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Variational data assimilation problems are concerned with computing
unknown initial values for the simulation and prediction of natural phe-
nomena, most notably in weather prediction, and are usually solved via an
ill-posed optimal control problem for the initial state at the time of the first
available measurements. An alternative “forward” approach focuses on
computation of the final state after this interval—which is just as suitable
for prediction purposes—and is well-posed without additional regulariza-
tion. Specifically, it is possible to compute projections of the unknown final
state on all elements of an orthonormal basis, which theoretically allows
for the complete reconstruction of the final state. In this paper, an effi-
cient numerical method for linear evolution equations of diffusive type is
presented, and convergence of the numerical approximation based on a
discontinuous Galerkin discretization is proved. The key of this method is
the computation of an adaptively ordered orthonormal basis using proper
orthogonal decomposition. Numerical examples for a scalar convection-
diffusion equation in two and three dimensions show the effectiveness of
the method.

1 Introduction

Data assimilation problems are concerned with determining the initial condition at
t = 0 in evolution equations from distributed or boundary measurements over a time
interval [0, T0], for the purpose of calculating the state at later times. Such problems
arise, for example, in weather or climate prediction [13], in oceanography [9] and in
geophysics [6], and in general lead to ill-posed problems (such as the backward heat
equation). The current standard approach (called 4DVAR [15, 25]) uses optimal control
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techniques for minimizing a suitable cost function involving the observations and the
state equation, including a regularization method and an optimality system making
use of the adjoint state. The state in the time interval [0, T1], T1 > T0, is then calculated
via the solution of a classical initial boundary value problem. (Other methods in use
include Kalman filters [9, 22] and the representer method [3, 5, 4].) The 4DVAR method
is now part of most operational weather prediction models, and can be the most time
consuming part of a forecast cycle.

An alternative method [19] computes from distributed observations the state at the
final time t = T0, which can serve as an initial condition for the state equation in
the time interval [T0, T1], for which the prediction is desired. This approach can be
thought of as a variational analog of forward data assimilation techniques (such as
Kalman filters), to which it is, however, not directly related. The “variational forward
assimilation” problem is well-posed, as can be shown using an observability estimate
for the adjoint state equation derived via a Carleman estimate (cf. [19]). Specifically, it
is stable with respect to noise in the data even without regularization. Its solution can
be computed by solving a series of control problems for elements of an orthonormal
basis of a finite dimensional subspace.

In this paper, we present an efficient numerical method for solving the “variational
forward assimilation” problem for a general linear convection-diffusion equation. By
using proper orthogonal decomposition to construct an adaptively ordered orthonor-
mal basis and a discontinuous Galerkin discretization in time, the computation can
be carried out very efficiently. It is shown that this discrete problem has a unique
solution, which converges to the sought final state. The main advantages of the pro-
posed approach are the high stability with respect to measurement errors, and its
inherent pre-computability and parallelizability. Furthermore, it is free of regulariza-
tion parameters which have to be chosen dependent on the data. We demonstrate
the effectiveness of this method on examples in two and three dimensions. For the
purposes of presentation, we focus here on linear convection-diffusion equations, but
the approach is also directly applicable to more complex state equations such as the
linearized Navier-Stokes equations.

We now make the above more precise, and then state the projection formula and
stability estimates from [19] which are fundamental for this approach. We conclude
with an outline of the entire forward data assimilation procedure, which also serves
as an overview of the organization of this article.

1.1 Problem formulation

We consider a linear scalar convection-diffusion equation in a bounded domain Ω ⊂
Rd, d ∈ {2, 3}, with Lipschitz boundary Γ, on the time interval [0, T] for a given T > 0:

(1)

{
∂ty−∇ · (c∇y) + bT∇y = f , in Ω× (0, T),

y = 0, on Γ× [0, T],

with a diffusion tensor c ∈ C1(0, T; C∞(Ω))d×d, a flux b ∈ C1(0, T; C∞(Ω))d, and a right
hand side f ∈ L2(0, T; L2(Ω)). The entries cij of the diffusion tensor are supposed to
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satisfy an ellipticity condition: There exists a constant γ > 0 independent of x and t
such that

d

∑
i,j=1

cij(x, t)ξiξ j ≥ γ ‖ξ‖2
Rd

holds for all (x, t) ∈ Ω× [0, T] and all ξ ∈ Rd. We refer to [20] for a precise statement of
the function space containing solutions of (1) for which no additional initial condition
is specified.

Now let ω be a nonempty open subset of Ω with characteristic function χω. Fur-
thermore, let v ∈ L2(0, T; L2(Ω)) and ϕT ∈ L2(Ω) be given. We also introduce the
controlled adjoint problem of (1):

(2)


−∂t ϕ−∇ · (cT∇ϕ)−∇ · (bϕ) = vχω, in Ω× (0, T),

ϕ = 0, on Γ× [0, T],
ϕ(·, T) = ϕT, in Ω.

Thus, vχω(x) defines a control acting on ω.
The following proposition summarizes some statements concerning existence and

regularity of the weak solution of (2):

Proposition 1.1. For given ϕT ∈ L2(Ω) and vχω ∈ L2(0, T; L2(ω)), equation (2) has a
unique weak solution, which satisfies

(3) ϕ ∈ L2(0, T; H1
0(Ω)) ∩ C(0, T; L2(Ω)), ∂t ϕ ∈ L2(0, T; H−1(Ω)).

If in addition ϕT ∈ H1(Ω) and ∂tvχω ∈ L2(0, T; L2(ω)) holds, this solution satisfies

(4)

{
ϕ ∈ L2(0, T; H2(Ω)) ∩ C(0, T; H1(Ω)) and

∂t ϕ ∈ L2(0, T; H1(Ω)) ∩ C(0, T; L2(Ω)),

as well as the following estimate:

(5) ess sup0≤t≤T ‖ϕ(t)‖L2(Ω) + ‖ϕ‖L2(0,T;H1(Ω)) + ‖∂t ϕ‖L2(0,T;L2(Ω))

≤ C
(
‖vχω‖L2(0,T;L2(ω)) + ‖ϕT‖H1(Ω)

)
Proof. Existence, uniqueness and regularity property (3) follow from [28, Ths. 26.1,
25.5]. The higher regularity given in (4) is a direct consequence of [18, Th. 6.2] and [28,
Ths. 27.2, 25.5]. The estimate (5) can be found combining [8, 5.9, Th. 2] and again [18,
Th. 6.2].

We consider then the following problem:

Problem 1.2. Given yχω ∈ L2(0, T; L2(ω)), find y(T) ∈ L2(Ω), where y satisfies equation
(1).

In other words, we are looking for a final state y(T) of the convection-diffusion
equation, which is consistent with equation (1) and the given measurement yχω.
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1.2 Well-posedness and projection formula

We state the main results from [19], showing uniqueness and stability for the solution
of the forward data assimilation problem:

Theorem 1.3 (Théorème 1, [19]). There exists a constant C > 0 depending only on Ω, T
and ω such that for a solution y of (1), the following estimate holds:

(6) ‖y(T)‖2
L2(Ω) ≤ C

(∫ T

0

∫
ω
|y|2dxdt +

∫ T

0

∫
Ω
| f |2dxdt

)
.

This theorem follows from a Carleman estimate for second order parabolic equations
and standard energy estimates using a cutoff-function to remove the dependence on
the unknown initial condition.

It is well known (c.f., e.g., [17]) that an observability estimate such as (6) implies
null-controllability of the adjoint equation. Hence, we have:

Corollary 1.4. Let ω ⊂ Ω be an open subset, and let T > 0 and ϕT ∈ L2(Ω) be given. Then
there exists a control v = v(ϕT) ∈ L2(0, T; L2(Ω)), such that the solution ϕ of the adjoint
equation (2) satisfies ϕ(0) = 0.

To fix a unique control, we take v to be the function of minimal L2(0, T; L2(ω)) norm
among all admissible controls. Proposition 1 in [10] states that there are coefficients
CΩ, KT,c,b > 0 such that this control v satisfies

(7) ‖v(ϕT)‖L2(0,T;L2(Ω)) ≤ eCΩKT,c,b ‖ϕT‖L2(Ω) .

From this null-controllability result, by multiplying the state equation with the null-
controlled adjoint state and integrating by parts, we arrive at the following equality
for the projection of the unknown final state onto a function in L2(Ω):

Corollary 1.5. If y satisfies (1), then we have for all ϕT ∈ L2(Ω) that

(8)
∫

Ω
y(T)ϕT dx =

∫ T

0

∫
Ω

f ϕ dxdt−
∫ T

0

∫
ω

yv(ϕT) dxdt,

where ϕ and v(ϕT) are the null-controlled solution and corresponding null-control according
to Corollary 1.4.

Since only known functions appear on the right hand side of (8), this allows the
computation of projections of the final state on any given ϕT ∈ L2(Ω).

