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Kurzzusammenfassung

Es werden hochverstärkungsbasierte adaptive Regler und deren Anwendung in der Mechatro-
nik diskutiert. Die adaptiven Regler werden für „minimalphasige“ Systeme mit Relativgrad eins
oder zwei, bekanntem Vorzeichen der instantanen Verstärkung, beschränkten Störungen und
zustandsabhängigen, dynamischen Perturbationen entwickelt. Für die Reglerimplementierung
ist keine Systemidentifikation oder Parameterschätzung notwendig. Strukturelle Systemkennt-
nis ist ausreichend. Die robusten Regler ermöglichen Folgewertregelungen mit vorgegebener
asymptotischer oder transienter Genauigkeit und, in Verbindung mit einem proportionalen-
integralen Internen Modell, stationäre Genauigkeit. Abschließend werden die Regler zur Ge-
schwindigkeits- und Positionsregelung von starren und elastischen industriellen Servoantrieben
eingesetzt und ein erster Ansatz zur hochverstärkungsbasierten adaptiven Positionsregelung
von starren Robotern mit Drehgelenken vorgestellt.

Abstract

High-gain adaptive control and its applications in mechatronics are discussed. The high-gain
adaptive controllers are presented and developed for “minimum-phase” systems with relative
degree one or two, known sign of the high-frequency gain, bounded disturbances and state
dependent, functional perturbations. System identification or parameter estimation is not re-
quired for controller implementation. Structural system knowledge is sufficient. The robust
controllers guarantee tracking with prescribed asymptotic or transient accuracy and, in combi-
nation with a proportional-integral internal model, may assure steady state accuracy. Finally,
the controllers are applied for speed and position control of stiff and flexible industrial servo-
systems and it is shown that high-gain adaptive position control with prescribed transient
accuracy of rigid revolute joint robotic manipulators is feasible, if the inertia matrix is known.



“The difficulty lies, not in the new ideas, but in escaping the old ones, which ramify,
for those brought up as most of us have been, into every corner of our minds.”

John Maynard Keynes (1883–1946)
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Nomenclature

Notation Meaning

N := {0, 1, 2, 3, . . . }, set of natural numbers
R := (−∞,∞), set of real numbers
R≥0 := [0,∞), set of non-negative real numbers
R>0 := (0,∞), set of positive real numbers
C set of complex numbers (for a, b ∈ R and imaginary unit j where

√
j2 :=

−1 [4, p. 111], a complex number is represented by s = a+ jb ∈ C)
ℜ(s) := a, real part of s = a+ jb ∈ C

ℑ(s) := b, imaginary part of s = a+ jb ∈ C

C<0 := {s ∈ C | ℜ(s) < 0}, open left complex half-plane
C≥0 := {s ∈ C | ℜ(s) ≥ 0}, right complex half-plane

R[s] :=
{∑n

k=0 aks
k
∣∣∣n ∈ N, a0, . . . , an ∈ R

}
, ring of polynomials with real

coefficients

R(s) :=
{
p
q

∣∣∣ p, q ∈ R[s], q 6= 0
}

, quotient field of real polynomials

deg(p) degree of polynomial p ∈ R[s]

In the following, let n, m ∈ N.
x := (x1, . . . , xn)

⊤ ∈ R
n, (column) vector with xi ∈ R for all i ∈ {1, . . . , n}

‖x‖p := (|x1|p + · · ·+ |xn|p)1/p, the p-(vector) norm of x ∈ R
n and p ∈ [1,∞)

‖x‖ := ‖x‖2 :=
√
x⊤x, the Euclidean norm (or 2-norm) of x ∈ R

n

‖x‖∞ := max{|x1|, . . . , |xn|}, the maximum (or infinity) norm of x ∈ R
n

A :=

[
a11 . . . a1m
.
.
.

.

.

.

an1 . . . anm

]
∈ R

n×m, matrix with coefficients akl ∈ R for k ∈
{1, . . . , n} and l ∈ {1, . . . ,m}

colk(A) := (a1k, . . . , ank)
⊤ ∈ R

n, the k-th column of A ∈ R
n×m

rowk(A) := (ak1, . . . , akm) ∈ R
1×m, the k-th row of A ∈ R

n×m

‖A‖p := maxx∈Rm\{0}
‖Ax‖p
‖x‖p

, the induced (or operator) norm1 of A ∈ R
n×m

and p ∈ [1,∞)

diag{a1, . . . , an} :=

[
a1 0

. . .

0 an

]
∈ R

n×n, diagonal matrix with diagonal elements

a1, . . . , an ∈ R

1e.g. (i) p = 1: ‖A‖1 = maxl∈{1,...,m}

∑n
k=1 |akl| (maximum of the absolute column sum), (ii) p = 2:

∥

∥

∥
A

∥

∥

∥
:=

∥

∥

∥
A

∥

∥

∥

2
= max‖x‖=1

∥

∥

∥
Ax

∥

∥

∥
=

√

λmax(A⊤A) (spectral norm) where λmax ≥ 0 is the largest eigenvalue of A⊤A or

(iii) p = ∞: ‖A‖∞ := maxk∈{1,...,n}

∑m
l=1 |akl| (maximum of the absolute row sum).
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Nomenclature

Notation Meaning

In := diag{1, . . . , 1} ∈ R
n×n, identity (or unit) matrix

ker(A) := {x ∈ R
m | Ax = 0} ⊆ R

m, kernel (or null-space) of A ∈ R
n×m

im(A) := {v ∈ R
n | v = Ax ∀x ∈ R

m} ⊆ R
n, image of A ∈ R

n×m

χA(s) := det(s In − A) ∈ R[s], characteristic polynomial of the (quadratic)
matrix A ∈ R

n×n

spec(A) := {s ∈ C | det(s In − A) = 0}, spectrum of the (quadratic) matrix
A ∈ R

n×n

Ak := A · · ·A︸ ︷︷ ︸
k−times

, k ∈ N and A0 = I

On×m :=

[
0 . . . 0
.
.
.

.

.

.

0 . . . 0

]
∈ R

n×m, zero matrix

0n := (0 . . . 0)⊤ ∈ R
n, zero (column) vector

GLn(K) general linear group of invertible n× n matrices with entries in the field
K (e.g. R or C)

I ⊆ R an interval2 on R

X ⊆ R
n a subset of Rn (e.g. X := {x ∈ R

n | ‖x‖ < 4})
∂X the boundary of X (for example above: ∂X = {x ∈ R

n | ‖x‖ = 4})
X := X ∪ ∂X, the closure of X (for example above: X = {x ∈ R

n | ‖x‖ ≤
4})

dist(x0, X) := infx∈X ‖x0 − x‖, the Euclidean distance between x0 ∈ R
n and a non-

empty set X ⊂ R
n

B
n
r (x0) := {x ∈ R

n | ‖x0 − x‖ < r}, the open ball of radius r > 0 centered at
x0 ∈ R

n

f : X → Y a function f(·) mapping its domain X to its range Y
f(x) the value of f : X → Y evaluated at x ∈ X
f |J the restriction of f : X → Y on J ⊂ X
C(I;Rn) space of continuous functions f : I → R

n

Ck(I;Rn) space of k-times continuously differentiable functions3 f : I → R
n and

k ∈ N ∪ {∞}
AC(I;Rn) space of absolutely4 continuous functions f : I → R

n

ACloc(I;R
n) space of locally absolutely continuous functions f : I → R

n, i.e. f |J ∈
AC(J ;Rn) for all compact J ⊆ I

Lp(I;Rn) space of p-integrable functions f : I → R
n, p ∈ [1,∞)

with
∫
I
‖f(τ)‖p dτ <∞ and norm:

‖f‖p := ‖f‖Lp :=
(∫

I
‖f(τ)‖p dτ

)1/p
(Lp-norm)

2An interval I ⊆ R has following property: if x, z ∈ I and x < z, then, for x < y < z, y ∈ I [4, p. 107]. Let
a, b ∈ R with a < b, then e.g. (a, b), [a, b), (a, b] or [a, b] and ∅ are intervals.

3C(I;Rn) = C0(I;Rn) are used synonymously if k = 0. If k = ∞ then C∞(I;Rn) is the space of smooth
functions.

4Let I ⊆ R be a proper interval (i.e. it is non-empty and consists of more than one element) and Y ⊆ R
n,

n ∈ N. A function f : I → Y is said to be absolutely continuous on I, if for all ε > 0 (arbitrary small!) there
exists δ := δ(ε) > 0, such that for all m ∈ N and every sequence of pairwise disjoint sub-intervals [ak, bk] ⊂ I,
k ∈ {1, . . . ,m}, ∑m

k=1 |bk − ak| < δ implies
∑m
k=1 ‖f(bk)− f(ak)‖ < ε. Moreover, for any compact interval

[x1, x2] ⊂ R, a function f : [x1, x2] → Y is absolutely continuous if and only if there exists an integrable function
g(·) : R → R

n, such that f(x) = f(x1) +
∫ x
x1
g(s) ds for all x ∈ [x1, x2] (see e.g. [172, p. 471]).
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Nomenclature

Notation Meaning

Lploc(I;Rn) space of locally p-integrable functions f : I → R
n, p ∈ [1,∞), i.e. f |J ∈

Lp(J ;Rn) for all compact J ⊆ I
L∞(I;Rn) space of measurable essentially bounded functions f : I → R

n with norm:
‖f‖∞ := ‖f‖L∞ := ess-supt∈I ‖f(t)‖ (essential supremum)
L∞

loc(I;R
n) space of measurable, locally essentially bounded functions f : I → R

n,
i.e. f |J ∈ L∞(J ;Rn) for all compact J ⊆ I

Wk,∞(I;Rn) space of bounded locally absolutely continuous functions f : I → R
n

with essentially bounded derivatives f (i) ∈ L∞(I;Rn) for all i = 1, . . . , k,
k ∈ N and norm:

‖f‖k,∞ :=
∑k

i=0 ‖f (i)‖∞

f(s) := L {f(t)} (or f(s) t df(t)), Laplace transform of f : R≥0 → R

if f(·) ∈ L1
loc(R≥0;R) and there exists α ∈ R such that [t 7→

exp(−αt)f(t)] ∈ L1(R≥0;R) [77, p. 742], then the Laplace transform
is defined by

L {f(t)} := (L f)(s) :=

∫ ∞

0

f(t) exp(−st) dt , ℜ(s) ≥ α, (N.1)

sign(x) signum (or sign) function defined by

sign: R → R, x 7→ sign(x) :=





1 , x > 0

0 , x = 0

−1 , x < 0

(N.2)

satû(x) symmetric saturation function, for û > 0, defined by

satû : R → [−û, û], x 7→ satû(x) :=





û , x > û

x ,−û < x < û

−û , x < −û
(N.3)

satuu(x) asymmetric saturation function, for u > u, defined by

satuu : R → [u, u], x 7→ satuu :=





u , x > u

x , u < x < u

u , x < u

(N.4)

dλ(x) distance function for adaptive λ-tracking control, for λ > 0, defined by

dλ : R≥0 → R≥0, x 7→ dλ(x) := max{x− λ, 0} (N.5)

a.a. stands for almost all
a.e. stands for almost everywhere
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Chapter 1

Introduction

1.1 Motivation and goal

Many mechatronic applications in industry require motion control (i.e. position or speed con-
trol) of work machines such as machine tools or paper coating machines. For instance, high-
precision machine tools perform positioning tasks with an accuracy up to 10 [µm] = 10 ·10−6 [m]
(see [74]). The motion control problem is to find an adequate motion controller which assures
that given control objectives (customer specifications) are accomplished. In principle, the con-
trol objectives are reference tracking of some suitable reference signal yref by the system output
y (i.e. position or speed) and rejection of disturbances (i.e. unknown loads and friction). The
tracking (or control) error, defined by

∀ t ≥ 0: e(t) := yref(t)− y(t), (1.1)

should be kept “small” for all time t ≥ 0 [s] even under load. Usually, for given (measured)
output y(·), some prescribed set-point ŷref > 0 and (positive) reference step (see Fig. 1.1)

yref : R → R, t 7→ yref(t) :=

{
ŷref , t ≥ 0

0 , t < 0
, (1.2)

the set-point tracking performance is evaluated by means of (see e.g. [166, p. 5])

• rise time in [s]

try(·),p̃ := inf
{
t ≥ 0

∣∣∣ ∀ τ ≥ t : y(τ) ≥ p̃ ŷref

}
, p̃ ∈ (0, 1]; (1.3)

• (relative) overshoot in [%]

∆os
y(·) := 100 ·max

{
0,

maxt≥0 y(t)

ŷref
− 1

}
; (1.4)

• and settling time in [s]

tsy(·),p := inf
{
t ≥ 0

∣∣∣ ∀ τ ≥ t : |y(τ)− ŷref | ≤ p ŷref

}
, p ∈ (0, 1). (1.5)
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os
y(·)

Time t [s]

Figure 1.1: Maximum rise time trref,p̃, maximum overshoot ∆os
ref and maximum settling time tsref,p for

positive reference step (1.2): the exemplary system response y(·) barely satisfies motion
control objectives (mco1)–(mco3).

According to these “performance measures” the motion control objectives (mco) are formulated
in the “time domain” (see Fig. 1.1) in terms of

(mco1) maximum rise time trref,p̃ > 0 in [s], i.e. try(·),p̃ ≤ trref,p̃,

(mco2) maximum overshoot ∆os
ref ≥ 0 in [%], i.e. ∆os

y(·) ≤ ∆os
ref , and

(mco3) maximum settling time tsref,p ≥ trref,p̃ in [s], i.e. tsy(·),p ≤ tsref,p.

To avoid deficient work pieces, especially for position control of e.g. machine tools, only very
small overshoots are admissible. Maximum rise and settling time depend on application and
size of the work machine. To accomplish motion control objectives (mco1)-(mco3), the applied
motion controller must assure that output y(·) of the closed-loop system evolves within the “red
region” in Fig. 1.1. If a non-constant reference yref : R≥0 → R is to be tracked, then the motion
control objectives are often supplemented or replaced by

(mco4) minimum tracking accuracy after some prescribed time τλ ≥ 0 [s], i.e., for prescribed
accuracy λ > 0 and suitable reference yref : R≥0 → R, the following must hold

∀ t ≥ τλ ≥ 0: |yref(t)− y(t)| ≤ λ.

In the majority of cases, the implemented motion controllers are proportional-integral-derivative
(PID) controllers (or variants thereof, see e.g. [51, 143]). Since load disturbances and fric-
tion may endanger achievement of control objectives (mco1)–(mco4), sometimes disturbance
observers (see [143]) and/or friction compensation methods (see [28]) are implemented addi-
tionally. Usually, controller tuning is done empirically lacking an exact stability analysis. This
might endanger operation failures. Analytic controller design relies on good knowledge of the
plant and its parameters incorporating system identification and/or estimation. In general,
due to system modeling, identification and/or estimation, model-based control system design
is time-consuming, involved and expensive (see e.g. [128, 175]).
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1.1 Motivation and goal

In this thesis high-gain adaptive1 control methods—such as adaptive λ-tracking control and
funnel control (see [93])—are proposed for speed and position control of a stiff one-mass system
(1MS) and an elastic two-mass system (2MS). These methods rely on “structural system knowl-
edge” only and are inherently robust to parameter uncertainties. Precise system identification
or parameter estimation is not required. Roughly speaking, high-gain adaptive motion control
is motivated by the following three aspects:

Motivation 1: Since the motion control objectives are mainly specified in the time domain (see
(mco1)–(mco4) and also Fig. 1.1), it is desirable for the commissioning engineer to have a tool
at hand, which directly allows to account for these control objectives during implementation.
Iterations in controller parameter tuning could be reduced. This desire immediately motivates
for the application of funnel control (see Chapter 4) where the tracking error (1.1) is constrained
by a prescribed continuous function of time.

Motivation 2: To avoid stick-slip (major problem due to friction), the simplest approach is high
gain in the feedback, yielding a “stiff” closed-loop system (see e.g. [10, 50]).

Motivation 3: Due to Newton’s Laws or Lagrange’s method, mechatronic systems (at least of low
order) are “structurally” known, i.e. mathematical models with lumped parameters (see e.g. [77,
Section 1.3]) in the form of differential equations can be derived. These models describe the
dynamics of the system qualitatively. In contrast, model parameters are (usually) not exactly
known. However, by rough estimates, upper and lower bounds on or, by physical means, at
least the signs of the model parameters are available. This rough knowledge allows to analyze
the system models whether certain “structural properties” are satisfied, e.g. the following facts
are known:

• the “direction of influence” of control input on system output (i.e. the sign of the “high-
frequency gain” of the system)

• the time derivative (e.g. d2

dt2
y(t)) of the system output which is directly affected by the

control input (i.e. the “relative degree” of the system).

