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Abstract In this paper we consider spatial regression models for count data. We ex-
amine not only the Poisson distribution but also the generalized Poisson capable of
modeling over-dispersion, the negative Binomial as well asthe zero-inflated Poisson
distribution which allows for excess zeros as possible response distribution. We add
random spatial effects for modeling spatial dependency anddevelop and implement
MCMC algorithms inR for Bayesian estimation. The corresponding R library ’spat-
counts’ is available on CRAN. In an application the presented models are used to
analyze the number of benefits received per patient in a German private health in-
surance company. Since the deviance information criterion(DIC) is only appropriate
for exponential family models, we use in addition the Vuong and Clarke test with a
Schwarz correction to compare possibly non nested models. We illustrate how they
can be used in a Bayesian context.
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1 Introduction

We speak of count data when the data values are contained in the natural numbers. A
common model for count data is the Poisson (Poi) model, whichis rather restrictive
since for this distribution variance and mean are equal. Butoften in observed count
data the sample variance is considerably larger than the sample mean - a phenomenon
called over-dispersion. In such cases the Poisson assumption is not appropriate for
analyzing this data.

Frequently the negative Binomial (NB) distribution instead of the Poisson distri-
bution is used to model over-dispersed data. Another possibility for modeling over-
dispersion is the generalized Poisson (GP) distribution introduced by Consul and Jain
(1973) which allows for a more flexible variance function than the Poisson distribu-
tion by an additional parameter (see e.g. Consul and Famoye (1992) and Famoye
(1993)).

Over-dispersion may also be caused by a large proportion of zero counts in the
data. Yip and Yau (2005) stress that especially claim numbers often exhibit a large
number of zeros and hence traditional distributions may be insufficient. In addition
to the zeros arising from the count data model, zero-inflatedmodels (see for example
Winkelmann (2008)) also allow for excess zeros. Zero-inflated models can be used
in combination with any count data distribution. We consider in this paper the zero-
inflated Poisson (ZIP) (see e.g. Lambert (1992)) and the zero-inflated generalized
Poisson (ZIGP) model. ZIGP models have been investigated byFamoye and Singh
(2003), Gupta et al. (2004), Bae et al. (2005), Joe and Zhu (2005) and Famoye and
Singh (2006).

The variability in over-dispersed data can also be interpreted as unobserved het-
erogeneity which is not sufficiently explained by the covariates. Especially for simple
models with few parameters, theoretical model predictionsmay not match empirical
observations for higher moments. When information on the location of the individu-
als is known, the data is spatially indexed. For count regression models, Gschlößl and
Czado (2007) include spatial random effects using a proper conditional autoregres-
sive (CAR) model based on Pettitt et al. (2002). In other words, one assumes random
effects associated with geographic areas rather than individuals and presumes that the
effects in neighboring regions are similar. In contrast to Gschl̈oßl and Czado (2007),
however, we also include covariates with spatial information, e.g. measures for the
degree of urbanity at a certain location. We carry out a comparison investigating
whether one of these two spatial specifications or both fit ourdata better.

Altogether, in this paper we account for extra variability not only by address-
ing distributions capable of handling over-dispersion andover-dispersion caused by
an excessive number of zeros, we also take extra spatial variability in the data into
account.

Since in these spatial models maximum likelihood estimation and confidence in-
terval estimation is not tractable we consider the models ina Bayesian context. Thus,
for parameter estimation Markov Chain Monte Carlo (MCMC) methods are used.

Model comparison between different model classes is non standard. For nested
models, i.e. when one of the two models is a super model of the other, model com-
parison may be carried out using tools like Akaike’s information criterion or likeli-
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hood ratio tests. This condition may be violated when the distribution on which the
two models are based, are different. Even within such a classof regression models,
two models may be non nested when they use different link functions or when linear
predictors are non hierarchical. We utilize a test proposedby Vuong (1989) and the
distribution-free test proposed by Clarke (2007) for non nested model comparison
and illustrate how they may be applied in a Bayesian context.

This is a novel approach since so far these two tests have onlybeen used in classi-
cal estimation. Also, the comparison between spatial covariate and / or spatial effect
specifications for count regression data has not been carried out elsewhere.

In our application we consider health insurance policies inthe following context:
for more than 35000 policyholders, the data contain the number of benefits received
by the patients in the ambulant (i.e. outpatient) setting aswell as several covariates
like the total of all deductibles, age, gender, number of physicians per inhabitants,
number of inhabitants per square kilometer and buying power. Further, we quantify
the best fitted model according to DIC as well as Vuong and Clarke test.

This paper proceeds as follows. In Section 2 an overview on spatial count regres-
sion models as well as the modeling of spatial effects is given, where we introduce
a proper Gaussian conditional autoregressive prior based on Pettitt et al. (2002). The
necessary background to Bayesian inference and MCMC methods is briefly summa-
rized in Section 3. This includes the deviance information criterion of Spiegelhalter
et al. (2002) as a model selection criterion. The test proposed by Vuong (1989) and
the distribution-free test utilized in a Bayesian framework are presented in Section
4. An application to private health insurance data for policyholders in Germany is
presented in Section 5.

2 Spatial count regression models

2.1 Spatial effects

2.1.1 Spatial covariates

Spatial variation may sometimes be explained by covariateswhich vary spatially.
Such covariates we call ’spatial covariates’. Examples in our data set are the number
of physicians per inhabitant in a certain district, the number of inhabitants per square
kilometer or the buying power per district.

