3

: v4

(e⊕ f)(v1) =

{
v2 v2

v3

v4

}

(e⊕ f)(v2) = ∅

(e⊕ f)(v3) = {v4 → v2}

(e⊕ f)(v4) = ∅

Figure 6.7.: Illustration of a derived pomset operator using the example of e⊕ f

6.1.4. The fundamental edge operators: Empty Edge, Reflexive, Equality,
Inverse, Closure, and Navigation

Besides the canonically defined edge operators fundamental Edge Algebra comprises five
core operators which will be defined in the following section. Table 6.2 provides an overview
of these operators.

100 Stefano Merenda

6.1. Fundamental Edge Algebra

operator notation

Empty Edge ∅
Reflexive 	
Equality Edge ↪→
Edge Inverse �e
Navigation e.f
Closure ∧e

Table 6.2.: Overview of the fundamental edge operators

For the following definitions it will be assumed that e, f ∈ EV are two edge functions. The
four operators will then be defined as follows:

Empty Edge, ∅

Definition 40 (Empty Edge, ∅). ∅ is a constant edge operator wherein the resulting edge
function thereof assigns each node to an empty pomset.

∅ : → EV
7→ ∅ =

def
(V → Ppomset (V) , v 7→ ∅)

(6.4)

Reflexive, 	

The reflexive assigns each node exactly to itself. In Edge Algebra, the reflexive therefore
roughly corresponds to the construct which is often called self or this in object-oriented
languages.

Definition 41 (Reflexive,). 	 is a constant edge operator wherein the resulting edge
function thereof directs to itself for each vertex.

	 : → EV
7→ 	 =

def
(V → Ppomset (V) , v 7→ {v}) (6.5)

Figure 6.8 illustrates the edge operator 	 with the help of our exemplary model.

Network : nid

Signature : sPort : pin Port : pout

Channel : ch1

signature composite

inPort

composite

outPort

composite

channel composite

to
P

or
t

from
P

ort

Figure 6.8.: Illustration of the reflexive edge operator 	

Stefano Merenda 101

6. Queries on abstract words - the Edge Algebra

Please note that the Reflexive operator is a function of arity zero and is thus constant in
terms of Edge Algebra. Nevertheless, this operator results to an edge function that is not
constant at all.

Equality Edge, ↪→

The equality edge assigns each node to all equal nodes according the node equivalence
relation. Please refer to Section 5.4, Node equivalence, p. 86 for a detailed definition of this
relation. Note that this relation is reflexive in particular.

Definition 42 (Equality Edge, ↪→). ↪→ is a constant edge operator wherein the resulting
edge function thereof directs to all equal nodes.

↪→ : → EV
7→ ↪→ =

def
(V → Ppomset (V) , v 7→ {w ∈ V | w ' v }) (6.6)

As already said for the reflexive operator, the equality edge is also a function of arity zero
and is thus constant in terms of Edge Algebra. Nevertheless, this operator results to an
edge function that is not constant at all.

Edge Inverse,�

In many situations, a graph shall be traversed against the direction of the edges. In or-
der to fulfil that task, the Edge Inverse-operator will be introduced. Many metamodelling
frameworks offer no possibility to traverse against the edge direction. Thus, bidirectional
associations are always necessary. Due to the Edge Inverse-operator, bidirectional associa-
tions will not be required in such a situation in the present approach. The formal definition
is given as follows:

Definition 43 (Edge Inverse, �). The inverse of an edge function inverts the directions of
all edges. Hereby the order of pomsets is lost as only the outgoing (and not the incoming)
edges of one vertex can be ordered. Duplicates, however, will remain.

� : EV → EV
e 7→ �e =

def
(V → Ppomset (V) , v 7→ {w ∈ V | v ∈m e(w)}) (6.7)

Note that a double inversion will therefore result in the initial edge function, without order,
however. Figure 6.9 illustrates the Edge Inverse-operator with the help of our exemplary
model.

Navigation, .

Intuitively, the navigation e.f forms that edge function that results if a first navigation is
performed along e and afterwards along f , i. e. if the edges described by e are composed
of those of f . Due to this procedure, the resulting edge function will contain duplicates if
multiple paths exist from one vertex to another via e followed by f . Formally, the navigation
is defined by the expansion operator:

102 Stefano Merenda

6.1. Fundamental Edge Algebra

Network : nid

Signature : sPort : pin Port : pout

Channel : ch1

signature composite

inPort

composite

outPort

composite

channel composite

to
P

or
t

from
P

ort

Figure 6.9.: Illustration of the Edge Inverse-operator �Pω :composite

Definition 44 (Navigation, .). The resulting edge e.f maps each node v ∈ V to the pomset
e(v) wherein the elements w ∈ V of this pomset are replaced by the pomset f(w).

. : EV × EV → EV
e, f 7→ e.f =

def
(V → Ppomset (V) , v 7→ e(v)χf)

(6.8)

Figure 6.10 illustrates the Navigation-operator with the help of our exemplary model.

Network : nid

Signature : sPort : pin Port : pout

Channel : ch1

signature composite

inPort

composite

outPort

composite

channel composite

to
P

or
t

from
P

ort

Figure 6.10.: Illustration of the Navigation-operator (�Pω : toPort).(Pω :fromPort)

According to the definition of the navigation operator both order and duplicate information
is preserved. Due to pomsets, the preserving of the order is also possible if the navigation
is over two edges wherein of which is ordered and the other one is unordered. The result
will be a pomset which is neither a set nor a list. This fact renders the navigation operator
much more powerful than similar operators in other formalisms such as OCL [OMG, 2006b].
Figure 6.11 illustrates the Navigation-operator by two abstract exemplary models.

In both cases, a.b and e.f respectively result in an edge that maps v1 to a real pomset of
vertices:

(a.b)(v1) =

{
v4 v5

v6 v7

}
(e.f)(v1) =


v4

v5

v6

v7



Stefano Merenda 103

6. Queries on abstract words - the Edge Algebra

: v1

: v2 : v3

: v4

: v5

: v6

: v7
a a

b

b

b

b

a.b

a.b

a.b

a.b

(a) a ∈ (V → Pset (V)), b ∈ (V → Plist (V))

: v1

: v2 : v3

: v4

: v5

: v6

: v7
e e

f

f

f

f

e.f

e.f

e.f

e.f

(b) e ∈ (V → Plist (V)), f ∈ (V → Pset (V))

Figure 6.11.: Illustration of the Navigation-operator preserving the order

Closure, ∧

As usual definitions, the closure ∧e for a given edge function e maps each vertex to all vertices
that are transitively reachable by a vertex including itself. Additionally, the resulting set of
vertices may be partially ordered: First, the order of e is preserved. Secondly, the vertices
will be arranged in an ascending order via the length of the paths to reach these vertices.
If the order of two vertices is contradictory or if a directed cycle exists, the two vertices are
unordered. Formally, the closure is inductively defined:

Definition 45 (Closure, ∧).

∧ : EV → EV
e 7→ ∧e =

def
limn→∞

∧
n
e

where
∧

0
e =

def
	

∧
n
e =

def
ε
((∧

n−1
e
)
. (⊕ e)

)
(6.9)

The duplicate-destroy operator ε will be required as otherwise, potential cycles would cause
infinite multiplicities of nodes.

The following three examples shall illustrate how the reflexive-transitive closure works. The
respective first representation shows the original edge function of e and the second one the
reflexive-transitive closure ∧e. In order to be able to imagine it better with regard to the
resulting pomsets, ∧e will additionally be applied explicitly to each node.

104 Stefano Merenda

6.1. Fundamental Edge Algebra

Example 1: nodes that are reached several times (Figure 6.12)

: v1

: v2

: v3

: v4

e

e

e

e

: v1

: v2

: v3

: v4

∧e(v1) =

{
v1

v2

v3

v4

}

∧e(v2) = {v2 → v4}

∧e(v3) = {v3 → v4}

∧e(v4) = {v4}

Figure 6.12.: Illustration of the Closure-operator ∧e (example 1)

Node v4 can be reached by node v1 both via v2 and via v3. This results in the orders
{v1 → v2 → v4} and {v1 → v3 → v4}. As multiplicity is destroyed by the reflexive-transitive
closure, v4 will come up only once in the end.

This example also shows the similarity between the original graph and the resulting pomsets.
Nonetheless, the differences should be taken into consideration: The first representation
shows an edge function (resulting from a property) across all nodes. The pomset results
upon insertion of a particular node into the reflexive-transitive closure of the original edge
function and only reflects all reachable nodes.

Example 2: nodes conncected by multiple edges (Figure 6.13)

: v1 : v2

e

e : v1 : v2

∧e(v1) = {v1 → v2}

∧e(v2) = {v2}

Figure 6.13.: Illustration of the Closure-operator ∧e (example 2)

This second example shows the elimination of multiplicities due to closure formation. The
two edges from vertex v1 to vertex v2 result in a single edge when the closure operator is
applied to edge e.

Example 3: cyclical edge function (Figure 6.14)

: v1 : v2

e

e : v1 : v2

∧e(v1) = {v1, v2}

∧e(v2) = {v1, v2}

Figure 6.14.: Illustration of the Closure-operator ∧e (example 3)

Stefano Merenda 105

6. Queries on abstract words - the Edge Algebra

This third example shows how closure formation works in the case of cyclical edge functions.
As the order {v1 → v2} as well as the order {v1 → v2 → v1} etc. should be contained due
to the cycle, the duplicate-destroy operator ε will destroy the order here as well as they are
contradictory.

Finally, Figure 6.15 illustrates the Closure-operator with the help of our exemplary model.
Note that the ordering information will be omitted in this figure.

Network : nid

Signature : sPort : pin Port : pout

Channel : ch1

signature composite

inPort

composite

outPort

composite

channel composite

to
P

or
t

from
P

ort

Figure 6.15.: Illustration of the Closure-operator ∧Pω :composite

6.2. Propositional Edge Algebra

As shown in the examples mentioned above, it will be possible to deduce new edge functions
from a given set of edge functions and will thus be able to calculate new properties. Another
important aspect is the definition of consistency conditions on abstract words. Such con-
sistency conditions in the scope of our exemplary model from Figure 5.12 and Figure 5.13
were for example:

• A network must have a signature.

• Ports of a signature must have a name.

• All ports within a network must be connected correctly.

Edge algebra will be extended in the following to be able to formulate and evaluate such
predicates.

6.2.1. Extended carrier set

The carrier set of the algebra will therefore be extended by so-called node predicates and
node valuations in a first step. Propositional Edge Algebra will therefore from now on
comprise the following three carrier sets in total:

106 Stefano Merenda

6.2. Propositional Edge Algebra

EV =
def

V → Ppomset (V)

BV =
def

V → B
NV =

def
V → N

(6.10)

Accordingly, node predicates (BV) assign a logical value true or false to each vertex, whereas
node valuations (NV) assign a natural number (including zero) to each vertex.

Node predicates and node valuations will be visualised in the present graph notation by
including the assigned value in square brackets in the node marking. Figure 6.16 will provide
a simple example wherein nodes will be numbered with the help of a node valuation. In
addition, a node predicate will be defined in Figure 6.17, evaluating to true if the node
valuation is even; for odd node valuations the node predicate evaluates to false:

Network : nid [3]

Signature : s [1]Port : pin [0] Port : pout [2]

Channel : ch1 [4]

signature composite

inPort

composite

outPort

composite

channel composite

to
P

or
t

from
P

ort

Figure 6.16.: Exemplary model: node valuation

Network : nid [false]

Signature : s [false]Port : pin [true] Port : pout [true]

Channel : ch1 [true]

signature composite

inPort

composite

outPort

composite

channel composite

to
P

or
t

from
P

ort

Figure 6.17.: Exemplary model: node predicate

6.2.2. Derived boolean and numeric operators

Now that the carrier set has been extended, the corresponding additional operators will
be introduced in the following. Similar to pomset operators, most of the operators can
be canonically derived here as well. The basic principle is – just as in the case of pomset
operators – that operators are applied to the evaluations of each vertex.

Stefano Merenda 107

6. Queries on abstract words - the Edge Algebra

Definition 46 (Derived propositional edge operators).

op : XV n → YV
x1, . . . , xn 7→ op(x1, . . . , xn) =

def

(
YV ,
v 7→ op(x1(v), . . . , xn(v))

)
where

op ∈ {=,b,⊆, |·| , ‖·‖ , [·; ·]·} ∪ {=,≤,+,−, · ,÷,%,min,max} ∪ {∧,∨,¬,⇒,⇔}
n is the arity of the operator op

XV ,YV ∈ {EV ,BV ,NV } corresponds to the domain and co-domain of op

(6.11)

The set of operators is divided into three subsets which should indicate the three types
of operators: pomset, numerical, and boolean operators. Note that the equality operator
(=) can be applied to both pomsets and numericals. As node valuations operate on (non-
negative) naturals, the subtraction operator will result in zero if the left operator is smaller
than the right operator.

As an example, Definition 46 will be applied to the logical conjunction:

∧ : BV 2 → BV

p1, p2 7→ p1 ∧ p2 =
def

(
V → B,
v 7→ p1(v) ∧ p2(v)

)

6.2.3. Universally Quantified Edging

Fundamental edging has been introduced in Section 6.1.2, From abstract words to edge-
functions: The Edging Operator, p. 97: The according edge is returned for a given concept,
property or vertex. As it is now possible to talk about node properties, it is also desired to
express that a node property holds for each property and each concept respectively. This is
the reason why two special universal quantifiers will be introduced.

Definition 47 (Universally Quantified Edging). Let ω = 〈Σ, V, type, edge〉 be an M-graph
wherein Σ = 〈C,P 〉 and the set of vertices V is disjoint to both C and P .

Let Q ⊆ P be a set of excluded properties, and predP : P → BV be a node predicate depending
on a property, the quantified edging over properties will be defined as follows:

∀P : Pset (P)× (P → BV) → BV
〈Q,predP 〉 7→ ∀Pω : p \Q : predP (p)

=
def

(
V → B,
w 7→ (∀q ∈ P \Q : predP (q)(w))

)
(6.12)

Let D ⊆ C be a set of excluded concepts, and predC : C → BV be a node predicate depending
on a concept, the quantified edging over concepts will be defined as follows:

∀C : Pset (C)× (C → BV) → BV
〈D,predC〉 7→ ∀Cω : c \D : predC(c)

=
def

(
V → B,
w 7→ (∀d ∈ C \D : predC(d)(w))

)
(6.13)

108 Stefano Merenda

6.2. Propositional Edge Algebra

Figure 6.18 illustrates the Quantified Edging-operator with the help of our exemplary model:
The node predicate holds if each property of a node only directs towards composed nodes
according to the property composite.

Network : nid [true]

Signature : s [true]Port : pin [true] Port : pout [true]

Channel : ch1 [false]

signature composite

inPort

composite

outPort

composite

channel composite

to
P

or
t

from
P

ort

Figure 6.18.: Quantified edging ∀Pω : p \ {composite} : (Pω :p b Pω :composite)

6.2.4. Core propositional operator: Selection

Up to now, only the derived operators (see Section 6.2.2, Derived boolean and numeric oper-
ators, p. 107) and the Quantified Edging operators (see Section 6.2.3, Universally Quantified
Edging, p. 108) have been defined for propositional Edge Algebra. The final operator will
be defined in the following, which will again be more specific concerning Edge Algebra.

The Selection-operator strengthens the correlation between node predicates, node valuations
and the previously introduced edge functions (see Definition 29).

The basic idea of this selection operator is to select a set of vertices by a given predicate. An
example would be to find out all root vertices of a model in terms of the composite property:
Thus, all vertices which do not have an incoming composite edge should be returned. The
corresponding predicate would be (�P :composite = ∅).

Network : nid

Signature : sPort : pin Port : pout

Channel : ch1

signature composite

inPort

composite

outPort

composite

channel composite

to
P

or
t

from
P

ort

Figure 6.19.: Illustration of the Selection-operator σ(�P :composite = ∅)

This would result in a set of vertices. As this operator should be part of the Edge Algebra,
the result must be an edge function. Thus, in our example the resulting edge function
would return a constant edge function returning the same set of vertices for which the given
predicate holds for each vertex of the M-graph. The resulting edge function for our example,
which shall be named root, should be denoted as follows:

Stefano Merenda 109

6. Queries on abstract words - the Edge Algebra

root =
def

σ(�P :composite = ∅)

Figure 6.19 illustrates the given example with the help of our exemplary model. As the only
vertex for which the given predicate holds is nid, it is the only one that does not have an
incoming composite edge. Thus, an outgoing edge to this single node nid exists for each
node. Formally, a more generalised selection operator is defined as follows:

Definition 48 (Selection (bounded and unbounded)). Let f : (V → BV) ∪ (V → NV) be
either a function mapping a vertex to a node predicate BV or a function mapping a vertex
to a node valuation NV .

In case the co-domain of f consists of node predicates, σv : f(v) will result in a edge function
mapping a vertex v to a set of those nodes for which the node predicate f(v) holds.

In case the co-domain of f consists of node valuations, σv : f(v) will result in a edge
function mapping a vertex v to a bag in which the multiplicities of the vertices correspond
to the corresponding node valuation.

σ : ((V → BV) ∪ (V → NV)) → EV
f 7→ σv : f(v)

=
def

(
V → Ppomset (V) ,

w 7→ {u ∈ V | f(w)(u)}

)
(6.14)

If f is constant and does therefore not depend on a given vertex v, the unbounded version
of the selection operator can be used:

σ : (BV ∪NV) → EV

f 7→ σf =
def

(
V → Ppomset (V) ,

w 7→ {u ∈ V | f(u)}

)
(6.15)

Based on the introductory example, the selection operator of the Edge Algebra, defined in
Definition 48, is generalised in two ways:

• First, a selection may not only operate on node predicates but also on node valuations.
In this second case, normally a bag is returned instead of a set: The multiplicity of
each vertex is defined by the corresponding node valuation.

• Secondly, a selection may also depend on the vertex for which the node predicate/valu-
ation is evaluated. In the previous example, the resulting edge function is constant such
that the resulting set would be the same for each vertex. In the generalised form of the
selection operator, the node predicate (and thus the resulting set as well) may differ ac-
cording to the source node. Thus, the resulting edge function is generally not a constant
one. This shall be denoted by a bounded vertex variable. The difference shall be illus-
trated by a simple example in Figure 6.20. At first Figure 6.20(a) demonstrates a un-
bounded usage of the selection operator: f = (b Cω :A). At second Figure 6.20(b)
demonstrates a bounded usage of the selection operator: f(v) = (Vω :v b Cω :A).

110 Stefano Merenda

6.3. Defining abstract languages using Edge Algebra

A

B C

(a) σ(b Cω :A)

A

B C

(b) σv : (Vω :v b Cω :A)

Figure 6.20.: Difference between bounded and unbounded Selection-operator

Finally, Figure 6.21 illustrates the selection operator σ with the help of our exemplary model.
σv : (Vω : v b Pω : composite.∧Pω : composite) describes an edge function mapping a vertex
n to those vertices that transitively contain vertex n in terms of the property composite.

Network : nid

Signature : sPort : pin Port : pout

Channel : ch1

signature composite

inPort

composite

outPort

composite

channel composite
to

P
or

t

from
P

ort

Figure 6.21.: Illustration of the selection σv : (Vω :v b Pω :composite.∧Pω :composite)

6.3. Defining abstract languages using Edge Algebra

Abstract alphabets (see Definition 28) and abstract words have been introduced in the pre-
vious chapter based on M-graphs (see Section 5.1, M-graphs (Model-graphs), p. 81). This
section shall finally provide a definition of abstract languages according to the term language
in formal languages and the use of Edge Algebra for describing such abstract languages.

Definition 49 (Abstract language). The set of all abstract words over an abstract alphabet
Σ = 〈C,P 〉 is denoted by Σ~. An abstract language L over an abstract alphabet 〈C,P 〉 is
defined as a possibly infinite set of valid abstract words over Σ, thus L ⊆ Σ~.

Note that the encircled star remembers to the Kleene star but of course it is not. It should
only demonstrate the relationship to formal languages of constructing the set of all possible
words based on the alphabet. As the set of valid abstract words is infinite in most cases, an
explicit enumeration of all valid abstract words is impossible. Instead, abstract syntaxes are
used to specify abstract languages. Generally, there are many ways of specifying an abstract
language. A very fundamental one is using the Edge Algebra.

Stefano Merenda 111

6. Queries on abstract words - the Edge Algebra

The basic idea of specifying abstract languages using the Edge Algebra is to define con-
straints: An abstract word belongs to an abstract language if, and only if, all constraints
hold. It is possible to define node predicates over abstract words due to the proposi-
tional Edge Algebra introduced in Section 6.1, Fundamental Edge Algebra, p. 95 and Sec-
tion 6.2, Propositional Edge Algebra, p. 106. A special universal quantifier over all nodes
will be introduced for defining such invariants:

Definition 50 (Generality). Let p ∈ BV be a node predicate over the set of vertices V . Gωp
holds if, and only if, the given node predicate holds for all vertices within the abstract word
ω.

G : BV → B
p 7→ Gωp =

def
(∀v ∈ V : p(v))

(6.16)

Based on this Generality-operator it is now easy to formulate abstract syntaxes based on
the Edge Algebra. Formally, it is defined as follows:

Definition 51 (Abstract syntax based on the Edge Algebra). An abstract syntax S is a
tuple 〈Σ, inv〉 wherein Σ is an abstract alphabet and inv ∈ BV is a node predicate. The
specified abstract language will then result in L(S) =

def
{ω ∈ Σ~ | Gωinv }.

This way of specifying an abstract language shall be illustrated by defining an exemplary
abstract language of trees: Nodes are always labelled by the concept Node; edges are always
labelled by the property child. Figure 6.22(a) provides an exemplary M-graph of such a tree.
Figure 6.22(b) shows the tree including some additional, coloured edges and nodes which
must be forbidden by the invariants. Formally, the abstract syntax Stree = 〈Σtree, invtree〉
while Σtree = 〈Ctree, Ptree〉 is defined by the following specification:

Ctree = {Node}
Ptree = {child}

invtree = (6b P :child.∧P :child)
∧ (set?P :child)
∧ (|�P :child| ≤ 1)
∧ (|σ (|�P :child| = 0)| = 1)

Node

Node Node Node

Node Node

ch
ild

ch
ild

child

ch
il

d

child

(a) Exemplary M-graph being a
tree

Node

Node Node Node

Node Node

Node(4)

Node

ch
ild

ch
ild

child

ch
il

d
child

ch
ild

ch
il
d

(1
)

child (2)

ch
ild

(3
)

(b) Exemplary M-graph not being a tree due to
the coloured edges and nodes

Figure 6.22.: Valid and invalid abstract words for the exemplary tree language

112 Stefano Merenda

6.4. Running Example

The node predicate defining the invariant is made up of the following partial node predicates:

• (6b P :child.∧P :child) ensures that there won’t be any directed cycles within a tree.
Thus, the invalid edge (1) will be prevented by this node predicate in Figure 6.22(b).

• (set?P :child) firstly forbids an ordering between children and secondly it prevents
multiple edges to a child. Thus, the invalid edge (2) and the red coloured ordering will
be prevented by this node predicate in Figure 6.22(b).

• (|�P :child| ≤ 1) states that there is no node having more than one parent. Thus, the
invalid edge (3) will be prevented by this node predicate in Figure 6.22(b).

• (|σ (|�P :child| = 0)| = 1) states that one root node must have exactly one tree. Thus,
the invalid node (4) will be prevented by this node predicate in Figure 6.22(b).

Later on, a quite similar definition will be used to specify the property composite in a
formal way. Please refer to Chapter 7, Abstract Syntaxes in M2L, p. 119 for further de-
tails. This definition will also be used in the running example (see Section 6.4, Running
Example, p. 113).

Definition 51 allows a specification of abstract languages in a formal way without introducing
a special metamodelling language. In order to formalise or compare various metamodelling
approaches, a mapping can be defined that translates dedicated metamodels into this for-
malism. In the following Chapter 7, Abstract Syntaxes in M2L, p. 119, this approach shall
be followed strictly, so as to define a formal but even mighty metamodelling language.

6.4. Running Example

As Edge Algebra has now been completely introduced, a specification of many aspects
according to our running example will become possible. All in all, three aspects of meta-
modelling shall be illustrated. First, the specification of an abstract syntax in a formal way
shall be shown by using the Edge Algebra. Secondly, it shall be emphasised that additional
definitions of specific constraints are possible. Thirdly, it will be shown how to formulate the
inferred edge functions dependsOn and evalOrder that have previously been introduced.

6.4.1. Abstract Syntax using the Edge Algebra

Abstract languages and the definition thereof based on the Edge Algebra has been introduced
in Section 6.3, Defining abstract languages using Edge Algebra, p. 111. This section shall
now illustrate the formulation of abstract syntax in such a formal way by using the running
example as shown in Section 3.4, A first, semi-formal abstract syntax, p. 50.

Formally, the abstract syntax Snet = 〈Σnet, invnet〉 while Σnet = 〈Cnet, Pnet〉 is defined by
the following specification:

Cnet =

{
DefContainer, Library, Component,
Signature, Port, Block,Network, Channel

}

Pnet =

{
composite, name, includedLib, componentDef, includedBy, sublibrary,
signature, inPort, outPort, subcomponent, channel, fromPort, toPort

}

Stefano Merenda 113

6. Queries on abstract words - the Edge Algebra

invnet = (
(6b P :composite.∧P :composite)
∧ (set?P :composite)
∧ (σn : ((6= n)⇒ ((∧P :composite ↓ (n.∧P :composite)) = ∅)))

)∧
(b C :DefContainer ⇒ (
	 6b T :DefContainer

∧P :name b C :Identifier ∧ P :name b P :composite
∧ |P :name| = 1

∧P : includedLib b C :Library
∧ set?P : includedLib
∧µP : includedLib =�P : includedBy

∧P :componentDef b C :Component ∧ P :componentDef b P :composite
∧ set?P :componentDef

))∧
(b C :Library ⇒ (
	 b C :DefContainer

∧P : includedBy b C :DefContainer
∧ set?P : includedBy
∧µP : includedBy =�P : includedLib

∧P :sublibrary b C :Library ∧ P :sublibrary b P :composite
∧ set?P :sublibrary

))∧
(b C :Component⇒ (
	 6b T :Component
∧ 	 b C :DefContainer

∧P :signature b C :Signature ∧ P :signature b P :composite
∧ |P :signature| = 1

))∧
(b C :Signature⇒ (

P : inPort b C :Port ∧ P : inPort b P :composite
∧ toset?P : inPort

∧P :outPort b C :Port ∧ P :outPort b P :composite
∧ toset?P :outPort

))∧
(b C :Port⇒ (

P :name b C :Identifier ∧ P :name b P :composite
∧ |P :name| = 1

))∧
(b C :Block ⇒ (
	 b C :Component

))∧

114 Stefano Merenda

6.4. Running Example

(b C :Network ⇒ (
	 b C :Component

∧P :subcomponent b C :Component ∧ P :subcomponent b P :composite
∧ set?P :subcomponent

∧P :channel b C :Channel ∧ P :channel b P :composite
∧ set?P :channel

))∧
(b C :Channel⇒ (

P :name b C :Identifier ∧ P :name b P :composite
∧ |P :name| = 1

∧P :fromPort b C :Port
∧ |P :fromPort| = 1

∧P : toPort b C :Port
∧ set?P : toPort
∧ |P : toPort| ≥ 1

))

As can be seen, the node predicate invnet is built up in a way that is closely related to the
structure of a metamodel. After a common section which must hold for every node, there
are sections for each concept that must only hold if a node is of the given corresponding
concept. Due to this homogeneous structure focus shall be on the common section and the
first concept-specific section (i. e. for the concept DefContainer).

The common section defines the overall rules for compositions. They are quite the same
as has been introduced in our exemplary tree language in Section 6.3, Defining abstract
languages using Edge Algebra, p. 111. When replacing the property child by the property
composite exactly the denoted formulas except for the last part will be obtained: In contrast
to the exemplary tree language for compositions a forest is allowed. Thus, multiple root
nodes are possible.

The specific section is encapsulated by a node predicate such as (b C :DefContainer ⇒
(. . .)) for the concept DefContainer. It ensures that the included node predicates are
only relevant if, and only if, the dedicated node is of the corresponding concept such as
DefContainer.

(6b T : DefContainer) firstly ensures that there is no instance of the concept
DefContainer as it should be abstract. Afterwards the contained properties are speci-
fied: (P : name b C : Identifier) states that the property name directs towards a node
of the concept Identifier. (P : name b P : composite) states that the property name is
a composition. (|P :name| = 1) states that the multiplicity of the property name is [1..1].
The definition of the other properties will follow afterwards. As they are quite similar to
the first one, these properties will not be explained explicitly.

6.4.2. Additional Invariants

Up to now, only the metamodel as defined by the MOF diagram in Figure 3.2 has been
formalised. Nevertheless, it is now possible to define a set of additional consistency conditions
due to the expressive power of the Edge Algebra.

Stefano Merenda 115

6. Queries on abstract words - the Edge Algebra

Such a consistency condition can be defined for connecting ports based on our running
example: Up to now it has been possible to connect arbitrary ports via a channel although
it has not been reasonable in many cases. According to our language, a channel always
belongs to a network. First of all, such a channel should only connect ports located within
this network. Other ports outside this network must not be connected. Secondly, the source
port for a channel must be either an input port of the total network or an output port of
one of the sub-components. This rule can be applied for a destination port for a channel the
other way round: It must be either an output port of the total network or an input port of
one of the sub-components. Formally, it is defined as follows:

(b C :Channel⇒ (
P :fromPort b�P :channel.(P :signature.P : inPort

]P :subcomponent.P :signature.P :outPort)

∧P : toPort b�P :channel.(P :signature.P :outPort
]P :subcomponent.P :signature.P : inPort)

))

These additional node predicates can be seamlessly integrated into the existing definition of
the abstract language:

(b C :Channel⇒ (
P :name b C :Identifier ∧ P :name b P :composite
∧ |P :name| = 1

∧P :fromPort b C :Port
∧P :fromPort b�P :channel.(P :signature.P : inPort

]P :subcomponent.P :signature.P :outPort)
∧ |P :fromPort| = 1

∧P : toPort b C :Port
∧P : toPort b�P :channel.(P :signature.P :outPort

]P :subcomponent.P :signature.P : inPort)
∧ set?P : toPort
∧ |P : toPort| ≥ 1

))

6.4.3. Inferred edge functions dependsOn and evalOrder

Finally, the definition of the previously introduced edge functions shall be illustrated. The
edge function dependsOn, which was used as an introducing example in Section 6.1, Funda-
mental Edge Algebra, p. 95, can be specified as follows:

dependsOn =
def

P :signature.P : inPort.�P : toPort.
P :fromPort.�P :outPort.�P :signature

It is simply specified by a navigation over signatures, ports, and channels. Some of them
are navigated in their inverse direction.

The edge function evalOrder has been introduced in Section 4.5, Running Example, p. 80 of
Chapter 4, Pomsets in the context of metamodelling, p. 61. In that section, the evaluation

116 Stefano Merenda

6.5. Defining M2L – Step 2: M2L defined by Edge Algebra statements

order for all sub-components of a dataflow network has already been motivated. The diffi-
culty lies in the cycles that must be broken up at the position of the pre-block. A formal
definition can be as follows:

evalOrder =
def

ε(P :subcomponent. ≷∧(dependsOn ↓∗ �pre))
where

pre =
def

σ(b C :Block ∧ P :name = ”pre”)

6.5. Defining M2L – Step 2: M2L defined by Edge Algebra
statements

As shown in Section 6.4.1, Abstract Syntax using the Edge Algebra, p. 113, it is now possible
to define abstract languages by Edge Algebra statements. This leads to the second step of
defining the metamodelling language M2L as shown in Figure 6.23.

Queries on
abstract words:
the Edge Algebra

Specifying abstract
languages:
Abstract Syntaxes

Models as
Abstract Words:
M-graphs

Specifying concrete
languages:
Concrete Syntaxes

Step 1 Step 2 Step 3 Step 4

Figure 6.23.: Overview - Second of the four steps of specifying M2L.

Particularly due to that, it is therefore possible to define the abstract language for the
total metamodelling language M2L as defined in Chapter 9, The overall specification of
M2L, p. 171 in terms of Edge Algebra statements. Please keep in mind that from a formal
point of view still nothing is stated concerning the meaning of the metamodelling language.

Nevertheless is it possible to establish a correlation between the abstract language that can
be defined now and the abstract word that has been introduced in Section 5.7, Defining
M2L – Step 1: M2L Meta-Metamodel in terms of an Abstract Word, p. 94: The abstract
word is valid for the abstract language of M2L as the meta-metamodel is a metamodel in
particular.

The second relationship that shall be established is still open: Up to now, the abstract
language of M2L cannot be derived from the abstract word describing M2L. This gap will
be closed in the following chapter by introducing the semantics of M2L.

Stefano Merenda 117

Chapter 7
Abstract Syntaxes in M2L

In Section 6.4.1, Abstract Syntax using the Edge Algebra, p. 113 it has been shown how to
specify an abstract syntax by using the Edge Algebra. Moreover it has been shown that the
Edge Algebra allows a way of modelling such that the structure of a common metamodel
is preserved. Thus all node predicates defining a specific concept can be put together on
one position in the formula. Even the predicates for one property are written down in an
explicit way.

Nevertheless, using Edge Algebra for defining an abstract syntax results in a complex math-
ematical definition. In addition, useful concepts such as compositions must always be mod-
elled in an explicit way. This is the reason why an appropriate metamodelling language
for defining abstract syntaxes in an easy way according to the requirements defined in
Section 2.3, Requirements to a metamodelling language, p. 34 shall be defined within this
chapter.

Contents
7.1. Relationship between model and metamodel 119

7.2. Semi-formal introduction of the abstract syntax 122

7.3. Basic approach defining semantics for Abstract Syntaxes . . . 124

7.4. Semantics for Abstract Syntaxes – Part 1: Basic metamod-
elling concepts . 125

7.5. Semantics for Abstract Syntaxes – Part 2: Extended meta-
modelling concepts . 133

7.6. Running Example . 150

7.7. Defining M2L – Step 3: Relationship between Meta-
Metamodel and Edge Algebra . 152

7.1. Relationship between model and metamodel

The aim of metamodelling is the formulation of a definition of an abstract language also by
way of an (independent) model – the so-called metamodel. Due to this, a second model ω2 =
〈Σω2, Vω2, typeω2, edgeω2〉, called metamodel, shall be given in addition to the model ω =

Stefano Merenda 119

7. Abstract Syntaxes in M2L

〈Σω, Vω, typeω, edgeω〉. Now it must be decided for an arbitrary pair of model and metamodel
whether the model ω conforms to the metamodel ω2. The corresponding conformsTo-
Relation on model is expressed as follows:

ω C ω2 (7.1)

The specification of the conformsTo-Relation exactly describes the (structural) semantics
of the metamodelling language. It is obvious, however, that the freedom of defining such
a metamodelling language is vast. In the practice of metamodelling, some concepts have
turned out to be reasonable and vital, however. These concepts shall be introduced in Sec-
tion 7.4, Semantics for Abstract Syntaxes – Part 1: Basic metamodelling concepts, p. 125 in
a formal way and shall be enriched by additional and helpful constructs in Section 7.5, Se-
mantics for Abstract Syntaxes – Part 2: Extended metamodelling concepts, p. 133.

The abstract language of L(ω2), which is described by the metamodel ω2, can easily be
defined on the basis of the conformsTo-Relation:

L(ω2) =
def

{
ω ∈ Σ~ | ω C ω2

}
(7.2)

Thus, the conformity condition can also be expressed as ω ∈ L(ω2), as the following is valid:

ω ∈ L(ω2)⇔ ω C ω2 (7.3)

It must be noted, however, that the metamodel ω2 may first be any arbitrary model. In
the course of formalisation, the metamodel ω2 itself will, however, also be restricted re-
garding its structure. These structural restrictions for metamodels result in the so-called
meta-metamodel, which is denoted by ω3. The meta-metamodel thus represents a perfect
metamodel describing the structure of the metamodels suitable for a selected conformsTo-
Relation. It shall therefore be written as follows:

∀ω2 ∈ L(ω3) : ω2 C ω3 (7.4)

As the meta-metamodel only represents a particular metamodel the following reflexivity will
be valid in addition, thus characterising the meta-metamodel ω3 as such:

ω3 C ω3 (7.5)

Each conformsTo-Relation should therefore come along with a meta-metamodel. Here again
it shall be emphasised that different conformsTo-Relations will also result in different meta-
metamodels. We denote the set including the one meta-metamodel by M3, the set of all
metamodels by M2, and the set of all models by M1. All in all, the following hierarchy of
model levels results:

M3 =
def
{ω3}

M2 =
def
L(ω3)

M1 =
def

⋃
ω2∈M2 L(ω2)

where
M3 ⊂M2 ⊂M1

(7.6)

Before the conformsTo-relation can be defined, the link between model and metamodel must
be considered: On the one hand, a set of concepts Cω and a set of properties Pω exists within

120 Stefano Merenda

7.1. Relationship between model and metamodel

the model ω. On the other hand, a set of validity conditions for these concepts and properties
shall be defined by way of the metamodel. Hence, it must be referred to these concepts and
properties within the metamodel. Therefore, the two core concepts for metamodels will be
introduced beforehand:

Definition 52 (Core metamodel concepts). Within a metamodel ω2, the concept Concept
represents all concepts which should be restricted by said metamodel; the concept Property
represents all properties.

In the metamodel ω2 there are thus vertices v ∈ Vω2 that are marked by the concepts
Concept and Property respectively. A metamodel may generally contain more than one
vertex representing one and the same concept or property. It will be seen that in the meta-
metamodel of M2L a property is defined as a special identifier and thus represents a set of
characters. (Note that in order to support canonical names, a concept will be defined as a
structured identifier in terms of a list of identifiers.) Vertices which are equal in terms of
node equivalence represent the same concept and property respectively.

Formally, a coverage function is defined such that each equivalence class of property and
concept vertices respectively must be mapped to a different element out of Cω ∪ Pω. Based
on this, the link between the model ω and the metamodel ω2 is established by having a
coverage function that maps each element of Cω and Pω to one equivalence class of vertex
elements out of Vω2. Formally, it is defined as follows:

Definition 53 (Coverage of concepts and properties). The coverage function cov maps each
element of Cω and Pω to an equivalence class of vertices out of Vω2 which are correspondingly
labelled by either the concept Concept or the concept Property. An element of Cω ∪Pω can
also be mapped to an empty set in order to indicate that there is no counterpart in the
metamodel and thus there are no restrictions regarding this concept or property.

For none of two unequal elements x 6= y the coverage function will result in the same
equivalence class of vertices except the empty set.

cov : Cω ∪ Pω → Pset (Vω2)
x 7→ cov(x)

where

∀c ∈ Cω : cov(c) ∈
(
∅ ∪

⋃
v∈Vω2

(↪→↓ Cω2 :Concept)(v)
)

∀p ∈ Pω : cov(p) ∈
(
∅ ∪

⋃
v∈Vω2

(↪→↓ Cω2 :Property)(v)
)

∀x, y ∈ Cω ∪ Pω :
(

(x 6= y)⇒ (cov(x) 6= cov(y) ∨ cov(x) = cov(y) = ∅)
)

(7.7)

Please bear in mind that elements out of C and P of an abstract alphabet are just mathe-
matical symbols although they are named by sensitive phrases such as Component or Port.
This approach has been followed when the concepts Concept and Property for metamodels
were introduced. As mentioned above, both concepts and properties are uniquely defined by
character sequences within a metamodel. At this point, concepts and properties are mapped
to a concrete character sequence for identification. The mathematical symbols will normally
be named by the same character sequence as defined within the metamodel for convenience.

Stefano Merenda 121

7. Abstract Syntaxes in M2L

By means of the following formalisation, it shall particularly be shown how the structural
semantics of a metamodelling language can be defined with the help of Edge Algebra.

7.2. Semi-formal introduction of the abstract syntax

As described in Section 6.5, Defining M2L – Step 2: M2L defined by Edge Algebra state-
ments, p. 117, it is already possible to define the abstract syntax of the metamodelling
language M2L in a formal way. In order to provide a better understanding of the following
sections, an overview of the relevant excerpt of the meta-metamodel will be given in advance.
Abstract syntax will therefore be shown by using commonly known UML class diagrams (in
particular the MOF subset is sufficient) again, as has been defined in [OMG, 2006a]. Fig-
ure 7.1 shows an excerpt of the M2L’s abstract syntax which concentrates on specifying
abstract syntaxes in M2L.

AbstractSyntax

Named

Metapackage

Identifier

Property

Concept

qualifiedName: Identifier [2..*] {ordered}

Named

ConceptDef

isAbstract: Boolean

isComplete: Boolean

additionalConstraint: Predicate [0..1]

AnyConceptDef

refines: [0..0]

isAbstract: Boolean.True

isComplete: Boolean.False

conceptType: ConceptType.Strong

EnumerationConceptDef

refines: [0..0]

isAbstract: Boolean.True

isComplete: Boolean.True

conceptType: ConceptType.Attribute

propertyDef: [0..0]

additionalConstraint: [0..0]

EnumElementConceptDef

isAbstract: Boolean.False

isComplete: Boolean.True

conceptType: ConceptType.Attribute

propertyDef: [0..0]

additionalConstraint: [0..0]

ExternalConceptDef

refines: [0..0]

isAbstract: Boolean.False

isComplete: Boolean.False

conceptType: ConceptType.Strong

propertyDef: [0..0]

additionalConstraint: [0..0]

PropertyDef

assumption: Predicate [0..1]

multiplicity: Interval [0..1]

domain: Edge [0..1]

inferredValue: Edge [0..1]

«enumeration»
ConceptType

Strong

Weak

Attribute

«enumeration»
LinkType

Reference

Composition

Instantiation

«enumeration»
PomsetType

Set

Bag

List

Toset

Poset

Pomset

«enumeration»
KeyType

PrimaryLocalkey

AlternativeLocalkey

refines
0..*

metapackage

0..*

subpackage
0..*

concept

1..1

pomsetRestriction

0..1

conceptType

1..1

propertyDef

0..*

conceptDef

1..1

enumElement

2..*

property

1..1

opposite

0..*

linkType

1..1

conceptDef

0..*

keyType

0..1

Figure 7.1.: Semi-formal abstract syntax for specifying abstract syntaxes in M2L

Note that here, no difference will be made between attributes and compositions. In addition,
attributes without a type but having a multiplicity [0..0] can be found in the diagram. One
example is the property refines in the concept EnumerationConceptDef . It means that
the property refines, which is already defined in the concept ConceptDef , is now stronger
restricted such that the multiplicity is [0..0]. Thus in the concept EnumerationConceptDef ,
the property refines must not occur.

122 Stefano Merenda

7.2. Semi-formal introduction of the abstract syntax

Although a detailed description will be provided in the following three sections, a short
overview shall be given beforehand: The top-level concept is AbstractSyntax and consists
of a set of packages named Metapackage. Meta-packages are hierarchically structured and
may thus contain sub-packages. Within a meta-package the definitions of the included
concepts are enumerated (ConceptDef).

First of all, a ConceptDef directs towards a Concept, which is simply defined by a qualified
name. As mentioned above, the link to the model is defined by the concept Concept. This
qualified name must be consistent to the package hierarchy and name of the ConceptDef . A
ConceptDef may refine a set of other concept definitions (which is similar to a specialisation
relationship). Due to the fact that the property refines is set-valued, our metamodelling
approach supports multi-inheritance. Further, it shall be distinguished between strong,
weak, and attribute concepts and a concept can be declared as abstract and complete
(wherein details will be described later on). Finally, a concept definition contains a set of
property definitions (PropertyDef).

According to the diagram, there are four special kinds of concept definitions which shall
shortly be introduced:

• AnyConceptDef defines a concept which is refined implicitly by every other concept,

• ExternalConceptDef is a stub for concepts that are defined externally and thus in
another metamodel,

• EnumerationConceptDef allows the definition of enumerations, and

• EnumElementConceptDef is a special concept for the elements defined for an enu-
meration.

A formal definition of the meaning of each of those concepts will be described in detail in
the following two sections. In addition, a detailed description of each concept will be given
in Section 9.3, Package ORG.Metamodels.M2L.AbstractSyntax, p. 188.

The concepts Edge and Predicate occur particularly within concept and property defini-
tions. These concepts represent a one-by-one statement out of the Edge Algebra: The
concept Edge represents a statement for an edge function (for context-sensitive domains
and inferred values); the concept Predicate represents a statement for a node predicate (for
additional constraints and assumptions). A detailed definition of these concepts will be
given in Section 9.6, Package ORG.Metamodels.EdgeAlgebra, p. 233.

As these concepts exhibit exactly the same structure as the mathematical formulas, a formal
definition will be skipped. Nevertheless, an operator has to be introduced that converts an
abstract word representing an Edge Algebra statement to an edge function, node predicate
or node valuation:

Definition 54 (Semantical meaning of Edge Algebra nodes). [[v]] returns the corresponding
edge function EVM1

, node predicate BVM1
, and node valuation NVM1

respectively to a given
node v ∈ VM2. Hereby the vertex v represents the root vertex for the edge algebra statement.

[[·]] : VM2 → EVM1
∪ BVM1

∪NVM1

v 7→ [[v]]
(7.8)

Stefano Merenda 123

7. Abstract Syntaxes in M2L

7.3. Basic approach defining semantics for Abstract Syntaxes

Before the conformsTo-relation will be defined, fitting to the meta-metamodel that has
already been introduced, the principle structure of the semantical rules shall be discussed.
Basically all conditions will have the form that conditions of the metamodel – denoted as A
– imply conditions of the model – denoted as B.

Such conditions will always have the form such that they are universally quantified over
all concepts and all properties. As there are multiple representations in a metamodel for a
single concept or property, the coverage function as defined in Definition 53, will return a
set of relevant vertices out of the metamodel. Hence, extensional quantifiers are additionally
necessary in order to demand a single corresponding vertex that fulfils the condition A.

There will be situations for which the condition B will have to be parametrised. This will
again be done by a universal quantification over natural numbers as well as vertices out of
the metamodel. Natural numbers are e. g. necessary for multiplicities in order to define the
lower and upper limit respectively. Vertices are needed to parameterise the condition by a
complete edge algebra statement.

Definition 55 (Metamodel-to-model restriction). Let A(vc, vd, vp, vq, v, n) be an node pred-
icate over the metamodel ω2, and B(c, d, p, q, v, n) be an node predicate over the model ω.
vc, vd, vp, vq, v ∈ Vω2 are nodes of the metamodel therein, c, d ∈ Cω are concepts of the
model, p, q ∈ Pω are properties of the model, and n ∈ N is a natural number. Then it will
be defined:

(A BBB) ⇔ ∀c, d ∈ Cω : ∀p, q ∈ Pω : ∀v ∈ Vω2 : ∀n ∈ N : (
(∃vc ∈ cov(c), vd ∈ cov(d) : ∃vp ∈ cov(p), vq ∈ cov(q) :
Gω2A(vc, vd, vp, vq, v, n)

)
⇒ GωB(c, d, p, q, v, n)

)

(7.9)

Note that not every bounded variable will be necessarily used in the following definitions.
Nevertheless, a variable has to be used in either both node predicates A and B or none of
them for a sensitive use.

A second restriction will be introduced in addition that will especially be used when the
restriction concerns a special property: A IIB will be denoted. Initially, this restriction is
read as being the same as A BBB. It shall be redefined later on in order to formalise an
extended metamodelling concept. Please refer to Section 7.5.2, Conditional properties, p. 134
for further details.

Two additional functions will be defined besides this definition in order to simplify the
following definitions. As our restrictions are always bound to either a dedicated concept
or a dedicated property of a concept, the corresponding definitions will always have to be
figured out. These are the vertices of the metamodel which are labelled by the concepts
ConceptDef and PropertyDef. Formally, it is defined as follows:

Definition 56 (cDef and pDef). For a given vertex vc, labelled by the concept Concept,
cDef(vc) returns the corresponding ConceptDef node.

For a given vertex vc, labelled by the concept Concept, and a given vertex vp, labelled by the
concept Property, pDef(vc, vp) returns the corresponding PropertyDef node.

124 Stefano Merenda

7.4. Semantics for Abstract Syntaxes – Part 1: Basic metamodelling concepts

cDef(vc) =
def

Vω2 :vc.�Pω2 :concept

pDef(vc, vp) =
def

cDef(vc).Pω2 :propertyDef) ↓ (Vω2 :vp.�Pω2 :property)
(7.10)

Thus, a model ω conforms to ω2 – expressed as ω C ω2 – if all conditions from the following
two sections are fulfilled. All in all, it is distinguished between basic metamodelling concepts
and extended metamodelling concepts. In principle there is no difference between these two
types except that the former ones are more commonly known as they are somehow available
in most metamodelling approaches (even though they are not formalised).

7.4. Semantics for Abstract Syntaxes – Part 1: Basic
metamodelling concepts

As has already been mentioned above, the first part of the conformsTo-relation will be
defined in this section. In contrast to the second part, it contains the basic concepts which
are commonly known in the metamodelling domain. The metamodelling concepts are listed
in detail in Table 7.1.

basic metamodelling concept

Concept and property refinement
Abstract concepts
Complete concepts
Weak concepts
Attribute concepts
Enumeration concepts
External concepts
Global constraints: the concept Any
Compositional properties
Inverse properties
Multiplicities
Pomset-type restrictions

Table 7.1.: Overview of the basic metamodelling concepts

7.4.1. Concept and property refinement

At the very beginning, the refinement of concepts shall be introduced. It is closely related to
the idea of specialisation and generalisation. Due to the fact that this approach is entirely
based on constraining M-graphs, a refinement can be defined very easily.

Basically, a set of constraints is defined for a dedicated concept. Vertices labelled by such a
concept are valid in terms of the defined abstract syntax if all constraints hold. Additionally,
a concept may refine one or even more other concepts. Once a concept refines others, the
constraints of both the given concept and all refined concepts must hold. As a refined
concept may refine other concepts again, all constraints which are transitively reachable
must hold for a concept.

Stefano Merenda 125

7. Abstract Syntaxes in M2L

Due to this definition, a cyclic refinement does not cause problems. The result will be that
all concepts on the cycle have to fulfil exactly the same constraints. Such a cyclic definition
is, however, forbidden by abstract syntax as it contradicts the common understanding of
refinement and allowing cycles is not seen as being an advantage.

This constraint-based approach for refining concepts allows a straight-forward solution for
property refinements: If a property should be refined, it is simply defined in the refining
concept with its stronger constraints once more. As both constraint definitions of the prop-
erty must hold, the property is refined. Note that this approach also supersedes a redundant
definition within the refining property. If the type is therefore not stronger restricted but
only multiplicity, the type can be skipped in the refining property definition. The same
mechanism is used when multiple concepts are refined and if more than one of them defines
identical properties. Then again, the property constraints of all refined concepts must hold.

Note that this very generic and powerful approach may also lead to contradictory definitions.
From a formal point of view this is not an issue as it simply forbids any models containing
nodes marked by such concepts.

Formally, the definition of refinement requests for each node that if a vertex is of a concept
c refining a concept d, this vertex must also be of the concept d.

cDef(vd) b (cDef(vc).Pω2 :refines)
BB

(b Cω :c)⇒ (b Cω :d)
(7.11)

This approach has one major difference compared to usual metamodelling techniques: If a
property is not defined explicitly, it can be used in a model in any arbitrary way. This leads
to a semi-structured way of modelling as known from XML. Not until this very basic idea
is it possible to define a refinement in such a formal and straight-forward way.

7.4.2. Abstract concepts

In many situations it is desired to define a concept that is supposed to represent the common
basis for a set of (refining) concepts. Nevertheless the concept representing the common basis
should not be used for labelling vertices of the model directly: One of the refining concepts
should always be used instead. These constraints can easily be defined by marking a concept
as being abstract.

No node of the abstract must be labelled by an abstract concept. In inheritance hier-
archy, both super- and sub-concepts may be abstract. Abstractness is not inherited by
sub-concepts.

((cDef(vc).Pω2 : isAbstract) b Cω2 :True)
BB

(b Cω :c)⇒ (6b Tω :c)
(7.12)

7.4.3. Complete concepts

Vertices labelled by incomplete concepts may contain any further property besides those
explicitly defined (and thus restricted) in the metamodel due to the semi-structured ap-
proach, which has already been mentioned above. This renders the refinement-relation a
purely restricting character in contrast to object-oriented approaches: Properties in refining

126 Stefano Merenda

7.4. Semantics for Abstract Syntaxes – Part 1: Basic metamodelling concepts

concepts which have been newly added place a restriction upon the property that could be
arbitrarily allocated before (as it had not yet been defined in the refined concept).

If a concept in the metamodel is specified as being complete, the instances thereof may only
contain those properties that have been explicitly defined. As a result, it will not be possible
to add any new properties in refining concepts. As soon as a concept is characterised as
being complete, all refining concepts are implicitly complete as well.

Complete concepts therefore exhibit a similar behaviour as the so-called final classes known
from object orientation. This comparison is, however, not entirely true as refining concepts
from complete concepts may definitely exist to restrict the already existing properties even
stronger. The only thing is that new properties must not be added. The following additional
definitions will primarily be required for a formalisation:

sibling =
def

Cω2 :ConceptDef ↓ (Pω2 :concept. ↪→ .�Pω2 :concept)

relevantConceptDef =
def

Cω2 :AnyConceptDef
∪ (sibling .∧(Pω2 :refines. sibling))

(7.13)

As there may be more than one concept definition for one concept in general, the edge func-
tion sibling directs towards all concept definitions restricting the same concept. Secondly,
based on the edge function sibling, the edge function relevantConceptDef directs towards
all relevant concepts that must be taken into account when looking for defined properties.
Thereupon the condition for complete concepts can be formulated as follows:

(bool)(cDef(vc).Pω2 : isComplete)
∧Vω2 :vp 6b (cDef(vc). relevantConceptDef .Pω2 :propertyDef.Pω2 :property. ↪→)
BB

(b Cω :c)⇒ (Pω :p = ∅)

(7.14)

7.4.4. Weak concepts

The special property composite has already been introduced in Section 5.5.2, Composi-
tions, p. 89. It indicates that a node is seen as being a part of another one. For some
concepts it shall be claimed that nodes labelled by such a concept cannot exist without
being part of another node. In this approach such concepts are marked as being weak.

Nodes labelled by a weak concept always have to be part of another concept in the sense of
a compositional relationship. If a concept is labelled as weak, all sub-concepts will thus be
weak as well.

cDef(vc).Pω2 :conceptType b Cω2 :Weak
BB

(b Cω :c)⇒ (�Pω :composite 6= ∅)
(7.15)

Those concepts for which this constraint is not desired are marked as strong concepts. Note
that there are no additional constraints for strong concepts. Hence, strong concepts may
also be part of another concept but it is not required for such strong concepts.

Stefano Merenda 127

7. Abstract Syntaxes in M2L

This procedure differs from other approaches such as UML. In UML a concept becomes
implicitly weak when a composition is defined. In particular in cyclical compositional def-
initions this will cause problems: When, for example, a concept Folder is defined, which
should contain sub-folders in terms of a composition, this will automatically lead to a con-
tradiction in UML as there must be a root folder which does not have a parent although
it is a weak concept (implicitly). In M2L such a concept would be marked as being strong
although there is a composition to it stating that there may be root folders as well. Please
refer to Section 7.4.9, Compositional properties, p. 131 as well.

7.4.5. Attribute concepts

As already seen in Section 5.5.3, Attributes, p. 89, a set of primitive types does not need to
be defined in the present approach. Arbitrary types can be modelled by attribute concepts
instead. Up to now, the difference of attribute concepts to the concepts introduced so far
has not yet been discussed. UML, for example, does not exhibit any difference between
attributes and compositions.

An attribute concept is the third and strongest type of concept in the present approach,
indeed: While strong concepts cause no additional constraints, weak concepts must be at
least part of another node. Finally, attribute concepts cause even more constraints than
weak ones. Formally, it is defined as follows:

cDef(vc).Pω2 :conceptType b Cω2 :Attribute
BB

(b Cω :c)⇒ (�Pω :composite 6= ∅
∧�∗ω = (�Pω :composite]�Pω :composite))

(7.16)

cDef(vc).Pω2 :conceptType b Cω2 :Attribute
∧ empty?(cDef(vd).(relevantConceptDef ↓ σ(Pω2 :conceptType b Cω2 :Attribute)))
BB

(b Cω :c)⇒ (empty?(Pω :composite ↓ Cω :d))
(7.17)

First, (7.16) states that attribute concepts must not have any incoming edges besides the
compositional ones. Thus, there must be exactly two incoming edges: One labelled by com-
posite and the second one having the same source node and representing the actual property.
Secondly, (7.17) states that attribute concepts may only contain attribute concepts. Thus,
all nodes that are transitively reachable from a node labelled by an attribute concept over
the property composite must be labelled by attribute concepts again.

Note that it is not forbidden that a node labelled by an attribute concept has an outgoing
edge to a node labelled by a strong or weak concept, as long as there is no compositional
link in between. As soon as a concept is characterised as being an attribute concept, all
refining concepts are attribute concepts as well.

This definition says that an attribute node cannot be referenced by other nodes except the
containing property of its parent node. Such a concept is particularly crucial for database
implementations as no extent has to be defined for attribute concepts.

128 Stefano Merenda

7.4. Semantics for Abstract Syntaxes – Part 1: Basic metamodelling concepts

7.4.6. Enumeration concepts

The way of representing enumerations in M-graphs has already been defined in Sec-
tion 5.5.3, Attributes, p. 89. In the present approach, elements of enumeration concepts
will, in turn, be realised by a concept respectively. A simple example of an enumeration
concept would be the data type Boolean including the two elements True and False. Herein,
both Boolean as well as True and False will be understood as concepts. The actual enumer-
ation type will, however, not occur in the model. Instead, the concepts of the elements – i. e.
True and False – will be assigned to the respective nodes. Enumeration concepts therefore
typically form the leaves of a model graph.

The formal definition of enumeration concepts is done in a different way, as it is treated as a
specialisation of the already known concept definition. It will be defined in detail as follows:

Gω2((b Cω2 :EnumerationConceptDef ⇒ (
	b Cω2 :ConceptDef
∧Pω2 :enumElement b Cω2 :EnumElementConceptDef
∧Pω2 :enumElement b Pω2 :composite
∧ |Pω2 :enumElement| ≥ 2
∧ |Pω2 :refines| = 0
∧Pω2 : isAbstract b Cω2 :True
∧Pω2 : isComplete b Cω2 :True
∧Pω2 :conceptType b Cω2 :Attribute
∧ |Pω2 :propertyDef | = 0
∧ |Pω2 :additionalConstraint| = 0

))
∧ (b Cω2 :EnumElementConceptDef ⇒ (
	b Cω2 :ConceptDef
∧Pω2 :refines =�Pω2 :enumElement
∧Pω2 : isAbstract b Cω2 :False
∧Pω2 : isComplete b Cω2 :True
∧Pω2 :conceptType b Cω2 :Attribute
∧ |Pω2 :propertyDef | = 0
∧ |Pω2 :additionalConstraint| = 0
∧ �Pω2 :composite b Cω2 :EnumerationConceptDef

)))

(7.18)

While the concept EnumerationConceptDef represents the enumeration in total, the concept
EnumElementConceptDef represents a single element of an enumeration. The concept Enu-
merationConceptDef therefore contains a new property, namely enumElement, which must
contain at least two enumeration elements. As has been discussed above, each EnumEle-
mentConceptDef must refine the EnumerationConceptDef containing said element. Finally,
enumerations are always defined as attribute concepts.

7.4.7. External concepts

Due to the present approach multiple metamodels can easily be combined. In situations
like these, concept definitions referencing the same qualified name (thus the same package
location and the same concept name), restrict one and the same concept within a model.
Thus, the resulting constraints for both concept definitions must hold.

Stefano Merenda 129

7. Abstract Syntaxes in M2L

The more frequent case requires that a metamodel references a concept which is (externally)
defined in another metamodel. Therefore a concept is required which represents a stub of a
concept definition. The stub itself does not add any additional constraint.

The formal definition of external concepts is done in the same way as for enumerations, as it
is treated as a specialisation of the already known concept definition. The formal definition
will in detail be defined such that no additional constraint for the concept is defined: Hence,
an external concept refines no other concept, is not abstract, is not complete, is marked as
a strong concept, no property definitions are allowed, and finally no additional constraints
can be defined:

Gω2(b Cω2 :ExternalConceptDef ⇒ (
	b Cω2 :ConceptDef
∧ |Pω2 :refines| = 0
∧Pω2 : isAbstract b Cω2 :False
∧Pω2 : isComplete b Cω2 :False
∧Pω2 :conceptType b Cω2 :Strong
∧ |Pω2 :propertyDef | = 0
∧ |Pω2 :additionalConstraint| = 0

))

(7.19)

7.4.8. Global constraints: the concept Any

In order to define global constraints, a dedicated concept is introduced named Any. In detail
also the qualified name ORG.Metamodels.BasicConcepts.Any is fixed. Thus, there may be
only one concrete concept of that type. This concept is implicitly refined by every other
concept. According to that, restrictions defined by this concept must hold for each and
every node of a model. Hence, global constraints can easily be defined by this special type
of concept.

cDef(vc) b Cω2 :AnyConceptDef
BB

	b Cω :c
(7.20)

Besides this definition, the formal definition for the any-concept is extended by refining the
already known, general concept definition. An explicit refinement is particularly forbidden
due to the implicit refinement. Additionally, the following shall be defined in detail:

Gω2(b Cω2 :AnyConceptDef ⇒ (
	b Cω2 :ConceptDef
∧Pω2 :qualifiedName = 〈”ORG”, ”Metamodels”, ”BasicConcepts”, ”Any”〉
∧ |Pω2 :refines| = 0
∧Pω2 : isAbstract b Cω2 :True
∧Pω2 : isComplete b Cω2 :False
∧Pω2 :conceptType b Cω2 :Strong
∧ empty?�Pω2 :refines

))

(7.21)

130 Stefano Merenda

7.4. Semantics for Abstract Syntaxes – Part 1: Basic metamodelling concepts

7.4.9. Compositional properties

As has already been described, abstract words are neither acyclic nor trees or forests in
general. A hierarchical structuring of the nodes in the sense of a part-of-relationship plays,
however, a vital role in language design. It shall be possible to express that for example
a state belongs to a particular automaton. As has been shown in Section 5.5.2, Composi-
tions, p. 89, the present approach is well suited for the property composite which will always
provide the children of a node or will always be empty in case it concerns a leave of a forest.
The property composite therefore directs from the roots towards the leaves of a tree. Cycles
are not allowed. As several roots shall be allowed, the property composite forms a forest.
The conditions for the property composite can be formulated as follows:

(6b Pω :composite.∧Pω :composite)
∧ (set?Pω :composite)
∧ (singleton?�Pω :composite)

(7.22)

With the help of this procedure, the part-of-relationship can be expressed independent of
the metamodel in the form of an abstract word. Although it is not explicitly defined what
the exact meaning of a composition link would be, it also allows for a modelling of the
part-of-relationship without knowing the metamodel.