• the “internal dynamics” of the system are “stable” (i.e. stability of the “zero-dynamics”2

or, for linear systems, the “minimum-phase” property).

Formal definitions of the notions “high-frequency gain”, “relative degree” and “minimum-phase”
are given in Chapter 2. Many mechatronic systems under motion control are minimum-phase
(or have stable zero-dynamics) and their sign of the high-frequency gain is known. Their relative
degree depends on setup and application and is, in general, greater than or equal to one. High-
gain adaptive control is applicable for minimum-phase systems (or certain nonlinear systems
with stable zero-dynamics) with known relative degree and known sign of the high-frequency
gain (see [93]).

The proposed high-gain adaptive speed and position controllers are developed, in a general
framework, for “minimum-phase systems” with relative degree one or two, known sign of the

1It is not strictly distinguished between “dynamic tuning” or “time-varying adjustment” of the controller
parameters. Both is considered as “high-gain adaptive” control.

2For a definition and a detailed discussion see [107, Section 4.3].
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high-frequency gain, bounded disturbances and nonlinear, functional state-dependent pertur-
bations. The controllers are “simple” (in the sense of non-complex and of low order), robust to
parameter uncertainties and tolerate measurement noise. Unknown friction effects and time-
varying disturbances (e.g. load torques) can be rejected and, in addition, the following is guar-
anteed (if the actuator is sufficiently dimensioned):

• prescribed asymptotic accuracy : for given λ > 0 (e.g. λ = p ŷref , see Fig. 1.1) the track-
ing error (1.1) approaches the interval [−λ, λ] asymptotically (see “adaptive λ-tracking
control” in Chapter 3) or

• prescribed transient accuracy : the absolute value |e(·)| of the tracking error (1.1) is
bounded by a prescribed positive (possibly non-increasing) function of time (see “fun-
nel control” in Chapter 4).

The hoped-for goal of this thesis is to introduce high-gain adaptive motion control as a reason-
able, simple and quickly to implement (hence cheap) alternative to standard motion control in
industry. To ease readability and insight, especially for newcomers not familiar with high-gain
adaptive control, theory and applications are treated in great detail and presented in a self-
contained manner (see Chapters 2-5). In Chapter 5 the proposed high-gain adaptive controllers
are implemented at an industrial servo-system (laboratory setup) for speed and position con-
trol of 1MS and 2MS. The measurement results underpin industrial applicability. At the end
of Chapter 5 a first result in robotics is established: position funnel control for rigid revolute
joint robotic manipulators (with known inertia matrix).

The succeeding Sections 1.2 and 1.3 revisit notion and history of “feedback control”, “adaptive
control”, “mechatronics” and “motion control”. Section 1.4 carefully models friction (with dy-
namic behavior) and the components of the considered mechatronic systems, finally leading to
the models of 1MS and 2MS. Based on these two models, Section 1.5 briefly discusses common
motion control approaches in industry. The problem formulation is stated in Section 1.6, where
Section 1.7 summarizes the contributions of this thesis.

1.2 Feedback control and adaptive control

For engineers “to control” means to alter, drive or direct a process or a plant—i.e. a “dynamical
system”—in such a way that its behavior—i.e. its “dynamics”—is improved. The desired im-
provement is specified by “control objective(s)”: e.g. certain characteristics or quantities of the
controlled system —i.e. “states” or “outputs”—should be kept close to a prescribed value—i.e. an
“operating point” or a “reference”—even if environment is changing, i.e. unknown “disturbances”
or “loads” perturb the system (see [138, Section 1.1]). A device controlling a system is called
“controller”, which generates the “control action” or the “control input” driving the system.

To achieve “automatic control”—i.e. the system is controlled automatically by a controller—
negative feedback of system quantities is essential. Therefore these have to be measured (or
observed) and “compared” to reference value(s). The resulting “control error” or “tracking error”
(for varying references)—the difference between actual measurement and reference—“corrects”
the control action in such way that the system is driven towards the reference. The system is
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1.2 Feedback control and adaptive control

subject to “feedback control”. A system with controller and feedback is considered as “closed-
loop system”. Feedback “is one of the fundamental ideas of engineering” (see [138, Section 1.1]).

The history of feedback control was long time traced back to the “governor” introduced by
James Watt (1736–1819) for speed control of steam machines. However, as was shown by Otto
Mayr in 1969, control systems were already known around 300 before Christ (BC) (see [132,
p. 17-22]). These ancient controllers were used to assure accurate time keeping (by e.g. water
clocks). For a chronologically complete overview of the history of control systems from ancient
times to 1955 see e.g. [132] (300 B.C.–1800), [21] (1800–1930) and [22] (1930–1955).

Not until 1868, the design of such (mechanical) governors was seemingly performed by trial and
error. In March 1868 an article (see [131]) was published by James Clerk Maxwell (1831–1879)
in which the dynamics of these “regulators” or “modulators” (as he called the governors) were
analyzed concerning stability (in the sense of Linear Control Theory3).

In the early years of the 20th century the use of feedback control was limited to special prob-
lems in mechanical engineering. Due to the development of electrical amplifiers in 1934 with
(negative) “feedback circuits” introduced by Harold Stephen Black (1898–1983) [25], more and
more controllers were implemented to control electrical, mechanical and chemical processes in
the 1940s [138, Section 1.1]. The fields and the applications were different, but the princi-
ple idea of feedback and the mathematical analysis tools were similar. Open-loop frequency
response methods introduced by Harry Nyquist (1889–1976) [142] and Hendrik Wade Bode
(1905–1982) [26]—known from electronic circuits with feedback amplifiers—formed the basis
for controller design and systematic stability analysis of linear time-invariant closed-loop sys-
tems.

In 1948, Norbert Wiener (1894–1964) generalized the idea of feedback control to e.g. com-
munication theory, biology, medicine and sociology. His newly founded discipline is called
“Cybernetics” (see [185]). Not until 1961 “Control Theory” was considered as separate mathe-
matical discipline (see [138, p. 2]).

In the 1950s desire and need arose to cope with nonlinear control systems exhibiting chang-
ing dynamics (depending on the actual operating point) and varying disturbance characteristics
(see [16, p. 3]). The control systems should have the capability to “learn”, “adjust” or “self-tune”
themselves. Inspired by Biology, were the notion of “adaption” is well known as “an advanta-
geous confirmation of an organism to changes in its environment” (see [138, p. 6]), Drenick and
Shahbender [47] introduced “adaptive servomechanism4” to control theory in 1957. “Adaptive
control” was born.

Several definitions of “adaptive control” or “adaptive controllers” can be found in the literature,

3J.C. Maxwell analyzed e.g. the roots of polynomials to have negative real parts, however he was not able
to formulate a general result. This was achieved by Edward John Routh (1831–1907) in 1877 [154].

4The term “servomechanism” was coined in military by the problem of positioning a gun for aiming at the
target [183, 184]. Later “servomechanism” became a description for the ability of feedback control systems to
simultaneously track reference signals and reject disturbances, known as the servo (mechanism) problem (see
e.g. [56]).
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Figure 1.2: Indirect adaptive control (based on Fig. 1.6 in [106])

for a collection see e.g. [138, Definitions 1.1.1–2, 1.2–1.4, p. 9-11]. Some authors even questioned
the necessity of introducing the term “adaptive” in feedback control considering any feedback as
adaptive (see [133]). For this thesis the author follows the informal but pragmatical definition
of adaptive controllers given by Karl Johan Åström (1934– ) in [16, p. 1]:

“An adaptive controller is a controller with adjustable parameters and a mechanism
for adjusting the parameters.”

Note that this definition may also incorporate variable-structure adaptive controllers (see [16,
Section 10.4]) with different dynamics for different operating points. In this thesis only adaptive
controllers with fixed structure are considered.

First motivating examples for the need of adaptive control were flight control (of e.g. military
supersonic aircrafts), process control (e.g. refineries in chemical engineering) or decision making
under uncertainty (in e.g. economics). For more details on adaptive control around 1960, the
reader is referred to the survey articles [11], [108] and [13].

In the mid 1950s inspired by the problem of designing autopilots for high-performance air-
crafts several adaptive schemes were developed, such as gain scheduling5, self-tuning regula-
tors6 (STR), model reference adaptive control (MRAC)7 or dual controllers (see e.g. [16, p. 22-
24]). At this time the notions of controllability and observability, state space concepts and tools
to analyze stability of nonlinear systems—introduced in the seminal contributions [109–111]

5It was severely discussed if gain scheduling is an adaptive controller or not. In view of the informal definition
gain scheduling is clearly a adaptive controller [16, p. 19]

6In [14] the authors avoided the use of “adaptive” for their controller, since the plant parameters were
assumed only constant but unknown (not varying). However, in the notion of the above definition STRs are
clearly adaptive controllers.

7STR and (indirect) MRAC [106, Section 1.2.4] are nowadays considered as equivalent [16, p. ix].
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and [125]8 by Rudolph Emil Kalman (1930– ) and Alekandr Mikhailovich Lyapunov (1857–
1918), respectively—were still missing or not fully recognized. This “lack of understanding of
the properties of the proposed adaptive control schemes” (see [106, Section 1.3]) combined with
“a lot of enthusiasm, bad hardware and non-existing theory” (see [12]) lead to severe imple-
mentation problems and even worse an accident during flight tests (see [106, p. 23]). As a
consequence funding of research on adaptive flight control was cut and the interest in adaptive
control rapidly dropped (see e.g. [13] or in great detail [16, p. 2-3] or [106, Section 1.3]). The
flight control problem was finally solved by gain scheduling (see e.g. [13] or in more detail [16,
p. 414-415]).

A renaissance of adaptive control arose in the years around 1970, when first stability proofs
were reported (see e.g. [16, p. 2-3] or [106, p. 24] with lots of references). However, the adaptive
schemes were sensitive to small perturbations resulting in potential instability of the closed-
loop system. Not before the late 1980s and early 1990s the field revived by breakthroughs in
robustness analysis of adaptive control systems (see [106, p. 25]). Since then, research focused
more and more on the “transient and steady-state performance” (see [106, p. 25]) of adaptive
control systems (mostly with MRAC).

Loosely speaking, feedback control solves the problem of designing a controller with fixed struc-
ture and constant parameters for a system with known structure and (at least roughly known)
parameters to meet given control objective(s) such as stability of the closed-loop system, asymp-
totic tracking and disturbance rejection, etc.
In contrast, under the assumption that such a controller exists, adaptive control solves the
problem of designing a variable controller (in structure and/or parameters) for a plant with
known structure but unknown parameters (see [106, Section 1.2.3]). Adaptive control may be
classified into two categories: “indirect” and “direct” adaptive control (see Fig. 1.2 and 1.3,
respectively).

Indirect adaptive control relies on identification algorithms (e.g. recursive least square or gra-
dient methods) to estimate the unknown system parameters. Assuming that these estimates
converge to the true values, the controller parameters are adjusted by using the estimated
system parameters and an adequate adaption rule (see Fig. 1.2). This approach is nowadays
known as the “certainty equivalence principle9” (see e.g. [13]). The assumption on convergence
is based on “persistent excitation” (see [138, Chapter 6]): to achieve “perfect” identification of
a system (i.e. exponential convergence of estimation parameters to real parameters), excitation
with a sufficiently large number of amplitudes and frequencies (incorporating all eigenmodes
in the case of linear systems) is necessary. The order of the identification problem (number
of estimates) at least increases with the order of the system, e.g. for recursive least square
methods the number of estimation parameters even grows quadratically with the system order
(see [80]). A typical example for indirect adaptive control is model reference adaptive control
(MRAC), even though there exist direct model reference adaptive controllers (see [106, p. 14]).

8First French translation in 1907: “Problème Géneral de la Stabilité de Mouvement” in Annales de la Faculté
des Sciences de l’Université de Toulouse, Vol. 9, pp. 203-474. Reprinted by Princeton University Press in 1949.
First English book in 1966 [126], modern translation in [127] with biography and bibliography of A.M. Lyapunov.

9The idea of neglecting uncertainties and using estimated values of system parameters as true values (for
e.g. controller design) was introduced in [171] as “certainty equivalence method”.
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Figure 1.3: Direct adaptive control (based on Fig. 1.7 in [106])

For MRAC the control objective is prescribed in terms of a “reference model” which determines
how the closed-loop system should behave.

Direct adaptive control does not require system identification or estimation. The adaption of
the controller parameters solely depends on measured system output, reference, control action
and control objective(s) (see Fig. 1.3). Direct methods are, in general, not applicable to “all”
plants but restricted to certain “classes of systems” (e.g. minimum-phase systems, see [106,
p. 10]).

A very simple form of direct adaptive control is high-gain adaptive control. High-gain adaptive
controllers—also known as “non-identifier based adaptive controllers” (see e.g. the survey [85] or
the monograph [86])—exploit the so called “high-gain property” of minimum-phase systems with
(strict) relative degree one and known sign of the high-frequency gain10: for simple proportional
output feedback u(t) = −k y(t) and a sufficiently large controller gain k ≥ k⋆ > 0 the closed-
loop system is stable (see e.g. [93]). The lower bound k⋆ depends on system data and must be
known a priori. In the adaptive case it is “found online” by (dynamic) adaption. The following
high-gain adaptive output feedback controller

u(t) = −k(t)y(t), k̇(t) = y(t)2, k(0) = k0 > 0 (1.6)

“stabilizes” the closed-loop system. The controller gain k(·) is bounded but non-decreasing.
If e.g. measurement noise nm(·) ∈ W2,∞(R≥0;R) deteriorates the output, then the adaption
in (1.6) becomes k̇(t) = (y(t) + nm(t))

2 and hence the gain k(·) might diverge (see e.g. [93]).
In this case or if unknown load disturbances perturb the system, adaptive λ-tracking control
should be applied which introduces a dead-zone in gain adaption. Moreover, for reference
yref(·) ∈ W1,∞(R≥0;R), asymptotic accuracy λ > 0 and tracking error e(·) as in (1.1), the
adaptive λ-tracking controller

u(t) = k(t)e(t), k̇(t) = dλ(|e(t) + nm(t)|), k(0) = k0 > 0,

with dλ(·) as in (N.5), assures tracking with prescribed asymptotic accuracy (see e.g. [93]). The

10The notions “minimum-phase”, “relative degree” and “high-frequency gain” are defined in Definition 2.7,
Definition 2.1 and Definition 2.4 for LTI SISO systems, respectively.
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gain k(·) albeit bounded is still non-decreasing. In [99] funnel control is introduced. It has a
“time-varying” gain

k(t) =
1

ψ(t)− |e(t)− nm(t)|
(1.7)

where ψ : R≥0 → [λ,∞), λ > 0 is a prescribed (possibly non-increasing) continuous “boundary
function”. If the initial error e(0) “starts” within the boundary, i.e. ψ(0) > |e(0)− nm(0)|, fun-
nel control assures tracking with prescribed transient accuracy. Moreover, the funnel controller
gain (1.7) may decrease again.

Since only “structural system knowledge” is required, high-gain adaptive control is inherently
robust and makes it attractive for industrial application. For systems with a relative degree
higher than one, high-gain adaptive control is still feasible, however the controllers become quite
complex (e.g. due to backstepping [103, 190] or due to the use of high-gain observers [34]) or
incorporate controller gains with high powers (e.g. k(t)7 for the relative degree two case [103]).
Such controllers are not suitable for industrial application. Chapters 3 and 4 present “simple”
(in the sense of non-complex and of low order) high-gain adaptive controllers for the relative de-
gree two case which achieve tracking with prescribed asymptotic accuracy and with prescribed
transient accuracy, respectively. The controller gains occur with k(t)2 at the most.

Besides the theoretic evolution of adaptive control, it partly became popular in industry. Sev-
eral applications in industry were published, e.g. chemical reactor control, autopilots for ship
steering or speed control of electrical drives (see the surveys [12] or [188] for adaptive control
in general and [93] for high-gain adaptive control in particular). However, activities in research
on adaptive control theory by far exceed the number of industrial applications: in 1997 the
application/theory ratio ranged between 0.02 and 0.1 (see [188]). Adaptive control still lacks
widespread industrial acceptance.