2.1.2 CAR

In order to account for spatial heterogeneity we will incorporate, in addition to co-
variate information, spatial random effects in the regression models. Therefore we
consider the Gaussian Conditional Autoregressive (CAR) formulation introduced by
Pettitt et al. (2002) which permits the modeling of spatial dependence and depen-
dence between multivariate random variables at irregularly spaced regions. Assume
thatJ regions{1, . . . ,J} are given and letγγγ = (γ1, . . . ,γJ)

t the vector of spatial effects
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for each region. Letγγγ be multivariate normal distributed with

γγγ ∼ NJ(0,σ2Q−1) (1)

where the precision matrixQ= (Qi j )i, j=1,...,J is given by

Qi j =











1+ |ψ| ·Ni i = j

−ψ i ∼ j

0 otherwise

. (2)

Here the notationi ∼ j indicates that the regionsi and j are neighbors andNi denotes
the number of neighbors of regioni. Thus the full conditional distribution ofγi given
all the other valuesγγγ−i , i = 1, . . . ,J is

γi |γγγ−i ∼ N

(

ψ
1+ |ψ| ·Ni

∑
j∼i

γ j , σ2 1
1+ |ψ| ·Ni

)

. (3)

Parameterψ determines the overall degree of spatial dependence. If allregions are
spatially independent, i.e.ψ = 0, the precision matrixQ (see (2)) reduces to the iden-
tity matrix, whereas forψ → ∞ the degree of dependence increases. The multivariate
normal distribution (1) is a proper distribution since Pettitt et al. (2002) show that the
precision matrixQ is symmetric and positive definite. Another convenient feature of
this CAR model is that according to Pettitt et al. (2002) the determinant ofQ, which
is needed for the update ofψ in a MCMC algorithm, can be computed efficiently.

2.2 Count regression models

The count distributions considered in this paper will be thePoisson (Poi), the neg-
ative Binomial (NB), the generalized Poisson (GP), the zero-inflated Poisson (ZIP)
and the zero-inflated generalized Poisson (ZIGP) distribution. In order to allow for a
comparison between these distributions, we choose a mean parameterization for all
of them. Their probability mass functions (pmf) together with means and variances
are given in Table 1. Regression models for these considereddistributions can be con-
structed similar to generalized linear models (GLM) (McCullagh and Nelder (1989)).
We denote the regression model with responseYi and (known) explanatory variables
xi = (1,xi1, . . . ,xip)

t for the meani = 1, . . . ,n. For individual observation periods, we
allow exposure variablesti , which satisfyti > 0 ∀i and in case without individual
exposureti = 1 ∀i.

1. Random component:
{Yi ,1≤ i ≤ n} are independent with response distributionPoi(µi), NB(µi , r),
GP(µi ,ϕ), ZIP(µi ,ω) or ZIGP(µi ,ϕ,ω).

2 Systematic component:
The linear predictor isηµ

i (βββ ) = xxxt
i βββ + γi which influence the responseYi . Here,

βββ = (βββ NS,βββ S) are the unknown regression parameters withβββ NS= (β0,β1, . . . ,

βr)
t the nonspatial explanatory factors,βββ S= (βr+1,βr+2, . . . ,βp)

t the spatial co-
variates andγi the spatial random effects (not included in our base models). The
matrixXXX = (xxx1, . . . ,xxxn)

t is called design matrix.
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Table 1: Pmf’s of the Poisson, NB, GP and ZIP distribution together with their means and variances in mean parameterization

P(Y = y) E(Y) Var(Y) Parameter
restriction

Poi(µ) exp{−µ}µy

y! µ µ µ ∈ R

NB(µ , r) Γ (y+r)
Γ (r)y!

(

r
µ+r

)r ( µ
µ+r

)y
µ µ(1+ µ

r ) r > 0

GP(µ ,ϕ) µ(µ+(ϕ−1)y)y−1

y! ϕ−ye−
1
ϕ (µ+(ϕ−1)y) µ ϕ2µ ϕ > 0

ZIP(µ ,ω) ω ·1{y=0}+(1−ω) · exp(−µ)µy

y! (1−ω)µ (1−ω)µ(1+ωµ) ω ∈ (0,1)
ZIGP(µ ,ϕ ,ω) ω ·1{y=0}+(1−ω)· (1−ω)µ (1−ω)µ(ϕ2+ωµ) ϕ > 0,ω ∈ (0,1)

· µ(µ+(ϕ−1)y)y−1

y! ϕ−ye−
1
ϕ (µ+(ϕ−1)y)
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3 Parametric link component:
To get a positive mean the linear predictorηµ

i (βββ ) is related to the parameters
µi (βββ ), i = 1, . . . ,n as follows:

E (Yi |βββ ) = µi (βββ ) := ti exp
{

xxxt
i β + γi

}

= exp
{

xxxt
i β + γi + log(ti)

}

⇔ ηµ
i (βββ ) = log(µi (βββ ))− log(ti) (log - link)

3 MCMC including model selection

In order to incorporate spatial random effects we consider the models in a Bayesian
context which allows the modeling of a spatial dependency pattern. The determi-
nation of the posterior distributions require high dimensional integrations. MCMC
will be used for parameter estimation, in particular we use the Metropolis Hastings
sampler introduced by Metropolis et al. (1953) and Hastings(1970). For more infor-
mation on Bayesian data analysis and MCMC methods see Gilks et al. (1996) and
Gelman et al. (2003). Throughout this paper, an independence MH sampler using the
Student’s t-distribution withν = 20 degrees of freedom will be used. For details on
the MCMC algorithms see Gschlößl and Czado (2008) and Schabenberger (2009b).

