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Abstract. Continuous time models have been elevated to great importance in the mod-
elling of time series data, in response to the successful options pricing model of Black
and Scholes (1973), among other things. In 2004, Klüppelberg, Lindner, and Maller
introduced the “COGARCH” model as a continuous-time analogue to the enormously
influential and successful discrete time GARCH stochastic volatility model of Engle and
Bollerslev. Like the GARCH model, the COGARCH is based on a single source of random
variability, in this case, on a single background driving Lévy process.

Since its inception, the original COGARCH model has been studied intensively and
generalised and extended in various ways. In the present paper we formulate the model
using stochastic differential equations and review some of its important properties as well
as some recent developments, including some statistical issues. As a new contribution we
present a COGARCH option pricing model including the possibility of default, in which
the underlying stock price process is taken as a stochastic exponential of a COGARCH
model with drift. We give a preliminary analysis of this model in its risk-neutral dynamics,
and as a prominent example, compute European option prices in the Variance-Gamma
COGARCH model.

For practical implementation, we must discretise the continuous-time COGARCH
onto a discrete grid over a finite time interval. We go on to review ways of doing this by
means of various approximation schemes, in particular, via a “first jump” approximation
to the underlying Lévy process, which preserves features of the process important for
optimal stopping problems. Some other applications of the technology, especially, to the
modelling of irregularly spaced time series data, are discussed too.

2010 Mathematics Subject Classification. Primary 60G51, 60J25, 62M05, 91B25,
91B84; Secondary 37A50, 60F17, 60G10, 91B70.

Keywords. Continuous-time GARCH model, Lévy process, option pricing, stochastic
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1. Introduction

Mathematical Finance and Econometrics can be viewed as two sides of a coin.
Econometrics concentrates on finding optimal models concerning statistical prop-
erties like correlations and prediction. Mathematical Finance, on the other side is
mainly concerned with finding good models which allow for hedging and derivatives
pricing.

Two major innovations revolutionised the theory and practise of econometrics
in the latter part of the last century. The first was the development of the unit
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root and related cointegration concepts in the analysis of time series data, and the
associated Dickie-Fuller test (cf. [11]) and its various generalisations. Soon after
came the idea of conditional heteroscedasticity models to capture the empirically
observed feature of apparently randomly varying volatility1 fluctuations in time
series. Landmark models include Taylor’s stochastic volatility model [47] and the
ARCH and GARCH models of Engle [16] and Bollerslev [4]. These innovations
and their subsequent rapid development and application in many directions were
particularly appropriate for high frequency time series financial data, which became
easily accessible in large quantities over the period, with the introduction of modern
computer technology.

Rigorous hedging and pricing of financial derivatives started with the seminal
paper by Black and Scholes [3] using the complete model of geometric Brownian
motion and its explicit unique option price. After it became clear that this model
cannot capture all realistic features of market conditions, incomplete models en-
tered the scene. Characterization of no arbitrage pricing by martingale measures
came into focus in the important papers by Harrison and Kreps [22] and Harrison
and Pliska [23]. The problem of non-unique martingale measures was met by a
specific approach of Föllmer and Schweizer [18]. Exponential Lévy models were
a first step towards more realistic modelling promoted early on by Eberlein and
collaborators; cf. Eberlein [15] for a review. Pricing measures were suggested
for normal mixture models such as the variance gamma model due to Madan and
Seneta [35] and the normal inverse Gaussian model, which was originally suggested
by Barndorff-Nielsen [1].

This paper aims at a reconciliation between certain econometric models and
pricing models. Our econometrics motivation comes from the availability of high
frequency data, which are often sampled at irregular time points, making continuous-
time modelling necessary. Our motivation for derivatives pricing originates in the
need for more realistic pricing models.

The paper is organised as follows. In Section 2 we recall the discrete time
ARCH and GARCH models and some of their properties. We further summarize
some continuous-time limits of such models from the literature and explain their
drawbacks. Section 3 is devoted to the continuous time GARCH (COGARCH)
model as suggested in Klüppelberg, Lindner andMaller [30]. Section 4 presents new
material on option pricing within the COGARCH model. As an explicit example
we treat the variance gamma driven COGARCH and compare it to the Heston
model via implicit volatilities. It turns out that the COGARCH can produce
higher implied volatilities for short maturities deep in-the-money and far out of-
the-money; desirable properties in applications. Section 5 is devoted to statistical
estimation of the COGARCH parameters. Besides classical moment estimators
we also present a method to obtain a GARCH skeleton within the COGARCH
model, which allows for the use of existing software for extimation. This involves
functional limit theorems in various modes of convergence.

1The “volatility” is simply the square root of the variance.
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2. Background in Discrete Time ARCH and GARCH Models

AutoRegressive Conditional Heteroscedasticity (ARCH) models were introduced
by Engle [16] and soon generalised to GARCH (Generalised AutoRegressive Con-
ditional Heteroscedasticity) models by Bollerslev [4]. Nowadays they are seen as
particular kinds of stochastic volatility models, in which the variance of time series
innovations is itself assumed to vary randomly, conditional on past information.

A special feature of ARCH and GARCH models is that they incorporate feed-
back between an observation and its volatility, whereby a large fluctuation in an
innovation triggers a corresponding large fluctuation in the variance of the series,
which in the absence of further large fluctuations, then reverts to a steady state
level, as long as the process is in a stationary regime. This is an attractive concept,
which accords well with intuition and empirical observation of, especially, financial
time series. As it turns out, the models also display further desirable features from
the modelling point of view. In particular, they typically induce long tailedness of
marginal distributions, and serial correlations, not in the innovations themselves,
but in the squared innovations. These features again accord well with empirical
observation. We expand further on them later.

The simplest GARCH model, the GARCH(1,1), is a discrete time process with
three parameters, β > 0, φ ≥ 0, δ ≥ 0, specifying the variance as a discrete time
stochastic recursion, or difference equation. We write it using two equations, one
specifying the “mean level” process (the observed data, perhaps after removal of
trend or other deterministic feature, to approximate stationarity) and the other
specifying the variance process, which is time dependent and randomly fluctuating.
Thus, for i = 1, 2, . . .,

Yi = εiσi, (2.1)

with

σ2
i = β + φY 2

i−1 + δσ2
i−1 = β + (φε2i−1 + δ)σ2

i−1. (2.2)

Here the starting values ε0 and σ0 are given quantities, possibly random, and usu-
ally assumed independent of the (εi)i=1,2,..., which are the sole source of variation
in the model. The εi, i = 1, 2, . . . are assumed to be independent identically dis-
tributed (i.i.d.) random variables (rvs) centered at 0. Serial dependence between
the Yi is introduced via the dependence of the σ2

i on their past values. Conditional
on σi, Yi simply has the distribution of εi, scaled by σi, which in general (as long
as φ, δ > 0) is time dependent, hence the “conditional heteroscedasticity” part of
the terminology. The “autoregressive” aspect refers to the form of the dependence
of σ2

i on σ2
i−1, as in an autoregressive time series model.

When δ = 0 this term in σ2
i−1 disappears, but volatility remains stochastic via

the dependence of σ2
i on Yi−1, as long as φ > 0. We then have the ARCH(1)

model of Engle [16]. Such a model was generally found to be inadequate, however,
to describe observed data, in which variance tends to be highly persistent and
mean reverting. The introduction of the σ2

i−1 term in (2.2) when δ > 0 improves
the modelling of such data substantially, and gives rise to the highly successful
GARCH(1,1) model of Bollerslev [4]. A very natural extension of this model is
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to add further autoregressive terms to (2.2), thus defining a GARCH(p, q) model,
and, similarly, the ARCH(p) model is defined.

Of course if φ = δ = 0 in (2.2) the model simply reduces to one of i.i.d.
observations for the Yi, with variance β > 0.

2.1. Stationarity and Tail Behaviour in GARCH Models. Often, in a
practical regression situation, the εi might be assumed N(0, 1) for the purposes
of model fitting. Such a short tailed distribution for the εi, however, does not
necessarily translate into a short tailed marginal distribution for the observations
Yi. Eq. (2.2) specifies the sequence (σ2

i )i=1,2,... as a stochastic recurrence equation,
studied in some depth in the probability literature, especially, see Kesten [28],
Vervaat [49] and Goldie [19]; see also the readable overview paper by Diaconis and
Freedman [10]. In a stationary regime, or otherwise, the resulting Yi will usually
have a heavy tailed distribution. This comes about as follows. Necessary and
sufficient conditions for the “stability” (existence of an almost sure (a.s.) limit for
large times) of a discrete time stochastic perpetuity given in Goldie and Maller [20]
can be applied directly to give necessary and sufficient conditions in terms of log
moments of the εi and the parameters φ and δ, for the stability of the ARCH(1)
and GARCH(1,1) models. Specifically, Theorem 2.1 of Klüppelberg, Lindner and
Maller [30] shows that we have stability of the mean and variance processes, that

is, Yi
D→ Y∞ and σi

D→ σ∞, as i→ ∞, for finite rvs Y∞ and σ∞, if and only if

E| log(δ + φε21)| <∞ and E log(δ + φε21) < 0.