If a composition is defined within the metamodel, the property composite will explicitly be
required in the model. Here it is important to remember that the property composite is
not forbidden for non-compositions. This plays a vital role concerning the consistency of
inheritance. Sub-concepts must fulfil all properties of their corresponding super-concepts. It
is therefore very well possible that a property that has been defined as a simple association
in the refined concept, will be refined to form a composition within the refining concept.

This procedure offers additional possibilities concerning metamodelling as regards the defi-
nition of abstract languages. Many languages require the ability to define or else reference
constructs on the spot. The first one would require a part-of-relationship, whereas the latter
one would not. It would be extremely difficult or even impossible to express such require-
ments in common metamodelling. Examples thereof would be an inline-type-definition, for
example. The composition can be formalised as follows:

pDef(vc, vp).Pω2 : linkType b Cω2 :Composition
II

(b Cω :c)⇒ (Pω :p b Pω :composite)
(7.23)

It must be noted that the composition property for the respective property must no longer
be set explicitly in refining concepts. As soon as it has been defined in one of the refined
concepts, the property will propagate in all refining concepts.

7.4.10. Inverse properties

It is often desired, to define the inverse property of a particular property. In case of a conform
model, a property will then only be able to occur along with the inverse property thereof.
Such bidirectional relationships have already been introduced in Section 5.5.1, Bidirectional
associations, p. 88.

At this point it should be discussed whether this redundant information that occurs when
introducing bidirectional relationships should at all be represented explicitly in the model or

Stefano Merenda 131

7. Abstract Syntaxes in M2L

whether is could be omitted and thus the concept of inverse properties itself can be skipped
– in particular because the edge inverse of the Edge Algebra can be used for describing the
inverse property as well. The edge inverse is, however, always unordered. If, however, both
directions of the property are supposed to be ordered, it becomes inevitable to model both
directions in two opposite properties. On the hand could properties which are the inverse
property itself not be mapped. One example thereof would be the property spouse which
points to that person a person is married to.

Person : A Person : B

spouse

spouse

Figure 7.2.: Illustration of a symmetric property by means of a married couple

Here it shall be valid that in case a person A is married to a second person B, person B
is also married to person A. In this case, Pω : spouse =�Pω : spouse must be valid. Thus,
the inverse property cannot be removed as this would result in an elimination of the entire
relationship.

All in all, the condition of inverse properties can be formalised as follows:

Vω2 :vq b pDef(vc, vp).Pω2 :opposite
II

(b Cω :c)⇒ (µPω :p = �Pω :q)
(7.24)

Here, it should be noted that this kind of definition does not require an explicit definition of
the inverse property, as long as the concept of the target node has not been defined as being
complete. This procedure provides advantages in particular when metamodels are being
modularised. Moreover is it possible to define different inverse properties via inheritance
hierarchy in general. In the sense of the conjunction of all conditions via the inheritance
hierarchy, all required inverse properties are also connected in a conjunctive way and are
thus required simultaneously. This causes a property to have two or more inverse properties.

7.4.11. Multiplicities

Multiplicity can be used to indicate within which interval the size of the pomset for a property
must range. Upper and lower limits will be defined with the help of natural numbers.

(edge)n b pDef(vc, vp).Pω2 :multiplicity.Pω2 : lower
II

(b Cω :c)⇒ (|Pω :p| ≥ n)

(edge)n b pDef(vc, vp).Pω2 :multiplicity.Pω2 :upper
II

(b Cω :c)⇒ (|Pω :p| ≤ n)

(7.25)

7.4.12. Pomset-type restrictions

Properties are generally partially ordered multi-sets. With the help of the pomset restric-
tions, properties of the model can be restricted to specific types of pomsets. As has been

132 Stefano Merenda

7.5. Semantics for Abstract Syntaxes – Part 2: Extended metamodelling concepts

described in Section 4.1, Relationship between different types of sets, p. 61, it is differenti-
ated between Singleton, Set, Bag, List, Toset, Poset, and Pomset. Formally, it is defined as
follows:

pDef(vc, vp).Pω2 :pomsetRestriction
b (Cω2 :Singleton ∪ Cω2 :Set ∪ Cω2 :Bag)
II

(b Cω :c)⇒ (bag?Pω :p)

pDef(vc, vp).Pω2 :pomsetRestriction
b (Cω2 :Singleton ∪ Cω2 :Toset ∪ Cω2 :List)
II

(b Cω :c)⇒ (list?Pω :p)

pDef(vc, vp).Pω2 :pomsetRestriction
b (Cω2 :Singleton ∪ Cω2 :Set ∪ Cω2 :Toset ∪ Cω2 :Poset)
II

(b Cω :c)⇒ (poset?Pω :p)

(7.26)

7.5. Semantics for Abstract Syntaxes – Part 2: Extended
metamodelling concepts

In the previous section, the aim was to collect, consolidate and formalise the concepts
common from the domain of metamodelling. In many situations, however, the current
metamodelling concepts are not sufficient for describing real modelling languages. Although
it is already possible to express particular context-sensitive properties by means of the basic
concepts, there are, however, still many properties of languages which cannot be expressed
by the basic concepts.

Therefore, the second part of the conformsTo-relation will be defined in this section. The
extended metamodelling concepts are listed in detail in Table 7.2.

extended metamodelling concept

Additional concept constraints
Conditional properties
Context-sensitive domains
Inferred properties
Local keys, namespaces and visibility
Instantiating Properties

Table 7.2.: Overview of the extended metamodelling concepts

7.5.1. Additional concept constraints

First of all, a specification of arbitrary node predicates based on Edge Algebra within any
concept definition shall be allowed. Here, the full expressiveness of Edge Algebra will be
transferred to the metamodelling language M2L. Formally, the definition is based on the
semantical meaning introduced in Definition 54.

Stefano Merenda 133

7. Abstract Syntaxes in M2L

Vω2 :v = cDef(vc).Pω2 :additionalConstraint
BB

(b Cω :c)⇒ [[v]]
(7.27)

Please keep in mind that such an extension does not supersede additional constructs in
a metamodelling language. As will be seen in the following sections, some of these con-
structs will result in complex Edge Algebra statements. Thus, the appropriateness of the
metamodelling language M2L is highly increased.

7.5.2. Conditional properties

One of the main aims of the present metamodelling approach is to allow a language engineer
to specify the abstract syntax of a language including all its consistency constraints. In our
running example, all the ports must be connected for example. The advantage of such an
approach is, of course, the exact definition of a language.

During a development process, however, situations will come up upon using the language in
which some of the constraints should hold whereas others should not. In a late development
stage, for example, every requirement should correspond to a respective implementation. In
contrast to that, such a constraint will be meaningless in an early stage as no implementation
does exist at all. In order to reflect this requirement within our metamodelling language
M2L, all property definitions can be made conditional by adding an assumption. Hence,
a property restriction is only relevant if the given assumption holds. In order to formalise
conditional properties, the metamodel-to-model restriction will be redefined for properties
introduced in Section 7.3, Basic approach defining semantics for Abstract Syntaxes, p. 124.

A IIB ⇔
def

(A ∧ (pDef(vc, vp).Pω2 :assumption = ∅) BB B)
∧
(A ∧ (pDef(vc, vp).Pω2 :assumption = Vω2 :v) BB ([[v]]⇒ B))

(7.28)

This construct helps in building up a hierarchy of assumptions as multiple definitions can be
added for one property in a single concept definition. These property definitions will then
comprise increasingly stronger assumptions for constructing the hierarchy.

7.5.3. Context-sensitive domains

In metamodelling, generally all target nodes of a particular property are supposed to be an
element of the set of all nodes labelled by a particular concept. A property definition may
therefore contain a specification of its domain. Note that according to the refinement of the
present approach refining concepts may also refine the domain of a property. In order to
avoid a contradictory refinement, the refined domain will have to be a refined concept of the
original domain itself or both domains have common refined concepts.

Although this construct is very basic, it has not been defined in the basic metamodelling
concepts. The reason is that in the present approach, a more generic solution for specifying
property domains is to be defined:

Up to now, the domain of a property has always been restricted to one particular concept.
One simple example from the present running example will show that such conditions are
not sufficient in most cases. In case the properties fromPort and toPort of the concept

134 Stefano Merenda

7.5. Semantics for Abstract Syntaxes – Part 2: Extended metamodelling concepts

Channel were restricted to the concept Port only, invalid models could possibly occur, as
shown in Figure 7.3.

Network : n1 Network : n2

Port : p1 Port : p2 Port : p3 Port : p4

Channel : ch1 Channel : ch2

signature.inPort signature.outPort

ch
a
n

n
el

fromPort toPort

signature.inPort signature.outPort
ch

a
n

n
el

fromPort toPort

Figure 7.3.: Example: Invalid channels

Channel c2 connects two ports of different networks n1 and n2, although channel c2 should
only connect ports from the network n2. Additionally, a second error occurs: The property
toPort directs towards an input port which, in turn, is unwanted although the port is located
in the right network. Both errors cannot be avoided with the current metamodelling concepts

The necessary constraints have already been expressed in Section 6.4.2, Additional Invari-
ants, p. 115 using Edge Algebra. Now, an extended, context-sensitive domain construct
defining such conditions shall be used: In Edge Algebra, the current (simplified) restriction
of the domain to a specific concept would be by expressing said by way of a consistsOf oper-
ator, wherein the right operand thereof would always be a concept equipped with the edging
operator. In the present example, the property fromPort would be expressed as follows:

	b Cω :Channel⇒
Pω :fromPort b Cω :Port

If general expressions of Edge Algebra would now be allowed within the domain, the example
could be expressed correctly and as originally desired:

	b Cω :Channel⇒
Pω :fromPort b�Pω :channel.Pω :signature.Pω : inPort

The domain of the property fromPort would therefore now refine in the context of a channel
from the original expression of Cω :Port to �Pω : channel.Pω : signature.Pω : inPort. This
general form of the domain is called context-sensitive as the set of allowed nodes does depend
on the respective source node. It must be noted that this variant does not explicitly express
that fromPort is only allowed to direct towards those nodes to which the concept Port is
allocated. This could, however, be represented explicitly as follows:

	b Cω :Channel⇒
Pω :fromPort b Cω :Port ↓�Pω :channel.Pω :signature.Pω : inPort

Simple properties which are supposed to allow more than one concept can, however, also be
expressed via general Edge expressions within the domain. One example would be that the
identifier should not only be a string but also a natural number:

Stefano Merenda 135

7. Abstract Syntaxes in M2L

	b Cω :Channel⇒
Pω : identifier b (Cω :String ∪ Cω :Natural)

Formally, the metamodelling construct for context-sensitive domains is defined by the fol-
lowing condition:

Vω2 :v = pDef(vc, vp).Pω2 :domain
II

(b Cω :c)⇒ (Pω :p.1(Pω : template ⊕)) b [[v]]
(7.29)

Please note that 1(Pω : template ⊕) results from another metamodelling construct defined
in Section 7.5.6, Instantiating Properties, p. 145. Currently it can be assumed that Pω :
template = ∅ simplifies the condition to:

Vω2 :v = pDef(vc, vp).Pω2 :domain
II

(b Cω :c)⇒ Pω :p b [[v]]
(7.30)

7.5.4. Inferred properties

Many situations exhibit sensitive properties which can be inferred from other properties. A
similar construct in UML class diagrams would be a method without any parameters. In
the present approach, the implementation of such inferred properties is again defined by an
Edge Algebra statement. The formal definition is quite similar to (7.30) except that the
consists-of operator is replaced by an equality operator.

Vω2 :v = pDef(vc, vp).Pω2 : inferredV alue
II

(b Cω :c)⇒ Pω :p = [[v]]
(7.31)

Note that an inferred property requires an edge within the M-graph which will then be
constrained as defined. In contrast to that, the resulting value is calculated dynamically by
a method which also allows to parameterise a method. Hereupon, all other constraints will
also need to be fulfilled by inferred properties. Inferred properties do, for example, not need
to reference nodes labelled by attribute concepts.

136 Stefano Merenda

7.5. Semantics for Abstract Syntaxes – Part 2: Extended metamodelling concepts

7.5.5. Local keys, namespaces and visibility

Up to now, nodes have always been identified via an element of the node set. The identifier
of the element is therefore always globally – i. e. within the model – unique. This is also
well sufficient for the mathematical description of an abstract word. Normally, a particular
form is desired to be specified for an identifier on the one hand, and on the other hand,
a hierarchical structure for the design of the modelling language is also desired. Global
uniqueness is by far too restrictive in practice. Different, local variables may very well have
the same name in a programming language such as C, for example, as long as they are
defined in different validity ranges. Similar to relational databases, the selected properties
of a node are therefore supposed to take over the role as a key within the model. This
turns the identifiers themselves into referenced nodes of a model. In contrast to databases
these keys are, however, not supposed to be globally unique to meet the requirements to a
reasonable language design. These keys are called local keys.

The property lkey

In order to be able to express within the model that one node represents the key of another
node, the specific property lkey will be introduced – similar to the parent relationship for
compositions. Basically, each node (except for the own one) may function as a key. It is thus
not required that these keys necessarily need to be character sequences. Natural numbers or
data values would also be possible, for example. Figure 7.4 shows a simple example based
on our running example.

Identifier : NetA Identifier : NetB

Network : n1 Network : n2

Port : p1 Port : p2 Port : p3 Port : p4

Identifier : in Identifier : input Identifier : out Identifier : in Identifier : out

composite composite

lkey

lkey lkey lkey

composite composite

lkey

lkey lkey

Figure 7.4.: Example: assigning local keys

The present example will now assign a local key to each network and each port by way of
the property lkey . Network n1, for example, has the character sequence “NetA” as a key
and so on. It can be seen at once that both port p1 and port p3 have the same key. As
the respective ports are not located within the same network, this is well allowed and also
desired. This is already an example for the need of a non-global key concept.

This example also proves that the present approach may generally also comprise several
keys for one node: Port p1 comprises the two keys of “in” and “input”. It can be seen that
these local keys are ordered because exactly one primary local key is requested being the
first element. All other local keys need to be unordered afterwards. Hence, the property
lkey in general is a pomset such that the following equation holds:

Stefano Merenda 137

7. Abstract Syntaxes in M2L

singleton? 1Pω : lkey ∧ set?[2; ∗]Pω : lkey (7.32)

Thus, there is one first element representing the primary local key, followed by a set of
alternative local keys without any additional order. In contrast to alternative local keys the
primary local key is used for referencing by default.

Both primary and alternative local keys can be easily defined within a metamodel in M2L by
marking the corresponding property. Formally, the following two conditions will be defined:

(bool)(pDef(vc, vp).Pω2 : isPrimaryLocalkey)
II

(b Cω :c)⇒ ((|Pω : template| = 0)⇒ (Pω :p = 1Pω : lkey))

∧

(bool)(pDef(vc, vp).Pω2 : isAlternativeLocalkey)
II

(b Cω :c)⇒ ((|Pω : template| = 0)⇒ (Pω :p b [2; 2]Pω : lkey))

(7.33)

Note that the present definition allows a definition of multiple properties as alternative local
keys. In contrast, only a single primary local key can be defined.

Local uniqueness

As the keys are not supposed to be globally unique, another definition of uniqueness must be
provided, which is not as restrictive, e. g. the so-called local uniqueness. Upon reflecting the
example mentioned above, it will become obvious that only states within an automaton need
to have different names. A generalisation of this requirement can be achieved by demanding
that the keys of all children of a node (in the sense of the composition) need to be unique. In
addition, it holds that all nodes without parents need to have keys that are unique among
themselves. In the present example, this would be the two networks. The property lkey
is therefore subdivided into three parts in the present example, which need to be unique
respectively. These parts will be marked in respectively different colours in Figure 7.5.

Identifier : NetA Identifier : NetB

Network : n1 Network : n2

Port : p1 Port : p2 Port : p3 Port : p4

Identifier : in Identifier : input Identifier : out Identifier : in Identifier : out

composite composite composite composite

lkey lkey

lkey lkey lkey lkey lkey

Figure 7.5.: Example: unique parts of the property lkey

The local keys of the two networks, namely n1 and n2, (marked in green) need to be unique
as they do not have a parent. The local keys of the ports p1 and p2 (marked in red) and

138 Stefano Merenda

7.5. Semantics for Abstract Syntaxes – Part 2: Extended metamodelling concepts

the ports p3 and p4, respectively (marked in blue) need to be unique as they are both part
of the same networks n1 and n2 respectively. The (still simplified) form of local uniqueness
can be formalised as follows:

poset?(σ root? .Pω : lkey)
∧ poset?Pω : lkey

(7.34)

Further it shall be required that whenever a node within a M-graph is referenced, a local
key must be defined:

�(∗ω ↓∗ Pω :composite) 6= �Pω : template⇒ |Pω : lkey| ≥ 1 (7.35)

For the moment it can be assumed that Pω : template = ∅, thus simplifying the formula to
the following condition which is more easy to understand:

(�(∗ω ↓∗ Pω :composite) 6= ∅)⇒ |Pω : lkey| ≥ 1 (7.36)

Lkey holes

In principle, it is not required for each node to dispose of a property lkey. If a vertex does not
have a local key, this is a so-called lkey hole. This rises the question about how to deal with
these lkey holes. In the following, an example shall be provided in the scope of the present
running example. A network comprises a signature having ports, in turn. Whereas networks
and ports have a name which also represents the local key, signatures do not have a key on
their own. Signatures are thus lkey holes. Networks additionally have named channels. It is
required for the names of all ports and channels to be unique within a network. Figure 7.6
illustrates the situation:

Network : n

Signature : s

Port : p1

Port : p2

Channel : c1

Identifier : in

Identifier : out

Identifier : ch

Identifier : identity

composite

composite

composite

composite

lkey

lkey

lkey

lkey

Figure 7.6.: Example: abstract word including lkey holes

This example would therefore like to have the three keys marked in red as being unique.
According to the current definition it would, however, only be ensured that all ports have
unique names as node s is located inbetween node n and the ports. This problem could,
however, be avoided by connecting the ports directly to the network. This would, however,
in return mean that the concept of the signature would have to be abandoned, which is not
desired too often.

Stefano Merenda 139

7. Abstract Syntaxes in M2L

The same result could, however, also be achieved by extending the condition for local unique-
ness such that lkey holes – i. e. nodes to which no key is assigned, i. e. the signature in the
present example – are skipped. The entire condition for local uniqueness will thus be defined
as follows:

poset?(σ root? .Pω : lkey)
∧poset?(∧(Pω :composite ↓ σ |Pω : lkey| = 0).Pω : lkey)

(7.37)

Concept and property independent uniqueness

It must be noted that the present definition will require a uniqueness across all children, i. e.
also across different concepts and properties. So will not only all names of the ports among
each other be unique, but all names of the ports, channels and all other concepts, which are
still composed to a network, will need to be different.

In principle, there are situations which do not require such a requirement. This will always
be the case if due to domain definition (see Section 7.5.3, Context-sensitive domains, p. 134)
it will be obvious for a reference from the very beginning which concepts is to be referenced.
The properties fromPort and toPort of a channel, for example, can only reference ports
anyway. So if a channel having the same name as a port exists, this would not be a problem
in this specific situation.

Nonetheless, the approach of weakening the key concept that way is abandoned for the
following reasons:

1. In the case of real modelling languages it almost always happens that it can no longer
be determined from the context which node is to be referenced, as concerning the
context, both nodes would be allowed.

2. Such similarities as regards names should be avoided, let alone in the sense of a good
language design, as otherwise a modeller would have to reconstruct said contextual
references on his/her own. The question comes up, whether the same name should
really be given to a channel and a state within the same network – even if that would
be possible in principle.

3. A weakening would result in that a node without context could generally no longer
be identified uniquely via its key. The same would be true for the canonical names,
which will be introduced in the following.

Composition path and canonical keys

Now that the keys specified by the property lkey are not globally unique, the question
comes up of how to be able to identify them in a globally unique way. This situation shall
be illustrated by way of the present introducing example in Figure 7.4: As has already been
described, the key “in”, for example, is not globally unique. Only along with the information
within which network the port is located, will become obvious which port is meant. The key
for network n1 from the present example would be “NetA”. Thus, something as “NetA.in”
would be expected to be a globally unique key.

These so-called canonical keys can be generalised as follows: Due to the nature of the
composition will the definition of a so-called composition path be allowed by the property
composite. A unique path for each node of a model exists along the inverse property com-
posite until a root node – i. e. a node without parents. If the keys of all these nodes are then

140 Stefano Merenda

7.5. Semantics for Abstract Syntaxes – Part 2: Extended metamodelling concepts

concatenated, exactly that canonical key, ckey in short, will be obtained. As more than one
local key does generally exist for a node, also more than one canonical key does exist for a
node. The canonical keys ckey can be derived from the properties lkey and composite as
follows:

refckey : → EV
7→ refckey =

def
π(≷∧ �P :composite.µP : lkey)

(7.38)

Here, the respective local keys will be totally ordered from root to target node. If more than
one canonical key exists, each (totally ordered) connected component represents a single
canonical key. The lkey holes have also already been considered in this definition. The
respective nodes will simply be skipped. Figure 7.7 shall illustrate the definition of the
canonically global keys.

: v1

: v2

: v3

: v4

: key1

: key2

: key3

composite

composite

composite

lkey

lkey

lkey

lkey

Figure 7.7.: Example: building canonical keys

The canonical keys of the four nodes will result in the following with respect to the present
example:

refckey(v1) = {key1, key2}

refckey(v2) = ∅

refckey(v3) =

 key1 key3

key2 key3


refckey(v4) =

 key1 key3 key3

key2 key3 key3


The canonical keys for the model of our running example are, as defined in Figure 7.4:

Stefano Merenda 141

7. Abstract Syntaxes in M2L

refckey(p1) =

{
NetA in

NetA input

}

refckey(p2) = 〈NetA, out〉

refckey(p3) = 〈NetB, in〉

refckey(p4) = 〈NetB, out〉

The local uniqueness of the property lkey along with the required uniqueness of the parent
from the property composite ensures that the canonical key defined as is will be globally
unique.

Referencing by context-sensitive keys

In principle, any node having a local key defined, can be referenced with the help of the
canonical keys. The modelling language should, however, support the modeller in shortening
the (generally relatively long) canonical key in certain situations. Let’s go back to the present
running example in Figure 7.8:

Network : n1

Port : p1 Port : p2

Channel : c1

Identifier : NetA

Identifier : in Identifier : out

composite compositeco
m

po
site

lkey

lkey lkeyfromPort toPort

Figure 7.8.: Example: demonstrating context sensitive keys

In case the modellers want to indicate the properties fromPort and toPort of channel c1
via a local key, they would, up to now, always have to indicate the canonical key, namely
〈NetA, in〉 and 〈NetA, out〉 respectively, although it would actually be obvious that the
ports of the network, wherein the channel itself is located as well, are also always meant
(see property composite between n1 and c1). 〈in〉 and 〈out〉 respectively should therefore
be sufficient. Situations like these can always be re-found in the design of languages. Here,
local variables can be considered. In these cases it shall also solely be referenced via the
local variable name. This is the reason why here as well a generalisation for referencing shall
be provided.

The basic idea here is that the canonical key describing the reference can be shortened
depending on the context – i. e. depending on the node from which it is referenced. Informally
spoken this means that nodes which are closer to each other in the composition tree shall also
be referenced via shorter keys. The node from which the reference emanates will be called
source node. The given key will be interpreted as being a context-sensitive key. Beginning
at the source node, it will be tried to resolve that key. If no suitable node will be found, the
procedure will be repeated at the parent of the source node. This will happen until a root
node was reached. In the last step it will be tried to resolve the given key as a global key.
An abstract example is supposed to illustrate the process upon resolving keys in Figure 7.9:

142 Stefano Merenda

7.5. Semantics for Abstract Syntaxes – Part 2: Extended metamodelling concepts

: v1

: v2

: v3

: v4

: v5

: v6

: v7

: key1

: key2

: key3: key4

composite

composite

composite

composite

compositelkey

lkey

lkey

lkey

lkey

Figure 7.9.: Example: referencing nodes by context-sensitive keys

Beginning at the source node v3, nodes v4, v5 and v7 can already be referenced by the
simple (local) keys key1, key2 and key3. The keys will be checked in order along the inverse
property composite beginning at v7 to v4. Node v6 cannot be referenced by its local key
from node v3, as v7 has the same local key key3. Hence, node v6 is not visible by its local
key.

Visibility

As has just been seen, resolving references may result in an overlapping of nodes as is also
known from common programming languages. Nevertheless there is one major difference:
Although node v6 is not visible by its local key, it can still be referenced by its canonical
key. Note that the canonical key will again be 〈key3〉 in our example. The difference is that
this time it is known that the key represents a canonical key, but for node v7 the canonical
key is 〈key4, key3〉.

Additional context

Some situations desire a resolving of keys, extending beyond the currently presented pro-
cedure, i. e. to include further nodes of the model in the context, besides the source nodes.
This procedure is known from traditional programming languages in particular in connec-
tion with libraries. Here, a respective import or include statement includes libraries. The
respective section may then reference the elements of the library – such as Java classes – by
their simple name, instead of indicating the canonical key.

For this purpose, another perfect property will be introduced besides lkey : the property
context. Each node is able to extend its context via the property context by a so-called
additional context. This is to ensure that the node itself will receive higher priority towards
the additional context. This is, however, generally not valid for conflicts within additional
context. Only if the property context is totally ordered, it is ensured that a node will be
referenced uniquely. Due to the order of the property context, a prioritisation will be defined.
A language designer may, however, also specify the context property in an unordered way.
In this case, the simple key would not be unique, resulting in the fact that the canonical key
would have to be used instead.

Stefano Merenda 143

7. Abstract Syntaxes in M2L

Differentiation between referenceable node and valid edge

Generally it is true that each node having a property lkey, can be referenced by any other
node – at least via its unique canonical key. But even if a node can be referenced by another
node via its simple key – either via the original or the extended context, this does not
necessarily mean that this edge will be valid within the model as well. Having a look at
the networks from the present running example, each port in a network could be referenced
by a channel within the same network. This does, however, not imply that this should be
allowed within the model at all. An output port of a network shall, for example, not be
referenced by the property fromPort within a channel.

The same applies for the import statements discussed in the previous section as well: The
presented property context only does half the work. Nodes of the library can only be
referenced by their simple name. The fact that this reference is allowed within the model
at all, must be defined beyond the properties context and lkey.

Formal definition for referencing and de-referencing

As a summary, the formal definitions for both referencing a node and de-referencing a given
key for three types of keys that have been introduced shall be provided: canonical keys,
local keys as well as context-sensitive keys.

All referencing functions refckey, ref lkey, and refcskey return a pomset of which each connected
component represents one alternative. Hence, each connected component is totally ordered
and thus a list.

For both ref lkey and refcskey one parameter is required: s ∈ EV is an edge function directing
towards the source nodes which should be used for referencing. If more than one source
node is given, the keys for all source nodes will be returned. Order and duplicates of source
nodes will be ignored. The referenced node is defined by the reflexive edge 	 .

• The definition for refckey has already been defined in (7.38). The definition thereof
was repeated herein for completeness. refckey is a constant function as the canonical
key is independent of the source node.

• ref lkey only allows to reference nodes that are part of the composition sub-tree of the
source node. Thus, if the source node is not a parent of the referenced node, an empty
pomset will be returned. A canonical key will never be returned.

• refcskey returns the full-featured context-sensitive key for a node from given source
nodes. The additional context is also taken into account.

144 Stefano Merenda

7.5. Semantics for Abstract Syntaxes – Part 2: Extended metamodelling concepts

refckey : → EV
7→ refckey =

def
π(≷∧ �P :composite.µP : lkey)

ref lkey : EV → EV
s 7→ ref lkey(s) =

def
π(((µεs.P :composite.∧P :composite)

↓ ∧ �P :composite).µP : lkey)

refcskey : EV → EV
s 7→ refcskey(s)

=
def

reftemp(∅, s.(∧ �P :composite⊕ P :context))

while

reftemp : EV 2 → EV〈
k̄, s
〉
7→ reftemp(k̄, s)

=
def


∅ if s = ∅
(ref lkey(1 s) \ k̄) ∪ reftemp(k̄ ∪ (π(

1 s.∧P :composite.µP : lkey), [1]s)) if s 6= ∅

(7.39)

For each referencing function a corresponding de-referencing function derefckey, deref lkey,
and derefcskey also exists:

derefckey : EV → EV
k 7→ derefckey(k)

=
def

σ(k ⊆ π(≷∧ �P :composite.µP : lkey))

deref lkey : EV → EV
k 7→ deref lkey(k) =

def
σ(n b ∧ �P :composite

∧ k ⊆ π(≷∧(�P :composite ↓∗ n).µP : lkey))

derefcskey : EV → EV
k 7→ derefcskey(k)

=
def

1((∧ �P :composite⊕ P :context).deref lkey(k))

(7.40)

Note that the property context must be totally ordered in order to ensure a unique result.
In principle, also a partial order is allowed. If the context-sensitive key does not return a
unique result, the canonical key will have to be used.

7.5.6. Instantiating Properties

Re-use represents an essential concept in modelling languages used in practice. Examples can
be found in the most diverse fields. The most common example will surely be (pre-)defining
functions and the latter, normally multiple use thereof for defining further functions. An-
other but similar example from the present running example would be the definition of
components and the multiple instantiation thereof in networks, which shall be considered in
more detail later on.

Stefano Merenda 145

7. Abstract Syntaxes in M2L

Although re-use represents a common requirement to modelling languages, it is not explicitly
supported by current metamodelling approaches. It is very difficult to model re-use with
conventional means. Although re-use represents a very simple and intuitively easily under-
standable concept in principle, a metamodel which is to support such a concept, will turn
out to be extremely confusing and complex. The actual concepts of the language will mix
with those becoming technically necessary due to re-use. This is the reason why a specific
construct for instantiation in metamodelling shall be introduced in the following.

In order to provide a better understanding of the problems upon the introduction of re-use, a
closer look shall be taken at the present running example. Figure 7.10 provides the relevant
part from the present metamodel that was introduced in Section 3.4, A first, semi-formal
abstract syntax, p. 50 for the present running example. In addition to the current scope, an
additional concept, namely ProcessingUnit, will be introduced. A ProcessingUnit represents
a physical unit that may execute a set of components thereon. All components are mapped
to a processing unit during a deployment step. This mapping is represented by the property
deployedComponent of the concept ProcessingUnit. Especially in this context is it important
for a single instance of a component to be referenced herein.

Component

name: Identifier

Block

Port

name: Identifier

Channel

name: Identifier

Network

ProcessingUnit

name: Identifier

toPort
1..*

fromPort
1..1

channel

0..*

deployedComponent

0..*

subcomponent
0..*

inPort
0..* {ordered}

outPort
0..* {ordered}

Figure 7.10.: Dataflow networks without instantiation

Once again, our abstract syntax still does not consider re-use. In order to illustrate the
problem, a short exemplary model will be developed. Said network should realise a double
integration by connecting two integrator networks as defined in Figure 3.3 in series. The
resulting network is shown in Figure 7.11.

doubleIntegrator

y:Anyx:Any c1 c2 c3integrator integrator

Figure 7.11.: Dataflow network including two identical instances

Here, re-use will be taken into consideration. The network doubleIntegrator uses network
integrator twice. With the current metamodel, modellers would have to re-define the network
integrator each time. The fact that it is actually the same network, that has been used twice,
would not be reflected by the model. The fact that one component can be used in one network
at most is primarily due to the required composition of the property subcomponent. It could

146 Stefano Merenda

7.5. Semantics for Abstract Syntaxes – Part 2: Extended metamodelling concepts

be assumed that weakening it to an association might solve the problem. It is, however,
correct that now, one component could be used within several networks. Difficulties arise,
however, upon the definition of channels. Due to that fact that the network integrator is
used twice in doubleIntegrator, no differentiation can be made between the ports of the two
integrator components thus rendering a connection of the channels as well as the definition of
the network impossible. In order to achieve that, individual nodes will have to be created for
each use (instance) of the integrator component. This is not only valid for the components
used but also the ports thereof. This results in the introduction of the two new concepts
ComponentInstance and PortInstance in abstract syntax.

It could be assumed that channels would now connect PortInstances instead of ports. In the
present case, this is, however, not sufficient as channels should also be able to connect ports
of the network to be defined. The individual ports doe, however, not yet have PortInstances
as the network to be defined is not yet in use. The resulting extended abstract syntax is
shown in Figure 7.12.

Component

name: Identifier

Block

Port

name: Identifier

Channel

name: Identifier

Network

ComponentInstance

name: Identifier

PortInstanceProcessingUnit

name: Identifier

fromOutPortInstance

0..1

toOutPort

0..*

toInPortInstance

0..*

fromInPort

0..1

channel

0..*

deployedComponent

0..*
outPort

0..* {ordered}

template

1..1

inPort

0..* {ordered}

subcomponent

0..*

template

1..1

inPort

0..* {ordered}

outPort

0..* {ordered}

Figure 7.12.: Dataflow networks with component instantiation

Despite the extensions introduced, not all problems have been solved yet. The extension of
the abstract syntax made it possible for the individual components used including the ports
thereof to be distinguishable within the network. If the component used is, however, a net-
work itself, the instances thereof will generally remain undistinguishable. The two instances
of the multiplication block in the two integrator instances would, in our example, not be
distinguishable, for example. The model would only comprise one ComponentInstance node
for both. The reason therefore is that the instances of a network itself are not instantiated
themselves. Figure 7.13 illustrates the situation when networks are instantiated again. The
result will be instances of instances.

In order to define the deployment in our running example, the distinguishability of all in-
stances is necessary. Plainly speaking, each instance is assigned to one computing node. In
the present example, one multiplication could be assigned to one computing node, whereas
another multiplication could be assigned to another computing node. One solution for this
problem would be the introduction of additional instance concepts in analogy to Compo-
nentInstance and PortInstance.

Stefano Merenda 147

7. Abstract Syntaxes in M2L

doubleIntegrator

y:Anyx:Any c1 c2 c3
dT

integrator

pre

c1

c2 c5c4

c3

dT

integrator

pre

c1

c2 c5c4

c3

Figure 7.13.: Dataflow network including instances of instances

Another approach would be that instances will only be uniquely referenced by the decom-
position path thereof along the networks. The two multiplication blocks in our example
could then be distinguished by integrator1.mult and integrator2.mult, wherein integrator1

and integrator2 denote the two instances in doubleIntegrator. A corresponding extension of
abstract syntax would be as follows:

Component

name: Identifier

Block

Port

name: Identifier

Channel

name: Identifier

Network

ComponentInstance

name: Identifier

PortInstance

ProcessingUnit

name: Identifier

InstanceQualifier

outPort

0..* {ordered}

outPort

0..* {ordered}

inPort

0..* {ordered}

template

1..1

subcomponent

0..*

template

1..1

instance

1..* {ordered}

deployedComponent

0..*

channel

0..*

fromInPort

0..1

toInPortInstance

0..*

toOutPort

0..*

fromOutPortInstance

0..1

inPort

0..* {ordered}

Figure 7.14.: Dataflow networks with component instantiation and instance qualifier

This results in a definition of abstract syntax which has significantly increased as regards
complexity in comparison to the one originally introduced. The actual concepts of the
language mix with those additional ones that have become technically necessary. Moreover
would it be necessary to define many additional consistency conditions beyond the presented
abstract syntax in order to obtain reasonable models. The PortInstances of a NetworkIn-
stance would, for example, always have to correspond to the ports of the respective network.

A specific instantiation construct for re-use in metamodelling shall be introduced in the
following. The aim thereof is that the introduction of re-use into the modelling language
must not be extended by additional concepts introduced due to technical reasons, and that
re-use will explicitly be characterised as such within the model.

The example mentioned above shows that upon instantiation it is generally required to
provide individual nodes for the instances within the model. If this is strictly conducted,

148 Stefano Merenda

7.5. Semantics for Abstract Syntaxes – Part 2: Extended metamodelling concepts

all instances can be referenced uniquely. Accordingly, this is not only valid for ports and
channels but also for the instances of instances discussed. This will lead to the central
strategy for the instantiation concept. Instances of concepts will be realised in the model as
specific clones. In contrast to the conventional approach presented above, the instance will
receive the same concept as its template. The relationship between instance and template
will be realised via the property template, which is reserved for this.

pDef(vc, vp).Pω2 : linkType b Cω2 :Instantiation
II

(b Cω :c)⇒ (Pω :p b Pω :composite
∧ |Pω :p.Pω : template| = |Pω :p|)

(7.41)

In the following, specific conditions will be required for the property template which control
the relationship between instance and template thereof in detail.

One template at most

One node must comprise one template at most. If |Pω : template| = 1 holds for one node,
this is an instance node or just an instance. If |�Pω : template| ≥ 1 holds for one node, this
is a template node or just a template.

|Pω : template| ≤ 1 (7.42)

Cycle-freeness of instantiations

The template must neither directly or indirectly be an instance of itself. Note that instances
of instances will be allowed as long as they do not contain a cycle.

	 6b Pω : template.∧Pω : template (7.43)

Instance keys

When looking at our example, it will be recognised that the cloning of all properties will
even result in an identical local key. When two instances are present in one network – as
described in our example – this will lead to duplicate local keys in one network and thus
to a constraint violation. Because of that, a so-called instance key must additionally be
defined for each instance. If a node is an instance, the instance key will always be the local
key. This special situation has already been taken into account. Please refer to (7.33). The
following equations will be required in addition.

singleton? 1Pω : ikey
∧ set?[2; ∗]Pω : ikey
∧ |Pω : template| = 0⇒ |Pω : ikey| = 0
∧ |Pω : template| = 1⇒ Pω : lkey = Pω : ikey

(7.44)

Stefano Merenda 149

7. Abstract Syntaxes in M2L

Same concept for template and instance

The concept of each instance node has to correspond exactly to the concept of the template
node. Sub- and super-concepts are forbidden as well.

|Pω : template| = 1⇒ ∀Cω : c : (b c⇔ Pω : template b c) (7.45)

Instantiation of all composed nodes

If two nodes are in a template relationship, all composed nodes thereof need to be in a
template relationship as well. This implies the requirement of an instantiation of exactly all
composed nodes

|Pω : template| = 1⇒
(Pω : template.Pω :composite = Pω :composite.Pω : template)

(7.46)

Edges remain within the instance area

The previous rule defines which nodes will be instantiated and where the instantiation will
end. An instance range defines this set of nodes that is connected via the property composite
and which are part of the same instance. The instance range is therefore defined as the set
of all transitively reachable children along with the set of all transitively reachable parents
which still belong to the instance (i. e. having a property template).

Edges within the template range need to be within the instance range, correspondingly.
Edges leaving the template range will thus also leave the instance range and direct towards
the corresponding identical node.

|Pω : template| = 1⇒ (
∀Pω : p \ {lkey, ikey, ckey, composite, template} :

(Pω : template.p = p.1(((↓ (�p.
∧((Pω :composite] �Pω :composite) ↓ σ |Pω : template|)
)).Pω : template) ⊕))

)

(7.47)

7.6. Running Example

Abstract syntaxes in the form of metamodels have been introduced in the present chapter.
Thus, abstract syntax can now be described by a special kind of model. The structure
of this model could already be defined as an Edge Algebra statement. Now the meaning
and thus the structural semantics of a metamodel are also known. This shall be shown by
defining the concept Network from our running example. The definition in the form of an
Edge Algebra statement will be provided in (7.48). The abstract word representing exactly
the same definition in the form of a metamodel will be shown in Figure 7.15.

150 Stefano Merenda

7.6. Running Example

	 b C :Network ⇒ (
	 b C :Component
∧ �P :composite 6= ∅

∧P :subcomponent b P :composite
∧ |P :subcomponent.P : template| = |P :subcomponent|
∧ set?P :subcomponent
∧P :subcomponent b P : includedContext.P :componentDef

∧P :channel b P :composite
∧ set?P :channel
∧P :channel b C :Channel

)

(7.48)

Concept : Network

Concept : Component

Concept : Channel

Property : subcomponent

Property : channel

Property : includedContext Property : componentDef

ConceptDef

ConceptDef

PropertyDef

PropertyDef

False

False

Weak

Instantiation

Composition

Set

Set

ConceptEdging

PropertyEdging PropertyEdging

Navigation

concept

refines

isAbstract

isComplete

conceptType

p
ro

pertyD
ef

p
ro

pertyD
ef

concept

property

linktype

pomsetRestriction
domain

property

linktype

pomsetRestriction
domain

concept

edgeOperand edgeOperand

property property

Figure 7.15.: Example: specification of the concept Network in the form of an abstract word

Stefano Merenda 151

7. Abstract Syntaxes in M2L

7.7. Defining M2L – Step 3: Relationship between
Meta-Metamodel and Edge Algebra

As has been illustrated in Section 7.6, Running Example, p. 150, it is now possible to define
abstract languages by abstract syntaxes in the form of a metamodel. This leads to the third
step of defining the metamodelling language M2L as shown in Figure 7.16.

Queries on
abstract words:
the Edge Algebra

Specifying abstract
languages:
Abstract Syntaxes

Models as
Abstract Words:
M-graphs

Specifying concrete
languages:
Concrete Syntaxes

Step 1 Step 2 Step 3 Step 4

Figure 7.16.: Overview - Third of the four steps of specifying M2L.

It has been possible to specify both the M-graph representing the meta-metamodel in
terms of an abstract word (see Chapter 5, Models as Abstract Words, p. 81) as well as
the Edge Algebra statements defining the structure of the abstract language of M2L (see
Chapter 6, Queries on abstract words - the Edge Algebra, p. 95) in the last chapters.

In Section 6.5, Defining M2L – Step 2: M2L defined by Edge Algebra statements, p. 117 it
has already been discussed that it was also possible to check the consistency of the M-graph
to abstract language. Now it is possible to additionally define the second relationship in a
formal way: The definition of abstract language in terms of Edge Algebra statements can
be derived from the abstract word representing the meta-metamodel.

Up to now, the total semantics of the metamodelling language M2L has not been defined.
The part of textual concrete syntaxes is still open. Thus, it is currently not possible to write
down the abstract syntax definition in a sensitive way. As can be seen in Figure 7.15 the
M-graph becomes very large and complex even for a simple example. This is the reason why
the final part of M2L shall be defined to be able to define the metamodel in a textual way.

152 Stefano Merenda

Chapter 8
Textual Concrete Syntaxes in M2L

The structural design and the concepts of a language can be perfectly described by abstract
syntax. Nevertheless is abstract syntax not sufficient for humans when working with real-
life models. The present examples Figure 5.13 in Section 5.6, Running Example, p. 92, and
Figure 7.15 in Section 7.6, Running Example, p. 150 for example illustrate how large an
M-graph becomes even for a small model. For a further, automated processing there are
situations in which abstract syntax is not a sensitive way of representing data.

Hence, concrete syntaxes are crucial when talking about language engineering. Although the
present work includes various types of concrete syntaxes, focus shall be on textual concrete
syntaxes as they are the most fundamental ones: All other types of concrete syntaxes, such
as diagrammatic or tabular ones, always include textual parts.

Contents
8.1. Relationship between abstract and concrete syntaxes 153

8.2. Semi-formal introduction of the abstract syntax 155

8.3. Basic approach defining semantics for Concrete Syntaxes . . . 157

8.4. Canonical textual syntax for M-graphs 160

8.5. Semantics for Concrete Syntaxes – a template-based approach 162

8.6. Running Example . 167

8.7. Defining M2L – Step 4: M2L finally defined by M2L itself . . 169

8.1. Relationship between abstract and concrete syntaxes

In the past, modelling languages have often been defined by a (textual) formal language.
This textual representation then defines the primary way of representing a model in such
a language. Nowadays, graphical interfaces are gaining increasing significance. This is the
reason why models are nowadays often represented in different ways, such as diagrams, XML-
files, tables, and others. It has to be pointed out that such a scenario does not comprise a
single model representation but a number of alternative ways of representing a model. First
of all shall be distinguished between practical and technical reasons:

Stefano Merenda 153

8. Textual Concrete Syntaxes in M2L

• Practical reasons result from a desire to optimise processing for humans. In an
entirely model-based development process, each process task describes a change of the
model (to be developed). Depending on the respective process task, different represen-
tations of the model will generally be more suitable, from an objective point of view.
This ranges from solely textual representations via mixed versions to mainly diagram-
matic representations. Moreover, different representations are subjectively perceived
to be more comprehensible by the process roles involved due to different qualifica-
tions, expectations and other background knowledge. Personal preferences regarding
textual or diagrammatic representations should also be taken into consideration. Sub-
jective preferences are, however, often considered as being unnecessary, but when it
comes to acceptance upon introduction and efficiency of the development process, they
play a vital role. Intentional programming [Simonyi, 1995] perceives these objective
and subjective preferences of different model representations as a central development
paradigm.

• Technical reasons in contrast do result from an optimisation for machine process-
ing. Different components of a development environment require different, partially
contradictory requirements to model representations in order to be able to define effi-
cient algorithms. Thus, the representation of a model in the database component, for
example, differs from that of the same model in a model checker component, which,
in turn, differs from that in an editor component. The number of participating com-
ponent increases in particular with regard to approaches of distributed and integrated
development environments, thus emphasising the effect described in modern devel-
opment environments. Further representations will additionally become necessary
besides these inherent problems, due to heterogeneous execution and development
environments. Examples therefore are different processor architectures, transmission
protocols or programming languages.

Due to the above reasons is it a good idea to abstract the actual information content from
concrete representations. In this context, the abstract words, which have already been intro-
duced, shall be mentioned (see Chapter 5, Models as Abstract Words, p. 81). As introduced
in Chapter 7, Abstract Syntaxes in M2L, p. 119, abstract syntaxes describe exactly the struc-
ture of such abstract words in the form of abstract languages. Accordingly, the concrete
syntaxes describe the so-called concrete languages, based on abstract syntax. Decisive is
that a concrete language is not solely defined by concrete syntax but only in combination
with abstract syntax. This leads to the methodical reasons for separating abstract and
concrete parts of a language.

• Methodical reasons result from the central role played by abstract syntaxes when
specifying a modelling language. Abstract syntax confines itself to defining the struc-
ture and thus the concepts of a modelling language that can be described. Both, for
understanding and for the formal definition of semantics, exactly these parts of the
language definition are of central importance. On the one hand, naming the concepts
results in a taxonomy of the respective domain which, in turn, allows for a descrip-
tion of the language in an intuitively understandable way without losing grip on the
formal definition. On the other hand, formal semantics can already be defined based
on abstract syntax without having to define a concrete syntax, as one word of the
abstract language provides an exact representation of the actual information content.
This systematisation of language development also facilitates the standardisation of
modelling languages, which will become essential for the required integrated model
basing, in order to be able to have tools of different manufacturers working together
seamlessly: Assuming a canonical concrete syntax for data exchange (i. e. a concrete
syntax which can canonically be derived from abstract syntax), an agreement upon a

154 Stefano Merenda

8.2. Semi-formal introduction of the abstract syntax

common abstract syntax along with semantics definition is already sufficient. Based
on that, each manufacturer may differentiate from others via its own concrete (textual
or else diagrammatic) syntaxes.

All in all, the advantages of a systematic separation of abstract and concrete syntax can be
summarised as follows:

1. Methodical advantages: structured and integrated language development

• Abstract syntax for simultaneously defining concepts in a formal and intuitive
way

• Abstract syntax sufficient as least common denominator for standardising the
syntactical parts

2. Practical advantages: optimisation of syntax for processing by humans

• Different, objectively more suitable concrete syntaxes for different process tasks

• Different, subjectively perceived as being more comprehensible, concrete syntaxes
due to different qualifications of different process roles

3. Technical advantages: optimisation of syntax to match machine processing

• Inherently necessary, different concrete syntaxes due to different algorithmic re-
quirements

• Artificially created different concrete syntaxes due to a lack of across-tool stan-
dards

Exactly that separation of abstract and concrete parts of language does not exist in the field
of formal languages. There, focus is on a concrete (textual) language from the very begin-
ning. A kind of abstract syntax is, however, implicitly defined in the context of grammars
by the application order of productions, but in contrast to the approach presented in the
present thesis, it only plays a minor role.

8.2. Semi-formal introduction of the abstract syntax

As described in Section 6.5, Defining M2L – Step 2: M2L defined by Edge Algebra state-
ments, p. 117, it is already possible to define the abstract syntax of the metamodelling
language M2L in a formal way. Up to now, the semantical meaning for specifying abstract
syntaxes has been defined. For that part of the metamodel which represents the concrete
syntax definition the semantical meaning is still open. In order to provide a better under-
standing of the following sections, an overview of the relevant excerpt of the meta-metamodel
will be given in advance. Abstract syntax will therefore be shown by using commonly known
UML class diagrams (in particular the MOF subset is sufficient) again, as has been defined in
[OMG, 2006a]. Figure 8.1 shows an excerpt of the M2L’s abstract syntax which concentrates
on specifying textual concrete syntaxes in M2L.

Stefano Merenda 155

8. Textual Concrete Syntaxes in M2L

ConcreteSyntaxPackage

metaPackage: Metapackage

Named
ConcreteSyntax

name: SyntaxIdentifier
alternativeName: SyntaxIdentifier
isDefault: Boolean

ConcreteSyntaxDef

concept: ConceptsyntaxPackage

0..*

concreteSyntaxDef

0..*

subpackage
0..*

(a) General part for specifying concrete syntaxes

ConcreteSyntaxDef
TextualSyntaxDef

TemplateElementTerminal

IncludeSyntaxDef

concept: Concept [0..1]
differingSyntax: SyntaxIdentifier [0..1]

NonTerminal

edge: Edge
linkType: LinkType
differingSyntax: SyntaxIdentifier [0..1]

Option

predicate: Predicate

SyntaxTemplate

ConcreteSyntax
TextualSyntax

ConcreteSyntaxPackage
TextualSyntaxPackage

ProperTerminal

symbols: String

WhitespaceTerminal «enumeration»
Whitespace

Space
Newline

Switch

elseCase
0..1

thenCase
1..1

templateElement
0..* {ordered}

mainSyntaxTemplate
1..1

syntaxPackagesubpackage

concreteSyntaxDef

whitespace
1..1

starting 0..1

alternative
2..*

prefix 0..1

infix 0..1

suffix 0..1

ending 0..1

(b) Specific part for specifying textual concrete syntaxes

Figure 8.1.: Semi-formal abstract syntax for specifying concrete syntaxes in M2L

In the following two sections, a formal definition of those concepts will be provided. Never-
theless, a short overview shall be provided beforehand. The metamodel is divided into two
parts:

The first part – shown in Figure 8.1(a) – provides the general basis for specifying concrete
syntax independent of whether it is textual, diagrammatic, tabular, or even something else.
In analogy to the structure of abstract syntaxes, the top-level concept for concrete syntaxes
is ConcreteSyntax, consisting of a set of packages named SyntaxPackage. In contrast to the
concept AbstractSyntax, a concrete syntax consists of a name as multiple concrete syntaxes
are possible. In addition, one syntax can be marked as being a default syntax. Syntax-
packages are hierarchically structured and may thus contain sub-packages. Note that the
package structure must match with the package structure of abstract syntax. Within a

156 Stefano Merenda

8.3. Basic approach defining semantics for Concrete Syntaxes

syntax-package the concrete syntax definitions of the concepts included are enumerated
(ConcreteSyntaxDef). In analogy to the concept ConceptDef, each ConcreteSyntaxDef refers
to a concept.

The second part – shown in Figure 8.1(b) – defines the specific abstract syntax for spec-
ifying textual concrete syntaxes. The concepts TextualSyntax, TextualSyntaxPackage, and
TextualSyntaxDef are refining concepts of those mentioned above. They make sure that
a TextualSyntax only consists of TextualSyntaxDefs. Each TextualSyntaxDef consists of a
main SyntaxTemplate which consists of a list of TemplateElements in turn. There are five
different types of template elements:

• Terminal represents terminal symbols. Here, it is distinguished between ProperTer-
minal and WhitespaceTerminal.

• Nonterminal represents non-terminal symbols. They consist particularly of an Edge
Algebra statement directing towards the nodes from the model to be encoded.

• Option allows the definition of an alternative encoding depending on the valuation of
a given node predicate defined as an Edge Algebra statement.

• Switch allows the definition of an alternative encoding independent of any condition.
It can be used for defining alternative syntaxes.

• IncludeSyntaxDef allows a re-use of already defined syntax definitions.

8.3. Basic approach defining semantics for Concrete Syntaxes

In order to define the semantics for textual concrete syntaxes, a bidirectional mapping from
a M-graph called ω to a sequence of characters and vice-versa shall be specified in a formal
way.

In general, such a mapping is not unique. On the one hand there may be multiple character
sequences representing the same abstract word. On the other hand a character sequence may
result in more than one valid M-graph. While the former is a possibly desired mechanism
as there may be multiple representations for one and the same information (e. g. “0” and
“±0” both represent the same number), the latter is undesired, of course.

8.3.1. The encoding alphabet for textual concrete words

In order to represent all possible character sequences, the set of all possible concrete textual
words, namely Coding, will be introduced as follows.

Coding =
def
Ppomset (Char ∪ {ws}) (8.1)

Herein, Char represents the set of basic characters. It may be the set of all valid unicode
characters which are not used as white-spaces. ws is a special element representing an
arbitrary number (even zero) of white-space characters.

It is possible to define alternative encodings in an easy way as Coding is defined as a pomset:
Unordered elements are seen as alternative encodings. According to that κπc returns a set
of all valid character sequences by using the path-operator for an encoding c ∈ Coding.
Herein, each element ws represents an arbitrary sequence of white-space characters.

Stefano Merenda 157

8. Textual Concrete Syntaxes in M2L

According to the special white-space character a special type of concatenation shall be
introduced by way of (8.2) which additionally adds a ws between the two encodings.

◦ : Coding2 → Coding
〈A,B〉 7→ A ◦B =

def
A⊕ {ws} ⊕B (8.2)

8.3.2. Coding and Decoding functions

It has already been mentioned that a definition of multiple textual syntaxes is possible. Thus,
the mapping must be parametrised by a syntax identifier. The concept SyntaxIdentifier
will therefore be defined in the meta-metamodel. Idsyn ⊆ Vω2 represents all vertices of a
metamodel that are marked by the concept SyntaxIdentifier.

Idsyn =
def

(Cω2 :SyntaxIdentifer)() (8.3)

It will now be possible to introduce the function codeω2,idsyn
which maps a model ω having

a given metamodel ω2 and syntax identifier Idsyn to an encoding c ∈ Coding.

code : M1×M2× Idsyn → Coding
〈ω, ω2, idsyn〉 7→ codeω2,idsyn

(ω)
(8.4)

Up to now, a textual concrete word could be derived from a given abstract word. This
direction from the abstract word to a textual concrete word is also known as code gen-
eration. The difference between code generation and this approach is that the resulting
textual representation is more closely related to the abstract language as the major issue is
not the creation of another language but the definition of a textual representation for the
same language. Hence, the term pretty-printing instead of code generation might be more
appropriate, although focus is not on providing e. g. a correct indent and/or a line break.

Besides pretty-printing, the inverse mapping to encoding is also crucial: The abstract word
should be derived for a given textual concrete word. This inverse direction is commonly
known by parsing a textual representation of a model. Based on (8.4), the inverse function
defining the parsing in an abstract way can easily be defined.

code−1 : Coding ×M2× Idsyn → Pset (M1)

〈c, ω2, idsyn〉 7→ code−1
ω2,idsyn

(c)

=
def

{
ω ∈M1

∣∣∣ π codeω2,idsyn
(ω) ∩ π c 6= ∅

}
(8.5)

Note that this definition neither ensures a unique parsing result nor an algorithm for parsing
such a textual syntax. Nevertheless has a formal understanding of what the textual lan-
guage is about been provided. Important questions about parsing algorithms, parsability,
complexity of parsing, or classifying the language description in the Chomsky hierarchy are
still open and are beyond the scope of the present work.

Up to now, the topic was encoding the complete abstract word into a textual representation.
As this textual representation is not the primary one in the present approach but only a
view for e. g. humans to provide an adequate representation, only an excerpt will be desired
in most situations. A textual Java editor should not show the entire Java code within one
window but only one Java class, for example. A useful definition is therefore the encoding

158 Stefano Merenda

8.3. Basic approach defining semantics for Concrete Syntaxes

of one vertex (including the vertices contained therein) within an abstract word. The vertex
coding function vcodeω2,idsyn

will therefore be defined by adding the parameter v ∈ VM1

which is the vertex to be encoded.

vcode : VM1 ×M1×M2× Idsyn → Coding
〈vω, ω, ω2, idsyn〉 7→ vcodeωω2,idsyn

(vω)
(8.6)

Based on this vertex coding function it can now be defined that the encoding of the total
abstract word is simply a concatenation of the encoding of all root vertices of the abstract
word in an arbitrary order. Formally, it is defined as follows:

code : M1×M2× Idsyn → Coding
〈ω, ω2, idsyn〉 7→ codeω2,idsyn

(ω)

=
def

τ((σ root?)()χ vcodeωω2,idsyn
)

(8.7)

8.3.3. The pomset encoding function

Before the definition of the semantics of textual concrete syntaxes as defined in M2L will
be begun, an important helper function on encodings will be introduced. It will be relevant
for encoding multi-valued properties as lists or sets. It allows an encoding of an arbitrary
pomset of encodings to a single encoding such that a starting, a prefix, an infix, a suffix, and
an ending can be specified. The meaning of those parameters in detail is:

• By starting and ending an encoding can be specified that is added at the very beginning
and the very ending respectively if, and only if, the pomset consists of at least one
element.

• By prefix and suffix an encoding can be specified that is added before and after each
element of the pomset.

• By infix an encoding can be specified that is added inbetween of two elements each.

The formal definition is:

(· || · | · | · || ·)· : Coding5 × Ppomset (Coding) → Coding
〈start, pre, in, post, end,A〉 7→ (start || pre | in | post || end)A

where

(start || pre | in | post || end)A =
def

(A 6= ∅ ? start⊕ {ws})
⊕ ((permA)χ (e 7→ {pre ◦ e ◦ post})−→χ {{ws} ⊕ in⊕ {ws}}χ (e 7→ e))
⊕ (A 6= ∅ ?{ws} ⊕ end)

(8.8)

As can be seen, the signature of this operator is closely related to the syntactical definition
of non-terminals: Non-terminal represents exactly the encoding of an arbitrary property
which is generally multi-valued.

Stefano Merenda 159

8. Textual Concrete Syntaxes in M2L

8.4. Canonical textual syntax for M-graphs

In the first stages of engineering a new language, concrete syntaxes have not been defined
yet. In order to be able to validate abstract syntax in early stages, a canonical textual
syntax is sensitive, however. Thus, a textual representation should be available even if no
textual concrete syntax has been defined: The textual concrete syntax should be derived
from abstract syntax in a canonical way. Then, the canonical textual syntax can stepwise
be customised during the language engineering process if it is not yet sufficient for the final
language.

Besides this methodical advantage, a canonical textual syntax also helps in representing
abstract syntax in a textual way. The fundamental structure that is explicitly represented
by an abstract word, will be fully preserved when encoding an abstract word by a canonical
textual syntax. When, for example, a large abstract word is to be specified – such as
necessary when defining the meta-metamodel in Section 5.7, Defining M2L – Step 1: M2L
Meta-Metamodel in terms of an Abstract Word, p. 94 – the textual way will be the only one
suitable.

Before introducing the formal definition of the canonical syntax, a short example shall be
provided. Nodes are basically encoded hierarchically according to the composite-property,
starting with the root vertices. A vertex itself is encoded by a list of property-value-pairs.
The signature of our running example as defined in Figure 5.1(b) shall be encoded for
illustration purposes. This figure will be repeated in Figure 8.2 for convenience, including
the edge representing the local keys. The property composite is still omitted.

Signature

Port

Port

Port

Identifier : x

Identifier : y

Identifier : result

inPort

inPort

outPort

lkey

lkey

lkey

name

name

name

Figure 8.2.: Example: abstract word of a signature

The textual representation of the given abstract word when encoded by the canonical textual
syntax should be as shown in Listing 8.1.

Listing 8.1: Signature represented by a canonical textual word

1 Signature {
2 inPort : Port x {
3 name : x ;
4 } ;
5 inPort : Port y {
6 name : y ;
7 } ;
8 outPort : Port r e s u l t {
9 name : r e s u l t ;

10 } ;
11 }

160 Stefano Merenda

8.4. Canonical textual syntax for M-graphs

The name of the concept will be encoded at first. Then the three property-value-pairs will
be placed in curly brackets. One for each outgoing edge, except for those which are labelled
by the property composite or lkey : Two input ports and one output port. The ports are
in turn vertices within the abstract word and should therefore be encoded the same way.
There is only one edge to represent: It is labelled by the property name. In addition, ports
comprise a local key represented by the property lkey. This local key is encoded in front of
the curly brackets.