The DIC (Spiegelhalter et al. (2002)) is a popular information criterion which
was designed to compare hierarchical models, and can easilybe computed using the
available MCMC output. Letθθθ 1, . . . ,θθθ T be a sample from the posterior distribution
of the model. The calculation of the DIC is based on two quantities. On one hand
this is the so calledunstandardized deviance D(θθθ) =−2log(p(yyy|θθθ)) wherep(yyy|θθθ)
is the observation model and on the other hand the so called effective number of
parameterspD defined by

pD := D(θθθ |yyy)−D(θ̄θθ).

HereD(θθθ |yyy) := 1
T ∑T

t=1D
(

θθθ t) is the estimated posterior mean of the deviance and
D(θ̄θθ) is the deviance of the estimated posterior meansθ̄θθ := 1

T ∑T
t=1D

(

θθθ t). Finally
the DIC determined as

DIC = D(θθθ |yyy)+ pD = 2D(θθθ |yyy)−D(θ̄θθ).

The preferred model is the one which has the smallest DIC. DICdepends on the spe-
cific values obtained in an MCMC run, thus it is difficult to assess how different DIC
values have to be for different models to select among these models. For exponential
family models DIC approximates the Akaike information criterion (AIC).

4 Non nested model selection

We use tests proposed by Vuong (1989) and Clarke (2003) to compare regression
models which need not to be nested. These tests are based on the Kullback-Leibler
information criterion (KLIC). According to Vuong (1989) the Kullback-Leibler dis-
tance is defined as

KLIC := E0[logh0(Yi |xxxi)]−E0[log f (Yi |υυυ i , δ̂δδ )],
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whereh0(·|·) is the true conditional density ofYi givenxxxi , that is, the true but unknown
model. LetE0 denote the expectation under the true model,υυυ i are the covariates of
the estimated model and̂δδδ are the pseudo-true values ofδδδ in model with f (Yi |υυυ i ,δδδ ),
which is not the true model. Generally, the model with minimal KLIC is the one that
is closest to the true, but unknown, specification.

4.1 Vuong test

Consider two models,f1 = f1(Yi |υυυ i , δ̂ 1) and f2 = f2(Yi |ωωω i , δ̂ 2) then if model 1 is
closer to the true specification, we have

E0[logh0(Yi |xxxi)]−E0[log f1(Yi |υυυ i , δ̂δδ
1
)] < E0[logh0(Yi |xxxi)]−E0[log f2(Yi |ωωω i , δ̂δδ

2
)]

⇔ E0

[

log
f1(Yi |υυυ i , δ̂δδ

1
)

f2(Yi |ωωω i , δ̂δδ
2
)

]

> 0 (4)

Vuong defines the statistics

mi := log

(

f1(yi |υυυ i , δ̂δδ
1
)

f2(yi |ωωω i , δ̂δδ
2
)

)

, i = 1, . . . ,n. (5)

If h0 is the true probability mass function, thenm = (m1, . . . ,mn)
t is a random vector

with meanµµµm
0 = (µm

1 , . . . ,µ
m
n ) := E0(m). Hence, we can test the null hypothesis

H0 : µµµm
0 = 000 againstH1 : µµµm

0 6= 000.

The meanµµµm
0 in the above hypothesis is unknown. With convenient standardization

and the central limit theorem Vuong (1989) shows that underH0

ν :=

√
n
[

1
n ∑n

i=1mi
]

√

1
n ∑n

i=1 (mi − m̄)2

D→ N (0,1), asn→ ∞

wherem̄ := 1
n ∑n

i=1mi . This allows to construct an asymptoticα-level test ofH0 :
µµµm

0 = 000 versusH1 : notH0. It rejectsH0 if and only if |ν | ≥ z1− α
2
, wherez1− α

2
is

the (1− α
2 )-quantile of the standard normal distribution. The test chooses model 1

over 2, if ν ≥ z1− α
2
. This is reasonable since according to the equivalence given in

(4), significantly high values ofν indicate a higherKLIC of model 1 as compared
to model 2. Similarly, model 2 is chosen ifν ≤ −z1− α

2
. No model is preferred for

−z1− α
2
< ν < z1− α

2
. According to Clarke (2007, p. 349) the Vuong test must be

corrected if the number of estimated coefficients in each model is different. Vuong
(1989) suggests to use the Schwarz correction, which is given by

[( p
2

logn
)

−
(q

2
logn

)]

. (6)
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Here p andq are the number of estimated coefficients in modelsf1 and f2, respec-
tively (Clarke (2003, p. 78)). Thus the Vuong test statisticν with Schwarz correction
is defined as:

ν̃ :=

√
n
(

[

1
n ∑n

i=1mi
]

−
[( p

2 logn
)

−
(q

2 logn
)]

/n
)

√

1
n ∑n

i=1 (mi − m̄)2
.