These then constitute conditions for stationarity of (Yi, σ
2
i )i=1,2,... if the sequence

is started with the values (Y∞, σ∞). Then, further results transferable from the
theory of stochastic difference equations show that, under certain fairly general
conditions, Y∞ will have a long tailed distribution, specifically, a distribution with
a Pareto (power law) tail. A good exposition of this is in Lindner [32].

Thus, even with a short tailed distribution such as the normal assumed for the
innovations εi, we may expect a heavy tailed marginal distribution for the Yi. This
accords with observed features of, especially, financial data, cf. Klüppelberg [29],
Mikosch [37]. More recently, Platen and Sidorowicz [42], for example, in a very
extensive investigation, suggest that much financial returns data has a very heavy
tailed distribution, such as a t–distribution with 4 degrees of freedom.

2.2. Continuous Time Limits of GARCH Models. Motivated, in partic-
ular, by the availability of high-frequency data and by a need for option pricing
technologies, classical diffusion limits have been used in a natural way to suggest
continuous time limits of discrete time processes, including for the GARCH mod-
els. The best known of these is due to Nelson [40]. His limiting diffusion model
is:

dYt = σtdB
(1)
t , t ≥ 0, (2.3)

where σt, the volatility process, satisfies

dσ2
t =

(
β − ησ2

t

)
dt+ φσ2

t dB
(2)
t , t > 0, (2.4)
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with B(1) and B(2) independent Brownian motions, and β > 0, η ≥ 0 and φ ≥ 0
constants.

Unfortunately, in these situations, the limiting models can lose certain essen-
tial properties of the discrete time GARCH models. It is surprising and counter-
intuitive, for example, that Nelson’s diffusion limit of the GARCH process is driven
by two independent Brownian motions, i.e. has two independent sources of ran-
domness2, whereas the discrete time GARCH process is driven only by a single
white noise sequence. One of the features of the GARCH process is the idea that
large innovations in the price process are almost immediately manifested as in-
novations in the volatility process; but this feedback mechanism is lost in models
such as the Nelson continuous time version. Further, the appearance of an extra
source of variation can have implications for completeness considerations in options
pricing models, for example.

The phenomenon that a diffusion limit may be driven by two independent
Brownian motions, while the discrete time model is given in terms of a single
white noise sequence, is not restricted to the classical GARCH process. Duan [13]
has shown that this occurs for many GARCH-like processes. On the other hand,
Corradi [8] modified Nelson’s method to obtain a diffusion limit depending only
on a single Brownian motion - but then the equation for σ2

t degenerates to an
ordinary differential equation. Using a Brownian bridge between discrete time
observations, Kallsen and Taqqu [26] found a complete model driven by only one
Brownian motion.

Moreover, the continuous time limits found in such a way can have distinctly
different statistical properties to the original discrete time processes. As was shown
by Wang [50], parameter estimation in the discrete time GARCH and the corre-
sponding continuous time limit stochastic volatility model may yield different esti-
mates (see also Brown, Wang and Zhao [6]). Thus these kinds of continuous time
models are probabilistically and statistically different from their discrete time pro-
genitors. See Lindner [31] for a recent overview of continuous time approximations
to GARCH processes.

In Klüppelberg, Lindner and Maller [30], the authors proposed a radically dif-
ferent approach to obtaining a continuous time model. Their “COGARCH” (con-
tinuous time GARCH) model is a direct analogue of the discrete time GARCH,
based on a single background driving Lévy process, and generalises the essential
features of the discrete time GARCH process in a natural way. In the next section
we review this model.

Generally, in what follows, by the “COGARCH” model we will mean the CO-
GARCH(1,1) model.

2Dependence has been introduced in the literature in an ad hoc way by allowing B(1) and
B(2) in (2.3) and (2.4) to be correlated, but such models still rely on two sources of randomness.
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3. The COGARCH model

The COGARCH model is specified by two equations, the mean and variance equa-
tions, analogous to (2.1) and (2.2). The single source of variation is a so-called
background driving Lévy process L = (Lt)t≥0 with characteristic triplet (γ, σ2,Π);
we refer to Sato [43] for background on Lévy processes. The continuous time pro-
cess L has i.i.d. increments, which are analogous to the i.i.d. innovations εi in
(2.1) and (2.2). Then the COGARCH process (Gt)t≥0 is defined in terms of its
stochastic differential, dG, such that

dGt = σt−dLt, t ≥ 0, (3.1)

where σt, the volatility process, satisfies

dσ2
t =

(
β − ησ2

t−

)
dt+ φσ2

t−d[L,L]t, t > 0, (3.2)

for constants β > 0, η ≥ 0 and φ ≥ 0. Here [L,L]t denotes the quadratic variation
process of L, defined for t > 0 by

[L,L]t := σ2t+
∑

0<s≤t

(∆Ls)
2 = σ2t+ [Lt, Lt]

d, (3.3)

with [Lt, Lt]
d denoting the pure jump component of [L,L]. (There should be

no confusion between the constant σ2 specifying the variance of the Gaussian
component of L and the COGARCH variance process (σ2

t )t≥0. In (3.3), ∆Lt =
Lt − Lt− for t ≥ 0 (with L0− = 0) and similarly for other processes throughout.
All processes are cádlág)

To see the analogy with (2.1) and (2.2), note from (2.2) that

σ2
i − σ2

i−1 = β − (1− δ)σ2
i−1 + φσ2

i−1ε
2
i−1, (3.4)

which corresponds to (3.2) (with a reparameterisation from η to δ = 1 − η) when
the time increment dt is taken as a unit, or at least fixed, interval of time. But
an advantage of the continuous time setup is that non-equally spaced observations
are easily catered for, as we demonstrate later (Section 5.4).

Just as an understanding of discrete time perpetuities is the key to stability,
stationarity and tail behaviour of the discrete time GARCH, so kinds of continuous
time perpetuities are instrumental in the analysis of the COGARCH. The solution
of the stochastic differential equation (SDE) (3.2) can be obtained with the help
of an auxiliary Lévy process X = (Xt)t≥0 defined by

Xt = ηt−
∑

0<s≤t

log(1 + φ(∆Ls)
2), t ≥ 0. (3.5)

X is a spectrally negative Lévy process of bounded variation arising in a natural
way in Klüppelberg et al. [30], where the COGARCH(1,1) is motivated directly
as an analogue to the discrete time GARCH(1,1) process. Using Ito’s lemma, it
can be verified that the solution of (3.2) can be written in terms of X as

σ2
t = e−Xt

(
β

∫ t

0

eXsds+ σ2
0

)
, t ≥ 0, (3.6)
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which reveals σ2
t as a kind of generalised Ornstein-Uhlenbeck (GOU) process, pa-

rameterised by (β, η, ϕ), and driven by the Lévy process L. For results on the
GOU, and associated studies of Lévy integrals, see Lindner and Maller [33] and
their references. An understanding of stability, stationarity and tail behaviour
properties for the GOU is essential for such issues relating to G.

Klüppelberg et al. [30], Theorem 3.2, shows that the variance process (σ2
t )t≥0

for the COGARCH is a time homogeneous Markov process, and, further, that the
bivariate process (Gt, σ

2
t )t≥0 is Markovian. A finite random variable σ2

∞ exists as
the limit in distribution of σ2

t as t→ ∞ if and only if
∫

R

log
(
1 +

φ

δ
y2
)
Π(dy) < − log δ. (3.7)

σ2
∞ has the same distribution as β times the stochastic integral

∫∞

0
e−Xtdt, which

exists as a finite rv a.s. under (3.7) (see Theorem 3.1 of [30]). If this is the case
and (σ2

t )t≥0 is started with value σ2
∞, i.e., σ2

0 is taken to have the distribution of
σ2
∞, independent of L, then (σ2

t )t≥0 is strictly stationary and (Gt)t≥0 is a process
with stationary increments (Theorem 3.2 and Corollary 3.1 of [30]).