1.3 Mechatronics and motion control

The term “Mechatronics” was coined by Ko Kikuchi (see [40])—an electrical engineer of Yaskawa
Electric Cooperation—in 1969 (see [119]). The company secured the trademark rights in
1972 (Japan Trademark Registration no. 946594). Since the term “Mechatronics” was soon
widely adopted in industry, Yaskawa released its rights in 1982 (see [119]).

In the late 1960s and the early 1970s innovations such as electronic amplification (e.g. oper-
ational amplifiers (op-amps) on signal side and power electronics on the actuation side) and
micro–processors lead to more and more usage of electronic components in combination with
mechanical systems and paved the way for Mechatronics (see [17, 119]). For increasingly com-
plex systems the design process became more and more modularized (see [17]), which helped
to develop “mechatronic products” offering enhanced functionality and improved performance
(see [17, 119]).

Although the word “Mechatronics” is simply the composition of “mecha” (from mechanism
or mechanics) and “tronics” (from electronics, see e.g. [84, 119]), the concept is nowadays
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considered in a wider sense. The term is used in numerous ways and its definition changed over
the passed 40 years (see e.g. [17, 40, 84, 119, 180]). Some authors even state that a definition
is not possible or even desirable (see [76]). A Year 2000 definition of “Mechatronics” was given
in [180]:

“The synergetic integration of physical systems with information technology [. . . ]
and complex-decision making in the design, manufacture and operation of industrial
products and processes.”

Note that the definition above is still not completely accepted in all fields of research or indus-
try. The understanding of “Mechatronics” severely depends on the background of engineers and
scientists, which influences the language and the focus on what is “Mechatronics” and even how
it is taught (see [29]). Even the most important societies in mechatronics such as the Interna-
tional Federation of Automatic Control (IFAC), the American Society of Mechanical Engineers
(ASME), the Institute of Electrical and Electronic Engineers (IEEE) and the Mechatronics
Forum often do not use a common language (e.g. session titles of mechatronic conferences differ
significantly leading to misunderstanding among the several “Mechatronic dialects”, see [29]).
For this thesis the Year 2000 definition seems adequate.

By using the notion “physical system” instead of “mechanical system”, the Year 2000 definition
emphasizes that not only (single) mechanical systems are treated as mechatronic systems but
also large-scale distributed systems (e.g. automated highway systems, see [180]). Typical exam-
ples of nowadays mechatronic systems are microelectro-mechanical systems (MEMS), computer
hard disc drives (HDD, see [180]), car braking systems (see [40]), machine tools with computer-
ized numerical control (CNC), automated teller machines (ATM), automated baggage handling
systems at airports (see [17]), manufacturing and process automation systems, automotive and
aerospace vehicles, thermal and environmental control systems and vibrational control systems
for buildings (see [17]).
The terms “synergetic integration”, “information technology” and “complex-decision making” in
the definition attribute to the holistic, synergistic and interdisciplinary nature (see [186]) of
“Mechatronics” as several science and engineering disciplines—e.g. electronic (electrical), com-
puter, mechanical and software engineering and chemistry, biology and mathematics (systems
and control theory)—equally contribute to the design, manufacture and operation of mecha-
tronic products (see [17, 29, 84, 180, 186]).

Mechatronics is well established in many branches of industry such as automotive, manu-
facturing, aerospace and building/construction industry, electrical drive engineering, robotics
and automation, (bio)medical engineering and even consumer electronics (see [84, 180, 186]).
Mechatronics is (still) a growing market with increasing revenues, e.g. in 2010 the profit margins
of the business segments “Industry Automation” and “Drive Technologies” of SIEMENS were
16.8% and 12.3%, respectively (see SIEMENS financial report 2010, p. 3).

The widespread use of increasingly powerful computers (e.g. micro-processors, digital signal pro-
cessors (DSP), field programmable gate arrays (FPGA)) with real-time operating systems and
software controllers (“software servo-systems”, see [119]) made the design process of complex-
decision making algorithms “versatile and flexible” (see [186]). Decision making became more
and more complex, e.g. neuronal networks, fuzzy logic, optimal and predictive control strate-
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Figure 1.4: Components of modern mechatronic systems (based on figures in [17, 29, 180])

gies and high dimensional (nonlinear) controllers could easily be implemented (see e.g. the text
book [167, Chapters 5-9,12-14,16-17 and 18]). Mechatronic systems gained “built-in intelli-
gence” (see [186]).

Fig. 1.4 shows the components of a modern mechatronic system, though a clear delimitation
among the components is often not possible. At its center there is the real-time system con-
nected to the human-machine interface. It (possibly) exchanges information with other mecha-
tronic systems. The implemented decision algorithms (e.g. controllers) generate the control
input(s) to the actuator(s) which provide adequate actuation of the physical system by ap-
propriate energy conversion (e.g. from electrical to mechanical). The installed instrumentation
assures measurement of the necessary system states and allows for feedback to the real-time
system. Note that a mechatronic system may be split into two domains: the “information” and
“energetic domain” (see [29]).

This thesis focuses on motion control of industrial mechatronic systems such as “one-axis servo-
systems” (see e.g. [119]). A typical one-axis servo-system is depicted in Fig. 1.5. It consists of
electrical drive (power electronics & electrical machine) fed by a power source and linked to a
work machine (to be driven). The electrical drive with current controller (torque generation)
is considered as actuator, whereas rotor of electrical machine, linkage and work machine repre-

– 11 –



Chapter 1: Introduction

power source
(e.g. electricity
grid, battery)

power electronics
(e.g. converter,

inverter)

electrical machine
(e.g. AC or DC

motor)
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gear, shaft)
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(monitoring, control

objective(s)
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(with controller
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(e.g. current sensor,

tacho generator,
resolver, encoder)

work machine
(e.g. milling head,
applicator roll)

Figure 1.5: Components of one-axis servo-system in industry

sent the physical (here: mechanical) system. Note the overlap between actuator and real-time
system and physical system, respectively. Several sensors provide measurement signals which
allow feedback control. The controllers are implemented on the real-time system with human-
machine interface to a host computer for monitoring and/or specifying reference or command
signals.

Motion control is considered as the “key technology in mechatronics” (see [143]) with the
following—rather vague—control objectives:

• load position or load speed reference tracking and

• disturbance rejection (of e.g. unknown load torques and friction).

Depending on application, the control objectives are formulated more precisely, e.g. in terms
of maximum rise time, maximum overshoot and maximum settling time (see (mco1)–(mco4)
and Fig. 1.1 on page 2). Motion control may also incorporate a cascaded force control loop
(see [143]). Force control is not considered in this thesis.

1.4 Modeling of industrial servo-systems

To give a more formal definition of industrial one-axis servo-systems, the following section will
establish mathematical models for a stiff one-mass system (1MS) and an elastic two-mass sys-
tem (2MS). Although there exist multi-mass systems (see e.g. [166, Section 19.4]), the presented
models are fundamental. In industry many one-axis motion control processes may be modeled
either as 1MS or 2MS. Both, 1MS and 2MS, are assumed to be driven by an electrical drive
(e.g. AC or DC drive) and are subject to friction. The electrical drive provides, by fast torque
generation, adequate actuation of the mechanical system. The available torque is, however, con-
strained due to physical and safety reasons (e.g. the admissible reference torque is saturated).
For instrumentation, the setups are equipped with current and position sensors. Sometimes
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Translation Rotation

position x [m] angle φ [rad]
velocity v

[
m
s

]
angular velocity (speed) ω

[
rad
s

]

force f [N] torque m [Nm]
mass m [kg] inertia Θ [kgm2]

Table 1.1: Notation for translational and rotatory mechanical systems

also speed sensors are installed. Real-time micro-processors combined with industrial personal
computers (as human-machine interface) allow flexible controller design, reference generation
and monitoring.

At first models of the components “real-time system”, “actuator”, “instrumentation” and “phys-
ical (mechanical) system” (see Fig. 1.5) are derived or introduced. Then, based on the compo-
nent‘s modeling, the models of 1MS and 2MS are presented.

In the following all explanations focus on rotatory systems, hence the relevant quantities are
torque in [Nm], angle (position) in [rad] and angular velocity (speed) in [rad/s]. However,
in principle, the following also holds for translational systems, simply substitute translational
quantities (with corresponding dimensions, e.g. [N], [m] and [m/s])) for rotatory quantities. A
comparison of rotatory and translational quantities is listed in Tab. 1.1.

1.4.1 Micro-processor (real-time system)

Modern real-time systems with micro-processors run with very fast execution times ranging
from e.g. 50 · 10−6 [s] to 10−3 [s] (see e.g. [79] and SIEMENS SIMATIC S7 System Manual,
04/2011, A5E02486680-03, p. 73). Tasks are executed based on interrupt handling or schedul-
ing. The controllers are implemented with the help of programming languages (e.g. C/C++) or
graphical user interfaces (e.g. Simulink in Matlab). The compiled code runs in “real-time” on
the processing unit(s) and is executed every duty cycle (discrete execution). For this work, it
is assumed that the duty cycles are sufficiently short yielding execution in “quasi” continuous
time. Inevitable errors due to e.g. sampling, discretization and representation of numbers in
binary format (e.g. floating point numbers) are neglected.

1.4.2 Electrical drive (actuator)

An electrical drive—comprising power inverter (or converter) and electrical machine with cur-
rent control loop—is considered as mechatronic actuator generating drive torque mM [Nm] (see
Fig. 1.6). The actuator is a nonlinear dynamical system. Due to physical and safety reasons, its
output is constrained by the maximal admissible torque ûA > 0 [Nm]. The torque in electrical
drives is proportional to the product of current iM [A] and (excitation) flux in the machine
(electro-magnetic conversion). Precise modeling of alternating current (AC) or direct current
(DC) machines and power inverters can be found in [164, Chapters 3,5,6] and [165, p. 668-671],
respectively.
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current
controller
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electrical drive

actuator

uemf
iM mM

niM

−

−
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u0 (power source)

urefiM,refmM,ref

Figure 1.6: Block diagram of (electrical) actuator with torque (current) control loop

The basic scheme of a current (or torque) control loop is depicted in Fig. 1.6. The reference
torque mM,ref [Nm]—externally generated by e.g. a motion controller—is applied to the electri-
cal drive, is saturated to protect the machine (from e.g. over-currents) and is converted to the
corresponding current reference iM,ref [A]. This conversion may imply observation/estimation
of the machine flux by e.g. the use of a machine model or an observer.

The current controller generates the corresponding reference voltage uref [V], which is emulated
by e.g. pulse width modulation (PWM, for different PWM techniques see [165, Section 8.4]) in
the power inverter. The DC intermediate circuit (see e.g. [165, Chapter 7 & 8]) is fed by a power
source (e.g. battery or rectifier connected to the power grid) and provides the intermediate cir-
cuit voltage u0 > 0 [V] (DC). Due to the high capacity of the DC link capacitor, the voltage u0
only changes slowly with the load (current drawn by the machine). It is assumed constant, but
limits the output voltage uM [V] of the inverter. The electrical circuit of the machine responds
to uM by current iM [A], which by electromagnetic conversion results in motor torque mM .
Due to Faraday’s Law rotation of the rotor induces a bounded voltage uemf [V] (see Fig. 1.6)
counteracting the applied voltage uM . This induced voltage is called back-emf (electro-motive
force) and is proportional to the product of rotor speed and flux. Note that due to saturation
of uM (by u0) and back-emf uemf , the current gradient d

dt
iM is constrained by the quotient

of u0 − uemf and motor inductance. However concerning motion control, it may be assumed
that the available voltage u0 − uemf is sufficiently large compared to the inductance such that
sufficiently fast current (and hence torque) changes are feasible.

The current control loop is perturbed by noise niM (·) ∈ W1,∞(R≥0;R) from current measure-
ment. Typically, the current controllers are designed such that (ideally) a prescribed maximum
overshoot is not exceeded by the current response iM(·) (e.g. ∆os

iM (·) = 4 [%] for a controller
design according to the “Symmetric Optimum”, see [166, Section 3.2 & p. 81-82]). Hence, due
to saturation of mM,ref and boundedness of current overshoot and disturbances niM and uemf ,
the generated motor torque mM is uniformly bounded. For more details on current control and
current measurement see e.g. [166, Chapter 15] and [163, Chapter 12], respectively.

Modern power semiconductors—e.g. Metal-Oxide-Semiconductor Field-Effect Transistors
(MOSFETs) or Insulated-Gate Bipolar Transistors (IGBTs) (see [160, p. 199] or in great de-
tail [163, Sections 6.6-6.8 and 7.2-7.4])—allow fast switching frequencies fS

[
1
s
= Hz

]
ranging
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form 7.5 to 16 [kHz]. However, there is delay between reference voltage uref and applied volt-
age uM [V]. A common (linear) approximation of the dynamics of the current control loop of
e.g. DC drives is given by the following second-order transfer function

iM(s)

iM,ref(s)
=

1

1 + 2Tσ s+ 2T 2
σ s

2

where Tσ > 0 is inversely proportional to the switching frequency (see [166, p. 231,248]).

Although current control of AC machines is more complex (e.g. requiring space vector mod-
ulation [165, Section 8.4.10]), in principle same conclusions also hold for AC drives such as
permanent magnetic synchronous machines (PMSM) or induction machines (IM) with power
inverters. The torque generation is fast (see e.g. [162, pp. 775-779] for PMSM). Field-oriented
torque control (FOC) [166, Section 13.4.4], direct torque control (DTC) [166, Section 15.5.3]
and model predictive direct torque control (MPDTC) [62, 148] are most common approaches
for AC machines. MPDTC is the fastest control scheme, since e.g. time delays are compensated
by using prediction models for inverter and machine.

For modern AC and DC drives, torque and so current references are tracked with a delay
ranging from 50 · 10−6 [s] to 2 · 10−3 [s] (see e.g. [123] and [143]), whereas the dominating
mechanical “time constants” (proportional to mass or inertia) are by multiples larger. Hence,
torque generation is fast compared to the dynamics of the actuated mechanical system. It is
common to approximate the “dynamics” of the actuator by a simple proportional characteristic
(see e.g. [166, p. 249] or the articles [123, 143]). More precisely, for any instant t [s] of time and
(possibly unknown) actuator gain kA > 0 [1], it is assumed that the following holds

∀ t ≥ 0: mM(t) = kAmM,ref(t). (1.8)

Note that torque saturation and deviations in torque generation, due to e.g. actuator dynamics
or perturbations (back-emf and measurement noise) in the current control loop, are not consid-
ered in (1.8). To account for saturation and (time-varying) perturbations in torque generation,
the following “simplified actuator model” (without dynamics) is proposed

∀ t ≥ 0: mM(t) = kA satûA

(
mM,ref(t) + uA(t)

)
, ûA, kA > 0, uA(·) ∈ L∞(R≥0;R) (1.9)

where satûA(·) is as in (N.3). The actuator model (1.9) is used throughout this thesis.

1.4.3 Mechanics (physical system)

The components of the mechanical system in Fig. 1.5—e.g. rotor of machine, gears, shafts,
clutches and work machines—have dimensions and masses. Depending on the density of the
materials, the mass has a (not necessarily homogeneous) distribution over the volume. Accord-
ingly, the center of gravity can be computed by e.g. using computer aided design (CAD). It
does not necessarily coincide with the centroid of the volume. For this thesis only “lumped
parameter models” (see e.g. [77, p. 14]) are considered, i.e. forces or torques act on the lumped
mass or inertia at the center of gravity.
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Furthermore, backlash in gears is neglected since it precludes high-precision position and speed
control, e.g. limit cycles or steady state errors may occur (see [140]). Gears are regarded as
“proportional systems” which yield gear transmission or gear reduction of position, speed and
torque proportional to gear ratio gr ∈ R \ {0} [1]. An overview of mathematical models for
gears and gear dynamics is given in [139]. Harmonic drives are a typical example of gears
having (almost) no backlash. However, due to flexible splines in the gear, harmonic drives
bring elasticity into the mechanical system (see [179, 181]), which additionally motivates the
consideration of flexible servo-systems. Two inertias coupled by an harmonic drive can be
considered as elastic 2MS (see e.g. [174, Section 6.5]). In addition, friction is significantly
increased by harmonic drives (see e.g. [179]) which in turn emphasis precise friction modeling
in Section 1.4.5.

1.4.4 Speed and position sensors (instrumentation)

For feedback control, the controlled variable(s) should ideally be available at each instant t [s]
of time. For position control actual position φ(t) [rad] and speed ω(t) = φ̇(t)

[
rad
s

]
are required,

whereas for speed control only speed ω(t) is needed.