4.2 Clarke test

An alternative to the Vuong test is a distribution-free test(see Clarke (2007)) which
applies a modified paired sign test to the differences in the individual log-likelihoods
from two non nested models. The null hypothesis of the distribution-free test is

H0 : P0

[

log
f1(Yi |υυυ i , δ̂δδ

1
)

f2(Yi |ωωω i , δ̂δδ
2
)
> 0

]

= 0.5. (7)

Under the null hypothesis (7) the log-likelihood ratios should be symmetrically dis-
tributed around zero. That means that about half the log-likelihood ratios should be
greater and half less than zero. Usingmi as defined in (5), Clarke considers the test
statistic

B=
n

∑
i=1

1{0,+∞}(mi), (8)

where1A is the indicator function which is 1 on the setA and 0 elsewhere. The
quantityB is the number of positive differences and follows a Binomialdistribution
with parametersn and probability 0.5 underH0. If B is, under the null hypothesis,
significantly larger than its expected value, modelf1 is ”better” than modelf2. This
allows to construct the following distribution-free test.

First let mi (Yi) correspond to the random variable with valuemi , then the null
hypothesis (7) is equivalent to

HDF
0 : P0 [mi (Yi)> 0] = 0.5 ∀i = 1, . . . ,n.

For the test problemHDF
0 : P0 [mi (Yi)> 0] = 0.5 ∀i = 1, . . . ,n versus

HDF
1+ : P0 [mi (Yi)> 0] > 0.5, i = 1, . . . ,n, the correspondingα - level upper tail test

rejectsHDF
0 versusHDF

1+ if and only if B≥ cα+, wherecα+ is the smallest integer such
that∑n

c=cα+

(n
c

)

0.5n ≤α. If the upper tail test rejectsHDF
0 then we decide that model 1

is preferred over model 2. For the alternativeHDF
1− : P0 [mi (Yi)> 0]< 0.5, i = 1, . . . ,n,

the α - level lower tail test rejectsHDF
0 versusHDF

1− if and only if B ≤ cα−, where
cα− is the largest integer such that∑cα−

c=0

(n
c

)

0.5n ≤ α (compare to Clarke (2007, p.
349)). If HDF

0 versusHDF
1− is rejected, then model 2 is preferred over model 1. IfHDF

0
cannot be rejected, no model is preferred.

Like the Vuong test this test is sensitive to the number of estimated coefficients
in each model. Once again, we need a correction for the degrees of freedom.

Since the distribution-free tests work with the individuallog-likelihood ratios,
we cannot apply the Schwarz correction as in the Vuong test with the ”summed”
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log-likelihood ratio. Clarke (2003) suggests to apply the average correction to the in-
dividual log-likelihood ratios. So we correct the individual log-likelihoods for model
f1 by a factor of

[( p
2n logn

)]

and the individual log-likelihoods for modelf2 by a
factor of

[( q
2n logn

)]

.
In the Bayesian approach we can quantify the uncertainty of the test decisions

for the Vuong and Clarke test accordingly. For this we utilize the sampled parameter
values from the MCMC output and determine the test decision for each sampled
value. This allows to estimate the posterior percentages ofhow many times model 1
(model 2) was chosen over model 2 (model 1) and the percentageof no test decision.

All MCMC algorithms for model fit and the model comparison areimplemented
in packagespatcounts (Schabenberger (2009a)) inR, which is available on CRAN.

5 Application

We now apply the models described in Section 3 to a large portfolio of a German
health insurer. Before the parametric models are fitted, a basic exploratory analysis is
carried out. At the end of this Section, all fitted models are compared using the DIC
as well as the Vuong and the Clarke tests described in Section4.

5.1 Data description and exploration

The data set considers 37751 insured persons of a private health insurance company
in 2007. The response variable is the number of benefits received per patient for
ambulant treatments. In the German private health care system, the policyholders
may opt to cover a part of each invoice themselves, this amount is called deductible.
Depending on the policy type and the treatment setting, deductibles can be either an
annual total or a percentage of each invoice. If no bill is reimbursed throughout the
whole year, the policyholder receives a refund. A variable description including the
response variable and the explanatory variables is given inTable 2. Germany has 439
districts. The data includes patients from all districts.

Around 76% of the insured persons are male, which is typical for the policy line
considered. To obtain a first overview of the dependent variableYi , a histogram of the
observed count frequencies is given in Figure 1). For a better graphical illustration,
outliersYi > 50 are not displayed. The histogram shows that we have a high variation
in Yi and a rather large number of zeros. In particular 43% of the response data is
equal to zero. The covariates can be split up into two groups.The first group of
the covariates depend on the patient like the total of all deductibles with valuesDED
∈ [0,1821], the age withAGE ∈ [3,88] or the gender dummySEX. The second group
of covariates are spatial covariates like the number of physicians per inhabitant with
PHYS.INH ∈ [0,0.5622], the number of inhabitants per square kilometer with value
URBAN ∈ [39.28,4060] or the average buying powerBP ∈ [12277.4,23760.38] in
Euros. The maps in Figure 2 show the spatial distribution of the spatial covariates.
The number of physicians per inhabitant in Germany seem to bedistributed very
uniformly (left panel of Figure 2) whereas the most inhabitants per square kilometer
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Table 2: Variable description for the analyzed health insurance data set

Variable Type Description

Yi discrete Number of outpatient benefits received
by patienti.

DEDi continuous Total of all deductibles of patienti.
AGEi discrete Age of patienti.
SEXi binary Indicator for gender of patienti. (0 =

female, 1 = male)
ZIPi categorical ZIP Code of the home address of pa-

tient i.
D(i) categorical Indicates the home district for patienti.
PHYS.INH j continuous with Number of physicians per inhabitant in

district j
spatial information multiplied by 100.