Moments of the COGARCH process can be calculated using the Laplace trans-
form of the auxiliary process X , which satisfies Ee−θXt = etΨ(θ), with

Ψ(θ) = −ηθ +
∫

R

(
(1 + φx2)θ − 1)Π(dx), θ ≥ 0 . (3.8)

Returns over time intervals of fixed length r > 0 we denote by

G
(r)
t := Gt −Gt−r =

∫

(t−r,t]

σs− dLs, t ≥ r , (3.9)

so that (G
(r)
ri )i∈N describes an equidistant sequence of non-overlapping returns.

Calculating the corresponding quantity for the volatility yields

σ
2(r)
ri := σ2

ri − σ2
r(i−1) =

∫

(r(i−1),ri]

(
(β − ησ2

s ) ds+ ϕσ2
s− d[L,L]s

)

= βr − η

∫

(r(i−1),ri]

σ2
s ds+ ϕ

∫

(r(i−1),ri]

σ2
s− d[L,L]s . (3.10)

Note that the stochastic process

∫

(0,t]

σ2
s− d[L,L]s = σ2

∫ t

0

σ2
s−ds+

∑

0<s≤t

σ2
s−(∆Ls)

2, t ≥ 0,

is the quadratic variation [G,G]t of G, which satisfies

[G,G]t =

∫ t

0

σ2
s− d[L,L]s, t ≥ 0;

thus
∫
(r(i−1),ri]

σ2
s− d[L,L]ds in (3.10) corresponds to the jump part of the quadratic

variation of G accumulated during (r(i − 1), ri].
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The following result (Proposition 2.1 of Haug et al. [24]) shows that the CO-
GARCH has a similar moment structure as the GARCH model; in particular,
increments are uncorrelated, but squared increments are positively correlated. We
shall need these results in Section 5.1, when we present a method of moment
estimation of the COGARCH parameters.

Proposition 3.1. Suppose that (Lt)t≥0 has finite variance and zero mean, and
that the Gaussian component has variance σ2. Suppose also that Ψ(1) < 0 for Ψ as
given in (3.8). Let (σ2

t )t≥0 be the stationary volatility process, so that (Gt)t≥0 has
stationary increments. Then E(G2

t ) < ∞ for all t ≥ 0, and for every t, h ≥ r > 0
we have

E(G
(r)
t ) = 0 , E(G

(r)
t )2 =

βr

|Ψ(1)|EL
2
1 , Cov(G

(r)
t , G

(r)
t+h) = 0.

If, further, E(L4
1) < ∞ and Ψ(2) < 0, then E(G4

t ) < ∞ for all t ≥ 0 and, if,
additionally, the Lévy measure Π of L is such that

∫
R
x3Π(dx) = 0, then for every

t, h ≥ r > 0, we have

E(G
(r)
t )4 = 6E(L2

1)
β2

Ψ(1)2

(
2η

ϕ
+ 2σ2 − EL2

1

)(
2

|Ψ(2)| −
1

|Ψ(1)|

)
,

(
r − 1− e−r|Ψ(1)|

|Ψ(1)|

)
+

2β2

ϕ2

(
2

|Ψ(2)| −
1

|Ψ(1)|

)
r +

3β2

Ψ(1)2
(EL2

1)
2r2

and

Cov((G
(r)
t )2, (G

(r)
t+h)

2) =
E(L2

1)β
2

|Ψ(1)|3
(
2η

ϕ
+ 2σ2 − EL2

1

)(
2

|Ψ(2)| −
1

|Ψ(1)|

)

(
1− e−r|Ψ(1)|

)(
er|Ψ(1)| − 1

)
e−h|Ψ(1)| > 0 .

Motivated by the generalization of the GARCH(1,1) to the GARCH(p, q) model,
Brockwell, Chadraa, and Lindner [5] introduced a COGARCH(p, q) model. In it,
the volatility follows a CARMA (continuous-time ARMA) process driven by a Lévy
process (cf. Doob [12], Todorov and Tauchen [48]).

In Stelzer [45] multivariate COGARCH(1,1) processes are introduced, consti-
tuting a dynamical extension of normal mixture models and again incorporat-
ing such features as dependence of returns (but without autocorrelation), jumps,
heavy tailed distributions, etc. Stelzer’s definition agrees for d = 1 with the CO-
GARCH(1,1) process. As in the univariate case, the model has only one source
of randomness, a single multivariate Lévy process. The time-varying covariance
matrix is modelled as a stochastic process in the class of positive semi-definite ma-
trices. In [45] Stelzer analyses the probabilistic properties of the model and gives a
sufficient condition for the existence of a stationary distribution for the stochastic
covariance matrix process, and criteria ensuring the finiteness of moments.
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4. A COGARCH Option Pricing Model

A potentially important application of the COGARCH model is to option pricing.
Traditionally, and for mathematical tractability, option pricing models are based
on continuous time models for an underlying stock price process. The discrete-time
GARCH reproduces features commonly observed in financial data, especially relat-
ing to the so-called stylized facts (volatility clustering, mean reversion of volatility,
negative skew, and heavy tails). Consequently, the COGARCH, as a continuous
time limit of the discrete GARCH (see Section 5.3), can be expected to result in
more accurate option valuation than standard models. In this section we propose
an option pricing framework, where the stock price return is driven by COGARCH,
thus allowing for stochastic volatility, and we also include the possibility of default
in the model. Combining these features is not new; however, our framework is
parsimonious in its parameterisation and as we will see can reproduce observed
kinds of volatility smile and skew quite well. Further, the default probability in
the model can be expressed as a function of the volatility.3

The financial market is defined on a filtered probability space (Ω,F , P, (Ft)t≥0)
satisfying the usual hypothesis, which is large enough to support a Lévy process
L = (Lt)t≥0 with characteristic function given for every t ≥ 0 by E[eizLt ] = etψ(z)

for z ∈ R where

ψ(z) = iγz − σ2

2
z +

∫

R\{0}

(
1− eizx − izh(x)

)
Π(dx).

As usual (γ, σ2,Π) is the characteristic triplet, with related truncation function
h(x) = x1{|x|≤1}. As a technical prerequisite we assume that the fourth moment
of L exists, i.e.

∫
x4 Π(dx) < ∞. The investment opportunities considered here

are the risk-free money market account and the risky company stock. The risk-free
money market account has the price process B = (Bt)t≥0 with dynamics

dBt = rBt dt , B0 = 1 , (4.1)

where r ∈ R is the instantaneous risk-free rate; hence Bt = er t for t ≥ 0. The stock
price process is denoted by S = (St)t≥0 and bears two kinds of related risks. The
stock price fluctuation is driven by a COGARCH process G = (Gt)t≥0 with its
accompanying volatility process (σt)t≥0, and, further, the stock price is assumed
to fall to zero at a default time τ , if default occurs, after which it stays at that
level. Before default the stock price process satisfies

dSt = St− dRt , S0 > 0 , (4.2)

where R = (Rt)t≥0, the cumulative return process, is driven by the COGARCH
process G in the following sense:

dRt = [r + λ(σt−)σt−] dt+ σt− dLt. (4.3)

3As is also the case with the expected default frequency in Moody’s KMV (Kealhofer, Mc-
Quown and Vasicek) EDF (Expected Default Frequency) proprietry credit measures model, the
KMVEDFTM; see, e.g., http://www.moodyskmv.com/newsevents/files/EDF Overview.pdf
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Here the scaled innovation σt− dLt is a COGARCH increment, dGt, λ : [0,∞) →
R is the risk premium, and the volatility (σ2

t )t≥0 follows the dynamics in (3.2),
namely:

dσ2
t =

(
β − η σ2

t−

)
dt+ φσ2

t− d[L,L]t, t > 0. (4.4)

The default time τ is defined as the first time at which the cumulative return
R exhibits a jump ∆Rt below −100% = −1:

τ = inf{t > 0 : ∆Rt ≤ −1} = inf{t > 0 : σt− ∆Lt ≤ −1} .

At default the stock price drops to zero and stays there, thus we can write

St = S0 E(R)t 1{t<τ} , (4.5)

where E(X) denotes the stochastic exponential of X .

4.1. Relationship to Other Stochastic Volatility Models. To compare our
model to other SV models, we reparameterise (4.3) and (4.4) as follows. Let us
first assume that L in (4.3) is an error term satisfying ELt = 0 and E[L2

t ] = t, or,
equivalently,

γ +

∫

|x|>1

xΠ(dx) = 0, and σ2 +

∫

R

x2 Π(dx) = 1. (4.6)

This assumption is in fact no restriction, but ensures that the parameters can be
identified. (Note that the function λ can be adjusted when centering L, and the
scaling to unit variance of L affects only the variance parameters.)

