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Abstract In this paper we consider spatial regression models fortodata. \We ex-
amine not only the Poisson distribution but also the gers@lPoisson capable of
modeling over-dispersion, the negative Binomial as wethaszero-inflated Poisson
distribution which allows for excess zeros as possiblearse distribution. We add
random spatial effects for modeling spatial dependencydavelop and implement
MCMC algorithms inR for Bayesian estimation. The corresponding R library 'spat
counts’ is available on CRAN. In an application the presgénmtedels are used to
analyze the number of benefits received per patient in a Geprieate health in-
surance company. Since the deviance information crit€fdd@) is only appropriate
for exponential family models, we use in addition the Vuong &€larke test with a
Schwarz correction to compare possibly non nested modedsliigtrate how they
can be used in a Bayesian context.
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1 Introduction

We speak of count data when the data values are contained imatbral numbers. A
common model for count data is the Poisson (Poi) model, wisichther restrictive
since for this distribution variance and mean are equal.dien in observed count
data the sample variance is considerably larger than thpleanean - a phenomenon
called over-dispersion. In such cases the Poisson as@amniptnot appropriate for
analyzing this data.

Frequently the negative Binomial (NB) distribution inglez the Poisson distri-
bution is used to model over-dispersed data. Another piissilor modeling over-
dispersion is the generalized Poisson (GP) distributionéduced by Consul and Jain
(2973) which allows for a more flexible variance functionrilibe Poisson distribu-
tion by an additional parameter (see e.g. Consul and Fani®@2) and Famoye
(1993)).

Over-dispersion may also be caused by a large proportioerof @ounts in the
data. Yip and Yau (2005) stress that especially claim numb#en exhibit a large
number of zeros and hence traditional distributions maynbkefficient. In addition
to the zeros arising from the count data model, zero-inflatedels (see for example
Winkelmann (2008)) also allow for excess zeros. Zero-iaflanodels can be used
in combination with any count data distribution. We consiitkethis paper the zero-
inflated Poisson (ZIP) (see e.g. Lambert (1992)) and the-indlaied generalized
Poisson (ZIGP) model. ZIGP models have been investigatdeabyoye and Singh
(2003), Gupta et al. (2004), Bae et al. (2005), Joe and Zh@5&and Famoye and
Singh (2006).

The variability in over-dispersed data can also be intéggras unobserved het-
erogeneity which is not sufficiently explained by the coates. Especially for simple
models with few parameters, theoretical model predictioag not match empirical
observations for higher moments. When information on thatlon of the individu-
als is known, the data is spatially indexed. For count regipesmodels, Gschli3l and
Czado (2007) include spatial random effects using a propeditional autoregres-
sive (CAR) model based on Pettitt et al. (2002). In other wpothe assumes random
effects associated with geographic areas rather thandhdils and presumes that the
effects in neighboring regions are similar. In contrast szl®R| and Czado (2007),
however, we also include covariates with spatial inforomatie.g. measures for the
degree of urbanity at a certain location. We carry out a coispa investigating
whether one of these two spatial specifications or both fides better.

Altogether, in this paper we account for extra variabilitgt only by address-
ing distributions capable of handling over-dispersion auer-dispersion caused by
an excessive number of zeros, we also take extra spatialbiitsi in the data into
account.

Since in these spatial models maximum likelihood estinmagind confidence in-
terval estimation is not tractable we consider the modedsBiayesian context. Thus,
for parameter estimation Markov Chain Monte Carlo (MCMClinoels are used.

Model comparison between different model classes is namatd. For nested
models, i.e. when one of the two models is a super model of tther,onodel com-
parison may be carried out using tools like Akaike’s infotima criterion or likeli-



hood ratio tests. This condition may be violated when théidigion on which the

two models are based, are different. Even within such a diesgression models,
two models may be non nested when they use different linktfomme or when linear

predictors are non hierarchical. We utilize a test propdsetfuong (1989) and the
distribution-free test proposed by Clarke (2007) for nosteé model comparison
and illustrate how they may be applied in a Bayesian context.

This is a novel approach since so far these two tests havéberlyused in classi-
cal estimation. Also, the comparison between spatial cateaand / or spatial effect
specifications for count regression data has not been dawieelsewhere.

In our application we consider health insurance policigb@following context:
for more than 35000 policyholders, the data contain the raxrobbenefits received
by the patients in the ambulant (i.e. outpatient) settinvels as several covariates
like the total of all deductibles, age, gender, number ofsatigns per inhabitants,
number of inhabitants per square kilometer and buying pother, we quantify
the best fitted model according to DIC as well as Vuong andkélsest.