While it follows immediately from (8) that these projections—and hence any finite
dimensional approximation of y(T) computed this way—are stable with respect to
perturbations of yχω, the same is not clear for the complete reconstruction using an
orthonormal basis of L2(Ω). Indeed, one cannot even expect in general that evaluating
the right hand side of (8) for an arbitrarily perturbed ỹχω and the elements of an
orthonormal basis ϕk defines a square-summable series. We therefore investigate the
question of stability in section 5 numerically.
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1.3 Outline of numerical forward assimilation

Using equation (8), we can calculate projections of the final state y(T) from the given
data and measurements only. This suggests the following approach for numerically
computing an approximation yH(T) of y(T): First, we fix a finite dimensional subspace
VH ⊂ L2(Ω). To calculate the projection yH(T) of y(T) into VH (with respect to the
L2(Ω) inner product), we take an orthonormal basis {Φk}n

k=1, compute the coefficients
〈y(T), Φk〉L2(Ω), and form the sum

(9) yH(T) :=
n

∑
k=1
〈y(T), Φk〉L2(Ω) Φk.

We approximate the projections onto each Φk by numerically solving a penalized
formulation of the null-control problem for (2) with ϕT = Φk. The penalty parameter
β > 0 can be chosen arbitrary and is independent from the measurement data yχω.
It is possible to show convergence of the corresponding optimal controls vβ(Φk) to
the exact control v(Φk) given by Corollary 1.4 when β → 0. As will be detailed in
section 2, the solution of the control problem can be found by solving an operator
equation involving a pair of partial differential equations. The numerical solution of
this operator equation is done by an iterative method for a Galerkin approximation
in a finite dimensional space Vh, which needs to embed VH, and a discontinuous
Galerkin method in time. (Using standard finite element spaces for VH and Vh, for
example, the embedding is ensured by the condition h < H on iteratively refined
grids.) In section 3 we will show existence and uniqueness of discrete controls vh,β(Φk)
converging to vβ(Φk). If f and yχω are projected into the finite dimensional space as
well, the inner products in (9) can then be calculated exactly. Furthermore, we can
show convergence for the numerical approximations of 〈y(T), Φk〉L2(Ω) to the exact
coefficients for h, β→ 0.

The convergence of the approximations yH(T) of y(T) as H → 0 is treated in sec-
tion 4.1. It remains to specify the orthonormal basis {Φk}n

k=1 of VH. The key of our
approach is to make use of a proper orthogonal decomposition for this purpose. For
an efficient assimilation process, it is essential to employ these basis elements in order
of their importance for the approximation of y(T). This is achieved by first estimating
the coefficients

〈
yH(T), Φk

〉
L2(Ω) via an interpolant of the measurements, which also

provides a (heuristic) error estimate and hence an adaptive termination criterion for
the summation. The remainder of section 4 is devoted to this issue.

Finally, we give in section 5 details on the implementation and present numerical
examples in two and three dimensions which demonstrate the effectiveness of the
proposed method.

2 Control of the adjoint equation

The solution of the forward data assimilation requires computing null-controls for the
adjoint equation. To motivate the numerical method, we recall here the relevant basic
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facts from exact controllability, including its approximation via penalization. We refer
to, e.g., [11] for a complete exposition. Since we know a priori that the desired null
control exists, we can additionally show convergence of the penalized approximations.

As will be seen below (cf. Remark 2.8), it is necessary to use ϕ(T) = 0 as the
final value of the adjoint equation (2). Since the equation is linear, this can be easily
achieved by solving the partial differential equation for given final value ϕT with the
control v = 0. The solution ϕ̃ then defines a new target state ϕ0 := −ϕ̃(0) at time
t = 0, which is reachable from ϕ(T) = 0 by the same control that drives ϕT to zero.

We now give a precise formulation of the control problem for the adjoint equation:

Problem 2.1. Given ω ⊂ Ω and ϕ0 ∈ L2(Ω), find

inf
v∈L2(0,T;L2(Ω))

1
2
‖v‖2

L2(0,T;L2(ω)) s.t. ϕ(0; v) = ϕ0,

where ϕT = 0 and ϕ(0; v) denotes the solution of (2) corresponding to the control v, evaluated
at t = 0.

We are thus specifically searching for the control of minimal L2(0, T; L2(ω)) norm.
Due to estimate (5) in Proposition 1.1, the final value ϕ(0; v) is continuous in v. The
set of all controls v satisfying ϕ(0; v) = ϕ0 is therefore closed and convex. It is also
non-empty, since by Theorem 1.4 there exists at least one such control. Thus, using
standard results from functional analysis, Problem 2.1 has a unique solution, which we
denote with v. The stability of the control problem follows immediately from estimate
(7).

2.1 Penalized approximation

Although there is a unique solution of the exact control problem we are considering,
this is no longer clear for discretized versions of Problem 2.1. It is therefore numeri-
cally convenient to consider a penalized version of the control problem:

Problem 2.2. Given ω ⊂ Ω, ϕ0 ∈ L2(Ω) and β > 0, find

inf
v∈L2(0,T;L2(Ω))

{
1
2
‖v‖2

L2(0,T;L2(ω)) +
1

2β
‖ϕ(0; v)− ϕ0‖2

L2(Ω)

}
,

where ϕT = 0 and ϕ(0; v) denotes again the solution of (2) with control v at t = 0.

By the same arguments as above, this second control problem also has a unique
solution, which we denote with vβ. The following theorem shows that we have con-
vergence of vβ to the exact control v for β → 0. This implies that we are allowed to
choose β > 0 arbitrarily small, independent from the assimilation problem itself. In
particular, the choice of β will be independent of the measurement data h.
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Theorem 2.3. The solutions vβ of the penalized control problem 2.2 converge to the solution
v of the exact control problem 2.1:

lim
β→0

vβ = v.

Proof. We first note that by definition of the control problems we have

1
2

∥∥∥vβ
∥∥∥2

L2(0,T;L2(ω))
+

1
2β

∥∥∥ϕ(0; vβ)− ϕ0

∥∥∥2

L2(Ω)
≤ 1

2
‖v‖2

L2(0,T;L2(ω))

Multiplying by β > 0, this directly yields

lim
β→0

ϕ(0; vβ) = ϕ0.

Moreover, the controls vβχω are bounded by vχω:

(10)
∥∥∥vβ
∥∥∥

L2(0,T;L2(ω))
≤ ‖v‖L2(0,T;L2(ω)) .

Thus, we can find a weakly converging subsequence

vβk ⇀ ṽ,

where limk→∞ βk = 0. Since v 7→ ϕ(0; v) is a continuous linear mapping, we have

ϕ(0; ṽ) = ϕ0,

i.e. ṽ is an exact control. From (10) and the weak semi-continuity of the norm, we
obtain

‖ṽ‖L2(0,T;L2(ω)) ≤ lim inf
k→∞

∥∥∥vβk

∥∥∥
L2(0,T;L2(ω))

≤ ‖v‖L2(0,T;L2(ω)) .

On the other hand, using the optimality of v yields ‖v‖L2(0,T;L2(ω)) ≤ ‖ṽ‖L2(0,T;L2(ω)).
Therefore, ṽ is an exact control of minimal norm. Due to uniqueness for the exact
control problem 2.1, ṽ = v holds.

The next step is to show strong convergence for the sequence vβk . To this end we use
again the boundedness (10) of the controls. We can assume (after possibly extracting
a subsequence) that

lim
k→∞

∥∥∥vβk

∥∥∥
L2(0,T;L2(ω))

= K ≤ ‖v‖L2(0,T;L2(ω)) .

Since the closed convex set BK(0) (the ball of radius K in L2(0, T; L2(ω))) is also weakly
closed, we can pass to the limit and obtain

‖ṽ‖L2(0,T;L2(ω)) ≤ K ≤ ‖v‖L2(0,T;L2(ω)) .
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Together with ṽ = v this yields K = ‖v‖L2(0,T;L2(ω)). The sequence vβk is therefore
weakly convergent to v and the norms ‖vβk‖L2(0,T;L2(ω)) converge to ‖v‖L2(0,T;L2(ω)). As
L2(0, T; L2(ω)) is a Hilbert space, this implies strong convergence.

It remains to show convergence of any other subsequence vβl with liml→∞ βl = 0.
Suppose there is a sequence vβl which is not converging to v. Without loss of generality
(again by extracting a subsequence), there is an ε > 0 such that∥∥∥vβl − v

∥∥∥
L2(0,T;L2(ω))

> ε, for all l = 1, 2, . . . .

On the other hand, we can employ the same arguments as above to find a subsequence
of (vβl )l strongly converging to v, which gives a contradiction.

2.2 Characterization of control

The solution of Problem 2.2 can be characterized using extremality relations in Fenchel
duality, which yields an efficient numerical method. Hence, we introduce the adjoint
of the equation to be controlled, which is itself the adjoint of the state equation. To
reduce the risk of confusion, we will use the term biadjoint to describe this equation
and the corresponding solution:

(11)


∂tψ−∇ · (c∇ψ) + bT∇ψ = 0, in Ω× (0, T),

ψ = 0, on Γ× [0, T],
ψ(·, 0) = ψ0, in Ω.