8.4.1. The encoding of identifiers for concepts and properties

For the canonical syntax it has been defined that the identifiers for both concepts and
properties are encoded within the textual representation. As has already been discussed in
Section 7.1, Relationship between model and metamodel, p. 119, the corresponding elements
from the abstract alphabet are only mathematical symbols. In order to be able to encode
these symbols, a corresponding function codeΣ has to be defined.

codeΣ : Cω ∪ Pω → Coding
s 7→ codeΣ(s)

(8.9)

8.4.2. The encoding of references

Our previous example does not contain any edges which direct towards a non-compositional
vertex. Naturally this is not the general case as M-graphs are not always structured as
trees along the composite-edge. In the case the linked vertex of a property-value-pair is
not directly composed to the source vertex, the vertex should be referenced by a context-
sensitive key as defined in Section 7.5.5, Referencing by context-sensitive keys, p. 142. In
connection with abstract syntax, a concrete symbol for separating local keys has not been
defined yet. As in most languages, the dot character (‘.’) shall also be used herein. In order
to mark a key as a canonical key, a dot will be added at the beginning of the key.

Given a source vertex vsω, and a referenced vertex vrω, the function coderef will formally be
defined as follows:

coderef : VM1
2 ×M1 → Coding

〈vsω, vrω, ω〉 7→ codeωref(v
s
ω, v

r
ω)

where

codeωref(v
s
ω, v

r
ω) =

def

{
(’.’ ||∅ | ’.’ |∅ ||∅) refcskey(vsω)(vrω) if refcskey(vsω)(vrω) 6= ∅
(∅ ||∅ | ’.’ |∅ ||∅) refckey(vrω) if refcskey(vsω)(vrω) = ∅

(8.10)

8.4.3. The canonical encoding of values

As could be seen, the encoding of the values of each property-value-pair depends on whether
the value is a composite vertex or not. In case of a composition, the vertex will be encoded
inline; in case of a link to a non-composite vertex, a reference by a context-sensitive or
canonical key will be encoded. Formally, it is defined as follows:

Stefano Merenda 161

8. Textual Concrete Syntaxes in M2L

codecanonic/ref : VM1
2 ×M1 → Coding

〈vsω, vrω, ω〉 7→ codeωcanonic/ref(v
s
ω, v

r
ω)

=
def

{
vcodeωcanonic(vrω) if vrω ∈ Pω :composite(vsω)

codeωref(v
s
ω, v

r
ω) if vrω /∈ Pω :composite(vsω)

(8.11)

8.4.4. The canonical encoding of vertices

Based on the previous definitions, it will now be possible to define the canonical encoding
for vertices in total.

vcodecanonic : VM1 ×M1 → Coding
〈vω, ω〉 7→ vcodeωcanonic(vω)

where

vcodeωcanonic(vω) =
def

codeΣ(typeω(vω)) ◦ vcodeωcanonic((1Pω : lkey)(vω))
◦ (’(’ ||∅ | ’,’ |∅ || ’)’)(([1]Pω : lkey)(vω)χ (uω 7→ {vcodeωcanonic(uω)}))
◦ (’{’ ||∅ |∅ |∅ || ’}’)((Pω \ lkey)χ (p 7→
{(∅ || codeΣ(p) ◦ ’:’ |∅ | ’;’ ||∅)(Pω :p(vω)χ (uω 7→ codeωcanonic/ref(vω, uω)))}))

(8.12)

As already mentioned by this definition, no metamodel is necessary at all. It is possible
to encode an abstract word without any additional information due to the semi-structured
approach of M-graphs. The following section shall illustrate how to define specific textual
representations.

8.5. Semantics for Concrete Syntaxes – a template-based
approach

The abstract syntax for defining textual concrete syntaxes has already been introduced in
Section 8.2, Semi-formal introduction of the abstract syntax, p. 155. Up to now, a definition
was given of how to encode an abstract word without an existing definition of a textual
concrete syntax. The vcode-function introduced in (8.6) will therefore need to be specified.

The specification has basically been realised by visiting the corresponding part of the meta-
metamodel according to the Visitor-Pattern as defined in [Gamma et al., 1995]. The starting
point for the visitor will be defined by a concept named c ∈ CM1. The function conceptVis-
itor will be introduced in a formal way. It encodes a given vertex vω from a M-graph ω
according to a given concept c, a meta-model ω2 and a syntax identifier Idsyn.

conceptVisitor : CM1 × VM1 ×M1×M2× Idsyn → Coding
〈cω, vω, ω, ω2, idsyn〉 7→ conceptVisiorωω2,idsyn

(cω, vω)

(8.13)

The specification of this first part of the visitor will be defined in the following section (see
Section 8.5.1, Finding the suitable syntax definition, p. 163). Note that the given concept

162 Stefano Merenda

8.5. Semantics for Concrete Syntaxes – a template-based approach

c must not be the same as the concept which labels the vertex vω. It may also be another
concept, such as a refined concept.

Nevertheless, the starting point of the encoding function vcode will be defined by using the
concept c = typeω(vω) which labels the vertex vω.

vcode : VM1 ×M1×M2× Idsyn → Coding
〈vω, ω, ω2, idsyn〉 7→ vcodeωω2,idsyn

(vω)

=
def

conceptVisiorωω2,idsyn
(typeω(vω), vω)

(8.14)

8.5.1. Finding the suitable syntax definition

As already defined in Section 2.1.3, Vertical tooling aspects: the four aspects of a meta-
model, p. 26 multiple concrete syntaxes can be defined for one abstract syntax. Each concrete
syntax is identified by syntax identifier out of Idsyn. In addition a concrete syntax have
not to be defined for each and every concept explicitly: if it is e. g. similar to the canonical
syntax or the default syntax the definition can be skipped in some situations. Hence the
relevant textual syntax definition for a requested concrete syntax given by a syntax identifier
must be found first.

Once the right textual syntax definition has been found, further processing will be delegated
to the function syntaxVisitor. It encodes a given vertex vω from a M-graph ω according to
a given vertex vω2 from the metamodel ω2 and a syntax identifier Idsyn.

syntaxVisitor : M1×M2× Idsyn × VM2 × VM1 → Coding
〈ω, ω2, idsyn, vω2, vω〉 7→ syntaxVisitorωω2,idsyn

(vω2, vω)

(8.15)

The specification of this second part of the visitor will be defined in the following section
(see Section 8.5.2, Visiting the syntax definition, p. 165).

In order to provide a flexible way of specifying concrete syntaxes, an encoding independent
of whether such a syntax is defined or not will always be defined for a given syntax identifier
Idsyn. In case the syntax definition requested by the syntax identifier does not exist, a
default syntax can be used. A syntax is marked as being a default one by the property
isDefault in the concept ConcreteSyntax. If neither a default syntax exists, the already
defined canonical syntax will be used instead. All in all there are nine priority levels of
finding the right syntax definition:

1. Requested syntax explicitly defined. At first it will be tested whether the re-
quested syntax is explicitly defined for the desired syntax type within a directly acti-
vated metamodel.

2. Requested syntax inferred from refined metamodels. Secondly it will be tested
whether the requested syntax is explicitly defined for the desired syntax type within at
least one metamodel that is refined by the given metamodel. If so, a syntax definition
will be used that combines all these syntax definitions as alternatives by the concept
Switch.

3. Requested syntax inferred from refined concepts. Thirdly it will be tested
whether the requested syntax is explicitly defined for the desired syntax type within

Stefano Merenda 163

8. Textual Concrete Syntaxes in M2L

at least one refined concept within a directly activated metamodel. If so, a syntax
definition will be used that combines all these syntax definitions as alternatives by the
concept Switch.

4. Requested syntax inferred from refined concepts of refined metamodels.
Fourthly it will be tested whether the requested syntax is explicitly defined for the
desired syntax type within at least one refined concept within at least one metamodel
that is refined by the given metamodel. If so, a syntax definition will be used that
combines all these syntax definitions as alternatives by the concept Switch.

5. Default syntax explicitly defined. At first it will be tested whether the default
syntax is explicitly defined for the desired syntax type within a directly activated
metamodel.

6. Default syntax inferred from refined metamodels. Secondly it will be tested
whether the default syntax is explicitly defined for the desired syntax type within at
least one metamodel that is refined by the given metamodel. If so, a syntax definition
will be used that combines all these syntax definitions as alternatives by the concept
Switch.

7. Default syntax inferred from refined concepts. Thirdly it will be tested whether
the default syntax is explicitly defined for the desired syntax type within at least one
refined concept within a directly activated metamodel. If so, a syntax definition will be
used that combines all these syntax definitions as alternatives by the concept Switch.

8. Default syntax inferred from refined concepts out of refined metamodels.
Fourthly it will be tested whether the default syntax is explicitly defined for the desired
syntax type within at least one refined concept within at least one metamodel that is
refined by the given metamodel. If so, a syntax definition will be used that combines
all these syntax definitions as alternatives by the concept Switch.

9. Canonical syntax. Finally, the canonical syntax will be used if all other rules failed.

Table 8.1 summarises the nine priority levels of finding the right syntax definition:

priority syntax concept metamodel
1 requested requested directly activated
2 requested requested refined
3 requested refined directly activated
4 requested refined refined
5 default requested directly activated
6 default requested refined
7 default refined directly activated
8 default refined refined
9 canonic – –

Table 8.1.: Nine priority levels of finding the right syntax definition

Note that there is a difference between skipping the definition of the concept and explicitly
defining the concept within an IncludeSyntaxDef by the same concept as the present syntax
definition is defined for: In case it is skipped, the syntax inclusion is polymorphic. Refined
concepts will therefore use a potentially redefined syntax definition. If the concept is explic-
itly given, the syntax included will not be polymorphic. The formal definition of the visitor
function conceptVisitor as defined in (8.13) is given in an algorithmic way by the following
pseudo-code listing:

164 Stefano Merenda

8.5. Semantics for Concrete Syntaxes – a template-based approach

Listing 8.2: pseudo-code for conceptVisitor

1 Coding conceptVisiorωω2,idsyn
(cω, vω) {

2 EVM2
cs := �(Pω2 :syntaxPackage.∧Pω2 :subpackage.Pω2 :concreteSyntaxDef) ;

3 Pset (VM2) tsdreqSyntax := σ(idsyn b cs.Pω2 : lkey) ↓ Cω2 :TextualSyntaxDef ;
4 Pset (VM2) tsddefSyntax := σ(bool)(cs.Pω2 :default) ↓ Cω2 :TextualSyntaxDef ;
5

6 EVM2
creq := Cω2 :ConceptDef ↓ σ(Pω2 :concept b cov(cω)) ;

7 EVM2
cequiv := Cω2 :ConceptDef ↓ σ(Pω2 :qualifiedName = n.Pω2 :qualifiedName) ;

8 Pset (VM2) tsdreqConcept := (creq.�Pω2 :conceptDef) ↓ Cω2 :TextualSyntaxDef ;
9 Ppomset (VM2) tsdrefConcept := (creq.

∧(Pω2 :refines.cequiv).�Pω2 :conceptDef)
10 ↓ Cω2 :TextualSyntaxDef ;
11

12 Pset (VM2) tsdactMM := (Cω2 :MetamodelFolder.µ∧Pω2 :composite)
13 ↓ Cω2 :TextualSyntaxDef ;
14 Ppomset (VM2) tsdrefMM := (Cω2 :MetamodelFolder.Pω2 :activeMetamodel
15 .µ∧Pω2 :composite) ↓ Cω2 :TextualSyntaxDef ;
16

17 Pset (VM2) tsd := tsdreqConcept ↓ tsdactMM ↓ tsdreqSyntax ;
18 if (tsd = ∅) tsd := 1(tsdrefMM ↓ tsdreqConcept ↓ tsdreqSyntax) ;
19 if (tsd = ∅) tsd := 1(tsdrefConcept ↓ tsdactMM ↓ tsdreqSyntax) ;
20 if (tsd = ∅) tsd := 1(tsdrefConcept ↓ tsdrefMM ↓ tsdreqSyntax) ;
21 if (tsd = ∅) tsd := tsdreqConcept ↓ tsdactMM ↓ tsddefSyntax ;
22 if (tsd = ∅) tsd := 1(tsdrefMM ↓ tsdreqConcept ↓ tsddefSyntax) ;
23 if (tsd = ∅) tsd := 1(tsdrefConcept ↓ tsdactMM ↓ tsddefSyntax) ;
24 if (tsd = ∅) tsd := 1(tsdrefConcept ↓ tsdrefMM ↓ tsddefSyntax) ;
25

26 if (tsd = ∅)
27 return vcodeωcanonic(vω) ;
28 else
29 return tsd χ (uω2 7→ syntaxVisitorωω2,idsyn

(uω2, vω)) ;

30 }

8.5.2. Visiting the syntax definition

Finally, the visitor function syntaxVisitor as introduced in (8.15) need to be defined. This
function basically defines an encoding for each of the non-abstract concepts defined in the
meta-metamodel for textual syntax definitions as shown in Figure 8.1(b). In detail, the
behaviour of the visitor function can be described depending on the visiting concept:

• For TextualSyntaxDef the visitor delegates to the SyntaxTemplate given by the
property mainSyntaxTemplate.

• For SyntaxTemplate the visitor delegates to the given list of TemplateElement nodes.
TemplateElement is an abstract concept. Its concrete refining concepts are the follow-
ing six concepts ProperTerminal, WhitespaceTerminal, NonTerminal, Option, Switch,
and IncludeSyntaxDef. Between each TemplateElement whitespaces are coded.

• For ProperTerminal the visitor codes the given terminal symbols.

• For WhitespaceTerminal the visitor does nothing since the whitespaces are already
coded during the SyntaxTemplate is visited.

Stefano Merenda 165

8. Textual Concrete Syntaxes in M2L

• For NonTerminal the visitor codes the defined value given by the property edge. As
defined in Section 8.3.3, The pomset encoding function, p. 159, the properties starting,
prefix, infix, suffix, and ending are taken into account.

• For Option the visitor codes either the thenCase or the elseCase depending on the
evaluation of the node predicate defined by the property predicate.

• For Switch the visitor codes all alternatives by delegating to the given set of Syntax-
Template nodes.

• For IncludeSyntaxDef the visitor delegates to the corresponding TextualSyntaxDef.

The formal definition for the syntaxVisitor is given in an algorithmic way by the following
pseudo-code listing:

Listing 8.3: pseudo-code for syntaxVisitor

1 Coding syntaxVisitorωω2,idsyn
(vω2, vω) {

2 if (vω2 b Cω2 :TextualSyntaxDef)
3 return Pω2 :mainSyntaxTemplate(vω2)χ (uω2 7→ syntaxVisitorωω2,idsyn

(uω2, vω)) ;

4

5 else if (vω2 b Cω2 :SyntaxTemplate)
6 return Pω2 : templateElement(vω2)
7 χ (uω2 7→ {syntaxVisitorωω2,idsyn

(uω2, vω)})−→χ {{ws}}χ (e 7→ e) ;

8

9 else if (vω2 b Cω2 :ProperTerminal)
10 return Pω2 :symbols(vω2) ;
11

12 else if (vω2 b Cω2 :WhitespaceTerminal)
13 return ∅ ;
14

15 else if (vω2 b Cω2 :NonTerminal) {
16 if (|Pω2 :differingSyntax(vω2)| = 1)
17 idsyn := Pω2 :differingSyntax(vω2) ;
18

19 Coding start := Pω2 :starting(vω2)χ (uω2 7→ syntaxVisitorωω2,idsyn
(uω2, vω)) ;

20 Coding pre := Pω2 :prefix(vω2)χ (uω2 7→ syntaxVisitorωω2,idsyn
(uω2, vω)) ;

21 Coding in := Pω2 : infix(vω2)χ (uω2 7→ syntaxVisitorωω2,idsyn
(uω2, vω)) ;

22 Coding post := Pω2 :suffix(vω2)χ (uω2 7→ syntaxVisitorωω2,idsyn
(uω2, vω)) ;

23 Coding end := Pω2 :ending(vω2)χ (uω2 7→ syntaxVisitorωω2,idsyn
(uω2, vω)) ;

24

25 (VM1 → Coding) f ;
26 if ((bool)Pω2 :reference(vω2))
27 f := (uM1 7→ codeωref(vω, uM1)) ;
28 else
29 f := (uM1 7→ codeωω2,idsyn

(uM1)) ;

30

31 return (start || pre | in | post || end)([[Pω2 :edge(vω2)]](vω)χf) ;
32 }
33

34 else if (vω2 b Cω2 :Option) {
35 if ([[Pω2 :predicate(vω2)]](vω))
36 return Pω2 : thenCase(vω2)χ (uω2 7→ syntaxVisitorωω2,idsyn

(uω2, vω)) ;

37 else

166 Stefano Merenda

8.6. Running Example

38 return Pω2 :elseCase(vω2)χ (uω2 7→ syntaxVisitorωω2,idsyn
(uω2, vω)) ;

39 }
40

41 else if (vω2 b Cω2 :Switch) {
42 return Pω2 :alternative(vω2)χ (uω2 7→ syntaxVisitorωω2,idsyn

(uω2, vω)) ;

43 }
44

45 else if (vω2 b Cω2 :IncludeSyntaxDef) {
46 if (|Pω2 :differingSyntax(vω2)| = 1)
47 idsyn := Pω2 :differingSyntax(vω2) ;
48 if (|Pω2 :conceptDef(vω2)| = 1)
49 return conceptVisiorωω2,idsyn

(Pω2 :conceptDef.Pω2 :concept(vω2), vω) ;

50 else
51 return codeωω2,idsyn

(vω) ;

52 }
53 }

8.6. Running Example

The canonical textual syntax for a signature from our running example has already been
illustrated. The abstract syntax is shown in Figure 8.2. The canonical textual syntax is
shown in Listing 8.1.

Having defined the semantics for specific textual syntax definitions, it is now possible to
define a textual syntax for our running example. The exemplary signature should be encoded
as illustrated in Listing 8.4.

Listing 8.4: Signature represented by a textual word

1 (x :Any, y :Any −> r e s u l t :Any)

The textual syntax definition will therefore be defined in Figure 8.3 as an abstract word
according to the meta-metamodel for textual concrete syntaxes as introduced in Sec-
tion 8.2, Semi-formal introduction of the abstract syntax, p. 155.

Stefano Merenda 167

8. Textual Concrete Syntaxes in M2L

TextualSyntaxDef Concept : Signature

SyntaxTemplate

ProperTerminal

NonTerminal

WhitespaceTerminal

ProperTerminal

WhitespaceTerminal

NonTerminal

ProperTerminal

String: ”(”

Space

String: ”−>”

Space

String: ”)”

PropertyEdging

False

SyntaxTemplate

Property: inPort

ProperTerminal WhitespaceTerminal

String: ”,” Space

PropertyEdging

False

SyntaxTemplate

Property: outPort

ProperTerminal WhitespaceTerminal

String: ”,” Space

concept

m
a
in

S
yn

ta
xT

em
p
la

te te
m

pl
at

eE
le

m
en

t

tem
plateE

lem
en

t

symbols

edge

isReference

infix

whitespace

symbols

whitespace

edge

isReference

infix

symbols

property

templateElement templateElement

symbols whitespace

property

templateElement templateElement

symbols whitespace

TextualSyntaxDef Concept : Port

SyntaxTemplate

NonTerminal

ProperTerminal

ProperTerminal

PropertyEdging

False Property: name

String: ”:”

String: ”Any”

concept

mainSyntaxTemplate

templateElement

edge

isReference property

symbols

symbols

Figure 8.3.: Example: specification of the concrete syntax for the concepts Signature and
Port in the form of an abstract word

168 Stefano Merenda

8.7. Defining M2L – Step 4: M2L finally defined by M2L itself

8.7. Defining M2L – Step 4: M2L finally defined by M2L itself

As has been illustrated in Section 8.6, Running Example, p. 167, it is now possible to define
specific textual languages by textual concrete syntaxes in the form of a metamodel. This
leads to the fourth and final step of defining the metamodelling language M2L as shown in
Figure 8.4.

Queries on
abstract words:
the Edge Algebra

Specifying abstract
languages:
Abstract Syntaxes

Models as
Abstract Words:
M-graphs

Specifying concrete
languages:
Concrete Syntaxes

Step 1 Step 2 Step 3 Step 4

Figure 8.4.: Overview - Last of the four steps of specifying M2L.

Up to now, a metamodel always had to be defined in terms of an abstract word and thus
a M-graph. As can be seen in Figure 7.15 and Figure 8.3, such M-graphs increase in size
very quickly. It is now possible to define a specific textual syntax for the metamodelling
language M2L itself. Strictly speaking, the textual syntax definition is already included in
the abstract word representing the meta-metamodel of M2L in Section 5.7, Defining M2L –
Step 1: M2L Meta-Metamodel in terms of an Abstract Word, p. 94. Only the semantics of
the corresponding part of the meta-metamodel has still been missing.

As a textual syntax definition for metamodels is now available, and the meta-metamodel is
just a specific metamodel, it is also possible to encode the meta-metamodel, which is given
as an abstract word, in its specific textual representation. This last step results in the final
definition of the metamodelling language M2L. The meta-metamodel thereof, represented
by its textual syntax, is entirely defined in Appendix A, Meta-Metamodel – The Metamodel
of M2L, p. 291. In the next chapter, both the abstract and the textual concrete syntax of
the entire meta-metamodel will be described in detail.

Due to the self-describing mechanism, the difficulty of reading the meta-metamodel is that
the language must already be known in order to be able to learn it. From a formal point of
view no problem will occur as the abstract word can be described in terms of a M-graph.
The textual representation can be understood along with the given semantical definitions.

The meta-metamodel described by an M-graph will, however, remain unreadable for humans
because of its size. (This was also the reason why an explicit representation of the entire
meta-metamodel as an M-graph was skipped in Section 5.7, Defining M2L – Step 1: M2L
Meta-Metamodel in terms of an Abstract Word, p. 94.) Thus, a small introduction into the
concrete syntax of M2L shall now be provided before entering the next chapter. Our running
example will therefore be used again. The textual syntax of signatures and ports is shown
in a textual way in Listing 8.5. It represents exactly that abstract word given in Figure 8.3
in a textual way.

Listing 8.5: Concrete syntax definition for the concepts Signature and Port

1 Signature : ”(” (P: inPort / ” ,”) ”−>”
2 (P: outPort / ” ,”) ”)” ;
3 Port : (P: name) ” :” ”Any” ;

Stefano Merenda 169

8. Textual Concrete Syntaxes in M2L

As can be seen, the TemplateElements are directly concatenated, just separated by a space.
ProperTerminals are quoted strings. WhitespaceTerminals are represented by an underscore.
NonTerminals are always denoted in round brackets. The infix is separated by a slash.

Additionally, abstract syntaxes can now be specified in a textual way as defined in Chap-
ter 7, Abstract Syntaxes in M2L, p. 119. Listing 8.6, for example, shows the abstract syntax
of the concepts Signature and Port.

Listing 8.6: Abstract syntax definition for the concepts Signature and Port

1 Signature ! : :>
2 inPort [0 . . ∗] (List) : C: Port ,
3 outPort [0 . . ∗] (List) : C: Port ;
4

5 Port ! ref ines Named ::>
6 i s I n Po r t := (edge)¬empty? �P: inPort ,
7 i sOutPort := (edge)¬empty? �P: outPort ;

The exclamation mark at the end of the concepts’ names denotes that these concepts are
weak. The character sequence “::>” denotes that such concepts are not complete. (The
character sequence “::=” in contrast would denote that a concept is complete.) Then the
property definitions follow. A multiplicity can be defined after the property name. After-
wards, a pomset type can be given. The domain is specified after the colon. “C:” herein
denotes a concept edging, so just the allowed concept for the corresponding property will be
defined.

The concept Port refines the concept Named. Both properties are inferred, which is denoted
by “:=”. An Edge Algebra statement follows on the right side.

Finally, a look shall be taken at a second definition for an abstract syntax. The concept
Network has been defined in terms of an abstract word in Figure 7.15 in Section 7.6, Running
Example, p. 150. The corresponding textual representation is given in Listing 8.7.

Listing 8.7: Abstract syntax definition for the concept Network

1 Network ! ref ines Component ::>
2 %subcomponent [0 . . ∗] (Set) :
3 P: inc ludedContext .P: componentDef ,
4 channel [0 . . ∗] (Set) : C: Channel ;

Besides all that has already been described, a “%” can be seen at the beginning of the
definition for the property subcomponent. It denotes that this property is an instantiating
property.

After this brief introduction, all details concerning the metamodelling language M2L and
the meta-metamodel thereof shall be provided in the following chapter.

170 Stefano Merenda

Chapter 9
The overall specification of M2L

The metamodelling language M2L has above been defined step by step in a formal way as
described in Section 2.4, Procedure specifying the (self-describing) metamodelling language
M2L , p. 42. Due to the self-describing nature of a meta-metamodel, this formal definition is
not suited to show the overall picture of M2L: Not before the entire metamodelling language
M2L has been specified can M2L be used for describing the language by itself in terms
of a metamodel (i. e. the meta-metamodel). As the formal specification of M2L has been
conducted, the overall picture of M2L shall now be provided in this chapter by describing
both the abstract and concrete syntax of each concept introduced in a bootstrapping way.

Besides a specification of all syntactical details of M2L by providing the present complete
definition (i. e. every defined concept will be enumerated herein), both a realistic proof-
of-concept and a substantial real-live example of how to specify the syntactical part of a
modelling language shall be provided as well.

Contents
9.1. Package ORG.Metamodels.BasicConcepts 172

9.2. Package ORG.Metamodels.M2L 183

9.3. Package ORG.Metamodels.M2L.AbstractSyntax 188

9.4. Package ORG.Metamodels.M2L.ConcreteSyntax 210

9.5. Package ORG.Metamodels.M2L.ConcreteSyntax.Textual 217

9.6. Package ORG.Metamodels.EdgeAlgebra 233

9.7. Package ORG.Metamodels.EdgeAlgebra.EdgeExpressions 235

9.8. Package ORG.Metamodels.EdgeAlgebra.PredicateExpressions . 248

9.9. Package ORG.Metamodels.EdgeAlgebra.NumericalExpressions . 263

All in all, the concepts are structured in nine packages and sub-packages which will be
described in the following sections successively. Due to namespace conditions all packages
begin with ORG.Metamodels. The complete meta-metamodel within one listing can be
found in Appendix A, Meta-Metamodel – The Metamodel of M2L, p. 291. All (partial)
listings below are parts taken from this complete listing. The line numbers given will match
in order to find the original location more easily.

Stefano Merenda 171

9. The overall specification of M2L

Structure of the following sections. Each section presents one package by describing all
concepts included. One paragraph is divided into four parts for each concept: After an
introduction (part 1), which describes the major aspects of the concept, the formal abstract
syntax (part 2) in M2L including a detailed description of each property will be given.
Then, textual concrete syntax will normally be specified (part 3). As the formal definition
has already been given in the previous chapters, references to these chapters will be given
in many cases instead of repeating the definitions. Nevertheless will a short description of
each concept always be given which allows for the use of the present chapter as a reference
guide, too. As can be seen in line 402 in Appendix A, Meta-Metamodel – The Metamodel
of M2L, p. 291, the syntax identifier is M2L/Text and is marked as the default syntax as
well. Concrete textual syntax will not be defined in the scope of M2L for three of the basic
concepts, namely (Natural , Character , and String). Alternative syntaxes will be defined for
two of these concepts: Namely they are RAW (for the concept Character), and QUOTED
(for the concept String). Finally, an example (part 4) of the corresponding concept will
be given as a textual concrete word. If different syntaxes are defined, all encodings will be
given.

9.1. Package ORG.Metamodels.BasicConcepts

This package defines all basic concepts, such as boolean values, character strings, and natural
numbers. This very limited set of concepts is necessary for the metamodelling language itself,
but it can, of course, also be used when defining arbitrary other metamodels. This package
also embodies one of the central characteristics of the underlying theory: M-graphs are not
based on any fixed set of basic types.

Table 9.1 shows the list of all concepts defined:

Concept Description
Any the concept, which is implicitly refined by every other concept
Boolean boolean value
Natural natural number including zero
Interval interval on natural number
Character single unicode character
String sequence of characters
Identifier string with at least one character
Named arbitrary concept which has a name
Folder folder to create a directory structure
FolderEntry entry of a folder in a directory structure

Table 9.1.: List of concepts defined in ORG.Metamodels.BasicConcepts

9.1.1. Concept Any

The concept Any is implicitly refined by each concept. Thus, the constraints herein must
hold for each node. The concept Any is marked by the keyword anyconcept which ensures
that there is only one any-concept. Please refer to Section 9.3.6, Concept AnyConcept-
Def, p. 196 as well.

In particular, the any-concept defines all predefined properties, namely lkey (local key), ikey
(instance key), ckey (canonical key), composite (marking all composed nodes), template

172 Stefano Merenda

9.1. Package ORG.Metamodels.BasicConcepts

(marking the template of an instance), and context (defining an additional context relevant
for creating context-sensitive keys).

Abstract Syntax. The formal abstract syntax for Any is defined in Listing 9.1.

Listing 9.1: Abstract Syntax for Any

6 anyconcept [Any] : :>
7 l key (Poset) : C: I d e n t i f i e r ,
8 i key (Poset) : C: I d e n t i f i e r ,
9 ckey (List) := ≷∧�P: composite . 1 P: lkey ,

10 &composite (Set) ,
11 &template [0 . . 1] ,
12 &includedContext (Poset)
13 where |1 P: l key | ≤ 1 ∧ |1 P: i key | ≤ 1
14 ∧ �(∗ ↓∗ P: composite) 6= �P: template ⇒ |P: l key | ≥ 1
15 ∧ poset? (σroot ? .P: l key)
16 ∧ poset? (∧ (P: composite ↓ σ |P: l key | = 0) .P: l key)
17 ∧ |P: template | = 0 ⇒ |P: i key | = 0
18 ∧ |P: template | = 1 ⇒ P: l key = P: i key
19 ∧ |�P: composite | ≤ 1
20 ∧ 	 6b P: composite .∧P: composite
21 ∧ 	 6b P: template .∧P: template
22 ∧ (|P: template | = 1 ⇒ (
23 P: template .P: composite = P: composite .P: template
24 ∧ ∀C: c : (b c ⇔ P: template b c)
25 ∧ ∀P: p\{ lkey , ckey , ikey } :
26 (P: template . p = p . 1 (((↓ (�p .
27

∧ ((P: composite] �P: composite) ↓ σ |P: template |)
28)) .P: template) ⊕))
29)) ;

The properties of the concept Any are:

• lkey: local keys of a node. Even more than one local key is generally allowed. Due to
the first part of the constraint in line 13, the partially ordered set of local keys must
comprise exactly one first (i. e. smallest) element if there is more than one local key.
This first local key will be used as default key during encoding (see Chapter 8, Textual
Concrete Syntaxes in M2L, p. 153). Local keys must be locally unique which means
that firstly, all root nodes have unique local keys (line 15), and secondly, that all keys
of a node’s composite nodes must be unique (line 16). If a composite does not have any
local key, the composites thereof will again be included in this uniqueness criterion.
If a node is referenced by a property other than template which is not in parallel to
composite, at least one local key must be defined (according to constraint in line 14).

• ikey: instance key of a node. This property is empty if the present node is not an
instance node (which will be the case when the template-property is not empty, see
constraint in line 17). According to the constraint in line 18, the local key equals the
instance key if a node is an instance node. Just as the local key, also the instance key
must comprise one single smallest element (second part of line 13).

• ckey: canonical key of a node. If a node does not have a local key, this property
will define the prefix of the canonical keys for composite nodes. The canonical key
is defined as a list of all default local keys for the nodes located on the composition

Stefano Merenda 173

9. The overall specification of M2L

path from the root node to the given node. According to the local key constraints, a
canonical key is globally unique if a node has a local key.

• composite: references the set of all nodes which are part of the referencing node
according to the composition relationship. A node must have one parent (line 19) at
most and compositions are generally acyclic (line 20).

• template: references the template if the node is an instance node. Hence, an instance
node is identified by having a template. A maximum of one template is allowed. This
template-instance relationship is acyclic (line 21). The constraint given in lines 22
to 28 formally defines a template relationship. Informally speaking, it states that all
composite nodes are recursively cloned and linked by the property template for an
instance node. Please refer to Chapter 7, Abstract Syntaxes in M2L, p. 119 for further
details.

• context: additional context for a node which is relevant when creating context-
sensitive keys. Please refer to Chapter 7, Abstract Syntaxes in M2L, p. 119 for further
details.

Concrete Syntax. No concrete syntax has to be defined for the abstract concept Any.

Example. As no concrete syntax is defined for this abstract concept, please refer to all
other concepts.

9.1.2. Concept Boolean

Boolean represents a boolean value which may be True or False and which is defined by an
enumeration concept allowing these two values.

Abstract Syntax. The formal abstract syntax for Boolean is defined in Listing 9.2.

Listing 9.2: Abstract Syntax for Boolean

31 enum Boolean = { True , Fa l se } ;

The enumeration values of the concept Boolean are:

• True: represents the truth-value true.

• False: represents the truth-value false.

Concrete Syntax. The formal textual concrete syntax for Boolean is defined in Listing 9.3.

Listing 9.3: Textual Concrete Syntax for Boolean

414 Boolean . True : (”>” OR ”true”) ;
415 Boolean . Fa l se : (”⊥” OR ”fa lse”) ;

174 Stefano Merenda

9.1. Package ORG.Metamodels.BasicConcepts

Example. An example for the concept Boolean will be provided in the following Listing 9.4:

Listing 9.4: Example for Boolean

true

9.1.3. Concept Natural

Natural represents a natural number including zero. The number is represented by modelling
its predecessor. If no predecessor is modelled, the number zero will be represented.

Abstract Syntax. The formal abstract syntax for Natural is defined in Listing 9.5.

Listing 9.5: Abstract Syntax for Natural

32 Natural ! ! : := pred [0 . . 1] : C: Natural ;

The properties of the concept Natural are:

• pred: predecessor of the number. If not set, zero will be represented.

By using Edge Algebra, the encoded value can easily be determined by 9.1:

(number) 	 = |P :pred.∧P :pred| (9.1)

Note that this abstract syntax is closely related to the inductive definition of natural num-
bers. Many other representations are possible as the theory itself abstracts from concrete
encoding.

Concrete Syntax. Natural is one of three concepts wherein the formal textual concrete
syntax thereof will be defined beyond the theory. Thus, an EBNF statement will be given
in Listing 9.6 instead of an M2L statement defining textual concrete syntax.

Listing 9.6: Textual Concrete Syntax for Natural as EBNF

Natural = ’0 ’ | (’ 1 ’ . . ’ 9 ’ { ’ 0 ’ . . ’ 9 ’ }) ;

Note that in contrast to M2L this EBNF statement does not define the mapping from the
textual concrete to the abstract word in a formal way. Informally spoken, the number will
be encoded in the decimal system.

Example. An example for the concept Natural will be provided in the following Listing 9.7:

Listing 9.7: Example for Natural

1017

9.1.4. Concept Interval

Interval represents a (potentially unlimited) interval of natural numbers by defining a lower
and an (optional) upper limit. The limits themselves are included in the interval. An
Interval will in particular be used to model multiplicities within property definitions (Sec-
tion 9.3.10, Concept PropertyDef, p. 201).

Stefano Merenda 175

9. The overall specification of M2L

Abstract Syntax. The formal abstract syntax for Interval is defined in Listing 9.8.

Listing 9.8: Abstract Syntax for Interval

33 I n t e r v a l ! ! : :=
34 lower [1 . . 1] : C: Natural ,
35 upper [0 . . 1] : C: Natural
36 where |P: upper | = 1 ⇒
37 (number)P: lower ≤ (number)P: upper ;

The properties of the concept Interval are:

• lower: lower limit of the interval. It must always be set.

• upper: upper limit of the interval. If the upper limit is not set, the upper bound is
unrestricted. If set, the upper limit must always be greater than or equal to the lower
limit.

Concrete Syntax. The formal textual concrete syntax for Interval is defined in Listing 9.9.

Listing 9.9: Textual Concrete Syntax for Interval

416 I n t e r v a l : (P: lower) ” . . ”
417 (|P: upper | = 0 ? ”∗” : (P: upper)) ;

The star (”*”) denotes that the interval has no upper limit.

Example. An example for the concept Interval including all natural numbers beginning
with 2 will be provided in the following Listing 9.10:

Listing 9.10: Example for Interval

2 . . ∗

9.1.5. Concept Character

Character represents an arbitrary unicode character. Available characters are defined by the
Unicode Consortium [Unicode, 2010]. Character will in particular be used to model strings
as a sequence of characters (Section 9.1.6, Concept String, p. 177).

Abstract Syntax. The formal abstract syntax for Character is defined in Listing 9.11.

Listing 9.11: Abstract Syntax for Character

38 Character ! ! : := unicode [1 . . 1] : C: Natural
39 where (number) unicode ≤ 1114111 ;

The properties of the concept Character are:

• unicode: code point of the modelled unicode character. Note that the defined encod-
ings such as UTF8 or UTF16 are irrelevant in this context. At this level, the code point
is defined as a natural number out of the valid unicode code space ranging between 0
and 0x10FFFF (=1114111).

176 Stefano Merenda

9.1. Package ORG.Metamodels.BasicConcepts

Concrete Syntax. Character is one of three concepts wherein the formal textual concrete
syntax thereof will be defined beyond M2L. Two different concrete syntaxes will be defined
for Character :

• The default syntax M2L/Text encodes the character within single quotes (’).

• The RAW syntax encodes the character simply by itself. This encoding should only
be used within a multiplicity of fixed size. Otherwise parsing will not be possible. An
exception is the concept String wherein the concrete textual syntax thereof will be
defined beyond M2L as well.

According to this definition, two EBNF statements for Character are given in Listing 9.12.

Listing 9.12: Textual Concrete Syntax for Character in EBNF

Character = ” ’” Character RAW ” ’” ;
Character RAW = ? a r b i t r a r y unicode charac t e r ? ;

Example. An example for the concept Character encoding the mathematical symbol for
less-or-equal (code point U2264) will be provided in the following Listing 9.13:

Listing 9.13: Example for Character

’≤ ’ // coding wi th d e f a u l t syntax M2L/ Text
≤ // coding wi th syntax RAW

9.1.6. Concept String

String represents an arbitrary, potentially empty sequence of unicode characters. As this
concept is not marked as being complete, it could contain additional information, such as
what the language of the string is, which should normally be done by refining the concept.

Abstract Syntax. The formal abstract syntax for String is defined in Listing 9.14.

Listing 9.14: Abstract Syntax for String

40 St r ing ! ! : :> cha rac t e r [0 . . ∗] (List) : C: Character ;

The properties of the concept String are:

• character: a (totally ordered) sequence of characters building the string. As a list is
a totally ordered multiset, a string can of course contain duplicate characters.

Concrete Syntax. String is one of three concepts wherein the formal textual concrete syntax
thereof will be defined beyond M2L. Three different concrete syntaxes will be defined for
String :

• The default syntax M2L/Text encodes the string within double quotes (see syntax
QUOTED), and if it contains special characters (including white-spaces), it starts
with a number or is an empty string. Here, every character besides ’A’ to ’Z’, ’a’ to
’z’, ’ ’, and ’0’ to ’9’ is a special character. Otherwise it is encoded without quotes.
This syntax is normally used for encoding identifiers in modelling languages. It allows

Stefano Merenda 177

9. The overall specification of M2L

you to use special characters within identifiers but omits the quotes if a usual identifier
is given.

• The syntax QUOTED always encodes the string within double quotes (”). The quotes
themselves as well as the backslash (\) are escaped by a preceding backslash (thus \”
and \\).

According to this definition, two EBNF statements for String are given in Listing 9.15.

Listing 9.15: Textual Concrete Syntax for String in EBNF

Str ing = String QUOTED | ((’A’ . . ’ Z ’ | ’ a ’ . . ’ z ’ | ’ ’)
{ ’A’ . . ’ Z ’ | ’ a ’ . . ’ z ’ | ’ ’ | ’ 0 ’ . . ’ 9 ’ }) ;

String QUOTED = ’” ’ { Character RAW − (’ ” ’ | ’\ ’)
| ’\\ ’ | ’\” ’ } ’ ” ’ ;

Example. Two examples for the concept String will be provided in the following List-
ing 9.16. The first one does not contain any special characters, whereas the second one
does:

Listing 9.16: Example for String

Str ingWithoutSpec ia lChar // coding wi th d e f a u l t syntax M2L/ Text
”StringWithoutSpecialChar” // coding wi th syntax QUOTED
”String including Spaces” // e q u a l coding f o r both s y n t a x e s

// M2L/ Text and QUOTED

9.1.7. Concept Identifier

Identifier represents a refinement of the concept String excluding empty strings. This con-
cept is used for identifiers as empty strings are undesired in this context (see also Sec-
tion 9.1.8, Concept Named, p. 179).

Abstract Syntax. The formal abstract syntax for Identifier is defined in Listing 9.17.

Listing 9.17: Abstract Syntax for Identifier

41 I d e n t i f i e r ! ! ref ines St r ing ::> cha rac t e r [1 . . ∗] ;

The properties of the concept Identifier are:

• character (refined): characters of the string. As an Identifier must not be empty,
the lower limit of the multiplicity is more restrictive and set to 1.

Concrete Syntax. Concrete syntax is inherited from String (see Section 9.1.6, Concept
String, p. 177).

Example. As the concrete syntax is the same as for String, refer to Section 9.1.6, Concept
String, p. 177 for examples.

178 Stefano Merenda

9.1. Package ORG.Metamodels.BasicConcepts

9.1.8. Concept Named

Named represents an arbitrary concept which has a (primary) name and a set of additional
alternative names. Due to the key constraint, both the primary name and all alterna-
tive names must be locally unique (see Section 7.5.5, Local keys, namespaces and visibil-
ity, p. 137). When encoding references within non-terminals the primary name will be used.
During a decoding of non-terminal references the alternative names can be dereferenced as
well.

Alternative names are helpful in many situations:

• Synonyms. Multiple terms are established for one and the same item (represented
by a node in our context) in many situations. Alternative names can be used in order
to be able to reference this node by all possible terms. The term having preference
upon use is set as the (primary) name. This approach allows for establishing a well-
defined set of terms. In particular the concept Concept (see Section 9.3.5, Concept
ConceptDef, p. 192) itself is a good example: In most cases there are various names
for one concept which should be modelled explicitly.

• Abbreviations. Another use-case for alternative names are abbreviations. The ab-
breviations can be set as an alternative name in such situations. During editing, for
example, these abbreviations can be used instead of the full names which may signifi-
cantly increase usability.

• Multi-language support. Specifying names in different languages is a third situation
where alternative names are useful. In this case, the English term (or whatever the
primary language may be) may be set as the (primary) name. All other languages
will be defined within the alternative names. Note that String and Identifier do not
specify a language identifier. A special refining concept of String may therefore be
useful.

In case alternative names are not allowed, the concept UniquelyNamed can be used.

Abstract Syntax. The formal abstract syntax for Named is defined in Listing 9.18.

Listing 9.18: Abstract Syntax for Named

43 [Named] : :>
44 (PK)name [1 . . 1] : C: I d e n t i f i e r ,
45 (K) a lternat iveName [0 . . ∗] (Set) : C: I d e n t i f i e r ;

The properties of the concept Named are:

• name: primary name of a node. Exactly one name must always be set.

• alternativeName: (unordered) set of alternative names. These additional names are
optional. In case alternative names are not allowed, the concept UniquelyNamed can
be used.

Concrete Syntax. The formal textual concrete syntax for Named is defined in Listing 9.19.

Listing 9.19: Textual Concrete Syntax for Named

419 Named : (P: name)
420 (”(” | | (P: a l ternat iveName) / ” ,” | | ”)”) ;

Stefano Merenda 179

9. The overall specification of M2L

Although this concept is abstract, a concrete textual syntax will be defined in order to
include this definition within refining concepts. The primary name will therefore be simply
encoded at first, followed by a comma-separated list of alternative names within parentheses.

Example. An example for the concept Named, although it is abstract, having two alterna-
tive names besides the primary name will be provided in the following Listing 9.20 :

Listing 9.20: Example for Named

”phone number” (fon , Telefonnummer)

Note that by default the names are encoded by the default string encoding (thus, quotes
are only used if special characters are included). If all names shall be quoted, the syntax
QUOTED can be used.

9.1.9. Concept UniquelyNamed

UniquelyNamed represents a refinement of the concept Named which forbids alternative
names.

Abstract Syntax. The formal abstract syntax for UniquelyNamed is defined in Listing 9.21.

Listing 9.21: Abstract Syntax for UniquelyNamed

46 [UniquelyNamed] ref ines Named ::>
47 alternat iveName [0 . . 0] ;

The properties of the concept UniquelyNamed are:

• alternativeName (refined): alternative names for a node. As alternative names
are not allowed for the concept UniquelyNamed, multiplicity is set to 0..0.

Concrete Syntax. Concrete syntax is inherited from Named (see Section 9.1.8, Concept
Named, p. 179). As the alternative names are always empty, only the primary name will be
encoded.

Example. An example for the concept UniquelyNamed, although it is abstract, having only
a primary name (as required) will be provided in the following Listing 9.22:

Listing 9.22: Example for UniquelyNamed

”phone number”

9.1.10. Concept Folder

In order to be able to structure the content of a repository, the concept Folder will be
provided. On the one hand, a folder may contain subfolders building a directory tree. On
the other hand, a folder may reference a set of folder entries (FolderEntry). Note that these
folder entries are not composed to the folder. This results in a number of characteristics:

180 Stefano Merenda

9.1. Package ORG.Metamodels.BasicConcepts

• It is not sufficient to reference weak folder entries by a folder as this reference is not a
composition.

• The canonical name of a folder entry is not influenced by a concrete location within
the folder tree.

• Two folder entries that are not composed to other nodes must have different names –
even if they are located in different directories.

• In general, folder entries can be referenced from more than one folder. A primary
reference does not exist. All references are equal.

• As Folder refines FolderEntry, a folder can be referenced by other folders as well.
Thus, in contrast to other folder entries, folders have a primary reference (described
by the subfolder composition).

Abstract Syntax. The formal abstract syntax for Folder is defined in Listing 9.23.

Listing 9.23: Abstract Syntax for Folder

48 Folder ref ines FolderEntry ::>
49 s u b f o l d e r [0 . . ∗] (Toset) : C: Folder ,
50 &e ntry [0 . . ∗] (Toset) : C: FolderEntry ;

The properties of the concept Folder are:

• subfolder: totally ordered set of subfolders. Due to this property, the folder tree is
spanned. Thus, duplicates and cycles are not allowed.

• entry: totally ordered set of folder entries. The folder entries are not composed
to the folder but are only referenced. Folders themselves can, in particular, also
be referenced herein. Concepts refining Folder does typically constrain the property
entrystronger in order to restrict the allowed set of concepts. Note that this can be done
recursively or not. An example will be MetamodelFolder (see Section 9.2.1, Concept
MetamodelFolder, p. 183).

Concrete Syntax. The formal textual concrete syntax for Folder is defined in Listing 9.24.

Listing 9.24: Textual Concrete Syntax for Folder

421 Folder : ”folder” <Named> ”{”
422 (nl | P: s u b f o l d e r) (nl | &P: e ntry) nl ”}” ;

Example. An example for the concept Folder will be provided in the following Listing 9.25:

Listing 9.25: Example for Folder

folder ”A demonstration folder” (demoFolder) {
folder ”A subfolder” {

entry M2L.ORG. Metamodels . BasicConcepts . S t r ing ;
}
entry M2L;
entry M2L.ORG. Metamodels . BasicConcepts ;

}

Stefano Merenda 181

9. The overall specification of M2L

The folder is named ”A demonstration folder” and has an alternative name, namely ”de-
moFolder”. It contains a subfolder named ”A subfolder” which references the concept
String. In addition, the main folder references the metamodel ”M2L” and the metapackage
”M2L.ORG.Metamodels.BasicConcepts”.

9.1.11. Concept FolderEntry

FolderEntry represents all (possible) entries which may be referenced within folders. Thus,
all concepts wherein the nodes thereof should be able to be referenced by folders have to
refine FolderEntry. Besides the fact that a folder entry must have a name, nothing particular
is required by such concepts.

Abstract Syntax. The formal abstract syntax for FolderEntry is defined in Listing 9.26.

Listing 9.26: Abstract Syntax for FolderEntry

51 [FolderEntry] ref ines Named ;

No additional properties will be defined for the concept FolderEntry.

Concrete Syntax. Concrete syntax is inherited from Named (see Section 9.1.8, Concept
Named, p. 179).

Example. As the concrete syntax is the same as for Named, refer to Section 9.1.8, Concept
Named, p. 179 for examples.

182 Stefano Merenda

9.2. Package ORG.Metamodels.M2L

9.2. Package ORG.Metamodels.M2L

This package defines the core concepts of the metamodelling language M2L. It is structured
into two sub-packages for abstract as well as concrete syntax. As these sub-packages will be
described by the subsequent sections, this section contains just three concepts, which are
listed in Table 9.2:

Concept Description
MetamodelFolder the root folder for active metamodels
Metamodel describes a metamodel including abstract and concrete syntax
Metametamodel the metamodel which describes the metamodeling language itself

Table 9.2.: List of concepts defined in ORG.Metamodels.M2L

9.2.1. Concept MetamodelFolder

A model repository may contain a set of metamodels (which configure the repository them-
selves by adding constraints defined by these metamodels). As not every metamodel stored
within a repository should generally also influence the behaviour of that repository, it is
distinguished between active and inactive metamodels. Only active metamodels configure
the repository. In order to distinguish between active and inactive metamodels, the meta-
model folder will be introduced. Exactly one metamodel folder is allowed. It references all
active metamodels. The metamodels may be referenced indirectly as the metamodel folder
may contain normal folders referencing the metamodels. Metamodels that are not contained
within the metamodel folder are inactive.

An important use-case is the internet platform METAMODELS.org itself: It provides a
collection of various metamodels of different fields of application. Anyway, the only active
metamodel should be the meta-metamodel (i. e. the metamodel for M2L) itself, as meta-
models shall only be stored within this repository. The metamodel folder will therefore only
contain the meta-metamodel in the present case. All other metamodels will be stored in a
different folder structure.

Abstract Syntax. The formal abstract syntax for MetamodelFolder is defined in Listing 9.27.

Listing 9.27: Abstract Syntax for MetamodelFolder

55 MetamodelFolder ref ines Folder ::>
56 name := {{ I d e n t i f i e r (”Active Metamodels”) }} ,
57 &e ntry : C: Metamodel ,
58 &activeMetamodel := µ∧P: s u b f o l d e r .P: e ntry .∧P: basedOn
59 where |C: MetamodelFolder | = 1
60 ∧ ∧P: s u b f o l d e r .P: e ntry b C: Metamodel
61 ∧ C: Metametamodel b P: activeMetamodel ;

The properties of the concept MetamodelFolder are:

• name (refined): the name of the metamodel folder must be set to ”Active Meta-
models”.

• entry (refined): the entry must only reference metamodels. Note that the additional
constraint will be transitively defined for all subfolders. Thus, even all sub-folders must
only reference metamodels.

Stefano Merenda 183

9. The overall specification of M2L

• activeMetamodel: this inferred property specifies all active metamodels, i. e. those
metamodels which are relevant for the validity of a model. Active metamodels are
those that are directly stored within the metamodel folder or within one of the sub-
folders thereof, supplemented by those metamodels that are transitively included (see
property basedOn in Section 9.2.2, Concept Metamodel, p. 184). The partial order
of this inferred property reflects the dependencies according to the property base-
dOn. Metamodels that are directly stored within the metamodel folder structure
therefore represent the smallest elements within the partial order. Although the prop-
erty basedOn is acyclic, the property activeMetamodel may contain duplicates as a
metamodel may form the basis for more than one metamodel. (Hence the property
activeMetamodel may be a real pomset in general.) Note that the meta-metamodel
(see Section 9.2.3, Concept Metametamodel, p. 186) must always be active.

Concrete Syntax. The formal textual concrete syntax for MetamodelFolder is defined in
Listing 9.28.

Listing 9.28: Textual Concrete Syntax for MetamodelFolder

426 MetamodelFolder : ”metamodel” <Folder> ;

The metamodel folder is encoded in exactly the same way as normal folders, except for the
prefix metamodel folder instead of folder.

Example. An example for the concept MetamodelFolder only containing the meta-
metamodel within two sub-folders will be provided in the following Listing 9.29:

Listing 9.29: Example for MetamodelFolder

metamodel folder ”Active Metamodels” {
folder ”Modeling Languages” {

folder ”Language Engineering” {
entry ”Metamodeling Language M2L” ;

}
}

}

9.2.2. Concept Metamodel

Literally, a metamodel is the model behind models - thus describing a modelling language.
Abstract and concrete syntaxes are currently supported in M2L. According to that, a meta-
model contains an abstract syntax and in general a set of concrete syntaxes which are based
on the abstract syntax. The other two language aspects, namely process definition and
semantics, are not supported yet.

Metamodels may, in general, base on other metamodels. This relationship between meta-
models must not be cyclic: Two metamodels must not be based on each other (not even
transitively). Due to this mechanism, a large metamodel can be split into a set of smaller
metamodels. Note that besides this strong coupling mechanism between metamodels there
is also a loose coupling by concept name equivalence based on the canonical key (see also
Section 9.3.9, Concept ExternalConceptDef, p. 200).

184 Stefano Merenda

9.2. Package ORG.Metamodels.M2L

Abstract Syntax. The formal abstract syntax for Metamodel is defined in Listing 9.30.

Listing 9.30: Abstract Syntax for Metamodel

62 Metamodel ref ines FolderEntry ::>
63 &basedOn [0 . . ∗] (Set) : C: Metamodel ↓∗ ∧�P: basedOn ,
64 abstractSyntax [1 . . 1] : C: AbstractSyntax ,
65 concreteSyntax [0 . . ∗] : C: ConcreteSyntax ,
66 &exportedMetapackage :=
67 P: abstractSyntax .P: exportedMetapackage ,
68 &vis ib l eMetapackage :=
69 (⊕ P: basedOn) .P: exportedMetapackage ;

The properties of the concept Metamodel are:

• basedOn: set of metamodels this metamodel is based on. Metamodels that are based
on this metamodel must not be included as a cyclic dependency is not allowed.

• abstractSyntax: the abstract syntax definition of this metamodel within which all
concepts of this metamodel will be defined. A metamodel must have exactly one
abstract syntax.

• concreteSyntax: set of concrete syntax definitions of this metamodel. Multiple
concrete syntaxes are possible and even quite usual. In principle, different kinds of
concrete syntax definitions are possible. Nevertheless, M2L only defines a specifica-
tion technique for textual concrete syntaxes. Concrete syntax definitions may also be
omitted completely. In this case, the canonical syntaxes will be used instead.

• exportedMetapackage: references all meta-packages which are exported by this
metamodel. Exported packages are those which can be referenced by other metamod-
els based on this metamodel. This inferred property states that all meta-packages
defined within this metamodel will be exported. Packages taken from metamodels this
metamodel is based on, will not be exported. Thus, M2L has no re-export mechanism.

• visibleMetapackage: references all meta-packages which are visible within this meta-
model. Thus, concepts from these meta-packages can be referenced. This inferred
property states that all exported meta-packages of the metamodels this metamodel is
based on and all meta-packages defined within this metamodel will be visible. Note
that meta-packages will not be exported transitively.

Concrete Syntax. The formal textual concrete syntax for Metamodel is defined in List-
ing 9.31.

Listing 9.31: Textual Concrete Syntax for Metamodel

427 Metamodel : ”metamodel” <Named>
428 (nl ”based” ”on” | | &P: basedOn / ” ,”) ”{”
429 (nl | P: abstractSyntax) (nl | P: concreteSyntax)
430 nl ”}” ;

Example. An example for the concept Metamodel will be provided in the following List-
ing 9.32:

Stefano Merenda 185

9. The overall specification of M2L

Listing 9.32: Example for Metamodel

metamodel ”A demonstration metamodel” (demoMetamodel)
based on ”Metamodeling Language M2L” {
abstract syntax {

. . . // the d e t a i l s w i l l be omit ted here
}
textual default concrete syntax ”The default syntax” {

. . . // the d e t a i l s w i l l be omit ted here
}
textual concrete syntax ”An additional syntax” {

. . . // the d e t a i l s w i l l be omit ted here
}

}

The metamodel is named ”A demonstration metamodel” and has an alternative name,
namely ”demoMetamodel”. It is based on the metamodel ”Metamodelling Lan-
guage M2L”. Besides the abstract syntax it contains two textual concrete syntaxes.
The details will be omitted in this example as they have been described in Sec-
tion 9.3, Package ORG.Metamodels.M2L.AbstractSyntax, p. 188 and Section 9.4, Package
ORG.Metamodels.M2L.ConcreteSyntax, p. 210.

9.2.3. Concept Metametamodel

The concept Metametamodel refines the concept Metamodel in order to mark the metamodel
describing the metamodelling language (in particular M2L) itself. The meta-metamodel is
characterized in that the syntax thereof (both abstract as well as concrete syntax) is conform
to itself. As all metamodels must be conform to the same meta-metamodel, exactly one
meta-metamodel is allowed. Note that within this Chapter 9, The overall specification of
M2L, p. 171 the meta-metamodel is exactly described.

Abstract Syntax. The formal abstract syntax for Metametamodel is defined in Listing 9.33.

Listing 9.33: Abstract Syntax for Metametamodel

70 Metametamodel ref ines Metamodel : :>
71 name := {{ I d e n t i f i e r (”Metamodelling Language M2L”) ,
72 I d e n t i f i e r (M2L) }} ,
73 &basedOn [0 . . 0] ,
74 where |C: Metametamodel | = 1 ;

The properties of the concept Metametamodel are:

• name (refined): the name of the meta-metamodel must be equal to ”Metamodelling
Language M2L”.

• basedOn (refined): the meta-metamodel must not be based on other metamodels.

Concrete Syntax. The formal textual concrete syntax for Metametamodel is defined in
Listing 9.34.

186 Stefano Merenda

9.2. Package ORG.Metamodels.M2L

Listing 9.34: Textual Concrete Syntax for Metametamodel

431 Metametamodel : ”meta−” <Metamodel> ;

The meta-metamodel is encoded in exactly the same way as normal metamodels, except for
the prefix meta-metamodel instead of metamodel.

Example. An example for the concept Metametamodel will be provided in the following
Listing 9.35:

Listing 9.35: Example for Metametamodel

meta−metamodel ”Metamodelling Language M2L” (M2L) {
abstract syntax {

. . . // the d e t a i l s w i l l be omit ted here
}
textual default concrete syntax ”M2L/Text” {

. . . // the d e t a i l s w i l l be omit ted here
}

}

Note that this example corresponds to the listing from Appendix A, Meta-Metamodel – The
Metamodel of M2L, p. 291.

Stefano Merenda 187

9. The overall specification of M2L

9.3. Package ORG.Metamodels.M2L.AbstractSyntax

This package defines the concepts necessary for describing the abstract syntax of a modelling
language. An abstract syntax generally defines an abstract language, thus the modelling
language independent of a concrete syntactical notation. It concentrates on the underlying
concepts of the modelling language and the relationships thereof among each other (proper-
ties).

Formally, a model at this abstract level (abstract word) is defined by a special kind of directed
labelled multi-graph, called M-graph (see Chapter 5, Models as Abstract Words, p. 81): The
nodes are labelled by concepts, whereas the edges are labelled by properties. Based on this,
an abstract language is a (potentially infinite) set of abstract words which is valid with regard
to the abstract language. In order to describe such a set of abstract words, the semantics
of an abstract syntax is a set of constraints expressed as Edge Algebra statements: If, and
only if, all these constraints are then fulfilled by an abstract word, it is valid with regard to
the abstract language defined by abstract syntax (see Chapter 6, Queries on abstract words
- the Edge Algebra, p. 95 and Chapter 7, Abstract Syntaxes in M2L, p. 119).

By way of the concept Metapackage, a namespace for the concepts is built. The concept
Concept itself combines all constraints which are relevant for a dedicated concept. (For-
mally it follows the assumption/guarantee pattern; see Chapter 7, Abstract Syntaxes in
M2L, p. 119.) Note that constraints are always associated with a concept in M2L. In order
to specify global constraints, the concept ORG.Metamodels.BasicConcepts.Any will be de-
fined. Formally, each concept refines the concept Any implicitly. Besides the fact that an
abstract word without any node is included in every abstract language, everything that may
be expressed with the Edge Algebra may also be expressed by an abstract syntax. Con-
straints that focus on a dedicated property are defined by the concept PropertyDef which is
also associated with a concept. All in all, the defined concepts are listed in Table 9.3:

Concept Description
AbstractSyntax the main concept encapsulating abstract syntax
Metapackage hierarchical packages structuring abstract syntax
Concept identifier for concepts representing a qualified name
Property the properties which can be restricted by concepts
ConceptDef the concept definition for the concept definition itself
AnyConceptDef the concept definition representing the any-concept
EnumerationConceptDef refinement of ConceptDef for enumerations
EnumElementConceptDef refinement of ConceptDef for enumeration elements
ExternalConceptDef refinement of ConceptDef for externally defined concepts
PropertyDef the restrictions for a dedicated property within a concept
ConceptType enumerates the concept types such as Weak
KeyType enumerates the key types such as PrimaryLocalkey
LinkType enumerates the link types such as Composition
PomsetType enumerates the pomset types such as Bag or List

Table 9.3.: List of concepts defined in ORG.Metamodels.M2L.AbstractSyntax

9.3.1. Concept AbstractSyntax

The concept AbstractSyntax encapsulates the definition of abstract syntax within a meta-
model. Structured by meta-packages, it contains all concepts defined within this abstract

188 Stefano Merenda

9.3. Package ORG.Metamodels.M2L.AbstractSyntax

syntax (i. e. indirectly via meta-packages). Note that two abstract syntaxes of different
metamodels may contain the same meta-package structure even with overlapping concept
names. When combining these metamodels, the conjunction of the resulting constraints
must hold for the two concepts with the same name and package location (i. e. the same
qualified name; see Section 9.3.5, Concept ConceptDef, p. 192).