This paper proceeds as follows. In Section 2 an overview atiagount regres-
sion models as well as the modeling of spatial effects isngivéhere we introduce
a proper Gaussian conditional autoregressive prior baséktitt et al. (2002). The
necessary background to Bayesian inference and MCMC mefhdtiefly summa-
rized in Section 3. This includes the deviance informatidtedon of Spiegelhalter
et al. (2002) as a model selection criterion. The test pregdy Vuong (1989) and
the distribution-free test utilized in a Bayesian framekvare presented in Section
4. An application to private health insurance data for ptiaiders in Germany is
presented in Section 5.

2 Spatial count regression models
2.1 Spatial effects
2.1.1 Spatial covariates

Spatial variation may sometimes be explained by covariatgsh vary spatially.
Such covariates we call 'spatial covariates’. Exampleslindata set are the number
of physicians per inhabitant in a certain district, the nemtif inhabitants per square
kilometer or the buying power per district.

2.1.2 CAR

In order to account for spatial heterogeneity we will inamgte, in addition to co-
variate information, spatial random effects in the regmssnodels. Therefore we
consider the Gaussian Conditional Autoregressive (CARNation introduced by
Pettitt et al. (2002) which permits the modeling of spatiependence and depen-
dence between multivariate random variables at irregukpaced regions. Assume
thatJ regions{1,...,J} are given and ley = (y1,..., ;) the vector of spatial effects



for each region. Ley be multivariate normal distributed with

y~N;(0,0°Q") @)
where the precision matri® = (Qjj )i j—1,...J IS given by
I+[Yl-N i=j
Qj=4-y i~ : 2
0 otherwise

Here the notatiom~ | indicates that the regionsnd | are neighbors anl; denotes
the number of neighbors of regionThus the full conditional distribution of given
all the other valuey_;,i=1,...,Jis

y,yi~N<(’U2y1, a® ©))

1

1+[[-N & 1+w|-Ni>'
Parametery determines the overall degree of spatial dependence. égibns are
spatially independent, i.g1 = 0, the precision matrig (see (2)) reduces to the iden-
tity matrix, whereas fory — o the degree of dependence increases. The multivariate
normal distribution (1) is a proper distribution since Re¢t al. (2002) show that the
precision matrixQ is symmetric and positive definite. Another convenientdeabf
this CAR model is that according to Pettitt et al. (2002) tkéedminant ofQ, which
is needed for the update gfin a MCMC algorithm, can be computed efficiently.

2.2 Count regression models

The count distributions considered in this paper will be Bwésson (Poi), the neg-
ative Binomial (NB), the generalized Poisson (GP), the deflated Poisson (ZIP)
and the zero-inflated generalized Poisson (ZIGP) distdhutn order to allow for a
comparison between these distributions, we choose a meameterization for all
of them. Their probability mass functions (pmf) togethethameans and variances
are given in Table 1. Regression models for these considisatutions can be con-
structed similar to generalized linear models (GLM) (Md&@gh and Nelder (1989)).
We denote the regression model with respovisend (known) explanatory variables
X = (1,%1,. .. ,xip)‘ for the mean = 1,...,n. For individual observation periods, we
allow exposure variablets, which satisfyt; > 0 Vi and in case without individual
exposurd; = 1 Vi.
1. Random component:
{Yi,1 <i < n} are independent with response distributRmi( 1), NB(L;, ),
GP(ui, ¢), ZIP(pi, w) or ZIGP(;, ¢, w).
2 Systematic component:
The linear predictor i$7i“ (B) = X' B + y which influence the respondg Here,
B= (BNS,BS) are the unknown regression parameters \ﬂﬁf’: (Bo, Bus- - -,
B:)! the nonspatial explanatory factoﬁ? = (Br+1.Br42: .- -, Bp)* the spatial co-
variates ands the spatial random effects (not included in our base modéls)
matrix X = (X, ...,%,)! is called design matrix.



Table 1: Pmf’s of the Poisson, NB, GP and ZIP distributioretbgr with their means and variances in mean parametenzati

PY =) B VAt e
Poi(y)  SPLII u m HER
NB(u,r) rr((ﬁyr!) (ﬁ)r 4 Y u p(1+E) r>o0
GP(1, ¢) u(u+(¢y!fl)y)y*l¢7ye—%(u+(¢—1)y) U 621 $>0
ZIP(U, w) w-]l{y:o}+(1—w)-%!“)“y 1-wp (QA-wu(l+wu) we(0,1)
ZIGP(u, ¢, w) w-Lyy_q + (1— w)- (1-wp (1-wu(p?+wu) ¢ >0,we(0,1)

.u(u+(¢71)y)y*l¢7ye—%(u+(¢—1)y)
y!