Like the adjoint equation (2), this partial differential equation has a unique solution
ψ ∈ L2(0, T; H1

0(Ω)). The regularity of ψ depends on the smoothness of ψ0:

Proposition 2.4. For given ψ0 ∈ L2(Ω), equation (11) has a unique weak solution, which
satisfies

ψ ∈ L2(0, T; H1
0(Ω)) ∩ C(0, T; L2(Ω)), ∂tψ ∈ L2(0, T; H−1(Ω)).

If in addition ψ0 ∈ H1(Ω) holds, this solution satisfies

(12)

{
ψ ∈ L2(0, T; H2(Ω)) ∩ C(0, T; H1(Ω)) and

∂tψ ∈ L2(0, T; H1(Ω))

Proof. The statements follow from the same regularity results for parabolic problems
given in the proof of Proposition 1.1.

The connection between the adjoint and biadjoint equation can be expressed in op-
erator notation as follows. We first define the operator

(13) Λ :

{
L2(Ω)→ L2(Ω),

ψ0 7→ ϕ(0; ψχω).
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That is, for a given function ψ0, we solve the biadjoint equation (11), use this solution
as the control v = ψχω of the adjoint equation (2), and evaluate its solution ϕ at t = 0.

The following isometry property for the operator Λ is essential for all further argu-
ments.

Lemma 2.5. For every ψ0, ψ̃0 ∈ L2(Ω) we have〈
Λψ0, ψ̃0

〉
L2(Ω) =

〈
ψ, ψ̃

〉
L2(0,T;L2(ω)) ,

where ψ and ψ̃ are the solutions to the biadjoint equation (11) with initial value ψ0 and ψ̃0
respectively.

Proof. Let ϕ be the solution of the adjoint equation (2) corresponding to the control
ψχω. Multiplying the biadjoint equation (11) with the initial value ψ̃0 with ϕ and
applying Green’s formula yields

0 =
∫ T

0

∫
Ω
(∂tψ̃−∇ · (c∇ψ̃) + bT∇ψ̃)ϕ dxdt

=
∫ T

0

∫
Ω

ψ̃(−∂t ϕ−∇ · (c∇ϕ)−∇ · (bϕ)) dxdt−
∫

Ω
ψ̃0ϕ(0)dx,

where we have used zero boundary conditions on ϕ. The claim now follows from the
adjoint equation and the fact that by construction ϕ(0) = Λψ0.

Proposition 2.6. The operator Λ : L2(Ω) → L2(Ω) defined by (13) is a continuous linear
operator which is self-adjoint and positive semi-definite.

Proof. Linearity follows directly from the definition of Λ and linearity of the partial
differential equations (11) and (2). Due to Lemma 2.5, we have

(14)
〈
Λψ0, ψ̂0

〉
L2(Ω) =

∫ T

0

∫
ω

ψψ̂ dxdt =
〈
ψ0, Λψ̂0

〉
L2(Ω)

for every ψ0, ψ̂0 ∈ L2(Ω). According to the Hellinger-Töplitz theorem, Λ is therefore
continuous and self-adjoint. Positive semi-definiteness is also a direct consequence of
equation (14).

It is now possible to characterize the solution of Problem 2.2:

Proposition 2.7. The operator equation

(15) (Λ + βI)ψ0 = ϕ0

has a unique solution ψ
β
0 ∈ L2(Ω). The unique solution of Problem 2.2 is given by vβ = ψ

β
χω,

where ψ
β is the solution of (11) with initial value ψ

β
0 .
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Proof. We only sketch the idea of the proof here and refer the reader to [11] for a more
detailed discussion. The main technique used is the duality theory by Fenchel and
Rockafellar [21], which can be used to show

(16) min
v∈L2(0,T;L2(ω))

{
1
2
‖v‖2

L2(0,T;L2(ω)) +
1

2β
‖ϕ(0; v)− ϕ0‖2

L2(Ω)

}
= max

ψ0∈L2(Ω)

{
〈ψ0, ϕ0〉L2(Ω) −

1
2

β ‖ψ0‖2
L2(Ω) −

1
2
‖ψ‖2

L2(0,T;L2(ω))

}
for every β > 0. The same theory gives us the existence of unique, finite solutions vβ

and ψ
β
0 for these problems. Using the equality of the extrema and Lemma 2.5, we get

1
2

∥∥∥vβ − ψ
β
∥∥∥2

L2(0,T;L2(ω))
=〈

ψ
β
0 , ϕ0 − ϕ(0; vβ)

〉
L2(Ω)

− 1
2

β
∥∥∥ψ

β
0

∥∥∥
L2(Ω)

− 1
2β

∥∥∥ϕ0 − ϕ(0; vβ)
∥∥∥2

L2(Ω)
≤ 0.

The upper bound follows from the Cauchy-Schwarz inequality together with Young’s
inequality. We thus have

vβ = ψ
β
χω for all β > 0.

It remains to show that ψ
β
0 is the unique solution of the operator equation (15). Since

ψ
β
0 solves the optimization problem on the right hand side of (16), Lemma 2.5 yields

ψ
β
0 = argminψ0∈L2(Ω)

{
〈(Λ + βI)ψ0, ψ0〉L2(Ω) − 〈ψ0, ϕ0〉L2(Ω)

}
.

The operator Λ is positive semi-definite by Proposition 2.6. Therefore, (Λ + βI) is
strictly positive definite and the minimization problem above is equivalent to〈

(Λ + βI)ψ
β
0 , w

〉
L2(Ω)

= 〈ϕ0, w〉L2(Ω) for all w ∈ L2(Ω).

This yields (15). Uniqueness of the solution is then a direct consequence of the positive
definiteness.

Remark 2.8. For the original formulation of the null controllability problem as given in Corol-
lary 1.4, the operator Λ defined by (13)—and hence Λ + βI—would be affine, not linear. This
would make the proof of Proposition 2.7, as well as the numerical solution of (15), more in-
volved.

Since Λ + βI is linear, self-adjoint and positive definite, an efficient approach for the
numerical solution of equation (15) is to apply the method of conjugated gradients
(CG) to a suitable discretization of this operator. This will be justified and discussed
in the next section.
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3 Numerical calculation of projection

In this section, we detail a numerical method for the approximation of the projection
coefficient 〈y(T), ϕT〉L2(Ω) in formula (8). The main task here is the numerical solution
of the control problem 2.2 presented in the previous section.

Due to Proposition 2.7, the control problem reduces to solving the operator equation
(15). Since the operator Λ involves solutions of the adjoint and biadjoint equation, we
first introduce an appropriate discretization scheme for these partial differential equa-
tions in section 3.1. In particular, the spatial discretization leads to finite dimensional
subspaces Vh ⊂ H1

0(Ω). This allows us to formulate a discrete version Λh of operator
Λ, defined on Vh. We are then able to show the solvability of the discrete analog of
equation (15) and detail an algorithm for this task in section 3.2.

Finally, we prove convergence of the corresponding discrete approximations of the
coefficients 〈y(T), ϕT〉L2(Ω) for given ϕT ∈ VH, where H > h is fixed, to the exact
coefficient when h, β→ 0.

3.1 Discretization and operator convergence

We use a variational discretization consisting of standard conforming finite elements
in space and discontinuous piecewise polynomials in time, which corresponds to the
classical discontinuous Galerkin (DG) method for parabolic problems (cf. [26] and
references therein). This choice satisfies a discrete isometry property which is crucial
for the solvability of the discrete problem, while having the necessary approximation
properties to ensure convergence of the discrete solution to the sought control. Details
of the implementation are given in section 5.1.

For the spatial discretization, we take as ansatz and trial space

Vh = span{B1, . . . , Bn} ⊂ H1
0(Ω),

the space generated by the finite element form functions Bj which are globally contin-
uous piecewise polynomials of degree at most s on a quasi-uniform mesh of size h.
We denote by Ph : L2(Ω)→ Vh the orthogonal projection from L2(Ω) onto Vh.