Although there exist “sensorless” motion control approaches (without position or speed mea-
surement, see e.g. [166, Chapter 14] for AC drives), their performance concerning closed-loop
dynamics and accuracy is very limited. Hence, servo-drives for high-precision motion control
are equipped with position and/or speed sensors. Typical sensors in industry are e.g. tacho-
generators and resolvers or encoders for speed and position measurement, respectively. For
an overview of and more details on position and speed sensors, the reader is referred to [166,
Section 8.5] or [48, Chapter A5].
In industry optical encoders are most common, since they are cheap and provide a sufficiently
high resolution ranging from 2− 8 · 106 lines per revolution (with interpolation, see e.g. [166,
p. 308]). Nevertheless, encoders are more sensitive to temperature changes, incorrect mounting,
mechanical shock and noise than resolvers (see [166, p. 307]).
Although position and speed feedback are required for position control, in the majority of cases
to reduce costs for instrumentation, solely a encoder (or resolver) is implemented. Then speed
ω(t) = φ̇(t) is approximated in the capturing device (interface board reading position signals
from the sensor) by numeric differentiation (e.g. Euler method)

ω(t) ≈ φ(t)− φ(t− Tc)

Tc
(1.10)

where Tc > 0 [s] is the cycle time of the capturing device. Due to small cycle times < 50·10−6 [s]
the resulting time-delay is negligible. The approximation works acceptably well, even if mea-
surement noise is present. However, speed feedback ripples (discontinuous speed feedback) may
occur. To obtain a “quasi” continuous speed approximation the use of SINCOS encoders is in-
dicated. These encoders allow to interpolate among consecutive lines (see [48, Section A5.3.5]).

Motion sensing is subject to measurement errors. Main causes for deviations in the measured
signal are (see e.g. [166, Section 8.2]):

• the sensor : due to e.g. limited resolution or bandwidth, manufacturing faults, wear and
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aging;

• the environment : due to e.g. temperature (changes), contamination, deficient mounting
(radial eccentricity, long cabling) and electromagnetic interference (noise);

• and signal processing : due to e.g. analogue-to-digital (A/D) and digital-to-analogue (D/A)
conversion (sampling, quantization, aliasing errors), signal level matching (OpAmp drift),
non-synchronous capturing of analogue signals and time delay.

Most deviations in the measured feedback signal can neither be predicted nor compensated for
in the control loop resulting in tracking errors. Hence sensors with sufficient accuracy are neces-
sary. High-precision motion control inherently depends on high-precision motion measurement
(see [166, p. 302, Section 8.2]).

In the following it is assumed that the instrumentation of the servo-drive is sufficiently accurate,
however small deviations inevitably remain. By subsuming measurement errors in the bounded
signal nm(·) ∈ W2,∞(R≥0;R), the following “simplified sensor model” (without dynamics) is
proposed

∀ t ≥ 0: ym(t) = y(t) + nm(t), y(·) ∈ C(R≥0;R), nm(·) ∈ W2,∞(R≥0;R), (1.11)

where ym(·) represents the deteriorated measurement of some physical quantity y(·) such as
position φ(·) in [rad] (or [m]) or speed ω(·) in [rad/s] (or [m/s]).

Remark 1.1 (Stochastic noise).
In general, noise is a stochastic process, e.g. “white noise” is a consequence of Brownian motion.
Since noise is inevitably induced into the closed-loop system by feedback, the analysis of the
differential equation would imply analysis of stochastic differential equations using the theory
introduced by Kiyoshi Itō (1915–2008) (see e.g. [144, Chapter 3]). In this thesis only ordinary
(or functional) differential equations are considered. It is assumed that the bounded absolutely
continuous function nm(·) “approximates” noise sufficiently well.

1.4.5 Friction

Any contacting bodies in motion with relative velocity are subject to friction counteracting
their acceleration. In feedback control systems, friction may cause poor transient performance.
Limit cycles, non-vanishing tracking errors, stick-slip or hunting (for controllers with integral
action) may occur. Especially, for high-precision position control of e.g. machine tools or robotic
manipulators, friction becomes an issue at very low speeds (see e.g. [10, 28, 74, 146]).

1.4.5.1 Contributions from tribology

Tribology is the science of rubbing contacts founded in England in the 1930s (see [10]). It
fundamentally contributes to understand friction in more detail and helps to develop friction
models required for e.g. analysis of motion control problems. Friction phenomena are examined
mainly for translational setups, however the results can be transferred to rotatory systems
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Figure 1.7: Cross-section of contact surface between mechanical parts A & B.

(see [10, Section 2.2.2.1]). In the rotatory case, due to ball bearings, friction effects are less
serious. Exceptions are e.g. hard disk drives or ball screws (see [10, Section 2.2.2.1]).

In mechatronic systems, fluid lubrication—e.g. oil or grease in ball bearings—is most com-
mon for metal-on-metal contacts. The lubricants provide fluid barriers within the intersection
(i.e. the microscopical contact area) of the contacting materials to avoid dry friction and hence
to reduce mechanical wear. The lubricant is drawn into the intersection by (relative) motion of
the contacting parts, if a minimal (relative) velocity is exceeded; i.e. hydrodynamic lubrication
for conformal surfaces or elasto-hydrodynamic lubrication for non-conformal surfaces such as
ball bearings or gear teeth (see [10]).

The topography of an intersection is rough. The microscopical contact surface was felicitously
visualized by R.D. Bowden in 1950 (during a BBC broadcast) with the words “putting two solids
together is rather like turning Switzerland upside down and standing it on Austria — the area
of intimate surfaces will be small ” (see [10]). A cross-section of an intersection is depicted in
Fig. 1.7(a). The “hills and mountains” are called asperities, which deform due to the total load
(e.g. weight) of the parts in contact and build contact areas, i.e. asperity conjunctions with a
typical width of ≈ 10−5 [m] for steel (see Fig. 1.7(a)). Due to e.g. oxidation, a film of boundary
lubricant(s) develops within the boundary layer. Boundary lubrication adheres solidly to the
metal part and is extremely thin (≈ 10−7 [m], see [10]).

For fluid lubricants there exist four regimes of lubrication (see [10]), which directly effect the
friction characteristics (see Fig. 1.8):

Regime I: static friction (stiction) and pre-sliding displacement
Experimenting with ball bearings, R.D. Dahl observed in 1977 a linear relation between ap-
plied load (e.g. external force or torque) and relative rotation (see [43]). He concluded that
the asperities act like springs up to a critical break-away force (after which the parts start to
slide). The asperities deform elastically resulting in pre-sliding displacement. Hence, stiction
can be modeled as a force proportional to the product of displacement and stiffness of the
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Figure 1.8: Regimes of lubrication (based on Fig. 5 in [10])

asperities. For steel materials, pre-sliding displacement ranges from 2− 5 · 10−5 [m]. Note that
pre-sliding indicates that there “are no discontinuities in friction as a function of time” (see [10]).

Regime II: boundary lubrication
If the break-away force is exceeded, the parts begin to slide. However, for very small (relative)
velocities, still a fluid lubrication film cannot develop within the intersection. The materi-
als are in solid-to-solid contact and the boundary layer with boundary lubrication is subject
to shear. Note that, friction in this regime is not necessarily higher than in regimes III and
IV with partially and full fluid lubrication, e.g. there exist boundary lubricants which reduce
stiction level below Coulomb level (see Fig. 1.8). Then stick-slip is eliminated entirely (see [10]).

Regime III: mixed (or partially fluid) lubrication
If velocity exceeds a critical value, fluid lubricants are drawn into the contact area and held
there by viscosity. The higher the velocity the thicker the film of the lubricants will be. For a
film thickness below the maximal height of the asperities, some few solid-to-solid conjunctions
remain. However, due to partial lubrication, friction reduces rapidly allowing for rapid increase
in acceleration of the moving parts. This phenomenon is called Stribeck effect (see [10]).
Furthermore, experiments and simulations show that, within regime III, a change in velocity
(or load conditions) results in a delayed change in friction level. This time lag is known as fric-
tional memory (or frictional lag, see [39]) with delay times ranging from milliseconds to seconds.

Regime IV: full fluid lubrication
If film thickness of the lubricant(s) exceeds the size of the asperities, full fluid lubrication is
reached: the mechanical parts are completely separated and “swim” on the lubricant(s). No
more solid-to-solid contacts remain. Hence, material wear is drastically reduced. In this regime
friction is governed by hydrodynamics, i.e. viscous friction is proportional to the (sliding) ve-
locity.
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In the following the explanations are for the rotatory (or translational) case. Dimensions in
parenthesis indicate the translational case, e.g. velocity in [rad/s] (or [m/s]).

1.4.5.2 Static friction modeling

Friction was already observed by Leonardo Da Vinci (1452–1519) [42, Chapter XVIII] as a
force proportional to normal force having opposite sign to relative velocity. Later, this friction
phenomenon was named after Charles Augustin de Coulomb (1736–1806). In 1779 Coulomb
published his memories on his observations on friction (see [41]). Coulomb friction is modeled
by

∀uC > 0: fC : R → [−uC , uC ], ω 7→ fC(ω) := uC sign(ω) (1.12)

where uC is the Coulomb friction level with dimension [Nm] (or [N]) and ω is the velocity in
[rad/s] (or [m/s]). Coulomb friction is illustrated in Fig. 1.9(a).

Not until the 19th century, the Coulomb model was extended by static friction (stiction,
see [136]) and viscous friction (see [153]). In standstill (i.e. ω = 0) Coulomb level uC may
be exceeded by stiction level uS (i.e. uS ≥ uC) depending on external load uL in [Nm] (or [N]).
Static friction is given by (see [145, p. 27])

∀uS > 0: fS : R → [−uS, uS], uL 7→ fS(uL) :=

{
uL , |uL| < uS (∧ ω = 0)

uS · sign(uL) , |uL| ≥ uS (∧ ω = 0)

(1.13)
Viscous friction increases (or decreases) as velocity increases (or decreases). More precisely, for
exponent δV ≥ 1 [1] and viscous friction coefficient ν

[
Nm/(rad/s)δV

]
(or
[
N/(m/s)δV

]
), viscous

friction is modeled by (see [145, p. 26])

∀ν > 0, δV ≥ 1: fV : R → R, ω 7→ fV (ω) := ν |ω|δV sign(ω). (1.14)

A friction model incorporating static, Coulomb and viscous friction is given by (see [145, p. 27])

fSCV : R× R → R, (ω, uL) 7→ fSCV (ω, uL) :=

{
fV (ω) , ω 6= 0

fS(uL) , ω = 0
(1.15)

where fV (·) and fS(·) are as in (1.14) and (1.13), respectively. Its graph is qualitatively de-
picted in Fig. 1.9(b). Note that the definition of stiction in (1.13) requires differential inclusion
(see [147]). For systems subject to friction modeled by (1.15), the right hand side of the differ-
ential equation (describing the system dynamics) becomes rather a set then an “isolated point”.

Although the friction model (1.15) is not correct in general, it was, and still is, common to
analyze friction effects in feedback systems. Already in 1902 Richard Stribeck (1861–1950)
observed a “rapid” but continuous decrease in friction (“negative viscous friction coefficient”) in
ball bearings for increasing but very low speeds close to standstill (see [176, 177]). This phe-
nomenon is called Stribeck effect nowadays (see Fig. 1.9(c)). For velocities below a threshold
velocity, the Stribeck effect may cause (locally) unstable behavior of closed-loop systems with
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Figure 1.9: Static friction models

proportional-derivative (PD) controllers, if the derivative gain (weighting velocity) is too small
(see [8]).

To model the Stribeck effect, the following Stribeck function is common (see e.g. [10, 147]). For
Stribeck velocity ωS [rad/s] (or [m/s]) and exponent δS [1], let the Stribeck function be given
by

∀uS ≥ uC > 0 ∀ωS > 0 ∀ δS ∈ [1/2, 2] :

β : R → [uC , uS], ω 7→ β(ω) := uC + (uS − uC) exp

(
−
( |ω|
ωS

)δS)
. (1.16)

A friction model (sometimes called “kinetic friction model”, see [3, p. 24-27]) incorporating
Coulomb, static, viscous friction and Stribeck effect is given by (see [145, p. 28])

fKFM : R× R → R, (ω, uL) 7→ fKFM(ω, uL) :=

{
fS(uL) , ω = 0

β(ω) sign(ω) + fV (ω) , ω 6= 0
(1.17)

where fS(·), β(·) and fV (·) are as in (1.13), (1.16) and (1.14), respectively. The qualitative
behavior of the friction model (1.17) is shown in Fig. 1.9(c).

Remark 1.2. The Stribeck function β(·) in (1.16) may also be chosen “asymmetric” (see [145,
p. 49]) which may reflect reality more precisely (see e.g. [182]). For u−C ≤ 0 ≤ u+C and u−S ≤
0 ≤ u+S a possible choice is given by

β : R → R; ω 7→ β(ω) :=

{
u+C + (u+S − u+C) exp(−(|ω|/ωS)δS) , ω ≥ 0

u−C + (u−S − u−C) exp(−(|ω|/ωS)δS) , ω < 0

For simplicity, in the following the symmetric Stribeck function (1.18) is used.
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1.4.5.3 Dynamic friction modeling

The friction models depicted in Fig. 1.9(a)-(c) are “static” maps from velocity to friction torque
(or force). Hence, dynamic friction effects observed in experiments—such as hysteresis, varying
break-away forces or pre-sliding displacement (see [39])—cannot be reproduced by the static
models (1.12), (1.15) and (1.17), respectively. To model and understand friction effects more
precisely, dynamic friction models are required (see e.g. the survey [10] or in great detail [9]).
A first motivating idea was presented by Dahl in 1968 (see [44]) describing the dynamics of
static friction as spring-like motion. However, his model does not cover the Stribeck effect
(see [39]). Based on this first idea and the results of research in tribology, several dynamic
friction models have been developed (see e.g. [39], [178], [57] or [49]). This thesis focuses on the
popular Lund-Grenoble (LuGre) friction model introduced in [39]. It is nonlinear and dynamic
and covers the Stribeck effect. Its generalized form was proposed in [145] and is presented in
the following for rotatory (translational) systems.

The LuGre friction model cannot reproduce hysteretic behavior with nonlocal memory (see [178])
and does not account for stochastic distribution of the asperities (see [159]) and nonphysical
drift phenomena may occur for small vibrational forces (see [49]). However, it is adequate for
the motion control problem considered in this thesis, since most of the friction phenomena ob-
served in “reality” are covered such as sticking (stick-slip), break-away with varying break-away
forces, pre-sliding displacement, frictional lag and hysteresis. Moreover, for controllers with
integral action, hunting can be reproduced (see e.g. [39, 145]) and it can be rendered passive
(see [19]).

For the LuGre friction model the asperity junctions (see Fig. 1.7(a)) are modeled as bending
bristles (see Fig. 1.7(b)). The bristles behave like springs with average stiffness σ > 0 [Nm/rad]
(or [N/m]). The deflection of all bristles within the intersection is considered as average bristle
deflection ϑ(·) [rad] (or [m]) of the asperity junctions.
For β(·) as in (1.16), average bristle stiffness σ, velocity ω [rad/s] (or [m/s]) and initial average
bristle deflection ϑ0 [rad] (or [m]), the dynamics of the average bristle deflection are modeled
by

ϑ̇(t) = ω(t)− σ
|ω(t)|
β(ω(t))

ϑ(t), ϑ(0) = ϑ0 ∈ R, ω(·) ∈ C(R≥0;R). (1.18)

Note that, by standard theory of ordinary differential equations (see e.g. Proposition 2.1.19
in [77]), for ω(·) ∈ L1

loc(R≥0; R) the initial-value problem (1.18) has an unique, global and
bounded solution

ϑω(·) : R≥0 →
[
−max{uS/σ, |ϑ0|}, max{uS/σ, |ϑ0|}

]
(1.19)

where boundedness follows from the implications

q
|ϑω(·)(t)| ≥ uS/σ

y
=⇒

r d
dt
ϑω(·)(t)

2 ≤ −2|ϑω(·)(t)ω(t)|
(
sign(ϑω(·)(t)ω(t))︸ ︷︷ ︸

∈{−1,0,1}

+σ
|ϑω(·)(t)|
β(ω(t))

)
≤ 0.

z

=⇒
q
∀ t ≥ 0: |ϑω(·)(t)| ≤ max{uS/σ, |ϑ0|}

y
.
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Figure 1.10: Comparison1 of static friction model (1.17) and dynamic LuGre model (1.21) with δV =
1: graph(β(ω) sign(ω) + fV (ω)) and graph(Lϑ0ω) with the parametrization in
Tab. 1.2, respectively.