3 Parametric link component:
To get a positive mean the linear predicm’l‘ (B) is related to the parameters
i (B),i=1,...,nas follows:

E(YIB) =i (B) ==t exp{XiB+y} =exp{XB+y+log(t)}
< nl'(B) = log(ki (B)) —log(ti) (log - link)

3 MCMC including model selection

In order to incorporate spatial random effects we considemntodels in a Bayesian
context which allows the modeling of a spatial dependendjepa The determi-
nation of the posterior distributions require high dimensil integrations. MCMC
will be used for parameter estimation, in particular we UnseMetropolis Hastings
sampler introduced by Metropolis et al. (1953) and Hast{di§30). For more infor-
mation on Bayesian data analysis and MCMC methods see Gilils €.996) and
Gelman et al. (2003). Throughout this paper, an indeperedgtht sampler using the
Student’s t-distribution witlv = 20 degrees of freedom will be used. For details on
the MCMC algorithms see Gsdiftl and Czado (2008) and Schabenberger (2009b).
The DIC (Spiegelhalter et al. (2002)) is a popular informatcriterion which
was designed to compare hierarchical models, and can éasdgmputed using the
available MCMC output. LeB?,...,8" be a sample from the posterior distribution
of the model. The calculation of the DIC is based on two qigsti On one hand
this is the so callednstandardized deviance(B) = —2log(p(y|0)) wherep(y|0)
is the observation model and on the other hand the so calfedtigé number of
parametergp defined by

po :=D(6]y) —D(8).
HereD(0ly) := 15[ ,D (8") is the estimated posterior mean of the deviance and

D(8) is the deviance of the estimated posterior meins: 1 5, D (8"). Finally
the DIC determined as

DIC =D(8]y)+ po = 2D(8]y) — D(8).

The preferred model is the one which has the smallest DIC.d&ji&nds on the spe-
cific values obtained in an MCMC run, thus it is difficult to ass how different DIC
values have to be for different models to select among theskels. For exponential
family models DIC approximates the Akaike information erion (AIC).

4 Non nested model selection

We use tests proposed by Vuong (1989) and Clarke (2003) tpamnregression
models which need not to be nested. These tests are based Knltback-Leibler

information criterion (KLIC). According to Vuong (1989)éhKullback-Leibler dis-

tance is defined as

KLIC := Eqllogho(¥i[x)] — Eollog f (¥i i, &)],



wherehp(-|-) is the true conditional density 8f givenx;, that is, the true but unknown
model. LetEp denote thg expectation under the true modeglare the covariates of
the estimated model ardlare the pseudo-true values®fn model with f (Y;| v, 8),
which is not the true model. Generally, the model with miritdalC is the one that
is closest to the true, but unknown, specification.

4.1 Vuong test

Consider two modelsf; = f1(Y;|vi, %) and f, = f2(Y;|e;, %) then if model 1 is
closer to the true specification, we have

Eollogho(¥|)] — Eqllog f1(¥|v;,8")] < Eollogho(¥x)] — Eollog f2(%|w;, &)

<1
= E llog W] >0 4)
f2(Yiwi,d)
Vuong defines the statistics
f1(yi| Ui 31)
m::log(ly"’Az>, i=1,...,n (5)
fa(yilwi, &)

If ho is the true probability mass function, then= (my,..., mn)t is a random vector
with meanu{' = (u",..., uy") := Eo(m). Hence, we can test the null hypothesis

Ho : ug' = 0 againsHs : ug' # 0.

The meanug' in the above hypothesis is unknown. With convenient statidation
and the central limit theorem Vuong (1989) shows that uthier

VR [E 3 m]

V= 2%/(0,1)7 asn— o
T3y (m—m)

wherem := %z{‘zlm. This allows to construct an asymptoticlevel test ofHg :

ug' = 0 versusH; : notHo. It rejectsHo if and only if |v| > z;_g, wherez; g is

the (1- $)-quantile of the standard normal distribution. The tesiages model 1
over 2, ifv > z,_q«. This is reasonable since according to the equivalencengive
(4), significantly ﬁigh values of indicate a higheKLIC of model 1 as compared
to model 2. Similarly, model 2 is chosenuf< - g. No model is preferred for
-4 g <V<Z g According to Clarke (2007, p. 349) the Vuong test must be
corrected if the number of estimated coefficients in eachehizddifferent. Vuong
(1989) suggests to use the Schwarz correction, which isdiye

(ges) - (Goor)]- ®



Herep andq are the number of estimated coefficients in modgland f,, respec-
tively (Clarke (2003, p. 78)). Thus the Vuong test statistiwith Schwarz correction
is defined as:

vA([5am] - [(§logn) - (3logn)] /n)

% Sitg (m— rﬁ)z

V=

4.2 Clarke test

An alternative to the Vuong test is a distribution-free {sste Clarke (2007)) which
applies a modified paired sign test to the differences inntvidual log-likelihoods
from two non nested models. The null hypothesis of the thistion-free test is

~1
M >o] =0.5. @)
fo(Yi|i, 8°)

Under the null hypothesis (7) the log-likelihood ratios sldobe symmetrically dis-
tributed around zero. That means that about half the |agitikod ratios should be
greater and half less than zero. Usimgas defined in (5), Clarke considers the test
statistic

Ho: Py llog

B= -;ﬂ{°’+”}(m)’ (8)

where 1, is the indicator function which is 1 on the s&tand O elsewhere. The
guantityB is the number of positive differences and follows a Binondiiatribution
with parameters and probability (6 underHy. If B is, under the null hypothesis,
significantly larger than its expected value, motlels "better” than modelf,. This
allows to construct the following distribution-free test.