Defining a partition 0 = t0 < t1 < · · · < tN = T of [0, T], we introduce the space

Sr := {v ∈ L2(0, T; H1(Ω)); vχIm ∈ Πr(tm−1, tm; Vh) m = 1, . . . , N},

where Im := (tm−1, tm] and Πr(tm−1, tm; Vh) is the space of polynomials of degree at
most r having values in Vh. Similarly, we define

S∗r := {v ∈ L2(0, T; H1(Ω)); vχJm ∈ Πr(tm−1, tm; Vh), m = 1, . . . , N}

with Jm := [tm−1, tm).
Setting v+

m := limt→t+m , v−m := limt→t−m , [v]m := v+
m − v−m (note that these definitions

11



are independent of whether v is in S∗r or Sr), and{
a : [0, T]×H1

0(Ω)×H1
0(Ω)→ R,

a(t; u, v) := 〈c∇u,∇v〉L2(Ω) + 〈b∇u, v〉L2(Ω) ,

 a∗ : [0, T]×H1
0(Ω)×H1

0(Ω)→ R,

a∗(t; u, v) :=
〈

cT∇u,∇v
〉

L2(Ω)
+ 〈bu,∇v〉L2(Ω) ,

we introduce the discrete variational form of problem (11): Find ψ ∈ Sr such that

(17)


N

∑
m=1

[ ∫
Im

(
〈∂tψ, v〉L2(Ω) + a(t; ψ, v)

)
dt +

〈
[ψ]m−1, v+

m−1

〉
L2(Ω)

]
= 0,

ψ−0 = ψh
0

holds for all v ∈ Sr.
The discrete variational form of the adjoint problem (2) with control ψχω is defined

as: Find ϕ ∈ S∗r such that
(18)

N

∑
m=1

[ ∫
Jm

(
〈−∂t ϕ, u〉L2(Ω) + a∗(t; ϕ, u)− 〈ψ, u〉L2(ω)

)
dt−

〈
[ϕ]m, u−m

〉
L2(Ω)

]
= 0,

ϕ+
N = 0

holds for all u ∈ S∗r . Note that with the substitution τm = tN − tm (i.e., integrating
backwards in time), we recover the setting of (17).

These discretizations can be reformulated as time stepping schemes, which for r = 0
are equivalent to the implicit Euler method (if the time integration is approximated
suitably).

Remark 3.1. For highly convection-dominated problems, the equations should be considered
in Lagrangian variables. Since the focus of this work is on the feasibility of the proposed
data assimilation approach, we restrict ourselves to problems which are moderately convection-
dominated. For such problems, using a sufficiently fine grid as well as enforcing the condition
h/2 ≤ ∆t ≤ h is sufficient to guarantee stability, at the cost of increased computational work.
Similarly, we do not address the issue of adaptive refinement in space and time, although this
is possible using the discretization given above.

For the remainder of the section, we always assume that ∆t is sufficiently small
compared to h to ensure stability of the finite element method. This also means that we
can treat {h, ∆t} as a single sequence in the following, indicated by the superscript h.

The full discretization can now be used to compute approximations to Λψh
0 for any

ψh
0 ∈ Vh. This is equivalent to applying a discrete version

Λh : Vh → Vh

12



of the operator Λ to the value ψh
0 . This discretized operator is still linear and (since

it is finite dimensional) continuous. In the following, we denote by ψh the solution of
problem (17) corresponding to the initial value ψh

0 . Similarly, ϕh
m(ψhχω) stands for the

solution of problem (18) corresponding to the control ψhχω at time step tm.
We close this section with the convergence of the discontinuous Galerkin discretiza-

tion of the operator Λ.

Proposition 3.2. For ψ0 ∈ H1
0(Ω) and ψh

0 := Phψ0, the following holds:

lim
h→0

sup
0≤t≤T

‖ψ(t)− ψh(t)‖L2(Ω) = 0(19)

and
lim
h→0
‖Λψ0 −Λhψh

0‖L2(Ω) = 0.(20)

Proof. Proof of (19). By [7, Th. 3.2], we can bound the approximation error by the
projection error

sup
0≤t≤T

‖ψ− ψh‖L2(Ω) ≤ C(T) ‖ψ−Prψ‖L2(0,T;H1(Ω)) ,

since ψh
0 = Prψ0 and the same subspace Vh is used in every time step. Here, Pr is the

local projection onto Sr defined by

(Pru)(tm) = Ph(u(tm)),
∫ tm

tm−1

〈u−Pru, v〉L2(Ω) = 0

for all m and all v ∈ Πr−1(tm−1, tm; Vh), which is exact for all u ∈ Πr(tm−1, tm; Vh)
(cf. [26, Th. 12.1]). From standard approximation properties, we therefore obtain for
s ≥ 1 and r ≥ 0:

sup
0≤t≤T

‖ψ(t)− ψh(t)‖L2(Ω) ≤ C
(

h ‖ψ‖L2(0,T;H1(Ω)) +
√

∆t ‖∂tψ‖L2(0,T;H1(Ω))

)
.

Since the norms on the right hand side are bounded by the regularity estimate (12),
the convergence as {h, ∆t} → 0 follows.

Proof of (20). By definition, Λψ0 = ϕ(0; ψχω), and correspondingly, Λhψh
0 = ϕ+

0 (ψhχω).
We split the approximation error as follows:

‖Λψ0−Λhψh
0‖L2(Ω) ≤

∥∥∥ϕ(0; ψχω)− ϕ(0; ψhχω)
∥∥∥

L2(Ω)
+
∥∥∥ϕ(0; ψhχω)− ϕ+

0 (ψhχω)
∥∥∥

L2(Ω)

To show convergence of the first term, we use the linearity of (2) in the right hand side
and estimate (5) to obtain the bound

(21)
∥∥∥ϕ(0; ψχω)− ϕ(0; ψhχω)

∥∥∥
L2(Ω)

=
∥∥∥ϕ(0; (ψ− ψh)χω)

∥∥∥
L2(Ω)

≤ C
∥∥∥ψ− ψh

∥∥∥
L2(0,T;L2(ω))

≤ C(T) sup
0≤t≤T

‖ψ(t)− ψh(t)‖L2(ω) → 0

13



according to (19).
The convergence of the second term follows (after time reversal) from the same

arguments as in the proof of (19), making use of the corresponding a priori estimates
for (11):

(22) ‖ϕ(0; ψhχω)− ϕ+
0 (ψhχω)‖L2(Ω) ≤ C

(
h ‖ϕ‖L2(0,T;H1(Ω)) +

√
∆t ‖∂t ϕ‖L2(0,T;H1(Ω))

)

Remark 3.3. Similar error estimates hold for the approximation error, if different subspaces
Vm

h are used in different time steps (e.g., for adaptive refinement), cf. [7].

3.2 Solvability of discrete control problem

Consider the discrete analog of equation (15),

(23) Λh,βψh
0 := (Λh + βI)ψh

0 = ϕh
0,

where ϕh
0 is a numerical approximation of the shifted target ϕ0 (as introduced at the

beginning of section 2) in the finite element space Vh.
We will show now that (23) has a unique solution ψ

h,β
0 for every fixed space-time

grid {h, ∆t}. This follows directly from the following isometry property:

Lemma 3.4. For every ψh
0 , ψ̃h

0 ∈ Vh, we have

(24)
〈

Λhψh
0 , ψ̃h

0

〉
L2(Ω)

=
〈

ψh, ψ̃h
〉

L2(0,T;L2(ω))
,

hence Λh is symmetric and positive semi-definite.

Proof. In terms of the discretized adjoint and biadjoint equation, we have to show that〈
ϕ+

0 , ψ̃−0
〉

L2(Ω) =
〈
ψ, ψ̃

〉
L2(0,T;L2(ω)) ,

holds for the discrete solutions ψ, ψ̃ ∈ Sr and ϕ = ϕ(t, ψχω) ∈ S∗r (for convenience, we
drop the superscript h for the duration of this proof).

We start with the following identity, which holds for all u, v ∈ Sr ∪ S∗r :

(25) sm :=
∫

Im

〈∂tu, v〉L2(Ω) + a(t; u, v) dt +
〈
[u]m−1, v+

m−1

〉
L2(Ω)

=
∫

Jm

〈−∂tv, u〉L2(Ω) + a∗(t; v, u) dt +
〈
u−m , v−m

〉
L2(Ω) −

〈
u+

m−1, v+
m−1

〉
L2(Ω)

+
〈
u+

m−1, v+
m−1

〉
L2(Ω) −

〈
u−m−1, v+

m−1

〉
L2(Ω)

=
∫

Jm

〈−∂tv, u〉L2(Ω) + a∗(t; v, u) dt +
〈
u−m , v−m

〉
L2(Ω) −

〈
u−m−1, v+

m−1

〉
L2(Ω)

14



by partial integration, and since
∫

Im
f (t)dt =

∫ tm
tm−1

f (t)dt =
∫

Jm
f (t)dt holds for all f by

elementary properties of the Lebesgue integral.
Now we observe that we are allowed to test equation (17) with ϕ ∈ S∗r and equation

(18) with ψ ∈ Sr, since ϕ̂(t) := ϕ(t) for t ∈ (tm−1, tm), ϕ̂(tm) := ϕ−m satisfies ϕ̂ ∈ Sr,∫
In

〈∂tψ, ϕ〉L2(Ω) + a(t; ψ, ϕ) dt =
∫

In

〈∂tψ, ϕ̂〉L2(Ω) + a(t; ψ, ϕ̂) dt,

and ϕ+
m−1 = ϕ̂+

m−1 for every ϕ ∈ S∗r (and similarly, we can construct a ψ̂ for ψ).
We may thus substitute u = ψ̃ ∈ Sr and v = ϕ ∈ S∗r in (25), where ψ̃ is the solution of

(17) corresponding to the initial value ψ̃0 and ϕ is the solution of (18) corresponding to
the control ψχω. Summing over m = 1, . . . , N and rearranging the jump terms yields:

0 =
N

∑
m=1

sm −
〈
ψ̃−N , ϕ+

N
〉

L2(Ω)

=
N

∑
m=1

∫
Jm

〈
−∂t ϕ, ψ̃

〉
L2(Ω) + a∗(t; ϕ, ψ) dt +

〈
ψ̃−m , ϕ−m

〉
L2(Ω) −

〈
ψ̃−m , ϕ+

m
〉

L2(Ω)

−
〈
ψ̃−0 , ϕ+

0
〉

L2(Ω)

=
N

∑
m=1

∫
Jm

〈
−∂t ϕ, ψ̃

〉
L2(Ω) + a∗(t; ϕ, ψ̃) dt−

〈
ψ̃−m , [ϕ]m

〉
L2(Ω) −

〈
ψ̃−0 , ϕ+

0
〉

L2(Ω)

=
N

∑
n=1

∫
Jm

〈
ψ, ψ̃

〉
L2(ω) dt−

〈
ϕ+

0 , ψ̃−0
〉

L2(Ω) .