Abstract Syntax. The formal abstract syntax for AbstractSyntax is defined in Listing 9.36.

Listing 9.36: Abstract Syntax for AbstractSyntax

77 AbstractSyntax ! : :>
78 metapackage [0 . . ∗] (Set) : C: Metapackage ,
79 &exportedMetapackage :=
80 P:metapackage .P: exportedMetapackage ,
81 &vis ib l eMetapackage :=
82 �P: composite .P: v i s ib l eMetapackage ;

The properties of the concept AbstractSyntax are:

• metapackage: set of all (root) meta-packages this abstract syntax consists of. Note
that the transitively reachable sub-packages will not be included herein.

• exportedMetapackage (inferred): set of all transitively reachable meta-packages
and sub-meta-packages this abstract syntax consists of. It is also the set of meta-
packages that are exported by the metamodel (see Section 9.2.2, Concept Meta-
model, p. 184).

• visibleMetapackage (inferred): set of meta-packages this abstract syntax can
reference, and which are the same as those the metamodel can access (see Sec-
tion 9.2.2, Concept Metamodel, p. 184).

Concrete Syntax. The formal textual concrete syntax for AbstractSyntax is defined in List-
ing 9.37.

Listing 9.37: Textual Concrete Syntax for AbstractSyntax

434 AbstractSyntax : ”abstract” ”syntax” ”{”
435 (nl | P:metapackage) nl ”}” ;

Example. An example for the concept AbstractSyntax will be provided in the following
Listing 9.38:

Listing 9.38: Example for AbstractSyntax

abstract syntax {
metapackage ORG {

metapackage Demo {
. . .

}
}
metapackage COM {

. . .
}

Stefano Merenda 189

9. The overall specification of M2L

}

The abstract syntax shown contains two top-level meta-packages, namely ORG and COM.
The meta-package ORG additionally contains a sub-package called Demo. All other details
will be omitted in this example.

9.3.2. Concept Metapackage

The package structure for the abstract syntax will be built by the concept Metapackage.
Meta-packages may again contain meta-packages as sub-packages. The resulting tree struc-
ture forms the namespace for the concepts contained therein: Two concepts have the same
qualified name if, and only if, they have the same name and are located at the same meta-
package position (see Section 9.3.5, Concept ConceptDef, p. 192).

Abstract Syntax. The formal abstract syntax for Metapackage is defined in Listing 9.39.

Listing 9.39: Abstract Syntax for Metapackage

83 Metapackage ! ref ines Named ::>
84 subpackage [0 . . ∗] (Set) : C: Metapackage ,
85 concept [0 . . ∗] (Set) : C: Concept ,
86 &exportedMetapackage :=
87 	 ⊕ (P: subpackage .P: exportedMetapackage) ,
88 &vis ib l eMetapackage :=
89 �P: composite .P: v i s ib l eMetapackage ;

The properties of the concept Metapackage are:

• subpackage: set of all sub-packages contained in this meta-package. Note that the
transitively reachable sub-packages will not be included herein.

• concept: set of concepts defined within this meta-package.

• exportedMetapackage (inferred): set of all transitively reachable sub-packages
including the present meta-package itself. It is also the set of meta-packages this
meta-package contributes to the exported meta-packages (see Section 9.2.2, Concept
Metamodel, p. 184).

• visibleMetapackage (inferred): set of meta-packages this meta-package can ref-
erence, and which are the same as those the metamodel can access (see Sec-
tion 9.2.2, Concept Metamodel, p. 184).

Concrete Syntax. The formal textual concrete syntax for Metapackage is defined in List-
ing 9.40.

Listing 9.40: Textual Concrete Syntax for Metapackage

436 Metapackage : ”metapackage” <Named> ”{”
437 (nl | P: concept | ” ;”) (nl | P: subpackage)
438 nl ”}” ;

190 Stefano Merenda

9.3. Package ORG.Metamodels.M2L.AbstractSyntax

Example. An example for the concept Metapackage will be provided in the following List-
ing 9.41:

Listing 9.41: Example for Metapackage

metapackage Demo {
”A simple concept” : :> ;
metapackage ”A sub package” {

”Another concept” : :> ;
}

}

The meta-package shown contains a sub-package named ”A sub package”. In addition, both
the top-level meta-package and the sub-package contain one concept definition. Please refer
to Section 9.3.5, Concept ConceptDef, p. 192 for details regarding an encoding of a concept.

9.3.3. Concept Concept

The concept Concept represents an identifier for a concept. Concepts are organised by
namespaces. Thus, the qualified name consists of a list of identifiers. Two concepts are only
seen as being equal if the total list is equal.

Abstract Syntax. The formal abstract syntax for Concept is defined in Listing 9.42.

Listing 9.42: Abstract Syntax for Concept

91 Concept ! ! : :=
92 qual i f iedName [2 . . ∗] (List) : C: I d e n t i f i e r ;

The properties of the concept Concept are:

• qualifiedName: qualified name of the concept. It is represented by a (totally or-
dered) list of meta-package names concluded by the concept name. In contrast to
the canonical key, it skips the metamodel name at the beginning. Note that this
definition will also apply to leaf concepts defined within enumeration concepts (see
Section 9.3.7, Concept EnumerationConceptDef, p. 197): i. e. the qualified name of
the concept True is ORG.Metamodels.BasicConcepts.Boolean.True.

Concrete Syntax. The formal textual concrete syntax for Concept is defined in Listing 9.43.

Listing 9.43: Textual Concrete Syntax for Concept

440 Concept : (P: qual i f iedName / ” .”) ;

Each element of the qualified name is separated by a dot.

Example. An example for the concept Concept representing the concept Any, as it can be
found within the meta-package ORG.Metamodels.BasicConcepts (see Section 9.1.1, Concept
Any, p. 172), will be provided in the following Listing 9.44:

Listing 9.44: Example for Concept

ORG. Metamodels . BasicConcepts . Any

Stefano Merenda 191

9. The overall specification of M2L

Quotes will not be necessary in the present example as no special characters (or spaces) will
be used within none of the identifiers.

9.3.4. Concept Property

The concept Property represents an identifier for a property. Properties are not organised
by namespaces or something equivalent. Thus, two properties are seen as being equal if
they have the same name. This fact deeply impacts the semantics of abstract syntaxes
whenever two concept definitions are combined. This is mainly the case when a concept
refines one or more other concepts or when two metamodels are combined which contain
concepts having the same qualified name. In all these cases the resulting constraints of the
concepts involved will be united. As properties having the same name are treated as the
same property, the constraints for equal properties must be fulfilled at the same time (due to
the conjunction). Note that the resulting constraint may obviously be contradictory. Please
refer to Chapter 7, Abstract Syntaxes in M2L, p. 119 for details.

Some properties have a special meaning pre-defined by the language M2L. In detail they are
lkey, ikey, ckey, composite, template, and context. They are defined within the concept Any
in Section 9.1.1, Concept Any, p. 172.

Abstract Syntax. The formal abstract syntax for Property is defined in Listing 9.45.

Listing 9.45: Abstract Syntax for Property

93 Property ! ! ref ines I d e n t i f i e r ;

A property is just a refinement of a non-empty string without any additional restrictions.
As abstract syntax is not further restricted, properties may also contain any kind of special
characters.

Concrete Syntax. Concrete syntax is (indirectly) inherited (via Identifier) from String (see
Section 9.1.6, Concept String, p. 177).

Example. An example for the concept Property representing the property name, as it can
be found within the concept Named (see Section 9.1.8, Concept Named, p. 179), will be
provided in the following Listing 9.46:

Listing 9.46: Example for Property

name

Quotes will not be necessary in the present example as no special characters (or spaces) will
be used within the property name.

9.3.5. Concept ConceptDef

The concept Concept defines the definition of a concept itself. According to the present
theory, the semantics of a concept definition is a set of constraints expressed as an Edge
Algebra statement. In contrast to properties (see Section 9.3.4, Concept Property, p. 192),
concepts are organised within a meta-package structure resulting in qualified concept names:

192 Stefano Merenda

9.3. Package ORG.Metamodels.M2L.AbstractSyntax

Two concepts are seen as being equal if they have the same qualified name: thus, two
concepts are equal if, and only if, they have the same name and they are located within the
same meta-package. Due to the lkey-constraint (see Section 7.5.5, Local keys, namespaces
and visibility, p. 137), two concepts like these will always be located in different metamodels.
Note that the qualified name is not equal to the canonical key: Whereas the canonical key
must be globally unique by definition, for this reason starting with the (unique) metamodel
name, the qualified name on the other hand skips the metamodel name, starts directly with
the first meta-package name and is thus not globally unique. Formally, the relationship
between canonical key (ckey) and qualified name is defined by 9.2:

metamodelName = (∧ �P :composite ↓ C :Metamodel) .P :name
ckey = metamodelName.P :qualifiedName

(9.2)

In contrast to most other metamodel approaches M2L does not state what is allowed but
states what is not allowed. In case of an ”empty” metamodel anything will be allowed - so,
every model (formally every abstract word) will be valid. By defining a concept, restrictions
are imposed on every node, the type of which being set to said concept (or a concept refining
said concept). This procedure leaves many questions open: When for example a concept
Person is specified, which must have a property name directing towards a concept String,
no restrictions on other properties will be imposed, such as age, as the property age has
not been defined and is thus not constrained. Consequently, a model including a node with
the type Person may indeed have a property age without rendering the model invalid. This
approach makes it easy to define a sound concept refinement: A refining concept AgedPerson
may, for example, additionally constrain the property age. As the concept Person states
nothing about age, no contradiction occurs and the constraints of both concepts can be
simply conjuncted in order to get the total constraints for the refining concept.

As has been mentioned, the semantics of each concept definition can be expressed as an Edge
Algebra statement. As the name suggests, concept definitions make assertions concerning
a dedicated concept. Thus, the constraints should only be relevant if the type of the node
is of the respective concept or one of the refined concepts thereof. Said will be described
within Edge Algebra by an implication as shown in 9.3

	 b C :〈qualified name of concept〉 ⇒ (>
∧ 〈Constraint 1〉
∧ 〈Constraint 2〉

...
∧ 〈Constraint n〉

)

(9.3)

Note that the constant boolean value true (>) at the beginning of the right side of the
implication is more technical as this renders said pattern as being valid even if a concept
has no constraints.

For details on how to map a concept definition into an Edge Algebra statement please refer
to Chapter 7, Abstract Syntaxes in M2L, p. 119.

Abstract Syntax. The formal abstract syntax for ConceptDef is defined in Listing 9.47.

Listing 9.47: Abstract Syntax for ConceptDef

95 ConceptDef ! ref ines Named ::>
96 concept [1 . . 1] : C: Concept ,

Stefano Merenda 193

9. The overall specification of M2L

97 &r e f i n e s [0 . . ∗] (Set) :
98 (P: v i s ib l eMetapackage .P: conceptDef) ↓∗ ∧�P: r e f i n e s ,
99 i sAbs t r a c t [1 . . 1] : C: Boolean ,

100 i sComplete [1 . . 1] : C: Boolean ,
101 conceptType [1 . . 1] : C: ConceptType ,
102 propertyDef [0 . . ∗] (Set) ↔ conceptDef : C: PropertyDef ,
103 a d d i t i o n a l C o n s t r a i n t [0 . . 1] : C: Predicate ,
104 &vis ib l eMetapackage :=
105 �P: composite .P: v i s ib leMetapackage ,
106 &includedContext := P: v i s ib l eMetapackage
107 where P: concept .P: qual i f iedName = (≷∧�P: composite
108 ↓ (C: Metapackage] C: ConceptDef)) .P: name ;

The properties of the concept ConceptDef are:

• concept: qualified name of the concept. It is represented by a (totally ordered) list
of meta-package names concluded by the concept name. In contrast to the canonical
key, it skips the metamodel name at the beginning.

• refines: set of concepts which is refined by this concept. Thus, all defined constraints
for those refined concepts must also hold for the present concept. A concept may
refine more than one other concept. All concepts owned by visible meta-packages can
be referenced here. Concepts refining said concept are excluded in order to avoid a
cyclic refinement relationship.

• isAbstract: marks whether the concept is abstract or not. An abstract concept must
not be the type of any node. Thus, the type must be one of the refining concepts
(which is not abstract).

• isComplete: marks whether the concept is complete or not. All properties which
are not explicitly defined by a property definition in the present or in one of the
refined concepts (even transitively) must result in an empty set for a complete concept.
Note that this definition results from the semi-structured approach which allows to set
properties that have not been defined explicitly (and are hence not constrained). Based
on that definition, concepts refining complete concepts cannot add any additional
properties but can, indeed, restrict existing ones stronger.

• conceptType: type of the concept. Please refer to Section 9.3.11, Concept Concept-
Type, p. 204 for further details.

• propertyDef: set of defined and thus restricted properties. Please refer to Sec-
tion 9.3.10, Concept PropertyDef, p. 201 for further details.

• additionalConstraint: optional, additional constraint expressed as an Edge Algebra
statement. Here, constraints can be located that cannot be expressed by the previous
options. Please refer to Section 9.6, Package ORG.Metamodels.EdgeAlgebra, p. 233
for further details.

• visibleMetapackage (inferred): set of meta-packages this concept can reference.
They are the same as those the parent metamodel can access (see Section 9.2.2, Concept
Metamodel, p. 184).

• context (inferred): context included for context-sensitive keys. According to the
given definition, all concepts contained by visible meta-packages can be accessed by the
simple key as long as it is unique. For further details concerning the formal definition

194 Stefano Merenda

9.3. Package ORG.Metamodels.M2L.AbstractSyntax

and use of context included please refer to Section 7.5.5, Local keys, namespaces and
visibility, p. 137.

Concrete Syntax. The formal textual concrete syntax for ConceptDef is defined in List-
ing 9.48.

Listing 9.48: Textual Concrete Syntax for ConceptDef

441 ConceptDef : ((bool) (P: i sAbs t r a c t)
442 ? ” [” <Named> (P: conceptType) ”]”
443 : <Named> (P: conceptType))
444 (”refines” | | &P: super / ” ,”)
445 ((bool)P: i sComplete ? ”::=”)
446 ((¬(bool)P: i sComplete ? ”::>”)
447 | | nl | P: propertyDef / ” ,”)
448 (nl ”where” | P: a d d i t i o n a l C o n s t r a i n t) ;

The concrete syntax for concept definitions has been defined such that a compact language
evolves which is reminiscent of a grammar definition enriched with notations from UML
class diagrams. A concept definition is encoded as a kind of assignment denoted by ”::=”
(in case of complete concepts) or ”::>” (in case of concepts which are not marked as
being complete). The concept name including some additional information is located on the
left side, whereas property definitions and additional constraints are encoded on the right
side. The greater-than-symbol for non-complete concepts should illustrate the fact that a
concept may be more than the given property restrictions (as any undefined properties are
allowed). If a concept is marked as being abstract, the concept name is given in squared
brackets. The concept type will be encoded after the concept name. Two exclamation marks
(”!!”) represent an attribute concept, one exclamation mark (”!”) represents a weak concept
or none a strong concept. Please refer to Section 9.3.11, Concept ConceptType, p. 204
for further details. Following that approach, the refined concepts will be enumerated on
the left side of the assignment, marked by the keyword ”refines” at the beginning. All
property definitions will be enumerated on the right side of the assignment. Please refer to
Section 9.3.10, Concept PropertyDef, p. 201 for further details. The additional constraint,
if any, will finally be encoded, marked by the keyword ”where” at the beginning.

Example. An example for the concept ConceptDef will be provided in the following List-
ing 9.49:

Listing 9.49: Example for ConceptDef

[Person !] ref ines Named , Commentable ::>
age [1 . . 1] : C: Natural ,
&f r i e n d [0 . . ∗] : C: Person
where ((number)P: age ≤ 150)

The given example defines a non-complete concept with the name Person, refining the two
concepts Named and Commentable. Due to the square brackets it is marked as being ab-
stract and the exclamation mark states that this concept is weak. Both given property
definitions, namely age and friend, will be skipped here as they will be described in Sec-
tion 9.3.10, Concept PropertyDef, p. 201. Finally, a conditional constraint can be found,
stating that nobody should be older than 150.

Stefano Merenda 195

9. The overall specification of M2L

Note that each of the definitions for abstract syntaxes in this Chapter 9, The overall spec-
ification of M2L, p. 171 that are no enumerations or external concepts represent further
possible examples.

9.3.6. Concept AnyConceptDef

The concept AnyConceptDef is a special concept definition for the any-concept. The any-
concept is that concept which is implicitly refined by every other concept. Due to this,
the any-concept neither refines nor is it explicitly refined by any other concept. In order
to be able to define additional properties for any other concept, the any-concept must not
be marked as being complete. Besides that, the any-concept must be marked as a strong
concept because at least one node of a M-graph must be a root node. This requests at least
one (non-abstract) strong concept which is used as type for this root node. Nevertheless, a
node should not be of the type Any ; therefore the any-concept is marked as being abstract.

Abstract Syntax. The formal abstract syntax for AnyConceptDef is defined in Listing 9.50.

Listing 9.50: Abstract Syntax for AnyConceptDef

110 AnyConceptDef ! ref ines ConceptDef ::>
111 concept :=
112 {{ Concept (ORG. Metamodels . BasicConcepts . Any) }} ,
113 &r e f i n e s [0 . . 0] ,
114 i sAbs t r a c t : C: Boolean . True ,
115 i sComplete : C: Boolean . False ,
116 conceptType : C: ConceptType . Strong
117 where |�P: r e f i n e s | = 0 ;

The properties of the concept AnyConceptDef are:

• qualifiedName (refined): The qualified name of the any-concept must be
ORG.Metamodels.BasicConcepts.Any. This also ensures that there is one any-concept
within each metamodel at most. Nonetheless is it possible to add additional constraints
to the any-concept by other metamodels.

• refines (refined): No refining concept can be defined as this concept forms the basis.

• isAbstract (refined): The any-concept is abstract as the type of a node should not
be Any.

• isComplete (refined): The any-concept is not complete. Otherwise, no properties
could be defined for any concept.

• conceptType (refined): The any-concept is a strong concept. Otherwise, no strong
concepts would be allowed which is contradictory to the fact that at least one root
node must exist within a M-graph.

Concrete Syntax. The formal textual concrete syntax for AnyConceptDef is defined in
Listing 9.51.

Listing 9.51: Textual Concrete Syntax for AnyConceptDef

450 AnyConceptDef : ”anyconcept” <Concept> ;

196 Stefano Merenda

9.3. Package ORG.Metamodels.M2L.AbstractSyntax

The any-concept is encoded as an ordinary concept definition. In order to indicate that this
concept is the any-concept, it is marked by the preceding keyword ”anyconcept”.

Example. An example for the concept AnyConceptDef will be provided in the following
Listing 9.52:

Listing 9.52: Example for AnyConceptDef

anyconcept [Any] ;

The given example shows the simplest form of an any-concept without any constraints. The
basic any-concept for M2L is defined in Section 9.1.1, Concept Any, p. 172.

9.3.7. Concept EnumerationConceptDef

EnumerationConceptDef is a special type of concept definition and thus a refinement of
the concept ConceptDef. This concept allows for the definition of enumerations. Enu-
merations within this context are defined as a finite set of identifiers without any formal
syntactical relation to other concepts such as natural numbers. As has been introduced in
Section 9.1.2, Concept Boolean, p. 174, the concept Boolean is defined by an enumeration of
the two elements True and False. Formally, the elements of an enumeration concept are in
turn concepts refining the enumeration concept (called leaf concepts as they must not have
any outgoing property edges, see Section 9.3.8, Concept EnumElementConceptDef, p. 198).
The enumeration concept itself is abstract. This definition results in nodes which are marked
by said leaf concepts (i. e. the values of the enumeration). It will then be possible to associate
these nodes with properties requiring the corresponding enumeration concept.

Abstract Syntax. The formal abstract syntax for EnumerationConceptDef is defined in
Listing 9.53.

Listing 9.53: Abstract Syntax for EnumerationConceptDef

118 EnumerationConceptDef ! ref ines ConceptDef ::>
119 enumElement [2 . . ∗] : C: EnumElementConceptDef ,
120 &r e f i n e s [0 . . 0] ,
121 i sAbs t r a c t : C: Boolean . True ,
122 i sComplete : C: Boolean . True ,
123 conceptType : C: ConceptType . Attr ibute ,
124 propertyDef [0 . . 0] ,
125 a d d i t i o n a l C o n s t r a i n t [0 . . 0] ;

The properties of the concept EnumerationConceptDef are:

• enumerationValue: set of (at least two) values for the present enumeration concept.
As mentioned before, the enumeration values are described by leaf concepts (see Sec-
tion 9.3.8, Concept EnumElementConceptDef, p. 198). Note that as this property is
a composing one, leaf concepts are the only concepts that are composed to a concept
instead of a metapackage. This is also the reason why these concepts are referenced by
〈name of enumeration concept〉 . 〈name of leaf concept〉: the enumeration con-
cepts themselves are not part of the context included.

• refines (refined): An enumeration concept itself must not refine other concepts.

Stefano Merenda 197

9. The overall specification of M2L

• abstract (refined): From a mathematical point of view, an enumeration concept is
always abstract. This definition prevents that a node is marked by the enumeration
concept itself which is obviously not desired, as the corresponding nodes should be
marked by the refining leaf concepts representing the real enumeration values.

• complete (refined): Enumeration concepts are always complete. As property def-
initions are also not allowed, it is ensured that enumeration nodes do not have any
outgoing edges.

• conceptType (refined): An enumeration must always be treated as an attribute
concept.

• propertyDef (refined): An enumeration concept must not define any properties.
As an enumeration concept is always marked as being complete, no outgoing edges are
allowed.

• additionalConstraint (refined): Additional constraints cannot be defined for enu-
meration concepts.

Concrete Syntax. The formal textual concrete syntax for EnumerationConceptDef is de-
fined in Listing 9.54.

Listing 9.54: Textual Concrete Syntax for EnumerationConceptDef

451 EnumerationConceptDef : ”enum” <Named> (”=” ”{”
452 | | P: enumElement / ” ,” | | ”}”) ;

As most properties from the more general concept ConceptDef are restricted to a fixed value,
the concrete syntax for enumeration concepts becomes quite simple: The only properties
to be encoded are concept name and enumeration values. In order to mark a concept as
an enumeration concept, the keyword enum will be used at the beginning, followed by the
name of the concept. The set of enumeration values will, connected by an equals sign, then
be encoded within curly brackets.

Example. An example for the concept EnumerationConceptDef will be provided in the
following Listing 9.55:

Listing 9.55: Example for EnumerationConceptDef

enum Boolean = { True , Fa l se }

This definition for boolean values has been taken from the present meta-metamodel as
defined in Section 9.1.2, Concept Boolean, p. 174. Other examples can e. g. be found in
Section 9.3.11, Concept ConceptType, p. 204 or Section 9.3.14, Concept PomsetType, p. 208.

9.3.8. Concept EnumElementConceptDef

EnumElementConceptDef is a special type of concept definition which is exclusively used
within definitions of enumeration concepts as described in Section 9.3.7, Concept Enumer-
ationConceptDef, p. 197. Leaf concepts are used to describe dedicated enumeration values.
The name comes from the fact that such concepts result in leaf nodes within a M-graph, as
it is forbidden for nodes being marked by leaf concepts to have any outgoing edges. Besides
all other concepts, leaf concepts only occur within enumeration concepts referenced by the

198 Stefano Merenda

9.3. Package ORG.Metamodels.M2L.AbstractSyntax

property enumerationValue. They cannot directly be defined within a package. Obviously
this is not a strong restriction as the behaviour of a leaf concept can be easily imitated by
a basic concept definition as introduced in Section 9.3.5, Concept ConceptDef, p. 192. An
example for imitating a leaf concept will be provided in the following Listing 9.56:

Listing 9.56: Imitating a leaf concept

Leaf ! ! : := ;

Abstract Syntax. The formal abstract syntax for EnumElementConceptDef is defined in
Listing 9.57.

Listing 9.57: Abstract Syntax for EnumElementConceptDef

126 EnumElementConceptDef ! ref ines ConceptDef ::>
127 &r e f i n e s := �P: enumElement ,
128 i sAbs t r a c t : C: Boolean . False ,
129 i sComplete : C: Boolean . True ,
130 conceptType : C: ConceptType . Attr ibute ,
131 propertyDef [0 . . 0] ,
132 a d d i t i o n a l C o n s t r a i n t [0 . . 0]
133 where �P: composite b C: EnumerationConceptDef ;

The properties of the concept EnumElementConceptDef are:

• refines (refined as inferred): A leaf concept refines exactly that enumeration con-
cept which it defines. Note that this is always exactly one concept.

• isAbstract (refined): A leaf concept is not abstract. Otherwise, no node can be
labelled by this concept.

• isComplete (refined): A leaf concept is marked as being complete although this
constraint has already been defined within the refining enumeration concept. As prop-
erty definitions are also not allowed, it is ensured that leaf nodes do not have any
outgoing edges.

• conceptType (refined): A leaf concept is always treated as an attribute concept.

• propertyDef (refined): A leaf concept must not define any properties. As a leaf
concept is always seen as being complete, no outgoing edges are allowed.

• additionalConstraint (refined): Additional constraints cannot be defined for enu-
meration concepts.

Concrete Syntax. The formal textual concrete syntax for EnumElementConceptDef is de-
fined in Listing 9.58.

Listing 9.58: Textual Concrete Syntax for EnumElementConceptDef

453 EnumElementConceptDef : <Named> ;

As all properties from the more general concept ConceptDef are restricted to a fixed value
and no additional properties will be added, the concrete syntax for enumeration values will
have to encode the concept name only.

Stefano Merenda 199

9. The overall specification of M2L

Example. An example for the concept EnumElementConceptDef for the enumeration value
True of the concept Boolean will be provided in the following Listing 9.59:

Listing 9.59: Example for EnumElementConceptDef

True

9.3.9. Concept ExternalConceptDef

ExternalConceptDef is a special kind of concept definition which is tailored to metamodel
modularization. As has been described in Section 9.2.2, Concept Metamodel, p. 184, a
metamodel may depend on a set of other metamodels. Then, all concepts defined within
these other metamodels can be referenced e. g. for refining them. This will, however, result
in a tied relationship between those metamodels although such a strong dependency is
undesired in many situations.

As described in Section 9.3.5, Concept ConceptDef, p. 192, two concepts of two different
metamodels are seen to be equal if they have the same qualified name. In this case the
constraints of both definitions will be conjuncted, which means that both constraints must
hold. This enables another way of combining metamodels: Both metamodels define the
same concept by different aspects. A special case evolves, if one of those two definitions only
specifies a concept’s existence so as to be able to reference it. Then, a concept without any
restrictions should formally be defined as a placeholder for an external definition. This can
be realised by external concepts. Just as leaf concepts, external concepts can also be easily
imitated by a general concept definition. An example for imitating an external concept will
be provided in the following Listing 9.60:

Listing 9.60: Imitating an external concept

SomeExternalConceptDef ::> ;

Nevertheless, a special language construct will be defined in order to show explicitly that a
concept is defined in order to be specified externally.

Abstract Syntax. The formal abstract syntax for ExternalConceptDef is defined in List-
ing 9.61.

Listing 9.61: Abstract Syntax for ExternalConceptDef

134 ExternalConceptDef ! ref ines ConceptDef ::>
135 &r e f i n e s [0 . . 0] ,
136 i sAbs t r a c t : C: Boolean . False ,
137 i sComplete : C: Boolean . False ,
138 conceptType : C: ConceptType . Strong ,
139 propertyDef [0 . . 0] ,
140 a d d i t i o n a l C o n s t r a i n t [0 . . 0] ;

The properties of the concept ExternalConceptDef are:

• refines (refined): No refining concept can be defined. Any refinement would result
in undesired inherited constraints.

• isAbstract (refined): The concept is not abstract as an abstract concept has the
constraint that a node must not be marked by this concept.

200 Stefano Merenda

9.3. Package ORG.Metamodels.M2L.AbstractSyntax

• isComplete (refined): The concept is not complete. As no properties have been
defined, every property will be allowed.

• conceptType (refined): An external concept is treated as being a strong concept
thus resulting in none of the containment constraints (see Section 9.3.11, Concept
ConceptType, p. 204).

• propertyDef (refined): An external concept must not have any property definition
as the only reason for specifying said is to restrict the concept.

• additionalConstraint (refined): No additional constraint is, of course, desired for
external constraints.

Concrete Syntax. The formal textual concrete syntax for ExternalConceptDef is defined in
Listing 9.62.

Listing 9.62: Textual Concrete Syntax for ExternalConceptDef

454 ExternalConceptDef : ”external” <Named> ;

As all properties from the more general concept ConceptDef are restricted to a fixed value
and no additional properties will be added, the concrete syntax for external concepts will
have to encode the concept name only. In contrast to leaf concepts, external concepts are
marked by a preceding keyword external.

Example. An example for the concept ExternalConceptDef will be provided in the following
Listing 9.63:

Listing 9.63: Example for ExternalConceptDef

external SomeExternalConceptDef

The given example shows the same concept definition as given in Listing 9.60, but in a more
explicit way.

9.3.10. Concept PropertyDef

A property definition represented by the concept PropertyDef is responsible for defining the
constraints for a single property. It always occurs within a concept definition referenced
by the property propertyDef (see Section 9.3.5, Concept ConceptDef, p. 192). From a
semantic point of view, a property definition can always be translated into a set of constraints
expressed as an Edge Algebra statement. According to the definition of Concept, these
constraints are conjuncted to the overall set of constraints for a dedicated concept.

In general, more than one property definition may be defined for one and the same property.
This will particularly be the case when property definitions vary with regard to different
assumptions. Note that this way of modelling will result in the fact that property definitions
do not have a local key constraint defined for the property property as a uniqueness would
not allow more than one property definition for a single property. This restriction does,
however, not cause any problems as the idea behind properties is that they are not hardly
linked to property definitions or even to concept definitions: As has been characterized in
Section 9.3.4, Concept Property, p. 192, properties are simply referenced by their simple

Stefano Merenda 201

9. The overall specification of M2L

name defined by the concept Property. According to this strategy, the domain of the prop-
erty opposite, which specifies a bidirectional association between concepts, will be Property
instead of PropertyDef.

Abstract Syntax. The formal abstract syntax for PropertyDef is defined in Listing 9.64.

Listing 9.64: Abstract Syntax for PropertyDef

142 PropertyDef ! : :>
143 &conceptDef [1 . . 1] ↔ propertyDef : C: ConceptDef ,
144 assumption [0 . . 1] : C: Predicate ,
145 pr operty [1 . . 1] : C: Property ,
146 oppos i t e [0 . . ∗] (Set) : C: Property ,
147 keyType [0 . . 1] : C: KeyType ,
148 l inkType [1 . . 1] : C: LinkType ,
149 m u l t i p l i c i t y [0 . . 1] : C: I n t e rva l ,
150 pomsetRes t r i c t i on [0 . . 1] : C: PomsetType ,
151 domain [0 . . 1] : C: Edge ,
152 i n f e r r edVa lue [0 . . 1] : C: Edge ,
153 &includedContext := P: conceptDef .P: inc ludedContext ;

The properties of the concept PropertyDef are:

• concept: The concept this property definition is associated with. It is defined as the
opposite of the property propertyDef of Concept. Note that a property definition is
always modelled within the context of a concept.

• assumption: The condition which must hold in order for this property definition
to become relevant. The assumption is defined by a predicate statement in terms of
Edge Algebra (see Section 9.8.1, Concept Predicate, p. 249). If no assumption has been
defined, this property definition will always be relevant. Formally, this assumption will
result in an implication. The left side of this implication is the assumption. The right
side is the resulting constraint for this property definition (without the assumption).

• property: The property this property definition is meant for. As multiple property
definitions for the same property are allowed, this property is not marked as being
a local key. Properties are always referenced by the concept Property instead of a
reference to PropertyDef.

• opposite: set of properties which must be set in an inverse direction. This is a
more generic way of specifying bidirectional associations. An example is a parent-
child-relationship between persons: If one person is a child of another person, this
other person is the parent of the child. This more generic specification allows for the
definition of multiple opposite properties which are necessary to ensure a structure-
preserving conjunction of metamodels. Note that defining an opposite property does
not imply a definition of this opposite property within the foreign concept (i. e. the
concept specified as the domain of this property). This is important as the domain
for a property might be specified by an Edge Algebra statement which is not a pure
concept edge in general.

• keyType: States whether this property is marked as being the local key. Generally
speaking, local keys must be unique within the set of all sister nodes in terms of the
composition tree spanned by the composite-property. Please refer to Section 7.5.5, Lo-
cal keys, namespaces and visibility, p. 137 for a detailed and formal specification. Note

202 Stefano Merenda

9.3. Package ORG.Metamodels.M2L.AbstractSyntax

that multiple keys for different properties with assumptions that hold at the same time
will normally result in a contradiction.

• linkType: link type for this property. Possible values are Reference, Composition,
and Instantiation. Please refer to Section 9.3.13, Concept LinkType, p. 207 for details.

• multiplicity: If set, it defines the valid multiplicity for the property. If no multiplicity
is given, no restrictions are defined which equals to [0..*].

• pomsetRestriction: The pomset type allowed for this property. Possible values
are Set, Bag, List, Toset, Poset, and Pomset. Please refer to Section 9.3.13, Concept
LinkType, p. 207 for details. If no pomset type is given, no restrictions are defined
which equals to the value Pomset.

• domain: specifies the set of valid nodes for this property. If no domain has been
specified, no constraint concerning the domain will be added. The standard case is
to define the domain by a concept; thus a node is valid if its type is of this concept.
Nevertheless, a domain of a property will generally be specified by an edge expres-
sion in terms of Edge Algebra (see Section 9.7.1, Concept Edge, p. 236). Hereupon,
so-called context-sensitive domain specifications can be formulated. Please refer to
Section 7.5.3, Context-sensitive domains, p. 134 for further details. This generic way
of modelling a domain also allows for a specification of a domain defined by a set of
concepts with the help of an additive union (Section 9.7.5, Concept MultiEdgeOpera-
tor, p. 241). Formally, a specification of a domain will result in a consists-of operator.
Thus, order and duplicates of a domain will not influence the set of valid models.

• inferredValue: If set, inferredValue specifies a property as an inferred one. Thus,
the property can be calculated by other properties (which might be inferred properties
in turn). The calculation rule is given by inferredValue and is specified by an Edge
Algebra statement. Note that inferred properties may specify a domain in addition to
the inferred value. In various cases this (and other constraints such as multiplicity)
may even indirectly result in additional constraints for the properties inspected by
the inferred value. Please refer to Section 7.5.4, Inferred properties, p. 136 for further
details. Although an inferred value has the characteristics of an assignment, it will
formally result in an equation constraint: The property is valid if it equals to the
evaluation of the edge statement defined by the inferred value. This again leads to the
fact that an inferred value will be treated as any property such that the corresponding
edges must be modelled explicitly as a part of the M-graph. Such properties do,
however, not have to be modelled explicitly within a modelling environment but will
be calculated and added automatically. It must be mentioned in this context that
inferred values may be defined recursively (directly or indirectly via other inferred
properties). This will result in the issue that solving such properties will turn out
to be a fix-point problem, so that possibly the entire M-graph will have to be taken
into account. In particular, the solution may even be ambiguous. Nevertheless in
this context inferred properties are simply seen as an equality constraint. By doing
so, none of the above-mentioned problems will occur as the solution for the inferred
properties has already been given by the M-graph to be inspected.

• context: context included for context-sensitive keys. According to the given defini-
tion, all concepts contained by visible meta-packages can be accessed by the simple
key as long as it is unique. For further details concerning the formal definition and
use of context included please refer to Section 7.5.5, Local keys, namespaces and visi-
bility, p. 137.

Stefano Merenda 203

9. The overall specification of M2L

Concrete Syntax. The formal textual concrete syntax for PropertyDef is defined in List-
ing 9.65.

Listing 9.65: Textual Concrete Syntax for PropertyDef

456 PropertyDef : (”?” | P: assumption | ”?”)
457 (P: keyType) (P: l inkType) (P: pr operty)
458 (” [” | | P: m u l t i p l i c i t y / ” ,” | | ”]”)
459 (”(” | | P: pomsetRes t r i c t i on / ” ,” | | ”)”)
460 ((”↔” OR ”<−>”) | | P: oppos i t e / ” ,”)
461 (” :” | | P: domain)
462 (”:=” | | P: i n f e r r edVa lue) ;

The concrete syntax for property definitions has been defined such that a compact language
evolves which reuses some textual notations from UML class diagrams. First of all, the
assumption of the property will be encoded between two question marks. Afterwards, the
property name itself will be encoded. Two modifiers can be found in front of the property
name: First, a ”(K)” denotes that the property will be used as the local key; secondly, a
”&” marks the property as a reference or a ”%” marks the property as an instantiating
property; if both ”&” and ”%” are missing, the property will be a compositional property.
The property name will be followed by an (optional) comma-separated set of multiplici-
ties within squared brackets. Afterwards, the (optional) pomset restriction will be defined
within parentheses, followed by an (also optional) comma-separated set of opposite prop-
erties marked by ↔ or the corresponding ascii symbols <−> at the beginning. Then, the
domain will be encoded, marked by a preceding colon. Finally, if set, the inferred value
identified by ”:=” will be given.

Example. An example for the concept PropertyDef will be provided in the following List-
ing 9.66:

Listing 9.66: Example for PropertyDef

? (bool)P: married ? &spouse [1 . . 1] ↔ spouse : C: Person

The given example may be a property definition within a concept Person specifying whether
a person is married. It must also comprise a property spouse which is a person as well. Due
to the opposite value defined (which will be spouse again), it is said that if one person is the
spouse of another person, that other person is also the spouse of the first one. Note that
this example provides an exact representation of a self-connected bidirectional property.

Note that each of the definitions for abstract syntaxes in this Chapter 9, The overall spec-
ification of M2L, p. 171 that are no enumerations or external concepts represent further
possible examples of property definitions.

9.3.11. Concept ConceptType

The concept ConceptType enumerates the three types of concepts, namely strong concepts,
weak concepts, and attribute concepts. A concept type is specified within a concept definition
(see Section 9.3.5, Concept ConceptDef, p. 192). The three concept types are ordered by
an implication: Each attribute concept fulfils the constraints for a weak concept. And each
weak concept fulfils the constraints for a strong concept. More precisely, strong concepts do
not lead to any additional constraints for the concept concerning the concept type.

204 Stefano Merenda

9.3. Package ORG.Metamodels.M2L.AbstractSyntax

Generally speaking, concept types deal with the incoming edges of a node, both compo-
sitional as well as general. Compositional relationships between nodes are marked by the
special property composite within M-graphs. Such a compositional relationship can be
forced by setting the link type of a property to composite (see Section 9.3.13, Concept Link-
Type, p. 207). As described in Section 9.1.1, Concept Any, p. 172, the property composite
has several restrictions so that the resulting edge for composite always describes a rooted
forest in terms of graph theory. It can be distinguished between root nodes and child nodes
(i. e. those nodes that are no root nodes) within such a forest.

While nodes marked by strong concepts may be both root nodes as well as child nodes (no
additional constraints are imposed on strong concepts), nodes marked by weak concepts may
only occur as child nodes. In other words, each node marked by a weak concept must be part
of another node in terms of a containment relationship. Attribute nodes (i. e. nodes marked
by attribute concepts) must not have any additional incoming edges besides the composite
edge and one edge which triggers the composition (the source node of this edge will therefore
be identical to the source node of the composite edge). In other words, attribute nodes may
only be contained but can not be referenced by other nodes.

Abstract Syntax. The formal abstract syntax for ConceptType is defined in Listing 9.67.

Listing 9.67: Abstract Syntax for ConceptType

155 enum ConceptType = { Strong , Weak , Att r ibute } ;

The enumeration values of the concept ConceptType are:

• Strong: represents strong concepts. Thus, no additional constraint will be added.

• Weak: represents weak concepts which are more restrictive than strong concepts.
Nodes marked by weak concepts must always be part of another node in terms of a
containment relationship.

• Attribute: represents attribute concepts which are again more restrictive than weak
concepts. Nodes marked by attribute concepts must not be referenced in any way
besides the containing node.

Concrete Syntax. The formal textual concrete syntax for ConceptType is defined in List-
ing 9.68.

Listing 9.68: Textual Concrete Syntax for ConceptType

464 ConceptType . Strong : ;
465 ConceptType . Weak : ”!” ;
466 ConceptType . Att r ibute : ” ! ! ” ;

As strong concepts do not lead to any additional constraint, the encoding will be empty.
Whereas weak concepts are marked by one exclamation mark, attribute concepts are marked
by a double exclamation mark. This notation shall also emphasise the implication relation-
ship between concept types.

Example. An example for the concept ConceptType will be provided in the following List-
ing 9.69:

Stefano Merenda 205

9. The overall specification of M2L

Listing 9.69: Example for ConceptType

! !

The concept type Attribute will be shown.

9.3.12. Concept KeyType

This concept enumerates all the valid key types. In detail they are PrimaryLocalkey and
AlternativeLocalkey. For details please refer to Section 7.5.5, Local keys, namespaces and
visibility, p. 137.

Abstract Syntax. The formal abstract syntax for KeyType is defined in Listing 9.70.

Listing 9.70: Abstract Syntax for KeyType

156 enum KeyType = {
157 PrimaryLocalkey , A l t e rnat iveLoca lkey
158 } ;

The enumeration values of the concept KeyType are:

• PrimaryLocalkey: marks a property as the primary local key.

• AlternativeLocalkey: marks a property as a alternative local key.

Concrete Syntax. The formal textual concrete syntax for KeyType is defined in Listing 9.71.

Listing 9.71: Textual Concrete Syntax for KeyType

468 KeyType . PrimaryLocalkey : ”(PK)” ;
469 KeyType . A l t e rnat iveLoca lkey : ”(K)” ;

As strong concepts do not lead to any additional constraint, the encoding will be empty.
Whereas weak concepts are marked by one exclamation mark, attribute concepts are marked
by a double exclamation mark. This notation shall also emphasise the implication relation-
ship between concept types.

Example. An example for the concept KeyType will be provided in the following List-
ing 9.72:

Listing 9.72: Example for KeyType

(PK)

The key type PrimaryLocalkey is shown.

206 Stefano Merenda

9.3. Package ORG.Metamodels.M2L.AbstractSyntax

9.3.13. Concept LinkType

The concept LinkType enumerates the three types of links between nodes, namely reference
links, composition links, and instantiation links. A link type will be specified within a
property definition (see Section 9.3.10, Concept PropertyDef, p. 201). The three link types
are ordered by an implication: Each instantiation link fulfils the constraints for a composition
link. And each composition link fulfils the constraints for a reference link. More precisely,
reference links do not lead to any additional constraints for a property concerning the link
type.

Generally speaking, link types deal with special properties, namely composite and template,
within M-graphs. Figure 9.1 provides an example which shows an automaton a1 defined
within a library l1 and having one state s1. Then, a component c1 uses this automaton a1

by instantiating it by a2.

Library :l1 Automaton:a1 State:s1

Component :c1 Automaton:a2 State:s2

definition

composite

state

composite

used

composite

state

composite

template template

Figure 9.1.: Example for compositions and instantiations

If the link type of a property is defined as being a composition, a second edge must be spec-
ified labelled by composite for each edge labelled by said property. Hereupon, a composition
link between these two nodes will be established. Please refer to Section 7.4.9, Composi-
tional properties, p. 131 for further details. Examples of such compositions will be provided
in Figure 9.1.

Instantiation links further require for the composed element to be a (deep) copy of a tem-
plate. The template node will be marked by an edge labelled with template. Please refer
to Section 7.5.6, Instantiating Properties, p. 145 for further details. The automaton a2 in
Figure 9.1 is an instance of automaton a1 due to the edge labelled by template. Thus, the
property used satisfies the constraint resulting from an instantiation link, and due to that,
used will be an instantiation link.

Abstract Syntax. The formal abstract syntax for LinkType is defined in Listing 9.73.

Listing 9.73: Abstract Syntax for LinkType

159 enum LinkType = {
160 Reference , Composition , I n s t a n t i a t i o n
161 } ;

The enumeration values of the concept LinkType are:

• Reference: represents a reference link. Thus, no additional constraint will be added.

Stefano Merenda 207

9. The overall specification of M2L

• Composition: represents a composition link which is more restrictive than a reference
link. Properties marked by a composition link require an additional composite edge
within the M-graph.

• Instantiation: represents an instantiation link which is again more restrictive than
composition links. Properties marked by an instantiation link must reference a concept
which is a (deep) copy of another concept marked by the template edge within the M-
graph.

Concrete Syntax. The formal textual concrete syntax for LinkType is defined in Listing 9.74.

Listing 9.74: Textual Concrete Syntax for LinkType

471 LinkType . Reference : ”&” ;
472 LinkType . Composition : ;
473 LinkType . I n s t a n t i a t i o n : ”%” ;

Although compositions have a stronger constraint as references, compositions are seen as the
standard case as they are mainly used within metamodels. Thus, compositions are encoded
without any additional marker. Properties referencing attribute concepts may therefore
also be written as usual, i. e. without any additional symbol. An ampersand is commonly
used for references and hence for encoding references. The percent sign will be used for
representing instantiations. It has been chosen as the two 0’s may represent the template-
copy-relationship: one stands for the template, the other one for the instance copy.

Example. An example for the concept LinkType will be provided in the following List-
ing 9.75:

Listing 9.75: Example for LinkType

%

The link type Instantiation is shown.

9.3.14. Concept PomsetType

As described in Chapter 5, Models as Abstract Words, p. 81, both the theory of Edge Algebra
and the metamodelling language M2L are based on pomsets instead of the set theory. This
approach allows for handling duplicates and order in a formal way. In many situations,
properties should be restricted to a subtype of partially ordered multisets which have been
introduced in Chapter 4, Pomsets in the context of metamodelling, p. 61. The enumeration
PomsetType defines all possible subtypes, namely Singleton, Set, Bag, List, Toset, Poset,
and Pomset.

Note that duplicates are not based on identical nodes within the M-graph but on the equiv-
alence relation defined in Chapter 4, Pomsets in the context of metamodelling, p. 61 (see
Chapter 5, Models as Abstract Words, p. 81).

208 Stefano Merenda

9.3. Package ORG.Metamodels.M2L.AbstractSyntax

Abstract Syntax. The formal abstract syntax for PomsetType is defined in Listing 9.76.

Listing 9.76: Abstract Syntax for PomsetType

162 enum PomsetType = {
163 Set , Bag , L i s t , Tos et , Pos et , Pomset
164 } ;

The enumeration values of the concept PomsetType are:

• Set: pomset having neither order nor duplicates.

• Bag: pomset which has no order but may have duplicates.

• List: pomset which has a total order and may have duplicates.

• Toset: pomset having a total order but no duplicates.

• Poset: pomset having a partial order but no duplicates.

• Pomset: Any pomset will be allowed. As this pomset type does not add any additional
constraint, it will not be specified explicitly in most cases.

Concrete Syntax. The formal textual concrete syntax for PomsetType will be defined in a
canonical way by simply encoding the names of the enumeration values themselves. Thus,
no custom textual syntax will have to be specified.

Example. An example for the concept PomsetType will be provided in the following List-
ing 9.77:

Listing 9.77: Example for PomsetType

Bag

The pomset type Bag is encoded.

Stefano Merenda 209

9. The overall specification of M2L

9.4. Package ORG.Metamodels.M2L.ConcreteSyntax

In order to define a concrete notation for the concepts given by the abstract syntax, one
or more concrete syntaxes will have to be specified. The focus of the present thesis is
on how models are presented to humans for both browsing as well as editing them within
an IDE. As those presentations are usually not used for persisting the models, there is
additional freedom: Not all model information within one concrete syntax will have to be
encoded. Concrete syntax will instead rather be treated as a view to abstract syntax. Thus,
some information may be skipped in dedicated concrete syntaxes. Nevertheless, all model
information should be comprised by at least one concrete syntax in order to allow humans
to access all parts of the model information.

Concrete syntaxes will always be specified on the basis of abstract syntax within M2L. So
in order to decide whether a given model is valid with respect to a concrete syntax, abstract
syntax will always have to be taken into account. As has already been mentioned, any
number of concrete syntaxes may be defined for one abstract syntax. The relationships (es-
pecially with regard to consistency) between these concrete syntaxes are in turn established
by abstract syntax. Such concrete syntaxes may generally be of different types. It will be
differentiated between textual, diagrammatical and tabular concrete syntaxes from a con-
ceptional point of view. Although M2L takes this generality into account, it still defines a
modelling technique for textual syntaxes up to now. This package provides the common and
abstract concepts for defining concrete syntaxes independent of a particular syntax type.
Please refer to Section 9.5, Package ORG.Metamodels.M2L.ConcreteSyntax.Textual, p. 217
for textual syntax definitions. According to ConcreteSyntaxPackage, the package structure
within a concrete syntax needs to be structured the same way as given by abstract syntax.
Table 9.4 shows the list of all concepts defined:

Concept Description
SyntaxIdentifier the identifier for concrete syntaxes
ConcreteSyntax the main concept encapsulating concrete syntax
ConcreteSyntaxPackage builds the package structure within concrete syntaxes
ConcreteSyntaxDef a syntax definition for a single concept

Table 9.4.: List of concepts defined in ORG.Metamodels.M2L.ConcreteSyntax

As more than one concrete syntax is generally feasible, identifiers must be defined for each
syntax. These identifiers must be unique among all syntax types. One concrete syntax may
be marked as default syntax for each syntax type. For textual syntaxes, for example, the
default syntax can be accessed by the reserved syntax identifier ”TEXTUAL DEFAULT”.
The default syntax will be used whenever the desired syntax has not been defined or if no
syntax identifier has been given. In addition to the default syntax, a canonical syntax will
also be predefined for each syntax type. For textual syntaxes, for example, the canonical
syntax can be accessed by the reserved syntax identifier ”TEXTUAL CANONIC”. The
canonical syntax will be used whenever the default syntax is requested but no default syntax
has been defined. A canonical syntax can be derived from an abstract syntax without any
additional information about concrete syntax. This allows a language engineer to browse and
edit models in early language development stages (e. g. for validating a modelling language),
as no concrete syntax definition will be necessary.

210 Stefano Merenda

9.4. Package ORG.Metamodels.M2L.ConcreteSyntax

9.4.1. Concept SyntaxIdentifier

In contrast to abstract syntax, concrete syntaxes have a unique identifier. This results from
the fact that a metamodel consists of exactly one abstract syntax but may have several
concrete syntaxes. The concept SyntaxIdentifier represents – as the name suggests – such
an identifier for concrete syntaxes. A syntax identifier itself is represented by an arbitrary
case-sensitive and non-empty string. Note that syntax identifiers must be unique even over
different syntax types. Hence, there must not be a textual and a diagrammatical syntax
with the same syntax identifier. With regard to default and canonical syntaxes there are
two reserved syntax identifiers:

• ”TEXTUAL DEFAULT” representing the default textual syntax, and

• ”TEXTUAL CANONIC” representing the canonical textual syntax.

Abstract Syntax. The formal abstract syntax for SyntaxIdentifier is defined in Listing 9.78.

Listing 9.78: Abstract Syntax for SyntaxIdentifier

168 S y n t a x I d e n t i f i e r ! ! ref ines I d e n t i f i e r ;

The concept SyntaxIdentifier refines the concept Identifier without any additional restric-
tions or properties. As abstract syntax is not further restricted, syntax identifiers may also
contain any kind of special character.

Concrete Syntax. Concrete syntax is (indirectly) inherited (via Identifier) from String (see
Section 9.1.6, Concept String, p. 177).

Example. An example for the concept SyntaxIdentifier, representing the syntax identifier
M2L/Text specified in the meta-metamodel itself will be provided in the following List-
ing 9.79:

Listing 9.79: Example for SyntaxIdentifier

”M2L/Text”

Quotes are necessary in this example as the special character ’/’ will be used within the
syntax identifier.

9.4.2. Concept ConcreteSyntax

The concept ConcreteSyntax encapsulates the definition of one concrete syntax within a
metamodel. Structured by syntax packages (see Section 9.4.3, Concept ConcreteSyntax-
Package, p. 213) it contains all syntax definitions (indirectly via syntax packages) (see Sec-
tion 9.4.4, Concept ConcreteSyntaxDef, p. 215) that are defined within this concrete syntax.

This concept is abstract as a dedicated refined non-abstract concept will be defined for the
different syntax types just as in Section 9.5.1, Concept TextualSyntax, p. 218. These refined
concepts should then ensure that they only contain syntax definitions of the correspond-
ing syntax type (for textual syntaxes this will e. g. be Section 9.5.3, Concept TextualSyn-
taxDef, p. 220).

Stefano Merenda 211

9. The overall specification of M2L

Abstract Syntax. The formal abstract syntax for ConcreteSyntax is defined in Listing 9.80.

Listing 9.80: Abstract Syntax for ConcreteSyntax

169 [ConcreteSyntax !] ref ines Named : :=
170 name : C: S y n t a x I d e n t i f i e r ,
171 alternat iveName : C: S y n t a x I d e n t i f i e r ,
172 i s D e f a u l t : C: Boolean ,
173 syntaxPackage [0 . . ∗] (Set) : C: ConcreteSyntaxPackage ;

The properties of the concept ConcreteSyntax are:

• name (refined): identifier of this concrete syntax.

• alternativeName (refined): alternative identifiers of this concrete syntax.

• default: indicates whether this concrete syntax is marked as being a default syntax.
If more than one concrete syntax is marked as being a default syntax for the same
concept, they are seen as being alternatives. In textual syntaxes this will be achieved
by a switch (see Section 9.5.12, Concept Switch, p. 230).

• syntaxPackage: set of all (root) syntax packages this concrete syntax consists of.
The structure of the syntax packages will have to match the meta-package structure
of the abstract syntax. Note that the transitively reachable sub-packages will not be
included herein.

Concrete Syntax. The formal textual concrete syntax for ConcreteSyntax is defined in List-
ing 9.81.

Listing 9.81: Textual Concrete Syntax for ConcreteSyntax

477 ConcreteSyntax : ((bool)P: d e f a u l t ? ”default”)
478 ”concrete” ”syntax” <Named> ”{”
479 (nl | P: syntaxPackage)
480 nl ”}” ;

Each concrete syntax is marked by the composed keyword ”concrete syntax” followed
by the syntax identifier thereof including the optional alternative identifiers thereof (see
Section 9.1.8, Concept Named, p. 179). The keyword ”default” in front of this composed
keyword indicates whether the concrete syntax is marked as being the default syntax or not.
The syntax packages will finally be listed within curly brackets.

As the concept ConcreteSyntax is abstract, this syntax definition will be defined for the use
within refining concepts such as in Section 9.5.1, Concept TextualSyntax, p. 218 by adding
an additional keyword (e. g. ”textual” for textual syntaxes).

Example. An example for the concept ConcreteSyntax will be provided in the following
Listing 9.82:

Listing 9.82: Example for ConcreteSyntax

default concrete syntax ”M2L/Text” (”Textual M2L”) {
syntaxpackage ORG {

. . .
}

212 Stefano Merenda

9.4. Package ORG.Metamodels.M2L.ConcreteSyntax

}

This example shows the encoding of concrete syntax of the metamodelling language M2L
itself as defined in the meta-metamodel thereof. Note that the keyword ”textual” will
be skipped here, as only the more abstract version will be encoded herein. Details within
syntax packages will be skipped here. Please refer to Section 9.4.3, Concept ConcreteSyn-
taxPackage, p. 213 for details. In addition, an alternative name Textual M2L will be added
for illustration.

9.4.3. Concept ConcreteSyntaxPackage

The package structure for the concrete syntax will be built by the concept ConcreteSyn-
taxPackage. To shorten the illustration, the term concrete will often be omitted and the
concept will just be named syntax package. Concrete syntax packages may again contain
concrete syntax packages as sub-packages. The resulting tree structure must match the
structure defined in abstract syntax. Hence, each concrete syntax package must correspond
to a meta-package from the abstract syntax which belongs to the same metamodel. In ad-
dition, corresponding packages must be contained by corresponding packages in turn. Note
that not every meta-package must, however, have a corresponding concrete syntax package.
The local key will indirectly be defined by the local key of the meta-package. Thus, the
resulting tree structure of the concrete syntax packages forms an appropriate namespace for
the contained concrete syntax definitions.

Abstract Syntax. The formal abstract syntax for ConcreteSyntaxPackage is defined in List-
ing 9.83.

Listing 9.83: Abstract Syntax for ConcreteSyntaxPackage

174 [ConcreteSyntaxPackage !] : :=
175 &metapackage [1 . . 1] : P: inc ludedContext .
176 (P:metapackage] P: subpackage) ,
177 subpackage [0 . . ∗] (Set) : C: ConcreteSyntaxPackage ,
178 concreteSyntaxDef [0 . . ∗] (Set) : C: ConcreteSyntaxDef ,
179 &includedContext := ε(
180 (�(P: concreteSyntax .P: syntaxPackage) .
181 P: abstractSyntax)
182]
183 (�P: subpackage .P:metapackage)
184) ,
185 l key := P:metapackage .P: l key ;

The properties of the concept ConcreteSyntaxPackage are:

• metapackage: corresponding meta-package for this syntax package. If this syntax
package is a root package, all root meta-packages from the abstract syntax are valid;
if this syntax package is a sub-package (i. e. there is a superordinate syntax package
as a parent), all sub-packages of the meta-package corresponding to the superordinate
syntax package are valid. Formally, this will be expressed via the context. Note that
it is not allowed to model more than one syntax package referencing one and the same
meta-package. This is formally forbidden due to the lkey constraint, as such a scenario
will always result in duplicate lkeys.

Stefano Merenda 213

9. The overall specification of M2L

• subpackage: set of all sub-packages contained in this syntax package. Note that the
transitively reachable sub-packages will not be included herein.

• concreteSyntaxDef: set of concrete syntax definitions defined within this syntax
package.

• context (inferred): context included for context-sensitive keys. According to the
given definition, either all composed nodes (in particular the root meta-packages) of
the abstract syntax or all composed nodes of the meta-package, associated with the
superordinate syntax package, can be referenced by the simple key as long as it is
unique. For further details concerning the formal definition and use of context included
please refer to Section 7.5.5, Local keys, namespaces and visibility, p. 137.

• lkey (inferred): the local key for the concrete syntax package will be inferred from
the lkey of the corresponding meta-package. Hereupon it will also be ensured that two
syntax packages do not have the same corresponding meta-package.

Concrete Syntax. The formal textual concrete syntax for ConcreteSyntaxPackage is defined
in Listing 9.84.

Listing 9.84: Textual Concrete Syntax for ConcreteSyntaxPackage

481 ConcreteSyntaxPackage : ”syntaxpackage”
482 (&P:metapackage) ”{”
483 (nl | P: concreteSyntaxDef)
484 (nl | P: subpackage)
485 nl ”}” ;

A concrete syntax package is encoded quite similar to meta-packages: Instead of
”metapackage”, a concrete syntax package starts with ”syntaxpackage”. Whereas said
is followed by the package name for meta-packages, the reference to the corresponding meta-
package will be encoded for concrete syntaxes. Due to the fact that the included context
always contains the referenced meta-package, the local key will always be sufficient. All
contained concrete syntax definitions followed by the defined sub-packages will be encoded
within the curly brackets.

Example. An example for the concept ConcreteSyntaxPackage will be provided in the fol-
lowing Listing 9.85:

Listing 9.85: Example for ConcreteSyntaxPackage

syntaxpackage M2L {
Metamodel : . . . ;
syntaxpackage AbstractSyntax {

Concept : . . . ;
}

}

The example illustrates a simplified concrete syntax package taken from the metamodel of
M2L. It references the meta-package M2L and contains a concrete syntax definition for the
concept Metamodel and a sub-package referring to the meta-package AbstractSyntax (which
will be possible as the meta-package AbstractSyntax is a sub-package of the meta-package
M2L). The latter concrete syntax package will in turn contain a concrete syntax definition

214 Stefano Merenda

9.4. Package ORG.Metamodels.M2L.ConcreteSyntax

for the concept Concept. Details concerning the concept definitions will be omitted herein.
Please refer to Section 9.4.4, Concept ConcreteSyntaxDef, p. 215.

9.4.4. Concept ConcreteSyntaxDef

The concept ConcreteSyntaxDef represents a syntax definition for a single concept. This
concept is abstract as it forms the basis for various syntax types such as the textual one. It
mainly defines the link to the concept from abstract syntax. All other details are specific to
a dedicated syntax type.

Abstract Syntax. The formal abstract syntax for ConcreteSyntaxDef is defined in List-
ing 9.86.

Listing 9.86: Abstract Syntax for ConcreteSyntaxDef

186 [ConcreteSyntaxDef !] : :>
187 &conceptDef [1 . . 1] : P: inc ludedContext .P: conceptDef ,
188 &includedContext :=
189 �P: concreteSyntaxDef .P:metapackage ,
190 l key := P: conceptDef .P: l key ;

The properties of the concept ConcreteSyntaxDef are:

• concept: corresponding concept from abstract syntax for this concrete syntax defini-
tion. Only the concepts defined within the associated meta-package can be referenced.
Formally, this will be expressed via the context. Note that it is not allowed to model
more than one syntax definition referencing one and the same concept. This is formally
forbidden due to the lkey constraint, as such a scenario will always result in duplicate
lkeys.

• context (inferred): context included for context-sensitive keys. According to the
given definition, all composed nodes (in particular the defined concepts) of the asso-
ciated meta-package can be referenced by the simple key as long as it is unique. For
further details concerning the formal definition and use of context included please refer
to Section 7.5.5, Local keys, namespaces and visibility, p. 137.

• lkey (inferred): the local key for the concrete syntax definition will be inferred from
the lkey of the corresponding concept. Hereupon it will also be ensured that two
syntax definitions do not have the same corresponding concept.

Concrete Syntax. The formal textual concrete syntax for ConcreteSyntaxDef is defined in
Listing 9.87.