First letm (Y;) correspond to the random variable with valmg then the null
hypothesis (7) is equivalent to

HEF :P[m(Y) >0 =05 Vi=1,...,n

For the test problerdl®F : Py[mi (Y;) >0/ =05 Vi=1,...,nversus
HPF - Ry[m (Yi) > 0] > 05, i =1,...,n, the corresponding - level upper tail test
rejectsHPF versusHPF ifand only ifB > ¢4, wherecy . is the smallest integer such
thaty . (2)0.5"<a.Ifthe upper tail test rejectdy" then we decide that model 1
is preferred over model 2. For the alternatVg : Py [m () > 0] <0.5,i=1,...,n,
the a - level lower tail test rejectslP™ versusHPF if and only if B < ¢4, where
Ca- is the largest integer such thgf®; (7)0.5" < a (compare to Clarke (2007, p.
349)). IfHEF versusHPF is rejected, then model 2 is preferred over model HF
cannot be rejected, no model is preferred.

Like the Vuong test this test is sensitive to the number afested coefficients
in each model. Once again, we need a correction for the degféeeedom.

Since the distribution-free tests work with the individuad-likelihood ratios,
we cannot apply the Schwarz correction as in the Vuong tetét thie "summed”



log-likelihood ratio. Clarke (2003) suggests to apply thierage correction to the in-
dividual log-likelihood ratios. So we correct the indivaluog-likelihoods for model
f1 by a factor of[(£logn)| and the individual log-likelihoods for modd} by a
factor of [ (5L logn)].

In the Bayesian approach we can quantify the uncertaintheftést decisions
for the Vuong and Clarke test accordingly. For this we utilize sampled parameter
values from the MCMC output and determine the test decistsnebch sampled
value. This allows to estimate the posterior percentagé®wfmany times model 1
(model 2) was chosen over model 2 (model 1) and the percenfagetest decision.

All MCMC algorithms for model fit and the model comparison armplemented
in packagespatcounts (Schabenberger (2009a))Rwhich is available on CRAN.

5 Application

We now apply the models described in Section 3 to a large glmrtdf a German
health insurer. Before the parametric models are fittedsi lexploratory analysis is
carried out. At the end of this Section, all fitted models ammpared using the DIC
as well as the Vuong and the Clarke tests described in Settion

5.1 Data description and exploration

The data set considers 37751 insured persons of a privalth hesurance company
in 2007. The response variable is the number of benefitsueatgier patient for

ambulant treatments. In the German private health carersyghe policyholders

may opt to cover a part of each invoice themselves, this atrisualled deductible.

Depending on the policy type and the treatment setting, ctdales can be either an
annual total or a percentage of each invoice. If no bill isntmirsed throughout the
whole year, the policyholder receives a refund. A varialdsadiption including the

response variable and the explanatory variables is giv&abie 2. Germany has 439
districts. The data includes patients from all districts.

Around 76% of the insured persons are male, which is typmatte policy line
considered. To obtain a first overview of the dependent b, a histogram of the
observed count frequencies is given in Figure 1). For a bgtegphical illustration,
outliersY; > 50 are not displayed. The histogram shows that we have a hitgition
inY; and a rather large number of zeros. In particular 43% of tepaese data is
equal to zero. The covariates can be split up into two grotips. first group of
the covariates depend on the patient like the total of aludgbles with value®ED
€ [0,1821, the age WittAGE € [3,88] or the gender dumm$EX. The second group
of covariates are spatial covariates like the number of iplarss per inhabitant with
PHYS.INH € [0,0.5623, the number of inhabitants per square kilometer with value
URBAN € [39.28 4060 or the average buying pow&P € [122774,2376038] in
Euros. The maps in Figure 2 show the spatial distributiorhefdpatial covariates.
The number of physicians per inhabitant in Germany seem tdidigbuted very
uniformly (left panel of Figure 2) whereas the most inhatisgper square kilometer
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Table 2: Variable description for the analyzed health iasoe data set

Variable Type Description

Y, discrete Number of outpatient benefits received
by patienti.

DED; continuous Total of all deductibles of patignt

AGE discrete Age of patient

SEX binary Indicator for gender of patiemt (0 =
female, 1 = male)

ZIR categorical ZIP Code of the home address of pa-
tienti.