URBANj continuous with Number of inhabitants per square kilo-
meter in districtj.

spatial information
BPj continuous with Buying power in districtj.

spatial information

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

Frequency distribution

Number of benefits received by patient

F
re

qu
en

cy

0
50

00
10

00
0

15
00

0

Fig. 1: Frequency distribution for the response variables (YYY ∈ [0,705] without outliers
Yi > 50).
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0 0.5 0 1500 12277.4 23760.38

Fig. 2: Exploratory maps of the spatial covariatesPHYS.INH (left panel),URBAN
(middle panel) andBP (right panel).
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Fig. 3: Scatter plot (including gam (dashed) and lowess (solid) smoothing lines) and
box plot of the number of benefits received per patient against age of the patient.

can be found in the larger cities, e.g. Berlin, Bremen, Hamburg, Munich or the Ruhr
area (middle panel of Figure 2). West Germany has higher buying power with a peak
around Munich compared to East Germany (former German Democratic Republic)
(see right panel of Figure 2).

A natural next step is to look at scatter plots of the dependent variableYYY against
each of the regressors. The LOWESS (solid line) and the GAM (dashed line) smooth-
ing curves of the scatter plot in Figure 3 indicates that the variableAGE has to be
transformed, i.e. we allow a quadratic influence on the response. In health insurance
this is not unusual since in general children and older people need more medical at-
tendance. For numerical stability we use standardized (sometimes called autoscaled)
covariates for the variablesDED, PHYS.INH, URBAN andBP denoted with ”.s”.
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5.2 Identification of base models

To establish base models we first analyze the data set in the statistical program ”R”
without spatial effects. We allow for an intercept, the covariates gender (SEX), the
standardized covariatesDED.s, PHYS.INH.s, URBAN.s andBP.s as well as the or-
thogonal polynomial transformed covariatesAGE.p1 (polynomial transformation of
degree 1),AGE.p2 (polynomial transformation of degree 2). For maximum likeli-
hood parameter estimates we use the functionest.zigp() in theR packageZIGP
developed by Erhardt (2009) for all models except the negative Binomial regression
model which is estimated with the basicR library MASS using the functionglm.nb().

In a next step sequential elimination according to a Wald test with 5% α-level of
significance is conducted. In Table 3 the full and reduced regression specifications
are given for every model class considered in Section 2. The penalty term in the
AIC statistic includes parameters which are estimated (such asϕ in GP(µi ,ϕ)) and
does not include them if they are fix (such asϕ = 1 in Poi(µi)). We stress that the
comparison of different models based on AIC is only possiblewithin one model
class, that is when the distribution of the responses are thesame and designs are
hierarchical. If the models are non nested, the test decisions should be based on the
Vuong test or the distribution-free test (Clarke test).

Table 4 displays for the models NB, GP, ZIP and ZIGP (defined asmodel (I)
and Poi, NB, GP and ZIP (defined as modelII) the entries of the Vuong and Clarke
tests for each combination of model (I) and model (II). We choose anα-level of 5%,
i.e. z1− α

2
= 1.96. In the first line of each cell, the Vuong test statisticν is given. In

the second and third line the decision of the Vuong test (V) and the Clarke test (C)
is shown, i.e. if model (I) or (II) is better. The corresponding p-values for each test
are given in parentheses. For example V: (I)

(

< 2·10−16
)

means that the Vuong test
prefers model (I) with p-value smaller than 2· 10−16. We now discuss the conclu-
sions to be drawn from Table 4. Since the Poisson model is not preferred over any
of the other model classes, we see evidence that the data is infact overdispersed.
Overdispersion may be explained either by a dispersion parameter as in the GP or the
NB model, by excess zeros as in the ZIP model, or both. Since the GP model out-
performs the NB model, we consider zero-inflation jointly with the GP distribution,
i.e. we also fit a ZIGP model. In general, the tests by Vuong andClarke are suitable
for pairwise model comparison, thus they do not have to lead to an overall decision
between all model classes, much less do both test necessarily decide equivalently. In
our case, however, the pairwise decisions given in Table 4 are identical, and we can
sort the models in a unique ranking: the GP model outperformsall other models and
is followed downward by ZIGP, NB, ZIP and the Poisson model. The comparison of
theZIGP(µi ,ϕ,ω) model to all other model classes gives almost identical results as
the comparison of theGP(µi ,ϕ) model to these classes. The reason is that the zero-
inflation parameter in the ZIGP model is estimated almost to zero (see Table 3) and
therefore the ZIGP fit is almost identical to the GP fit. In the comparison between the
GP and ZIGP model, the GP model by far outperforms the ZIGP model. This can be
explained by the nature of the two test: even if the likelihood contributions per ob-
servation in both of these models are almost identical, there is a minimal correction
toward the GP model by virtue of the larger Schwarz penalty term, which corrects for
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Table 3: Model specifications and AIC for each of the models after sequential elimination of insignificant covariates according to a Wald
test withα = 5%

Model Model equationµ Dispersion
(SE)

Zero-
inflation
(SE)

l(θ̂θθ) Para-
meters

AIC

Poi(µi) 1 + DED.s + AGE.p1 + AGE.p2 + SEX +
PHYS.INH.s + URBAN.s + BP.s

ϕ = 1 (not
estimated)

ω = 0 (not
estimated)

-218 486.8 8 436 990

NB(µi , r)
(full)

1 + DED.s + AGE.p1 + AGE.p2 + SEX +
PHYS.INH.s + URBAN.s + BP.s

r̂ = 0.5811
(0.0062)

-99 552.8 9 199 124

NB(µi , r) (re-
duced)

1 + DED.s + AGE.p1 + AGE.p2 + SEX + BP.s r̂ = 0.5811
(0.0062)