Listing 9.87: Textual Concrete Syntax for ConcreteSyntaxDef

486 ConcreteSyntaxDef : (&P: conceptDef) ” :” ;

According to the fact that this concept is an abstract one, it only defines a prefix which
should be used within all refining concepts. That concept for which the syntax shall be
defined will be referenced first. Due to the context included this may always be realised
by the simple lkey. The referenced concept will be followed by a colon. Afterwards, the
dedicated syntax definition for the corresponding syntax type will follow.

Stefano Merenda 215

9. The overall specification of M2L

Example. An example for the concept ConcreteSyntaxDef will be provided in the following
Listing 9.88:

Listing 9.88: Example for ConcreteSyntaxDef

Person :

The present example illustrates a concrete syntax definition for the concept Person. As
ConcreteSyntaxDef is an abstract concept, the example only shows the common prefix of all
types of concrete syntax definitions. After the colon, the specific part of syntax definition
will begin. Please refer to Section 9.5.3, Concept TextualSyntaxDef, p. 220 for a textual
syntax specification.

216 Stefano Merenda

9.5. Package ORG.Metamodels.M2L.ConcreteSyntax.Textual

9.5. Package ORG.Metamodels.M2L.ConcreteSyntax.Textual

This package defines the concepts necessary for describing the textual concrete syntax
of a modelling language. A textual concrete syntax generally defines a textual con-
crete language – also known as a formal language and thus a concrete syntactical no-
tation – based on an abstract modelling language as defined in Section 9.3, Package
ORG.Metamodels.M2L.AbstractSyntax, p. 188. As a concrete syntax definition – as de-
scribed in the present section – is always based on an abstract syntax, a complete language
specification always needs both, an abstract and a concrete syntax definition.

Textual syntaxes in M2L are described by a template-based approach which is suitable
for both pretty-printing as well as parsing. The style of the resulting syntax specification
language shall empathize established grammar specification languages such as EBNF in order
to provide a comprehensible specification technique for language engineers in particular. Due
to the combination of abstract syntax and concrete syntax described herein, context-sensitive
conditions can easily be expressed.

In this context, the M-graph (wherein the structure thereof has been described by the
abstract syntax) takes over the role of the abstract syntax tree (AST). In contrast to an
AST the M-graph is – as the name suggests – a graph instead of a tree. All rooted trees
which are subgraphs of the given M-graph are possible ASTs for a textual concrete language.
In general, the tree does not need to span the M-graph as it may describe only a part of
the model. These additional cross-references rendering the tree a graph can be seen as the
context-sensitive part of the language.

Up to now, the exact expressiveness of textual languages described by M2L has not been
analysed in detail. Nevertheless is an expressiveness close to context-sensitive grammars
assumed. At this point it must be considered that all freedom in defining abstract syntax will
be required for building arbitrary textual languages. In other words, the possible concrete
syntaxes will be limited for a given abstract syntax as the abstract syntax already restricts
possible abstract syntax trees to the spanning trees or at least trees which are subgraphs of
the given M-graph.

The challenge of textual syntax definitions in M2L was being able to describe textual syn-
taxes from a documentation point of view but not from an implementation point of view.
Tokens or defining the language in the form of a (mostly difficult to understand) LL gram-
mar just for optimizing the parser shall therefore not be mentioned. Nevertheless should it
be possible to generate both pretty-printer and parser without any additional information.

Important issues when designing M2L were also extensibility and the combination of mod-
elling languages. The present thesis therefore decided to use a scannerless approach in order
to skip tokens which allows for the use of keywords as identifies as well. This is important
upon the extension or combination of languages, as here, new keywords evolve in many cases
which might render existing models invalid. In other words, such an approach avoids that
concrete syntaxes will influence the abstract syntax. When, for example, Java introduced
enumerations, the new keyword enum was introduced. Since then, enum could no longer be
used as an identifier name resulting in a downwards incompatibility.

Parsing performance on the other hand has a lower priority when designing M2L. The reason
for that is that textual syntaxes are mainly used for a presentation of models to humans.
Instead of persisting models into text files, models are e. g. stored in a model database using
abstract syntax in a direct way, thus rendering them available in an already parsed way.
If the model is accessed that way – e. g. for model analysis or code generation – no high
performance parser will be necessary so as to parse the entire model each time. Parsing
will only be necessary when humans are manually altering the model which will naturally

Stefano Merenda 217

9. The overall specification of M2L

affect only a very small part of the model. Note that this approach necessitates incremental
parsing mechanisms instead.

TextualSyntax, TextualSyntaxPackage, and TextualSyntaxDef are refinements of the prede-
fined concepts from the generic package for concrete syntaxes defined in Section 9.4, Package
ORG.Metamodels.M2L.ConcreteSyntax, p. 210. A textual syntax definition of a concept
consists of a SyntaxTemplate which describes the textual syntax by concatenation of several
TemplateElements. TemplateElements are the basic modelling elements for textual syntaxes,
such as Terminal or NonTerminal. All in all, the defined concepts are listed in Table 9.5:

Concept Description
TextualSyntax the main concept encapsulating textual syntax
TextualSyntaxPackage builds the package structure within textual syntaxes
TextualSyntaxDef a textual syntax definition for a single concept
SyntaxTemplate describes a textual syntax by concatenating template elements
TemplateElement abstract concept for one element of a syntax template
Terminal template element for terminal symbols
ProperTerminal terminal symbols not treated as whitespaces
WhitespaceTerminal terminal symbols treated as whitespaces
Whitespace enumerates possible whitespaces
NonTerminal models a non-terminal by referring to abstract syntax
Option models an option depending on an Edge Algebra predicate
Switch models a set of alternative textual syntaxes
IncludeSyntaxDef includes another textual syntax definition

Table 9.5.: List of concepts defined in ORG.Metamodels.M2L.ConcreteSyntax.Textual

9.5.1. Concept TextualSyntax

The concept TextualSyntax encapsulates the definition of one textual concrete syntax within
a metamodel by refining the concept ConcreteSyntax (see Section 9.4.2, Concept Con-
creteSyntax, p. 211). This concept ensures that only textual syntax packages (see Sec-
tion 9.5.2, Concept TextualSyntaxPackage, p. 219) and textual syntax definitions (see Sec-
tion 9.5.3, Concept TextualSyntaxDef, p. 220) will be contained.

Abstract Syntax. The formal abstract syntax for TextualSyntax is defined in Listing 9.89.

Listing 9.89: Abstract Syntax for TextualSyntax

193 TextualSyntax ! ref ines ConcreteSyntax : :=
194 syntaxPackage : C: TextualSyntaxPackage ;

The properties of the concept TextualSyntax are:

• syntaxPackage (refined): set of all (root) syntax packages this textual syntax con-
sists of. Due to the refinement, this property may only contain textual syntax packages.

Concrete Syntax. The formal textual concrete syntax for TextualSyntax is defined in List-
ing 9.90.

218 Stefano Merenda

9.5. Package ORG.Metamodels.M2L.ConcreteSyntax.Textual

Listing 9.90: Textual Concrete Syntax for TextualSyntax

489 TextualSyntax : ”textual” <ConcreteSyntax> ;

As the refining abstract concept already specifies a concrete syntax, only the prefix
”textual” will be added.

Example. An example for the concept TextualSyntax will be provided in the following
Listing 9.91:

Listing 9.91: Example for TextualSyntax

textual default concrete syntax ”M2L/Text” (”Textual M2L”) {
syntaxpackage ORG {

. . .
}

}

This example shows the encoding of the textual syntax of the metamodelling language
M2L itself as defined in the meta-metamodel thereof. In contrast to the example for the
abstract concept for ConcreteSyntax, (see Section 9.4.2, Concept ConcreteSyntax, p. 211),
the keyword ”textual” will now be encoded. Details within syntax packages will be skipped
here. Please refer to Section 9.5.2, Concept TextualSyntaxPackage, p. 219 for details. In
addition, an alternative name Textual M2L will be added for illustration.

9.5.2. Concept TextualSyntaxPackage

The package structure for the textual concrete syntax will be built by the concept Textu-
alSyntaxPackage. It refines the concept ConcreteSyntax and ensures that a textual syn-
tax package will again contain (maybe indirectly) only textual syntax definitions (see Sec-
tion 9.4.4, Concept ConcreteSyntaxDef, p. 215). Please refer to Section 9.4.2, Concept
ConcreteSyntax, p. 211 for further details.

Abstract Syntax. The formal abstract syntax for TextualSyntaxPackage is defined in List-
ing 9.92.

Listing 9.92: Abstract Syntax for TextualSyntaxPackage

195 TextualSyntaxPackage !
196 ref ines ConcreteSyntaxPackage : :=
197 subpackage : C: TextualSyntaxPackage ,
198 concreteSyntaxDef : C: TextualSyntaxDef ;

The properties of the concept TextualSyntaxPackage are:

• subpackage (inferred): set of all sub-packages contained in this concrete syntax
package. Note that the transitively reachable sub-packages will not be included herein.
Due to the refinement, this property may only contain textual syntax packages.

• concreteSyntaxDef (inferred): set of concrete syntax definitions defined within
this syntax package. Due to the refinement, this property may only contain textual
syntax packages.

Stefano Merenda 219

9. The overall specification of M2L

Concrete Syntax. Concrete syntax is inherited from ConcreteSyntaxPackage (see Sec-
tion 9.4.3, Concept ConcreteSyntaxPackage, p. 213).

Example. As the syntax definition is similar to that of the refined concept ConcreteSyn-
taxPackage, please refer to the example in Listing 9.85 from Section 9.4.3, Concept Con-
creteSyntaxPackage, p. 213.

9.5.3. Concept TextualSyntaxDef

According to the refined concept ConcreteSyntaxDef, the concept TextualSyntaxDef repre-
sents a textual syntax definition for a single concept. It consists of exactly one template
specifying the textual concrete syntax.

Abstract Syntax. The formal abstract syntax for TextualSyntaxDef is defined in List-
ing 9.93.

Listing 9.93: Abstract Syntax for TextualSyntaxDef

199 TextualSyntaxDef ! ref ines ConcreteSyntaxDef ::>
200 mainSyntaxTemplate [1 . . 1] : C: SyntaxTemplate ;

The properties of the concept TextualSyntaxDef are:

• mainSyntaxTemplate: template specifying the textual concrete syntax. Note that
this property must always exist even though this syntax template does not contain
any template elements (see Section 9.5.5, Concept TemplateElement, p. 222).

Concrete Syntax. The formal textual concrete syntax for TextualSyntaxDef is defined in
Listing 9.94.

Listing 9.94: Textual Concrete Syntax for TextualSyntaxDef

490 TextualSyntaxDef : <ConcreteSyntaxDef>
491 (P: mainSyntaxTemplate) ” ;” ;

The textual syntax for the textual syntax definition itself simply encodes the main syntax
template after the prefix which has already been specified for the refining concept Con-
creteSyntaxDef (see Section 9.4.4, Concept ConcreteSyntaxDef, p. 215) and which will be
finalized by a semicolon.

Example. An example for the concept TextualSyntaxDef will be provided in the following
Listing 9.95:

Listing 9.95: Example for TextualSyntaxDef

Person : ”person” (name) ;

The given example encodes a concept Person by a terminal ”person”, followed by a whites-
pace, followed by the non-terminal encoding the property name. Note that each listing in
the sections named Concrete Syntax within this chapter represent additional examples of
textual syntax definitions.

220 Stefano Merenda

9.5. Package ORG.Metamodels.M2L.ConcreteSyntax.Textual

9.5.4. Concept SyntaxTemplate

The concept SyntaxTemplate encodes the concatenation of a set of template elements such as
terminals or non-terminals (see Section 9.5.5, Concept TemplateElement, p. 222 for details).
Besides the occurrence as main syntax template within the textual syntax definition (see
Section 9.5.3, Concept TextualSyntaxDef, p. 220), it is also referenced within Option to
model both then- and else-case (see Section 9.5.11, Concept Option, p. 229), within Switch
to model alternatives (see Section 9.5.12, Concept Switch, p. 230), and within NonTerminal
to model prefixes, suffixes etc. (see Section 9.5.10, Concept NonTerminal, p. 226). A syntax
template may also be empty, thus it does not contain any template elements.

The concatenation of template elements means that they are expected within the textual
representation in the same order. Note that between every two consecutive template el-
ements whitespaces may occur in the textual representation to be parsed. Thus there is
a difference between ”Hello” ”World” and ”HelloWorld” as the former one allows an
arbitrary amount of whitespaces. Note that this approach renders the explicit modelling
of whitespaces dispensable for parsing: ”Hello” ”World” excludes the same textual rep-
resentations as ”Hello” ”World”. Even a representation without any whitespace will be
excluded in both cases as an explicit whitespace within a syntax template does not call for
it. The difference comes up upon pretty-printing the model: A whitespace will then only be
encoded when it is modelled explicitly.

Abstract Syntax. The formal abstract syntax for SyntaxTemplate is defined in Listing 9.96.

Listing 9.96: Abstract Syntax for SyntaxTemplate

202 SyntaxTemplate ! ! : :=
203 templateElement [0 . . ∗] (List) : C: TemplateElement ;

The properties of the concept SyntaxTemplate are:

• templateElement: list of template elements that are concatenated within this syntax
template.

Concrete Syntax. The formal textual concrete syntax for SyntaxTemplate is defined in
Listing 9.97.

Listing 9.97: Textual Concrete Syntax for SyntaxTemplate

493 SyntaxTemplate : (P: templateElement /) ;

Syntax templates are simply encoded by concatenating the contained template elements
with a whitespace therebetween.

Example. An example for the concept SyntaxTemplate will be provided in the following
Listing 9.98:

Listing 9.98: Example for SyntaxTemplate

”person” (name)

Stefano Merenda 221

9. The overall specification of M2L

The given example shows a syntax template with tree template elements. The first one
(”person”) is a proper terminal; the second one () is a whitespace terminal; and the
third one ((name)) is a non-terminal. For a detailed information about available template
elements please refer to Section 9.5.5, Concept TemplateElement, p. 222.

9.5.5. Concept TemplateElement

Template elements are those elements a syntax template is build of by concatenation (see
Section 9.5.4, Concept SyntaxTemplate, p. 221). The concept TemplateElement represents
an abstract concept so as to be refined by the concrete concepts provided for template
elements by M2L. A complete list of template elements will be shown in Table 9.6:

Template element Description
ProperTerminal terminal symbols not treated as whitespaces
WhitespaceTerminal terminal symbols treated as whitespaces
NonTerminal models a non-terminal by referring to abstract syntax
Option models an option depending on an Edge Algebra predicate
Switch models a set of alternative textual syntaxes
IncludeSyntaxDef includes another textual syntax definition

Table 9.6.: Complete list of template elements for describing textual syntax in M2L

Abstract Syntax. The formal abstract syntax for TemplateElement is defined in Listing 9.99.

Listing 9.99: Abstract Syntax for TemplateElement

204 [TemplateElement ! !] ;

TemplateElement is an abstract concept without any properties that have been additionally
defined.

Concrete Syntax. No concrete syntax has to be defined for this abstract concept. Please
refer to the (non-abstract) refining concepts.

Example. As no concrete syntax is defined for this abstract concept, please refer to the
(non-abstract) refining concepts.

9.5.6. Concept Terminal

M2L distinguishes between two types of terminal symbols: proper terminals (see
Section 9.5.7, Concept ProperTerminal, p. 223) and whitespace terminals (see Sec-
tion 9.5.8, Concept WhitespaceTerminal, p. 224). These two types are grouped by this
abstract concept Terminal. Please refer to those concepts for further details.

Abstract Syntax. The formal abstract syntax for Terminal is defined in Listing 9.100.

Listing 9.100: Abstract Syntax for Terminal

205 [Terminal ! !] ref ines TemplateElement ;

222 Stefano Merenda

9.5. Package ORG.Metamodels.M2L.ConcreteSyntax.Textual

Terminal is an abstract concept without any properties that have been additionally defined.

Concrete Syntax. No concrete syntax has to be defined for this abstract concept. Please
refer to the (non-abstract) refining concepts, namely ProperTerminal and WhitespaceTer-
minal.

Example. As no concrete syntax is defined for this abstract concept, please refer to the
(non-abstract) refining concepts, namely ProperTerminal and WhitespaceTerminal.

9.5.7. Concept ProperTerminal

The terminal symbols will be modelled by the concept ProperTerminal. Thus, each character
must be encoded within a valid textual representation one by one. Terminal symbols may
consist of arbitrary unicode characters but must contain at least one character. Keywords,
but also braces etc., of a textual representation will be modelled by proper terminals.

Even whitespace characters, such as space or carriage return, will be allowed. Note that if
such whitespace characters are used in proper terminals they are treated as any other ter-
minal symbol: The (whitespace) characters must occur in exactly that form – i. e. such
a whitespace must not be replaced by another whitespace or by a sequence of whites-
paces. Whitespaces within proper terminals should therefore be rarely used. In order to
use whitespaces in their traditional way, WhitespaceTerminal (see Section 9.5.8, Concept
WhitespaceTerminal, p. 224) should be used instead.

Abstract Syntax. The formal abstract syntax for ProperTerminal is defined in Listing 9.101.

Listing 9.101: Abstract Syntax for ProperTerminal

206 ProperTerminal ! ! ref ines Terminal : :=
207 symbols [1 . . 1] : C: S t r ing
208 where |P: symbols .P: cha rac t e r | > 0 ;

The properties of the concept ProperTerminal are:

• symbols: non-empty string of terminal symbols. Whitespace characters are gener-
ally allowed, but should be used rarely in this context as they are not treated as
whitespaces. WhitespaceTerminal should be used instead.

Concrete Syntax. The formal textual concrete syntax for ProperTerminal is defined in
Listing 9.102.

Listing 9.102: Textual Concrete Syntax for ProperTerminal

494 ProperTerminal : (P: symbols [QUOTED]) ;

Proper terminals are always encoded by a double-quoted string. The quote sign itself as
well as the backslash are avoided by a preceding backslash: \” and \\.

Stefano Merenda 223

9. The overall specification of M2L

Example. An example for the concept ProperTerminal will be provided in the following
Listing 9.103:

Listing 9.103: Example for ProperTerminal

”person”

The example shows a proper terminal which models the keyword person, which has already
been shown in example Listing 9.98.

9.5.8. Concept WhitespaceTerminal

An explicit whitespace can be modelled within a syntax template by the concept Whites-
paceTermial. As described in Section 9.5.4, Concept SyntaxTemplate, p. 221, arbitrary
whitespaces (namely spaces, carriage returns, and tabs) are allowed between each template
element. Note that even an explicitly modelled whitespace does neither call for a particu-
lar whitespace nor for one at all. Thus an explicitly modelled whitespace terminal has no
influence on the textual representations accepted by the specified language. Instead, it will
define the behaviour when pretty-printing a model by the specified textual syntax, as only
explicitly modelled whitespaces will be encoded.

Two types of whitespaces can be modelled: Space and Newline. While a Space will simply
be encoded by a space, a more sophisticated behaviour will be defined for Newline as it
supports an automatically correct indent. Note that although only space and newline can
be explicitly defined, also tabs will be allowed as whitespaces during parsing.

Abstract Syntax. The formal abstract syntax for WhitespaceTerminal is defined in List-
ing 9.104.

Listing 9.104: Abstract Syntax for WhitespaceTerminal

209 WhitespaceTerminal ! ! ref ines Terminal : :=
210 whitespace [1 . . 1] : C: Whitespace ;

The properties of the concept WhitespaceTerminal are:

• whitespace: whitespace modelled. Please refer to Section 9.5.9, Concept Whites-
pace, p. 225 for further details.

Concrete Syntax. The formal textual concrete syntax for WhitespaceTerminal is defined in
Listing 9.105.

Listing 9.105: Textual Concrete Syntax for WhitespaceTerminal

495 WhitespaceTerminal : (P: whitespace) ;

A whitespace terminal will simply be encoded by its whitespace. Please refer to Sec-
tion 9.5.9, Concept Whitespace, p. 225 for further details.

224 Stefano Merenda

9.5. Package ORG.Metamodels.M2L.ConcreteSyntax.Textual

Example. An example for the concept WhitespaceTerminal will be provided in the following
Listing 9.106:

Listing 9.106: Example for WhitespaceTerminal

The example shows a whitespace terminal which models a space that has already been shown
in example Listing 9.98.

9.5.9. Concept Whitespace

The concept Whitespace enumerates the supported whitespaces which can be modelled
within an explicit whitespace (see Section 9.5.8, Concept WhitespaceTerminal, p. 224).

Abstract Syntax. The formal abstract syntax for Whitespace is defined in Listing 9.107.

Listing 9.107: Abstract Syntax for Whitespace

211 enum Whitespace = { Space , Newline } ;

The enumeration values of the concept ConceptType are:

• Space: represents a space. A space will simply be encoded by a space.

• Newline: represents a newline. A newline will be encoded by a carriage return
including the necessary tabs for realizing a correct indent.

Concrete Syntax. The formal textual concrete syntax for Whitespace is defined in List-
ing 9.108.

Listing 9.108: Textual Concrete Syntax for Whitespace

496 Whitespace . Space : ” ” ;
497 Whitespace . Newline : ”nl” ;

A space will be encoded by an underscore (), whereas a newline will be encoded by nl.

Example. An example for the concept Whitespace will be provided in the following List-
ing 9.109:

Listing 9.109: Example for Whitespace

The example shows a whitespace representing a space which has already been used to encode
a whitespace terminal in example Listing 9.106.

Stefano Merenda 225

9. The overall specification of M2L

9.5.10. Concept NonTerminal

The concept NonTerminal models a non-terminal in terms of M2L, which is closely related
to non-terminals in the context of production rules for grammars. In contrast to terminals,
a non-terminal has to be replaced by another syntax rule which will, in turn, be defined by
a textual syntax definition. That part of the model that has to be placed at the location
of the non-terminal will be specified by an edge expression from Edge Algebra (see Sec-
tion 9.7, Package ORG.Metamodels.EdgeAlgebra.EdgeExpressions, p. 235). The resulting
nodes will then be encoded by the corresponding textual syntax definition depending on
which concept is defined as the type for each node.

By default, a syntax definition having the same syntax identifier as the syntax definition
this non-terminal is specified in, will be used. In case a syntax definition with another
syntax identifier should be used, this could be modelled by a differing syntax (property
differingSyntax).

Besides encoding the nodes referenced by an edge, it could also be indicated to encode a refer-
ence instead, by using a context-sensitive key. A context-sensitive key is a shortened canon-
ical key depending on which node the referencing one is. Please refer to Section 7.5.5, Local
keys, namespaces and visibility, p. 137 for a detailed description of context-sensitive keys.

The most usual expression is a PropertyEdge simply referencing a dedicated property of
the currently encoded concept. Note that here, any kind of property can be referenced
– independent on whether it is specified within a concept or not. This way of modelling
corresponds to the fact that every property can be accessed – in the worst case, the evaluation
of a property will result in an empty set. It can, however, be checked whether a referenced
property is explicitly modelled for a concept or not; if not, a warning occurs.

Properties (and edges, generally spoken) are generally multi-valued. Thus, a non-terminal
always encodes all elements one after the other. This way of defining can be seen as an
implicit Kleene star for each non-terminal. Note that for defining concrete textual syntaxes
in the context of M2L this will be sufficient as the valid multiplicity has already been defined
by the abstract syntax.

In many cases multi-valued properties will be encoded by a special separator therebetween
(such as a semicolon or comma), or a keyword will be encoded at the beginning. Non-
terminals can therefore be configured by a set of additional syntax templates, namely:

• Starting/ending. The syntax templates for starting and ending will be encoded at
the very beginning and the very ending of the encoded set of elements respectively, if,
and only if, the property/edge consists of at least one element.

• Prefix/suffix. The syntax templates for prefix and suffix will be encoded at the
beginning and ending of each encoded element respectively.

• Infix. The syntax template for the infix will be encoded inbetween each encoded
element (including prefix and suffix).

Let value of element be the encoding for a single element of the non-terminal’s proper-
ty/edge. Then will the encoding scheme up to now be specified using EBNF statements in
Listing 9.110 by coding schema:

Listing 9.110: Simplified coding schema for non-terminals in EBNF

element = p r e f i x v a l u e o f e l e m e n t s u f f i x ;
coding schema = [s t a r t i n g element { i n f i x element } ending] ;

226 Stefano Merenda

9.5. Package ORG.Metamodels.M2L.ConcreteSyntax.Textual

In the most general case, a non-terminal’s property/edge equals a pomset – which may in
particular contain duplicates and is partially ordered. Whereas an encoding of duplicates
does not cause any problems, an additional extension for encoding a partial order will be
required for encoding non-terminals. Depending on how the abstract syntax restricts the
property/edge, three major cases will have to be distinguished:

1. Property/edge must be totally ordered. In this first case, no additional infor-
mation will have to be encoded. The order in which the elements will occur in the
textual representation will be interpreted as the order for the property/edge.

2. Property/edge must be unordered. In this second case, again no additional
information will have to be encoded. The order of the elements will simply be ignored.

3. Property/edge do not have to be totally ordered/unordered. In this third
case, additional information encoding the ordering will have to be encoded. Each
element will therefore be marked by a numeric identifier within parentheses placed
between the value of the element and the suffix. The identifier is a natural number
beginning at 1 and will be assigned in the order in which the elements will occur
within the textual representation. At the end of the enumeration of all elements, the
(potentially partial) ordering will explicitly be encoded after a separating semicolon
before the ending will be encoded. The partial ordering will be encoded in a tran-
sitively reduced, non reflexive way as already presented in Section 4.3, Notations for
pomsets, p. 63. Two abbreviations will be provided for convenience: First, identifiers
of elements that are not necessary within the explicit encoding of the ordering may be
skipped; then the following elements will be assigned by decremented identifiers. Sec-
ondly, in case of a total ordering (also including singletons, hence sets with a cardinality
less than or equal to 1) elements will be encoded without additional order information;
the order will instead result from the order of the elements’ occurrence as described
in the first case. Totally unordered (multi-)sets of the order information in contrast
cannot be omitted as otherwise it could not be distinguished between totally ordered
and unordered (multi-)sets. The difference is, however, only an additional semicolon
before the ending will be encoded, as the order is empty and thus no identifiers will
be needed as well.

All in all can the encoding scheme be specified using EBNF statements in Listing 9.111 by
coding schema:

Listing 9.111: Full coding schema for non-terminals

element = p r e f i x v a l u e o f e l e m e n t [”(” id ”)”] s u f f i x ;
coding schema = [s t a r t i n g element { i n f i x element } ending

[” ; ” { id ”<” id }]] ;

Abstract Syntax. The formal abstract syntax for NonTerminal is defined in Listing 9.112.

Listing 9.112: Abstract Syntax for NonTerminal

212 NonTerminal ! ! ref ines TemplateElement : :=
213 e dge [1 . . 1] : C: Edge ,
214 l inkType [1 . . 1] : C: LinkType ,
215 d i f f e r i n g S y n t a x [0 . . 1] : C: S y n t a x I d e n t i f i e r ,
216 s t a r t i n g [0 . . 1] : C: SyntaxTemplate ,
217 p r e f i x [0 . . 1] : C: SyntaxTemplate ,
218 i n f i x [0 . . 1] : C: SyntaxTemplate ,
219 s u f f i x [0 . . 1] : C: SyntaxTemplate ,

Stefano Merenda 227

9. The overall specification of M2L

220 ending [0 . . 1] : C: SyntaxTemplate
221 where P: l inkType b C: LinkType . Reference ⇒
222 |P: d i f f e r i n g S y n t a x | = 0 ;

The properties of the concept NonTerminal are:

• edge: describes the values which should be encoded by this non-terminal. It is recom-
mended to reference properties directly by PropertyEdging (see Section 9.7.2, Concept
ConstantEdge, p. 236) in order to accomplish parsability.

• linkType: indicates whether the elements of this non-terminal will be encoded inline
or as a reference by a context-sensitive key (see Section 7.5.5, Local keys, namespaces
and visibility, p. 137).

• differingSyntax: if set, another syntax identifier should be used than the one this
non-terminal is defined for.

• starting: template element representing the starting for this non-terminal. The start-
ing will only be encoded if the property/edge consists of at least one element.

• prefix: template element representing the prefix for this non-terminal. The prefix will
be encoded preceding each element of the property/edge.

• infix: template element representing the infix for this non-terminal. The infix will be
encoded between each of two consecutive elements of the property/edge.

• suffix: template element representing the suffix for this non-terminal. The suffix will
be encoded after each element of the property/edge.

• ending: template element representing the ending for this non-terminal. The ending
will only be encoded if the property/edge consists of at least one element.

Concrete Syntax. The formal textual concrete syntax for NonTerminal is defined in List-
ing 9.113.

Listing 9.113: Textual Concrete Syntax for NonTerminal

498 NonTerminal : ”(”
499 (P: s t a r t i n g | ” | | ”) (P: p r e f i x | ” |”)
500 (P: l inkType) (P: e dge)
501 (” [” | P: d i f f e r i n g S y n t a x | ”]”)
502 (”/” | P: i n f i x)
503 (” |” | P: s u f f i x) (” | | ” | P: ending)
504 ”)” ;

Non-terminals will always be encoded within parentheses and will have at least one edge
expression therein. As such an edge will normally be represented by a property edging as
defined in Section 9.7.2, Concept ConstantEdge, p. 236, it will be encoded by a P: followed
by the name of the property. A preceding ampersand (&) indicates that this non-terminal
is encoded as a reference. If another syntax identifier should be used, this identifier will
be encoded after the edge expression in squared brackets. The (optional) infix will then
be encoded afterwards, separated by a slash (/). The (optional) prefix and suffix will then
be encoded before and afterwards respectively, separated by a single pipe symbol (|). The
(optional) starting and ending will finally be encoded before and afterwards respectively,
separated by a double pipe symbol (||).

228 Stefano Merenda

9.5. Package ORG.Metamodels.M2L.ConcreteSyntax.Textual

Example. An example for the concept NonTerminal will be provided in the following List-
ing 9.114:

Listing 9.114: Example for NonTerminal

(” [” | | ”−” | &P: person / ” ,” | ”−” | | ”]”)

The given example encodes a property person as a reference with an infix ”,” , a prefix
and suffix as ”−”, a starting ”[”, and an ending ”]”. Different exemplary encodings for
different situations shall be provided in the following:

• If the abstract syntax restricts the property person to be totally ordered or unordered,
an example will be [−Julian−, −Steve−, −Bill−].

• If the abstract syntax does not restrict the property person in such a way, an example
for a partially ordered set will be [−Julian(1)−, −Steve(2)−, −Bill(3)− ; 3<1 3<2].

• According to abstract syntax, an example for a unordered set for the same situation
will be [−Julian−, −Steve−, −Bill− ;]. Note that herein no numeric identifiers will
be associated with the elements as the order is empty and thus no identifiers will be
needed. Eventually, only the semicolon will remain at the end of the elements.

• According to abstract syntax, an example for a totally ordered set for the same situa-
tion will be [−Julian−, −Steve−, −Bill−]. Here, the abbreviation for totally ordered
sets may be used.

9.5.11. Concept Option

The concept Option allows to model an alternative encoding depending on a predicate
specified by an Edge Algebra statement. One option is perfectly suitable for representing
boolean properties of a concept to be encoded. If the predicate equals true, the syntax
template specified as the thenCase will have to be used; if the predicate equals false, the
syntax template specified as the elseCase will have to be used. Whereas the then-case
is mandatory, the else-case is optional. In case the else-case is missing, an empty syntax
template will be assumed. Thus, if the predicate equals false, nothing will be encoded.

Abstract Syntax. The formal abstract syntax for Option is defined in Listing 9.115.

Listing 9.115: Abstract Syntax for Option

223 Option ! ! ref ines TemplateElement : :=
224 p r e d i c a t e [1 . . 1] : C: Predicate ,
225 thenCase [1 . . 1] : C: SyntaxTemplate ,
226 e l s eCase [0 . . 1] : C: SyntaxTemplate ;

The properties of the concept Option are:

• predicate: describes that predicate which should be evaluated for this option. It is
recommended to reference a boolean property directly by casting a PropertyEdging (see
Section 9.7.2, Concept ConstantEdge, p. 236) to a boolean value by CastEdgeToPredi-
cate (see Section 9.8.7, Concept SingleEdgeToPredicate, p. 255) in order to accomplish
parsability.

• thenCase: template element representing the thenCase for this option. The then-case
will be encoded if the predicate equals true.

Stefano Merenda 229

9. The overall specification of M2L

• elseCase: template element representing the elseCase for this option. The else-case
will be encoded if the predicate equals false.

Concrete Syntax. The formal textual concrete syntax for Option is defined in Listing 9.116.

Listing 9.116: Textual Concrete Syntax for Option

505 Option : ”(” (P: p r e d i c a t e) ”?” (P: thenCase)
506 (” :” | P: e l s eCase) ”)” ;

Options will always be encoded within parentheses and will start with the Edge Algebra
predicate followed by a question mark. The then-case will be encoded afterwards. If an
else-case will be given, it will finally be encoded by a preceding colon.

Example. An example for the concept Option will be provided in the following Listing 9.117:

Listing 9.117: Example for Option

((bool)P: male ? ”male” : ”female”)

This example models an option stating that the property male equals true; the syntax
template ”male” will be used for encoding, otherwise the syntax template ”female” will
be used for encoding.

9.5.12. Concept Switch

The concept Switch allows to model any set of alternative encodings, thus stating that a
concept (or a dedicated part of a syntax template) may be represented in different ways.
When a concept is encoded, that alternative resulting in the shortest representation will
be used by default. (Note that this may even be non-deterministic as there may be two
different alternatives resulting in representations with the same length.)

The concept Switch will also be used when syntax definitions are combined, e. g. when
metamodels are combined or when multiple concepts are refined (see Section 9.4, Package
ORG.Metamodels.M2L.ConcreteSyntax, p. 210).

Abstract Syntax. The formal abstract syntax for Switch is defined in Listing 9.118.

Listing 9.118: Abstract Syntax for Switch

227 Switch ! ! ref ines TemplateElement : :=
228 a l t e r n a t i v e [2 . . ∗] (Set) : C: SyntaxTemplate ;

The properties of the concept Switch are:

• alternative: template elements representing alternative encodings for this switch.
Note that at least two alternatives must be specified for one switch.

230 Stefano Merenda

9.5. Package ORG.Metamodels.M2L.ConcreteSyntax.Textual

Concrete Syntax. The formal textual concrete syntax for Switch is defined in Listing 9.119.

Listing 9.119: Textual Concrete Syntax for Switch

507 Switch : ”(” (P: a l t e r n a t i v e / ”OR”) ”)” ;

Switches will always be encoded within parentheses and will simply enumerate the set of
alternatives separated by an OR inbetween.

Example. An example for the concept Switch will be provided in the following Listing 9.120:

Listing 9.120: Example for Switch

(”add” OR ”+”)

The given example models a switch which allows two ways of encoding a summing operator:
The first syntax template is ”add” , whereas the second syntax template is ”+”.

9.5.13. Concept IncludeSyntaxDef

Other syntax definitions are desired in many situations, so as to be re-used for defining
new definitions. The concept IncludeSyntaxDef will therefore be introduced. There are two
major use-cases for including another syntax definition:

1. Including a syntax definition from another concept having the same syntax
identifier. This is often the case upon the introduction of the syntax definition of a
refined concept. As multiple refinements are generally possible it will be necessary to
define the concept name explicitly.

2. Including a syntax definition from the same concept having another syn-
tax identifier. Upon the implementation of a correct bracketing, different syntax
definitions for one concept will be defined. The only difference is that one concept will
be bracketed, whereas the one will be not. In such a situation, the concept with the
brackets can include the other one.

Both use-cases may even be combined by the concept IncludeSyntaxDef. It will therefore be
possible to include a syntax definition with a syntax differing from another concept.

Abstract Syntax. The formal abstract syntax for IncludeSyntaxDef is defined in List-
ing 9.121.

Listing 9.121: Abstract Syntax for IncludeSyntaxDef

229 IncludeSyntaxDef ! ! ref ines TemplateElement : :=
230 concept [0 . . 1] : C: Concept ,
231 d i f f e r i n g S y n t a x [0 . . 1] : C: S y n t a x I d e n t i f i e r
232 where |P: concept | + |P: d i f f e r i n g S y n t a x | ≥ 1 ;

The properties of the concept IncludeSyntaxDef are:

• concept: if set, a syntax definition of another concept than the one this include is
defined for should be included.

• differingSyntax: if set, a syntax definition of a differing syntax identifier than the
one this include is defined for should be included.

Stefano Merenda 231

9. The overall specification of M2L

Concrete Syntax. The formal textual concrete syntax for IncludeSyntaxDef is defined in
Listing 9.122.

Listing 9.122: Textual Concrete Syntax for IncludeSyntaxDef

508 IncludeSyntaxDef : ”<” (&P: concept)
509 (” [” | P: d i f f e r i n g S y n t a x | ”]”) ”>” ;

Includes will always be encoded within angle brackets. Inbetween, the concept name will
be denoted at first if a concept will be specified. Then – if specified – the differing syntax
will be given within squared brackets. Note that at least either the concept name or the
differing syntax must be specified.

Example. An example for the concept IncludeSyntaxDef will be provided in the following
Listing 9.123:

Listing 9.123: Example for IncludeSyntaxDef

<Person [”TEXTUAL DEFAULT”]>

The given example models an include of the textual default syntax specification from the
concept Person.

232 Stefano Merenda

9.6. Package ORG.Metamodels.EdgeAlgebra

9.6. Package ORG.Metamodels.EdgeAlgebra

The package ORG.Metamodels.EdgeAlgebra including the three sub-packages thereof will
provide the exact syntactical definition (including both abstract and concrete syntax) of the
Edge Algebra as defined in Chapter 6, Queries on abstract words - the Edge Algebra, p. 95
and used within M2L as described in this Chapter 9, The overall specification of M2L, p. 171.
In particular the Edge Algebra will be used in the following six situations within M2L:

1. When specifying abstract syntaxes within the concept Concept, a predicate statement
of the Edge Algebra will be used to specify additional constraints for the concept
to be defined (see property additionalConstraint in Section 9.3.5, Concept Concept-
Def, p. 192).

2. When specifying abstract syntaxes within the concept PropertyDef, an edge state-
ment of the Edge Algebra will be used to specify the (context-sensitive) domain for a
property (see property domain in Section 9.3.10, Concept PropertyDef, p. 201).

3. When specifying abstract syntaxes within the concept PropertyDef, an edge statement
of the Edge Algebra will be used to specify an inferred value for a property (see
property inferredValue in Section 9.3.10, Concept PropertyDef, p. 201).

4. When specifying abstract syntaxes within the concept PropertyDef, a predicate state-
ment of the Edge Algebra will be used to specify the condition which must hold for this
property definition to become relevant (see property assumption in Section 9.3.10, Con-
cept PropertyDef, p. 201).

5. When specifying textual concrete syntaxes within the concept NonTerminal, an edge
statement of the Edge Algebra will be used to describe the values which should be
encoded by a non-terminal (see property edge in Section 9.5.10, Concept NonTermi-
nal, p. 226).

6. When specifying textual concrete syntaxes within the concept Option, a predicate
statement of the Edge Algebra will be used to describe the predicate which should
be evaluated for an option (see property predicate in Section 9.5.11, Concept Op-
tion, p. 229).

This package contains its concepts indirectly via three sub-packages. These sub-packages
will classify the operators according to their resulting type (thus the co-domain), namely
edges, node predicates, and node valuations as listed in Table 9.7.

Section Sub-package Codomain
Section 9.7 EdgeExpressions edges EV = V → Ppomset (V)
Section 9.8 PredicateExpressions node predicates BV = V → B
Section 9.9 NumericalExpressions node valuations NV = V → N

Table 9.7.: The sub-packages of ORG.Metamodels.EdgeAlgebra

All introduced operators have already formally been defined in Chapter 6, Queries on ab-
stract words - the Edge Algebra, p. 95, except that functions defined for two operands will
now be generalized to any number of at least two operands. This allows for many abbre-
viations, such as a ≤ b ≤ c. Please refer to the corresponding sections for the detailed
meaning.

Remember that many edge operators are inferred from those for pomsets in Chapter 4, Pom-
sets in the context of metamodelling, p. 61. The operators herein are, however, defined for
edges instead for pomsets which even allows for the use of those operators as an operand of

Stefano Merenda 233

9. The overall specification of M2L

e. g. an edge inverse. As Edge Algebra is based on pomsets instead of sets, it is much more
expressive than a set-based approach as it can handle both (partial) orders and duplicates.
But pomset operators may also cause risks: Although the operators known for union (∪),
intersection (∩) and subset (⊂) have been generalized for pomsets, these operators will now
take care of the (partial) order by operating on connected components. This will in many
cases result in an undesired behaviour and thus it is recommended to use the operators
additive union (]), projection (↓), and consists-of (b) instead.

In order to support a correct bracketing, an additional textual helper syntax, identified
by bracketed, will be defined for the three Edge Algebra sub-packages. Whenever a sub-
expression will have to be placed within brackets as the surrounding expression does not
clarify the order of the operators (one example would be the concept Addition, see Sec-
tion 9.9.4, Concept MultiNumericalOperator, p. 265), the syntax bracketed will be used.
This helping syntax may be encoded in two different ways for the concepts: The first way
allows an optional encoding within brackets as the dedicated sub-expression has already been
encoded in a kind of bracketing way (such as the concept Minimum, see Section 9.9.4, Con-
cept MultiNumericalOperator, p. 265). The second way calls for an encoding within brackets
as the dedicated sub-expression has not been encoded within any kind of brackets (such as
the concept Addition, see Section 9.9.4, Concept MultiNumericalOperator, p. 265). The
definition of this helping syntax Bracketed will not be expressed explicitly in the following
sections. Please refer to Appendix A, Meta-Metamodel – The Metamodel of M2L, p. 291
for the formal definition. Instead, a sentence such as the following will be found in the
dedicated sections for the concrete syntax definition: ”In the helping syntax Bracketed, the
parentheses will be mandatory/optional.” The Edge Algebra provides a single rule for op-
erator priorities by the defined bracketing: Operators having a single operand (which will
always be denoted in a prefix form) are stronger than operators having multiple operands
(which will mostly be denoted in an infix form). For example: (∧a).b = ∧a.b 6= ∧(a.b) or
(¬a) ∨ b = ¬a ∨ b 6= ¬(a ∨ b).

The following three sections will be structured in an equal way: First of all, the abstract
main concept will be given, representing all expressions evaluating to one of the three possi-
ble co-domains. An example will be the concept Edge. Then, the constant functions will be
listed (such as Self), followed by the operators. Operators are those functions wherein the
domain is of the same type as the co-domain (such as Closure). Finally, those functions will
be enumerated wherein the domain of which is not of the same type as the co-domain. As
in each case two other types will be possible for the domain, this final section will again be
divided into two parts (such as represented by the concepts PredicateToEdge and Numeri-
calToEdge). Except for the constant functions, it will additionally be distinguished between
functions having a single operand (such as represented by the concept SingleEdgeOpera-
tor) and those functions having a number of operands (such as represented by the concept
MultiEdgeOperator). In contrast to the previous sections of this chapter, the description of
closely related concepts such as Addition and Multiplication will be pooled together in the
following sections and described in a single subsection.

Note that the following sections define a huge set of operators which can even be expressed
by each other. Both operators < as well as > and also ≤ and ≥ will, for example, be
explicitly defined. Otherwise these operators cannot be used within the language which
would result in a cumbersome way of writing down Edge Algebra expressions.

234 Stefano Merenda

9.7. Package ORG.Metamodels.EdgeAlgebra.EdgeExpressions

9.7. Package ORG.Metamodels.EdgeAlgebra.EdgeExpressions

This package includes all functions of Edge Algebra the co-domain thereof being an edge
EV = V → Ppomset (V). The constant edge functions together with the edge operators,
except for SubPomset, will form the Fundamental Edge Algebra. These concepts will be
marked by a (∗). All other functions including those of the two other packages for the Edge
Algebra will extend the Fundamental Edge Algebra to form the Propositional Edge Algebra.
Table 9.8 shows the list of all concepts defined:

Concept Description

Edge expression evaluating to an edge
ConstantEdge expression without any parameters

EdgeValue(∗) a dedicated pomset with concrete values
ConceptEdging(∗) all nodes of which the type is a given (or sub-) concept
TypeEdging(∗) all nodes of which the type is exactly a given concept
PropertyEdging(∗) the edge for a specific property
Self (∗) edge where each node is mapped to itself
Equality(∗) edge where each node is mapped to all equal nodes
Successor (∗) successors for a node independent of a property
BoundedEdgeVariable bounded variable e. g. within a universal quantifier

EdgeOperator operator having at least one edge operand
SubPomset extracting elements of a pomset with a certain depth
SingleEdgeOperator operator having exactly one edge operand

First (∗) set of all smallest elements out of a pomset
Closure(∗) transitive reflexive closure of a given edge
EdgeInverse(∗) inverse edge of a given edge
OrderInverse(∗) the order of a pomset is inverted
OrderDestroy(∗) the order of a pomset is eliminated
DuplicateDestroy(∗) the duplicate elements of a pomset are eliminated

MultiEdgeOperator operator having at least two edge operands
Navigation(∗) navigation over a list of edges
AdditiveUnion(∗) additive union over (pomset-valued) edges
Concatenation(∗) concatenation over (pomset-valued) edges
Projection(∗) projection over (pomset-valued) edges
Difference(∗) difference over (pomset-valued) edges
Union(∗) union over (pomset-valued) edges
Intersection(∗) intersection over (pomset-valued) edges

PredicateToEdge function having at least one predicate operand
SinglePredicateToEdge function having exactly one predicate operand

CastPredicateToEdge cast a node predicate to a boolean valued edge
PredicateSelection select all nodes for which the given predicate holds

NumericalToEdge function having at least one numerical operand
SingleNumericalToEdge function having exactly one numerical operand

CastNumericalToEdge cast a node valuation to a natural number valued edge
NumericalSelection select the nodes in the quantity of node valuation

Table 9.8.: List of concepts defined in ORG.Metamodels.EdgeAlgebra.EdgeExpressions

Stefano Merenda 235

9. The overall specification of M2L

9.7.1. Concept Edge

The abstract concept Edge represents all Edge Algebra expressions evaluating to an edge
and will thus be refined by each of the dedicated concepts. Hence, the concept Edge stands
for all functions and operators the co-domain thereof being EV = V → Ppomset (V). Note
that according to this, the co-domain of such an Edge Algebra expression will formally
again be a function mapping each node of an M-graph to a pomset of nodes from the same
M-graph.

Abstract Syntax. The formal abstract syntax for Edge is defined in Listing 9.124.

Listing 9.124: Abstract Syntax for Edge

234 [Edge ! !] ;

Edge is an abstract concept without any properties that have been additionally defined. It
is prepared to be refined by concepts representing dedicated Edge Algebra statements.

Concrete Syntax. No concrete syntax has to be defined for the abstract concept Edge.
Please refer to the (non-abstract) refining concepts. The helping syntax Bracketed will
nonetheless be defined as a default in which the parentheses will be optional. Please refer
to Appendix A, Meta-Metamodel – The Metamodel of M2L, p. 291 for a detailed definition
of the helping syntax Bracketed.

Example. An example for the concept Edge will be provided in the following Listing 9.125:

Listing 9.125: Example for Edge

≷∧�P: composite . 1 P: l key

The given example illustrates an edge calculating the canonical key for each node
as defined in Section 7.5.5, Local keys, namespaces and visibility, p. 137. Note that
due to the stronger binding of single operand operators the bracketing will have to
be read as (≷(∧(�(P:composite)))).(1(P:lkey)). When keywords are used instead of
symbols, this results in (orderInv(closure(edgeInv(P:composite)))).(first(P:lkey)).
The brackets can, of course, be omitted in this version anyway:
orderInv closure edgeInv P:composite.first P:lkey. Please refer to the dedicated
sections for a detailed definition of the several operators.

9.7.2. Concept ConstantEdge

The concept ConstantEdge represents all Edge Algebra expressions evaluating to an edge
but having no operands as operands are elements from the three Edge Algebra carrier sets.
Constant edges may, however, comprise a parameter. Five constant edges will be defined in
total:

• EdgeValue allows for the definition of a constant pomset.

• ConceptEdging defines a set of all nodes having the type of a given concept (including
refined concepts).

236 Stefano Merenda

9.7. Package ORG.Metamodels.EdgeAlgebra.EdgeExpressions

• TypeEdging defines a set of all nodes having the type of a given concept (excluding
refined concepts).

• PropertyEdging defines an edge according to a given property.

• Self defines an edge mapping each node to itself.

• Equality defines an edge mapping each node to all equal nodes. For details please
refer to Section 5.4, Node equivalence, p. 86.

• Successor defines an edge resulting from an additive union of all properties.

• BoundedEdgeVariable represents the bounded variable within the quantified
edging and the selection operator. Please refer to concept QuantifiedEdging
(in Section 9.8.3, Concept PredicateOperator, p. 250), PredicateSelection (in Sec-
tion 9.8.1, Concept Predicate, p. 249), and NumericalSelection (in Section 9.9.1, Con-
cept Numerical, p. 263) as well.

Abstract Syntax. The formal abstract syntax for ConstantEdge is defined in Listing 9.126.

Listing 9.126: Abstract Syntax for ConstantEdge

241 [ConstantEdge ! !] ref ines Edge ;
242 EdgeValue ! ! ref ines ConstantEdge : :=
243 &value [0 . . ∗] ;
244 ConceptEdging ! ! ref ines ConstantEdge : :=
245 concept [1 . . 1] : C: Concept ;
246 TypeEdging ! ! ref ines ConstantEdge : :=
247 concept [1 . . 1] : C: Concept ;
248 PropertyEdging ! ! ref ines ConstantEdge : :=
249 pr operty [1 . . 1] : C: Property ;
250 S e l f ! ! ref ines ConstantEdge : := ;
251 Equal i ty ! ! ref ines ConstantEdge : := ;
252 Succe s sor ! ! ref ines ConstantEdge : := ;
253 BoundedEdgeVariable ! ! ref ines ConstantEdge : :=
254 i d e n t i f i e r [1 . . 1] : C: I d e n t i f i e r ;

The properties of the concept EdgeValue are:

• value: value defining the constant pomset which may even be an empty set.

The properties of the concept ConceptEdging and TypeEdging are:

• concept: concept for which the nodes should be selected.

The properties of the concept PropertyEdging are:

• property: property for which the edge should be returned.

The properties of the concept BoundedEdgeVariable are:

• identifier: identifier of the bounded edge variable.

Stefano Merenda 237

9. The overall specification of M2L

Concrete Syntax. The formal textual concrete syntax for ConstantEdge is defined in List-
ing 9.127.

Listing 9.127: Textual Concrete Syntax for ConstantEdge

516 EdgeValue : ”{{”
517 ((P: va lue [”TEXTUAL UNIQUE”] / ” ,”)
518 OR (&P: va lue / ” ,”)) ”}}” ;
519 ConceptEdging : (”C:” | P: concept) ;
520 TypeEdging : (”T:” | P: concept) ;
521 PropertyEdging : (”P:” | P: pr operty) ;
522 S e l f : (”	” OR ”se l f”) ;
523 Equal i ty : (”↪→” OR ”equality”) ;
524 Succe s sor : ”∗” ;
525 BoundedEdgeVariable : (P: i d e n t i f i e r) ;

An edge value will be encoded by double curly brackets {{ }}. Values may be coded as refer-
ences or inline. If the values are encoded inline, the syntax UNIQUE will be used to ensure
that each and every concept can be encoded in a unique way. The syntax UNIQUE encodes
the default syntax within parentheses with the concept name as a prefix. As the value may
be a real partially ordered pomset, refer to Section 9.5.10, Concept NonTerminal, p. 226 for
the detailed encoding.

The concept edging will be encoded by a preceding C: ; the type edging by a preceding
T: ; the property edging in contrast will be encoded by a preceding P: . The reflexive
operator will be encoded by the symbol 	 or the keyword self. The equality operator will
be encoded by the symbol ↪→ or the keyword equality. The successor will be encoded by a
star ∗. The bounded edge variable e. g. within a universal quantifier will simply be encoded
by the identifier itself.

Example. An example for the concept ConstantEdge will be provided in the following
Listing 9.128:

Listing 9.128: Example for ConstantEdge

{{ I d e n t i f i e r (id) (1) , S t r ing (”str”) (2) ,
Natural (1 0) (3) ; 1<2 1<3 }}

The example shows an edge value representing the following pomset:

 id

”str”

10


9.7.3. Concept EdgeOperator

The concept EdgeOperator represents all Edge Algebra expressions both operating on at
least one edge and evaluating to an edge. The edge operators will be categorised into three
classes: those which operate on exactly one operand (see Section 9.7.4, Concept SingleEdge-
Operator, p. 240), those which operate on at least two operands (see Section 9.7.5, Concept
MultiEdgeOperator, p. 241), and the special case SubPomset, as it comprises two numerical
values in addition to the edge operand and will thus be described directly in this sec-
tion. Please refer to Chapter 4, Pomsets in the context of metamodelling, p. 61 and Chap-
ter 6, Queries on abstract words - the Edge Algebra, p. 95 for a detailed definition of the
sub-pomset operator.

238 Stefano Merenda

9.7. Package ORG.Metamodels.EdgeAlgebra.EdgeExpressions

Abstract Syntax. The formal abstract syntax for EdgeOperator is defined in Listing 9.129.

Listing 9.129: Abstract Syntax for EdgeOperator

256 [EdgeOperator ! !] ref ines Edge ::>
257 edgeOperand [1 . . ∗] (List) : C: Edge ;
258 SubPomset ! ! ref ines EdgeOperator : :=
259 edgeOperand [1 . . 1] ,
260 minDepth [1 . . 1] : C: Numerical ,
261 maxDepth [0 . . 1] : C: Numerical ;

The properties of the concept EdgeOperator are:

• edgeOperand: list of edge operands for an edge operator. At least one operand will
be required. This property will normally be refined to exactly one operand or at least
two operands.

The properties of the concept SubPomset are:

• edgeOperand (refined): edge operand for the sub-pomset operator.

• minDepth: minimal depth required for an element of the given pomset in order to
be included in the result. Note that the depth of the smallest elements is zero.

• maxDepth: maximal depth required for an element of the given pomset in order to
be included in the result. This operand is optional. If the maximum depth is missing,
the depth of the resulting elements will have no upper limit. Note that the depth of
the smallest elements is zero.

Concrete Syntax. The formal textual concrete syntax for EdgeOperator is defined in List-
ing 9.130.

Listing 9.130: Textual Concrete Syntax for EdgeOperator

527 SubPomset : (
528 ” [” (P: minDepth) (” ,” | P: maxDepth) ”]”
529 (P: edgeOperand [Bracketed]) ;
530 OR
531 ”subpomset” ”(” (P: edgeOperand)
532 (” ,” | P: minDepth) (” ,” | P: maxDepth) ”)”
533) ;

No concrete syntax has to be defined for the abstract concept EdgeOperator. Please refer to
the (non-abstract) refining concepts.

Two alternative encodings will be provided for the concept SubPomset : The first alternative
encodes the sub-pomset operator like a parametrized prefix operator: In front of the edge
operand both the minimal and the optional maximal depth will be notated within square
brackets and are separated by a colon. The second alternative encodes the sub-pomset
operator in a standard functional notation: The keyword subpomset will be encoded at
first, followed by the operators within parentheses separated by colons starting with the
edge operand, then the minimal depth and finally the optional maximum depth.

The helping syntax Bracketed for both concepts EdgeOperator and SubPomset will remain
unchanged and thus the parentheses are optional.

Stefano Merenda 239

9. The overall specification of M2L

Example. An example for the concept EdgeOperator will be provided in the following List-
ing 9.131:

Listing 9.131: Example for EdgeOperator

[1 , 2] ∧P: c h i l d

The given example will return all children and grand children. Although the closure operator
is reflexive, the self node will not be returned, as the minimum depth has been set to 1
instead of 0.

9.7.4. Concept SingleEdgeOperator

The concept SingleEdgeOperator represents all edge operators both operating on and eval-
uating to a single edge. Six edge operators operating on one edge will be defined in total:

• First returns the smallest elements of a (pomset-valued) edge.

• Closure returns the ordered reflexive-transitive closure of the given edge. Note that
this operator preserves both order and duplicates. The descend will additionally be
recorded within the order. By a special loop cutting definition, infinite pomsets will
be avoided.

• EdgeInverse returns the inverse edge of the given one. Duplicates will be preserved.
Note that inverse edges will always be unordered and thus be multi-sets.

• OrderInverse returns an edge in which the order of the pomsets is inverted.

• OrderDestroy returns an edge in which the order of the pomsets is eliminated.

• DuplicateDestroy returns an edge in which the duplicates of the pomsets are elim-
inated.

Please refer to Chapter 6, Queries on abstract words - the Edge Algebra, p. 95 and Chap-
ter 4, Pomsets in the context of metamodelling, p. 61 for a detailed definition.

Abstract Syntax. The formal abstract syntax for SingleEdgeOperator is defined in List-
ing 9.132.

Listing 9.132: Abstract Syntax for SingleEdgeOperator

263 [S ingleEdgeOperator ! !] ref ines EdgeOperator : :=
264 edgeOperand [1 . . 1] ;
265 F i r s t ! ! ref ines SingleEdgeOperator ;
266 Closure ! ! ref ines SingleEdgeOperator ;
267 EdgeInverse ! ! ref ines SingleEdgeOperator ;
268 OrderInverse ! ! ref ines SingleEdgeOperator ;
269 OrderDestroy ! ! ref ines SingleEdgeOperator ;
270 Dupl icateDestroy ! ! ref ines SingleEdgeOperator ;

The properties of the concept SingleEdgeOperator are:

• edgeOperand (refined): edge operand for a single-valued edge operator.

All refinements of the concept SingleEdgeOperators do not have any additional property
restrictions.

240 Stefano Merenda

9.7. Package ORG.Metamodels.EdgeAlgebra.EdgeExpressions

Concrete Syntax. The formal textual concrete syntax for SingleEdgeOperator is defined in
Listing 9.133.

Listing 9.133: Textual Concrete Syntax for SingleEdgeOperator

535 F i r s t : (”1” OR ” f i r s t ”) (P: edgeOperand [Bracketed]) ;
536 Closure : (”∧” OR ”closure”)
537 (P: edgeOperand [Bracketed]) ;
538 EdgeInverse : (”�” OR ”edgeInv”)
539 (P: edgeOperand [Bracketed]) ;
540 OrderInverse : (”≷” OR ”orderInv”)
541 (P: edgeOperand [Bracketed]) ;
542 OrderDestroy : (”µ” OR ”orderDest”)
543 (P: edgeOperand [Bracketed]) ;
544 Dupl icateDestroy : (”ε” OR ”dupDest”)
545 (P: edgeOperand [Bracketed]) ;

All single-valued edge operators will be denoted in a prefix form. There are two ways of
encoding for each operator. One is a short symbolic way, the other one uses a keyword.

• For the first operator, the symbol will be 1 and the keyword will be first .

• For the closure operator, the symbol will be ∧ and the keyword will be closure.

• For the edge-inverse operator, the symbol will be � and the keyword will be
edgeInv.

• For the order-inverse operator, the symbol will be ≷ and the keyword will be
orderInv.

• For the order-destroy operator, the symbol will be µ and the keyword will be
orderDest.

• For the duplicate-destroy operator, the symbol will be ε and the keyword will be
dupDest.

Example. An example for the concept SingleEdgeOperator will be provided in the following
Listing 9.134:

Listing 9.134: Example for SingleEdgeOperator

�P: composite

The given example forms the edge-inverse of the property composite and thus calculates the
parent of a node with respect to compositions.

9.7.5. Concept MultiEdgeOperator

The concept MultiEdgeOperator represents all edge operators operating on a list of edges
and evaluating to a single edge. Seven edge operators operating on multiple edges will be
defined in total:

• Navigation navigates over the given list of edges. The navigation operator preserves
both order and duplicates and may thus result in a really partially ordered pomset.

Stefano Merenda 241

9. The overall specification of M2L

• AdditiveUnion returns an edge in which the pomsets are additively united. Thus,
no additional order will be added between elements of the different pomsets from the
operands.

• Concatenation returns an edge in which the pomsets are concatenated. Thus, the
elements from the different operands will be ordered according to the order of the
operands.

• Difference returns an edge in which the difference of the pomsets is built. This results
in the edge given by the first operator, except for those pomset elements occurring in
one of the other operands.

• Union returns an edge in which the pomsets are united, based on the connected
components of the pomsets.

• Intersection returns an edge in which the pomsets are intersected, based on the
connected components of the pomsets.

Please refer to Chapter 6, Queries on abstract words - the Edge Algebra, p. 95 and Chap-
ter 4, Pomsets in the context of metamodelling, p. 61 for a detailed definition. In contrast to
the definitions in the sections herein, the operators will be defined on any number greater
than or equal to two instead of on exactly two operands. The present extension can be
reduced to the basic definition by the following equation 9.4, wherein op will be one of the
operators mentioned above:

x1 op x2 op x3 op . . . op xn = (. . . ((x1 op x2) op x3) op . . .) op xn (9.4)

Abstract Syntax. The formal abstract syntax for MultiEdgeOperator is defined in List-
ing 9.135.

Listing 9.135: Abstract Syntax for MultiEdgeOperator

272 [MultiEdgeOperator ! !] ref ines EdgeOperator : :=
273 edgeOperand [2 . . ∗] ;
274 Navigat ion ! ! ref ines MultiEdgeOperator ;
275 AdditiveUnion ! ! ref ines MultiEdgeOperator ;
276 Concatenation ! ! ref ines MultiEdgeOperator ;
277 Pro j e c t i on ! ! ref ines MultiEdgeOperator ;
278 D i f f e r e n c e ! ! ref ines MultiEdgeOperator ;
279 Union ! ! ref ines MultiEdgeOperator ;
280 I n t e r s e c t i o n ! ! ref ines MultiEdgeOperator ;

The properties of the concept MultiEdgeOperator are:

• edgeOperand (refined): edge operands for a multi-valued edge operator which must
be at least two.