The bracket process [L,L] drives the volatility process σ. We center and scale
[L,L] to a martingale M with unit variance rate

Mt =
[L,L]t − E[L,L]t√

E [([L,L]1 − E[L,L]1)2]
=

[L,L]dt − t
∫
R
x2 Π(dx)√∫

R
x4 Π(dx)

, t ≥ 0. (4.7)

Then we can write the variance equation (4.4) as

dσ2
t = κ

(
σ2 − σ2

t−

)
dt+ ν σ2

t− dMt, t > 0, (4.8)

where

κ = η − φ , σ2 =
β

η − φ
and ν = φ

√∫

R

x4 Π(dx) . (4.9)

The variance process is thus seen to be mean-reverting with mean level σ2, mean-
reversion speed κ, and volatility (νσ2

t )t≥0, implying an average volatility of the
variance process of ν σ2. This enables us to benchmark our model to other SV
models. We compare the COGARCH with the stochastic volatility model of He-
ston [25] (other related models include a Heston extension allowing for jumps of
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Bates [2], the SABR model of Hagan et al. [21], etc.). The dynamics of the Heston
model are

dSHt = µHt S
H
t dt+ σHt SHt dWH,1

t ,

d(σHt )2 = κH
(
(σ̄H)2 − (σHt )2

)
dt+ νH

√
(σHt )2 dWH,2

t ,

with expected return rate µH , mean-reversion speed κH , mean level (σ̄H)2, volatil-
ity of volatility parameter νH , and leverage ρH . Here, the leverage ρH is in fact
the correlation of the standard Brownian motions WH,1 and WH,2.

Our model features the so-called option pricing leverage effect that is also in-
cluded in the Heston model. However, in our setup leverage is not a free parameter,
but is determined by the skew and kurtosis of the jump measure of L. Formally,
leverage is quantified by the instantaneous correlation between the increments of
the price equation dRt and the increments of the variance equation dσ2

t . By scaling
this reduces to the correlation of Lt and Mt, and leverage is given by

ρ = cor(Lt,Mt) =
E[LtMt]

t
=

1

t
E [[L,M ]t] =

∫
R
x3 Π(dx)√∫
R
x4 Π(dx)

. (4.10)

We see that ρ is restricted by more than just |ρ| ≤ 1; the Cauchy-Schwarz inequality
implies

|ρ| ≤
√∫

R

x2 Π(dx) =
√
1− σ2 (cf. (4.6)).

The COGARCH and Heston models are compared in Table 1.

Drift Volatility Noise Leverage

COGARCH κ
(
σ2 − σ2

t

)
ν σ2

t f.v. pure jump

∫
R
x3 Π(dx)√∫
R
x4 Π(dx)

Heston κ
(
σ2 − σ2

t

)
ν
√
σ2
t Brownian ρ ∈ [−1, 1]

Table 1. Specifications of the variance processes for COGARCH and Heston models (“f.v.” stands
for “finite variation”).

4.2. Default Time and Default Adjusted Return Dynamics. The default
time τ admits a predictable intensity µ̂ = (µ̂t)t≥0 driven by the variance process σ2.
Using the Markov property of σ2 and the independent and stationary increments
property of L, we can establish that µ̂t = µ̂(σt−), where the function µ̂ is given by

µ̂(x) = Π

((
−∞,− 1

x

])
=

∫ −1/x

−∞

Π(dy), x > 0. (4.11)
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Then the process N = (Nt)t≥0 defined by

Nt = 1{τ≤t} −
∫ t∧τ

0

µ̂(σu−) du

is a martingale. The unconditional probability PD = (PDt)t≥0 of default prior to
time t can then be calculated as:

PDt = P (τ ≤ t) = 1− E

[
exp

(
−
∫ t

0

µ̂(σu) du

)]
, t ≥ 0 . (4.12)

We now turn to the effect of the default on the dynamics of the driving Lévy
process L.

Theorem 4.1. The bivariate process (S, σ2) is a Markov process and the stochastic
differential of S is given by

dSt = St− [r + λ(σt−)σt−] dt+ St− σt− dL̂t ,

where L̂ is the stopped version of L with default adjustment

L̂t = Lτt + 1{t≥τ}(−∆Lτ − 1/στ−), t ≥ 0.

With λ̂ defined by

λ̂(x) = −
∫ −1/x

−∞

(
y +

1

x

)
Π(dy), x > 0,

the compensated version (L̂t −
∫ t∧τ
0

λ̂(σu−) du)t≥0 is a martingale.

Next, define the default adjusted return process R̂ = (R̂t)t≥0 by

R̂t =

∫ t∧τ

0

(r + λ(σu−)σu−) du +

∫ t

0

σu− dL̂u . (4.13)

By construction it is clear that S = S0 E(R̂). It follows that the discounted price

process Z = S/B is a local martingale if and only if (R̂t − r (t ∧ τ))t≥0 is a local

martingale. (Note that the processes R̂ and S are both stopped at τ .) The next

theorem states the semimartingale characteristics of R̂ and is useful for identifying

martingale measures. In our setting, the characteristics (BR̂t , C
R̂
t ,Π

R̂
t )t≥0 of R̂ can

be expressed as functions of σ2
t− using the Markov property, see also Kallsen and

Vesenmayer [27].

Theorem 4.2. The semimartingale characteristics (BR̂t , C
R̂
t ,Π

R̂
t ) of R̂ for the

truncation function h(x) = x1{|x|≤1} are for t ≥ 0 given by

BR̂t = 1{t<τ}

(
r + σt−

[
λ(σt−) + λ̂(σt−)−

∫ ∞

1/σt−

xΠ(dx)

])
,

CR̂t = 1{t<τ} σ
2
t− σ

2,

ΠR̂t (A) = 1{t<τ}

∫
1{σt− x∈(A∩(−1,∞))}Π(dx) + 1{t<τ} 1{−1∈A} µ̂(σt),
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for Borel sets A ⊂ R \ {0}.

Under a martingale measure Q, the drift of R̂ has to reduce to

BR̂,Qt = 1{t<τ}

(
r − σt−

∫ ∞

1/σt−

xΠQt (dx)

)
, t ≥ 0, (4.14)

where ΠQt is the jump measure of Lt, and the correction results from our choice of
truncation function h(x) = x1{|x|≤1}.

Remark 4.3. In the following we adopt the martingale modeling approach. Madan,
Carr, and Chang [34] and Panayotov [41] also use this approach in related settings.
Formally, the market model can be investigated for arbitrage using the results pro-
vided by Delbaen and Schachermayer [9]. Such a thoroughgoing investigation is
beyond the scope of this paper.

4.3. The Risk-Neutral Dynamics and Option Pricing. In the following
we assume we are given a measure Q ∼ P such that L is a Lévy process with
characteristic triplet (γQ, (σQ)2,ΠQ) and finite fourth moment. Further, assume
that (σ2

t )t≥0 and S follow the dynamics given in (4.3) and (4.8), with potentially
altered parameters to ensure no-arbitrage. (Note that we can assume without loss
of generality that L is centered to 0 and scaled to have a unit variance rate.)

The Q-dynamics of σ2
t are given by the risk-neutral version of (4.8), i.e.:

dσ2
t = κQ

(
(σQ)2 − σ2

t−

)
dt+ νQ σ2

t− dMQ
t , t > 0, (4.15)

where κQ, (σQ)2, and νQ are the potentially adjusted parameters, and MQ is the

bracket process of L centered to 0 and scaled to unit variance rate. With λ̂Q

defined as in Theorem 4.1 by

λ̂Q(x) = −
∫ −1/x

−∞

(
y +

1

x

)
ΠQ(dy),

the compensated version L̂t −
∫ t∧τ
0 λ̂Q(σu−) du is then a Q-martingale. The risk-

neutral return process is then given by the risk-neutral version of (4.13), i.e.:

R̂t =

∫ t∧τ

0

(
r − λ̂Q(σu−)σu−

)
du+

∫ t

0

σu− dL̂u . (4.16)

The expression λ̂Q(σt−)σt− can be conceptualised as the premium for the limited
liability option, i.e. the premium paid by equity for protecting it from losses larger
than 100%. The stock price process is given by S = S0 E(R̂).