Symmetry of Λh follows immediately from equation (24) by switching ψ̃h
0 and ψh

0 , and
positive semi-definiteness by setting ψ̃h

0 = ψh
0 :〈

Λhψh
0 , ψh

0

〉
L2(Ω)

=
∥∥∥ψh

∥∥∥2

L2(0,T;L2(ω))
≥ 0.

Hence, Λh,β is a linear, symmetric, positive definite, finite dimensional operator, and
therefore the discrete operator equation (23) has a unique solution, which we denote
by ψ

h,β
0 . As noted above, due to the positive definiteness of Λh,β, the CG method for

the iterative computation of this solution is a natural choice. Algorithm 1 details the
necessary steps.

Remark 3.5. We choose the initial value ψ
(1)
0 = 0 if no better guess is available. The stopping

criterion for the CG method can be a combination of absolute and relative tolerance with respect
to the target value ϕh

0. Note that while Λh,β is symmetric positive definite, we can only guar-
antee semi-definiteness for Λh. For small β, the CG algorithm above should be replaced with
other Krylov methods such as BiCGstab, which in our experiments gave better performance.
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Algorithm 1 Computation of control
1: compute solution ϕ̃ of adjoint equation with initial value ϕT and control v = 0
2: shifted target: ϕh

0 := −ϕ̃(0)
3: choose initial value ψ

(1)
0 ∈ Vh

4: compute solution ψ(1) of biadjoint equation with initial value ψ
(1)
0

5: compute solution ϕ(1) of adjoint equation with control ψ(1)χω

6: operator value: ϕ
(1)
0 := Λhψ

(1)
0

7: residual: g(1) := (ϕ
(1)
0 + βψ

(1)
0 )− ϕh

0
8: conjugate direction: w(1) := g(1)

9: for k = 1, 2, . . . do {perform CG method}
10: operator value: ϕ

(k+1)
0 = Λhw(k)

11: step length: ρ(k) := ‖g(k)‖2
L2(Ω)/〈ϕ

(k+1)
0 + βψ

(k)
0 , w(k)〉L2(Ω)

12: residual: g(k+1) := g(k) − ρ(k)(ϕ
(k+1)
0 + βψ

(k)
0 )

13: new vector: ψ(k+1) := ψ(k) − ρ(k)w(k)

14: if ‖g(k+1)‖L2(Ω) ≤ tol · ‖ϕh
0‖L2(Ω) then

15: break;
16: end if
17: conjugate direction: w(k+1) := g(k+1) + (‖g(k+1)‖2

L2(Ω)/‖g
(k)‖2

L2(Ω))w(k)

18: end for
19: compute solution ψ(k) of biadjoint equation with initial value ψ

(k)
0

20: return ψ(k)χω

3.3 Convergence in h→ 0

We will now show convergence of the discrete control, computed with Algorithm 1,
to the exact control given by Corollary 1.4. To this end, we fix H > 0 and an arbitrary
vector ϕT from the corresponding finite dimensional subspace VH ⊂ H1

0(Ω). As before,
the vector ϕ0 denotes the shifted target value corresponding to our initial value ϕT
and ϕh

0 its numerical approximation in Vh ⊃ VH. Specifically, it is the negative of the
numerical solution of the adjoint equation with initial value ϕT and control v = 0,
evaluated at time t = 0. Since ϕT ∈ Vh, by a similar argument as in Proposition 3.2
(cf. especially estimate (22)), we have that

lim
h→0

ϕh
0 = ϕ0.

In the following, we assume that Vh2 ⊂ Vh1 for any h1 ≤ h2 ≤ H. This can be
achieved by using standard finite elements on successively refined grids, where h
denotes the mesh size of the largest element. Thus, the application of Λh,β to an
element of VH is well-defined for any h < H.

The following theorem shows the convergence of the discrete control to the solution
of Problem 2.2 as h→ 0.
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Theorem 3.6. Let ψ
h,β
0 be the unique solution of (23) and ψ

β
0 the solution of (15). Then the

following holds for the solutions ψ
h,β of (17) and ψ

β of (11) with initial value ψ
h,β
0 and ψ

β
0 ,

respectively:

lim
h→0

∥∥∥ψ
h,β − ψ

β
∥∥∥

L2(0,T;L2(ω))
= 0.

Proof. The proof is identical to [11, Th. 1.3], using Proposition 3.2 in place of Lemma
1.1 referenced there.

The next theorem states the main result of this section. Let again ϕT be an arbi-
trary element of VH. Then the numerical approximation of the projection coefficient
〈y(T), ϕT〉L2(Ω), which is computed using the discrete operator Λh,β and the projection
formula (8), converges to the exact coefficient for h, β→ 0.

Theorem 3.7. Let f h and yhχω be the projections of the known right hand side and measure-
ments, respectively, onto Vh, where h ≤ H. Further, let ψ

h,β
0 be the unique solution of (23) and

ψ
h,β be the corresponding solution of (17). For every ϕT ∈ VH the discrete approximation

ch,β :=
〈

f h, ϕh(t; ψ
h,β

χω)
〉

L2(0,T;L2(Ω))
−
〈

yh, ψ
h,β
〉

L2(0,T;L2(ω))

satisfies

lim
β→0

lim
h→0

ch,β = 〈y(T), ϕT〉L2(Ω) .

Proof. From Theorem 3.6 and the arguments from Proposition 3.2 (specifically, (21)
and (22) with t ∈ [0, T] instead of t = 0), we get

lim
h→0

ch,β =
〈

f , ϕ(t; ψ
β
χω)

〉
L2(0,T;L2(Ω))

−
〈

y, ψ
β
〉

L2(0,T;L2(ω))
,

where ψ
β
0 is the unique solution given by Proposition 2.7 and ψ

β is the corresponding
solution of (11). Employing Theorems 2.7 and 2.3 for the convergence in β, we obtain

lim
β→0

lim
h→0

ch,β = 〈 f , ϕ(.; v)〉L2(0,T;L2(Ω)) − 〈y, v〉L2(0,T;L2(ω)) ,

where v is the unique solution of Problem 2.1. Noting that this solution is by construc-
tion a null control for the original ϕT, the right hand side is equal to 〈y(T), ϕT〉L2(Ω)
due to Corollary 1.5.

4 Numerical calculation of approximation

In the previous section, we have detailed an algorithm for the calculation of coeffi-
cients 〈y(T), ϕT〉L2(Ω) of the projection of the unknown vector y(T) onto any element
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ϕT of the finite element space VH. The next step towards a complete forward data
assimilation procedure is the choice of an L2(Ω)-orthonormal basis {Φ1, Φ2, . . . , Φn}
for VH. We are then able to compute an approximation w ∈ VH of y(T):

(26) w :=
n

∑
k=1
〈y(T), Φk〉L2(Ω) Φk.

We will address convergence of this approximation to y(T) for H → 0 in section 4.1.
For a practical application of this numerical method, it is crucial to use an orthonor-

mal basis which gives a good approximation using only a small subset of basis vectors.
To this end, we propose the use of proper orthogonal decomposition (POD) of a nodal
basis of VH. This approach (as opposed to the method of snapshots [23, 14], where
POD is applied to an ensemble of chosen target states) has the added benefit of being
independent of the measurement data; all the necessary vectors for the approximation
of y(T) can therefore be pre-computed independently and in parallel. On the other
hand, this means that the POD basis cannot be a priori optimally adapted to specific
instances of the problem; this shortcoming will be addressed in section 4.3. We con-
clude the section with a summary of the entire forward data assimilation algorithm.

4.1 Convergence in H → 0

Let {Φ1, Φ2, . . . , Φn} be a basis of VH which is orthonormal with respect to the inner
product of L2(Ω). The following theorem states the convergence of the corresponding
discrete approximation to y(T) for H → 0.

Theorem 4.1. Let w be defined by equation (26). Then,

(27) lim
H→0

w = y(T)

holds.