To present the LuGre friction model as in [145, Section 3.2-3], for damping coefficient νD [Nms/rad]
(or [Ns/m]), damping velocity ωD [rad/s] (or [m/s]) and damping exponent δD [1] introduce the
damping (of the deflection rate ϑ̇(·)) by

∀ νD, ωD > 0 ∀ δD ≥ 1: fD : R → [0, νD], ω 7→ fD(ω) := νD exp
(
−(|ω|/ωD)δD

)
(1.20)

and define the “LuGre friction operator” with dimension [Nm] (or [N]) by

Lϑ0 : C(R≥0;R) → L∞
loc(R≥0;R)

ω(·) 7→ σ ϑω(·) + fD(ω(·))
(
ω(·)− σ |ω(·)|

β(ω(·))ϑω(·)

)
+ fV (ω(·)),

where fD(·) as in (1.20), β(·) as in (1.16), fV (·) as in (1.14) and ϑω(·) solves (1.18).





(1.21)

The operator Lϑ0 maps speed (or velocity) to friction torque (or force), is parametrized by the
initial average bristle deflection ϑ0 and represents the LuGre friction model introduced in [145,
Sections 3.2,3.3] in compact form.

Friction effects covered by the LuGre friction model

At first, the static friction model (1.17) and the dynamic LuGre model (1.21) are compared.
Therefore both models are excited by a ramp-like velocity to obtain the “classical plot”: friction
over velocity. The friction characteristics of both models are illustrated in Fig. 1.10. Note that
the dynamic LuGre friction model is not discontinuous at zero velocity and both models include
the Stribeck effect.

Next it is shown that the LuGre friction model (1.21) with linear viscous friction (i.e. δV = 1)
still covers e.g. pre-sliding displacement, frictional lag, hysteresis, stick-slip and limit-cycles
(hunting). The following experiments, illustrated in Fig. 1.11, are implemented in Matlab/Simulink
using the fixed-step solver ode4 (Runge-Kutta) with a step size of 10−5 [s]. The simulation

1The figure was generated by merging two simulation results with excitation ω̇(t) = −2
[
rad/s2

]
and ω̇(t) =

2
[
rad/s2

]
for all t ∈ [0, 0.5] [s], respectively. Each run was initialized with ϑ0 = 0 [rad] and ω(0) = 0 [rad/s].
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(a) Experiment 1: excita-
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mLϑ0ẋ f

(b) Experiment 2: mass m
accelerated by external
force f .
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(c) Experiment 3: mass m pulled with
constant velocity vS at end of
spring with stiffness cS.
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uD = kD ė

(d) Experiment 4: PID position control of angle φ.

Figure 1.11: Simulation experiments with LuGre friction model (1.21)

parameters are collected in Tab. 1.2 and are used for all experiments (with corresponding di-
mensions). The experiments are similar to those presented in [39]. However, in the present
work the damping function (1.20) is implemented additionally for simulations.

Experiment 1: hysteresis and frictional memory
The LuGre friction model (1.21) is excited by a continuous velocity given by

ω : R≥0 → R, t 7→ ω(t) = 5 · 10−3(sin(ω0 t) + 1) where ω0 ∈ {1, 10, 25} [rad/s] .

The simulation results are depicted in Fig. 1.12. The LuGre model clearly exhibits hysteresis.
For increasing velocities the resulting friction is larger than for corresponding but decreasing
velocities (see Fig. 1.12(a)). The hysteresis width is proportional to the velocity change, it is
widest for ω0 = 25 [rad/s].
Furthermore, the LuGre friction model (1.21) reproduces frictional lag as shown in Fig. 1.12(b).
For small and decreasing (or increasing, not shown here) velocities the friction increases (or
decreases) with time delay.

Experiment 2: pre-sliding displacement
A mass m > 0 [kg] is accelerated by the external force f [N] (see Fig. 1.11(c)). Friction as
in (1.21) counteracts the acceleration. Position x [m], velocity ẋ [m/s], average bristle deflection
ϑ [m] and friction force Lϑ0 ẋ [N] are observed. The force f is ramped up, held constant for
a while and then is ramped up again with less slope (see top of Fig. 1.13(b)). The zoom in
Fig. 1.13(a) clearly indicates pre-sliding displacement of position x(·) up to ≈ 0.5·10−4 [m]. The
external force is nearly compensated by friction, which is proportional to the deflection of the
bristles (see top of Fig. 1.13(b)). As long as the external force f(·) is constant on [14− 20] [s],
velocity ẋ(·) drops to zero.
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Description Symbol = Value [Dimension]

Coulomb friction level uC = 1 [Nm] or [N]
Stiction friction level uS = 1.5 [Nm] or [N]
Stiffness σ = 105 [Nm/rad] or [N/m]
Stribeck velocity ωS = 0.001 [rad/s] or [m/s]
Stribeck exponent δS = 2 [1]

Damping friction coefficient νD =
√
105 [Nms/rad] or [Ns/m]

Damping friction velocity ωD = 0.1 [rad/s] or [m/s]
Damping friction exponent δD = 2 [1]
Viscous friction coefficient ν = 0.4 [Nms/rad] or [Ns/m]
Viscous friction exponent δV = 1 [1]
Initial average bristle deflection ϑ0 = 0 [rad] or [m]

Table 1.2: Simulation parameters of LuGre model (1.21)
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(b) frictional lag (shown for ω0 = 25 [rad/s]):
friction (Lϑ0ω)(·) (top) and speed ω(·)

Figure 1.12: Experiment 1—simulation results

At t ≈ 28 [s] the break-away force of ≈ 1.5 [N] is reached (see top of Fig. 1.13(b)) and sliding
begins (see Fig. 1.13(a)). Friction (Lϑ0ẋ)(·) reduces drastically due to relaxation of the bristles
(the Stribeck velocity is by far exceeded). The average bristle deflections ϑ(·) drops to 10−5 [m]
(see bottom of Fig. 1.13(b)).

Experiment 3: stick-slip
Consider the setup depicted in Fig. 1.11(c). A massm > 0 [kg] is subject to LuGre friction Lϑ0ẋ
as in (1.21) parametrized by the values given in Tab. 1.2. The mass is connected to a spring
with stiffness cS > 0 [kg/s2], has position x [m] whereas the position of the spring endpoint is
denoted by xS [m]. The endpoint of the spring is pulled with constant velocity vS > 0 [m/s].
Due to the Stribeck effect (1.16) covered by (1.21), stick-slip occurs: for consecutive time inter-
vals, the mass is at rest and then moving again (see Fig. 1.14(b)). As long as the mass is not
moving or moving slower than the spring endpoint, the spring force cS(vS ·−x(·)) is increasing.
For spring forces cS(vS ·−x(·)) > uS greater than stiction level, the mass accelerates and starts
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Figure 1.13: Experiment 2—simulation results: pre-sliding displacement
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Figure 1.14: Experiment 3—simulation results: stick-slip for simulation parameters m = 1 [kg], cS =
2 [N/m] and vS = 0.1 [m/s].

to slide. It “slips”. If the Stribeck velocity ωS = 0.001 [m/s] is exceeded, friction is drastically
reduced due to partially fluid lubrication (see regime III) and, in turn, the mass accelerates
even more rapidly. For velocities ẋ(·) greater than vS it catches up with the spring endpoint
reducing the spring force cS(vS · −x(·)) (see bottom of Fig. 1.14(b) and Fig. 1.14(a)). For
spring forces smaller than friction, the mass decelerates again. Its velocity ẋ(·) is decreasing
(see bottom of Fig. 1.14(b)). For very low velocities the Stribeck effect results in a rapid but
continuous increase of friction (see top of zoom in Fig. 1.14(a)). The remaining spring force
cannot accelerate the mass and hence motion is stopped. It “sticks”. At standstill the bristles
relax completely and friction reduces to a minimum (see bottom of zoom in Fig. 1.14(a)). Now
the same phenomenon starts over again. The mass “sticks” and “slips” and follows the spring
endpoint xS(·) in a “staircase-like” manner with time delay (see Fig. 1.14(b)).
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Figure 1.15: Experiment 4—simulation results: hunting (limit cycles) for simulation parameters m =
1 [kg], φref(·) = 3 [rad], kP = 5 [Nm/rad], kD = 2 [Nms/rad] and kI = 5 [Nm/(rad s)].

Experiment 4: limit cycles for controllers with integral action (hunting)
Consider the closed-loop system depicted in Fig. 1.11(d). A PID controller—with proportional
gain kP [Nm/rad], integral gain kI [Nm/(rad s)] and derivative gain kD [Nms/rad]—governs
a rotatory mechanical system with inertia Θ [kgm2] for position control. The mechanical
system is subject to friction modeled by the LuGre friction operator Lϑ0 [Nm] as in (1.21)
with parametrization as in Tab. 1.2. The control objective is set-point tracking of the constant
reference φref(·) = 3 [rad]. Due to friction the closed-loop system exhibits limit cycles after
≈ 10 [s] (see Fig. 1.15(a), here only shown for 0− 30 [s]). Position φ(·) “oscillates around” the
reference φref(·). Within the (approximate) intervals [12, 20] [s] and [21, 29] [s], the inertia is
not moving. Integral control action kI xI(·) is increasing linearly until the break-away torque of
≈ 1.25 [Nm] is reached (see Fig. 1.15(b)). The inertia is accelerated in the opposite direction
until it gets “stuck” again. The proportional kP e(·) and derivative kD ė(·) control actions are
not sufficiently large to stop sticking (see Fig. 1.15(b)). In general, high (proportional) gains
obviate hunting by “stiffening” the closed-loop system (see [10]).

Remark 1.3 (Stiff simulation problem).
For numeric simulations, the high stiffness σ ≫ 1 (e.g. 105 [N] in Section 1.4.5) in the friction
models (1.21) or (1.22) necessitates special solvers (e.g. ode23s in Matlab) for stiff ordinary
differential equations or small sampling times to obtain “correct” (numerically stable) solutions
(see e.g. [73, Chapter 1,2]). This issue additionally increases the effort of implementation of
stiff dynamical friction models for friction compensation (see Section 1.5.3 and [1]).

Simplified LuGre model with linear viscous friction

As friction identification results show (see e.g. [8, 182] or [151, p. 195] for the laboratory setup),
many mechatronic systems in industry exhibit linear viscous friction ω(·) 7→ ν ω(·) with viscous
friction coefficient ν ≥ 0

[
Nms
rad

]
(or
[
Ns
m

]
), i.e. δV = 1 in (1.14).

Therefore (analogue to [96]), friction is split into linear but unbounded viscous friction and
bounded nonlinear friction (including e.g. Coulomb friction, stiction and Stribeck effect). More
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precisely, the following simplified LuGre friction model will be used in the remainder of this
thesis. It is given by

∀ω(·) ∈ C(R≥0;R) : ω(·) 7→ ν ω(·) + (Fω)(·),
where F : C(R≥0;R) → L∞(R≥0;R), ω(·) 7→ σ ϑω(·) + fD(ω(·))

(
ω(·)− σ |ω(·)|

β(ω(·))ϑω(·)

)

and fD(·) as in (1.20), β(·) as in (1.16) and ϑω(·) solves (1.18).





(1.22)

The simplified LuGre friction operator F in (1.22) is directly derived from Lϑ0 by neglecting
the viscous term (i.e. fV (ω(·)) = 0) in (1.21). The operator F is also parametrized by the initial
average bristle deflection ϑ0, but for notational convenience, the subscript is dropped in the
following. Moreover, note that in contrast to the general LuGre operator Lϑ0 the simplified
version F is uniformly bounded, since for all ω(·) ∈ C(R≥0;R), the following holds

∀ t ≥ 0: |(Fω)(t)| ≤ 2νDmax
t≥0

{
exp

(
−(|ω(t)|/ωD)δD

)
|ω(t)|

}(
1 +

σ

uC
max

{uS
σ
, |ϑ0|

})

+ σ max
{uS
σ
, |ϑ0|

}
=:MF <∞. (1.23)

1.4.6 Models of stiff and flexible servo-systems

Now, by combining the models (1.9), (1.11) and (1.22) of actuator, sensor and friction, re-
spectively, the models of stiff one-mass system (1MS) and elastic two-mass system (2MS) are
introduced. Again, modeling is for the rotatory case. For the translational case substitute the
quantities according to Tab. 1.1 (e.g. substitute m [kg] for Θ [kgm2]).

1.4.6.1 One-mass system (1MS)

The rotatory 1MS consists of inertia Θ [kgm2] and gear with ratio gr [1]. The inertia subsumes
possibly several stiff coupled masses and the linkage. Backlash is neglected.
The state variable

x(t) = (ω(t), φ(t))⊤

represents angular velocity (speed) and angle (position) at time t ≥ 0 [s] in [rad/s] and [rad],
respectively. The mechanical system (see Fig. 1.16) is driven by motor torque mM [Nm] and
is subject to load torque mL [Nm] and motor and load (gear) side friction. Both friction
torques are modeled by the simplified LuGre model (1.22), i.e. ω(·) 7→ ν1ω(·) + (F1ω)(·) and
ω(·) 7→ ν2ω(·)/gr + (F2ω/gr)(·) for motor and load side friction, respectively. The actuator is
modeled as in (1.9). The input of the 1MS is the reference torque u := mM,ref [Nm].

The mathematical model of the 1MS is given by

d
dt
x(t) = Ax(t) + b satûA

(
u(t) + uA(t)

)
+BL

(
(F1ω)(t)

mL(t) + (F2
ω
gr
)(t)

)
,

y(t) = c⊤x(t), x(0) = x0 ∈ R
2





(1.24)

where system matrix A (viscous friction terms are included), input vector b, disturbance input
matrix BL, output vector c, disturbances uA(·), mL(·), friction operators F1, F2 and system
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Figure 1.16: One-mass system (1MS) with ‘actuator’ and ‘sensor(s)’ (simplified models), gear and
motor & load (gear) side friction.

parameters are as follow

A =

[
−ν1+ν2/g2r

Θ
0

1 0

]
, b =

(
kA
Θ

0

)
, BL =

[− 1
Θ

− 1
grΘ

0 0

]
, c ∈ R

2, Θ > 0,

gr ∈ R \ {0}, ν1, ν2 > 0, ûA, kA > 0, uA(·), mL(·) ∈ L∞(R≥0;R) and ∀ i ∈ {1, 2} :
Fi as in (1.22) with MFi := sup { |(Fiζ)(t)| | t ≥ 0, ζ(·) ∈ C(R≥0,R) } <∞.





(1.25)

Note that due to (1.23), the upper bound MF1
and MF2

for the friction operators F1 and F2

exist, respectively. The gear ratio gr in (1.25) is assumed unknown albeit in many applications,
it can be read off on the gear box.

It depends on application and control objective (e.g. position or speed control), which sensors are
installed and so which signals are available for feedback. To cover the possible instrumentation
configurations (ic) the “general” output vector in (1.25) is chosen. Most common are the
following cases:

(1MS-ic1) speed control: a tacho-generator provides measurement of motor speed ω(·) or load
speed ω(·)/gr. If an encoder or a resolver is used, speed is approximated by e.g. nu-
merical differentiation (1.10). The output vector in (1.25) simplifies to c⊤ =

(
1, 0

)

or c⊤ =
(
1/gr, 0

)
. The control objective is load speed tracking of reference

ωref(·)/gr ∈ W1,∞(R≥0;R) and disturbance rejection of (unknown) load torques and
friction. If motor speed ω(·) is measured, then gr must be known exactly to compute
the load speed error ωref(·)/gr − ω(·)/gr.

(1MS-ic2) position control: an encoder (or resolver) provides measurement of motor position
φ(·) or load position φ(·)/gr, whereas ω(·) is computed by e.g. (1.10). In this case
the output vector in (1.25) becomes c⊤ =

(
0, 1

)
or c⊤ =

(
= 0, 1/gr

)
. The

control objective is load position tracking of reference φref(·)/gr ∈ W2,∞(R≥0;R)
and disturbance rejection. Note that (usually) speed reference ωref(·) = φ̇ref(·) is
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also available. If φ(·) and ω(·) are measured, then ratio gr is required to compute
load position error φref(·)/gr − φ(·)/gr and load speed error ωref(·)/gr − ω(·)/gr.