All refinements of the concept MultiEdgeOperator do not have any additional property
restrictions.

Concrete Syntax. The formal textual concrete syntax for MultiEdgeOperator is defined in
Listing 9.136.

242 Stefano Merenda

9.7. Package ORG.Metamodels.EdgeAlgebra.EdgeExpressions

Listing 9.136: Textual Concrete Syntax for MultiEdgeOperator

547 Navigat ion : (P: edgeOperand [Bracketed] / ” .”) ;
548 AdditiveUnion : (P: edgeOperand [Bracketed]
549 / (”]” OR ”addUnion”)) ;
550 Concatenation : (P: edgeOperand [Bracketed]
551 / (”⊕” OR ”concat”)) ;
552 Pro j e c t i on : (P: edgeOperand [Bracketed]
553 / (”↓” OR ”projectOn”)) ;
554 D i f f e r e n c e : (P: edgeOperand [Bracketed] / ”\\”) ;
555 Union : (P: edgeOperand [Bracketed]
556 / (”∪” OR ”union”)) ;
557 I n t e r s e c t i o n : (P: edgeOperand [Bracketed]
558 / (”∩” OR ”intersect”)) ;

All multi-valued edge operators will be denoted in an infix form. There are two ways of
encoding for most of the operators. One is a short symbolic way, the other one uses a
keyword.

• For the navigation operator, the symbol will be a dot (.). An alternative keyword
will not be defined.

• For the additive-union operator, the symbol will be] and the keyword will be
addUnion.

• For the concatenation operator, the symbol will be ⊕ and the keyword will be
concat.

• For the projection operator, the symbol will be ↓ and the keyword will be projectOn.

• For the difference operator, the symbol will be a backslash (↓∗). An alternative
keyword will not be defined. Note that the backslash will be doubled within the
formal syntax definition as a backslash must be escaped when encoding a string and
thus a terminal symbol.

• For the union operator, the symbol will be ∪ and the keyword will be union.

• For the intersection operator, the symbol will be ∩ and the keyword will be intersect.

Example. An example for the concept MultiEdgeOperator will be provided in the following
Listing 9.137:

Listing 9.137: Example for MultiEdgeOperator
∧P: composite ↓ C: Person ↓ (P: employee] P: r e t i r e d)

The given example illustrates the projection operator having three operands: The first
one is the closure of the property composite; the second one is the concept edge for Person
which results in the set of all persons; and the third one is an additive union of the properties
employee and retired. In total the expression returns all nodes that are transitively reachable
via compositions, that are persons and that are referenced as an employee or a retired person.

9.7.6. Concept PredicateToEdge

The concept PredicateToEdge represents all Edge Algebra expressions evaluating to an edge
but operating on (at least) one node predicate instead of edges. The available edge expres-

Stefano Merenda 243

9. The overall specification of M2L

sions operating on node predicates are all of the same kind: They all operate on a single
node predicate (see Section 9.7.7, Concept SinglePredicateToEdge, p. 244).

Abstract Syntax. The formal abstract syntax for PredicateToEdge is defined in List-
ing 9.138.

Listing 9.138: Abstract Syntax for PredicateToEdge

282 [PredicateToEdge ! !] ref ines Edge ::>
283 predicateOperand [1 . . ∗] (List) : C: Pred i cate ;

The properties of the concept PredicateToEdge are:

• predicateOperand: list of node predicate operands for an edge expression operating
on node predicates. At least one operand will be required. This property will normally
be refined to exactly one operand or at least two operands. Note that the second variant
has never been used yet.

Concrete Syntax. No concrete syntax has to be defined for the abstract concept Predicate-
ToEdge. Please refer to the (non-abstract) refining concepts. The helping syntax Bracketed
will remain unchanged and thus the parentheses will be optional.

Example. As no concrete syntax is defined for this abstract concept, please refer to the
(non-abstract) refining concepts.

9.7.7. Concept SinglePredicateToEdge

The concept SinglePredicateToEdge represents all Edge Algebra expressions evaluating to
an edge and operating on exactly one node predicate. Two edge expressions operating on
one node predicate will be defined in total:

• CastPredicateToEdge returns an edge with a single-valued pomset directing to-
wards either true or false according to the node predicate given.

• PredicateSelection returns an edge directing towards all nodes for which the node
predicate evaluates to true.

Please refer to Chapter 6, Queries on abstract words - the Edge Algebra, p. 95 for a detailed
definition.

Abstract Syntax. The formal abstract syntax for SinglePredicateToEdge is defined in List-
ing 9.139.

Listing 9.139: Abstract Syntax for SinglePredicateToEdge

285 [S inglePredicateToEdge ! !] ref ines PredicateToEdge : :=
286 predicateOperand [1 . . 1] ;
287 CastPredicateToEdge ! ! ref ines SinglePredicateToEdge ;
288 P r e d i c a t e S e l e c t i o n ! ! ref ines SinglePredicateToEdge : :=
289 boundedVariable [0 . . 1] : C: I d e n t i f i e r ;

244 Stefano Merenda

9.7. Package ORG.Metamodels.EdgeAlgebra.EdgeExpressions

The properties of the concept SinglePredicateToEdge are:

• predicateOperand (refined): node predicate operand for a single-valued edge ex-
pression operating on node predicates.

The additional properties of the concept PredicateSelection are:

• boundedVariable: the identifier for the bounded edge variable.

All other refinements of the concept SinglePredicateToEdge do not have any additional
property restrictions.

Concrete Syntax. The formal textual concrete syntax for SinglePredicateToEdge is defined
in Listing 9.140.

Listing 9.140: Textual Concrete Syntax for SinglePredicateToEdge

560 CastPredicateToEdge :
561 ”(edge)” (P: predicateOperand [Bracketed]) ;
562 P r e d i c a t e S e l e c t i o n : (”σ” OR ”select”)
563 (| P: boundedVariable | ” :”)
564 (| P: predicateOperand [Bracketed]) ;

All single-valued edge expressions operating on node predicates will be denoted in a prefix
form. There are two ways of encoding for some operators. One is a short symbolic way, the
other one uses a keyword.

• For the cast operator, the keyword will be (edge). An alternative symbol will not be
defined.

• For the select operator, the symbol will be σ and the keyword will be select.

Example. An example for the concept SinglePredicateToEdge will be provided in the fol-
lowing Listing 9.141:

Listing 9.141: Example for SinglePredicateToEdge

σ |�P: composite |=0

The given example shows the predicate select operator. The expression will result in all
nodes that do not have a compositional parent and will thus be root nodes. Please refer
to Section 9.8.10, Concept MultiNumericalToPredicate, p. 260 and Section 9.9.6, Concept
SingleEdgeToNumerical, p. 268 respectively for the equation and cardinality operator.

9.7.8. Concept NumericalToEdge

The concept NumericalToEdge represents all Edge Algebra expressions evaluating to an
edge but operating on (at least) one node valuation instead of edges. The available edge
expressions operating on node valuations are all of the same kind: They all operate on a
single node valuation (see Section 9.7.9, Concept SingleNumericalToEdge, p. 246).

Stefano Merenda 245

9. The overall specification of M2L

Abstract Syntax. The formal abstract syntax for NumericalToEdge is defined in List-
ing 9.142.

Listing 9.142: Abstract Syntax for NumericalToEdge

291 [NumericalToEdge ! !] ref ines Edge ::>
292 numericalOperand [1 . . ∗] (List) : C: Numerical ;

The properties of the concept NumericalToEdge are:

• numericalOperand: list of node valuation operands for an edge expression operating
on node valuations. At least one operand will be required. This property will normally
be refined to exactly one operand or at least two operands. Note that the second variant
has never been used yet.

Concrete Syntax. No concrete syntax has to be defined for the abstract concept Numerical-
ToEdge. Please refer to the (non-abstract) refining concepts. The helping syntax Bracketed
will remain unchanged and thus the parentheses will be optional.

Example. As no concrete syntax is defined for this abstract concept, please refer to the
(non-abstract) refining concepts.

9.7.9. Concept SingleNumericalToEdge

The concept SingleNumericalToEdge represents all Edge Algebra expressions evaluating to
an edge and operating on exactly one node valuation. Two edge expressions operating on
one node valuation will be defined in total:

• CastNumericalToEdge returns an edge with a single-valued pomset directing to-
wards a natural number according to the node valuation given.

• NumericalSelection returns an edge with a multi-set containing the nodes in the
quantity of node valuation.

Please refer to Chapter 6, Queries on abstract words - the Edge Algebra, p. 95 for a detailed
definition.

Abstract Syntax. The formal abstract syntax for SingleNumericalToEdge is defined in List-
ing 9.143.

Listing 9.143: Abstract Syntax for SingleNumericalToEdge

294 [SingleNumericalToEdge ! !] ref ines NumericalToEdge : :=
295 numericalOperand [1 . . 1] ;
296 CastNumericalToEdge ! ! ref ines SingleNumericalToEdge ;
297 Numer i ca lSe l e c t i on ! ! ref ines SingleNumericalToEdge : :=
298 boundedVariable [0 . . 1] : C: I d e n t i f i e r ;

The properties of the concept SingleNumericalToEdge are:

• numericalOperand (refined): node valuation operand for a single-valued edge ex-
pression operating on node valuations.

246 Stefano Merenda

9.7. Package ORG.Metamodels.EdgeAlgebra.EdgeExpressions

The additional properties of the concept NumericalSelection are:

• boundedVariable: the identifier for the bounded edge variable.

All other refinements of the concept SingleNumericalToEdge do not have any additional
property restrictions.

Concrete Syntax. The formal textual concrete syntax for SingleNumericalToEdge is defined
in Listing 9.144.

Listing 9.144: Textual Concrete Syntax for SingleNumericalToEdge

566 CastNumericalToEdge :
567 ”(edge)” (P: numericalOperand [Bracketed]) ;
568 Numer i ca lSe l e c t i on : (”σ” OR ”select”)
569 (P: boundedVariable | ” :”)
570 (P: numericalOperand [Bracketed]) ;

All single-valued edge expressions operating on node valuations will be denoted in a prefix
form. There are two ways of encoding for some operators. One is a short symbolic way, the
other one uses a keyword.

• For the cast operator, the keyword will be (edge). An alternative symbol will not be
defined.

• For the select operator, the symbol will be σ and the keyword will be select.

Example. In the following Listing 9.145 we give an example for the concept SingleNumer-
icalToEdge:

Listing 9.145: Example for SingleNumericalToEdge

σ (number)P: quant i ty

The given example shows the numerical select operator. The expression will result in a multi-
set containing the nodes with a multiplicity according to the property quantity. Please refer
to Section 9.9.6, Concept SingleEdgeToNumerical, p. 268 for the cast to a numerical.

Stefano Merenda 247

9. The overall specification of M2L

9.8. Package
ORG.Metamodels.EdgeAlgebra.PredicateExpressions

This package includes all functions of Edge Algebra the co-domain thereof being a node
predicate BV = V → B. All functions defined herein are part of the Propositional Edge
Algebra. Table 9.9 and Table 9.10 show the list of all concepts defined:

Concept Description

Predicate expression evaluating to a node predicate
ConstantPredicate expression without any parameters

PredicateValue a boolean value true or false
IsRoot holds for nodes which do not have a parent node

PredicateOperator operator having at least one node predicate operand
QuantifiedConceptEdging the universal quantification over (sub-)concepts
QuantifiedTypeEdging the universal quantification over the exact type
QuantifiedPropertyEdging the universal quantification over properties
SinglePredicateOperator operator having exactly one node predicate operand

Not negates the given predicate
MultiPredicateOperator operator having at least two node predicate operands

And conjunction of the given set of predicates
Or disjunction of the given set of predicates
Xor exclusive disjunction of the given set of predicates
Iff if-and-only-if for the given set of predicates
Implies implication for the given list of predicates

EdgeToPredicate predicate having at least one edge operand
SingleEdgeToPredicate predicate having exactly one edge operand

CastEdgeToPredicate cast a boolean valued edge to a node predicate
IsEmpty holds for nodes wherein the edge is empty
IsSingleton holds for nodes wherein the edge has one element at most
IsSet holds for nodes wherein the edge is a unordered set
IsBag holds for nodes wherein the edge is unordered
IsList holds for nodes wherein the edge is totally ordered
IsToset holds for nodes wherein the edge is a totally ordered set
IsPoset holds for nodes wherein the edge has no duplicates

MultiEdgeToPredicate predicate having at least two edge operands
EdgeEqual holds for nodes wherein the edges are equal
EdgeNotEqual holds for nodes wherein the edges are pairwise unequal
ConsistsOf node predicate according to the b operator
NotConsistsOf node predicate according to the 6b operator
Subset node predicate according to the ⊂ operator
NotSubset node predicate according to the 6⊂ operator
SubsetOrEqual node predicate according to the ⊆ operator
NotSubsetOrEqual node predicate according to the 6⊆ operator

Table 9.9.: List of concepts defined in ORG.Metamodels.EdgeAlgebra.PredicateExpressions
(part 1)

248 Stefano Merenda

9.8. Package ORG.Metamodels.EdgeAlgebra.PredicateExpressions

Concept Description

NumericalToPredicate predicate having at least one node valuation operand
MultiNumericalToPredicate predicate having at least two node valuation operands

NumericalEqual holds for nodes wherein the node valuations are equal
NumericalNotEqual holds for nodes wherein the node val. are pairwise unequal
LessOrEqual node predicate according to the ≤ operator
LessThan node predicate according to the < operator
GreaterOrEqual node predicate according to the ≥ operator
GreaterThan node predicate according to the > operator

Table 9.10.: List of concepts defined in ORG.Metamodels.EdgeAlgebra.PredicateExpressions
(part2)

9.8.1. Concept Predicate

The abstract concept Predicate represents all Edge Algebra expressions evaluating to a node
predicate and thus being refined by each of the dedicated concepts. The concept Predicate
thus represents all functions and operators the co-domain thereof being BV = V → B. Note
that according to this, the co-domain of such an Edge Algebra expression will formally again
be a function mapping each node of an M-graph to a boolean value.

Abstract Syntax. The formal abstract syntax for Predicate is defined in Listing 9.146.

Listing 9.146: Abstract Syntax for Predicate

302 [Pred i cate ! !] ;

Predicate is an abstract concept without any properties that have been additionally defined.
It is prepared to be refined by concepts representing dedicated Edge Algebra statements.

Concrete Syntax. No concrete syntax has to be defined for the abstract concept Predicate.
Please refer to the (non-abstract) refining concepts. The helping syntax Bracketed will
nonetheless be defined as a default in which the parentheses will be optional. Please refer
to Appendix A, Meta-Metamodel – The Metamodel of M2L, p. 291 for a detailed definition
of the helping syntax Bracketed.

Example. An example for the concept Predicate will be provided in the following List-
ing 9.147:

Listing 9.147: Example for Predicate

(root? ⇔ |�P: composite |=0) ∧ 	 6b P: composite .∧P: composite

The given example illustrates a node predicate that holds for every valid M-graph. The left
side of the conjunction provides an exact definition of the node predicate root?: For every
node IsRoot will evaluate to true, if, and only if, the node has no compositional parent. The
right side of the conjunction states that the property composite must not contain cycles,
i. e. a node itself must not be part of the (non-reflexive) transitive closure of the property
composite. Please refer to the dedicated sections for a detailed definition of the several
operators.

Stefano Merenda 249

9. The overall specification of M2L

9.8.2. Concept ConstantPredicate

The concept ConstantPredicate represents all Edge Algebra expressions evaluating to a node
predicate but having no operands as operands are elements from the three Edge Algebra
carrier sets. Constant edges may, however, comprise a parameter. Two constant node
predicates will be defined in total:

• PredicateValue allows for a definition of a constant node predicate by a boolean
value.

• IsRoot evaluates to true if the node does not have a compositional parent.

Abstract Syntax. The formal abstract syntax for ConstantPredicate is defined in List-
ing 9.148.

Listing 9.148: Abstract Syntax for ConstantPredicate

304 [ConstantPredicate ! !] ref ines Pred i ca te ;
305 PredicateValue ! ! ref ines ConstantPredicate : :=
306 value [1 . . 1] : C: Boolean ;
307 IsRoot ! ! ref ines ConstantPredicate : := ;

The properties of the concept PredicateValue are:

• value: constant boolean value assigned to each node.

Concrete Syntax. The formal textual concrete syntax for ConstantPredicate is defined in
Listing 9.149.

Listing 9.149: Textual Concrete Syntax for ConstantPredicate

574 PredicateValue : (P: va lue) ;
575 Root : ”root?” ;

An node predicate value will be encoded by simply encoding a boolean value, e. g. true or
false. The symbols > and ⊥ may also be used instead. The concept IsRoot will be encoded
by root?.

Example. An example for the concept ConstantPredicate will be provided in the following
Listing 9.150:

Listing 9.150: Example for ConstantPredicate

root?

The example illustrates the concept IsRoot.

9.8.3. Concept PredicateOperator

The concept PredicateOperator represents all Edge Algebra expressions both operating on
at least one node predicate and evaluating to a node predicate. The node predicate opera-
tors will be categorised into two classes: those which operate on exactly one operand (see

250 Stefano Merenda

9.8. Package ORG.Metamodels.EdgeAlgebra.PredicateExpressions

Section 9.8.4, Concept SinglePredicateOperator, p. 252), those which operate on at least two
operands (see Section 9.8.5, Concept MultiPredicateOperator, p. 253). Further, there are
two special cases ForAllConcepts and ForAllProperties, as they comprise a value in addition
to the predicate operand and will thus be described directly in this section.

Abstract Syntax. The formal abstract syntax for PredicateOperator is defined in List-
ing 9.151.

Listing 9.151: Abstract Syntax for PredicateOperator

309 [Pred icateOperator ! !] ref ines Pred i ca te ::>
310 predicateOperand [1 . . ∗] (List) : C: Pred i cate ;
311

312 [Quant i f iedEdging ! !] ref ines PredicateOperator ::>
313 boundedVariable [1 . . 1] : C: I d e n t i f i e r ,
314 predicateOperand [1 . . 1] ;
315 Quanti f iedConceptEdging ! ! ref ines Quanti f iedEdging : :=
316 excludedConcept [0 . . ∗] (Set) : C: Concept ;
317 Quantif iedTypeEdging ! ! ref ines Quanti f iedEdging : :=
318 excludedConcept [0 . . ∗] (Set) : C: Concept ;
319 Quanti f iedPropertyEdging ! ! ref ines Quanti f iedEdging : :=
320 exc ludedProperty [0 . . ∗] (Set) : C: Property ;

The properties of the concept PredicateOperator are:

• predicateOperand: list of node predicate operands for a node predicate operator.
At least one operand will be required. This property will normally be refined to exactly
one operand or at least two operands.

The properties of the concept QuantifiedEdging are:

• predicateOperand: bounded edge variable for the quantification.

• predicateOperand (refined): node predicate which should be universally quantified
over concepts.

The additional properties of the concepts QuantifiedConceptEdging and QuantifiedTypeEdg-
ing are:

• excludedConcept: set of concept which should not be included within the universal
quantification.

The properties of the concept QuantifiedPropertyEdging are:

• excludedProperty: set of properties which should not be included within the uni-
versal quantification.

Concrete Syntax. The formal textual concrete syntax for PredicateOperator is defined in
Listing 9.152.

Listing 9.152: Textual Concrete Syntax for PredicateOperator

577 Quanti f iedConceptEdging : (”∀C:” OR ”forallC :”)
578 (P: boundedVariable)

Stefano Merenda 251

9. The overall specification of M2L

579 (”\\” ”{” | | &P: excludedConcept / ” ,” | | ”}”)
580 ” :” (P: predicateOperand [Bracketed]) ;
581 Quantif iedTypeEdging : (”∀T:” OR ”forallT :”)
582 (P: boundedVariable)
583 (”\\” ”{” | | &P: excludedConcept / ” ,” | | ”}”)
584 ” :” (P: predicateOperand [Bracketed]) ;
585 Quanti f iedPropertyEdging : (”∀P:” OR ”forallP :”)
586 (P: boundedVariable)
587 (”\\” ”{” | | &P: exc ludedProperty / ” ,” | | ”}”)
588 ” :” (P: predicateOperand [Bracketed]) ;

No concrete syntax has to be defined for the abstract concept PredicateOperator. Please
refer to the (non-abstract) refining concepts. The helping syntax Bracketed will remain
unchanged and thus the parentheses will be optional.

The three universal quantifiers will be denoted by the common symbol ∀ or the keyword
forall, followed by the name of the bounded variable. If some of the concepts and properties
respectively shall be excluded from universal quantification, they will be written within curly
brackets with a preceding backslash. Note that the doubling of the backslash will result from
the encoding of strings in M2L.

Example. An example for the concept PredicateOperator will be provided in the following
Listing 9.153:

Listing 9.153: Example for PredicateOperator

∀p\{ composite } | p | = 0

The given example shows the universal quantifier over properties. It states that each prop-
erty, except for composite, must be empty for every node.

9.8.4. Concept SinglePredicateOperator

The concept SinglePredicateOperator represents all node predicate operators both operating
on and evaluating to a single node predicate. Only one node predicate operator operating
on one node predicate will be defined:

• Not returns the negation of the boolean values for each node.

Please refer to Chapter 6, Queries on abstract words - the Edge Algebra, p. 95 for a detailed
definition.

Abstract Syntax. The formal abstract syntax for SinglePredicateOperator is defined in List-
ing 9.154.

Listing 9.154: Abstract Syntax for SinglePredicateOperator

322 [S ing l ePred i ca teOperato r ! !]
323 ref ines PredicateOperator : :=
324 predicateOperand [1 . . 1] ;
325 Not ! ! ref ines S ing l ePred i ca teOpera to r ;

The properties of the concept SinglePredicateOperator are:

252 Stefano Merenda

9.8. Package ORG.Metamodels.EdgeAlgebra.PredicateExpressions

• predicateOperand (refined): node predicate operand for a single-valued node pred-
icate operator.

The refining concept Not does not have any additional property restrictions.

Concrete Syntax. The formal textual concrete syntax for SinglePredicateOperator is defined
in Listing 9.155.

Listing 9.155: Textual Concrete Syntax for SinglePredicateOperator

590 Not : (”¬” OR ”!”) (P: predicateOperand [Bracketed]) ;

The single-valued node predicate operator Not will be denoted in a prefix form. The prefix
symbol may be ¬ or an exclamation mark (!).

Example. An example for the concept SinglePredicateOperator will be provided in the
following Listing 9.156:

Listing 9.156: Example for SinglePredicateOperator

¬root?

The given example evaluates to true if the node is not a root node.

9.8.5. Concept MultiPredicateOperator

The concept MultiPredicateOperator represents all node predicate operators operating on
a list of node predicates and evaluating to a single node predicate. Five node predicate
operators operating on multiple node predicates will be defined in total:

• And returns a node predicate conjuncting the boolean values.

• Or returns a node predicate disjuncting the boolean values.

• Xor returns a node predicate exclusively disjuncting the boolean values.

• Iff returns a node predicate that holds if all boolean values are true or all boolean val-
ues are false. This if-and-only-if operator can be seen as a boolean equation operator.

• Implies returns a node predicate that holds if the boolean values have the form that
once a true occurs, a false will never occur afterwards.

Please refer to Chapter 6, Queries on abstract words - the Edge Algebra, p. 95 for a detailed
definition. In contrast to the definitions in the sections herein, the operators will be defined
on any number of operands greater than or equal to two instead of on exactly two operands.
The present extension can be reduced to the basic definition by the following equations in
9.5, wherein op1 ∈ {∧,∨} and op2 ∈ {⊕,⇔,⇒}:

x1 op1 x2 op1 x3 op1 . . . op1 xn
= (. . . ((x1 op1 x2) op1 x3) op1 . . .) op1 xn

x1 op2 x2 op2 x3 op2 . . . op2 xn
= (x1 op2 x2) ∧ . . . ∧ (x1 op2 xn) ∧ (x2 op2 x3) ∧ (x2 op2 xn) ∧ . . .

(9.5)

Stefano Merenda 253

9. The overall specification of M2L

For And and Or, multiple operands will be construed by an implicit bracketing from the
left side, e. g. a ∨ b ∨ c = (a ∨ b) ∨ c. For Xor, Iff and Implies, multiple operands will be
construed by conjuncting the pairwise application of the operator while preserving the order
of the operands, e. g. a⇒ b⇒ c = (a⇒ b) ∧ (a⇒ c) ∧ (b⇒ c). Note that according to this
definition a⇒ b⇒ c 6= (a⇒ b)⇒ c.

Abstract Syntax. The formal abstract syntax for MultiPredicateOperator is defined in List-
ing 9.157.

Listing 9.157: Abstract Syntax for MultiPredicateOperator

327 [Mult iPred icateOperator ! !]
328 ref ines PredicateOperator : :=
329 predicateOperand [2 . . ∗] ;
330 And ! ! ref ines Mult iPred icateOperator ;
331 Or ! ! ref ines Mult iPred icateOperator ;
332 Xor ! ! ref ines Mult iPred icateOperator ;
333 I f f ! ! ref ines Mult iPred icateOperator ;
334 Imp l i e s ! ! ref ines Mult iPred icateOperator ;

The properties of the concept MultiPredicateOperator are:

• predicateOperand (refined): node predicate operands for a multi-valued node
predicate operator which must be at least two.

All refinements of the concept MultiPredicateOperator do not have any additional property
restrictions.

Concrete Syntax. The formal textual concrete syntax for MultiPredicateOperator is defined
in Listing 9.158.

Listing 9.158: Textual Concrete Syntax for MultiPredicateOperator

592 And : (P: predicateOperand [Bracketed]
593 / (”∧” OR ”&”)) ;
594 Or : (P: predicateOperand [Bracketed]
595 / (”∨” OR ”v”)) ;
596 Xor : (P: predicateOperand [Bracketed]
597 / (”⊕” OR ”xor”)) ;
598 I f f : (P: predicateOperand [Bracketed]
599 / (”⇔” OR ”<=>”)) ;
600 Imp l i e s : (P: predicateOperand [Bracketed]
601 / (”⇒” OR ”=>”)) ;

All multi-valued node predicate operators will be denoted in an infix form. There are two
ways of encoding all operators. One is a short symbolic way, the other one uses a keyword
or an encoding by ascii characters.

• For the and operator, the symbol will be ∧ and the ascii encoding will be &.

• For the or operator, the symbol will be ∨ and the keyword will be v.

• For the xor operator, the symbol will be ⊕ and the keyword will be xor.

• For the iff operator, the symbol will be ⇔ and the ascii encoding will be <=>.

254 Stefano Merenda

9.8. Package ORG.Metamodels.EdgeAlgebra.PredicateExpressions

• For the implies operator, the symbol will be ⇒ and the ascii encoding will be =>.

Example. An example for the concept MultiPredicateOperator will be provided in the fol-
lowing Listing 9.159:

Listing 9.159: Example for MultiPredicateOperator

root? ⇒ |�P: composite |=0 ⇒ root?

The given example illustrates the implies operator having three operands: The first and the
third one are the is-root operators. The operator in the middle is an equation. All in all,
the expression provides the definition of the is-root operator without using the if-and-only-if
operator.

9.8.6. Concept EdgeToPredicate

The concept EdgeToPredicate represents all Edge Algebra expressions operating on at least
one edge and evaluating to a node predicate. The predicate expressions operating on edges
will be categorised into two classes: those which operate on exactly one operand (see Sec-
tion 9.8.7, Concept SingleEdgeToPredicate, p. 255), and those which operate on at least two
operands (see Section 9.8.8, Concept MultiEdgeToPredicate, p. 257).

Abstract Syntax. The formal abstract syntax for EdgeToPredicate is defined in List-
ing 9.160.

Listing 9.160: Abstract Syntax for EdgeToPredicate

336 [EdgeToPredicate ! !] ref ines Pred i ca te ::>
337 edgeOperand [1 . . ∗] (List) : C: Edge ;

The properties of the concept EdgeToPredicate are:

• edgeOperand: list of edge operands for a predicate expression operating on edges.
At least one operand will be required. This property will normally be refined to exactly
one operand or at least two operands.

Concrete Syntax. No concrete syntax has to be defined for the abstract concept EdgeTo-
Predicate. Please refer to the (non-abstract) refining concepts. The helping syntax Bracketed
will remain unchanged and thus the parentheses will be optional.

Example. As no concrete syntax is defined for this abstract concept, please refer to the
(non-abstract) refining concepts.

9.8.7. Concept SingleEdgeToPredicate

The concept SingleEdgeToPredicate represents all Edge Algebra expressions evaluating to a
node predicate and operating on exactly one edge. Eight predicate expressions operating on
one edge will be defined in total:

Stefano Merenda 255

9. The overall specification of M2L

• CastEdgeToPredicate returns a node predicate that holds for a node if the given
edge evaluates to a single-valued pomset directing towards true.

• IsEmpty returns a node predicate that holds for a node if the given edge evaluates
to an empty pomset.

• IsSingleton returns a node predicate that holds for a node if the given edge evaluates
to a pomset having one element at most.

• IsSet returns a node predicate that holds for a node if the given edge evaluates to a
set, i. e. the pomset will be unordered and will not contain duplicates.

• IsBag returns a node predicate that holds for a node if the given edge evaluates to a
bag, i. e. the pomset will be unordered.

• IsList returns a node predicate that holds for a node if the given edge evaluates to a
list, i. e. the pomset will be totally ordered.

• IsToset returns a node predicate that holds for a node if the given edge evaluates
to a totally ordered set, i. e. the pomset will be totally ordered and will not contain
duplicates.

• IsPoset returns a node predicate that holds for a node if the given edge evaluates to
a partially ordered set, i. e. the pomset will not contain duplicates.

Please refer to Chapter 6, Queries on abstract words - the Edge Algebra, p. 95 for a detailed
definition.

Abstract Syntax. The formal abstract syntax for SingleEdgeToPredicate is defined in List-
ing 9.161.

Listing 9.161: Abstract Syntax for SingleEdgeToPredicate

331 [S ingleEdgeToPredicate ! !] ref ines EdgeToPredicate : :=
332 edgeOperand [1 . . 1] ;
333 CastEdgeToPredicate ! ! ref ines SingleEdgeToPredicate ;
334 IsEmpty ! ! ref ines SingleEdgeToPredicate ;
335 I s S i n g l e t o n ! ! ref ines SingleEdgeToPredicate ;
336 I s S e t ! ! ref ines SingleEdgeToPredicate ;
337 IsBag ! ! ref ines SingleEdgeToPredicate ;
338 I s L i s t ! ! ref ines SingleEdgeToPredicate ;
339 I sToset ! ! ref ines SingleEdgeToPredicate ;
340 I sPose t ! ! ref ines SingleEdgeToPredicate ;

The properties of the concept SingleEdgeToPredicate are:

• edgeOperand (refined): edge operand for a single-valued predicate expression op-
erating on edges.

All refinements of the concept SingleEdgeToPredicate do not have any additional property
restrictions.

Concrete Syntax. The formal textual concrete syntax for SingleEdgeToPredicate is defined
in Listing 9.162.

256 Stefano Merenda

9.8. Package ORG.Metamodels.EdgeAlgebra.PredicateExpressions

Listing 9.162: Textual Concrete Syntax for SingleEdgeToPredicate

603 CastEdgeToPredicate :
604 ”(bool)” (P: edgeOperand [Bracketed]) ;
605 IsEmpty : ”empty?” (P: edgeOperand [Bracketed]) ;
606 I s S i n g l e t o n :
607 ”singleton?” (P: edgeOperand [Bracketed]) ;
608 I s S e t : ”set?” (P: edgeOperand [Bracketed]) ;
609 IsBag : ”bag?” (P: edgeOperand [Bracketed]) ;
610 I s L i s t : ” l i s t ?” (P: edgeOperand [Bracketed]) ;
611 I sToset : ”toset?” (P: edgeOperand [Bracketed]) ;
612 I sPose t : ”poset?” (P: edgeOperand [Bracketed]) ;

All single-valued edge expressions operating on node predicates will be denoted in a prefix
form.

• For the is-empty operator, the keyword will be empty?.

• For the is-singleton operator, the keyword will be singleton?.

• For the is-set operator, the keyword will be set?.

• For the is-bag operator, the keyword will be bag?.

• For the is-list operator, the keyword will be list?.

• For the is-toset operator, the keyword will be toset?.

• For the is-poset operator, the keyword will be poset?.

Example. An example for the concept SingleEdgeToPredicate will be provided in the fol-
lowing Listing 9.163:

Listing 9.163: Example for SingleEdgeToPredicate

l i s t ? P: parameter

The given example checks whether the property parameter will be totally ordered.

9.8.8. Concept MultiEdgeToPredicate

The concept MultiEdgeToPredicate represents all Edge Algebra expressions evaluating to a
node predicate and operating on at least two edges. Eight predicate expressions operating
on multiple edges will be defined in total:

• EdgeEqual returns a node predicate that holds for each node the given edges thereof
evaluating to equal pomsets.

• EdgeNotEqual returns a node predicate that holds for each node the given edges
thereof evaluating to pairwise unequal pomsets.

• ConsistsOf returns a node predicate that holds for each node the given edges thereof
evaluating to pomsets such that the more left ones will pairwise consist of the more
right ones.

• NotConsistsOf returns a node predicate that holds for each node the given edges
thereof evaluating to pomsets such that the more left ones will pairwise not consist of
the more right ones.

Stefano Merenda 257

9. The overall specification of M2L

• Subset returns a node predicate that holds for each node the given edges thereof eval-
uating to pomsets such that the more left ones will pairwise be real subsets of the more
right ones. Note that this subset operator will be based on connected components.

• NotSubset returns a node predicate that holds for each node the given edges thereof
evaluating to pomsets such that the more left ones will pairwise be no real subsets
of the more right ones. Note that this subset operator will be based on connected
components.

• SubsetOrEqual returns a node predicate that holds for each node the given edges
thereof evaluating to pomsets such that the more left ones will pairwise be subsets
of or equal to the more right ones. Note that this subset operator will be based on
connected components.

• NotSubsetOrEqual returns a node predicate that holds for each node the given
edges thereof evaluating to pomsets such that the more left ones will pairwise be no
subsets of and not be equal to the more right ones. Note that this subset operator will
be based on connected components.

Please refer to Chapter 6, Queries on abstract words - the Edge Algebra, p. 95 for a detailed
definition. In contrast to the definitions in the sections herein, the operators will be defined
on any number of operands greater than or equal to two instead of on exactly two operands.
The present extension can be reduced to the basic definition by the following equations in
9.6, wherein op will be one of the operators mentioned above:

x1 op x2 op x3 op . . . op xn
= (x1 op x2) ∧ . . . ∧ (x1 op xn) ∧ (x2 op x3) ∧ (x2 op xn) ∧ . . . (9.6)

Multiple operands will be construed by conjuncting the pairwise application of the operator
while preserving the order of the operands, e. g. a 6b b 6b c = (a 6b b) ∧ (a 6b c) ∧ (b 6b c).
Note that according to this definition a 6b b 6b c 6= ¬(a b b b c).

Abstract Syntax. The formal abstract syntax for MultiEdgeToPredicate is defined in List-
ing 9.164.

Listing 9.164: Abstract Syntax for MultiEdgeToPredicate

350 [MultiEdgeToPredicate ! !] ref ines EdgeToPredicate : :=
351 edgeOperand [2 . . ∗] ;
352 EdgeEqual ! ! ref ines MultiEdgeToPredicate ;
353 EdgeNotEqual ! ! ref ines MultiEdgeToPredicate ;
354 Cons i s tsOf ! ! ref ines MultiEdgeToPredicate ;
355 NotConsistsOf ! ! ref ines MultiEdgeToPredicate ;
356 Subset ! ! ref ines MultiEdgeToPredicate ;
357 NotSubset ! ! ref ines MultiEdgeToPredicate ;
358 SubsetOrEqual ! ! ref ines MultiEdgeToPredicate ;
359 NotSubsetOrEqual ! ! ref ines MultiEdgeToPredicate ;

The properties of the concept MultiEdgeToPredicate are:

• edgeOperand (refined): edge operand for a multi-valued predicate expression op-
erating on edges.

All refinements of the concept MultiEdgeToPredicate do not have any additional property
restrictions.

258 Stefano Merenda

9.8. Package ORG.Metamodels.EdgeAlgebra.PredicateExpressions

Concrete Syntax. The formal textual concrete syntax for MultiEdgeToPredicate is defined
in Listing 9.165.

Listing 9.165: Textual Concrete Syntax for MultiEdgeToPredicate

614 EdgeEqual : (P: edgeOperand [Bracketed]
615 / ”=”) ;
616 EdgeNotEqual : (P: edgeOperand [Bracketed]
617 / (”6=” OR ”!=”)) ;
618 Cons i s tsOf : (P: edgeOperand [Bracketed]
619 / (”b” OR ”consistsOf”)) ;
620 NotConsistsOf : (P: edgeOperand [Bracketed]
621 / (”6b” OR ”! consistsOf”)) ;
622 Subset : (P: edgeOperand [Bracketed]
623 / (”⊂” OR ”subset”)) ;
624 NotSubset : (P: edgeOperand [Bracketed]
625 / (”6⊂” OR ”! subset”)) ;
626 SubsetOrEqual : (P: edgeOperand [Bracketed]
627 / (”⊆” OR ”subsetEq”)) ;
628 NotSubsetOrEqual : (P: edgeOperand [Bracketed]
629 / (”6⊆” OR ”! subsetEq”)) ;

All multi-valued predicate expressions operating on edges will be denoted in an infix form.
There are two ways of encoding for most of the operators. One is a short symbolic way, the
other one uses a keyword or an encoding by ascii characters.

• For the equality operator, the symbol will be =. An alternative keyword will not be
defined.

• For the inequality operator, the symbol will be 6= and the ascii encoding will be !=.

• For the consists-of operator, the symbol will be b and the keyword will be
consistsOf.

• For the not-consists-of operator, the symbol will be 6b and the keyword will be
!consistsOf.

• For the subset-of operator, the symbol will be ⊂ and the keyword will be subset.

• For the not-subset-of operator, the symbol will be 6⊂ and the keyword will be
!subset.

• For the subset-or-equal operator, the symbol will be ⊆ and the keyword will be
subsetEq.

• For the not-subset-or-equal operator, the symbol will be 6⊆ and the keyword will be
!subsetEq.

Example. An example for the concept MultiEdgeToPredicate will be provided in the fol-
lowing Listing 9.166:

Listing 9.166: Example for MultiEdgeToPredicate

P: c h i l d b C: Person

The given example checks whether the property child will only consist of nodes of the concept
Person.

Stefano Merenda 259

9. The overall specification of M2L

9.8.9. Concept NumericalToPredicate

The concept NumericalToPredicate represents all Edge Algebra expressions operating on
at least one node valuation and evaluating to a node predicate. The available predicate
expressions operating on node valuations are all of the same kind: They all operate on
multiple node valuations (see Section 9.8.10, Concept MultiNumericalToPredicate, p. 260).

Abstract Syntax. The formal abstract syntax for NumericalToPredicate is defined in List-
ing 9.167.

Listing 9.167: Abstract Syntax for NumericalToPredicate

361 [NumericalToPredicate ! !] ref ines Pred i ca te ::>
362 numericalOperand [1 . . ∗] (List) : C: Numerical ;

The properties of the concept NumericalToPredicate are:

• numericalOperand: list of node valuation operands for a predicate expression op-
erating on node valuations. At least one operand will be required. This property will
normally be refined to exactly one operand or at least two operands. Note that the
first variant has never been used yet.

Concrete Syntax. No concrete syntax has to be defined for the abstract concept Numer-
icalToPredicate. Please refer to the (non-abstract) refining concepts. The helping syntax
Bracketed will remain unchanged and thus the parentheses will be optional.

Example. As no concrete syntax is defined for this abstract concept, please refer to the
(non-abstract) refining concepts.

9.8.10. Concept MultiNumericalToPredicate

The concept MultiNumericalToPredicate represents all Edge Algebra expressions evaluating
to a node predicate and operating on at least two node valuations. Six predicate expressions
operating on multiple node valuations will be defined in total:

• NumericalEqual returns a node predicate that holds for each node the given node
valuations thereof evaluating to equal natural numbers.

• NumericalNotEqual returns a node predicate that holds for each node the given
node valuations thereof evaluating to pairwise unequal natural numbers.

• LessOrEqual returns a node predicate that holds for each node the given node valu-
ations thereof evaluating to natural numbers such that the more left ones will pairwise
be less than or equal to the more right ones.

• LessThan returns a node predicate that holds for each node the given node valuations
thereof evaluating to natural numbers such that the more left ones will pairwise be
less than the more right ones.

• GreaterOrEqual returns a node predicate that holds for each node the given node
valuations thereof evaluating to natural numbers such that the more left ones will
pairwise be greater than or equal to the more right ones.

260 Stefano Merenda

9.8. Package ORG.Metamodels.EdgeAlgebra.PredicateExpressions

• GreaterThan returns a node predicate that holds for each node the given node valu-
ations thereof evaluating to natural numbers such that the more left ones will pairwise
be greater than the more right ones.

Please refer to Chapter 6, Queries on abstract words - the Edge Algebra, p. 95 for a detailed
definition. In contrast to the definitions in the sections herein, the operators will be defined
on any number of operands greater than or equal to two instead of on exactly two operands.
The present extension can be reduced to the basic definition by the following equations in
9.7, wherein op will be one of the operators mentioned above:

x1 op x2 op x3 op . . . op xn
= (x1 op x2) ∧ . . . ∧ (x1 op xn) ∧ (x2 op x3) ∧ (x2 op xn) ∧ . . . (9.7)

Multiple operands will be construed by conjuncting the pairwise application of the operator
while preserving the order of the operands, e. g. a ≤ b ≤ c = (a ≤ b) ∧ (a ≤ c) ∧ (b ≤ c).

Abstract Syntax. The formal abstract syntax for MultiNumericalToPredicate is defined in
Listing 9.168.

Listing 9.168: Abstract Syntax for MultiNumericalToPredicate

364 [Mult iNumericalToPredicate ! !]
365 ref ines NumericalToPredicate : :=
366 numericalOperand [2 . . ∗] ;
367 NumericalEqual ! ! ref ines MultiNumericalToPredicate ;
368 NumericalNotEqual ! ! ref ines MultiNumericalToPredicate ;
369 LessOrEqual ! ! ref ines MultiNumericalToPredicate ;
370 LessThan ! ! ref ines MultiNumericalToPredicate ;
371 GreaterOrEqual ! ! ref ines MultiNumericalToPredicate ;
372 GreaterThan ! ! ref ines MultiNumericalToPredicate ;

The properties of the concept MultiNumericalToPredicate are:

• numericalOperand (refined): node valuation operands for a multi-valued predicate
expression operating on node valuations.

All refinements of the concept MultiEdgeToPredicate do not have any additional property
restrictions.

Concrete Syntax. The formal textual concrete syntax for MultiNumericalToPredicate is
defined in Listing 9.169.

Listing 9.169: Textual Concrete Syntax for MultiNumericalToPredicate

631 NumericalEqual : (P: numericalOperand [Bracketed]
632 / ”=”) ;
633 NumericalNotEqual : (P: numericalOperand [Bracketed]
634 / (”6=” OR ”!=”)) ;
635 LessOrEqual : (P: numericalOperand [Bracketed]
636 / (”≤” OR ”<=”)) ;
637 LessThan : (P: numericalOperand [Bracketed]
638 / ”<”) ;
639 GreaterOrEqual : (P: numericalOperand [Bracketed]

Stefano Merenda 261

9. The overall specification of M2L

640 / (”≥” OR ”>=”)) ;
641 GreaterThan : (P: numericalOperand [Bracketed]
642 / ”>”) ;

All multi-valued predicate expressions operating on node valuations will be denoted in an
infix form. There are two ways of encoding for most of the operators. One is a short symbolic
way, the other one uses an encoding by ascii characters.

• For the equality operator, the symbol will be =. An alternative keyword will not be
defined.

• For the inequality operator, the symbol will be 6= and the ascii encoding will be !=.

• For the less-or-equal operator, the symbol will be ≤ and the ascii encoding will be
<=.

• For the less-than operator, the symbol will be <. An additional ascii encoding will
not be necessary.

• For the greater-or-equal operator, the symbol will be ≥ and the ascii encoding will
be >=.

• For the greater-than operator, the symbol will be >. An additional ascii encoding
will not be necessary.

Example. An example for the concept MultiNumericalToPredicate will be provided in the
following Listing 9.170:

Listing 9.170: Example for MultiNumericalToPredicate

(number)P: age ≥ 18

The given example checks whether a property age will be greater than or equal to 18.

262 Stefano Merenda

9.9. Package ORG.Metamodels.EdgeAlgebra.NumericalExpressions

9.9. Package
ORG.Metamodels.EdgeAlgebra.NumericalExpressions

This package includes all functions of Edge Algebra the co-domain thereof being a node
valuation NV = V → N. All functions defined herein are part of the Propositional Edge
Algebra. Table 9.11 shows the list of all concepts defined:

Concept Description

Numerical expression evaluating to a node valuation
ConstantNumerical expression without any parameters

NumericalValue concrete value of a natural number
NumericalOperator operator having at least one node valuation operand
MultiNumericalOperator operator having at least two node valuation operands

Addition node valuation operator according to the + operator
Subtraction node valuation operator according to the − operator
Multiplication node valuation operator according to the · operator
IntegerDivision node valuation operator according to the ÷ operator
Modulo node valuation operator according to the % operator
Minimum returns the minimum for each node
Maximum returns the maximum for each node

EdgeToNumerical function having at least one edge operand
SingleEdgeToNumerical function having exactly one edge operand

CastEdgeToNumerical cast a natural number valued edge to a node valuation
Cardinality returns the cardinality of a pomset for each node
Depth returns the depth of a pomset for each node

Table 9.11.: List of concepts defined in ORG.Metamodels.EdgeAlgebra.NumericalExpressions

9.9.1. Concept Numerical

The abstract concept Numerical represents all Edge Algebra expressions evaluating to a node
valuation and will thus be refined by each of the dedicated concepts. The concept Numerical
thus represents all functions and operators the co-domain thereof being NV = V → N. Note
that according to this, the co-domain of such an Edge Algebra expression will formally again
be a function mapping each node of an M-graph to a natural number.

Abstract Syntax. The formal abstract syntax for Numerical is defined in Listing 9.171.

Listing 9.171: Abstract Syntax for Numerical

376 [Numerical ! !] ;

Numerical is an abstract concept without any properties that have been additionally defined.
It is prepared to be refined by concepts representing dedicated Edge Algebra statements.

Concrete Syntax. No concrete syntax has to be defined for the abstract concept Numerical.
Please refer to the (non-abstract) refining concepts. The helping syntax Bracketed will
nonetheless be defined as a default in which the parentheses will be optional. Please refer
to Appendix A, Meta-Metamodel – The Metamodel of M2L, p. 291 for a detailed definition
of the helping syntax Bracketed.

Stefano Merenda 263

9. The overall specification of M2L

Example. An example for the concept Numerical will be provided in the following List-
ing 9.172:

Listing 9.172: Example for Numerical

(|P: propertyA | + |P: propertyB | + |P: propertyC |) ÷ 3

The given example illustrates a node valuation calculating an average size of the three prop-
erties, namely propertyA, propertyB, and propertyC. Please refer to the dedicated sections
for a detailed definition of the several operators.

9.9.2. Concept ConstantNumerical

The concept ConstantNumerical represents all Edge Algebra expressions evaluating to a
node valuation but having no operands as operands are elements from the three Edge Algebra
carrier sets. Constant edges may, however, comprise a parameter. A single constant node
valuation will be defined:

• NumericalValue allows for the definition of a constant node valuation by a natural
number.

Abstract Syntax. The formal abstract syntax for ConstantNumerical is defined in List-
ing 9.173.

Listing 9.173: Abstract Syntax for ConstantNumerical

378 [ConstantNumerical ! !] ref ines Numerical ;
379 NumericalValue ! ! ref ines ConstantNumerical : :=
380 value [1 . . 1] : C: Natural ;

The properties of the concept NumericalValue are:

• value: constant natural number assigned to each node.

Concrete Syntax. The formal textual concrete syntax for ConstantNumerical is defined in
Listing 9.174.

Listing 9.174: Textual Concrete Syntax for ConstantNumerical

646 NumericalValue : (P: va lue) ;

A numerical value will be encoded by simply encoding a natural number.

Example. An example for the concept ConstantNumerical will be provided in the following
Listing 9.175:

Listing 9.175: Example for ConstantNumerical

123

The example illustrates the concept NumercialValue by encoding the number 123.

264 Stefano Merenda

9.9. Package ORG.Metamodels.EdgeAlgebra.NumericalExpressions

9.9.3. Concept NumericalOperator

The concept NumericalOperator represents all Edge Algebra expressions both operating
on at least one node valuation and evaluating to a node valuation. The available node
valuation operators are all of the same kind: They all operate on multiple node valuations
(see Section 9.9.4, Concept MultiNumericalOperator, p. 265).

Abstract Syntax. The formal abstract syntax for NumericalOperator is defined in List-
ing 9.176.

Listing 9.176: Abstract Syntax for NumericalOperator

382 [NumericalOperator ! !] ref ines Numerical : :>
383 numericalOperand [1 . . ∗] (List) : C: Numerical ;

The properties of the concept NumericalOperator are:

• numericalOperand: list of node valuation operands for a node valuation operator.
At least one operand will be required. This property will normally be refined to exactly
one operand or at least two operands. Note that the first variant has never been used
yet.

Concrete Syntax. No concrete syntax has to be defined for the abstract concept Numerical-
Operator. Please refer to the (non-abstract) refining concepts. The helping syntax Bracketed
will remain unchanged and thus the parentheses will be optional.

Example. As no concrete syntax is defined for this abstract concept, please refer to the
(non-abstract) refining concepts.

9.9.4. Concept MultiNumericalOperator

The concept MultiNumericalOperator represents all node valuation operators operating on
a list of node valuations and evaluating to a single node valuation. Seven node valuation
operators operating on multiple node valuations will be defined in total:

• Addition returns a node predicate adding the natural numbers for each node.

• Subtraction returns a node predicate subtracting the natural numbers for each node.
As this operator operates on natural numbers, a negative result will be substituted by
zero.

• Multiplication returns a node predicate multiplying the natural numbers for each
node.

• IntegerDivision returns a node predicate dividing the natural numbers for each node
by integers.

• Modulo returns a node predicate returning the rest of an integer division for each
node.

• Minimum returns a node predicate resulting in the minimum of natural numbers for
each node.

Stefano Merenda 265

9. The overall specification of M2L

• Maximum returns a node predicate resulting in the maximum of natural numbers
for each node.

Please refer to Chapter 6, Queries on abstract words - the Edge Algebra, p. 95 for a detailed
definition. In contrast to the definitions in the sections herein, the operators will be defined
on any number of operands greater than or equal to two instead of on exactly two operands.
The present extension can be reduced to the basic definition by the following equations in
9.8, wherein op will be one of the operators mentioned above:

x1 op x2 op x3 op . . . op xn
= (. . . ((x1 op x2) op x3) op . . .) op xn

(9.8)

Multiple operands will be construed by an implicit bracketing from the left, e. g. a− b− c =
(a− b)− c.

Abstract Syntax. The formal abstract syntax for MultiNumericalOperator is defined in List-
ing 9.177.

Listing 9.177: Abstract Syntax for MultiNumericalOperator

385 [Mult iNumericalOperator ! !]
386 ref ines NumericalOperator : :=
387 numericalOperand [2 . . ∗] ;
388 Addit ion ! ! ref ines MultiNumericalOperator ;
389 Subtract ion ! ! ref ines MultiNumericalOperator ;
390 M u l t i p l i c a t i o n ! ! ref ines MultiNumericalOperator ;
391 I n t e g e r D i v i s i o n ! ! ref ines MultiNumericalOperator ;
392 Modulo ! ! ref ines MultiNumericalOperator ;
393 Minimum ! ! ref ines MultiNumericalOperator ;
394 Maximum ! ! ref ines MultiNumericalOperator ;

The properties of the concept MultiNumericalOperator are:

• numericalOperand (refined): node valuation operands for a multi-valued node
valuation operator which must be at least two.

All refinements of the concept MultiNumericalOperator do not have any additional property
restrictions.

Concrete Syntax. The formal textual concrete syntax for MultiNumericalOperator is de-
fined in Listing 9.178.

Listing 9.178: Textual Concrete Syntax for MultiNumericalOperator

648 Addit ion : (P: numericalOperand [Bracketed]
649 / ”+”) ;
650 Subtract ion : (P: numericalOperand [Bracketed]
651 / ”−”) ;
652 M u l t i p l i c a t i o n : (P: numericalOperand [Bracketed]
653 / (” ·” OR ”∗”)) ;
654 In t ege rD iv i s on : (P: numericalOperand [Bracketed]
655 / (”÷” OR ”div”)) ;
656 Modulo : (P: numericalOperand [Bracketed]

266 Stefano Merenda

9.9. Package ORG.Metamodels.EdgeAlgebra.NumericalExpressions

657 / (”%” OR ”mod”)) ;
658 Minimum : ”min” ”(” (P: numericalOperand / ” ,”) ”)” ;
659 Maximum: ”max” ”(” (P: numericalOperand / ” ,”) ”)” ;

All multi-valued node valuation operators, except for Minimum and Maximum, will be
denoted in an infix form. There are two ways of encoding some of the operators. One is a
short symbolic way, the other one uses a keyword or an encoding by ASCII characters.

• For the addition operator, the symbol will be +. An alternative encoding will not be
necessary.

• For the subtraction operator, the symbol will be −. An alternative encoding will not
be necessary.

• For the multiplication operator, the symbol will be · and the alternative ascii en-
coding will be ∗.

• For the integer-division operator, the symbol will be ÷ and the alternative keyword
will be div.

• For the modulo operator, the symbol will be % and the alternative keyword will be
mod.

Minimum and Maximum will be encoded in functional prefix notation. The corresponding
keywords will be min and max.

Example. An example for the concept MultiNumericalOperator will be provided in the
following Listing 9.179:

Listing 9.179: Example for MultiNumericalOperator

min(2 , 2 · |P: propertyA | , 1) + (2 · 3) + (|P: propertyB | % 2)

The given example illustrates an arbitrary expression of node valuation operators. Note that
the second addend – i. e. the multiplication – will have to be written within parentheses,
as a prioritization of operators will consciously and consequently be avoided – even in this
particular case.

9.9.5. Concept EdgeToNumerical

The concept EdgeToNumerical represents all Edge Algebra expressions operating on at
least one edge and evaluating to a node valuation. The available node valuation expres-
sions operating on edges are all of the same kind: They all operate on a single edge (see
Section 9.9.6, Concept SingleEdgeToNumerical, p. 268).

Abstract Syntax. The formal abstract syntax for EdgeToNumerical is defined in List-
ing 9.180.

Listing 9.180: Abstract Syntax for EdgeToNumerical

396 [EdgeToNumerical ! !] ref ines Numerical : :=
397 edgeOperand [1 . . ∗] (List) : Edge ;

The properties of the concept EdgeToNumerical are:

Stefano Merenda 267

9. The overall specification of M2L

• edgeOperand: list of edge operands for a predicate expression operating on edges.
At least one operand will be required. This property will normally be refined to exactly
one operand or at least two operands. Note that the first variant has never been used
yet.

Concrete Syntax. No concrete syntax has to be defined for the abstract concept EdgeToN-
umerical. Please refer to the (non-abstract) refining concepts. The helping syntax Bracketed
will remain unchanged and thus the parentheses will be optional.

Example. As no concrete syntax is defined for this abstract concept, please refer to the
(non-abstract) refining concepts.

9.9.6. Concept SingleEdgeToNumerical

The concept SingleEdgeToNumerical represents all Edge Algebra expressions evaluating to
a node valuation and operating on exactly one edge. Three numerical expressions operating
on one edge will be defined in total:

• CastEdgeToNumerical returns a node valuation that will return a natural number
for each node according to the evaluation of the given edge: If this edge evaluates to a
single-valued pomset directing towards a node having the concept Natural, this value
will be returned. In all other cases, zero will be returned.

• Cardinality returns a node valuation that will return the cardinality (i. e. the size of
the pomset) for each node according to the evaluation of the given edge.

• Depth returns a node valuation that will return the depth for each node according to
the evaluation of the given edge.

Please refer to Chapter 6, Queries on abstract words - the Edge Algebra, p. 95 and Chap-
ter 4, Pomsets in the context of metamodelling, p. 61 for a detailed definition.

Abstract Syntax. The formal abstract syntax for SingleEdgeToNumerical is defined in List-
ing 9.181.

Listing 9.181: Abstract Syntax for SingleEdgeToNumerical

399 [SingleEdgeToNumerical ! !] ref ines EdgeToNumerical : :=
400 edgeOperand [1 . . 1] ;
401 CastEdgeToNumerical ! ! ref ines SingleEdgeToNumerical ;
402 Card ina l i t y ! ! ref ines SingleEdgeToNumerical ;
403 Depth ! ! ref ines SingleEdgeToNumerical ;

The properties of the concept SingleEdgeToNumerical are:

• edgeOperand (refined): edge operand for a single-valued node valuation expression
operating on edges.

All refinements of the concept SingleEdgeToNumerical do not have any additional property
restrictions.

268 Stefano Merenda

9.9. Package ORG.Metamodels.EdgeAlgebra.NumericalExpressions

Concrete Syntax. The formal textual concrete syntax for SingleEdgeToNumerical is defined
in Listing 9.182.

Listing 9.182: Textual Concrete Syntax for SingleEdgeToNumerical

661 CastEdgeToNumerical :
662 ”(number)” (P: edgeOperand [Bracketed]) ;
663 Card ina l i t y : (”size” (P: edgeOperand [Bracketed])
664 OR ” |” (P: edgeOperand) ” |”) ;
665 Depth : (”depth” (P: edgeOperand [Bracketed]) ;
666 OR ” | | ” (P: edgeOperand) ” | | ”) ;

The cast operator will be denoted by a preceding (number). The cardinality operator will
be denoted by a single pipe symbol (|) on each side. The depth operator will be denoted
by a doubled pipe symbol (||) on each side.

Example. An example for the concept SingleEdgeToNumerical will be provided in the fol-
lowing Listing 9.183:

Listing 9.183: Example for SingleEdgeToNumerical

(number)P: age

The given example returns a node valuation according to the value of the property age. If
this property does not evaluate to a single-valued pomset containing a natural number, zero
will be returned.

Stefano Merenda 269

Chapter 10
Summary, evaluation, and outlook

With Chapter 9, The overall specification of M2L, p. 171, the main goal of the work has
been achieved: A formal, but also appropriate metamodelling language allowing for fully
specifying all syntactical issues of modelling languages has been introduced. The present
chapter shall now give a short summary of the present work by reflecting all steps that have
been passed. After a discussion of the advantages and disadvantages, an outlook on the
future work will be provided.

Contents
10.1. Summary . 271

10.2. Evaluation . 272

10.3. Outlook . 276

10.1. Summary

In order to be able to define new modelling languages in an adequate way, a formal meta-
modelling approach leading to the metamodelling language M2L has been established in the
present work.

First of all, a set of crucial requirements relevant for such a metamodelling language has been
collected in Section 2.3, Requirements to a metamodelling language, p. 34. In detail, these
are Simplicity, Formality, Homogeneity, Expressiveness, Appropriateness, and Autonomy.

One of the critical issues upon the definition of such a metamodelling language is the proce-
dure of how to specify such a language. Due to its bootstrapping characteristics, of course, it
has been defined by itself and thus a meta-metamodel in the end. This is, however, not suffi-
cient from a formal point of view. Because of that, the detailed procedure has initially been
described in Section 2.4, Procedure specifying the (self-describing) metamodelling language
M2L , p. 42.

Due to the complexity of this topic, a detailed running example has been necessary. The
difficulty here was to find the right domain for it: On the one hand it should not be too
simple as then it would not have been possible to illustrate most things. On the other

Stefano Merenda 271

10. Summary, evaluation, and outlook

hand it should not be too complicate as then nobody would have understood the example
at all. The criteria has been described in detail in Section 3.1, Criteria for selecting a
suitable running example, p. 45. Finally we have decided to model dataflow algorithms as
the running example. Although this running example is a nearly complete language, for a
proof of concept it still seems to be too small. Hence, the usual proceeding for metamodelling
languages had been followed: The proof of concept has been the metamodelling language
itself.

Before we had been going into details in terms of defining the language engineering concepts,
partially ordered multi-sets (pomsets) have been introduced in Chapter 4, Pomsets in the
context of metamodelling, p. 61. These pomsets are crucial for the present work as they
represent the only sound way to allow both sets and lists within one metamodelling approach.

Abstract words have been introduced based on pomsets. As defined in Definition 30 within
Section 5.1, M-graphs (Model-graphs), p. 81, abstract words have been formalised by M-
graphs which are a Σ-labelled, directed, partially-ordered multi-graph. Similar to a word in
formal languages, which can be defined independently of any grammar definition, an abstract
word has also been defined independent of any metamodel. Thus, model and metamodel
are strictly separated in the present approach.

Having M-graphs, an algebra has been defined on edges in Chapter 6, Queries on abstract
words - the Edge Algebra, p. 95 to be able to formulate complex queries and predicates
over abstract words. Due to that, abstract languages can be specified by a node predicate
formulated as an Edge Algebra statement. Then, the set of all abstract words fulfilling the
node predicate globally – i. e. for all nodes of the M-graph – are valid to the defined abstract
language.

Based on the principle ability of formulating abstract languages, a more comfortable lan-
guage for specifying abstract syntaxes has been defined in Chapter 7, Abstract Syntaxes in
M2L, p. 119. It basically orients itself on common metamodelling approaches such as UML
class diagrams, but besides a formal structural semantics it also comprises a set of addi-
tional concepts introduced. In particular, these are conditional properties, context-sensitive
domains, local keys, namespaces, and instantiating properties.