D(i) categorical Indicates the home district for patient

PHY SINH; continuous with Number of physicians per inhabitant in
district |

spatial information  multiplied by 100.
URBAN continuous with Number of inhabitants per square kilo-

meter in districtj.
spatial information
BR, continuous with Buying power in distrigt
spatial information

Frequency distribution

15000
|

10000
I

Frequency

5000
I

. IR NN s e

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

Number of benefits received by patient

Fig. 1: Frequency distribution for the response variabYes (0, 705 without outliers
Y; > 50).



11

E— ]
0 05 0 1500 277.4 2376038

Fig. 2: Exploratory maps of the spatial covariaR®sY S.INH (left panel),URBAN
(middle panel) an®P (right panel).

o = gam
lowess

log(Y[Y>0])

0 20 40 60 80
AGE[Y>0]

Fig. 3: Scatter plot (including gam (dashed) and lowessdgseimoothing lines) and
box plot of the number of benefits received per patient agags of the patient.

can be found in the larger cities, e.g. Berlin, Bremen, HaigyoMunich or the Ruhr
area (middle panel of Figure 2). West Germany has highemniguyyower with a peak
around Munich compared to East Germany (former German DeatiodRepublic)

(see right panel of Figure 2).

A natural next step is to look at scatter plots of the dependamableY against
each of the regressors. The LOWESS (solid line) and the GAgh@lhline) smooth-
ing curves of the scatter plot in Figure 3 indicates that theable AGE has to be
transformed, i.e. we allow a quadratic influence on the nespoln health insurance
this is not unusual since in general children and older peopkd more medical at-
tendance. For numerical stability we use standardized€toms called autoscaled)
covariates for the variabld3ED, PHY S.INH, URBAN andBP denoted with ".s".
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5.2 Identification of base models

To establish base models we first analyze the data set inatistisal program "R”
without spatial effects. We allow for an intercept, the atai@s gender§EX), the
standardized covariat€&ED.s, PHYS.INH.s, URBAN.sandBP.s as well as the or-
thogonal polynomial transformed covariat®&E.p1 (polynomial transformation of
degree 1)AGE.p2 (polynomial transformation of degree 2). For maximum likel
hood parameter estimates we use the funcéist. zigp () in theR packagezZIGP
developed by Erhardt (2009) for all models except the neg&inomial regression
model which is estimated with the bagitibrary MASS using the functiorglm.nb().

In a next step sequential elimination according to a Waltiviéth 5% a-level of
significance is conducted. In Table 3 the full and reducedesesgion specifications
are given for every model class considered in Section 2. Emalfpy term in the
AIC statistic includes parameters which are estimatedhssg in GP(ui, ¢)) and
does not include them if they are fix (suchdas= 1 in Poi(p;)). We stress that the
comparison of different models based on AIC is only posswiiin one model
class, that is when the distribution of the responses aresdh®e and designs are
hierarchical. If the models are non nested, the test dessbould be based on the
Vuong test or the distribution-free test (Clarke test).

Table 4 displays for the models NB, GP, ZIP and ZIGP (definedhadel ()
and Poi, NB, GP and ZIP (defined as motglthe entries of the Vuong and Clarke
tests for each combination of modé&) and model (l). We choose an-level of 5%,
i.e.z_ g = = 1.96. In the first line of each cell, the Vuong test statistits given. In
the second and third line the decision of the Vuong test (\d) ttue Clarke test (C)
is shown, i.e. if modell{) or (11) is better. The corresponding p-values for each test
are given in parentheses. For example V:(@t)z- 10‘16) means that the Vuong test
prefers modell() with p-value smaller than 20016, We now discuss the conclu-
sions to be drawn from Table 4. Since the Poisson model is red¢mped over any
of the other model classes, we see evidence that the datddstinverdispersed.
Overdispersion may be explained either by a dispersiompetex as in the GP or the
NB model, by excess zeros as in the ZIP model, or both. Sire&# model out-
performs the NB model, we consider zero-inflation jointhttwihe GP distribution,
i.e. we also fit a ZIGP model. In general, the tests by Vuong@ladke are suitable
for pairwise model comparison, thus they do not have to leaghtoverall decision
between all model classes, much less do both test necgsacitle equivalently. In
our case, however, the pairwise decisions given in Table4dantical, and we can
sort the models in a unique ranking: the GP model outperfalhaher models and
is followed downward by ZIGP, NB, ZIP and the Poisson modak Tomparison of
theZIGP(1;, ¢, w) model to all other model classes gives almost identicalteas
the comparison of th&P(p;, ¢) model to these classes. The reason is that the zero-
inflation parameter in the ZIGP model is estimated almoseto £see Table 3) and
therefore the ZIGP fit is almost identical to the GP fit. In thenparison between the
GP and ZIGP model, the GP model by far outperforms the ZIGPeainddhis can be
explained by the nature of the two test: even if the likelith@ontributions per ob-
servation in both of these models are almost identical etieea minimal correction
toward the GP model by virtue of the larger Schwarz penatty tevhich corrects for