Under the measure Q, denote by πQ(·;χ) the price process of a T -claim χ that
is suitably integrable, i.e. the random variable χ is FT -measurable and E

Q|χ| <∞.
Then πQ is given by

πQ(t;χ) = e−r (T−t)
E
Q [χ | Ft] . (4.17)
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4.4. Variance-Gamma COGARCH. In this section we take the Variance-
Gamma (VG) process proposed by Madan and Seneta [35] and Madan, Carr, and
Chang [34], and construct the VG-COGARCH model directly under a martingale
measure Q, see discussion in the previous section. We examine the model for its
suitability to reflect stylized facts, such as volatility clustering, leptokurtosis and
skew, and incorporate as a new feature, possible default. We then compute option
prices, and, using the implied Black-Scholes volatility, compare the results to those
obtained from a corresponding Heston model. Finally, we discuss our stochastic
exponential setup in relation to the exponential VG-COGARCH of Panayotov [41],
see Remark 4.4 below.

Under the martingale measure Q the VG process L is defined by Lt = θV G Γt+
σV GWΓt

for t ≥ 0, where Γ is a Gamma process with variance rate νVG and
unit mean rate carrying the market time. W is a standard Brownian motion
independent of Γ, σVG > 0 the volatility, and θVG ∈ R the drift. The VG process
is a pure jump process having characteristic triplet (γQ, 0,ΠQ) with Lévy measure

ΠQ(dx) =
exp(θVG x/σ

2
VG)

|x| νVG
exp

(
−
√
2 σ2

VG/νVG + θ2VG

σ2
VG

|x|
)

dx , (4.18)

and drift

γQ = θVG −
∫

|x|>1

xΠQ(dx) . (4.19)

With this parametrisation, the moments of the Lévy measure are

∫
xΠQ(dx) = θVG ,

∫
x2 ΠQ(dx) = θ2VGνVG + σ2

VG ,

∫
x3 ΠQ(dx) = 2 θ3VGν

2
VG + 3 σ2

VG θVG νVG ,

∫
x4 ΠQ(dx) = 6 θ4VG ν

3
VG + 12 σ2

VG θ
2
VG ν

2
VG + 3 σ4

VG νVG .

Using the normalisation
∫
x2 ΠQ(dx) = 1, which forces σ2

VG < 1, the third and
fourth moments can be written in the form

∫
x3 ΠQ(dx) = sign(θVG)

√
νVG (1− σ2

VG) (2 + σ2
VG) ,

∫
x4 ΠQ(dx) = 3 νVG (2− σ4

VG) .

Then the leverage in (4.10) is obtained as a function of the VG parameter σVG

and the sign of θVG:

ρ = sign(θVG)

√
1− σ2

VG (2 + σ2
VG)√

3 (2− σ4
VG)

.
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The risk-neutral default intensity µ̂Q(x) can then be derived from (4.11) as:

µ̂Q(x) =
1

νVG
E1

(
θVG +

√
2 σ2

VG/νVG + θ2VG

σ2
VG x

)
, x > 0,

where E1(x) =
∫∞

x y−1 e−y dy for x > 0.
Figure 1 displays the default intensity µ̂Q depending on the volatility (σt)t≥0

for three different parameterisations. The structural parameters of the volatility
SDE are κQ = 1, σQ = 0.30, νQ = 1. The first set of VG-parameters is given
by θVG = −1.64, νVG = 0.01, σ2

VG = 0.99, and reproduces a skew of -0.77 and a
kurtosis of 7.90 for daily return data as is typically observed for liquidly traded
single stocks (see blue/solid). The second parameter set is given by θVG = −1.62,
νVG = 0.02, σ2

VG = 0.97, and reproduces a skew of -1.51 and a kurtosis of 16.54 for
daily return data (black/dotted). This parameter set shows more asymmetries and
heavier tails and potentially proxies for rather illiquid mid-cap stocks. The third
parameter set is given by θVG = −1.60, νVG = 0.03, σ2

VG = 0.96, and reproduces
a skew of -2.22 and a kurtosis of 25.83 for daily return data (red/dashed). As
expected, the default intensity µ̂Q is increasing in the volatility and the kurtosis
of the returns.
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Figure 1. Risk-neutral default intensities µ̂Q for volatility parameters κQ = 1, σQ = 0.30,
νQ = 1, and three different sets of VG parameters: (i) θVG = −1.64, νVG = 0.01, σ2

VG = 0.99
(blue/solid), (ii) θVG = −1.62, νVG = 0.02, σ2

VG = 0.97 (black/dotted), or (iii) θVG = −1.60,
νVG = 0.03, σ2

VG = 0.96 (red/dashed).

The compensator λ̂Q of L̂ can be calculated fairly explicitly as

λ̂Q(x) =

σ2
VG exp

(
− θVG+

√
2σ2

VG
/νVG+θ2

VG

σ2
VG

x

)

νVG (θVG +
√
2 σ2

VG/νVG + θ2VG)
− µ̂Q(x)

x
, x > 0 . (4.20)
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Figure 2 displays the risk-neutral default premium λ̂Q(x) depending on the volatil-
ity for three different parameterisations. The risk-neutral default premium is as
expected increasing in the volatility and the kurtosis. The parameterisations are
identical to those of Figure 1 discussed above.
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Figure 2. Risk-neutral default premium λ̂Q(x)x for volatility parameters κQ = 1, σQ = 0.30,
νQ = 1, and three different sets of VG parameters: (i) θVG = −1.64, νVG = 0.01, σ2

VG = 0.99
(blue/solid), (ii) θVG = −1.62, νVG = 0.02, σ2

VG = 0.97 (black/dotted), or (iii) θVG = −1.60,
νVG = 0.03, σ2

VG = 0.96 (red/dashed).

The option pricing model is now completely specified under the martingale
measure Q. The driving Lévy process is VG with characterisitc triplet (γQ, 0,ΠQ)
defined in (4.18) and (4.19). The volatility dynamics are given according to (4.15)

for some κQ, (σQ)2, and νQ. The risk-neutral default adjusted return process R̂ is

then defined according to (4.16) where λ̂Q is given by (4.20).

Now, we compare the VG-COGARCH to the Heston model. We produce for
both models the prices of European call options with varying strike prices and ma-
turities. For the VG-COGARCH we apply Monte-Carlo simulation using a simple
Euler discretisation scheme. The Heston call prices are computed by numerical
integration of the characteristic function of the log-price process at maturity date.
Both prices are then converted to corresponding implied Black-Scholes volatilities.
The volatility dynamics is mean reverting around a level of σQ = 0.30 with mean
reversion rate κQ = 1, for both VG-COGARCH and Heston, and a volatility of
volatility parameter of νQ = 1 for the VG-COGARCH and νQ = 0.3 for Heston,
respectively. With this setup we ensure that the volatility dynamics are compa-
rable for both models, see Table 1. The VG parameters are set to θVG = −1.64,
νVG = 0.01, and σ2

VG = 0.99 implying a leverage of ρ = −0.275 and skewness of
−0.77 and kurtosis of 7.90 for the innovations on a daily basis. For the Heston
model we have set ρ = −0.275 as well to keep the results comparable.

The implied volatility surface for the VG-COGARCH is displayed in Figure 3.
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Figure 3. Implied Black-Scholes volatilities from VG-COGARCH call option prices. The risk-
neutral parameters are S0 = 100, r = 0.05, σ2

0 = 0.302, κQ = 1, σQ = 0.30, νQ = 1, θVG =
−1.64, νVG = 0.01, σ2

VG = 0.99.
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Figure 4. Implied Black-Scholes volatilities from Heston call option prices. The risk-neutral
parameters are S0 = 100, r = 0.05, σ2

0 = 0.302, κQ = 1, σQ = 0.30, νQ = 0.30, ρ = −0.27.
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Figure 5. Difference of implied volatilities in Figure 3 and Figure 4.

The jumps and accordingly the high kurtosis lead to rather steep smile patterns
for short dated options. At the long end the skewness dominates, and the typical
smirk can be observed with declining implied volatilities for increasing strike prices.
For the corresponding Heston model the implied volatility surface is graphed in
Figure 4. Here, the smile for short dated options is of rather mild extent. This
finding is well-known and can be attributed to the continuous price paths inherent
in the Heston model. For longer maturities the skewness generated by the negative
correlation ρ = −0.275 produces an implied volatility smirk approximately of the
same extent as observed for VG-COGARCH. A difference plot for both volatilities
is given in Figure 5. One may summarise that the VG-COGARCH can produce
higher implied volatilities for short maturities deep in-the-money and far out-of-
the-money.