Chapter 8, Textual Concrete Syntaxes in M2L, p. 153 will finally explain of how to define
textual concrete syntaxes. Basically they are defined as templates for each concept out of the
abstract syntax. Hereupon, a tight relationship between abstract and concrete syntax with
any redundant definitions has been achieved. As soon as the concrete textual syntax has
been defined, the metamodelling language M2L can be explained by itself in a textual and
thus human-readable way. The resulting language will be defined in Chapter 9, The overall
specification of M2L, p. 171 including all details thereof. Appendix A, Meta-Metamodel –
The Metamodel of M2L, p. 291 shows the meta-metamodel on its own.

10.2. Evaluation

Before beginning to discuss future work, the advantages of the metamodelling language M2L
introduced shall be summarised. The requirements having been defined in Section 2.3, Re-
quirements to a metamodelling language, p. 34, shall therefore be reviewed. In detail, these
are Simplicity, Formality, Homogeneity, Expressiveness, Appropriateness, and Autonomy.

272 Stefano Merenda

10.2. Evaluation

10.2.1. Simplicity

“Using the metamodelling language should be as simple as possible. Especially as it should
not only specify a language for implementation but should also be used as a readable docu-
mentation.”

Common issues are easy to express. Besides the commonly known metamodelling
concepts such multiplicities, a set of specific metamodelling constructs has been introduced
to simplify creating new languages. In particular, these are conditional properties, context-
sensitive domains, local keys, namespaces, and instantiating properties.

Rare issues may be more complex to express. Besides the additional amount of specific
constructs is it possible to add any Edge Algebra statement within each metamodel. In detail
there are four ways of adding an Edge Algebra statement: Firstly, any node predicate can be
added as additional constraint for each concept; secondly, any node predicate can be added
as an assumption for each property; thirdly, the domain of a property is defined by any edge
function; and fourthly, arbitrary inferred properties, wherein the inferred value will again
be defined by an edge function, may be defined.

Homogeneity of resulting languages. Although arbitrary languages can be created,
there are some important aspects rendering the resulting languages homogeneous. In the
present context, the most important aspect is the local key concept including namespaces,
context-sensitive keys, etc. The way of encoding identifiers will always be the same as well.
Besides that, canonical syntax will, of course, also always have the same structure.

No redundancy. The way of defining abstract and textual concrete syntaxes will be
realised such that there will be no redundant specification. One example is the definition
of multiplicities: Nothing will be mentioned about that in concrete syntax. Whereas it
can be defined in e. g. EBNF whether a non-terminal will be repeatable or optional, such a
restriction cannot be defined within the concrete syntax in the present approach as it can
already be defined by abstract syntax.

Multiple views. Due to the strict separation of abstract and concrete syntaxes is it possible
to define multiple concrete syntaxes based on the same abstract syntax. The metamodelling
language M2L as well allows for a definition of multiple abstract syntaxes.

10.2.2. Formality

“The metamodelling language has to provide a clear semantics for all syntactical elements
of the metamodelling language. This forms the basis for using this language for formal
specifications as could be done by a formal grammar.”

Formal syntactical definition. This is the real main topic of the present work. The
syntax of M2L will, of course, be defined in a formal way. This will finally be realised by
the meta-metamodel itself.

Formal semantics. The semantics of M2L will also be defined in a formal way. Note that
in this context, only a structural semantics shall be discussed as within the present work
focus shall be on the syntactical aspects of a metamodel.

Bootstrapping. It has been shown that the metamodelling language M2L has been defined
in a bootstrapping way. Note that this approach does not only take abstract syntax into
account but also textual concrete syntax. Thus, also the concrete syntax will be incorporated
into the bootstrapping mechanism. For this purpose, it will be required to understand both

Stefano Merenda 273

10. Summary, evaluation, and outlook

the abstract and concrete syntax definition in order to be able to read the meta-metamodel
in Appendix A, Meta-Metamodel – The Metamodel of M2L, p. 291.

10.2.3. Homogeneity

“All four metamodel aspects (abstract syntax, concrete syntax, process definition, and se-
mantics) must fit together in a formal way. A fully automated tool generation is impossible
without a homogeneity like this.”

The present work focuses on the syntactical aspects of metamodelling. Thus, this require-
ment will only be fulfilled for the first two aspects, namely abstract and concrete syntax:
When using M2L, concrete syntax can smoothly be integrated in abstract syntax. Thus, no
additional glue code will be necessary when defining a language.

Abstract syntax in the centre. Both abstract syntax as well as abstract words are in
the very centre of the present approach.

Concrete syntaxes based on abstract syntax. Whereas abstract syntax stands for its
own, a concrete syntax will always be formed on an abstract one.

Process definition based on abstract syntax. As the present approach concentrates
on the syntactical parts of a language, this requirement will not be relevant.

Semantics based on abstract syntax. As the present approach concentrates on the
syntactical parts of a language, this requirement will not be relevant.

10.2.4. Expressiveness

“Informally, each language to be described can be described by this metamodelling lan-
guage. If a metamodelling language does not fulfil such a requirement, every use of this
metamodelling language holds the risk that it will be impossible to express desired future
extensions.”

Although the expressive power of neither Edge Algebra nor the metamodelling language
M2L will explicitly be discussed in a formal way, there were no constraints to be defined
that could not be expressed - neither in the running example nor in the meta-metamodel of
M2L. This is, however, not a proof but an indication that the expressiveness of M2L will be
suitable for relevant languages.

10.2.5. Appropriateness

“Those metamodelling language support mechanisms necessary from a methodological point
of view. Here, for example metamodel evolution and metamodel modularisation are impor-
tant issues.”

Intuitive for language and product model engineers. Due to the fact that most
commonly known concepts of UML class diagrams are also available within M2L, is it easy
to start modelling with the help of M2L. Due to pomsets, the huge number of special
operators and Edge Algebra itself, however, a detailed study of the language is required.

Suitable for creating models prior to a metamodel. It is possible to define models
without a metamodel due to the semi-structured approach. When talking about an abstract
word, an M-graph will be defined, which can, of course, be written down by using the

274 Stefano Merenda

10.2. Evaluation

canonical textual representation. When talking about a textual representation, this can be
realised by simply writing text.

No ”contamination” of technical details. The most important construct herein are
instantiating properties. The metamodel can easily define a complex re-use mechanism
without introducing additional concepts or constraints by using these properties. It can
simply be realised by a modifier for properties. The second construct helping to simplify
the metamodel is the concept for local keys. This may appear as having no consequence
because in most cases such consistency constraints are totally skipped within a metamodel
due to complexity.

From rough to detailed specification. Herein, many aspects play a role. First of all, the
possibility of defining models before metamodels helps during a language engineering process.
Secondly, abstract syntaxes can be defined before having to consider concrete syntaxes.
Finally, complex consistency constraints can be added later on without any problems. The
next point of customising canonical concrete syntax will also help herein.

Customising of canonical concrete syntaxes. Models can be written down in a suitable
way without having to define a concrete syntax definition due to canonical concrete syntax.
Afterwards, a special textual syntax can stepwise be developed for the language by replacing
the canonical syntax definition.

Language modularisation. As the abstract syntax definition is entirely based on restrict-
ing abstract words, a language modularisation can easily be realised. When combining two
metamodels, just the resulting constraints of both metamodels must hold. In order to render
the relationship more explicit, external concepts can be defined in addition.

Supporting language evolution. If a strong relationship between model and metamodel
exists, one of the major issues of language evolution will arise: How will a model be described
which is currently being migrated? In such a situation it is neither part of the original nor
the new metamodel. In our formal approach a language, which is the union of both the old
and the new metamodel, can easily be described. Complex migration rules can additionally
be defined by using the Edge Algebra. This approach does, however, not support language
evolution in an explicit way.

Suitable for generating comprehensive development tools. Although the present
work discusses an implementation of a framework based on M2L, a framework called
OOMEGA already exists, implementing most of the functionally introduced by M2L. Please
refer to Section 10.3.1, OOMEGA and metaMODELS.org, p. 276 for further details.

10.2.6. Autonomy

“The metamodelling language is independent of a concrete tool implementation platform.
EMF for example is closely related to Java and Eclipse which makes it difficult to use EMF
in other environments such as C#.”

Although an implementation of M2L in the form of OOMEGA exists, all concepts are made
such that there are no relationships to any programming languages. M2L is instead totally
based on a mathematical formalism.

Stefano Merenda 275

10. Summary, evaluation, and outlook

10.3. Outlook

Although the requirements defined in Section 2.3, Requirements to a metamodelling lan-
guage, p. 34 have been achieved, there is still a lot of work to do. This very final section
shall give an idea of what the issues are that are still open. Besides this, the implementa-
tion OOMEGA [OOMEGA, 2010] as well as the metamodelling platform metaMODELS.org
[Metamodels.org, 2010], which already allows a professional use of the metamodelling lan-
guage M2L, shall be introduced as well.

10.3.1. OOMEGA and metaMODELS.org

OOMEGA’s modelling environment is an extension to the Eclipse platform. It provides
an implementation of the presented metamodelling language M2L and allows you to define
arbitrary modelling languages. Based on such language definitions a full featured Eclipse
plug-in is generated in order to create according models. As described in [OOMEGA, 2010],
in detail the features are:

• IDE/Eclipse Integration MDE is most often applied to software projects. Then,
models and traditional source code complement one another and together they form
the software product. Models actually become a part of the working software within
MDE - in contrast to the original CASE methodology. It is therefore important that
models can be edited in the standard IDE. Thanks to OOMEGA there’s no tool barrier.
Both, models and code can be edited.

• Textual Modelling OOMEGA instantly provides textual model editors for your
domain-specific languages. Those Eclipse editors realise both, the background parsing
strategy as well as the MVC pattern. Hence, your textual DSL can be complemented
with graphical or form-based editors and the very same model can be edited with
different editors concurrently. At the same time, the textual editors will remain com-
fortable, i. e. any word can be typed just as in a standard Java editor. Obviously it
comprises features such as syntax highlighting and hyper-linking.

• Database Support Especially when a large system is to be designed and models
are becoming increasingly larger, clients can rely on OOMEGA’s database support.
OOMEGA provides a common API to db4objects, Hibernate (thus any SQL database)
as well as the object database Versant. Moreover, an in-memory ODBMS is imple-
mented. This is why the database back-end can be exchanged any time and the
appropriate technology for storing your metamodels and models can be chosen.

• Team Collaboration OOMEGA technically supports teamwork in two alternative,
but complementary ways: interactive modelling and local repositories. The former is
a highly interactive modelling environment based on a central model database. When-
ever committing your changes, others will immediately notice your work as their editors
will be notified by OOMEGA’s Client/Server protocol. Local repositories comprising
the well-known Update/Commit/Merge operations are supported as well. CVS or
SVN may simply be used and your models can be merged on the basis of appropriate
textual representations.

• Model-to-Text Transformations Model-to-Text (M2T) transformations are mainly
required in MDE projects. OOMEGA offers a built-in code generation engine that is
based on Java Server Pages (JSP) technology. As an alternative, clients are very wel-
come to use openArchitectureWare. OOMEGA’s Java Model Access API and query-
language are used to explore models in the context of JSP or Xpand templates. Hence,

276 Stefano Merenda

10.3. Outlook

whatever code generator will be preferred, it will provide more features than simple
template processing.

• Model-to-Model Transformations OOMEGA offers Model-to-Model (M2M)
transformations by supporting the ATLAS Transformation Language (ATL). ATL is
a prominent open source project providing a M2M transformation language and an
interpreter therefore.

• Java Model Access API / Query Language One of OOMEGA’s major strengths
is an object persistence solution that provides an easy-to-use, powerful and stan-
dardised Java API to db4objects, Hibernate, Versant and OOMEGA’s in-memory
ODBMS. The Java Model Access API does not only offer a flexible query-language
based on Edge Algebra but also well-engineered features such as transaction manage-
ment, nested transactions, event notifications, cascading deletions, and dynamic access
via reflection.

• Automated Builds Modern software and MDE projects typically rely on automated
builds. Apache Ant and Maven are wide-spread build tools that offer fully-automated,
repeatable and customisable software builds. M2M/M2T transformations are typically
part of a build cycle, thus Ant tasks and Maven Mojos for ATL, oAW and OOMEGA’s
generator are offered.

• XML Support In particular for exchanging information with other software systems
it is quite important to have an XML binding for metamodels and models. XML
Schema (XSD) documents can be transformed to metamodels and vice versa. XML
documents can be transformed to models and vice versa.

Besides OOMEGA, a metamodelling platform called metaMODELS.org has already been
established. It is possible to create your own metamodels based on M2L. As all metamodels
are available within one repository, these metamodels may include all others. The basic idea
behind metaMODELS.org is to create a set of common-sense metamodels thus facilitating
an exchange of models.

All in all, a picture as illustrated in Figure 10.1 will form: Edge Algebra forms the theoretical
foundation for metamodelling. Based on Edge Algebra, the metamodelling language M2L
will be defined. The open-source project OOMEGA provides both a tool for defining your
own metamodel in M2L as well as a platform for creating corresponding models in a database-
centric and multi-user tooling environment. Finally, metaMODELS.org has been established
in the Internet as a platform for a collaborative development of metamodels. It had been
implemented by using the tooling environment OOMEGA itself for creating metamodels.
These metamodels may again be instantiated by way of OOMEGA.

10.3.2. Future work

In particular due to the fact that the present approach provides a powerful formal basis for
metamodelling, many questions arise that are still open. The most important issues shall
be discussed in the following:

1. Process definition and semantics. The term metamodel has been established at
the beginning of the present work as being the aggregation of the four aspects of
abstract syntax, concrete syntax, process definition, and semantics. The former two
have been defined within the present work. The latter two are still open.

2. Abstract views. Views are a very important concept in databases. Views make it
possible to create abstractions of the complete model such that only the necessary

Stefano Merenda 277

10. Summary, evaluation, and outlook

Theoretical Foundation for Graph-based Queries
EdgeAlgebra

based on

Formal and high expressive Metamodeling Language
M2L

implements

Open-Source Implementation with commercial Database-Backends

Platform for collaborative Development for Metamodels

powered by

Figure 10.1.: Overview of technologies.

information will be presented – even in a specific way if necessary. In the domain of
language engineering this is a very important issue. This aspect has, however, been
omitted in the present work.

3. Comparing different metamodelling approaches It is now possible to represent
a model independent of a specific metamodelling approach due to M-graphs. This
makes facilitates a comparison of different metamodelling approaches in a formal way.
Nonetheless will such a comparison – even with a single approach – go far beyond the
scope of the present work.

4. Behavioural semantics for abstract and concrete syntaxes. The present ap-
proach concentrates entirely on a static view of abstract and concrete syntaxes. Thus,
this approach states nothing about the influence of such a metamodel definition on
the behaviour of metamodel frameworks when creating a corresponding model. Open
questions are e. g. what is going to happen when an instance of a template is being
altered by a setter.

5. Formal expressiveness of M2L. As mentioned above, the expressiveness of M2L
or even the Edge Algebra will not be discussed within the present work. Interesting
is, what kind of textual languages can be described. It can be assumed that at least
all context-sensitive languages can be described. A formal proof is still open.

6. Unambiguous textual syntaxes. When defining textual concrete syntaxes is it
important for the resulting language to be unambiguous. Thus, one textual represen-
tation will only have one valid abstract syntax. In particular, when combining partial
languages to a mega-language, this aspect will turn out to be crucial.

7. Efficient parser. Even if a textual language definition is unambiguous, it is still
open, how to write an efficient parser for such a language definition. In this context is
it also interesting, what the minimal complexity of such a parsing process is.

8. Analysis of languages. For both abstract as well as textual concrete languages is it
important to know about decidability and complexity of common problems such as the

278 Stefano Merenda

10.3. Outlook

word problem or equality and emptiness of languages. Another interesting question in
this context is, how to find a minimal abstract word for a language, if any.

9. Theorems for pomset and Edge Algebra operators. Although a huge set of
operators has been introduced for both pomsets and edge functions, a set of theorems
for restructuring formulas is still missing.

10. Query optimisation. It is important for a query – expressed by an Edge Algebra
statement – to be optimised before being executed in the context of databases contain-
ing a large abstract word. For relational algebra, for example, such optimisation rules
are already available. It has also been verified in this context whether Edge Algebra
is suitable for such an optimisation.

11. Type system for Edge Algebra. It is useful in many situations to know what
a possible type of an Edge Algebra statement is. Thus, what the concepts are, the
resulting vertices are labelled with. This is e. g. important in case of a context-sensitive
domain: In general, there is no explicit definition of the resulting type.

12. Language modularisation. Although language definitions can be modularised by
the present approach, this mechanism is a very basic solution, however. A more
sophisticated way of decomposing a language definition into language modules is still
open.

13. Language evolution. As mentioned above, Edge Algebra will help when defining a
migration of models in order to evolve a language. An explicit approach allowing for
the creation of a language definition – especially if a huge number of models already
exists – is, however, still open.

Stefano Merenda 279

Bibliography

[Abiteboul et al., 1995] Abiteboul, S., Hull, R., and Vianu, V. (1995). Foundations of
Databases. Number ISBN: 0-20153-771-0. Addison Wesley.

[Agrawal et al., 2006] Agrawal, A., Karsai, G., Neema, S., Shi, F., and Vizhanyo, A. (2006).
The design of a language for model transformations. Journal on Software and System
Modeling, 5(3):261–288. Introduction of GReAT.

[Alanen et al., 2007] Alanen, M., Lundkvist, T., and Porres, I. (2007). Creating and rec-
onciling diagrams after executing model transformations. Science of Computer Program-
ming, 68(3):128–151.

[Alanen and Porres, 2003] Alanen, M. and Porres, I. (2003). A relation between context-free
grammars and meta object facility metamodels. Technical Report 606, Turku Centre for
Computer Science.

[Ambler, 1999] Ambler, S. W. (1999). Mapping objects to relational databases. Technical
report, AmbySoft Inc.

[Aquintos, 2010] Aquintos (2010). Website of aquintos. http://www.aquintos.info.

[Artwork, 2002] Artwork (2002). Website of the artwork project. http://artwork.in.tum.de.

[Artwork, 2003a] Artwork (2003a). Architektur und implementierung der engineering work-
bench. abschlussbericht des projekts artwork.

[Artwork, 2003b] Artwork (2003b). Das produkt- und prozessmodell der engineering work-
bench. abschlussbericht des projekts artwork.

[AutoFocus, 2006] AutoFocus (2006). Autofocus model and model api.

[Autosar, 2006] Autosar (2006). Autosar template uml profile and modeling guide.
http://www.autosar.org/download/AUTOSAR TemplateModelingGuide.pdf.

[Baar, 2006] Baar, T. (2006). Correctly defined concrete syntax for visual modeling lan-
guages. In MoDELS, pages 111–125.

[Balasubramanian et al., 2007] Balasubramanian, K., Schmidt, D. C., Molnar, Z., and
Ledeczi, A. (2007). Component-based system integration via (meta)model composition.
In ECBS ’07: Proceedings of the 14th Annual IEEE International Conference and Work-
shops on the Engineering of Computer-Based Systems, pages 93–102, Washington, DC,
USA. IEEE Computer Society.

Stefano Merenda 281

Bibliography

[Becker et al., 2005] Becker, S. M., Haase, T., and Westfechtel, B. (2005). Model-based a-
posteriori integration of engineering tools for incremental development processes. Software
and System Modeling, 4(2):123–140.

[Becker et al., 2007] Becker, S. M., Herold, S., Lohmann, S., and Westfechtel, B. (2007). A
graph-based algorithm for consistency maintenance in incremental and interactive inte-
gration tools. Software and System Modeling, 6(3):287–315.

[Berry et al., 2000] Berry, G., Bouali, A., Fornari, X., Ledinot, E., Nassor, E., and de Si-
mone, R. (2000). Esterel: a formal method applied to avionic software development. Sci.
Comput. Program., 36(1):5–25.

[Bezivin and Kurtev, 2005] Bezivin, J. and Kurtev, I. (2005). Model-based technology inte-
gration with the technical space concept. In Metainformatics Symposium 2005, Esbjerg,
Denmark.

[Biegl, 1995] Biegl, C. (1995). Multigraph: an architecture for model-integrated comput-
ing. In ICECCS ’95: Proceedings of the 1st International Conference on Engineering of
Complex Computer Systems, page 361, Washington, DC, USA. IEEE Computer Society.

[Biron et al., 2004] Biron, P. V., Permanente, K., and Malhotra, A. (2004). Xml schema
part 2: Datatypes second edition. Technical report, W3C.

[Blanc et al., 2005] Blanc, X., Ramalho, F., and Robin, J. (2005). Metamodel reuse with
mof. In MoDELS, pages 661–675.

[Boronat and Meseguer, 2008] Boronat, A. and Meseguer, J. (2008). An algebraic semantics
for mof. In FASE, pages 377–391.

[Braun and Marschall, 2003] Braun, P. and Marschall, F. (2003). Botl - the bidirectional
object oriented transformation language. Technical Report TUM-I0307, TUM.

[Bray et al., 2006] Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., Yergeau, F.,
and Cowan, J. (2006). Extensible markup language (xml) 1.1 (second edition). Technical
report, W3C.

[Breu et al., 1997] Breu, R., Hinkel, U., Hofmann, C., Klein, C., Paech, B., Rumpe, B.,
and Thurner, V. (1997). Towards a formalization of the unified modeling language. In
ECOOP, pages 344–366.

[Broy, 2006] Broy, M. (2006). Challenges in automotive software engineering. In ICSE ’06:
Proceedings of the 28th international conference on Software engineering, pages 33–42,
New York, NY, USA. ACM.

[Broy et al., 2008] Broy, M., Feilkas, M., Grünbauer, J., Gruler, A., Harhurin, A., Hart-
mann, J., Penzenstadler, B., Schätz, B., and Wild, D. (2008). Umfassendes architektur-
modell für das engineering eingebetteter software-intensiver systeme. Technical Report
TUM-I0816, Technische Universität München.

[Broy et al., 2010] Broy, M., Feilkas, M., Herrmannsdörfer, M., Merenda, S., and Ratiu,
D. (2010). Seamless model-based development: From isolated tools to integrated model
engineering environments. Proceedings of the IEEE, Special Issue on Aerospace and Au-
tomotive Software, 98(4):526–545.

[Broy and Stølen, 2001] Broy, M. and Stølen, K. (2001). Specification and development of
interactive systems: focus on streams, interfaces, and refinement. Springer-Verlag New
York, Inc., Secaucus, NJ, USA.

282 Stefano Merenda

Bibliography

[Brucker and Wolff, 2002] Brucker, A. D. and Wolff, B. (2002). A proposal for a formal
ocl semantics in isabelle/hol. In TPHOLs ’02: Proceedings of the 15th International
Conference on Theorem Proving in Higher Order Logics, pages 99–114, London, UK.
Springer-Verlag.

[Budinsky et al., 2003] Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., and Grose,
T. J. (2003). Eclipse Modeling Framework. Number ISBN 978-0131425422 in Eclipse.
Prentice Hall International. EMF.

[Bézivin, 2005] Bézivin, J. (2005). On the unification power of models. Software and System
Modeling (SoSym), 4(2):171–188.

[Bézivin et al., 2005] Bézivin, J., Brunette, C., Chevrel, R., Jouault, F., and Kurtev, I.
(2005). Bridging the generic modeling environment (gme) and the eclipse modeling frame-
work (emf). In Proceedings of the Best Practices for Model Driven Software Development
at OOPSLA’05, San Diego, California, USA.

[Bézivin and Lemesle, 1999] Bézivin, J. and Lemesle, R. (1999). Reflective modeling
schemes. In OOPSLA Workshop on Reflection and Software Engineering (OORaSE’99).

[Cabibbo and Carosi, 2005] Cabibbo, L. and Carosi, A. (2005). Managing inheritance hier-
archies in object/relational mapping tools. In CAiSE, pages 135–150. O/R mapping.

[Cabibbo and Porcelli, 2003] Cabibbo, L. and Porcelli, R. (2003). M2orm2: A model for
the transparent management of relationally persistent objects. In DBPL, pages 166–178.
O/R mapping.

[Caspi et al., 1987] Caspi, P., Pilaud, D., Halbwachs, N., and Plaice, J. A. (1987). Lustre:
a declarative language for real-time programming. In POPL ’87: Proceedings of the 14th
ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, pages
178–188, New York, NY, USA. ACM.

[Cattell et al., 1999] Cattell, R., Barry, D., Berler, M., Eastman, J., Jordan, D., Russell,
C., Schadow, O., Stanienda, T., and Velez, F. (1999). The Object Data Standard: ODMG
3.0. Number ISBN: 1-55860-647-4. Morgan Kaufmann Publishers.

[Clark et al., 2002] Clark, T., Evans, A., and Kent, S. (2002). A metamodel for package
extension with renaming. In UML 2002 – The Unified Modeling Language, volume 2460
of Lecture Notes in Computer Science, pages 305–320. Springer Berlin / Heidelberg.

[Cleenewerck and Kurtev, 2007] Cleenewerck, T. and Kurtev, I. (2007). Separation of con-
cerns in translational semantics for dsls in model engineering. In SAC ’07: Proceedings of
the 2007 ACM symposium on Applied computing, pages 985–992, New York, NY, USA.
ACM Press.

[Codd, 1970] Codd, E. F. (1970). A relational model of data for large shared data banks.
Commun. ACM, 13(6):377–387.

[Cokus and Pericas-Geertsen, 2005a] Cokus, M. and Pericas-Geertsen, S. (2005a). Xml bi-
nary characterization properties. Technical report, W3C.

[Cokus and Pericas-Geertsen, 2005b] Cokus, M. and Pericas-Geertsen, S. (2005b). Xml bi-
nary characterization use cases. Technical report, W3C.

[Dar and Agrawal, 1993] Dar, S. and Agrawal, R. (1993). Extending sql with generalized
transitive closure. IEEE Trans. on Knowl. and Data Eng., 5(5):799–812.

[Davis, 2003] Davis, J. (2003). Gme: the generic modeling environment. In OOPSLA ’03:
Companion of the 18th annual ACM SIGPLAN conference on Object-oriented program-

Stefano Merenda 283

Bibliography

ming, systems, languages, and applications, pages 82–83, New York, NY, USA. ACM
Press.

[Drey et al., 2008] Drey, Z., Faucher, C., Fleurey, F., Mahé, V., and Vojtisek, D. (2008).
Kermeta language - Reference manual. IRISA Triskell Project.

[Ebert and Franzke, 1994] Ebert, J. and Franzke, A. (1994). A declarative approach to
graph based modeling. In WG ’94: Proceedings of the 20th International Workshop on
Graph-Theoretic Concepts in Computer Science, pages 38–50, London, UK. Springer-
Verlag.

[Eclipse, 2010a] Eclipse (2010a). Website of eclipse GMF.
http://www.eclipse.org/modeling/gmf/.

[Eclipse, 2010b] Eclipse (2010b). Website of the eclipse development platform.
http://www.eclipse.org.

[Edwards et al., 2004] Edwards, J., Jackson, D., and Torlak, E. (2004). A type system
for object models. In SIGSOFT ’04/FSE-12: Proceedings of the 12th ACM SIGSOFT
twelfth international symposium on Foundations of software engineering, pages 189–199,
New York, NY, USA. ACM Press.

[Efftinge and Völter, 2006] Efftinge, S. and Völter, M. (2006). oaw xtext - a framework for
textual dsls. In Worksjop Modeling Symposium of Eclipse Summit Conference.

[Emerson and Sztipanovits, 2006] Emerson, M. and Sztipanovits, J. (2006). Techniques
for metamodel composition. In Proceedings of the 6th OOPSLA Workshop on Domain-
Specific Modeling (DSM’06) at OOPSLA’06.

[Esterel, 2010] Esterel (2010). Esterel technologies webpage. http://www.esterel-
technologies.com.

[Estublier et al., 2005] Estublier, J., Vega, G., and Ionita, A. D. (2005). Composing domain-
specific languages for wide-scope software engineering applications. In Model Driven En-
gineering Languages and Systems, volume 3713 of Lecture Notes in Computer Science,
pages 69–83. Springer Berlin / Heidelberg.

[Evermann and Wand, 2005] Evermann, J. and Wand, Y. (2005). Toward formalizing do-
main modeling semantics in language syntax. IEEE Trans. Softw. Eng., 31(1):21–37.

[Falkowski, 2005] Falkowski, K. (2005). Modelltransformationsansätze im kontext modell-
getriebener softwareentwicklung. Master’s thesis, Universität Koblenz-Landau.

[Fallside and Walmsley, 2004] Fallside, D. C. and Walmsley, P. (2004). Xml schema part 0:
Primer second edition. Technical report, W3C.

[Farail et al., 2006] Farail, P., Gaufillet, P., Canals, A., Le Camus, C., Sciamma, D., Michel,
P., Crégut, X., and Pantel, M. (2006). The TOPCASED project: a Toolkit in Open source
for Critical Aeronautic SystEms Design. In Embedded Real Time Software (ERTS).

[Fleurey et al., 2007] Fleurey, F., Breton, E., Baudry, B., Nicolas, A., and Jézéquel, J.-M.
(2007). Model-driven engineering for software migration in a large industrial context. In
MoDELS, pages 482–497.

[France et al., 1997] France, R. B., Bruel, J.-M., Larrondo-Petrie, M. M., Grant, E. S., and
Saksena, M. (1997). Towards a rigorous object-oriented analysis and design method. In
ICFEM, pages 7–16.

284 Stefano Merenda

Bibliography

[Gamma et al., 1995] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design
Patterns - Elements of Reusable Object-Oriented Software. Number ISBN: 0-201-63361-2.
Addison Wesley.

[Gargantini et al., 2006] Gargantini, A., Riccobene, E., and Scandurra, P. (2006). Deriving
a textual notation from a metamodel: an experience on bridging modelware and gram-
marware. In 3M4MDA 2006 - European Workshop on Milestones, Models and Mappings
for Model-Driven Architecture - European Conference on Model Driven Architecture.

[Geer, 2005] Geer, D. (2005). Will binary xml speed network traffic? Computer, 38(4):16–
18.

[Geisler et al., 1998] Geisler, R., Klar, M., and Pons, C. (1998). Dimensions and dichotomy
in metamodeling. In Proceedings of the Third BCS-FACS Northern Formal Methods Work-
shop. Springer Verlag.

[Gitzel et al., 2004] Gitzel, R., Ott, I., and Schader, M. (2004). Ontological metamodel
extension for generative architectures (omega). Technical report, University of Mannheim.

[Goldman and Lenkov, 2005] Goldman, O. and Lenkov, D. (2005). Xml binary characteri-
zation. Technical report, W3C.

[Gottlob et al., 1990] Gottlob, G., Kappel, G., and Schrefl, M. (1990). Semantics of object-
oriented data models - the evolving algebra approach. In East/West Database Workshop,
pages 144–160.

[Greenfield and Short, 2004] Greenfield, J. and Short, K. (2004). Software Factories: As-
sembling Applications with Patterns, Models, Frameworks, and Tools. Wiley Publishing,
Inc.

[Grimm, 2005] Grimm, K. (2005). Software-technologie im automobil. In Liggesmeyer, P.
and Rombach, D., editors, Software-Engineering eingebetteter Systeme: Grundlagen –
Methodik – Anwendungen, chapter 16, pages 407–430. Spektrum, Heidelberg.

[Grumbach and Milo, 1995] Grumbach, S. and Milo, T. (1995). An algebra for pomsets. In
ICDT ’95: Proceedings of the 5th International Conference on Database Theory, pages
191–207, London, UK. Springer-Verlag.

[Gruschko et al., 2007] Gruschko, B., Kolovos, D., and Paige, R. (2007). Towards synchro-
nizing models with evolving metamodels. In Proceedings of the International Workshop
on Model-Driven Software Evolution.

[Guerra et al., 2005] Guerra, E., Diaz, P., and de Lara, J. (2005). A formal approach to the
generation of visual language environments supporting multiple views. VLHCC, pages
284–286.

[Günzler, 2005] Günzler, A. (2005). Integrationskonzepte in der modellbasierten Produkten-
twicklung. PhD thesis, Technische Universität München.

[Halbwachs et al., 1991] Halbwachs, N., Caspi, P., Raymond, P., and Pilaud, D. (1991). The
synchronous dataflow programming language lustre. Proceedings of the IEEE, 79(9):1305–
1320.

[Harel and Rumpe, 2004] Harel, D. and Rumpe, B. (2004). Meaningful modeling: What’s
the semantics of ”semantics”?. IEEE Computer, 37(10):64–72.

[Hayes and McBride, 2004] Hayes, P. and McBride, B. (2004). Rdf semantics. Technical
report, W3C. Ontologies.

Stefano Merenda 285

Bibliography

[Hedin, 2000] Hedin, G. (2000). Reference attributed grammars. Informatica (Slovenia),
24(3).

[Henderson-Sellers and Barbier, 1999] Henderson-Sellers, B. and Barbier, F. (1999). Black
and white diamonds. In UML, pages 550–565.

[Hepp et al., 2006] Hepp, M., Bachlechner, D., and Siorpaes, K. (2006). Ontowiki:
community-driven ontology engineering and ontology usage based on wikis. In WikiSym
’06: Proceedings of the 2006 international symposium on Wikis, pages 143–144, New York,
NY, USA. ACM Press.

[Herrmannsdoerfer et al., 2008] Herrmannsdoerfer, M., Benz, S., and Juergens, E. (2008).
Automatability of coupled evolution of metamodels and models in practice. In MoDELS
2008, Model Driven Engineering Languages and Systems, 11th International Conference.

[Hibernate, 2010] Hibernate (2010). Website of the hibernate project.
http://www.hibernate.org.

[Holt et al., 2002] Holt, R., Schürr, A., Sim, S. E., and Winter, A. (2002). Graph exchange
language.

[Houssais, 2002] Houssais, B. (2002). The synchronous programming language signal, a
tutorial. Technical report, IRISA.

[Hull, 1986] Hull, R. (1986). A survey of theoretical research on typed complex database
objects. In XP7.52 Workshop on Database Theory.

[Hölzl, 2010] Hölzl, F. (2010). Website of autofocus iii - an engineering tool for embedded
systems. http://af3.in.tum.de.

[IBM, 2004] IBM (2004). Emfatic.

[IBM, 2010] IBM (2010). Ibm rational doors. http://www.ibm.com/software/awdtools/doors/.

[IntentionalSoftware, 2010] IntentionalSoftware (2010). Website of intentional software.
http://www.intentsoft.com.

[ISO, 1996] ISO (1996). Iso 14977: Extended ebnf.

[ISO, 2008] ISO (2008). Iso 9075: The standard query language.

[Jackson, 2006] Jackson, D. (2006). Alloy analyzer.

[Jaeschke and Schek, 1982] Jaeschke, G. and Schek, H.-J. (1982). Remarks on the algebra
of non first normal form relations. In PODS, pages 124–138.

[Jouault et al., 2006a] Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I., and Valduriez, P.
(2006a). Atl: a qvt-like transformation language. In OOPSLA Companion, pages 719–720.

[Jouault and Bézivin, 2006] Jouault, F. and Bézivin, J. (2006). Km3: a dsl for metamodel
specification. In Proceedings of 8th IFIP International Conference on Formal Methods for
Open Object-Based Distributed Systems, LNCS 4037, pages 171–185, Bologna, Italy.

[Jouault et al., 2006b] Jouault, F., Bézivin, J., and Kurtev, I. (2006b). Tcs: a dsl for the
specification of textual concrete syntaxes in model engineering. In GPCE ’06: Proceedings
of the 5th international conference on Generative programming and component engineer-
ing, pages 249–254, New York, NY, USA. ACM Press.

[Karsai et al., 2005] Karsai, G., Lang, A., and Neema, S. (2005). Design patterns for open
tool integration. Software and System Modeling, 4(2):157–170.

286 Stefano Merenda

Bibliography

[Karsai et al., 2004] Karsai, G., Maroti, M., Ledeczi, A., Gray, J., and Sztipanovits, J.
(2004). Composition and cloning in modeling and meta-modeling. IEEE Transactions
on Control System Technology (special issue on Computer Automated Multi-Paradigm
Modeling, 12:263–278.

[Knuth, 1968] Knuth, D. E. (1968). Semantics of context-free languages. Mathematical
Systems Theory, 2(2):127–145.

[Knuth, 1971] Knuth, D. E. (1971). Correction: Semantics of context-free languages. Math-
ematical Systems Theory, 5(1):95–96.

[Knuth, 1990] Knuth, D. E. (1990). The genesis of attribute grammars. In WAGA: Proceed-
ings of the international conference on Attribute grammars and their applications, pages
1–12, New York, NY, USA. Springer-Verlag New York, Inc.

[Kugele et al., 2007] Kugele, S., Tautschnig, M., Bauer, A., Schallhart, C., Merenda, S.,
Haberl, W., Kühnel, C., Müller, F., Wang, Z., Wild, D., Rittmann, S., and Wechs, M.
(2007). COLA – the component language. Technical Report TUM-I0714, Technischen
Universität München.

[Kurtev et al., 2002] Kurtev, I., Bézivin, J., and Aksit, M. (2002). Technological spaces: An
initial appraisal. In CoopIS, DOA’2002 Federated Conferences, Industrial track, Irvine.

[Kurtev et al., 2006] Kurtev, I., Bézivin, J., Jouault, F., and Valduriez, P. (2006). Model-
based dsl frameworks. In OOPSLA ’06: Companion to the 21st ACM SIGPLAN con-
ference on Object-oriented programming systems, languages, and applications, pages 602–
616, New York, NY, USA. ACM Press.

[Kyas et al., 2005] Kyas, M., Fecher, H., de Boer, F. S., Jacob, J., Hooman, J., van der
Zwaag, M., Arons, T., and Kugler, H. (2005). Formalizing uml models and ocl constraints
in pvs. Electronic Notes in Theoretical Computer Science, 115:39 – 47. Proceedings of the
Second Workshop on Semantic Foundations of Engineering Design Languages (SFEDL
2004).

[Königs and Schürr, 2006] Königs, A. and Schürr, A. (2006). Mdi: A rule-based multi-
document and tool integration approach. Software and System Modeling, 5(4):349–368.

[Lämmel, 2004] Lämmel, R. (2004). Coupled Software Transformations (Extended Ab-
stract). In First International Workshop on Software Evolution Transformations.

[Ledeczi et al., 2001] Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garrett, J., Thomason,
C., Nordstrom, G., Sprinkle, J., and Volgyesi, P. (2001). The generic modeling environ-
ment. In Workshop on Intelligent Signal Processing, Budapest, Hungary, volume 17.

[Margaria, 2005] Margaria, T. (2005). Web services-based tool-integration in the ETI plat-
form. Software and System Modeling, 4(2):141–156.

[Markovi and Baar, 2006] Markovi, S. and Baar, T. (2006). An OCL semantics specified
with QVT. In Model Driven Engineering Languages and Systems, volume 4199/2006 of
Lecture Notes in Computer Science, pages 661–675. Springer Berlin / Heidelberg.

[Mathworks, 2010] Mathworks (2010). Mathworks webpage. http://www.mathworks.com.

[Merenda, 2005] Merenda, S. M. (2005). Sdf - structured data format: Binärcodierte
repräsentation objektorientiert strukturierter daten. Master’s thesis, Technische Univer-
sität München.

[Metamodels.org, 2010] Metamodels.org (2010). Website of metamodels.org - a platform for
collaborative development of metamodel and datamodels. http://www.metamodels.org.

Stefano Merenda 287

Bibliography

[Microsystems, 2002] Microsystems, S. (2002). Java metadata interface(jmi) specification.
JSR 040 Java Community Process.

[Microsystems, 2010] Microsystems, S. (2010). The java website. http://java.sun.com.

[Minas, 2010] Minas, M. (2010). Website of DiaGen. http://www.unibw.de/inf2/DiaGen.

[ModelCVS, 2010] ModelCVS (2010). ModelCVS webpage. http://www.modelcvs.org/.

[Muller et al., 2006] Muller, P.-A., Fleurey, F., Fondement, F., Hassenforder, M., Schneck-
enburger, R., Gérard4, S., and Jézéquel, J.-M. (2006). Model-driven analysis and synthesis
of concrete syntax. In MoDELS, pages 98–110.

[Muller and Hassenforder, 2005] Muller, P.-A. and Hassenforder, M. (2005). Hutn as a
bridge between modelware and grammarware. In WISME Workshop, MODELS /
UML’2005, Montego Bay, Jamaica.

[Nardi and Brachman, 2003] Nardi, D. and Brachman, R. J. (2003). An introduction to
description logics. pages 1–40.

[Nardi et al., 2003] Nardi, D., Brachman, R. J., Baader, F., and Nutt, W. (2003). The de-
scription logic handbook: theory, implementation, and applications. Cambridge University
Press, New York, NY, USA.

[Oliveira et al., 2005] Oliveira, H., Murta, L., and Werner, C. (2005). Odyssey-VCS: a
flexible version control system for UML model elements. In SCM ’05: Proceedings of the
12th International Workshop on Software Configuration Management, pages 1–16, New
York, NY, USA. ACM.

[OMG, 2004] OMG (2004). Human-usable textual notation (hutn) specification. OMG
Document formal/04-08-01.pdf.

[OMG, 2005a] OMG (2005a). Mof qvt final adopted specification. OMG Document ptc/05-
11-01.

[OMG, 2005b] OMG (2005b). Xml metadata interchange specification. OMG Document
formal/05-05-06.

[OMG, 2006a] OMG (2006a). Meta object facility (mof) core specification 2.0. OMG Doc-
ument formal/06-01-01.

[OMG, 2006b] OMG (2006b). Object constraint language 2.0 specification. OMG Document
formal/06-05-01.

[OMG, 2007] OMG (2007). Unified modeling language: Superstructure. OMG Document
formal/07-02-05.pdf.

[OOMEGA, 2010] OOMEGA (2010). Website of oomega - a framework for model-based
software engineering. http://www.oomega.net.

[Patel-Schneider et al., 2004] Patel-Schneider, P. F., Hayes, P., and Horrocks, I. (2004). Owl
web ontology language semantics and abstract syntax. Technical report, W3C.

[Pavlidis, 1972] Pavlidis, T. (1972). Linear and context-free graph grammars. J. ACM,
19(1):11–22.

[Poernomo, 2006] Poernomo, I. (2006). A type theoretic framework for formal metamod-
elling. In Architecting Systems with Trustworthy Components, volume 3938/2006 of Lec-
ture Notes in Computer Science, pages 262–298. Springer Berlin / Heidelberg.

288 Stefano Merenda

Bibliography

[Pratt, 1985] Pratt, V. R. (1985). The pomset model of parallel processes: Unifying the
temporal and the spatial. In Seminar on Concurrency, Carnegie-Mellon University, pages
180–196, London, UK. Springer-Verlag.

[Rahm and Bernstein, 2006] Rahm, E. and Bernstein, P. A. (2006). An online bibliography
on schema evolution. SIGMOD Record, 35(4):30–31.

[Reichmann et al., 2004] Reichmann, C., Kühl, M., Graf, P., and Müller-Glaser, K. D.
(2004). Generalstore - a case-tool integration platform enabling model level coupling
of heterogeneous designs for embedded electronic systems. In ECBS ’04: Proceedings of
the 11th IEEE International Conference and Workshop on the Engineering of Computer-
Based Systems (ECBS’04), page 225, Washington, DC, USA. IEEE Computer Society.

[Rosenberg and Salomaa, 1997] Rosenberg, G. and Salomaa, A. (1997). Handbook of Formal
Languages Vol. 1 - Word Language Grammar. Number ISBN: 3-540-60420-0. Springer
Verlag.

[Rozenberg, 1997] Rozenberg, G., editor (1997). Handbook of graph grammars and comput-
ing by graph transformation: volume I. foundations. World Scientific Publishing Co., Inc.,
River Edge, NJ, USA.

[Saeki and Kaiya, 2006] Saeki, M. and Kaiya, H. (2006). On relationships among models,
meta models and ontologies. In Proceedings of the 6th OOPSLA Workshop on Domain-
Specific Modeling (DSM’06) at OOPSLA’06.

[Scade, 2010] Scade (2010). Website of SCADE. http://www.esterel-
technologies.com/products/scade-suite/.

[Simonyi, 1995] Simonyi, C. (1995). The death of computer languages, the birth of inten-
tional programming. Technical Report MSR-TR-95-52, Microsoft Research.

[Sprinkle and Karsai, 2004] Sprinkle, J. and Karsai, G. (2004). A domain-specific visual
language for domain model evolution. Journal of Visual Languages & Computing, 15(3-
4):291–307.

[Sutherland, 1966] Sutherland, W. R. (1966). The on-line graphical specification of computer
procedures. PhD thesis, Massachusetts Institute of Technology (MIT).

[Thompson et al., 2004] Thompson, H. S., Beech, D., Maloney, M., and Mendelsohn, N.
(2004). Xml schema part 1: Structures second edition. Technical report, W3C.

[Tigris.org, 2010] Tigris.org (2010). Subversion. http://subversion.tigris.org/.

[Tolvanen, 2004] Tolvanen, J.-P. (2004). MetaEdit+: domain-specific modeling for full code
generation demonstrated [GPCE]. In OOPSLA ’04: Companion to the 19th annual ACM
SIGPLAN Conference on Object-oriented Programming Systems, Languages, and Appli-
cations, pages 39–40, New York, NY, USA. ACM.

[Unicode, 2010] Unicode (2010). Website of the unicode consortium.
http://www.unicode.org.

[Vanderbilt, 2005] Vanderbilt (2005). A Generic Modeling Environment: GME 5 User’s
Manual (Version 5.0). Vanderbilt University.

[Vanderbilt, 2010] Vanderbilt (2010). Website of the graph rewrite and transformation
(great) tool suite. http://escher.isis.vanderbilt.edu/tools/get tool?GReAT.

[Vector, 2010] Vector (2010). Vector eASEE webpage.
http://www.vector.com/vi easee en,,223.html.

Stefano Merenda 289

Bibliography

[Viehstaedt and Minas, 1995] Viehstaedt, G. and Minas, M. (1995). Diagen: A generator
for diagram editors based on a hypergraph model. In NGITS.

[Wachsmuth, 2007] Wachsmuth, G. (2007). Metamodel adaptation and model co-
adaptation. In ECOOP’07: Proceedings of the 21st European Conference on Object-
Oriented Programming, volume 4609 of Lecture Notes in Computer Science, pages 600–
624. Springer Berlin / Heidelberg.

[Wang et al., 1997] Wang, D. C., Appel, A. W., Korn, J. L., and Serra, C. S. (1997). The
zephyr abstract syntax description language. In DSL, pages 213–228.

[WikiOnt, 2010] WikiOnt (2010). Website of the wikiont project.
http://sourceforge.net/projects/wikiont.

[Williams and Haggar, 2005] Williams, S. D. and Haggar, P. (2005). Xml binary character-
ization measurement methodologies. Technical report, W3C.

[Winter et al., 2002] Winter, A., Kullbach, B., and Riediger, V. (2002). An overview of the
gxl graph exchange language. In Revised Lectures on Software Visualization, International
Seminar, pages 324–336, London, UK. Springer-Verlag.

290 Stefano Merenda

Appendix A
Meta-Metamodel – The Metamodel of M2L

This appendix shows the complete metamodel including abstract and textual concrete
syntax. Since the language M2L is bootstrapped, the following listing is a textual instance
of itself. For a detailed description of each and every concept please refer to Chapter 9, The
overall specification of M2L, p. 171.

Listing A.1: Complete Metamodel of M2L

1 meta−metamodel ”Metamodelling Language M2L” (M2L) {
2 abstract syntax {
3 metapackage ORG {
4 metapackage Metamodels {
5 metapackage BasicConcepts {
6 anyconcept [Any] : :>
7 l key (Poset) : C: I d e n t i f i e r ,
8 i key (Poset) : C: I d e n t i f i e r ,
9 ckey (List) := ≷∧�P: composite . 1 P: lkey ,

10 &composite (Set) ,
11 &template [0 . . 1] ,
12 &includedContext (Poset)
13 where |1 P: l key | ≤ 1 ∧ |1 P: i key | ≤ 1
14 ∧ �(∗ ↓∗ P: composite) 6= �P: template ⇒ |P: l key | ≥ 1
15 ∧ poset? (σroot ? .P: l key)
16 ∧ poset? (∧ (P: composite ↓ σ |P: l key | = 0) .P: l key)
17 ∧ |P: template | = 0 ⇒ |P: i key | = 0
18 ∧ |P: template | = 1 ⇒ P: l key = P: i key
19 ∧ |�P: composite | ≤ 1
20 ∧ 	 6b P: composite .∧P: composite
21 ∧ 	 6b P: template .∧P: template
22 ∧ (|P: template | = 1 ⇒ (
23 P: template .P: composite = P: composite .P: template
24 ∧ ∀C: c : (b c ⇔ P: template b c)
25 ∧ ∀P: p\{ lkey , ckey , ikey } :
26 (P: template . p = p . 1 (((↓ (�p .
27

∧ ((P: composite] �P: composite) ↓ σ |P: template |)

Stefano Merenda 291

A. Meta-Metamodel – The Metamodel of M2L

28)) .P: template) ⊕))
29)) ;
30

31 enum Boolean = { True , Fa l se } ;
32 Natural ! ! : := pred [0 . . 1] : C: Natural ;
33 I n t e r v a l ! ! : :=
34 lower [1 . . 1] : C: Natural ,
35 upper [0 . . 1] : C: Natural
36 where |P: upper | = 1 ⇒
37 (number)P: lower ≤ (number)P: upper ;
38 Character ! ! : := unicode [1 . . 1] : C: Natural
39 where (number) unicode ≤ 1114111 ;
40 St r ing ! ! : :> cha rac t e r [0 . . ∗] (List) : C: Character ;
41 I d e n t i f i e r ! ! ref ines St r ing ::> cha rac t e r [1 . . ∗] ;
42

43 [Named] : :>
44 (PK)name [1 . . 1] : C: I d e n t i f i e r ,
45 (K) a lternat iveName [0 . . ∗] (Set) : C: I d e n t i f i e r ;
46 [UniquelyNamed] ref ines Named ::>
47 alternat iveName [0 . . 0] ;
48 Folder ref ines FolderEntry ::>
49 s u b f o l d e r [0 . . ∗] (Toset) : C: Folder ,
50 &e ntry [0 . . ∗] (Toset) : C: FolderEntry ;
51 [FolderEntry] ref ines Named ;
52 }
53

54 metapackage M2L {
55 MetamodelFolder ref ines Folder ::>
56 name := {{ I d e n t i f i e r (”Active Metamodels”) }} ,
57 &e ntry : C: Metamodel ,
58 &activeMetamodel := µ∧P: s u b f o l d e r .P: e ntry .∧P: basedOn
59 where |C: MetamodelFolder | = 1
60 ∧ ∧P: s u b f o l d e r .P: e ntry b C: Metamodel
61 ∧ C: Metametamodel b P: activeMetamodel ;
62 Metamodel ref ines FolderEntry ::>
63 &basedOn [0 . . ∗] (Set) : C: Metamodel ↓∗ ∧�P: basedOn ,
64 abstractSyntax [1 . . 1] : C: AbstractSyntax ,
65 concreteSyntax [0 . . ∗] : C: ConcreteSyntax ,
66 &exportedMetapackage :=
67 P: abstractSyntax .P: exportedMetapackage ,
68 &vis ib l eMetapackage :=
69 (⊕ P: basedOn) .P: exportedMetapackage ;
70 Metametamodel ref ines Metamodel : :>
71 name := {{ I d e n t i f i e r (”Metamodeling Language M2L”) ,
72 I d e n t i f i e r (M2L) }} ,
73 &basedOn [0 . . 0] ,
74 where |C: Metametamodel | = 1 ;
75

76 metapackage AbstractSyntax {
77 AbstractSyntax ! : :>
78 metapackage [0 . . ∗] (Set) : C: Metapackage ,
79 &exportedMetapackage :=

292 Stefano Merenda

80 P:metapackage .P: exportedMetapackage ,
81 &vis ib l eMetapackage :=
82 �P: composite .P: v i s ib l eMetapackage ;
83 Metapackage ! ref ines Named ::>
84 subpackage [0 . . ∗] (Set) : C: Metapackage ,
85 conceptDef [0 . . ∗] (Set) : C: ConceptDef ,
86 &exportedMetapackage :=
87 	 ⊕ (P: subpackage .P: exportedMetapackage) ,
88 &vis ib l eMetapackage :=
89 �P: composite .P: v i s ib l eMetapackage ;
90

91 Concept ! ! : :=
92 qual i f iedName [2 . . ∗] (List) : C: I d e n t i f i e r ;
93 Property ! ! ref ines I d e n t i f i e r : := ;
94

95 ConceptDef ! ref ines Named ::>
96 concept [1 . . 1] : C: Concept ,
97 &r e f i n e s [0 . . ∗] (Set) :
98 (P: v i s ib l eMetapackage .P: conceptDef) ↓∗ ∧�P: r e f i n e s ,
99 i sAbs t r a c t [1 . . 1] : C: Boolean ,

100 i sComplete [1 . . 1] : C: Boolean ,
101 conceptType [1 . . 1] : C: ConceptType ,
102 propertyDef [0 . . ∗] (Set) ↔ conceptDef : C: PropertyDef ,
103 a d d i t i o n a l C o n s t r a i n t [0 . . 1] : C: Predicate ,
104 &vis ib l eMetapackage :=
105 �P: composite .P: v i s ib leMetapackage ,
106 &includedContext := P: v i s ib l eMetapackage
107 where P: concept .P: qual i f iedName = (≷∧�P: composite
108 ↓ (C: Metapackage] C: ConceptDef)) .P: name ;
109

110 AnyConceptDef ! ref ines ConceptDef ::>
111 concept :=
112 {{ Concept (ORG. Metamodels . BasicConcepts . Any) }} ,
113 &r e f i n e s [0 . . 0] ,
114 i sAbs t r a c t : C: Boolean . True ,
115 i sComplete : C: Boolean . False ,
116 conceptType : C: ConceptType . Strong
117 where |�P: r e f i n e s | = 0 ;
118 EnumerationConceptDef ! ref ines ConceptDef ::>
119 enumElement [2 . . ∗] : C: EnumElementConceptDef ,
120 &r e f i n e s [0 . . 0] ,
121 i sAbs t r a c t : C: Boolean . True ,
122 i sComplete : C: Boolean . True ,
123 conceptType : C: ConceptType . Attr ibute ,
124 propertyDef [0 . . 0] ,
125 a d d i t i o n a l C o n s t r a i n t [0 . . 0] ;
126 EnumElementConceptDef ! ref ines ConceptDef ::>
127 &r e f i n e s := �P: enumElement ,
128 i sAbs t r a c t : C: Boolean . False ,
129 i sComplete : C: Boolean . True ,
130 conceptType : C: ConceptType . Attr ibute ,
131 propertyDef [0 . . 0] ,

Stefano Merenda 293

A. Meta-Metamodel – The Metamodel of M2L

132 a d d i t i o n a l C o n s t r a i n t [0 . . 0]
133 where �P: composite b C: EnumerationConceptDef ;
134 ExternalConceptDef ! ref ines ConceptDef ::>
135 &r e f i n e s [0 . . 0] ,
136 i sAbs t r a c t : C: Boolean . False ,
137 i sComplete : C: Boolean . False ,
138 conceptType : C: ConceptType . Strong ,
139 propertyDef [0 . . 0] ,
140 a d d i t i o n a l C o n s t r a i n t [0 . . 0] ;
141

142 PropertyDef ! : :>
143 &conceptDef [1 . . 1] ↔ propertyDef : C: ConceptDef ,
144 assumption [0 . . 1] : C: Predicate ,
145 pr operty [1 . . 1] : C: Property ,
146 oppos i t e [0 . . ∗] (Set) : C: Property ,
147 keyType [0 . . 1] : C: KeyType ,
148 l inkType [1 . . 1] : C: LinkType ,
149 m u l t i p l i c i t y [0 . . 1] : C: I n t e rva l ,
150 pomsetRes t r i c t i on [0 . . 1] : C: PomsetType ,
151 domain [0 . . 1] : C: Edge ,
152 i n f e r r edVa lue [0 . . 1] : C: Edge ,
153 &includedContext := P: conceptDef .P: inc ludedContext ;
154

155 enum ConceptType = { Strong , Weak , Att r ibute } ;
156 enum KeyType = {
157 PrimaryLocalkey , A l t e rnat iveLoca lkey
158 } ;
159 enum LinkType = {
160 Reference , Composition , I n s t a n t i a t i o n
161 } ;
162 enum PomsetType = {
163 Set , Bag , L i s t , Tos et , Pos et , Pomset
164 } ;
165 }
166

167 metapackage ConcreteSyntax {
168 S y n t a x I d e n t i f i e r ! ! ref ines I d e n t i f i e r ;
169 [ConcreteSyntax !] ref ines Named : :=
170 name : C: S y n t a x I d e n t i f i e r ,
171 alternat iveName : C: S y n t a x I d e n t i f i e r ,
172 i s D e f a u l t : C: Boolean ,
173 syntaxPackage [0 . . ∗] (Set) : C: ConcreteSyntaxPackage ;
174 [ConcreteSyntaxPackage !] : :=
175 &metapackage [1 . . 1] : P: inc ludedContext .
176 (P:metapackage] P: subpackage) ,
177 subpackage [0 . . ∗] (Set) : C: ConcreteSyntaxPackage ,
178 concreteSyntaxDef [0 . . ∗] (Set) : C: ConcreteSyntaxDef ,
179 &includedContext := ε(
180 (�(P: concreteSyntax .P: syntaxPackage) .
181 P: abstractSyntax)
182]
183 (�P: subpackage .P:metapackage)

294 Stefano Merenda

184) ,
185 l key := P:metapackage .P: l key ;
186 [ConcreteSyntaxDef !] : :>
187 &conceptDef [1 . . 1] : P: inc ludedContext .P: conceptDef ,
188 &includedContext :=
189 �P: concreteSyntaxDef .P:metapackage ,
190 l key := P: conceptDef .P: l key ;
191

192 metapackage Textual {
193 TextualSyntax ! ref ines ConcreteSyntax : :=
194 syntaxPackage : C: TextualSyntaxPackage ;
195 TextualSyntaxPackage !
196 ref ines ConcreteSyntaxPackage : :=
197 subpackage : C: TextualSyntaxPackage ,
198 concreteSyntaxDef : C: TextualSyntaxDef ;
199 TextualSyntaxDef ! ref ines ConcreteSyntaxDef ::>
200 mainSyntaxTemplate [1 . . 1] : C: SyntaxTemplate ;
201

202 SyntaxTemplate ! ! : :=
203 templateElement [0 . . ∗] (List) : C: TemplateElement ;
204 [TemplateElement ! !] ;
205 [Terminal ! !] ref ines TemplateElement ;
206 ProperTerminal ! ! ref ines Terminal : :=
207 symbols [1 . . 1] : C: S t r ing
208 where |P: symbols .P: cha rac t e r | > 0 ;
209 WhitespaceTerminal ! ! ref ines Terminal : :=
210 whitespace [1 . . 1] : C: Whitespace ;
211 enum Whitespace = { Space , Newline } ;
212 NonTerminal ! ! ref ines TemplateElement : :=
213 e dge [1 . . 1] : C: Edge ,
214 l inkType [1 . . 1] : C: LinkType ,
215 d i f f e r i n g S y n t a x [0 . . 1] : C: S y n t a x I d e n t i f i e r ,
216 s t a r t i n g [0 . . 1] : C: SyntaxTemplate ,
217 p r e f i x [0 . . 1] : C: SyntaxTemplate ,
218 i n f i x [0 . . 1] : C: SyntaxTemplate ,
219 s u f f i x [0 . . 1] : C: SyntaxTemplate ,
220 ending [0 . . 1] : C: SyntaxTemplate
221 where P: l inkType b C: LinkType . Reference ⇒
222 |P: d i f f e r i n g S y n t a x | = 0 ;
223 Option ! ! ref ines TemplateElement : :=
224 p r e d i c a t e [1 . . 1] : C: Predicate ,
225 thenCase [1 . . 1] : C: SyntaxTemplate ,
226 e l s eCase [0 . . 1] : C: SyntaxTemplate ;
227 Switch ! ! ref ines TemplateElement : :=
228 a l t e r n a t i v e [2 . . ∗] : C: SyntaxTemplate ;
229 IncludeSyntaxDef ! ! ref ines TemplateElement : :=
230 conceptDef [0 . . 1] : C: ConceptDef ,
231 d i f f e r i n g S y n t a x [0 . . 1] : C: S y n t a x I d e n t i f i e r
232 where |P: conceptDef | + |P: d i f f e r i n g S y n t a x | ≥ 1 ;
233 }
234 }
235 }

Stefano Merenda 295

A. Meta-Metamodel – The Metamodel of M2L

236

237 metapackage EdgeAlgebra {
238 metapackage EdgeExpress ions {
239 [Edge ! !] ;
240

241 [ConstantEdge ! !] ref ines Edge ;
242 EdgeValue ! ! ref ines ConstantEdge : :=
243 &value [0 . . ∗] ;
244 ConceptEdging ! ! ref ines ConstantEdge : :=
245 concept [1 . . 1] : C: Concept ;
246 TypeEdging ! ! ref ines ConstantEdge : :=
247 concept [1 . . 1] : C: Concept ;
248 PropertyEdging ! ! ref ines ConstantEdge : :=
249 pr operty [1 . . 1] : C: Property ;
250 S e l f ! ! ref ines ConstantEdge : := ;
251 Equal i ty ! ! ref ines ConstantEdge : := ;
252 Succe s sor ! ! ref ines ConstantEdge : := ;
253 BoundedEdgeVariable ! ! ref ines ConstantEdge : :=
254 i d e n t i f i e r [1 . . 1] : C: I d e n t i f i e r ;
255

256 [EdgeOperator ! !] ref ines Edge ::>
257 edgeOperand [1 . . ∗] (List) : C: Edge ;
258 SubPomset ! ! ref ines EdgeOperator : :=
259 edgeOperand [1 . . 1] ,
260 minDepth [1 . . 1] : C: Numerical ,
261 maxDepth [0 . . 1] : C: Numerical ;
262