Table 3: Model specifications and AIC for each of the modeisrafequential elimination of insignificant covariatesading to a Wald
test witha = 5%

Model Model equationu Dispersion  Zero- | (é) Para- AlIC
(SE) inflation meters
(SE)

Poi( ) 1 + DEDss + AGEpl + AGEp2 + SEX + ¢ =1 (not w = 0 (not -218486.8 8 436 990

PHYS.INH.s+ URBAN.s+ BP.s estimated)  estimated)
NB(L,r) 1 + DED.s + AGE.pl + AGE.p2 + SEX + = 05811 -99552.8 9 199 124
(full) PHYS.INH.s+ URBAN.s+ BP:s (0.0062)
NB(ui,r) (re- 1+ DED.s+AGE.pl+AGE.p2+ SEX +BP.s f = 05811 -99553.3 7 199 121
duced) (0.0062)
GP(ui, ¢) 1 + DED.s + AGEpl + AGEp2 + SEX + ¢ = 46369 w = 0 (not -96849.1 9 193716
(full) PHYS.INH.s+ URBAN.s+ BP.s (0.0397) estimated)
GP(ui, 9) 1+ DED.s+ AGE.pl + AGE.p2 + SEX + UR- ¢ = 46893 w = 0 (not -96850.5 8 193 717
(reduced) BAN.s+ BPs (0.0410) estimated)
ZIP(li, w) 1 + DED.s + AGEpl + AGEp2 + SEX + ¢ =1 (not @ = 04312 -161674.1 9 323 366
(full) PHYS.INH.s+ URBAN.s+ BP.s estimated)  (0.0026)
ZIP(ui, w) 1+ DED.s+ AGE.pl+AGE.p2 + SEX $ =1 (not & = 04312 -1616754 6 323363
(reduced) estimated)  (0.0026)

— A 6 _

ZIGP(t, ¢, @) 1 + DEDs + AGE.pl + AGE.p2 + SEX + ¢ = 47010 ® = 10 96 454.5 10 192 929

PHYS.INH.s+ URBAN.s + BPs (0.0414) (0.0007)

€T



Table 4: Model comparison using the Vuong and the Distrdnstrree (Clarke) test; test statistiof the Vuong test together with decisio

according to Vuong (V) and Clarke (C) and their p-valuespeestively.

o Poi( ) N1, 1) GP(,9) ZIP(, )
v =302
NB(L,T) | ) (<2-10° 16)
() (<2-1071)
=347 v=42
GP(i,9) () () (<2-107%6)  Vv:(l) (2.26:10°9)
() (<2-10%) c:() (<2-1071)
=214 v=-247 v=-250
ZIP(u,w) V() (<2 1@16) Vi(l) (<2-107%)  vi(l) (<2-10° 16)
() (<2:101%)  ci() (<2-10%) c:() (<2-10°%°)
=347 v=43 v=-137 v=250
ZIGP(1i, ¢, w) () () (<2:107%8) V() (214-10°°)  V:(l) (<2:10°%)  Vvi(l) (<2-107%)
() (<2-10%%) C:() (<2-10%%) C:(l) (<2:1071%) C:(l) (<2-10°%)
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the additional zero-inflation parameter in the ZIGP modeatviithstanding this
application, overdispersion explained by both a dispergarameter and zero-inflation
simultaneously is present in many other applications tkegZIGP model considered
by Czado et al. (2007) to analyze patent filing processes.

By including a random spatial effect for each region extreefageneity in the
data might be taken into account by assuming a finer geograpkblution. The
CAR prior presented in Section 2 will be assumed for thes#gadpsdfects.

5.3 Bayesian inference using MCMC

The MCMC algorithms for the Poisson, NB, GP, ZIP and ZIGP esgion models
are run for 50000 iterations. The mean paramgigr=1,...,n has the general form

i =t -exp(&‘Bwo(i))

with the observation specific exposurdixed to 1. We fit models with spatial co-
variates only (denoted by SC), models with spatial randdectSf only (denoted by
CAR) and models with both spatial random effects and speatigériates (denoted
by CAR+SC). Recall that we have the spatial covariates: murobphysicians per
inhabitants PHY S.INH.s), number of inhabitants per square kilometd RBAN.s)
and buying powergP.s).