Proof. This statement follows from the fact that w = PH(y(T)), where PH : L2(Ω) →
VH is the projection operator on the n−dimensional space VH. By definition of the
projection operator PH, we have

〈PH(y(T)), ϕT〉L2(Ω) = 〈y(T), ϕT〉L2(Ω)

for every ϕT ∈ VH. Since the vectors Φk form an orthonormal basis, we obtain

(28) PH(y(T)) =
n

∑
k=1
〈PH(y(T)), Φk〉L2(Ω)Φk = w.

It is a direct consequence of the approximation properties of the finite element basis
that

lim
H→0
‖u−PH(u)‖L2(Ω) = 0

for every u ∈ L2(Ω). Combined with (28), this yields (27).
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4.2 Proper orthogonal decomposition

We now address the construction of the orthonormal basis (Φk)n
k=1 using proper or-

thogonal decomposition (also known as principal component analysis or Karhunen-Loève
decomposition). For the reader’s convenience, we give here a brief summary of the
definition and pertinent properties of POD (cf. [12, 23], as well as [27] for a basic
exposition).

The fundamental idea of POD is to approximate a set of given vectors xi ∈ Rn,
i = 1, . . . , m by their projection onto a small set of vectors uk ∈ Rn, k = 1, . . . , l with
l � m, which are additionally orthonormal with respect to a weighted inner product

〈η, ξ〉W := 〈η, Wξ〉Rn .

Here, W ∈ Rn×n is a symmetric positive definite matrix, and η, ξ ∈ Rn are vectors.
Since W is thus diagonalizable, we can define W

1
2 in the usual way and write

〈η, ξ〉W =
〈

W
1
2 η, W

1
2 ξ
〉

Rn
.

Furthermore, let ‖·‖W denote the norm induced by this inner product. In the current
context, we identify the n-dimensional subspace VH ⊂ L2(Ω) with Rn via the canonical
coordinate isomorphism, and 〈·, ·〉W is chosen so that it approximates 〈·, ·〉L2(Ω).

A POD basis is then defined as the set of l orthonormal vectors which on average
best approximates the given vectors {xi}m

i=1 in the W-norm:

Definition 4.2. Let xi ∈ Rn, i = 1, . . . , m and l ∈ {1, . . . , m} be given. A solution
{uk ∈ Rn : k = 1, . . . , l} of

min
{uk}l

k=1

m

∑
i=1

∥∥∥xi −
l

∑
k=1
〈xi, uk〉W uk

∥∥∥2

W
s.t.

〈
ui, uj

〉
W = δij, 1 ≤ i, j ≤ l

is called POD basis of rank l.

The construction of a POD basis can be carried out via singular value decomposition
(SVD). For this, we consider the vectors xi as columns of a matrix X ∈ Rn×m having
rank r ≤ min(m, n), and apply the SVD to

W
1
2 X =: X = UΣVT,

with U ∈ Rn×n and V ∈ Rm×m orthogonal, and Σ a diagonal matrix containing the
singular values σi (assumed to be ordered by descending magnitude). We then have:

Proposition 4.3. Let xi ∈ Rn, i = 1, . . . , m denote the columns of X ∈ Rn×m, and UΣVT be
the SVD of W

1
2 X. The POD basis {uk}l

k=1 of rank l ≤ rank(X) is then given by the first l
columns of

U := W−
1
2 U.
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In practice, one makes use of the properties of the SVD by first calculating the
vectors {vk}l

k=1 as the solutions of the symmetric eigenvalue problem

(29) XTWXvk = λkvk, k = 1, . . . , l.

A POD basis is then given by

uk =
1√
λk

W−
1
2 Xvk =

1√
λk

Xvk, k = 1, . . . , l,

if the eigenvectors vk are chosen to be normalized (with respect to the standard Eu-
clidean norm).

To apply now POD to the problem of forward data assimilation, we need to fix the
set of vectors xi to be approximated in this way. Since we will be working with a finite
element discretization of functions in the parameter space L2(Ω), a reasonable idea is
to use directly the basis vectors {Bi}n

i=1 of the corresponding ansatz space VH ⊂ L2(Ω).
According to the canonical coordinate isomorphism, this is equivalent to setting

X := In,

In being the n× n identity matrix.
Now, for any two vectors ξ = ∑n

i=1 ξiBi and η = ∑n
i=1 ηiBi in Vh, we have that

〈ξ, η〉L2(Ω) = (ξ1, . . . , ξn)M(η1, . . . , ηn)T,

with the mass matrix M ∈ Rn×n, M = (mij)n
i,j=1,

mij =
∫

Ω
BiBj dx, 1 ≤ i, j ≤ n.

We thus define the weighted inner product 〈·, ·〉W , which approximates the L2(Ω)
inner product, by setting

W := M.

With these choices, equation (29) reduces to

Mvk = λkvk, k = 1, . . . , l.

Thus, the construction of our POD basis amounts to computing the first l eigenvectors
of the mass matrix, which can efficiently be performed by a sparse Krylov method
(cf. section 5.1).

Hereafter, the orthonormal basis {Φ1, Φ2, . . . , Φn} of VH used to reconstruct y(T)
consists of the POD vectors introduced in this section, i.e., we set Φk := uk for k =
1, . . . , n.
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4.3 Adaptive reordering and termination

As stated above, the POD basis so constructed depends only on the geometrical pa-
rameters of the problem, and is therefore independent of the other data, such as the
coefficients or right hand side of the state equation, and especially of the measure-
ments. While this has advantages for the practical computation, it also means that
such a basis cannot be optimal for all data sets. Indeed, a basis vector correspond-
ing to a large eigenvalue could be associated with a small projection coefficient of the
unknown final state.

Since the calculation of the controls is computationally the most expensive step of
the assimilation procedure, it is critical that this is only performed for basis elements
likely to have a large contribution. Specifically, we are interested in a permutation
τ : N→N which minimizes the absolute error

ea(l) :=
∥∥∥yH(T)− wl

∥∥∥
M

,

where yH(T) := PH(y(T)) is the orthogonal projection of the final state onto VH, and

wl :=
l

∑
k=1

〈
yH(T), Φτ(k)

〉
MΦτ(k)

is its approximation using l reordered basis elements.
We can give a more explicit expression of the error. First we note that∥∥∥yH(T)

∥∥∥2

M
=
∥∥∥ n

∑
k=1

〈
yH(T), Φτ(k)

〉
MΦτ(k)

∥∥∥2

M
=

n

∑
k=1

〈
yH, Φτ(k)

〉2
M,

due to the orthonormality of the Φk. Similarly, we have that

(30) ea(l)2 =
∥∥∥yH(T)−

l

∑
k=1

〈
yH(T), Φτ(k)

〉
MΦτ(k)

∥∥∥2

M

=
∥∥∥yH(T)

∥∥∥2

M
−

l

∑
k=1

〈
yH(T), Φτ(k)

〉2
M =

n

∑
k=l+1

〈
yH(T), Φτ(k)

〉2
M.

Proceeding inductively for k = 1, . . . , l, this shows that to minimize ea(k), one should
(as intuitively suggested) choose in each step that POD basis element onto which the
projection coefficient of yH(T) is maximal.

Although this coefficient is of course unknown, it can be estimated using the given
distributed measurement yχω. Let R : L2(ω) → VH ⊂ L2(Ω) be a discrete interpola-
tion operator from the subdomain ω to the whole domain Ω. While an interpolation
R(yH(T)χω) will not give a satisfactory approximation for yH(T), it can give a rough
estimate of the structure of the solution, which in turn can serve as the basis for esti-
mating the relative importance of the POD basis elements. The permutation τ is found
by rearranging the basis elements according to the magnitude of their inner product
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with the interpolated measurement R(yH(T)χω) (which can be calculated without the
costly solution of the corresponding control problem).

The numerical stability of the described method can be improved significantly by
an iterative approach. Instead of interpolating the (projected) measurement yH(T)χω

directly, one can first subtract the already computed approximation wl and interpolate
the result (yH(T)− wl)χω. This is due to the fact that for all m = 1, . . . , n− l, it holds
that

〈
yH(T)− wl , Φτ(l+m)

〉
M =

〈
yH(T)−

l

∑
k=1

〈
yH(T), Φτ(k)

〉
MΦτ(k), Φτ(l+m)

〉
M

=
〈
yH(T), Φτ(l+m)

〉
M,

again by the orthonormality of the POD basis. Hence, instead of an initial reordering of
the basis, in each step the next POD basis element is chosen based on the (interpolated)
measurement and the already computed approximation. The reason for the improved
accuracy of

〈
R[(yH(T)− wl)χω], Φτ(l+m)

〉
M as an estimate of

〈
yH(T), Φτ(l+m)

〉
M com-

pared to
〈

R[yH(T)χω], Φτ(l+m)
〉

M can easily be seen when the interpolation operator
R is linear. In this case, the interpolation error projected onto the basis vector Φτ(l+m)
can be expressed as

eint(l + m) =
〈
yH(T), Φτ(l+m)

〉
M −

〈
R[yH(T)χω], Φτ(l+m)

〉
M

=
〈
yH(T)− R[(yH(T)− wl)χω], Φτ(l+m)

〉
M +

〈
R[wlχω], Φτ(l+m)

〉
M

=
〈
(yH(T)− wl)− R[(yH(T)− wl)χω], Φτ(l+m)

〉
M

+
l

∑
k=1

〈
yH(T), Φτ(k)

〉
M

〈
R[Φτ(k)χω], Φτ(l+m)

〉
M

The error eint(l + m) therefore consists of two parts: the above described interpolation
error of the difference of the measurement and the current approximation, and a con-
tribution from the previously computed coefficients. Now while the first term will be
small for large l since

∥∥yH(T)− wl
∥∥

M → 0 for l → n, this is not true in general for
the second term, which might even increase with l and therefore dominate the error
when working with the initial interpolation R(yH(T)) only. Using only the first term
will therefore yield a much sharper estimate later in the iteration (i.e., for larger l).