-99 553.3 7 199 121

GP(µi ,ϕ)
(full)

1 + DED.s + AGE.p1 + AGE.p2 + SEX +
PHYS.INH.s + URBAN.s + BP.s

ϕ̂ = 4.6369
(0.0397)

ω = 0 (not
estimated)

-96 849.1 9 193 716

GP(µi ,ϕ)
(reduced)

1 + DED.s + AGE.p1 + AGE.p2 + SEX + UR-
BAN.s + BP.s

ϕ̂ = 4.6893
(0.0410)

ω = 0 (not
estimated)

-96 850.5 8 193 717

ZIP(µi ,ω)
(full)

1 + DED.s + AGE.p1 + AGE.p2 + SEX +
PHYS.INH.s + URBAN.s + BP.s

ϕ = 1 (not
estimated)

ω̂ = 0.4312
(0.0026)

-161 674.1 9 323 366

ZIP(µi ,ω)
(reduced)

1 + DED.s + AGE.p1 + AGE.p2 + SEX ϕ = 1 (not
estimated)

ω̂ = 0.4312
(0.0026)

-161 675.4 6 323 363

ZIGP(µi ,φ ,ω)
1 + DED.s + AGE.p1 + AGE.p2 + SEX +
PHYS.INH.s + URBAN.s + BP.s

ϕ̂ = 4.7010
(0.0414)

ω̂ = 10−6

(0.0007)
-96 454.5 10 192 929



14Table 4: Model comparison using the Vuong and the Distribution-Free (Clarke) test; test statisticν of the Vuong test together with decision
according to Vuong (V) and Clarke (C) and their p-values, respectively.

P
P
P
P
P

P
PP

(I)
(II)

Poi(µi) NB(µi , r) GP(µi ,ϕ) ZIP(µi ,ω)

ν = 30.2
NB(µi , r) V: (I)

(

< 2·10−16
)

C: (I)
(

< 2·10−16
)

ν = 34.7 ν = 4.2
GP(µi ,ϕ) V: (I)

(

< 2·10−16
)

V: (I)
(

2.26·10−5
)

C: (I)
(

< 2·10−16
)

C: (I)
(

< 2·10−16
)

ν = 21.4 ν =−24.7 ν =−25.0
ZIP(µi ,ω) V: (I)

(

< 2·10−16
)

V: (II)
(

< 2·10−16
)

V: (II)
(

< 2·10−16
)

C: (I)
(

< 2·10−16
)

C: (II)
(

< 2·10−16
)

C: (II)
(

< 2·10−16
)

ν = 34.7 ν = 4.3 ν =−137 ν = 25.0
ZIGP(µi ,ϕ,ω) V: (I)

(

< 2·10−16
)

V: (I)
(

2.14·10−5
)

V: (II)
(

< 2·10−16
)

V: (I)
(

< 2·10−16
)

C: (I)
(

< 2·10−16
)

C: (I)
(

< 2·10−16
)

C: (II)
(

< 2·10−16
)

C: (I)
(

< 2·10−16
)
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the additional zero-inflation parameter in the ZIGP model. Notwithstanding this
application, overdispersion explained by both a dispersion parameter and zero-inflation
simultaneously is present in many other applications, e.g.the ZIGP model considered
by Czado et al. (2007) to analyze patent filing processes.

By including a random spatial effect for each region extra heterogeneity in the
data might be taken into account by assuming a finer geographic resolution. The
CAR prior presented in Section 2 will be assumed for these spatial effects.

5.3 Bayesian inference using MCMC

The MCMC algorithms for the Poisson, NB, GP, ZIP and ZIGP regression models
are run for 50000 iterations. The mean parameterµi , i = 1, . . . ,n has the general form

µi = ti ·exp
(

xxxt
i βββ + γD(i)

)

with the observation specific exposureti fixed to 1. We fit models with spatial co-
variates only (denoted by SC), models with spatial random effects only (denoted by
CAR) and models with both spatial random effects and spatialcovariates (denoted
by CAR+SC). Recall that we have the spatial covariates: number of physicians per
inhabitants (PHYS.INH.s), number of inhabitants per square kilometer (URBAN.s)
and buying power (BP.s).

The starting values for each parameter of the four models aretaken from the
regression without spatial effect. That means we use the results of theR functions
est.zigp() andglm.nb() for all models with all covariates for SC and CAR+SC
and without the spatial covariates for the CAR model. The posterior means and 80%
credible intervals for the model specific parametersr, ϕ andω in the different models
are shown in Table 5 (the posterior means and 80% credible intervals for the regres-
sion parameter vectorβββ can be found in Schabenberger (2009b, p. 59)). As in the base
models in Section 5.2, the zero-inflation parameter in the ZIGP model is very close
to zero for the SC, CAR and SC+CAR specifications. Note that only positive zero-
inflation is allowed, therefore the credible intervals cannot contain the zero. Since the
ZIGP model becomes a GP model when there is no zero-inflation present, we will no
longer consider the ZIGP model for the remainder of this paper.

Estimation of the regression parameter slightly differs between the models and
also changes when spatial effects are added, especially forthe GP models where
large spatial effects are observed. Although there are someinsignificant covariates
we do not reduce the models to compare whether SC, CAR or CAR+SC is preferred.
Estimation of the specific parameters is rather similar in all models SC, CAR and
CAR+SC. The range of the estimated spatial effects in all of the models is roughly
the same in each model even though the Poisson model capturesunexplained hetero-
geneity only by spatial effects. In the ZIP model the proportion of extras zerosω is
estimated as 43%.