The starting values for each parameter of the four modelsaden from the
regression without spatial effect. That means we use thdtsesf theR functions
est.zigp() andglm.nb() for all models with all covariates for SC and CAR+SC
and without the spatial covariates for the CAR model. Thegras means and 80%
credible intervals for the model specific parametegsandw in the different models
are shown in Table 5 (the posterior means and 80% creditdevals for the regres-
sion parameter vectg@ can be found in Schabenberger (2009b, p. 59)). As in the base
models in Section 5.2, the zero-inflation parameter in ti@RZmodel is very close
to zero for the SC, CAR and SC+CAR specifications. Note that positive zero-
inflation is allowed, therefore the credible intervals catrgontain the zero. Since the
ZIGP model becomes a GP model when there is no zero-inflatesept, we will no
longer consider the ZIGP model for the remainder of this pape

Estimation of the regression parameter slightly differsMeen the models and
also changes when spatial effects are added, especialthdoGP models where
large spatial effects are observed. Although there are sosignificant covariates
we do not reduce the models to compare whether SC, CAR or CBRs-Sreferred.
Estimation of the specific parameters is rather similar imaddels SC, CAR and
CAR+SC. The range of the estimated spatial effects in alhefrhodels is roughly
the same in each model even though the Poisson model caphexglained hetero-
geneity only by spatial effects. In the ZIP model the projporpf extras zeroso is
estimated as 43%.

In Figure 4 we present map plots of the estimated posteri@ansien Figure 5
the 80% credible intervals of the spatial effects in the &uis negative Binomial,
generalized Poisson and zero-inflated Poisson modelsan.dn each Figure the
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Table 5: Estimated posterior means and 80% credible intefeathe model specific
parameters in the considered SC, CAR, CAR+SC models

Parameter  Model Mean (10%, 90%)
scC 0.5808 (0.5723, 0.5887)

rin NB CAR 0.5912 (0.5831, 0.5995)
CAR+SC  0.5910 (0.5830, 0.5993)
SC 4.6840 (4.6271, 4.7412)

¢ in GP CAR 4.4492 (4.3994, 4.4999)
CAR+SC  4.4488 (4.3985, 4.4994)
SC 0.4312 (0.4278, 0.4346)

winZIP  CAR 0.4310 (0.4276, 0.4345)
CAR+SC  0.4310 (0.4276, 0.4344)
SC 46825 (4.65444.7110

¢ inZIGP CAR 4.4514 (4.42194.4805
CAR+SC 44518 (4.42144.4792)
sc 24.10% (2.0-10°,55.-10°%)

winZIGP CAR 16-10% (1.9-10°5,4.0-10%)

CAR+SC 15-10% (1.3-10°534-107%)

model specification SC is shown in the left panel, the CAR rhsplecification in the
middle panel and the CAR+SC model specification in the rigingh Here we see
that the spatial effects of all four regression models areat the same. The spatial
covariates have nearly no influence but according to the 8@Hilie interval they
have a negative spatial effect. According to the 80% crediftiervals the CAR and
the CAR+SC models have small significant spatial effect.

Unfortunately, the estimated empirical autocorrelationsome of the models
decrease very slow. Therefore to compare the different leade decide to thin the
50000 MCMC output by choosing every 200th value.

In order to compare these models, the DIC, defined in Sectid® @nsidered.
In Table 6, the DIC, the posterior mean of the deviance anckffestive number
of parameters are listed for each mode[D(8|y)] is based only on the unscaled
deviance (see Section 3) which cannot be interpreted irastan overall goodness
of fit measure of one specific model. HoweVefpD(0|y)] can be used for comparing
the model fit of several models when the number of parametemsighly the same.

For each regression model the model SC has the highest Di@.vahe DIC
for the CAR and CAR+SC model is roughly the same. For SC madtieleffective
number of parameteng is close to the true number, which is eight for the Poisson
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Fig. 4: Maps of the estimated posterior means (top panetsleddpatial effects in the
Poi, NB, GP and ZIP regression models SC, CAR and CAR+SC
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Table 6: DIC,E[D(0]y)] and effective number of parametepg for the different
models

Model DIC E[D(0]y)] P
SC 436990.8 436982.9 7.89
Poi CAR 426818.5 426390.3 428.21
CAR+SC 426817.2 426388.9 428.24
SC 199124.9 199115.8 9.10
NB CAR 198867.8 198651.8 216.00
CAR+SC 198868.1 198650.8 217.29
SC 1929279  192918.5 9.33
GP CAR 190764.4 190461.8 302.64
CAR+SC 190764.7 190461.4 303.30
SC 323367.0 323357.7 9.36
ZIP CAR 318740.5 318364.8 375.66

CAR+SC 318742.2 318366.2 376.03

regression model and nine for the NB, GP and ZIP regressiatemahis is to be
expected, since these models do not include random effdtiisn spatial effects
are added, the number of effective parameters increasefiyraphe DIC and the
posterior mean of the deviandg[D(8]y)], for CAR are the smallest in all regression
models except for the Poisson model. Here the DIC value of €2®Ris slightly
lower than the one of CAR.

Note that the DIC must be used with care, since strictly sipgathe DIC is
defined for distributions of the exponential family only. didonally, if two models
have similar DIC values it is possible that the model deaisiaries for different
MCMC runs. Therefore we make another comparison using tleeyand the Clarke
test discussed in Section 4.