Similar to (1.11), the measured quantities are deteriorated by nm(·) ∈ W2,∞(R≥0;R) (e.g. noise,
see Fig. 1.16) and thus e.g. motor side feedback signals are given by

∀ t ≥ 0: φm(t) = φ(t) + nm(t) and ωm(t) = ω(t) + ṅm(t),

respectively. Load side measurements are deteriorated accordingly.

1.4.6.2 Two-mass system (2MS)

Analogue to the 1MS, the 2MS is modeled (see Fig. 1.17). It consists of two masses—motor
inertia Θ1 [kgm2] and load inertia Θ2 [kgm2]—which are coupled by an elastic shaft with
stiffness cS [Nm/rad] and damping dS [Nms/rad]. The linkage may include a gear with ratio
gr [1]. Again backlash is not considered.
The state variable

x(t) = (ω1(t), φ1(t), ω2(t), φ2(t))
⊤

represents speed in [rad/s] and position in [rad] at time t ≥ 0 [s] of motor and load, respec-
tively. The mechanical system (see Fig. 1.17) is accelerated by drive torque mM [Nm] and
is subject to load torque mL [Nm] and motor and load side friction, modeled by ω1(·) 7→
ν1ω1(·) + (F1ω1)(·) [Nm] and ω2(·) 7→ ν2ω2(·) + (F2ω2)(·) [Nm], respectively. The actuator is
fed by the reference torque u := mM,ref and is modeled by (1.9).

The mathematical model of the 2MS is given by

d
dt
x(t) = Ax(t) + b satûA

(
u(t) + uA(t)

)
+BL

(
(F1ω1)(t)

mL(t) + (F2ω2)(t)

)
,

y(t) = c⊤x(t), x(0) = x0 ∈ R
4





(1.26)

where (viscous friction terms are included in the system matrix again)

A =




−dS+g
2
rν1

g2rΘ1
− cS
g2rΘ1

dS
grΘ1

cS
grΘ1

1 0 0 0
dS
grΘ2

cS
grΘ2

−dS+ν2
Θ2

− cS
Θ2

0 0 1 0


 , b =




kA
Θ1

0
0
0


 , BL =




−1
Θ1

0

0 0
0 −1

Θ2

0 0


 , c ∈ R

4,

Θ1, Θ2 > 0, dS, cS > 0, ν1, ν2 > 0, gr ∈ R\{0}, ûA, kA > 0, uA(·) ∈ L∞(R≥0;R),

mL(·) ∈ L∞(R≥0;R) and ∀ i ∈ {1, 2} : Fi as in (1.22) with MFi as in (1.25).





(1.27)

Also for the 2MS, application and control objective(s) determine the feedback signals. To allow
for flexibility in modeling, again the “general” output vector in (1.27) is introduced. The most
common applications with instrumentation are listed below (see also Fig. 1.17):

(2MS-ic1) speed control: the control objective is load speed tracking of reference ω2,ref(·) ∈
W1,∞(R≥0;R), disturbance rejection (of e.g. unknown load torques and friction) and
damping of shaft oscillations. Depending on the installed sensor(s), the following
signals are available for feedback:
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Figure 1.17: Two-mass system (2MS) with ‘actuator’ and ‘sensors’ (simplified models), gear and motor
& load side friction

(a) motor speed ω1(·), i.e. c⊤ =
(
1, 0, 0, 0

)
in (1.27).

(b) load speed ω2(·), i.e. c⊤ =
(
0, 0, 1, 0

)
in (1.27).

(c) motor speed ω1(·) and load speed ω2(·), i.e. c⊤ =
(
1, 0, 1, 0

)
in (1.27).

(2MS-ic2) position control: the control objective is load position tracking of reference φ2,ref(·) ∈
W2,∞(R≥0;R), disturbance rejection and suppression of shaft oscillations. Depend-
ing on instrumentation the following signals are available for feedback:

(a) motor angle φ1(·) and its derivative φ̇1(·) = ω1(·) (motor speed), i.e. c⊤ =(
0, 1, 0, 0

)
in (1.27).

(b) load position φ2(·) and its derivative φ̇2(·) = ω2(·) (load speed), i.e. c⊤ =(
0, 0, 0, 1

)
in (1.27).

(c) motor position φ1(·), load position φ2(·) and, respectively, φ̇1(·) = ω1(·) and
φ̇2(·) = ω2(·), i.e. c⊤ =

(
1, 0, 1, 0

)
in (1.27).

Due to elasticity in the shaft, the configurations (2MS-ic1) (a) & (b) and (2MS-ic2) (a) & (b) do
not allow to suppress shaft oscillations for speed and position control, respectively. To achieve
good damping in general, full-state feedback—as in configuration (2MS-ic1) (c) (the torsional
angle is obtained by integration, i.e.

∫ t
0
ω1(τ)/gr−ω2(τ) dτ ) or in configuration (2MS-ic2) (c)—

is necessary for speed and position control, respectively (see e.g. [166, Chapter 19] for speed
control and [174, Section 6.5] for position control). If full-state feedback is not available, then
to achieve adequate damping, full-order observers have to be implemented (which require good
system and parameter knowledge) or, for load speed PI control, torque generation must be
decelerated such that shaft oscillations are not excited (yielding an increased phase margin to
assure stability of the speed control loop, see [166, Section 19.1]).
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Similar to the 1MS, also for the 2MS the measured signals are deteriorated (see Fig. 1.17).
Invoking the simplified sensor model (1.11), e.g. the feedback signals of load position and load
speed are given by

∀ t ≥ 0: φ2,m(t) = φ2(t) + nm2(t) and ω2,m(t) = ω2(t) + ṅm2(t),

respectively. Accordingly, motor position φ1(·) and speed ω1(·) are perturbed by nm1(·) and
ṅm1(·), respectively.

Remark 1.4 (Motor and load side friction).
Friction, in general, and as modeled in (1.22), in particular, is nonlinear and dynamic. For
accurate friction modeling for 1MS and 2MS, the consideration of motor- and load-side fric-
tion is necessary. A simple conversion from load to motor side friction (or vice-versa) is not
admissible in general. Note that, in view of (1.22), the following holds

∀ω(·) ∈ C(R≥0;R) ∀c0 6= 1: (F(c0ω))(·) 6= c0(Fω)(·).

Same holds for the general LuGre friction operator (1.21) (replace F by Lϑ0 above).

1.5 Motion control in industry

In industry linear proportional-integral-derivative (PID) controllers—or variants thereof such as
P, I, PI or PD controllers—are applied in the majority of cases. These controllers are somehow
the “standard solution” for industrial control problems. Also for motion control, PI and PID
controllers are most common even though supplemented by disturbance observers to improve
control performance under load. Besides, there exist special control solutions and friction
identification and compensation methods. In general, the control design of these approaches—
described in the succeeding sections—strongly depends on good knowledge of system and its
parameters. The vague system information in (1.25) for the 1MS and in (1.27) for the 2MS
may be not sufficient to assure stability of the closed-loop system.

1.5.1 Standard control methods

Integrated real-time systems (in the inverter of electrical drives) or process automation en-
vironments (e.g. SIEMENS S7) provide ready-made discrete prototypes of e.g. P, PI or PID
controllers, which allow for easy implementation and tuning during e.g. system startup. A
prototype of a continuous time PID controller with tuning parameters kP (proportional gain),
kI (integral gain), kD (derivative gain) and feedforward control uF (·) is given by the following
ordinary differential equation

ẋI(t) = e(t),

u(t) = kP e(t) + kI xI(t) + kD ė(t) + uF (t),

xI(0) = 0,
kP , kI , kD ∈ R,
uF (·) ∈ L∞(R≥0;R)



 (1.28)

where e(t) and xI(t) represent tracking error as in (1.1) and state of the integral control ac-
tion at time t ≥ 0, respectively. The PID controller (1.28) generates the control action u(t).
Therefore, the error derivative ė(·) is required for feedback which implies that the derivative of
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Figure 1.18: Motion control cascades with feedforward control and disturbance observer in industry
(sensors are neglected)

reference and system output are available (i.e. ẏref(·) and ẏ(·), respectively). If ė(·) is not avail-
able, then to reduce noise sensitivity of derivative control action kD ė(·), the tracking error e(·)
is low-pass filtered and then (numerically) differentiated (see [175] or in great detail [58, Sec-
tion 7.4]). Although in many applications derivative feedback is not admissible, in the present
setup of stiff or elastic servo-systems, or more general in joint position control of robotics it is
justified (see e.g. [174, pp. 210-213 and 290-292]). Hence, the “ideal” PID controller in (1.28) is
admissible.

P, I, PI and PD controller are derived from (1.28) simply by setting kI = kD = 0, kP = kD = 0,
kD = 0 and kI = 0, respectively. To cope with actuator saturation—e.g. as in (1.24) or (1.26)—
anti-windup strategies should be implemented (see e.g. [166, Section 5.6]).

Although control objectives are mostly formulated in the time domain, controller design and
analysis are performed in the frequency domain (see e.g. [175]) by using Laplace transforms
and transfer functions. Therefore, in abuse of notation, write e.g. y(s) := L {y(t)} for the
Laplace transform of system output y(·) (see notation (N.1)). In the frequency domain, PID
controller (1.28) and control action are given by

FPID(s) = kP +
kI
s

+ kD s and u(s) = FPID(s) e(s) + uF (s) (1.29)

where u(s) = L {u(t)}, e(s) = L {e(t)} and uF (s) = L {uF (t)} represent the Laplace trans-
forms (assuming those exist) of control action u(·), error e(·) and feedforward control uF (·),
respectively.

PI controllers are most common for speed control, whereas PID controllers are usually applied
for position control (see e.g. [51, 123, 143, 175]). A wide-spread implementation of PID position
control is depicted in Fig. 1.18. It has a cascaded structure, where the inner control loop is
governed by a PI speed controller fed by the output ω⋆ref of a P position controller and a velocity
feedforward term ωFF (see [51, 123]). This structure is similar to the un-cascaded PID position
controller (1.29) with position error e(s) = φref(s)−φ(s) as “input” (see e.g. [174, Section 6.3.2],
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there shown for constant reference).

For high-precision motion control, PI speed controllers and PID position controllers are, in gen-
eral, not sufficient to assure the control objectives such as rise time, steady-state accuracy or
asymptotic disturbance rejection (see [143]). Since modern real-time systems include powerful
microprocessors, implementation of more sophisticated control is possible. Typically, in addi-
tion to the standard PI or PID controllers, disturbance observers and feedforward controllers
are implemented (see Fig. 1.18). The observers are used to estimate load torque mL and fric-
tion deteriorating the control performance of the servo-system (see Fig. 1.18). The estimated
torque mO [Nm]—the output of the disturbance observer—should compensate for disturbances
(see [143]). The quality of the compensation depends on observer dynamics, accuracy of sys-
tem model (see [147]) and actuator dynamics (e.g. “slow” torque generation will corrupt the
compensation drastically, see [168]). In general, feedforward control supports feedback control
in the sense that available information of the environment (e.g. known disturbance or reference
changes) is used to feed the actuator directly. For example, if reference acceleration φ̈ref [rad/s

2]
and a good estimate of motor (and/or load) inertia are known a priori, then acceleration feed-
forward mFF [Nm] is reasonable (see Fig. 1.18 and e.g. [51, 143, 175]).

In industry, stability analysis is mainly based on simplified linear or linearized models (see
e.g. [27, 51, 123, 143, 175]). Exceptions, also incorporating nonlinear friction characteristics
and backlash, are e.g. the articles [30–32] or in great detail the textbook [167]. Linear stability
analysis is performed in the frequency domain either for the open loop system—in terms of
gain and phase margin (see [166, Section 2.3]) or Nyquist-criterion (see [166, Section 2.1.1])—
or for the closed-loop system in terms of the poles of the transfer function (see [166, Section 2.2]).

Often—lacking a stability analysis at all—the PID controller parameters kP , kI and kD in (1.28)
(or (1.29)) are tuned by “trial and error” until the desired control performance is achieved. How-
ever, as will be shown below for the 1MS (1.24), (1.25), some care must be exercised when doing
so. Already for the low order 1MS position control problem, the integral gain kI must not ex-
ceed an upper bound (depending on the system parameters), otherwise the closed-loop system
is unstable. In the following, speed and position control of the linear 1MS are analyzed concern-
ing stability using the Routh-Hurwitz criterion (see e.g. [77, Theorem 3.4.71]) and concerning
asymptotic behavior using the final-value theorem (see e.g. [120, p. 20] or [58, p. 601]).

Linear analysis of the 2MS (1.26), (1.27) is neglected. Thorough discussions can be found
in [166, Sections 19.1–2] for speed control and in [174, Section 6.5] for position control, respec-
tively. Note that load position PID control of the linear 2MS is unstable for large derivative
gains. The upper bound on kD depends on system parameters Θ1, Θ2, cS and dS.

1.5.1.1 Speed control of linear 1MS

Consider the 1MS (1.24), (1.25) with viscous friction and load torque. More precisely, assume
that the following holds:

(a1) no actuator disturbance in (1.24), i.e. uA(t) = 0 for all t ≥ 0;

(a2) no actuator saturation, i.e. ûA → ∞;
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(a3) no measurement errors, i.e. nm(t) = 0 for all t ≥ 0;

(a4) no dynamic friction effects, i.e. F1 = F2 = 0 (however viscous friction is considered);

(a5) the initial values are zero, i.e. (φ(0), ω(0)) = (0, 0) for the 1MS

Moreover, for ŷref , m̂L ∈ R, only consider constant references, i.e.

yref : R≥0 → R, t 7→ yref(t) := ŷref d t yref(s) = L {yref(t)} =
ŷref
s
, ℜ(s) > 0

and constant load torques, i.e.

mL : R≥0 → R, t 7→ mL(t) := m̂L
d t mL(s) = L {mL(t)} =

m̂L

s
, ℜ(s) > 0,

respectively (see e.g. Table A.3.2 in [77, p. 743] for the Laplace transforms). For load speed
control the system output becomes y(·) = ω(·)/gr, hence c⊤ = (1/gr, 0) in (1.25). Then, under
the assumptions (a1)–(a5) the input-output behavior in the frequency domain is given by

y(s) = c⊤(sI2 −A)−1b u(s) + c⊤(sI2 −A)−1 col1(BL)mL(s)

(1.24),(1.25)
=

kA
grΘ

1

s+ ν1+ν2/g2r
Θ︸ ︷︷ ︸

=:Fu,y1,speed(s)

u(s)− 1

g2r Θ

1

s+ ν1+ν2/g2r
Θ︸ ︷︷ ︸

=:F
mL,y

1,speed(s)

mL(s). (1.30)

Defining e(s) := yref(s)−y(s) and applying a PI controller without feedforward control (i.e. (1.29)
with kD = 0 and uF = 0) to (1.30) yields the closed-loop system

y(s) =
skP kA
grΘ

+ kIkA
grΘ

s2 + s
(
ν1+ν2/g2r

Θ
+ kP kA

grΘ

)
+ kIkA

grΘ︸ ︷︷ ︸
=:F

yref ,y

1,speed(s)

yref(s)−
s 1
g2rΘ

s2 + s
(
ν1+ν2/g2r

Θ
+ kP kA

grΘ

)
+ kIkA

grΘ︸ ︷︷ ︸
=:F

mL,y

1,speed(s)

mL(s) (1.31)

which, in view of (1.25), is stable for

kP/gr > 0 and kD/gr > 0. (1.32)

Furthermore in view of the final-value theorem (see e.g. [120, p. 20]), it holds that

lim
t→∞

y(t) = lim
s→0

{
s · F yref ,y

1,speed(s) ·
ŷref
s

}
+ lim

s→0

{
s · FmL,y

1,speed(s) ·
m̂L

s

}
(1.31)
= ŷref

and so constant references yref : R≥0 → ŷref are tracked with zero steady-state error and constant
disturbances mL : R≥0 → m̂L are asymptotically rejected. Usually, the control objectives are
formulated in terms of maximum rise time, maximum overshoot and maximum settling time
(see Fig. 1.1). Then, since the vague system information in (1.25) does not permit analytic
tuning, the controller parameters kP and kI have to be found empirically e.g. by “trial and
error” or based on the Ziegler-Nichols method (see [120, Section 52.2.2]).
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1.5.1.2 Position control of linear 1MS

Now, under identical assumptions as in Section 1.5.1.1, load position control of the linear 1MS is
discussed. The output is given by y(·) = φ(·)/gr, i.e. c⊤ = (0, 1/gr) in (1.25) and the following
transfer function is obtained

y(s) = c⊤(sI2 −A)−1b u(s) + c⊤(sI2 −A)−1 col1(BL)mL(s)

=

kA
gr Θ

s
(
s+ ν1+ν2/g2r

Θ

)

︸ ︷︷ ︸
=:Fu,y1,position(s)

u(s)−
1

g2r Θ

s
(
s+ ν1+ν2/g2r

Θ

)

︸ ︷︷ ︸
=:F

mL,y

1,position(s)

mL(s). (1.33)

Using e(s) := yref(s)− y(s) and applying the PID controller (1.29) without feedforward control
(i.e. uF = 0) to (1.33) yields the closed-loop system

y(s) =

kA
grΘ

(s2kD + skP + kI)

s3 + s2
(
ν1+ν2/g2r

Θ
+ kDkA

grΘ

)
+ skP kA

grΘ
+ kIkA

grΘ︸ ︷︷ ︸
=:F

yref ,y

1,position(s)

yref(s)

−
s 1
g2rΘ

s3 + s2
(
ν1+ν2/g2r

Θ
+ kDkA

grΘ

)
+ skP kA

grΘ
+ kIkA

grΘ︸ ︷︷ ︸
=:F

mL,y

1,position(s)

mL(s) (1.34)

which is stable (Liénard-Chipart criterion, see e.g. [77, Corollary 3.4.73]) for

kP
gr

> 0,
kD
gr

> 0,
kI
gr

> 0 and
kI
gr

<
kA
g2rΘ

kPkD
(1.25)

≤ kP
gr

(
ν1 + ν2/g

2
r

Θ
+
kDkA
grΘ

)
. (1.35)

Moreover, since

lim
t→∞

y(t) = lim
s→0

{
s · F yref ,y

1,position(s) ·
ŷref
s

}
+ lim

s→0

{
s · FmL,y

1,position(s) ·
m̂L

s

}
(1.34)
= ŷref ,

constant references are asymptotically tracked and constant disturbances are rejected. Note
that the last condition in (1.35) can be satisfied even if viscous friction is not known (recall
ν1, ν2 > 0 in (1.25)), however the sign of gear ratio gr and bounds on actuator gain kA and
inertia Θ, respectively, must be known a priori to assure stability of the linear closed-loop
system (1.34).