Remark 4.4. Given an estimate of
∥∥yH(T)

∥∥
M—e.g., from interpolation—and the previously

computed projections, it is possible to estimate the error ea(l) using relation (30). This can
be used as an effective and easily evaluated stopping criterion for the numerical assimilation
procedure.

Algorithm 2 shows how the ingredients of the forward data assimilation process
are combined. This comprises the computation of the POD basis, reordering of these
components, and the solution of the control problems.
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Algorithm 2 Forward data assimilation
1: Calculate POD decomposition Φ1, . . . , Φl of mass matrix
2: initialize approximation w0 ← 0
3: for k = 1, 2, . . . do
4: compute interpolant ỹT := R((yH(T)− wk−1)χω)
5: for all remaining POD components Φj, j /∈ {τ(1), . . . , τ(k− 1)} do
6: compute estimated projection coefficient c̃j :=

〈
ỹT, Φj

〉
M

7: end for
8: choose POD component Φτ(k) with largest c̃τ(k)
9: solve Problem 2.2: Set ϕT = Φτ(k) and compute control v and solution ϕ using

Algorithm 1

10: compute corresponding projection coefficient ck ≈
〈
yH(T), ϕ

〉
using (8)

11: update approximation wk ← wk−1 + ckΦτ(k)

12: estimate error εrel = ‖wk‖M
‖yH(T)−wk‖M

13: if εrel < tol then
14: return wk
15: end if
16: end for

5 Numerical experiments

In this section, we give some details on the implementation of Algorithm 2, and
present numerical results for test problems in two and three spatial dimensions.

5.1 Implementation

The method described above is implemented in C++ within the finite element frame-
work deal.II [2]. Most calculations are performed on an Intel quad core workstation
with 2.4 GHz and 2 GB of RAM. The computational work can be distributed to an
arbitrary number of threads, since the controls for every POD component can be cal-
culated independently. Each thread performs the selection of the next basis element in
a critical (synchronized) section of the program, using for the reordering heuristic the
combined approximation computed from the contributions of all threads so far. The
algorithm is parallelized using the OpenMP application programming interface. The
more time consuming calculations with Ω ⊂ R3 are performed on a shared memory
system with 16 Opteron CPUs at 2.8 GHz and 64 GB of RAM.

Discretization We employ the discretization scheme introduced in section 3.1, us-
ing bilinear finite elements (s = 1) on a quadrilateral mesh for the discretization in
space and the discontinuous Galerkin method of order r = 1 in time (which in our
tests gave significantly better results than r = 0). All integrals for the assembly of the
finite element matrices are computed using Gauß quadrature with 2 points per dimen-
sion, which is equivalent to exact integration in this setting. The evaluation of inner
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Figure 1: Two POD basis element for a piecewise linear nodal basis on the unit square
(mesh size h = 1

64 ).

products 〈·, ·〉L2(0,T;L2(Ω)) is performed by first applying Gauß quadrature in space and
then integrating in time using the trapezoidal rule. This amounts to exact integration
for elements of S1 and S∗1 , since these are piecewise linear functions in time. The linear
systems in each time step are solved using a direct sparse solver from UMFPACK. (For
higher dimensional systems, iterative methods like GMRES are used instead.)

POD basis The computation of the reduced POD basis of rank l entails the calcula-
tion of the l largest magnitude eigenvectors of the mass matrix M. There are several
well known efficient algorithms to solve eigenvector problems for high dimensional
sparse matrices, such as the methods by Lanczos, Arnoldi and Jacob-Davidson. Since
the matrix M is symmetric and positive definite, and we are only interested in eigen-
values near the boundary of the spectrum, we use the implicitly restarted Lanczos
method [24]. Deflation techniques of locking and purging are implemented to im-
prove the convergence to the desired eigenvalues. We refer the reader to [16] for
details on these techniques. Figure 1 shows two POD basis elements computed from
the full set of piecewise linear nodal basis elements for a uniform mesh of size h = 1

64
on the unit square.

Error estimation and basis reordering As already mentioned, a data specific
reordering of the POD basis is critical to the performance of the method. Linear inter-
polation of the measured data y(T)χω is an effective and computationally inexpensive
way to construct an estimate of yH(T), which is sufficient for the purpose of improving
the ordering.

The interpolation of the measurement data (and boundary conditions) is performed
by constructing a Delaunay triangulation T of the (discretized) measurement subdo-
main ω and the boundary Γ, where the solution is known on the corners of every
element. For each point p ∈ Ω there exists at least one triangle T(p) ∈ T containing p.
The barycentric coordinates of p with respect to T(p) are used for linear interpolation
to construct the interpolant ỹ(T). For these geometric calculations, the C++ library
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CGAL [1] is employed.
Although the primary focus of this heuristic is the rearrangement of the POD basis,

it can serve as an estimate of
∥∥yH(T)

∥∥ at the same time. Due to equation (30), this is
equivalent to estimating the absolute error ea(l). We therefore have a stopping criterion
at no further computational cost. However, one drawback of the linear interpolation
is its sensitivity to errors in the measured data. The influence of such noise on the
numerical assimilation procedure is investigated at the end of section 5.2.

Remark 5.1. There are of course several other possible heuristics for error estimation. One
simple idea is to compute the difference of measurements and approximation on the subset ω
and approximate the absolute error by ea(l) ≈ ‖(y(T)− wl)χω‖. While this does not give us
any information about the coefficients, it is a competitive stopping criterion. Another method
is the approximation of ∂ty(t) at time t = T. This can be achieved by interpolation of the
difference quotient (y(T) − y(T − ∆t))χω/∆t, where ∆t is the time step length. Once we
have an estimate of the time derivative, we can get the corresponding estimate for y(T) by
fixing t = T and solving the (now stationary) boundary value problem (1).

5.2 Two-dimensional test problem

For our two dimensional test problem, we specify as the domain the unit square
Ω = [0, 1]2 and the time interval [0, 1], i.e. T = 1. Since there are few known analytical
solutions to the convection-diffusion equation (1) which we could use for comparisons
with our results, we choose an initial value y(0) and compute the corresponding nu-
merical solution in Ω× [0, 1] on a very fine mesh. This highly accurate solution is used
to generate measurements yχω for t ∈ (0, T]. (The value y(0) itself must of course not
be used in the assimilation algorithm.) We refer to it as the "exact solution" for the rest
of this section.

The data of the state equation is chosen as follows. For simplicity, the diffusion
tensor is taken as a constant scalar c(x, t) ≡ 0.1. A constant flux b(x, t) ≡ (1, 1)T for all
t ∈ [0, T] is specified. As the right hand side f of (1), we choose a half-ellipsoid with
time dependent length:

(31) f (x, t) =

{
10 cos(3πt)

√
r2 − ‖x− p‖2

2, ‖x− p‖2 ≤ r,

0, otherwise,

with radius r = 0.2 and center p = (0.5, 0.5)T. The initial value y(0) used to generate
the exact solution is a combination of sine terms:

[y(0)](x1, x2) = 10 sin(3x1π)[sin(2x2π) + sin(3x2π) + sin(4x2π)].

The parameters in the numerical assimilation algorithm are set in the following way.
The subdomain ω consists of 49 circles with radius r = 1

42 each, which are arranged in
a regular 7× 7 grid. Together, they cover 8.7% of the area of Ω. We use a mesh size of
h = 1

128 in space and a time step length of ∆t = 1
256 .
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relative error # components # iterations time[min]
0.10 9 74 2.4
0.05 21 166 4.2
0.02 36 286 6.4
0.01 63 412 8.9
0.005 117 515 12

Table 1: Number of POD components, total number of BiCGstab iterations and time
in minutes needed to reach a given relative error level.

The control algorithm 1 is implemented using the BiCGstab method (cf. Remark 3.5),
for which the relative tolerance is set to tolrel = 0.01, using the stopping criterion

‖g(k)‖L2(Ω) ≤ tolabs := max{tolrel · ‖ϕ0‖L2(Ω), ltol}.