Remark 4.4. We conclude this section by mentioning that a similar option pricing
procedure for the COGARCH model has also been suggested by Panayotov [41].
In contrast to us he models the risk-neutral dynamics of the log price by a VG-
COGARCH process leading to a stock price process

S̃t = S̃0 exp
( ∫ t

0

audu+

∫ t

0

σu− dLu

)
,

where (σt)t≥0 is the COGARCH volatility driven by the VG process L, see Panay-

otov [41], Eq. (3.3.1). The expression
∫ t
0 audu is a convexity correction which

guarantees that the stock price has the proper risk-neutral expectation. According
to (3.3.4) in Panayotov [41] the density of the correction a can be computed as
follows

at = r −
∫ ∞

−∞

(
eσt x − 1

)
ΠQ(dx), t ≥ 0 .
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The log price process can be derived from this, and, using the fact that, together
with the volatility process, it is jointly Markovian, the option price is calculated
by numerically solving a PIDE. Possibility of default is not included in his model.

5. Statistical Estimation of COGARCH

We present two different estimation procedures. The first is a simple method
of moments estimation, which works only for equally spaced data. The second
method is more sophisticated and handles unequally spaced data. It needs some
preliminary results concerning the pathwise approximation of Lévy processes which
we outline in this section. Throughout this section we assume that the driving Lévy
process has no Gaussian part, i.e. that σ2 = 0.

5.1. A Method of Moments Estimation. For practical purposes, we need to
discretise the continuous-time COGARCH onto a discrete grid over a finite time
interval, and with a finite state space. Assume first that our data are given as
described in (3.9). The goal of this section is to estimate the model parameters
β, η, ϕ. Moreover, we shall present a simple estimate of the volatility.

5.1.1. Identifiability of the model parameters. We aim at estimation of the
model parameters (β, η, ϕ) from a sample of equally spaced returns by matching
empirical autocorrelation function and moments to their theoretical counterparts
given in Proposition 3.1. The next result shows that the parameters are identifiable
by this estimation procedure for driving Lévy processes L as in Proposition 3.1.
We assume throughout that E(L1) = 0 and E(L2

1) = 1. For the sake of simplicity
we set r = 1.

Theorem 5.1. Suppose (Lt)t≥0 is a Lévy process such that E(L1) = 0, E(L2
1) = 1,

E(L4
1) < ∞ and

∫
R
x3 Π(dx) = 0. Assume also that Ψ(2) < 0, and denote by

(G
(1)
i )i∈N the stationary increment process of the COGARCH(1,1) process with

parameters β, η, ϕ > 0. Let µ, γ(0), k, p > 0 be constants such that

E((G
(1)
i )2) = µ,

Var((G
(1)
i )2) = γ(0),

ρ(h) = corr((G
(1)
i )2, (G

(1)
i+h)

2) = ke−hp , h ∈ N .

Define

M1 := γ(0)− 2µ2 − 6
1− p− e−p

(1− ep)(1− e−p)
k γ(0) ,

M2 :=
2kγ(0)p

M1(ep − 1)(1− e−p)
.



20 Claudia Klüppelberg, Ross Maller and Alexander Szimayer

Then M1,M2 > 0, and the parameters β, η, ϕ are uniquely determined by µ, γ(0), k
and p and are given by the formulas

β = p µ , (5.1)

ϕ = p
√
1 +M2 − p, (5.2)

η = p
√
1 +M2 1 + p = p . (5.3)

We conclude from (5.1)–(5.3) that our model parameter vector (β, η, ϕ) is a
continuous function of the first two moments µ, γ(0) and the parameters of the
autocorrelation function p and k. Hence, by continuity, consistency of the mo-
ments will immediately imply consistency of the corresponding plug-in estimates
for (β, η, ϕ).

5.1.2. The estimation algorithm. The parameters are estimated under the
following assumptions:

(H1) We have equally spaced observations Gi, i = 0, . . . , n, on the integrated
COGARCH as defined and parameterised in (3.1) and (3.2), assumed to be
in its stationary regime. This gives return data

G
(1)
i = Gi −Gi−1, i = 1, . . . , n.

(H2) E(L1) = 0 and E(L2
1) = 1, i.e. (σ2

t )t≥0 can be interpreted as the volatility.

(H3) The driving Lévy process has no Gaussian part.

(H4)
∫
R
x3 Π(dx) = 0, E(L4

1) <∞ and Ψ(2) < 0.

We proceed as follows.

(1) Calculate the moment estimator µ̂n of µ as

µ̂n :=
1

n

n∑

i=1

(G
(1)
i )2,

and for fixed d ≥ 2 the empirical autocovariances γ̂n := (γ̂n(0), γ̂n(1), . . . , γ̂n(d))
T

as

γ̂n(h) :=
1

n

n−h∑

i=1

(
(G

(1)
i+h)

2 − µ̂n

)(
(G

(1)
i )2 − µ̂n

)
, h = 0, . . . , d .

(2) Compute the empirical autocorrelations ρ̂n := (γ̂n(1)/γ̂n(0), . . . , γ̂n(d)/γ̂n(0))
T .

(3) For fixed d ≥ 2 define the mapping H : Rd+2
+ → R by

H(ρ̂n, θ) :=

d∑

h=1

(log(ρ̂n(h))− log k + ph)2 .
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Compute the least squares estimator4

θ̂n := argminθ∈R2
+
H(ρ̂n, θ) . (5.4)

(4) Define the mapping J : R4
+ → [0,∞)3 by

J(µ, γ(0), θ) :=

{
(pµ, p

√
1 +M2 − p, p

√
1 +M2 + p) if p,M2 > 0 ,

(0, 0, 0) otherwise,

where M2 is defined as in (5.1). Finally, compute the estimator

ϑ̂n = J(µ̂n, γ̂n(0), θ̂n) .

In Haug et al. [24] asymptotic normality of the estimated parameter vector was
proved. This is essentially a consequence of the geometric ergodicity of the returns

process (G
(1)
i )i∈N.

To conclude this section we mention that Müller [38] developed an MCMC esti-
mation procedure for the COGARCH(1,1) model, which works also for irregularly
spaced observations. The approach is, however, restricted to driving processes L
of finite variation. Alternatively, Fasen [17] presents results on the non-parametric
estimation of the autocovariance function of the volatility process and the CO-
GARCH process by invoking point process methods. In the next section, we out-
line a more sophisticated way of dealing with unequally spaced data. It applies
some results concerning the pathwise approximation of Lévy processes.

5.2. The “First Jump” Approximation for a Lévy Process. In this section
we review a “first jump” approximation to the underlying Lévy process which
preserves certain crucial features of the process.

Suppose again that the Lévy process (Lt)t≥0 has characteristic triplet of the
form (γ, 0,Π), where γ ∈ R and Π is the Lévy measure. As usual, denote the
jumps of Lt by ∆Lt = Lt − Lt− for t ≥ 0 (with L0− = 0), and let

Π(x) = Π((x,∞)) + Π((−∞,−x]), x > 0, (5.5)

denote the tail of Π(·).
We wish to approximate L on a finite time interval [0, T ], 0 < T < ∞, par-

titioned into Nn not necessarily equally spaced intervals. Let (Nn)n∈N be an in-
creasing sequence of integers diverging to infinity as n→ ∞. For each n ∈ N, form
a deterministic partition 0 = t0(n) < t1(n) < · · · < tNn

(n) = T of [0, T ]. In Maller
and Szimayer [46], two approximating processes to L are constructed.

4We note the known robustness issues associated with least squares estimators. There is no
difficulty in substituting for θ̂n a more robust estimator, for instance, by replacing the L2-norm
by the L1-norm, or invoking a weighted Huber estimator.
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The first approximation, Lt(n) for n ∈ N is formed by taking the first jump, if
one occurs, of Lt in each time subinterval (tj−1(n), tj(n)], j = 1, 2, . . . , Nn, where
the jump sizes are bounded away from 0, then discretizing (“binning”) these jumps
to get an approximating process which takes only a finite number of values on a
finite state space. The state space does not include 0, as we must avoid the possible
singularity in Π at 0. If no jump occurs in a subinterval, Lt(n) remains constant
in that subinterval.

A second approximating process, Lt(n), n ∈ N, is then taken as the discrete
skeleton of Lt(n) on the time grid (tj(n))j=0,1,...,Nn

.
The time and space intervals are allowed to shrink and the state space to expand

at appropriate rates, so as to get convergence of Lt(n) and Lt(n) to Lt, as n→ ∞,
in various modes.

To see how this works, take two sequences of real numbers (mn)n∈N and
(Mn)n∈N, satisfying 1 > mn ↓ 0 and 1 < Mn ↑ ∞, as n → ∞. The first ap-
proximating process, Lt(n), takes discrete values in the set

J(n) = [−Mn,−mn) ∪ (mn,Mn], n ∈ N.