In Figure 4 we present map plots of the estimated posterior means. In Figure 5
the 80% credible intervals of the spatial effects in the Poisson, negative Binomial,
generalized Poisson and zero-inflated Poisson models are given. In each Figure the
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Table 5: Estimated posterior means and 80% credible intervals for the model specific
parameters in the considered SC, CAR, CAR+SC models

Parameter Model Mean (10%, 90%)

SC 0.5808 (0.5723, 0.5887)

r in NB CAR 0.5912 (0.5831, 0.5995)

CAR+SC 0.5910 (0.5830, 0.5993)
SC 4.6840 (4.6271, 4.7412)

ϕ in GP CAR 4.4492 (4.3994, 4.4999)

CAR+SC 4.4488 (4.3985, 4.4994)
SC 0.4312 (0.4278, 0.4346)

ω in ZIP CAR 0.4310 (0.4276, 0.4345)

CAR+SC 0.4310 (0.4276, 0.4344)
SC 4.6825 (4.6544,4.7110)

ϕ in ZIGP CAR 4.4514 (4.4219,4.4805)

CAR+SC 4.4518 (4.4214,4.4792)

SC 2.4·10−4 (2.0·10−5,5.5·10−4)

ω in ZIGP CAR 1.6·10−4 (1.9·10−5,4.0·10−4)

CAR+SC 1.5·10−4 (1.3·10−5,3.4·10−4)

model specification SC is shown in the left panel, the CAR model specification in the
middle panel and the CAR+SC model specification in the right panel. Here we see
that the spatial effects of all four regression models are almost the same. The spatial
covariates have nearly no influence but according to the 80% credible interval they
have a negative spatial effect. According to the 80% credible intervals the CAR and
the CAR+SC models have small significant spatial effect.

Unfortunately, the estimated empirical autocorrelationsin some of the models
decrease very slow. Therefore to compare the different models we decide to thin the
50000 MCMC output by choosing every 200th value.

In order to compare these models, the DIC, defined in Section 3, is considered.
In Table 6, the DIC, the posterior mean of the deviance and theeffective number
of parameters are listed for each model.E [D(θθθ |yyy)] is based only on the unscaled
deviance (see Section 3) which cannot be interpreted directly as an overall goodness
of fit measure of one specific model. However,E [D(θθθ |yyy)] can be used for comparing
the model fit of several models when the number of parameters is roughly the same.

For each regression model the model SC has the highest DIC value. The DIC
for the CAR and CAR+SC model is roughly the same. For SC modelsthe effective
number of parameterspD is close to the true number, which is eight for the Poisson
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Poi

−0.7 0.70
SC

−0.7 0.70
CAR

−0.7 0.70
CAR+SC

NB

−0.7 0.70
SC

−0.7 0.70
CAR

−0.7 0.70
CAR+SC

GP

−0.7 0.70
SC

−0.7 0.70
CAR

−0.7 0.70
CAR+SC

ZIP

−0.7 0.70
SC

−0.7 0.70
CAR

−0.7 0.70
CAR+SC

Fig. 4: Maps of the estimated posterior means (top panels) ofthe spatial effects in the
Poi, NB, GP and ZIP regression models SC, CAR and CAR+SC
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Poi

SC CAR CAR+SC

NB

SC CAR CAR+SC

GP

SC CAR CAR+SC

ZIP

SC CAR CAR+SC

Fig. 5: Maps of the 80% credible intervals (white: strictly positive, black: strictly
negative, gray: zero is contained in 80% credible interval)of the spatial effects in the
Poi, NB, GP and ZIP regression models SC, CAR and CAR+SC
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Table 6: DIC,E [D(θθθ |yyy)] and effective number of parameterspD for the different
models

Model DIC E [D(θθθ |yyy)] pD

SC 436990.8 436982.9 7.89

Poi CAR 426818.5 426390.3 428.21

CAR+SC 426817.2 426388.9 428.24
SC 199124.9 199115.8 9.10

NB CAR 198867.8 198651.8 216.00

CAR+SC 198868.1 198650.8 217.29
SC 192927.9 192918.5 9.33

GP CAR 190764.4 190461.8 302.64

CAR+SC 190764.7 190461.4 303.30
SC 323367.0 323357.7 9.36

ZIP CAR 318740.5 318364.8 375.66

CAR+SC 318742.2 318366.2 376.03

regression model and nine for the NB, GP and ZIP regression model. This is to be
expected, since these models do not include random effects.When spatial effects
are added, the number of effective parameters increases rapidly. The DIC and the
posterior mean of the deviance,E [D(θθθ |yyy)], for CAR are the smallest in all regression
models except for the Poisson model. Here the DIC value of CAR+SC is slightly
lower than the one of CAR.

Note that the DIC must be used with care, since strictly speaking the DIC is
defined for distributions of the exponential family only. Additionally, if two models
have similar DIC values it is possible that the model decision varies for different
MCMC runs. Therefore we make another comparison using the Vuong and the Clarke
test discussed in Section 4.

5.4 Model selection

5.4.1 Selecting spatial models

First of all we compare SC, CAR and CAR+SC for each regressionmodelPoi(µi),
NB(µi , r), GP(µi ,ϕ) andZIP(µi ,ω). Table 7 shows the percentage of 250 Vuong and
Clarke test decisions between model (I) and model (II). For the Vuong test we use the
statisticν and choose again anα-level of 5%, i.e. the decision border isz1− α

2
= 1.96

For the Clarke test we reportB/n. The number of parametersp andq of model (I)
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Table 7: Decision of the Vuong and Clarke tests between model(I) and model (II) as
a percentage

Model (I)/ (II) Test
Decision f.