5.4 Model selection
5.4.1 Selecting spatial models

First of all we compare SC, CAR and CAR+SC for each regressiodel Poi( L),
NB(ui,r), GP(Li, ¢) andZIP(ui, w). Table 7 shows the percentage of 250 Vuong and
Clarke test decisions between model (I) and model (I1). Rentuong test we use the
statisticv and choose again an-level of 5%, i.e. the decision borderz’@,% =1.96

For the Clarke test we repo/n. The number of parametepsandq of model ()
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Table 7: Decision of the Vuong and Clarke tests between mddahd model (1) as
a percentage

Model @)/ (1) Test ~ DPoBf Nodecision R
N
Poi  CAR/CAR+SC \é‘f;’rrl‘(g 4%--%‘;/2 1282‘(2 4%..(();//(;
owsc g B o
o S g
o cmewsc m o wm oo
owe vmn om o wmn
GP CAR/CAR+SC \c/llj;rig 43-_‘(‘)‘;//‘; i%.i?{/i 3%%00/2
ZIP CAR/CAR+SC \C/‘f;’rrllg 52-_%‘;//‘; 108:322 422((’)/2)

and (1), neccessary for the corrections, are taken from the DICutations, i.e. we
use the effective number of parametpgs

The decisions of the Vuong and Clarke tests given in Tableeat consistent.
For the Poisson regression models the SC specificationrpesfooorly, however for
the comparison between the CAR and CAR+SC specificationsthbel Clarke test
slightly prefers CAR. Since this model has less covaridtas CAR+SC, we choose
this design as the preferred one within the Poisson classghEmegative Binomial
model there is no distinct decision between CAR and CAR+S@Weler the SC
model is preferred over both of them. The same holds for the @hss. For the
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generalized Poisson regression models the test by Vuorfigrpmone of the models
in all three comparisons. Therefore we only consider thelk@lgest, which slightly

decides toward the CAR model. Since this model also has th#eshDIC value (see
Table 6), we choose the CAR specification within the GP class.

5.4.2 Selecting count distribution

Now we want to compare the observed preferred models Poi GiBRSC, GP CAR
and ZIP SC to get the overall favored one. Therefore we use #ga\Vuong and the
Clarke test like in the section before. The results are shinwable 8. The first value

in the round brackets favors mode¢),(the second one stands for no decision taken
and the right one prefers modél ) (all in percent). For example (100%, 0%, 0%)
means the test perfers modBl ¢ver model (1) in 100% of the sampled MCMC pos-
terior parameter values based on 250 iterations. The deregtdoisson regression
model CAR seems to fit our data in terms of the Vuong test andcCtaeke test the
best. This model is preferred over all other models disaiésee Table 8).

Table 8: Selection of the response distributionsx(1)),(1) =(11),(I) <(11)) based on
the Vuong (V) and Clarke (C) tests

(I Poi CAR NB SC GP CAR
0]
V. (100%, 0%, 0%)
NB SC C  (100%, 0%, 0%)
P CAR V' (100%, 0%, 0%) _(100%, 0%, 0%)
C  (100%, 0%, 0%) (100%, 0%, 0%)
- Vv (100%, 0%, 0%) (0%, 0%, 100%) (0%, 0%, 100%)
C (100%, 0%, 0%) (0%, 0%, 100%) (0%, 0%, 100%)

6 Conclusions

For count regression data we have presented several mbdefsler to model over-
dispersion we used models with an additional parameter ¢2iNB and GP model
or models with an extra proportion of zero observations tileezero-inflated model
ZIP.

Further, in order to account for unobserved spatial hetety in the data we
included spatial random effects which allow for spatialretations between obser-
vations and / or spatially varying covariates.

These models were applied to analyze the number of ambutaefits received
per patient in 2007. The DIC, the Vuong and the Clarke teste weed for model
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comparison. Models allowing for over-dispersion showedgaificantly better fit
than an ordinary non spatial Poisson regression modelhEdiB and the ZIP model
the inclusion of spatial effects did not improve the modelRar the Poisson model
which does not allow for over-dispersion, and the GP modeljticlusion of spatial
effects led to an improved model fit. According to the consdecriteria the GP
regression model with spatial random CAR effects but noiapedvariates is to be
preferred to all other models. However, the fitted spatialehishows no smooth
surface structure. Rather it indicates isolated specifiiors where the covariates
provide no adequate fit.

There are several interesting avenues for further resegeclinstance, instead of
analyzing the number of ambulant benefits received by paftiierone year only, it
might be interesting to include data over several yearsderoto examine whether
the spatial pattern changes over the years. Another ittiteggsossibility is to extend
the regression models by allowing for regressiorpaandw in order to find a better
model fit and to address heterogeneity on a more differectibasis.
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