1.5.2 Special control methods

Besides, the standard approaches presented above, there exist a variety of special control meth-
ods which are particularly of interest for certain applications or fields of research, e.g. H∞
control of hard disk drives (see [175]), sliding mode control for induction machines (see [149])
or load speed control of the 2MS either by full-state feedback (see [166, Section 19.3]) or by
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observer-state feedback (see [27]) to name a few.

H∞ control is well known for its robust performance (see e.g. [120, Chapter 40]). However, rough
knowledge on system and parameters is essential and the controllers—found by µ-synthesis (see
e.g. [120, Chapter 42])—have high order which usually implies model reduction to obtain a fea-
sible controller of lower order (see [175]). In addition, to meet the control objective (such as
maximum rise time, etc.), iterations in control design are often necessary making H∞ design
time-consuming (see [175]).

The proposed sliding mode controller in [149] for position control of induction machines is robust
to parameter uncertainties and uses a variable bandwidth low pass filter to reduce chattering
(to avoid torque ripple). However, due to the bang-bang nature of the proposed controller, it
seems not adequate for e.g. position control of the 2MS where shaft oscillations are not to be
excited.

For the 2MS, if system and its parameters are known acceptably well, full-state feedback or
observer-state feedback yields a well damped system response (see e.g. [166, Section 19.3] for
speed control and [174, Section 6.6] for position control). Set-point tracking (of constant load
references) and disturbance rejection (of constant loads) is achieved. The closed-loop dynamics
may be prescribed by pole-placement (see [58, Section 13.3]) or Riccati-design (see [58, Sec-
tion 13.4] or, equivalently, [120, p. 48] for the design of linear quadratic regulator (LQR)).
Maximum rise time, maximum overshoot and maximum settling time can be assured easily (for
speed control see e.g. [166, Section 19.3] by pole placement or [70] by LQR design; for position
control see e.g. [174, Section 6.6]).

If full-state feedback or observer-state feedback is not feasible, e.g. load side measurements
are not available, and shaft oscillations must be suppressed, notch filters to compensate for
the elasticity (see [175]) or vibrational suppression control (see [143]) can be used. However,
both approaches rely on good knowledge of the 2MS parameters and, in particular, on exact
knowledge of eigenfrequency ω2MS

0 =
√

(Θ1 +Θ2/g2r) cs/(Θ1 Θ2)
[
rad
s

]
and damping D2MS =

ω2MS
0 dS/(2cS) (see [71]), respectively.

1.5.3 Friction identification and compensation

Friction imposes the most severe difficulty for position and speed control. The major problem is
to suppress stick-slip in high-precision positioning tasks. There exist three standard approaches
to avoid stick-slip (if e.g. disturbance observers are not enough):

• the use of high gain in the feedback (e.g. high-gain PD controllers) to achieve “stiff servo-
systems” (see e.g. [10, 39, 50]). For this approach noise sensitivity must be taken into
account during implementation.

• the use of dither signals added to control action. Depending on application this approach
may not be admissible, since mass or inertia never comes to rest (see e.g. [147]) and

• the use of friction compensation methods (see e.g. [28]).
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Ideally friction compensation comprises perfect friction identification and, by adequate feed-
forward control, perfect compensation of real friction. Friction identification implies good
knowledge of the friction characteristic, the choice of an adequate friction model and precise
identification/estimation of the model parameters (on- or offline). Similar to disturbance ob-
servation and compensation (see above), the quality of friction compensation severely depends
on small time delays in the actuator (see e.g. [147, 168]). For a detailed discussion of friction
compensation methods see the survey article [28] and the references therein. In the majority
of cases, friction compensation is model-based and hence model sensitive (see [147]). Friction
model identification is non-trivial, since e.g. recursive least square methods do not work for the
LuGre friction model. The dependence on the model parameter is not linear (see e.g. [45, 182]).
The LuGre friction model was successfully identified using e.g. particle swarm optimization
(see [182]) or genetic algorithms (see [45]). However, friction identification is time-consuming
and requires high-resolution instrumentation (see [147]). Depending on the desired accuracy,
identification may take 10-100 hours. In particular, stiction level uS and Stribeck velocity ωS
are hard to identify (see [3, p. 44-45]). Furthermore, sensors with (very) high resolution must
be installed to allow for precise friction identification and model verification. Required resolu-
tions are approximately ≤ 10−7 [m] and ≤ 10−4 [m/s] for position and velocity measurement,
respectively (see e.g. [145, p. 73] for LuGre model identification at a translational setup). There
also exist model independent friction compensation methods (see e.g. [159]) using sliding-mode
controllers. Here the friction is considered as polynomially bounded disturbance, but still an
upper bound on stiction level must be known for controller design.

For speed control, often static friction models are sufficient for adequate friction compensa-
tion (see e.g. [161, Section 7.3]). Then an “intelligent observer”—i.e. a Luenberger observers
with static neuronal network (e.g. general regression neuronal network (GRNN))—is reason-
able. It allows for online identification of e.g. the nonlinear (but static) friction model (1.17).
The estimated friction torque (or force) is used for friction compensation by feedforward control
(see e.g. [168] or in great detail [167, Chapter 5]).

1.6 Problem formulation

The available motion control concepts in industry (see previous section) work acceptably well.
However,

• controller design mainly relies on good system and parameter knowledge (involving system
identification or parameter estimation),

• often disturbance observers and/or friction compensation methods are necessary to achieve
satisfactory disturbance rejection (increasing controller complexity and implementation
effort) and

• controller tuning might be tedious (several tuning iterations are likely to attain desired
control performance).

The present work aims at introducing adaptive λ-tracking control and funnel control as simple,
robust and easy to tune/implement alternatives to the available motion control concepts in
industry.

– 38 –



1.6 Problem formulation

1.6.1 High-gain adaptive motion control problem

High-gain adaptive controllers are to be developed which are applicable for motion control
of industrial servo-systems and, ideally, allow to include motion control objectives (mco1)–
(mco4) into controller design. The high-gain adaptive motion control problem is divided into
the following two subproblems:

• the high-gain adaptive speed control problem, i.e. to find high-gain adaptive (speed) con-
trollers for 1MS (1.24), (1.25) with instrumentation configuration (1MS-ic1) and for
2MS (1.26), (1.27) with instrumentation configuration (2MS-ic1)(c) and

• the high-gain adaptive position control problem, i.e. to find high-gain adaptive (position)
controllers for 1MS (1.24), (1.25) with instrumentation configuration (1MS-ic2) and for
2MS (1.26), (1.27) with instrumentation configuration (2MS-ic2)(c).

For the 2MS, to allow for adequate damping of shaft oscillations, only the instrumentation
configurations (2MS-ic1)(c) and (2MS-ic2)(c) are considered (see Section 1.4.6.2).

To assure feasibility of motion control objectives (mco1)–(mco4), the high-gain adaptive motion
control problem is formulated under the following modeling assumptions (ma):

(ma1) real-time execution is in “quasi-continuous time”, i.e. the sampling time is small compared
to the dynamics of the servo-system;

(ma2) instrumentation has sufficiently high resolution and noise has sufficiently small ampli-
tude. More precisely, measurement errors are small compared to the prescribed (asymp-
totic) accuracy, i.e. ‖nm‖∞ ≪ λ;

(ma3) friction behavior of the servo-system is covered by the simplified LuGre model (1.22);

(ma4) actuation is sufficiently fast and sufficiently dimensioned, i.e. (i) the simplified actuator
model (1.9) is justified and (ii) for MF1

, MF2
, kA, uA(·), mL(·), gr and Θ (or Θ1 and

Θ2) as in (1.25) (or (1.27)) and ω̇ref(·)/gr ∈ L∞(R≥0;R) (or ω̇2,ref(·) ∈ L∞(R≥0;R)) the
following holds

ûA ≫ max

{
MF1

|gr|
,
MF2

|gr|
,
‖mL‖∞
|gr|

, kA‖uA‖∞, Θ‖ω̇ref‖∞ (or
(
Θ1 +

Θ2

g2r

)
‖ω̇2,ref‖∞)

}
;

(ma5) the models (1.24), (1.25) and (1.26), (1.27) of 1MS and 2MS are sufficiently accurate,
i.e. un-modeled dynamics are negligible within the specified operation bandwidth.

Furthermore, in view of industrial application and implementation, the developed controllers
should have the following properties

(cp1) simple and robust : (i) the controllers have low order and non-complex structure, (ii)
parameter uncertainties do not endanger controller applicability and fulfillment of control
objectives (mco1)–(mco4), (iii) disturbances (e.g. friction and loads) are rejected and (iv)
actuator deviation, feedforward control and measurement noise are tolerated;
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(cp2) easy to implement (industrial applicability): (i) time-consuming system or friction identi-
fication/estimation is not required, i.e. the necessary a priori system knowledge is limited
to the qualitative information given in (1.25) or (1.27) and (ii) default building blocks
(e.g. for function generation, multiplication, summation, integration, saturation, etc.) of
process automation software are sufficient for controller implementation;

(cp3) easy to tune: the controller parameters have distinct and easily to understand influence
on the control performance of the closed-loop system.

1.6.2 Generalized high-gain adaptive control problem

The models of 1MS (1.24), (1.25) and 2MS (1.26), (1.27) are quite similar, which motivates
for a generalization of the problem formulation to a wider class of systems. In the following
two system classes—class S1 and class S2—are introduced which subsume “minimum-phase”
single-input single-output (SISO) systems with known sign of the high-frequency gain, relative
degree one (i.e. class S1) or two (i.e. class S2) and unknown but bounded disturbances and
functional, state-dependent perturbations. The exact definitions of class S1 and class S2 follow
in Section 1.6.2.2. The notions of relative degree, minimum-phase and high-frequency gain are
defined in Chapter 2 (for LTI SISO systems).

The generalized high-gain adaptive control problem is now to find high-gain adaptive controllers
for system class S1 and for system class S2, respectively, which assure achievement of certain
generalized control objectives (to be specified in Section 1.6.2.3).

1.6.2.1 Operator class

First, a precise notion of the admissible functional perturbation is required, therefore introduce:

Definition 1.5 (Operator class T ).
An operator T is element of class T if, and only if, for some h ≥ 0 and n,m ∈ N, the following
operator properties hold:

(op1) T : C([−h,∞);Rn) → L∞
loc(R≥0;R

m);

(op2) for every δ > 0, there exists ∆ > 0, such that, for all ζ(·) ∈ C([−h,∞);Rn):

sup
t∈[−h,∞)

‖ζ(t)‖ < δ =⇒ ‖(Tζ)(t)‖ ≤ ∆ for a.a. t ≥ 0,

(op3) for all t ≥ 0, the following hold:

(a) for all ζ(·), ξ(·) ∈ C([−h,∞);Rn):

ζ(·) ≡ ξ(·) on [−h, t] =⇒ (Tζ)(s) = (Tξ)(s) for a.a. s ∈ [0, t]

(b) for all β(·) ∈ C([−h, t];Rn) there exist τ, δ, c0 > 0, such that, for all ζ(·), ξ(·) ∈
C([−h,∞),Rn) with ζ|[−h,t] = β = ξ|[−h,t] and ζ(s), ξ(s) ∈ B

n
δ (β(t)) for all s ∈

[t, t+ τ ]:
ess-sup
s∈[t,t+τ ]

‖(Tζ)(s)− (Tξ)(s)‖ ≤ c0 sup
s∈[t,t+τ ]

‖ζ(s)− ξ(s)‖ .
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The constant h ≥ 0 quantifies the “memory” of an operator T ∈ T . The operator itself maps
the space of continuous functions into the space of measurable, locally essentially bounded
functions (see Property (op1)). For any bounded input the operator mapping remains also
bounded yielding a kind of “bounded-input bounded-output” property (see Property (op2)).
The mapping only depends on actual and previous inputs and therefore fulfills an assumption
of causality (see Property (op3)(a)). Property (op3)(b) gives a “locally Lipschitz” like condi-
tion, which represents a technical assumption to assure that an appropriate existence theory
(see e.g. [99, Theorem 5] or [157, Theorem 7]) is applicable for the analysis of (closed-loop)
systems described by functional differential equations.

As will be shown in Chapter 5, the operator class T covers nonlinear dynamic friction, i.e. LuGre
friction operator Lϑ0 as in (1.21) and simplified LuGre friction operator F as in (1.22) are both
element of class T . Besides nonlinear friction, class T encompasses e.g. relay, backlash, elasto-
plastic & Preisach hysteresis, nonlinear delay systems and infinite-dimensional regular linear
systems (see [157, Sec. 2.1] and [158, Sec. 2.1]). In Appendix B two simple operators of class
T are presented.

1.6.2.2 System classes

Now being equipped with operator class T , the system classes S1 and S2 may be defined.

Definition 1.6 (System class S1).
Let n,m ∈ N, h ≥ 0, (A, b, c) ∈ R

n×n × R
n × R

n and BT ∈ R
n×m. A system, given by the

functional differential equation

ẋ(t) = Ax(t) + b
(
u(t) + ud(t)

)
+BT

(
(Tx)(t) + d(t)

)

y(t) = c⊤x(t), x|[−h,0] = x0(·) ∈ C
(
[−h, 0]; Rn

)

}
(1.36)

with disturbances ud : [−h,∞) → R and d : [−h,∞) → R
m, operator T : C([−h,∞);Rn) →

L∞(R≥0;R
m), control input u : R≥0 → R and regulated output y(·), is of Class S1 if, and only

if, the following hold:

(S1-sp1) the relative degree is one and the sign of the high-frequency gain is known, i.e.

γ0 := c
⊤b 6= 0 and sign(γ0) known;

(S1-sp2) the unperturbed system is minimum-phase, i.e.

∀ s ∈ C≥0 : det

[
sIn −A b

c⊤ 0

]
6= 0;

(S1-sp3) the operator is element of class T and globally bounded, i.e.