To construct it, let

τj(n) := inf{t : tj−1(n) < t ≤ tj(n);∆Lt ∈ J(n)}, for 1 ≤ j ≤ Nn,

(where the infimum over the empty set is defined as ∞) be the time of the first
jump of L with magnitude in (mn, Mn] in interval j. Then decompose Lt as

Lt = γn t+ L
(1)
t (n) + L

(2)
t (n) + L

(3)
t (n) , for 0 ≤ t ≤ T , (5.6)

where for all n ≥ 1 and 0 ≤ t ≤ T :

L
(1)
t (n) = a.s. lim

ε↓0


 ∑

0<s≤t

∆Ls 1{ε<|∆Ls|≤mn} − t

∫

ε<|x|≤mn

xΠ(dx)


 ,

L
(2)
t (n) =

∑

0<s≤t

∆Ls 1{Mn<|∆Ls|}, L
(3)
t (n) =

∑

0<s≤t

∆Ls 1{mn<|∆Ls|≤Mn},

and

γn = γ −
∫

mn<|x|≤1

xΠ(dx).

Decomposition (5.6) is a variant of the Lévy-Ito decomposition (Sato [44], Theo-

rem 19.2, p. 120), in which, for each n, L
(1)
t (n) is a compensated “small jump”

martingale, and L
(2)
t (n) and L

(3)
t (n) might be thought of as “large jumps” and

“medium jumps”, respectively.
With no assumptions on L, Szimayer and Maller [46] show that, for j = 1, 2,

limn→∞ sup0≤t≤T L
(j)
t (n) = 0 a.s. L

(3)
t (n) can be further decomposed as follows:

L
(3)
t (n) = L

(3,1)
t (n) + L

(3,2)
t (n), (5.7)
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where

L
(3,2)
t (n) =

Nn∑

j=1

1{τj(n)≤t}∆L
(3)
τj(n)

. (5.8)

Thus L
(3,2)
t (n) is the sum of the sizes of the first jump of Lt in each subinterval

whose magnitude is in (mn,Mn], where such jumps occur, while L
(3,1)
t (n) collects,

over all subintervals, the sizes of those jumps with magnitudes in (mn,Mn] (except
for the first jump), provided at least two such jumps occur in a subinterval.

Since we allow for the possibility that L has “infinite activity”, that is, that
Π(R \ {0}) = ∞, we need a restriction on how fast mn may tend to the possible
singularity of Π at 0, by comparison with the speed at which the time mesh shrinks.

With appropriate assumptions, limn→∞ sup0≤t≤T |L(3,1)
t (n)| = 0 in probability, in

L1, or, alternatively, in the almost sure sense. This leaves L(3,2)(n) as the predom-
inant component, asymptotically, of L, and the penultimate step is to approximate
it by a process L(n) that lives on a finite state space. So we discretize the state
space J(n) with a grid of mesh size ∆(n) > 0, where ∆(n) ց 0 as n→ ∞, and set

Lt(n) = γnt+

Nn∑

j=1

1{τj(n)≤t}

∆L
(3)
τj(n)

∆(n)

 ∆(n) . (5.9)

(The symbol ⌊x⌋ denotes the integer part of x ∈ R). Again under certain condi-
tions, the difference between L(3,2)(n) and L(n) disappears, asymptotically, in the
L1 or almost sure sense, uniformly in 0 ≤ t ≤ T . Thus L(n) approximates L, in
the sense that the distance between them as measured by the supremum metric
tends to 0 in L1 or almost surely, in our setup.

The second approximation, L(n), is obtained by evaluating L(n) on the same
discrete time grid as we have used so far. Thus L(n) is the piecewise constant
process defined by

Lt(n) = Ltj−1(n)(n), when tj−1(n) ≤ t < tj(n), j = 1, 2, . . . , Nn, (5.10)

and with LT (n) = LT (n). Because the original jumps are displaced in time in
L(n), we no longer expect convergence to L in the supremum metric. Instead, we
get that limn→∞ ρ(L(n), L) = 0, where ρ(·, ·) denotes the Skorokhod J1 distance
in D[0, T ]. The processes L(n) approximate L, pointwise, in probability, but not
uniformly in 0 ≤ t ≤ T . However, the convergence in probability in the Skorokhod
topology suffices for certain applications that we discuss later.

Now we state the theorems from [46], which give the convergence of Lt(n) and
Lt(n) to Lt. Recall from (5.5) that Π denotes the tail of the Lévy measure of Lt.
Let

∆t(n) := max
1≤j≤n

(tj(n)− tj−1(n)) .

The main result for Lt(n) is:
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Theorem 5.2. (a) Suppose

lim
n→∞

∆t(n)Π
2
(mn) = 0 and lim

n→∞
∆(n)Π(mn) = 0. (5.11)

Then
sup

0≤t≤T

∣∣Lt(n)− Lt
∣∣ P→ 0, as n→ ∞. (5.12)

Next we consider the second approximating process, Lt(n), as defined in (5.10).
With a view to applications, we need the following property. The processes
(Lt(n))n∈N are said to satisfy Aldous’ criterion for tightness if:

∀ε > 0 : lim
δց0

lim sup
n→∞

sup
σ,τ∈S0,T (n), σ≤τ≤σ+δ

P (|Lτ (n)− Lσ(n)| ≥ ε) = 0 , (5.13)

where St,T (n) is the set of FL(n)-stopping times taking values in [t, T ], for 0 ≤ t ≤
T . Let D[0, T ] be the space of càdlàg real-valued functions on [0, T ] and ρ(·, ·) the
Skorokhod J1 distance between two processes in D[0, T ].

Theorem 5.3. Assume that Condition (5.11) of Theorem 5.2 holds. Then:

(i) ρ(L(n), L)
P→ 0 as n→ ∞;

(ii) the sequence (Lt(n))n∈N satisfies Aldous’ criterion for tightness.

We conclude this section with some comments on the filtrations. Let FL, FL(n)

and F
L(n) be the natural filtrations generated by the processes (Lt)t≥0, (Lt(n))t≥0

and (Lt(n))t≥0, respectively. Our construction clearly gives inclusion of the filtra-
tions, that is, for each n ≥ 1

F
L(n) ⊆ F

L(n) ⊆ F
L, (5.14)

so, having demonstrated convergence of the approximating processes, we will have
sufficient structure to prove convergence in some optimal stopping problems using
recent results of Coquet and Toldo [7]. More discussion and possible applications
of this can be found in Maller and Szimayer [46].

5.3. A Discrete Approximation to the COGARCH. In this section we show
how to approximate a COGARCH pair (Gt, σt)t≥0 with an embedded sequence of
discrete time GARCH pairs, (Gn(t), σn(t))t≥0, using the first jump technology
developed in Section 5.2. The discrete approximating sequence, after appropriate
rescaling, converges to the continuous time model in probability, in the Skorokhod
metric, as the discrete approximating grid grows finer. This construction opens the
way to using, for the COGARCH, similar statistical techniques to those already
worked out for GARCH models, and useful applications can be made to options
pricing, and to the modelling of irregularly spaced time series data.

For these kinds of applications L is usually assumed to have finite variance and
mean 0, as we will do throughout this section.

Thus, we take as given the continuous time COGARCH pair (Gt, σt)t≥0 defined
in (3.1) and (3.2), and form a discrete approximating sequence as follows. Fix
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T > 0, and take deterministic sequences (Nn)n∈N with limn→∞Nn = ∞ and
0 = t0(n) < t1(n) < . . . < tNn

(n) = T , and, for each n ∈ N, divide [0, T ] into
Nn subintervals of length ∆ti(n) := ti(n) − ti−1(n), for i = 1, 2, . . . , Nn. Assume
∆t(n) := maxi=1,...,Nn

∆ti(n) → 0 as n→ ∞, and define, for each n ∈ N, a discrete
time process (Gi,n)i=1,...,Nn

satisfying

Gi,n = Gi−1,n + σi−1,n

√
∆ti(n)εi,n, i = 1, 2, . . . , Nn, (5.15)

where G0,n = G0 := 0, and the variance σ2
i,n follows the recursion

σ2
i,n = β∆ti(n) +

(
1 + ϕ∆ti(n)ε

2
i,n

)
e−η∆ti(n)σ2

i−1,n, i = 1, 2, . . . , Nn. (5.16)

Here the innovations (εi,n)i=1,...,Nn
, n ∈ N, are constructed using the “first jump”

approximation outlined in Section 5.2. Since we assume a finite variance for L, we
need only a single sequence 1 ≥ mn ↓ 0 bounding the jumps of L away from 0. We

assume it satisfies limn→∞ ∆t(n)Π
2

L(mn) = 0. Such a sequence always exists, as
limx↓0 x

2 ΠL(x) = 0. Fix n ≥ 1 and define stopping times τi,n by

τi,n = inf {t ∈ [ti−1(n), ti(n)) : |∆L(t)| ≥ mn} , i = 1, . . . , Nn. (5.17)

Thus τi,n is the time of the first jump of L in the ith interval whose magnitude
exceeds mn, if such a jump occurs.