No decision
Decision f.

model (I) model (II)

SC/CAR+SC
Vuong 0.0% 6.0% 94.0%
Clarke 0.0% 1.2% 98.8%

Poi CAR/CAR+SC
Vuong 0.0% 100.0% 0.0%
Clarke 40.8% 19.2% 40.0%

CAR/SC
Vuong 93.6% 6.4% 0.0%
Clarke 98.8% 1.2% 0.0%

SC/CAR+SC
Vuong 100.0% 0.0% 0.0%
Clarke 100.0% 0.0% 0.0%

NB CAR/CAR+SC
Vuong 1.2% 98.8% 0.0%
Clarke 47.6% 4.0% 48.4%

CAR/SC
Vuong 0.0% 0.0% 100.0%
Clarke 0.0% 0.0% 100.0%

SC/CAR+SC
Vuong 0.0% 100.0% 0.0%
Clarke 14.4% 35.2% 50.4%

GP CAR/CAR+SC
Vuong 0.4% 99.6% 0.0%
Clarke 44.0% 18.4% 37.6%

CAR/SC
Vuong 0.0% 100.0% 0.0%
Clarke 55.2% 30.0% 14.8%

SC/CAR+SC
Vuong 0.0% 100.0% 0.0%
Clarke 100.0% 0.0% 0.0%

ZIP CAR/CAR+SC
Vuong 0.0% 100.0% 0.0%
Clarke 51.6% 0.0% 48.4%

CAR/SC
Vuong 0.0% 100.0% 0.0%
Clarke 0.0% 0.0% 100.0%

and (II), neccessary for the corrections, are taken from the DIC calculations, i.e. we
use the effective number of parameterspD.

The decisions of the Vuong and Clarke tests given in Table 7 are not consistent.
For the Poisson regression models the SC specification performs poorly, however for
the comparison between the CAR and CAR+SC specifications only the Clarke test
slightly prefers CAR. Since this model has less covariates than CAR+SC, we choose
this design as the preferred one within the Poisson class. For the negative Binomial
model there is no distinct decision between CAR and CAR+SC, however the SC
model is preferred over both of them. The same holds for the ZIP class. For the
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generalized Poisson regression models the test by Vuong prefers none of the models
in all three comparisons. Therefore we only consider the Clarke test, which slightly
decides toward the CAR model. Since this model also has the smallest DIC value (see
Table 6), we choose the CAR specification within the GP class.

5.4.2 Selecting count distribution

Now we want to compare the observed preferred models Poi CAR,NB SC, GP CAR
and ZIP SC to get the overall favored one. Therefore we use again the Vuong and the
Clarke test like in the section before. The results are shownin Table 8. The first value
in the round brackets favors model (I), the second one stands for no decision taken
and the right one prefers model (II) (all in percent). For example (100%, 0%, 0%)
means the test perfers model (I) over model (II) in 100% of the sampled MCMC pos-
terior parameter values based on 250 iterations. The generalized Poisson regression
model CAR seems to fit our data in terms of the Vuong test and theClarke test the
best. This model is preferred over all other models discussed (see Table 8).

Table 8: Selection of the response distributions ((I)>(II),(I)=(II),(I)<(II)) based on
the Vuong (V) and Clarke (C) tests

P
P

P
P
P
P

PP
(I)

(II)
Poi CAR NB SC GP CAR

NB SC
V (100%, 0%, 0%)
C (100%, 0%, 0%)

GP CAR
V (100%, 0%, 0%) (100%, 0%, 0%)
C (100%, 0%, 0%) (100%, 0%, 0%)

ZIP SC
V (100%, 0%, 0%) (0%, 0%, 100%) (0%, 0%, 100%)
C (100%, 0%, 0%) (0%, 0%, 100%) (0%, 0%, 100%)

6 Conclusions

For count regression data we have presented several models.In order to model over-
dispersion we used models with an additional parameter as inthe NB and GP model
or models with an extra proportion of zero observations likethe zero-inflated model
ZIP.

Further, in order to account for unobserved spatial heterogeneity in the data we
included spatial random effects which allow for spatial correlations between obser-
vations and / or spatially varying covariates.

These models were applied to analyze the number of ambulant benefits received
per patient in 2007. The DIC, the Vuong and the Clarke tests were used for model



22

comparison. Models allowing for over-dispersion showed a significantly better fit
than an ordinary non spatial Poisson regression model. For the NB and the ZIP model
the inclusion of spatial effects did not improve the model fit. For the Poisson model
which does not allow for over-dispersion, and the GP model, the inclusion of spatial
effects led to an improved model fit. According to the considered criteria the GP
regression model with spatial random CAR effects but no spatial covariates is to be
preferred to all other models. However, the fitted spatial model shows no smooth
surface structure. Rather it indicates isolated specific regions where the covariates
provide no adequate fit.

There are several interesting avenues for further research. For instance, instead of
analyzing the number of ambulant benefits received by patient for one year only, it
might be interesting to include data over several years in order to examine whether
the spatial pattern changes over the years. Another interesting possibility is to extend
the regression models by allowing for regression onϕ andω in order to find a better
model fit and to address heterogeneity on a more differentiated basis.
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