263 [S ingleEdgeOperator ! !] ref ines EdgeOperator : :=
264 edgeOperand [1 . . 1] ;
265 F i r s t ! ! ref ines SingleEdgeOperator ;
266 Closure ! ! ref ines SingleEdgeOperator ;
267 EdgeInverse ! ! ref ines SingleEdgeOperator ;
268 OrderInverse ! ! ref ines SingleEdgeOperator ;
269 OrderDestroy ! ! ref ines SingleEdgeOperator ;
270 Dupl icateDestroy ! ! ref ines SingleEdgeOperator ;
271

272 [MultiEdgeOperator ! !] ref ines EdgeOperator : :=
273 edgeOperand [2 . . ∗] ;
274 Navigat ion ! ! ref ines MultiEdgeOperator ;
275 AdditiveUnion ! ! ref ines MultiEdgeOperator ;
276 Concatenation ! ! ref ines MultiEdgeOperator ;
277 Pro j e c t i on ! ! ref ines MultiEdgeOperator ;
278 D i f f e r e n c e ! ! ref ines MultiEdgeOperator ;
279 Union ! ! ref ines MultiEdgeOperator ;
280 I n t e r s e c t i o n ! ! ref ines MultiEdgeOperator ;
281

282 [PredicateToEdge ! !] ref ines Edge ::>
283 predicateOperand [1 . . ∗] (List) : C: Pred i cate ;
284

285 [S inglePredicateToEdge ! !] ref ines PredicateToEdge : :=
286 predicateOperand [1 . . 1] ;
287 CastPredicateToEdge ! ! ref ines SinglePredicateToEdge ;

296 Stefano Merenda

288 P r e d i c a t e S e l e c t i o n ! ! ref ines SinglePredicateToEdge : :=
289 boundedVariable [0 . . 1] : C: I d e n t i f i e r ;
290

291 [NumericalToEdge ! !] ref ines Edge ::>
292 numericalOperand [1 . . ∗] (List) : C: Numerical ;
293

294 [SingleNumericalToEdge ! !] ref ines NumericalToEdge : :=
295 numericalOperand [1 . . 1] ;
296 CastNumericalToEdge ! ! ref ines SingleNumericalToEdge ;
297 Numer i ca lSe l e c t i on ! ! ref ines SingleNumericalToEdge : :=
298 boundedVariable [0 . . 1] : C: I d e n t i f i e r ;
299 }
300

301 metapackage Pred i ca t eExpre s s i ons {
302 [Pred i cate ! !] ;
303

304 [ConstantPredicate ! !] ref ines Pred i ca te ;
305 PredicateValue ! ! ref ines ConstantPredicate : :=
306 value [1 . . 1] : C: Boolean ;
307 IsRoot ! ! ref ines ConstantPredicate : := ;
308

309 [Pred icateOperator ! !] ref ines Pred i ca te ::>
310 predicateOperand [1 . . ∗] (List) : C: Pred i cate ;
311

312 [Quant i f iedEdging ! !] ref ines PredicateOperator ::>
313 boundedVariable [1 . . 1] : C: I d e n t i f i e r ,
314 predicateOperand [1 . . 1] ;
315 Quanti f iedConceptEdging ! ! ref ines Quanti f iedEdging : :=
316 excludedConcept [0 . . ∗] (Set) : C: Concept ;
317 Quantif iedTypeEdging ! ! ref ines Quanti f iedEdging : :=
318 excludedConcept [0 . . ∗] (Set) : C: Concept ;
319 Quanti f iedPropertyEdging ! ! ref ines Quanti f iedEdging : :=
320 exc ludedProperty [0 . . ∗] (Set) : C: Property ;
321

322 [S ing l ePred i ca teOperato r ! !]
323 ref ines PredicateOperator : :=
324 predicateOperand [1 . . 1] ;
325 Not ! ! ref ines S ing l ePred i ca teOpera to r ;
326

327 [Mult iPred icateOperator ! !]
328 ref ines PredicateOperator : :=
329 predicateOperand [2 . . ∗] ;
330 And ! ! ref ines Mult iPred icateOperator ;
331 Or ! ! ref ines Mult iPred icateOperator ;
332 Xor ! ! ref ines Mult iPred icateOperator ;
333 I f f ! ! ref ines Mult iPred icateOperator ;
334 Imp l i e s ! ! ref ines Mult iPred icateOperator ;
335

336 [EdgeToPredicate ! !] ref ines Pred i ca te ::>
337 edgeOperand [1 . . ∗] (List) : C: Edge ;
338

339 [S ingleEdgeToPredicate ! !] ref ines EdgeToPredicate : :=

Stefano Merenda 297

A. Meta-Metamodel – The Metamodel of M2L

340 edgeOperand [1 . . 1] ;
341 CastEdgeToPredicate ! ! ref ines SingleEdgeToPredicate ;
342 IsEmpty ! ! ref ines SingleEdgeToPredicate ;
343 I s S i n g l e t o n ! ! ref ines SingleEdgeToPredicate ;
344 I s S e t ! ! ref ines SingleEdgeToPredicate ;
345 IsBag ! ! ref ines SingleEdgeToPredicate ;
346 I s L i s t ! ! ref ines SingleEdgeToPredicate ;
347 I sToset ! ! ref ines SingleEdgeToPredicate ;
348 I sPose t ! ! ref ines SingleEdgeToPredicate ;
349

350 [MultiEdgeToPredicate ! !] ref ines EdgeToPredicate : :=
351 edgeOperand [2 . . ∗] ;
352 EdgeEqual ! ! ref ines MultiEdgeToPredicate ;
353 EdgeNotEqual ! ! ref ines MultiEdgeToPredicate ;
354 Cons i s tsOf ! ! ref ines MultiEdgeToPredicate ;
355 NotConsistsOf ! ! ref ines MultiEdgeToPredicate ;
356 Subset ! ! ref ines MultiEdgeToPredicate ;
357 NotSubset ! ! ref ines MultiEdgeToPredicate ;
358 SubsetOrEqual ! ! ref ines MultiEdgeToPredicate ;
359 NotSubsetOrEqual ! ! ref ines MultiEdgeToPredicate ;
360

361 [NumericalToPredicate ! !] ref ines Pred i ca te ::>
362 numericalOperand [1 . . ∗] (List) : C: Numerical ;
363

364 [Mult iNumericalToPredicate ! !]
365 ref ines NumericalToPredicate : :=
366 numericalOperand [2 . . ∗] ;
367 NumericalEqual ! ! ref ines MultiNumericalToPredicate ;
368 NumericalNotEqual ! ! ref ines MultiNumericalToPredicate ;
369 LessOrEqual ! ! ref ines MultiNumericalToPredicate ;
370 LessThan ! ! ref ines MultiNumericalToPredicate ;
371 GreaterOrEqual ! ! ref ines MultiNumericalToPredicate ;
372 GreaterThan ! ! ref ines MultiNumericalToPredicate ;
373 }
374

375 metapackage Numerica lExpress ions {
376 [Numerical ! !] ;
377

378 [ConstantNumerical ! !] ref ines Numerical ;
379 NumericalValue ! ! ref ines ConstantNumerical : :=
380 value [1 . . 1] : C: Natural ;
381

382 [NumericalOperator ! !] ref ines Numerical : :>
383 numericalOperand [1 . . ∗] (List) : C: Numerical ;
384

385 [Mult iNumericalOperator ! !]
386 ref ines NumericalOperator : :=
387 numericalOperand [2 . . ∗] ;
388 Addit ion ! ! ref ines MultiNumericalOperator ;
389 Subtract ion ! ! ref ines MultiNumericalOperator ;
390 M u l t i p l i c a t i o n ! ! ref ines MultiNumericalOperator ;
391 I n t e g e r D i v i s i o n ! ! ref ines MultiNumericalOperator ;

298 Stefano Merenda

392 Modulo ! ! ref ines MultiNumericalOperator ;
393 Minimum ! ! ref ines MultiNumericalOperator ;
394 Maximum ! ! ref ines MultiNumericalOperator ;
395

396 [EdgeToNumerical ! !] ref ines Numerical : :=
397 edgeOperand [1 . . ∗] (List) : Edge ;
398

399 [SingleEdgeToNumerical ! !] ref ines EdgeToNumerical : :=
400 edgeOperand [1 . . 1] ;
401 CastEdgeToNumerical ! ! ref ines SingleEdgeToNumerical ;
402 Card ina l i t y ! ! ref ines SingleEdgeToNumerical ;
403 Depth ! ! ref ines SingleEdgeToNumerical ;
404 }
405 }
406 }
407 }
408 }
409

410 textual default concrete syntax ”M2L/Text” (”Textual M2L”) {
411 syntaxpackage ORG {
412 syntaxpackage Metamodels {
413 syntaxpackage BasicConcepts {
414 Boolean . True : (”>” OR ”true”) ;
415 Boolean . Fa l se : (”⊥” OR ”fa lse”) ;
416 I n t e r v a l : (P: lower) ” . . ”
417 (|P: upper | = 0 ? ”∗” : (P: upper)) ;
418

419 Named : (P: name)
420 (”(” | | (P: a l ternat iveName) / ” ,” | | ”)”) ;
421 Folder : ”folder” <Named> ”{”
422 (nl | P: s u b f o l d e r) (nl | &P: e ntry) nl ”}” ;
423 }
424

425 syntaxpackage M2L {
426 MetamodelFolder : ”metamodel” <Folder> ;
427 Metamodel : ”metamodel” <Named>
428 (nl ”based” ”on” | | &P: basedOn / ” ,”) ”{”
429 (nl | P: abstractSyntax) (nl | P: concreteSyntax)
430 nl ”}” ;
431 Metametamodel : ”meta−” <Metamodel> ;
432

433 syntaxpackage AbstractSyntax {
434 AbstractSyntax : ”abstract” ”syntax” ”{”
435 (nl | P:metapackage) nl ”}” ;
436 Metapackage : ”metapackage” <Named> ”{”
437 (nl | P: conceptDef | ” ;”) (nl | P: subpackage)
438 nl ”}” ;
439

440 Concept : (P: qual i f iedName / ” .”) ;
441 ConceptDef : ((bool) (P: i sAbs t r a c t)
442 ? ” [” <Named> (P: conceptType) ”]”
443 : <Named> (P: conceptType))

Stefano Merenda 299

A. Meta-Metamodel – The Metamodel of M2L

444 (”refines” | | &P: super / ” ,”)
445 ((bool)P: i sComplete ? ”::=”)
446 ((¬(bool)P: i sComplete ? ”::>”)
447 | | nl | P: propertyDef / ” ,”)
448 (nl ”where” | P: a d d i t i o n a l C o n s t r a i n t) ;
449

450 AnyConceptDef : ”anyconcept” <ConceptDef> ;
451 EnumerationConceptDef : ”enum” <Named> (”=” ”{”
452 | | P: enumElement / ” ,” | | ”}”) ;
453 EnumElementConceptDef : <Named> ;
454 ExternalConceptDef : ”external” <Named> ;
455

456 PropertyDef : (”?” | P: assumption | ”?”)
457 (P: keyType) (P: l inkType) (P: pr operty)
458 (” [” | | P: m u l t i p l i c i t y / ” ,” | | ”]”)
459 (”(” | | P: pomsetRes t r i c t i on / ” ,” | | ”)”)
460 ((”↔” OR ”<−>”) | | P: oppos i t e / ” ,”)
461 (” :” | | P: domain)
462 (”:=” | | P: i n f e r r edVa lue) ;
463

464 ConceptType . Strong : ;
465 ConceptType . Weak : ”!” ;
466 ConceptType . Att r ibute : ” ! ! ” ;
467

468 KeyType . PrimaryLocalkey : ”(PK)” ;
469 KeyType . A l t e rnat iveLoca lkey : ”(K)” ;
470

471 LinkType . Reference : ”&” ;
472 LinkType . Composition : ;
473 LinkType . I n s t a n t i a t i o n : ”%” ;
474 }
475

476 syntaxpackage ConcreteSyntax {
477 ConcreteSyntax : ((bool)P: d e f a u l t ? ”default”)
478 ”concrete” ”syntax” <Named> ”{”
479 (nl | P: syntaxPackage)
480 nl ”}” ;
481 ConcreteSyntaxPackage : ”syntaxpackage”
482 (&P:metapackage) ”{”
483 (nl | P: concreteSyntaxDef)
484 (nl | P: subpackage)
485 nl ”}” ;
486 ConcreteSyntaxDef : (&P: conceptDef) ” :” ;
487

488 syntaxpackage Textual {
489 TextualSyntax : ”textual” <ConcreteSyntax> ;
490 TextualSyntaxDef : <ConcreteSyntaxDef>
491 (P: mainSyntaxTemplate) ” ;” ;
492

493 SyntaxTemplate : (P: templateElement /) ;
494 ProperTerminal : (P: symbols [QUOTED]) ;
495 WhitespaceTerminal : (P: whitespace) ;

300 Stefano Merenda

496 Whitespace . Space : ” ” ;
497 Whitespace . Newline : ”nl” ;
498 NonTerminal : ”(”
499 (P: s t a r t i n g | ” | | ”) (P: p r e f i x | ” |”)
500 (P: l inkType) (P: e dge)
501 (” [” | P: d i f f e r i n g S y n t a x | ”]”)
502 (”/” | P: i n f i x)
503 (” |” | P: s u f f i x) (” | | ” | P: ending)
504 ”)” ;
505 Option : ”(” (P: p r e d i c a t e) ”?” (P: thenCase)
506 (” :” | P: e l s eCase) ”)” ;
507 Switch : ”(” (P: a l t e r n a t i v e / ”OR”) ”)” ;
508 IncludeSyntaxDef : ”<” (&P: conceptDef)
509 (” [” | P: d i f f e r i n g S y n t a x | ”]”) ”>” ;
510 }
511 }
512 }
513

514 syntaxpackage EdgeAlgebra {
515 syntaxpackage EdgeExpress ions {
516 EdgeValue : ”{{”
517 ((P: va lue [”TEXTUAL UNIQUE”] / ” ,”)
518 OR (&P: va lue / ” ,”)) ”}}” ;
519 ConceptEdging : (”C:” | P: concept) ;
520 TypeEdging : (”T:” | P: concept) ;
521 PropertyEdging : (”P:” | P: pr operty) ;
522 S e l f : (”	” OR ”se l f”) ;
523 Equal i ty : (”↪→” OR ”equality”) ;
524 Succe s sor : ”∗” ;
525 BoundedEdgeVariable : (P: i d e n t i f i e r) ;
526

527 SubPomset : (
528 ” [” (P: minDepth) (” ,” | P: maxDepth) ”]”
529 (P: edgeOperand [Bracketed]) ;
530 OR
531 ”subpomset” ”(” (P: edgeOperand)
532 (” ,” | P: minDepth) (” ,” | P: maxDepth) ”)”
533) ;
534

535 F i r s t : (”1” OR ” f i r s t ”) (P: edgeOperand [Bracketed]) ;
536 Closure : (”∧” OR ”closure”)
537 (P: edgeOperand [Bracketed]) ;
538 EdgeInverse : (”�” OR ”edgeInv”)
539 (P: edgeOperand [Bracketed]) ;
540 OrderInverse : (”≷” OR ”orderInv”)
541 (P: edgeOperand [Bracketed]) ;
542 OrderDestroy : (”µ” OR ”orderDest”)
543 (P: edgeOperand [Bracketed]) ;
544 Dupl icateDestroy : (”ε” OR ”dupDest”)
545 (P: edgeOperand [Bracketed]) ;
546

547 Navigat ion : (P: edgeOperand [Bracketed] / ” .”) ;

Stefano Merenda 301

A. Meta-Metamodel – The Metamodel of M2L

548 AdditiveUnion : (P: edgeOperand [Bracketed]
549 / (”]” OR ”addUnion”)) ;
550 Concatenation : (P: edgeOperand [Bracketed]
551 / (”⊕” OR ”concat”)) ;
552 Pro j e c t i on : (P: edgeOperand [Bracketed]
553 / (”↓” OR ”projectOn”)) ;
554 D i f f e r e n c e : (P: edgeOperand [Bracketed] / ”\\”) ;
555 Union : (P: edgeOperand [Bracketed]
556 / (”∪” OR ”union”)) ;
557 I n t e r s e c t i o n : (P: edgeOperand [Bracketed]
558 / (”∩” OR ”intersect”)) ;
559

560 CastPredicateToEdge :
561 ”(edge)” (P: predicateOperand [Bracketed]) ;
562 P r e d i c a t e S e l e c t i o n : (”σ” OR ”select”)
563 (| P: boundedVariable | ” :”)
564 (| P: predicateOperand [Bracketed]) ;
565

566 CastNumericalToEdge :
567 ”(edge)” (P: numericalOperand [Bracketed]) ;
568 Numer i ca lSe l e c t i on : (”σ” OR ”select”)
569 (P: boundedVariable | ” :”)
570 (P: numericalOperand [Bracketed]) ;
571 }
572

573 syntaxpackage Pred i ca t eExpre s s i ons {
574 PredicateValue : (P: va lue) ;
575 Root : ”root?” ;
576

577 Quanti f iedConceptEdging : (”∀C:” OR ”forallC :”)
578 (P: boundedVariable)
579 (”\\” ”{” | | &P: excludedConcept / ” ,” | | ”}”)
580 ” :” (P: predicateOperand [Bracketed]) ;
581 Quantif iedTypeEdging : (”∀T:” OR ”forallT :”)
582 (P: boundedVariable)
583 (”\\” ”{” | | &P: excludedConcept / ” ,” | | ”}”)
584 ” :” (P: predicateOperand [Bracketed]) ;
585 Quanti f iedPropertyEdging : (”∀P:” OR ”forallP :”)
586 (P: boundedVariable)
587 (”\\” ”{” | | &P: exc ludedProperty / ” ,” | | ”}”)
588 ” :” (P: predicateOperand [Bracketed]) ;
589

590 Not : (”¬” OR ”!”) (P: predicateOperand [Bracketed]) ;
591

592 And : (P: predicateOperand [Bracketed]
593 / (”∧” OR ”&”)) ;
594 Or : (P: predicateOperand [Bracketed]
595 / (”∨” OR ”v”)) ;
596 Xor : (P: predicateOperand [Bracketed]
597 / (”⊕” OR ”xor”)) ;
598 I f f : (P: predicateOperand [Bracketed]
599 / (”⇔” OR ”<=>”)) ;

302 Stefano Merenda

600 Imp l i e s : (P: predicateOperand [Bracketed]
601 / (”⇒” OR ”=>”)) ;
602

603 CastEdgeToPredicate :
604 ”(bool)” (P: edgeOperand [Bracketed]) ;
605 IsEmpty : ”empty?” (P: edgeOperand [Bracketed]) ;
606 I s S i n g l e t o n :
607 ”singleton?” (P: edgeOperand [Bracketed]) ;
608 I s S e t : ”set?” (P: edgeOperand [Bracketed]) ;
609 IsBag : ”bag?” (P: edgeOperand [Bracketed]) ;
610 I s L i s t : ” l i s t ?” (P: edgeOperand [Bracketed]) ;
611 I sToset : ”toset?” (P: edgeOperand [Bracketed]) ;
612 I sPose t : ”poset?” (P: edgeOperand [Bracketed]) ;
613

614 EdgeEqual : (P: edgeOperand [Bracketed]
615 / ”=”) ;
616 EdgeNotEqual : (P: edgeOperand [Bracketed]
617 / (”6=” OR ”!=”)) ;
618 Cons i s tsOf : (P: edgeOperand [Bracketed]
619 / (”b” OR ”consistsOf”)) ;
620 NotConsistsOf : (P: edgeOperand [Bracketed]
621 / (”6b” OR ”! consistsOf”)) ;
622 Subset : (P: edgeOperand [Bracketed]
623 / (”⊂” OR ”subset”)) ;
624 NotSubset : (P: edgeOperand [Bracketed]
625 / (”6⊂” OR ”! subset”)) ;
626 SubsetOrEqual : (P: edgeOperand [Bracketed]
627 / (”⊆” OR ”subsetEq”)) ;
628 NotSubsetOrEqual : (P: edgeOperand [Bracketed]
629 / (”6⊆” OR ”! subsetEq”)) ;
630

631 NumericalEqual : (P: numericalOperand [Bracketed]
632 / ”=”) ;
633 NumericalNotEqual : (P: numericalOperand [Bracketed]
634 / (”6=” OR ”!=”)) ;
635 LessOrEqual : (P: numericalOperand [Bracketed]
636 / (”≤” OR ”<=”)) ;
637 LessThan : (P: numericalOperand [Bracketed]
638 / ”<”) ;
639 GreaterOrEqual : (P: numericalOperand [Bracketed]
640 / (”≥” OR ”>=”)) ;
641 GreaterThan : (P: numericalOperand [Bracketed]
642 / ”>”) ;
643 }
644

645 syntaxpackage Numerica lExpress ions {
646 NumericalValue : (P: va lue) ;
647

648 Addit ion : (P: numericalOperand [Bracketed]
649 / ”+”) ;
650 Subtract ion : (P: numericalOperand [Bracketed]
651 / ”−”) ;

Stefano Merenda 303

A. Meta-Metamodel – The Metamodel of M2L

652 M u l t i p l i c a t i o n : (P: numericalOperand [Bracketed]
653 / (” ·” OR ”∗”)) ;
654 In t ege rD iv i s on : (P: numericalOperand [Bracketed]
655 / (”÷” OR ”div”)) ;
656 Modulo : (P: numericalOperand [Bracketed]
657 / (”%” OR ”mod”)) ;
658 Minimum : ”min” ”(” (P: numericalOperand / ” ,”) ”)” ;
659 Maximum: ”max” ”(” (P: numericalOperand / ” ,”) ”)” ;
660

661 CastEdgeToNumerical :
662 ”(number)” (P: edgeOperand [Bracketed]) ;
663 Card ina l i t y : (”size” (P: edgeOperand [Bracketed])
664 OR ” |” (P: edgeOperand) ” |”) ;
665 Depth : (”depth” (P: edgeOperand [Bracketed]) ;
666 OR ” | | ” (P: edgeOperand) ” | | ”) ;
667 }
668 }
669 }
670 }
671 }
672

673 textual concrete syntax Bracketed {
674 syntaxpackage ORG {
675 syntaxpackage Metamodels {
676 syntaxpackage EdgeAlgebra {
677 syntaxpackage EdgeExpress ions {
678 Edge : (<[”M2L/Text”]> OR ”(” <[”M2L/Text”]> ”)”) ;
679

680 Navigat ion : ”(” <[”M2L/Text”]> ”)” ;
681 AdditiveUnion : ”(” <[”M2L/Text”]> ”)” ;
682 Concatenation : ”(” <[”M2L/Text”]> ”)” ;
683 Pro j e c t i on : ”(” <[”M2L/Text”]> ”)” ;
684 D i f f e r e n c e : ”(” <[”M2L/Text”]> ”)” ;
685 Union : ”(” <[”M2L/Text”]> ”)” ;
686 I n t e r s e c t i o n : ”(” <[”M2L/Text”]> ”)” ;
687 }
688

689 syntaxpackage Pred i ca t eExpre s s i ons {
690 Pred i ca te : (<[”M2L/Text”]> OR ”(” <[”M2L/Text”]> ”)”) ;
691

692 And : ”(” <[”M2L/Text”]> ”)” ;
693 Or : ”(” <[”M2L/Text”]> ”)” ;
694 Xor : ”(” <[”M2L/Text”]> ”)” ;
695 I f f : ”(” <[”M2L/Text”]> ”)” ;
696 Imp l i e s : ”(” <[”M2L/Text”]> ”)” ;
697 }
698

699 syntaxpackage Numerica lExpress ions {
700 Numerical : (<[”M2L/Text”]> OR ”(” <[”M2L/Text”]> ”)”) ;
701

702 Addit ion : ”(” <[”M2L/Text”]> ”)” ;
703 Subtract ion : ”(” <[”M2L/Text”]> ”)” ;

304 Stefano Merenda

704 M u l t i p l i c a t i o n : ”(” <[”M2L/Text”]> ”)” ;
705 In t ege rD iv i s on : ”(” <[”M2L/Text”]> ”)” ;
706 Modulo : ”(” <[”M2L/Text”]> ”)” ;
707 }
708 }
709 }
710 }
711 }
712 }

Stefano Merenda 305

Appendix B
Metamodel and exemplary models for the
Running Example

This appendix shows the complete metamodel as well as the exemplary models for the
overall running example. The running example illustrates a simple language for modelling
data flow algorithms. The metamodel includes both abstract and textual concrete syntax.
In particular two textual concrete syntaxes are defined: The Structural one concentrates
on the fact that a data flow diagram consists of (sub-)components which are connected by
channels. The Functional concentrates on the fact that a data flow diagram can be seen as
a mathematical function (may be with additional variables).

For a deeper introduction to the running example please refer to Chapter 3, Running exam-
ple: Modelling dataflow algorithms, p. 45.

Contents
B.1. Metamodel of the Running Example 307

B.2. Exemplary Model: Basic Library 312

B.3. Exemplary Model: Integrator Network 313

B.4. Exemplary Model: Demonstration Vehicle 315

B.5. Exemplary Model: Textual Syntax Demonstration 320

B.1. Metamodel of the Running Example

Listing B.1: Metamodel of the Running Example

1 metamodel DataflowNetworks
2 based on ”Metamodelling Language M2L” {
3 abstract syntax {
4 metapackage ORG {
5 metapackage Metamodels {
6 metapackage Demos {
7 metapackage DataflowNetworks {
8 [DefContainer] ref ines FolderEntry ::>

Stefano Merenda 307

B. Metamodel and exemplary models for the Running Example

9 &inc ludedLib [0 . . ∗] (Set) ↔ includedBy : C: Library ,
10 componentDef [0 . . ∗] (Set) : C: Component ,
11 &includedContext :=] P: inc ludedLib .P: export
12] �P: composite .P: inc ludedContext ;
13

14 Library ref ines DefContainer ::>
15 &includedBy [0 . . ∗] (Set)
16 ↔ inc ludedLib : C: DefContainer ,
17 s u b l i b r a r y [0 . . ∗] (Set) : C: Library ,
18 &export :=] P: s u b l i b r a r y .P: export ;
19

20 [Component !] ref ines DefContainer ::>
21 s i g n a t u r e [1 . . 1] : C: S ignature ,
22 i sP r e := (edge) (P: ckey = {{ I d e n t i f i e r (ba s i c) ,
23 I d e n t i f i e r (t iming) , I d e n t i f i e r (pre) }}) ;
24 isAdd := (edge) (P: ckey = {{ I d e n t i f i e r (ba s i c) ,
25 I d e n t i f i e r (a r i t h m e t r i c s) , I d e n t i f i e r (add) }}) ;
26 i sMult := (edge) (P: ckey = {{ I d e n t i f i e r (ba s i c) ,
27 I d e n t i f i e r (a r i t h m e t r i c s) , I d e n t i f i e r (mult) }}) ;
28

29 Signature ! : :>
30 inPort [0 . . ∗] (List) : C: Port ,
31 outPort [0 . . ∗] (List) : C: Port ;
32

33 Port ! ref ines Named ::>
34 i s I n Po r t := (edge)¬empty? �P: inPort ,
35 i sOutPort := (edge)¬empty? �P: outPort ;
36

37 Block ! ref ines Component ::> ;
38

39 Network ! ref ines Component ::>
40 %subcomponent [0 . . ∗] (Set) :
41 P: inc ludedContext .P: componentDef ,
42 channel [0 . . ∗] (Set) : C: Channel ;
43

44 Channel ! ref ines Named ::>
45 &fromPort [1 . . 1] : �P: channel .
46 (P: s i g n a t u r e .P: inPort
47] P: subcomponent .P: s i g n a t u r e .P: outPort) ,
48 &toPort [1 . . ∗] (Set) : �P: channel .
49 (P: s i g n a t u r e .P: outPort
50] P: subcomponent .P: s i g n a t u r e .P: inPort) ;
51 &borderPort := 1 (
52 (P: fromPort ∩ σ (bool)P: i s I n Po r t)
53 ⊕
54 (P: toPort ∩ σ (bool)P: i sOutPort)
55) ;
56 replaceByBorderPort := (edge) (
57 |P: fromPort ∩ σ (bool)P: i s I n Po r t | = 1
58 ∨
59 |P: toPort ∩ σ (bool)P: i sOutPort | = 1
60) ,

308 Stefano Merenda

B.1. Metamodel of the Running Example

61 i s InputForPre := (edge) ({{ Boolean (true) }}
62 ⊂ (P: toPort .�P: composite .�P: composite .P: i sPr e)) ;
63 }
64 }
65 }
66 }
67 }
68 textual default concrete syntax S t r u c t u r a l {
69 syntaxpackage ORG {
70 syntaxpackage Metamodels {
71 syntaxpackage Demos {
72 syntaxpackage DataflowNetworks {
73 DefContainer : <[P r e f i x]> <Named> <[PreBody]>
74 ”{” <[Body Structura l]> ”}” ;
75 Signature : ”(” (P: inPort / ” ,”) ”−>”
76 (P: outPort / ” ,”) ”)” ;
77 Port : (P: name) ” :” ”Any” ;
78 Channel : ”channel” <Named> ” :”
79 (&P: fromPort / ” ,”) ”=>”
80 (&P: toPort / ” ,”) ” ;” ;
81 }
82 }
83 }
84 }
85 }
86 textual concrete syntax Funct iona l {
87 syntaxpackage ORG {
88 syntaxpackage Metamodels {
89 syntaxpackage Demos {
90 syntaxpackage DataflowNetworks {
91 DefContainer : <[P r e f i x]> <Named> <[PreBody]>
92 ”{” <[Body Functional]> ”}” ;
93 }
94 }
95 }
96 }
97 }
98 textual concrete syntax P r e f i x {
99 syntaxpackage ORG {

100 syntaxpackage Metamodels {
101 syntaxpackage Demos {
102 syntaxpackage DataflowNetworks {
103 DefContainer : ”container” ;
104 Library : ”library” ;
105 Component : ”component” ;
106 Block : ”block” ;
107 Network : ”network” ;
108 }
109 }
110 }
111 }
112 }

Stefano Merenda 309

B. Metamodel and exemplary models for the Running Example

113 textual concrete syntax PreBody {
114 syntaxpackage ORG {
115 syntaxpackage Metamodels {
116 syntaxpackage Demos {
117 syntaxpackage DataflowNetworks {
118 DefContainer : ”” ;
119 Component : (| P: s i g n a t u r e) ;
120 }
121 }
122 }
123 }
124 }
125 textual concrete syntax Body Structura l {
126 syntaxpackage ORG {
127 syntaxpackage Metamodels {
128 syntaxpackage Demos {
129 syntaxpackage DataflowNetworks {
130 DefContainer :
131 (nl ”include” | &P: inc ludedLib | ” ;” | | nl)
132 (nl nl | P: componentDef [S t r u c t u r a l] | | nl) ;
133 Library : <DefContainer>
134 (nl nl ”sub” | P: s u b l i b r a r y [S t r u c t u r a l] | | nl) ;
135 Network : <Component>
136 (nl ”subcomponent” | %P: subcomponent | ” ;” | | nl)
137 (nl | P: channel [S t r u c t u r a l] | | nl) ;
138 }
139 }
140 }
141 }
142 }
143 textual concrete syntax Body Functional {
144 syntaxpackage ORG {
145 syntaxpackage Metamodels {
146 syntaxpackage Demos {
147 syntaxpackage DataflowNetworks {
148 DefContainer :
149 (nl ”include” | &P: inc ludedLib | ” ;” | | nl)
150 (nl nl | P: componentDef [Funct iona l] | | nl) ;
151 Network : <Component> (nl | (
152 (P: subcomponent
153 ∩ σ¬ |P: s i g n a t u r e .P: outPort | = 1)
154 ∪
155 (P: subcomponent
156 ∩ (P: s i g n a t u r e .P: outPort .�P: toPort
157 .P: fromPort .�P: composite .�P: composite))
158 ∪
159 ((P: s i g n a t u r e .µP: outPort)
160 ∩ (P: s i g n a t u r e .P: inPort .�P: fromPort .P: toPort))
161 ∪
162 (P: s i g n a t u r e .µP: outPort
163 ∩ σ | (�P: toPort .P: toPort) ∩ σ (bool)P: i sOutPort |
164 ≥ 2)

310 Stefano Merenda

B.1. Metamodel of the Running Example

165) [Funct ional Ass ignment] | | nl) ;
166 Library : <DefContainer>
167 (nl nl ”sub” | P: s u b l i b r a r y [Funct iona l] | | nl) ;
168 }
169 }
170 }
171 }
172 }
173 textual concrete syntax Funct ional Ass ignment {
174 syntaxpackage ORG {
175 syntaxpackage Metamodels {
176 syntaxpackage Demos {
177 syntaxpackage DataflowNetworks {
178 Port : (&) ”:=”
179 (�P: toPort [Functional ChannelOrBorderPortName])
180 ” ;” ;
181 Component : (|P: s i g n a t u r e .P: outPort | <= 1
182 ? ((P: s i g n a t u r e .P: outPort .�P: fromPort)
183 [Functional ChannelOrBorderPortName] | | ”:=”)
184 : (”(” | | (P: s i g n a t u r e .P: outPort .�P: fromPort)
185 [Functional ChannelOrBorderPortName] / ” ,”
186 | | ”)” ”:=”)
187) <[Functional Argument]> ” ;” ;
188 }
189 }
190 }
191 }
192 }
193 textual concrete syntax Functional Argument {
194 syntaxpackage ORG {
195 syntaxpackage Metamodels {
196 syntaxpackage Demos {
197 syntaxpackage DataflowNetworks {
198 Channel : ((
199 (bool)P: i s InputForPre
200 ∨ (
201 ¬ |P: fromPort .�P: composite .P: outPort | = 1
202 ∧
203 (bool) (P: fromPort .P: i sOutPort)
204)
205)
206 ? <[Functional ChannelOrBorderPortName]>
207 : ((bool) (P: fromPort .P: i s I n Po r t)
208 ? (&P: fromPort)
209 : (P: fromPort .�P: composite .�P: composite)
210)
211) ;
212 Component : (&P: template) ”(”
213 ((P: s i g n a t u r e .P: inPort .�P: toPort)
214 [Functional Argument] / ” ,”) ”)” ;
215 }
216 }

Stefano Merenda 311

B. Metamodel and exemplary models for the Running Example

217 }
218 }
219 }
220 textual concrete syntax Functional ChannelOrBorderPortName {
221 syntaxpackage ORG {
222 syntaxpackage Metamodels {
223 syntaxpackage Demos {
224 syntaxpackage DataflowNetworks {
225 Channel : ((bool) (P: replaceByBorderPort)
226 ? (&P: borderPort)
227 : (&)
228) ;
229 }
230 }
231 }
232 }
233 }
234 }

B.2. Exemplary Model: Basic Library

B.2.1. Functional/Structural Syntax

Listing B.2: Exemplary Model: Basic Library (functional/structural syntax)

1 l ibrary bas i c {
2 sublibrary a r i t h m e t r i c s {
3 block add (x :Any, y :Any −> r e s u l t :Any) {}
4 block mult (x :Any, y :Any −> r e s u l t :Any) {}
5 }
6 sublibrary t iming {
7 block dT (−> out :Any) {}
8 block pre (in :Any −> out :Any) {}
9 }

10 }

B.2.2. Canonical Syntax

Listing B.3: Exemplary Model: Basic Library (canonical syntax)

1 Library bas i c {
2 includedBy : i n t e g r a t o r ;
3 sublibrary : Library a r i t h m e t r i c s {
4 componentDef : Block add {
5 signature : Signature {
6 inPort : Port x {} ;
7 inPort : Port y {} ;
8 outPort : Port r e s u l t {} ;
9 } ;

312 Stefano Merenda

B.3. Exemplary Model: Integrator Network

10 } ;
11 componentDef : Block mult {
12 signature : Signature {
13 inPort : Port x {} ;
14 inPort : Port y {} ;
15 outPort : Port r e s u l t {} ;
16 } ;
17 } ;
18 } ;
19 sublibrary : Library t iming {
20 includedBy : ”Textual Syntax Demonstration” . ”pre loop” ;
21 componentDef : Block dT {
22 signature : Signature {
23 outPort : Port out {} ;
24 } ;
25 } ;
26 componentDef : Block pre {
27 signature : Signature {
28 inPort : Port in {} ;
29 outPort : Port out {} ;
30 } ;
31 } ;
32 } ;
33 }

B.3. Exemplary Model: Integrator Network

B.3.1. Functional Syntax

Listing B.4: Exemplary Model: Integrator Network (functional syntax)

1 network i n t e g r a t o r (x :Any −> y :Any) {
2 include bas i c ;
3

4 y := add (mult (x , dT()) , pre (y)) ;
5 }

B.3.2. Structural Syntax

Listing B.5: Exemplary Model: Integrator Network (structural syntax)

1 network i n t e g r a t o r (x :Any −> y :Any) {
2 include bas i c ;
3

4 subcomponent dT[dT0] ;
5 subcomponent pre [pre0] ;
6 subcomponent mult [mult0] ;
7 subcomponent add [add0] ;
8

Stefano Merenda 313

B. Metamodel and exemplary models for the Running Example

9 channel c1 : x => mult0 . x ;
10 channel c2 : dT0 . out => mult0 . y ;
11 channel c3 : mult0 . r e s u l t => add0 . x ;
12 channel c4 : pre0 . out => add0 . y ;
13 channel c5 : add0 . r e s u l t => pre0 . in , y ;
14 }

B.3.3. Canonical Syntax

Listing B.6: Exemplary Model: Integrator Network (canonical syntax)

1 Network i n t e g r a t o r {
2 includedLib : b a s i c ;
3 signature : Signature {
4 inPort : Port x {} ;
5 outPort : Port y {} ;
6 } ;
7 subcomponent : Block add0 {
8 ikey : add0 ;
9 template : add ;

10 signature : Signature {
11 template : add . s i gna ture ;
12 inPort : Port x {
13 template : add . x ;
14 } ;
15 inPort : Port y {
16 template : add . y ;
17 } ;
18 outPort : Port r e s u l t {
19 template : add . r e s u l t ;
20 } ;
21 } ;
22 } ;
23 subcomponent : Block dT0 {
24 ikey : dT0 ;
25 template : dT ;
26 signature : Signature {
27 template : dT . s i gna ture ;
28 outPort : Port out {
29 template : dT . out ;
30 } ;
31 } ;
32 } ;
33 subcomponent : Block mult0 {
34 ikey : mult0 ;
35 template : mult ;
36 signature : Signature {
37 template : mult . s i gna ture ;
38 inPort : Port x {
39 template : mult . x ;
40 } ;

314 Stefano Merenda

B.4. Exemplary Model: Demonstration Vehicle

41 inPort : Port y {
42 template : mult . y ;
43 } ;
44 outPort : Port r e s u l t {
45 template : mult . r e s u l t ;
46 } ;
47 } ;
48 } ;
49 subcomponent : Block pre0 {
50 ikey : pre0 ;
51 template : pre ;
52 signature : Signature {
53 template : pre . s i gna ture ;
54 inPort : Port in {
55 template : pre . in ;
56 } ;
57 outPort : Port out {
58 template : pre . out ;
59 } ;
60 } ;
61 } ;
62 channel : Channel c1 {
63 fromPort : x ;
64 toPort : mult0 . x ;
65 } ;
66 channel : Channel c2 {
67 fromPort : dT0 . out ;
68 toPort : mult0 . y ;
69 } ;
70 channel : Channel c3 {
71 fromPort : mult0 . r e s u l t ;
72 toPort : add0 . x ;
73 } ;
74 channel : Channel c4 {
75 fromPort : pre0 . out ;
76 toPort : add0 . y ;
77 } ;
78 channel : Channel c5 {
79 fromPort : add0 . r e s u l t ;
80 toPort : pre0 . in ;
81 toPort : y ;
82 } ;
83 }

B.4. Exemplary Model: Demonstration Vehicle

B.4.1. Functional Syntax

Listing B.7: Exemplary Model: Demonstration Vehicle (functional syntax)

Stefano Merenda 315

B. Metamodel and exemplary models for the Running Example

1 network ”Demonstration Vehicle” (−>) {
2

3 network ”Adaptive Cruise Control” (mode :Any, ”desired speed” :Any,
4 ”current speed” :Any, d i s t ance :Any −> s t a t u s :Any,
5 ”target speed” :Any) {
6 . . .
7 }
8 block Display (s t a t u s :Any −>) {}
9 block Engine (”target speed” :Any −>) {}

10 block ”Radar Sensor” (−> d i s t anc e :Any) {}
11 block ”Rotation Sensor” (−> ”current speed” :Any) {}
12 block ”User Interface” (−> mode :Any, ”desired speed” :Any) {}
13

14 (mode , ”desired speed”) := ”User Interface” () ;
15 (s tatus , ”target speed”) := ”Adaptive Cruise Control”(
16 mode , ”desired speed” , ”Rotation Sensor” () , ”Radar Sensor” ()) ;
17 Display (s t a t u s) ;
18 Engine (”target speed”) ;
19 }

B.4.2. Structural Syntax

Listing B.8: Exemplary Model: Demonstration Vehicle (structural syntax)

1 network ”Demonstration Vehicle” (−>) {
2

3 network ”Adaptive Cruise Control” (mode :Any, ”desired speed” :Any,
4 ”current speed” :Any, d i s t ance :Any −> s t a t u s :Any,
5 ”target speed” :Any) {
6 . . .
7 }
8 block Display (s t a t u s :Any −>) {}
9 block Engine (”target speed” :Any −>) {}

10 block ”Radar Sensor” (−> d i s t anc e :Any) {}
11 block ”Rotation Sensor” (−> ”current speed” :Any) {}
12 block ”User Interface” (−> mode :Any, ”desired speed” :Any) {}
13

14 subcomponent ”Adaptive Cruise Control”
15 [”Adaptive Cruise Control0”] ;
16 subcomponent Display [Display0] ;
17 subcomponent Engine [Engine0] ;
18 subcomponent ”Radar Sensor” [”Radar Sensor0”] ;
19 subcomponent ”Rotation Sensor” [”Rotation Sensor0”] ;
20 subcomponent ”User Interface” [”User Interface0”] ;
21

22 channel ”current speed” : ”Rotation Sensor0” . ”current speed”
23 => ”Adaptive Cruise Control0” . ”current speed” ;
24 channel ”desired speed” : ”User Interface0” . ”desired speed”
25 => ”Adaptive Cruise Control0” . ”desired speed” ;
26 channel d i s t anc e : ”Radar Sensor0” . d i s t ance
27 => ”Adaptive Cruise Control0” . d i s t ance ;

316 Stefano Merenda

B.4. Exemplary Model: Demonstration Vehicle

28 channel mode : ”User Interface0” . mode
29 => ”Adaptive Cruise Control0” . mode ;
30 channel s t a t u s : ”Adaptive Cruise Control0” . s t a t u s
31 => Display0 . s t a t u s ;
32 channel ”target speed” : ”Adaptive Cruise Control0” . ”target speed”
33 => Engine0 . ”target speed” ;
34 }

B.4.3. Canonical Syntax

Listing B.9: Exemplary Model: Demonstration Vehicle (canonical syntax)

1 Network ”Demonstration Vehicle” {
2 componentDef : Network ”Adaptive Cruise Control” {
3 signature : Signature {
4 inPort : Port mode {} ;
5 inPort : Port ”desired speed” {} ;
6 inPort : Port ”current speed” {} ;
7 inPort : Port d i s t anc e {} ;
8 outPort : Port s t a t u s {} ;
9 outPort : Port ”target speed” {} ;

10 } ;
11 } ;
12 componentDef : Block Display {
13 signature : Signature {
14 inPort : Port s t a t u s {} ;
15 } ;
16 } ;
17 componentDef : Block Engine {
18 signature : Signature {
19 inPort : Port ”target speed” {} ;
20 } ;
21 } ;
22 componentDef : Block ”Radar Sensor” {
23 signature : Signature {
24 outPort : Port d i s t anc e {} ;
25 } ;
26 } ;
27 componentDef : Block ”Rotation Sensor” {
28 signature : Signature {
29 outPort : Port ”current speed” {} ;
30 } ;
31 } ;
32 componentDef : Block ”User Interface” {
33 signature : Signature {
34 outPort : Port mode {} ;
35 outPort : Port ”desired speed” {} ;
36 } ;
37 } ;
38 signature : Signature {} ;
39 subcomponent : Network ”Adaptive Cruise Control0” {

Stefano Merenda 317

B. Metamodel and exemplary models for the Running Example

40 ikey : ”Adaptive Cruise Control0” ;
41 template : ”Adaptive Cruise Control” ;
42 signature : Signature {
43 template : ”Adaptive Cruise Control” . s i gna ture ;
44 inPort : Port mode {
45 template : ”Adaptive Cruise Control” . mode ;
46 } ;
47 inPort : Port ”desired speed” {
48 template : ”Adaptive Cruise Control” . ”desired speed” ;
49 } ;
50 inPort : Port ”current speed” {
51 template : ”Adaptive Cruise Control” . ”current speed” ;
52 } ;
53 inPort : Port d i s t anc e {
54 template : ”Adaptive Cruise Control” . d i s t ance ;
55 } ;
56 outPort : Port s t a t u s {
57 template : ”Adaptive Cruise Control” . s t a t u s ;
58 } ;
59 outPort : Port ”target speed” {
60 template : ”Adaptive Cruise Control” . ”target speed” ;
61 } ;
62 } ;
63 } ;
64 subcomponent : Block Display0 {
65 ikey : Display0 ;
66 template : Display ;
67 signature : Signature {
68 template : Display . s i gna ture ;
69 inPort : Port s t a t u s {
70 template : Display . s t a t u s ;
71 } ;
72 } ;
73 } ;
74 subcomponent : Block Engine0 {
75 ikey : Engine0 ;
76 template : Engine ;
77 signature : Signature {
78 template : Engine . s i gna ture ;
79 inPort : Port ”target speed” {
80 template : Engine . ”target speed” ;
81 } ;
82 } ;
83 } ;
84 subcomponent : Block ”Radar Sensor0” {
85 ikey : ”Radar Sensor0” ;
86 template : ”Radar Sensor” ;
87 signature : Signature {
88 template : ”Radar Sensor” . s i gna ture ;
89 outPort : Port d i s t anc e {
90 template : ”Radar Sensor” . d i s t ance ;
91 } ;

318 Stefano Merenda

B.4. Exemplary Model: Demonstration Vehicle

92 } ;
93 } ;
94 subcomponent : Block ”Rotation Sensor0” {
95 ikey : ”Rotation Sensor0” ;
96 template : ”Rotation Sensor” ;
97 signature : Signature {
98 template : ”Rotation Sensor” . s i gna ture ;
99 outPort : Port ”current speed” {

100 template : ”Rotation Sensor” . ”current speed” ;
101 } ;
102 } ;
103 } ;
104 subcomponent : Block ”User Interface0” {
105 ikey : ”User Interface0” ;
106 template : ”User Interface” ;
107 signature : Signature {
108 template : ”User Interface” . s i gna ture ;
109 outPort : Port mode {
110 template : ”User Interface” . mode ;
111 } ;
112 outPort : Port ”desired speed” {
113 template : ”User Interface” . ”desired speed” ;
114 } ;
115 } ;
116 } ;
117 channel : Channel ”current speed” {
118 fromPort : ”Rotation Sensor0” . ”current speed” ;
119 toPort : ”Adaptive Cruise Control0” . ”current speed” ;
120 } ;
121 channel : Channel ”desired speed” {
122 fromPort : ”User Interface0” . ”desired speed” ;
123 toPort : ”Adaptive Cruise Control0” . ”desired speed” ;
124 } ;
125 channel : Channel d i s t anc e {
126 fromPort : ”Radar Sensor0” . d i s t ance ;
127 toPort : ”Adaptive Cruise Control0” . d i s t ance ;
128 } ;
129 channel : Channel mode {
130 fromPort : ”User Interface0” . mode ;
131 toPort : ”Adaptive Cruise Control0” . mode ;
132 } ;
133 channel : Channel s t a t u s {
134 fromPort : ”Adaptive Cruise Control0” . s t a t u s ;
135 toPort : Display0 . s t a t u s ;
136 } ;
137 channel : Channel ”target speed” {
138 fromPort : ”Adaptive Cruise Control0” . ”target speed” ;
139 toPort : Engine0 . ”target speed” ;
140 } ;
141 }

Stefano Merenda 319

B. Metamodel and exemplary models for the Running Example

B.5. Exemplary Model: Textual Syntax Demonstration

B.5.1. Functional Syntax

Listing B.10: Exemplary Model: Textual Syntax Demonstration (functional syntax)

1 l ibrary ”Textual Syntax Demonstration” {
2 network ”alternative out” (in1 :Any −> out1 :Any, out2 :Any) {
3 block A (in1 :Any −> out1 :Any) {}
4

5 out2 := A(in1) ;
6 out1 := in1 ;
7 }
8

9 network d u p l i c a t o r (in1 :Any −> out1 :Any, out2 :Any) {
10 out1 := in1 ;
11 out2 := in1 ;
12 }
13

14 network i d e n t i t y (in1 :Any −> out1 :Any) {
15 out1 := in1 ;
16 }
17

18 network mixed (−> out1 :Any, out2 :Any) {
19 block A (−> out1 :Any, out2 :Any) {}
20 block B (in1 :Any −> out1 :Any) {}
21

22 (out1 , ch2) := A() ;
23 out2 := B(ch2) ;
24 }
25

26 network ”pre loop” (−> out1 :Any) {
27 include bas i c . t iming ;
28

29 out1 := pre (out1) ;
30 }
31

32 network s ink (in1 :Any −>) {
33 block A (in1 :Any −>) {}
34

35 A(in1) ;
36 }
37

38 network source1 (−> out1 :Any, out2 :Any) {
39 block A (−> out1 :Any) {}
40

41 ch1 := A() ;
42 out1 := ch1 ;
43 out2 := ch1 ;
44 }
45

46 network source2 (−> out1 :Any, out2 :Any) {

320 Stefano Merenda

B.5. Exemplary Model: Textual Syntax Demonstration

47 block A (−> out1 :Any, out2 :Any) {}
48

49 (out1 , out2) := A() ;
50 }
51 }

B.5.2. Structural Syntax

Listing B.11: Exemplary Model: Textual Syntax Demonstration (structural syntax)

1 l ibrary ”Textual Syntax Demonstration” {
2

3 network ”alternative out” (in1 :Any −> out1 :Any, out2 :Any) {
4 block A (in1 :Any −> out1 :Any) {}
5 subcomponent A[A0] ;
6

7 channel ch1 : in1 => A0 . in1 , out1 ;
8 channel ch2 : A0 . out1 => out2 ;
9 }

10

11 network d u p l i c a t o r (in1 :Any −> out1 :Any, out2 :Any) {
12 channel ch1 : in1 => out1 , out2 ;
13 }
14

15 network i d e n t i t y (in1 :Any −> out1 :Any) {
16 channel ch1 : in1 => out1 ;
17 }
18

19 network mixed (−> out1 :Any, out2 :Any) {
20 block A (−> out1 :Any, out2 :Any) {}
21 block B (in1 :Any −> out1 :Any) {}
22 subcomponent A[A0] ;
23 subcomponent B[B0] ;
24

25 channel ch1 : A0 . out1 => out1 ;
26 channel ch2 : A0 . out2 => B0 . in1 ;
27 channel ch3 : B0 . out1 => out2 ;
28 }
29

30 network ”pre loop” (−> out1 :Any) {
31 include bas i c . t iming ;
32 subcomponent pre [pre0] ;
33

34 channel ch1 : pre0 . out => pre0 . in , out1 ;
35 }
36

37 network s ink (in1 :Any −>) {
38 block A (in1 :Any −>) {}
39 subcomponent A[A0] ;
40

41 channel ch1 : in1 => A0 . in1 ;

Stefano Merenda 321

B. Metamodel and exemplary models for the Running Example

42 }
43

44 network source1 (−> out1 :Any, out2 :Any) {
45 block A (−> out1 :Any) {}
46 subcomponent A[A0] ;
47

48 channel ch1 : A0 . out1 => out1 , out2 ;
49 }
50

51 network source2 (−> out1 :Any, out2 :Any) {
52 block A (−> out1 :Any, out2 :Any) {}
53 subcomponent A[A0] ;
54

55 channel ch1 : A0 . out1 => out1 ;
56 channel ch2 : A0 . out2 => out2 ;
57 }
58 }

B.5.3. Canonical Syntax

Listing B.12: Exemplary Model: Textual Syntax Demonstration (canonical syntax)

1 Library ”Textual Syntax Demonstration” {
2 componentDef : Network ”alternative out” {
3 componentDef : Block A {
4 signature : Signature {
5 inPort : Port in1 {} ;
6 outPort : Port out1 {} ;
7 } ;
8 } ;
9 signature : Signature {

10 inPort : Port in1 {} ;
11 outPort : Port out1 {} ;
12 outPort : Port out2 {} ;
13 } ;
14 subcomponent : Block A0 {
15 ikey : A0 ;
16 template : A;
17 signature : Signature {
18 template : A. s i gna ture ;
19 inPort : Port in1 {
20 template : A. in1 ;
21 } ;
22 outPort : Port out1 {
23 template : A. out1 ;
24 } ;
25 } ;
26 } ;
27 channel : Channel ch1 {
28 fromPort : in1 ;
29 toPort : A0 . in1 ;

322 Stefano Merenda

B.5. Exemplary Model: Textual Syntax Demonstration

30 toPort : out1 ;
31 } ;
32 channel : Channel ch2 {
33 fromPort : A0 . out1 ;
34 toPort : out2 ;
35 } ;
36 } ;
37 componentDef : Network d u p l i c a t o r {
38 signature : Signature {
39 inPort : Port in1 {} ;
40 outPort : Port out1 {} ;
41 outPort : Port out2 {} ;
42 } ;
43 channel : Channel ch1 {
44 fromPort : in1 ;
45 toPort : out1 ;
46 toPort : out2 ;
47 } ;
48 } ;
49 componentDef : Network i d e n t i t y {
50 signature : Signature {
51 inPort : Port in1 {} ;
52 outPort : Port out1 {} ;
53 } ;
54 channel : Channel ch1 {
55 fromPort : in1 ;
56 toPort : out1 ;
57 } ;
58 } ;
59 componentDef : Network mixed {
60 componentDef : Block A {
61 signature : Signature {
62 outPort : Port out1 {} ;
63 outPort : Port out2 {} ;
64 } ;
65 } ;
66 componentDef : Block B {
67 signature : Signature {
68 inPort : Port in1 {} ;
69 outPort : Port out1 {} ;
70 } ;
71 } ;
72 signature : Signature {
73 outPort : Port out1 {} ;
74 outPort : Port out2 {} ;
75 } ;
76 subcomponent : Block A0 {
77 ikey : A0 ;
78 template : A;
79 signature : Signature {
80 template : A. s i gna ture ;
81 outPort : Port out1 {

Stefano Merenda 323

B. Metamodel and exemplary models for the Running Example

82 template : A. out1 ;
83 } ;
84 outPort : Port out2 {
85 template : A. out2 ;
86 } ;
87 } ;
88 } ;
89 subcomponent : Block B0 {
90 ikey : B0 ;
91 template : B;
92 signature : Signature {
93 template : B. s i gna ture ;
94 inPort : Port in1 {
95 template : B. in1 ;
96 } ;
97 outPort : Port out1 {
98 template : B. out1 ;
99 } ;

100 } ;
101 } ;
102 channel : Channel ch1 {
103 fromPort : A0 . out1 ;
104 toPort : out1 ;
105 } ;
106 channel : Channel ch2 {
107 fromPort : A0 . out2 ;
108 toPort : B0 . in1 ;
109 } ;
110 channel : Channel ch3 {
111 fromPort : B0 . out1 ;
112 toPort : out2 ;
113 } ;
114 } ;
115 componentDef : Network ”pre loop” {
116 includedLib : b a s i c . t iming ;
117 signature : Signature {
118 outPort : Port out1 {} ;
119 } ;
120 subcomponent : Block pre0 {
121 ikey : pre0 ;
122 template : pre ;
123 signature : Signature {
124 template : pre . s i gna ture ;
125 inPort : Port in {
126 template : b a s i c . t iming . pre . in ;
127 } ;
128 outPort : Port out {
129 template : b a s i c . t iming . pre . out ;
130 } ;
131 } ;
132 } ;
133 channel : Channel ch1 {

324 Stefano Merenda

B.5. Exemplary Model: Textual Syntax Demonstration

134 fromPort : pre0 . out ;
135 toPort : pre0 . in ;
136 toPort : out1 ;
137 } ;
138 } ;
139 componentDef : Network s ink {
140 componentDef : Block A {
141 signature : Signature {
142 inPort : Port in1 {} ;
143 } ;
144 } ;
145 signature : Signature {
146 inPort : Port in1 {} ;
147 } ;
148 subcomponent : Block A0 {
149 ikey : A0 ;
150 template : A;
151 signature : Signature {
152 template : A. s i gna ture ;
153 inPort : Port in1 {
154 template : A. in1 ;
155 } ;
156 } ;
157 } ;
158 channel : Channel ch1 {
159 fromPort : in1 ;
160 toPort : A0 . in1 ;
161 } ;
162 } ;
163 componentDef : Network source1 {
164 componentDef : Block A {
165 signature : Signature {
166 outPort : Port out1 {} ;
167 } ;
168 } ;
169 signature : Signature {
170 outPort : Port out1 {} ;
171 outPort : Port out2 {} ;
172 } ;
173 subcomponent : Block A0 {
174 ikey : A0 ;
175 template : A;
176 signature : Signature {
177 template : A. s i gna ture ;
178 outPort : Port out1 {
179 template : A. out1 ;
180 } ;
181 } ;
182 } ;
183 channel : Channel ch1 {
184 fromPort : A0 . out1 ;
185 toPort : out1 ;

Stefano Merenda 325

B. Metamodel and exemplary models for the Running Example

186 toPort : out2 ;
187 } ;
188 } ;
189 componentDef : Network source2 {
190 componentDef : Block A {
191 signature : Signature {
192 outPort : Port out1 {} ;
193 outPort : Port out2 {} ;
194 } ;
195 } ;
196 signature : Signature {
197 outPort : Port out1 {} ;
198 outPort : Port out2 {} ;
199 } ;
200 subcomponent : Block A0 {
201 ikey : A0 ;
202 template : A;
203 signature : Signature {
204 template : A. s i gna ture ;
205 outPort : Port out1 {
206 template : A. out1 ;
207 } ;
208 outPort : Port out2 {
209 template : A. out2 ;
210 } ;
211 } ;
212 } ;
213 channel : Channel ch1 {
214 fromPort : A0 . out1 ;
215 toPort : out1 ;
216 } ;
217 channel : Channel ch2 {
218 fromPort : A0 . out2 ;
219 toPort : out2 ;
220 } ;
221 } ;
222 }

326 Stefano Merenda

	Introduction
	Current Situation
	Three levels of integration
	Approach
	Related work
	Contribution
	Overview of the present thesis

	Metamodels and Seamless Language Engineering
	Metamodels – comprising the four vertical tooling aspects
	The three dimensions of seamless language engineering
	Requirements to a metamodelling language
	Procedure specifying the (self-describing) metamodelling language M2L

	Running example: Modelling dataflow algorithms
	Criteria for selecting a suitable running example
	Industrial project context
	Informal description of the modelling language
	A first, semi-formal abstract syntax
	Two exemplary dataflow diagrams
	Issues to be expressed by a formalised metamodel

	Pomsets in the context of metamodelling
	Relationship between different types of sets
	Definition of pomsets
	Notations for pomsets
	Operators on pomsets
	Running Example

	Models as Abstract Words
	M-graphs (Model-graphs)
	Defining M-graphs without using pomsets
	Graph-like notation for Abstract Words
	Node equivalence
	Mapping established metamodelling concepts to abstract words
	Running Example
	Defining M2L – Step 1: M2L Meta-Metamodel in terms of an Abstract Word

	Queries on abstract words - the Edge Algebra
	Fundamental Edge Algebra
	Propositional Edge Algebra
	Defining abstract languages using Edge Algebra
	Running Example
	Defining M2L – Step 2: M2L defined by Edge Algebra statements

	Abstract Syntaxes in M2L
	Relationship between model and metamodel
	Semi-formal introduction of the abstract syntax
	Basic approach defining semantics for Abstract Syntaxes
	Semantics for Abstract Syntaxes – Part 1: Basic metamodelling concepts
	Semantics for Abstract Syntaxes – Part 2: Extended metamodelling concepts
	Running Example
	Defining M2L – Step 3: Relationship between Meta-Metamodel and Edge Algebra

	Textual Concrete Syntaxes in M2L
	Relationship between abstract and concrete syntaxes
	Semi-formal introduction of the abstract syntax
	Basic approach defining semantics for Concrete Syntaxes
	Canonical textual syntax for M-graphs
	Semantics for Concrete Syntaxes – a template-based approach
	Running Example
	Defining M2L – Step 4: M2L finally defined by M2L itself

	The overall specification of M2L
	Package ORG.Metamodels.BasicConcepts
	Package ORG.Metamodels.M2L
	Package ORG.Metamodels.M2L.AbstractSyntax
	Package ORG.Metamodels.M2L.ConcreteSyntax
	Package ORG.Metamodels.M2L.ConcreteSyntax.Textual
	Package ORG.Metamodels.EdgeAlgebra
	Package ORG.Metamodels.EdgeAlgebra.EdgeExpressions
	Package ORG.Metamodels.EdgeAlgebra.PredicateExpressions
	Package ORG.Metamodels.EdgeAlgebra.NumericalExpressions

	Summary, evaluation, and outlook
	Summary
	Evaluation
	Outlook

	Bibliography
	Meta-Metamodel – The Metamodel of M2L
	Metamodel and exemplary models for the Running Example
	Metamodel of the Running Example
	Exemplary Model: Basic Library
	Exemplary Model: Integrator Network
	Exemplary Model: Demonstration Vehicle
	Exemplary Model: Textual Syntax Demonstration