To avoid too many iterations for small values of the target norm ‖ϕ0‖L2(Ω), an addi-
tional lower bound is posed on the absolute tolerance: tolabs ≥ ltol = 10−6. The effect
is similar to a restriction on the maximal number of iterations. The parameter β is set
to β = 10−6, since we obtained identical results in our tests for lower values.

Let wl be the computed approximation after l POD components and IH(y(T)) be the
interpolation of the exact solution y(T) in our finite element subspace VH. Since the
interpolation error is very small compared to the error of assimilation at the considered
mesh size, we define the relative error as

erel :=
‖wl − IH(y(T))‖L2(Ω)

‖IH(y(T))‖L2(Ω)
.

We use erel as measurement of the accuracy of all numerical solutions.
The full POD basis for the given mesh size contains more than 4000 elements. How-

ever, a very small number of them is sufficient to get a close approximation of the
solution. Knowing this, we include only the first 800 POD components in the reorder-
ing heuristic.

We then compute the approximation of y(T) using Algorithm 2 for this set of POD
components. The number of POD components needed to reach a given relative error is
shown in Table 1. We also quote the total number of iterations of the BiCGstab method
used to compute all corresponding controls. Note that every such iteration involves
two evaluations of the discretized operator Λh and thus four solutions of a partial
differential equation. The computational time given in the table is the time needed for
the complete forward assimilation algorithm 2. This includes about 40 seconds for the
computation of the POD basis, which is small compared to the assimilation itself.

Figure 2 shows a cut through the exact solution at x2 = 0.5 and the corresponding
approximations using 10, 25 and 75 components with relative errors of 0.091, 0.038
and 0.007, respectively.
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Figure 2: Cut through exact solution and approximations using 10, 25 and 75 POD
components.

The development of the error versus the number of basis elements is shown in Fig-
ure 3. When no problem specific reordering of the basis is performed, some of the
components with large projection coefficients (and thus large impact on the approx-
imation) are used later in the assimilation process. Thus one can observe rather flat
sections in the error curve, followed by steep steps downwards. If we use the heuristic
detailed in section 5.1, we see on the other hand an almost strictly monotone decline of
the contributions. In this case, about 20 components are necessary to reach a relative
error of 0.05, which is otherwise not reached until the 40th component. For compari-
son, the error from a simple interpolation of the measurement data is also included in
Figure 3. Due to the very regular distribution of the measurement domain ω in our
test problem, the error using interpolation only is at the relatively low level of 0.10.
However, the performance of interpolation compared to the assimilation gets worse
when we consider data subject to measurement errors, which is of course always the
case in practice.

The same holds true when ω is smaller and its distribution less regular. Figure 4

shows the development of erel for different sizes of ω, determined by the radius r of
each of the 49 circles constituting ω. Note that the basis reordering heuristic is less
effective for smaller r, and that the error of pure interpolation is in fact increasing to
0.16 for the smallest radius.

In order to study the influence of measurement errors, noise is added to the mea-
surements yχω. In every time interval Im = (tm−1, tm], the reference solution is given
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Figure 3: Relative error versus number of POD components with and without basis
reordering.
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δ 0.005 0.01 0.02 0.03 0.04 0.05

eδ
rel 7.1 · 10−7 4.6 · 10−6 2.0 · 10−5 4.6 · 10−5 8.1 · 10−5 1.2 · 10−4

δ 0.06 0.07 0.08 0.09 0.1
eδ

rel 1.8 · 10−4 2.3 · 10−4 3.0 · 10−4 3.8 · 10−4 4.5 · 10−4

Table 2: Additional error eδ
rel caused by different noise levels δ using 200 basis elements

in fixed order. Shown are averages over 100 experiments.

by a linear function in time y(t) = y0
m + τy1

m, where τ := t−tm−1
∆t . The vectors yj

m,
j = 0, 1, are now perturbed by adding uniformly distributed random vectors ξ

j
m. The

noisy measurements

ỹχω(t) := (y0
m + ξ0

m) + τ(y1
m + ξ1

m), t ∈ Im,

are then used for assimilation. We define the noise level in each time interval Im by

δm :=

∥∥ξ0
m
∥∥

‖y0
mχω‖

=

∥∥ξ1
m
∥∥

‖y1
mχω‖

.

In our experiments, this level is constant for all time steps: δm ≡ δ ∈ [0, 1]. This
is achieved by first generating random vectors ζ0

m, ζ1
m ∈ [−1, 1]nω (where nω is the

number of grid points in ω), and then scaling to

ξ
j
m = δ

‖yj
mχω‖
‖ζ j

m‖
ζ

j
m, j = 0, 1.

The results for different values of δ are shown in Figure 5. The assimilation algorithm
proves to be quite robust with respect to errors in the measurements. This can be
attributed partly to the smoothing effects of diffusion equations, and partly to the
integration in the projection formula (8).

Since we are interested in the influence of noisy data on the reordering, we first look
at the results of a single assimilation experiment, without averaging. Higher noise
leads to less accurate predictions and therefore less strictly declining errors. In fact,
this effect is responsible for the major part of the additional error caused by noisy data.
To investigate the influence of noise on the forward assimilation method itself, without
heuristic, a second series of experiments using a fixed order of the basis elements
is performed. Naturally, the achievable accuracy is limited by the amount of noise.
Splitting the total relative error into erel = e0

rel + eδ
rel, where e0

rel is the error without any
noise and eδ

rel is the additional error caused by noisy data, we observe eδ
rel = O(δ2) for

the latter. Table 2 shows the results after 200 basis elements, where each entry is the
arithmetic mean from 100 experiments to average the impact of randomness.

29



 

 
0.005

 
 
 
 0.01

0.02

 

 
0.05

 
 
 
 0.1

0.2

 

 
0.5

 
 
 
 1.0

 0  20  40  60  80  100  120  140  160  180  200

re
la

ti
v
e

 e
rr

o
r

number of components used

δ = 0.00

δ = 0.005

δ = 0.01

δ = 0.02

δ = 0.05

δ = 0.10

Figure 5: Relative error at different noise levels δ.

5.3 Three-dimensional test problem

To demonstrate the effectiveness of the algorithm in more than two dimensions, we
extend the test problem from the previous section to Ω = [0, 1]3. The diffusion co-
efficient c ≡ 0.1 and the time interval [0, T] = [0, 1] remain unchanged. The flux is
b(x, t) ≡ (1, 1, 1)T, and the right hand side of equation (1) is still given by (31), where
p = (0.5, 0.5, 0.5)T is again the center of Ω, and the norm is now taken in R3. The
initial value for y has an additional factor for the third coordinate, yielding

[y(0)](x) = 10 sin(3x1π)[sin(2x2π) + sin(3x2π) + sin(4x2π)]
× [sin(2x3π) + sin(3x3π) + sin(4x3π)].

The subdomain ω consists of 73 balls with radius 1
42 whose centers are again dis-

tributed in a regular grid. Thus, the measurements now cover only 1.9% of the volume
in Ω, which is far less than in our two dimensional experiments. In order to keep the
computational time at a reasonable level, the mesh size is reduced to h = ∆t = 1

32 .
Therefore, the relative error stagnates at a higher level than before. The development
of erel is displayed in Figure 6. The computational time for the assimilation is given in
Table 3, which includes about 8.8 minutes needed for the POD.
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relative error # components # iterations time[h]
0.10 20 150 9.7
0.05 36 207 13

0.02 119 347 21

Table 3: Number of POD components, total number of BiCGstab iterations and time
in hours needed to reach a given relative error level for the three-dimensional
test problem.

0.005
 
 
 
 

0.01

0.02

 

 
0.05

 
 
 
 

0.1

0.2

 

 
0.5

 
 
 
 

1.0

 0  20  40  60  80  100  120  140  160  180  200

re
la

ti
v
e

 e
rr

o
r

number of components used

pure interpolation

assimilation without reordering

assimilation with reordering

Figure 6: Relative error in three dimensional test problem.

6 Conclusion

We have presented an efficient numerical method for solving the “variational forward
assimilation” problem for a linear scalar convection diffusion equation, in which the
ill-posed optimal control problem is replaced with a well-posed series of exact control
problems. Using a combination of proper orthogonal decomposition and adaptive
basis reordering, this problem can be solved efficiently and stably, with the most time
intensive calculations being pre-computable in parallel. Its main advantage, apart from
computational efficiency, over optimal control methods (such as 4DVAR) consists in
the absence of regularization parameters which have to be chosen dependent on the
measurement error.

Future work will be concerned with more complicated equations such as the lin-
earized Navier-Stokes equations, as well as the investigation of problems dealing with
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boundary observations (which are relevant, e.g., in geophysics). Although the de-
scribed approach is directly applicable in the former case, the latter needs different
error estimators for the basis reordering. One possibility would be to use the solution
of a stationary boundary value problem to approximate the unknown final state. Ul-
timately, the proposed method should be applied for the nonlinear systems relevant
in the application areas mentioned in the introduction, for instance using appropriate
linearization strategies.

Also of interest would be extending the proper orthogonal decomposition of the
mass matrix to adaptive finite element methods, which would possibly lead to an
even better adapted reduced basis.
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