By the strong Markov property,
(
1{τi,n<∞}∆L(τi,n)

)
i=1,...,Nn

is for each n ∈ N

a sequence of independent rvs, with distribution specified by:

Π(dx)1{|x|>mn}

Π(mn)

(
1− e−∆ti(n)Π(mn)

)
, x ∈ R \ {0}, i = 1, 2, . . . , Nn, (5.18)

and with mass e−∆ti(n)Π(mn) at 0. These rvs have finite mean, νi(n), and variance,
ξi(n), say. The innovations series (εi,n)i=1,...,Nn

required for (5.15) is now defined
by

εi,n =
1{τi,n<∞} ∆L(τi,n)− νi(n)

ξi(n)
, i = 1, 2, . . . , Nn. (5.19)

For each n ∈ N, the εi,n are independent rvs with Eε1,n = 0 and Var(ε1,n) = 1.
Finally, in (5.16), we take σ2

0,n = σ2
0 , independent of the εi,n.

Remark 5.4. Equations (5.15) and (5.16) specify a GARCH(1,1)-type recursion in
the following sense. In the ordinary discrete time GARCH(1,1) series, the volatility
sequence satisfies (2.2), viz.,

σ2
i = β +

(
1 + (φ/δ)ε2i−1

)
δσ2
i−1. (5.20)

When the time grid is equally spaced, so ∆ti(n) = ∆t(n), i = 1, 2, . . . , Nn, (5.16) is
equivalent to (5.20), after rescaling by ∆t(n) and a reparametrisation from (β, ϕ, η)
to (β, ϕ, δ), and (5.15) becomes a rescaled GARCH equation for the differenced
sequence Gi,n−Gi−1,n. More generally, with an unequally spaced grid, if the series
are scaled as in (5.15) and (5.16), convergence to the COGARCH is obtained, as
follows.
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Embed the discrete time processes G·,n and σ2
·,n into continuous time versions

Gn and σ2
n defined for 0 ≤ t ≤ T by

Gn(t) := Gi,n and σ2
n(t) := σ2

i,n, when t ∈ [ti−1(n), ti(n)), (5.21)

with Gn(0) = 0. The processes Gn and σn are in D[0, T ]. The next result is proved
in Theorem 2.1 of Maller, Müller and Szimayer [36].

Theorem 5.5. In the above setup, the Skorokhod distance between the processes
(G, σ2) defined by (3.1) and (3.2), and the discretised, piecewise constant processes
(Gn, σ

2
n)n≥1 defined by (5.21), converges in probability to 0 as n→ ∞; that is,

ρ
(
(Gn, σ

2
n), (G, σ

2)
) P→ 0, as n→ ∞. (5.22)

Consequently, we also have convergence in distribution in D[0, T ]× D[0, T ]:

(Gn, σ
2
n)

D→ (G, σ2), as n→ ∞.

Remark 5.6. Kallsen and Vesenmayer [27] derive the infinitesimal generator of
the bivariate Markov process representation of the COGARCH model and show
that any COGARCH process can be represented as the limit in law of a sequence
of GARCH(1,1) processes. The result of Theorem 5.5 is stronger in that it gives
convergence to the continuous-time model in a strong sense (in probability, in the
Skorokhod metric), as the discrete approximating grid grows finer. Whereas the
diffusion limit in law established by Nelson [40] occurs from GARCH by aggregating
its innovations, the COGARCH limit arising in Kallsen and Vesenmayer [27] and
Maller et al. [36] both occur when the innovations are randomly thinned.

5.4. GARCH Analysis of Irregularly Spaced Data. Maller, Müller and
Szimayer [36] apply the discrete approximation of the continuous time GARCH
process to develop a method of fitting the model to unequally spaced times series
data, using the methodology worked out for the discrete time GARCH.

5.4.1. The estimation algorithm. The parameters are estimated under the
following assumptions:

(H1) Suppose given observations Gti , 0 = t0 < t1 < . . . < tN = T , on the inte-
grated COGARCH as defined and parameterised in (3.1) and (3.2), assumed
to be in its stationary regime.

(H2) The (ti) are assumed fixed (non-random) time points.

(H3) EL(1) = 0 and EL2(1) = 1; i.e. σ2 can be interpreted as the volatility.

(H4) The driving Lévy process has no Gaussian part.

Then we proceed as follows.
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(1) Let Yi = Gti −Gti−1
denote the observed increments and put ∆ti := ti− ti−1.

Then from (3.1) we can write

Yi =

∫ ti

ti−1

σs−dL(s). (5.23)

(2) We can use a pseudo-maximum likelihood (PML) method to estimate the
parameters (β, η, ϕ) from the observed Y1, Y2, . . . , YN . The pseudo-likelihood func-
tion can be derived as follows. Because (σt)t≥0 is Markovian, Yi is conditionally
independent of Yi−1, Yi−2, . . ., given Fti−1

. We have E(Yi | Fti−1
) = 0 for the

conditional expectation of Yi, and, for the conditional variance,

ρ2i := E(Y 2
i | Fti−1

) =

(
σ2
ti−1

− β

η − ϕ

)(
e(η−ϕ)∆ti − 1

η − ϕ

)
+
β∆ti
η − ϕ

. (5.24)

Eq. (5.24) follows from the calculation in the third display on p. 618 of Klüppelberg
et al. [30]. To ensure stationarity, we take Eσ2

0 = β/(η − ϕ), with η > ϕ, in that
formula.

(3) Applying the PML method, then, we assume that the Yi are conditionally
N(0, ρ2i ), and use recursive conditioning to write a pseudo-log-likelihood function
for the observations Y1, Y2, . . . , YN as

LN = LN (β, ϕ, η) = −1

2

N∑

i=1

(
Y 2
i

ρ2i

)
− 1

2

N∑

i=1

log(ρ2i )−
N

2
log(2π). (5.25)

(4) We must substitute in (5.25) a calculable quantity for ρ2i , hence we need such
for σ2

ti−1
in (5.24). For this, we discretise the continuous time volatility process

just as was done in Theorem 5.5. Thus, (5.16) reads, in the present notation,

σ2
i = β∆ti + e−η∆tiσ2

i−1 + ϕe−η∆tiY 2
i . (5.26)

(5) Finally, note that (5.26) is a GARCH-type recursion, so, after substituting
σ2
i−1 for σ2

ti−1)
in (5.24), and the resulting modified ρ2i in (5.25), we can think

of (5.25) as the pseudo-log-likelihood function for fitting a GARCH model to the
unequally spaced series.

The recursion in (5.26) is easily programmed, and, taking as starting value for
σ2
0 the stationary value β/(η−ϕ), we can maximise the function LN to get PMLEs

of (β, η, ϕ). The small sample behaviour of these estimates are investigated in a
simulation study in Durand, Maller and Müller [14]. Moreover, Müller, Maller
and Durand [39] and Durand, Maller and Müller [14] apply this method to various
financial data sets.
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[18] H. Föllmer and M. Schweizer. Hedging of contingent claims under incomplete infor-
mation. In M. H. A. Davis and R. J. Elliott, editors, Applied Stochastic Analysis,
volume 5 of Stochastics Monographs, pages 389–414. Gordon and Breach, London,
New York, 1991.

[19] C. M. Goldie. Implicit renewal theory and tails of solutions of random equations.
Ann. Appl. Probab., 1(1):126–166, 1991.



The COGARCH: A Review, with News on Option Pricing and Statistical Inference 29

[20] C. M. Goldie and R.A. Maller. Stability of perpetuities. Ann. Probab., 28:1195–1218,
2000.

[21] P.S. Hagan, D. Kumar, A.S. Lesniewski, and D.E. Woodward. Managing smile risk.
Wilmott, Sept.:84–108, 2002.

[22] J. M. Harrison and D. M. Kreps. Martingales and arbitrage in multiperiod securities
markets. J. Econom. Theory, 20:381–408, 1979.

[23] J. M. Harrison and S. R. Pliska. Martingales and stochastic integrals in the theory
of continuous trading. Stoch. Process. Appl., 11:215–260, 1981.
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[29] C. Klüppelberg. Risk management with extreme value theory. In B. Finkenstädt
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