T ∈ T and MT := sup {‖(Tξ)(t)‖ | t ≥ 0, ξ(·) ∈ C([−h,∞),Rn)} <∞;

(S1-sp4) the disturbances are bounded, i.e.

ud(·) ∈ L∞([−h,∞);R) and d(·) ∈ L∞([−h,∞);Rm);
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(S1-sp5) feedback of the regulated output is admissible, i.e. y(·) is available for feedback.

Note that, in “real world”, the regulated output (i.e. the variable to be controlled) usually differs
from the measured output(s) (i.e. the variable(s) available for feedback; recall torque control in
Fig. 1.6 or see [77, pp. 74,75]). Condition (S1-sp5) assures that measured output and regulated
output coincide. It is motivated by a practical point of view and is essential for implementation.

Definition 1.7 (System class S2).
Let n,m ∈ N, h ≥ 0, (A, b, c) ∈ R

n×n × R
n × R

n and BT ∈ R
n×m. A system of form (1.36)

with disturbances ud : [−h,∞) → R and d : [−h,∞) → R
m, operator T : C([−h,∞);Rn) →

L∞(R≥0;R
m), control input u : R≥0 → R and regulated output y(·), is of Class S2 if, and only

if, the following hold:

(S2-sp1) the relative degree is two and the sign of the high-frequency gain is known, i.e.

c⊤b = 0, c⊤BT = 0
⊤
m, γ0 := c

⊤Ab 6= 0 and sign(γ0) known;

(S2-sp2) the unperturbed system is minimum-phase (see (S1-sp2));

(S2-sp3) the operator is of class T and globally bounded (see (S1-sp3));

(S2-sp4) the disturbances are bounded (see (S1-sp4));

(S2-sp5) feedback of the regulated output and its derivative is admissible, i.e. y(·) and ẏ(·) are
available for feedback.

The system classes are quite similar and only differ in “system properties” (sp1) and (sp5).
Actuator saturation as in (1.24) or (1.26) is neglected in Definition 1.6 and 1.7. Constrained
control actions are considered in controller design, e.g. the proposed funnel controllers in Chap-
ter 4 allow for input saturation. In Chapter 5 it will be shown that the high-gain adaptive speed
control problem and the high-gain adaptive position control problem are subproblems of finding
adequate high-gain adaptive controllers for system class S1 and system class S2, respectively.
For speed control output feedback is sufficient, whereas position control additionally requires
derivative feedback. Input disturbance ud(·) in (1.36) may incorporate bounded actuator de-
viations and/or feedforward commands, whereas disturbance d(·) and functional perturbation
(Tx)(·) in (1.36) may account for load torques and nonlinear but bounded friction effects, re-
spectively.

1.6.2.3 Control objectives

For any admissible pair (yref(·),S) of reference yref(·) and system S, i.e.

(yref(·),S) ∈ (W1,∞(R≥0;R), S1) or (yref(·),S) ∈ (W2,∞(R≥0;R), S2),

the high-gain adaptive controllers must accomplish (at least the first two of) the following
(generalized) control objectives (co):

(co1) boundedness of system states and control input, i.e.

x(·) ∈ L∞(R≥0;R
n) and u(·) ∈ L∞(R≥0;R);
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(co2) tracking with prescribed asymptotic accuracy : for prescribed accuracy λ > 0 (arbitrary
small) the tracking error (1.1) approaches the interval [−λ, λ] asymptotically, i.e.

∀λ > 0: lim
t→∞

dist
(
|e(t)|, [0, λ]

)
= 0;

(co3) tracking with prescribed transient accuracy : the absolute value of the tracking error (1.1)
is bounded by any prescribed positive (absolutely) continuous function of time, if the
initial error is enclosed, i.e.

∀λ > 0 ∀ψ(·) ∈ W1,∞(R≥0; [λ,∞)) ∀ |e(0)| < ψ(0) ∀ t ≥ 0: |e(t)| < ψ(t).

1.6.2.4 Admissible reference signals

The admissible reference signals yref : R≥0 → R emanate from the function space Wk,∞(R≥0;R)
(subspace of the Sobolev space, see e.g. [6, p. 194]) of locally absolutely continuous func-
tions with essentially bounded derivatives up to some order k ∈ N equipped with the norm
‖yref‖k,∞ :=

∑k
i=0 ‖y

(i)
ref‖∞. Note that, yref(·) ∈ Wk,∞(R≥0;R) implies that yref(·) is k-times

weakly differentiable (i.e. continuously differentiable almost everywhere) and yref(·)k−1 is (abso-
lutely) continuous. This space covers most of the usually employed reference signals in industry
with one important exception: a reference step at some time t0 > 0 [s], i.e.

yref : R≥0 → R, yref(t) :=

{
ŷref , t ≥ t0 > 0

0, t < t0
(1.37)

where ŷref 6= 0 is its magnitude. Reference steps as in (1.37) (or point-to-point movements,
in general) imply sudden, discontinuous changes in the tracking error (1.1) which endangers
fulfillment of e.g. motion control objective (mco4). Hence reference steps of form (1.37) are
not admissible and should either be smoothed (e.g. low pass filtered) or approximated by a
saturated ramp, given by

yref : R≥0 → R, t 7→ yref(t) := satŷref0

(
α(t− t0)

)
,

where satŷref0 (·) is as in (N.4) and α 6= 0 represents the slope of the ramp. Note that initial refer-
ence steps as in (1.2) (i.e. t0 = 0 in (1.37)) are subsumed by the function space Wk,∞(R≥0;R).
For system class S1 and system class S2 the corresponding reference yref(·) must (at least) be
element of W1,∞(R≥0;R) and W2,∞(R≥0;R), respectively.

Examples of admissible references for class S1 and for class S2 are depicted in Fig. 1.19. These
exemplary references will qualitatively re-appear throughout this thesis. They challenge the
closed-loop system with constant values (initial reference step) and (smoothed) ramp-like sig-
nals. Simple speed or position tracking tasks in industry usually employ such “reference trajec-
tories” (see e.g. [66]) comprising initial set-point for production start (see 0− 2 [s] in Fig. 1.19),
acceleration to production speed or position (see 2− 3 [s] in Fig. 1.19), production phase (see
3 − 5 [s] in Fig. 1.19) and deceleration to standstill (see 5 − 7 [s] and 7 − 8 [s] in Fig. 1.19).
Physical constraints (see Section 1.4) limit maximal acceleration and maximal speed, respec-
tively. Hence, in particular for tracking problems, reference generation must account for these
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(a) admissible reference for class S1: yref(·) and
ẏref(·) (i.e. yref(·) ∈ W1,∞(R≥0;R))
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(b) admissible reference for class S2: yref(·),
ẏref(·) and ÿref(·)/10 (i.e. yref(·) ∈

W2,∞(R≥0;R))

Figure 1.19: Examples of admissible reference signals for system class S1 and S2, respectively.

limitations by providing smooth or (at least) continuous reference signals with bounded deriva-
tives.

Remark 1.8 (Reference trajectory generation).
Reference generation and, in general, path planing are non-trivial tasks but essential in motion
control (see e.g. [143] or in greater detail [174, Chapter 5]). For this thesis it is assumed that
yref(·) ∈ W1,∞(R≥0;R) (or W2,∞(R≥0;R)) is a reasonable and admissible reference specified by
the human operator (via human-machine interface) or provided by an “intelligent” path planing
algorithm avoiding collision with obstacles (using e.g. potential fields, gradient descent methods
or trajectory planning and polynomial interpolation, see [174, Chapter 5]).

1.6.2.5 Output disturbances due to measurement errors

Output disturbances are neglected in Definition 1.6 and in Definition 1.7. Such disturbances
may be considered as being incorporated into the reference (yielding a deteriorated reference
signal). More precisely, if output y(·) in (1.36) is corrupted by measurement errors (e.g. mea-
surement noise, see Section 1.4.4) subsumed in nm(·) ∈ W2,∞(R≥0,R), then the tracking er-
ror (1.1) becomes

∀ t ≥ 0: e(t) = yref(t)− y(t)− nm(t) =
(
yref(t)− nm(t)

)
− y(t) (1.38)

and similarly its derivative. Output disturbance nm(·) cannot be distinguished from reference
yref(·) and hence cannot be compensated for by a controller with output feedback. The actual
tracking error yref(·)− y(·) may evolve outside the prescribed region. Therefore, for perturbed
tracking errors as in (1.38), the control objectives (co2) and (co3) should be relaxed to

(ĉo2) ∀λ > 0: limt→∞ dist
(
|e(t)|, [0, λ+ ‖nm‖∞]

)
= 0 and

(ĉo3) ∀ t ≥ 0: |e(t)| < ψ(t) + ‖nm‖∞,
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respectively. Note that, in view of modeling assumption (ma2), the measurement errors are
small compared to the prescribed asymptotic accuracy, i.e. ‖nm‖∞ ≪ λ. Moreover, if ‖nm‖∞
is known a priori, then substituting λ̂ := λ − ‖nm‖∞ for λ in (co2) and ψ̂(·) := ψ(·) − ‖nm‖∞
for ψ(·) in (co3) assures fulfillment of the primary control objectives, respectively.

1.7 Contributions of this thesis

The high-gain adaptive speed control problem was solved in [169] for 1MS and 2MS. How-
ever, some issues were not covered, e.g. actuator saturation, gear and motor side friction were
neglected. Moreover, dynamic friction effects were solely touched, explicit dynamic friction
modeling was not addressed. These issues are covered in the present work and extensions for
funnel control such as gain scaling (see [101]) and asymmetric boundary design (see [121]) are
considered. The extensions provide more degrees of freedom in controller design and may help
to improve tracking performance. Furthermore, high-gain adaptive controllers are proposed
which solve the high-gain adaptive position control problem for 1MS and 2MS. These high-gain
adaptive position controllers with output and derivative feedback (i.e. feedback of position and
speed) are simple, robust and easy to implement.

The high-gain adaptive (motion) controllers are developed, in a general framework, for systems
of class S1 and for systems of class S2 (see Definitions 1.6 and 1.7, respectively) to solve the
generalized high-gain adaptive control problem. The developments are presented in a structured,
detailed and self-contained manner to improve readability and ease insight, in particular, for
newcomers to high-gain adaptive control: At first “classical” high-gain adaptive control is mo-
tivated and introduced for LTI SISO systems with relative degree one and then extended to
LTI SISO systems with relative degree two (see Chapter 2). Then adaptive λ-tracking control
and funnel control are introduced and discussed for systems of class S1 and class S2 (see Chap-
ters 3 & 4). In Chapter 5 it is shown that, depending on application, 1MS (1.24), (1.25) and
2MS (1.26), (1.27) are or can be rendered element of system classes S1 and S2. Hence high-gain
adaptive motion control is theoretically admissible. That the proposed controllers are indeed
applicable in “real world” is shown at the end of Sections 5.2.2 and 5.2.3 by implementation and
experimental validation at the laboratory setup of the Institute for Electrical Drive Systems
and Power Electronics. Measurement results are presented for high-gain adaptive speed and
position control of 1MS and 2MS. Finally, a first result in robotics is established which allows
for application of funnel control (with derivative feedback) for position control of rigid revolute
joint robotic manipulators if the inertia matrix is known.

This thesis arose from and is based on several publications: most of the results for funnel con-
trol with and without extensions (e.g. gain scaling, proportional-integral internal model) for
speed control of 1MS and 2MS were already published in [67, 70, 71, 96, 169]. First results
for high-gain adaptive position control of 1MS and 2MS (with proportional-integral internal
model) have been accepted for publication in “International Journal of Control” (see [65]).

Most of the theoretical results for “classical” high-gain adaptive control, adaptive λ-tracking
control and funnel control for systems with relative degree one or two are based on or taken from
the monograph [86], the contributions [34, 99, 101, 103, 190] and the joint work [72]. Funnel
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control with saturation was introduced in [82] and [83] for LTI multiple-input multiple-output
(MIMO) and nonlinear SISO systems with relative degree one, respectively. Funnel control
with derivative feedback and saturation for nonlinear SISO systems with relative degree two
has been submitted for publication in “SIAM Journal on Control and Optimization” (see the
joint work [72]).

Main theoretical contributions of this thesis are:

• the detailed modeling of industrial servo-systems (based on a literature research, see
Section 1.4, p. 12 ff.) leading to the models of 1MS (1.24), (1.25) and 2MS (1.26), (1.27)
with gear, actuator saturation and deviation, load disturbance and dynamic friction on
motor and load side;

• Theorem 2.36: high-gain adaptive control with derivative feedback for minimum-phase
LTI SISO systems with relative degree two and known sign of the high-frequency gain
(see p. 79 ff.);

• Theorem 3.13: adaptive λ-tracking control with derivative feedback for systems of class
S2 (see p. 114 ff.);

• Theorem 4.13 and Theorem 4.15 (based on Theorem 2.1 and Theorem 3.3 in [72], resp.):
funnel control with derivative feedback and funnel control with derivative feedback &
saturation for systems of class S2, respectively (see p. 156 ff. and p. 165 ff.);

• Lemma 5.3: the LuGre friction operator Lϑ0 as in (1.21) is element of operator class T
(see p. 179 ff.);

• a solution to the high-gain adaptive position control problem for 1MS and 2MS, respec-
tively (see Section 5.2.3, p. 202 ff.) and

• Theorem 5.18: (MIMO) funnel control with derivative feedback for position control of
rigid revolute joint robotic manipulators (see p. 227 ff.).

Main experimental contributions of this thesis are:

• the comparative measurements for the relative degree one case, i.e. application of adaptive
λ-tracking control and funnel control with output feedback for speed control of 1MS and
2MS (see Section 5.2.2.3, p. 193 ff.) and

• the comparative measurements for the relative degree two case, i.e. application of adaptive
λ-tracking control and funnel control with derivative feedback for position control of 1MS
and 2MS (see Section 5.2.3.3, p. 215 ff.).
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High-gain adaptive control

This chapter presents the basic idea(s) of “classical” high-gain adaptive control for linear time-
invariant (LTI) single-input single-output (SISO) systems. In Section 2.1 the notions of relative
degree, high-frequency gain and minimum-phase property are defined and a “decoupled system
description”—the so called Byrnes-Isidori form (BIF)—is presented which is helpful in many
proofs. After motivating for high-gain (adaptive) control by the root locus method (see Sec-
tion 2.2) and presenting a brief historical overview (see Section 2.3.1), in Section 2.3.3 and in
Section 2.3.4, high-gain adaptive control is discussed for minimum-phase LTI SISO systems
with relative degree one and with relative degree two, respectively. Section 2.4 briefly revis-
its the notion of high-gain adaptive tracking. Here a so called internal model is connected in
series to a high-gain adaptive controller to allow for asymptotic tracking of a reference signal
generated by a known linear (homogeneous) differential equation.

2.1 Linear time-invariant single-input single-output systems

There exist two common system descriptions for LTI SISO systems either in state space or
in frequency (Laplace) domain. To introduce the state space representation, let n ∈ N and
t ≥ 0 [s] and consider the n-th dimensional LTI SISO system, with input u(t) ∈ R, output
y(t) ∈ R and state variable

∀ t ≥ 0: x(t) = (x1(t), . . . , xn(t))
⊤ ∈ R

n,

given by the ordinary differential equation (ODE)

ẋ(t) = Ax(t) + b u(t),
y(t) = c⊤x(t) + d u(t)

n ∈ N, x(0) = x0 ∈ R
n,

(A, b, c, d) ∈ R
n×n × R

n × R
n × R

}
(2.1)

where A, b, c, d represent system matrix, input and output (coupling) vector and (direct)
feedthrough, respectively. The initial-value of the ODE (2.1) is given by x(0) = x0. A system
of form (2.1) with u(·) = 0 is asymptotically (or, equivalently, exponentially) stable if, and
only if, spec(A) ⊂ C<0 (see [77, Theorem 3.3.20]). If spec(A) ⊂ C<0 and u(·) ∈ Lp(R≥0;R),
p ∈ [1,∞], then a system of form (2.1) is input-output stable or Lp-stable (see [77, p. 132]).

Alternatively, to introduce the system representation in frequency domain, define the coprime
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polynomials with real coefficients

N(s) := c0 + c1s+ · · ·+ cm−1s
m−1 + cms

m ∈ R[s]

D(s) := a0 + a1s+ · · ·+ an−1s
n−1 + sn ∈ R[s]

,
n, m ∈ N, n ≥ m,
cm 6= 0

(2.2)

and consider the transfer function

F (s) =
y(s)

u(s)
=
N(s)

D(s)
, N, D ∈ R[s], coprime and as in (2.2) (2.3)

from input u(s) = L {u(t)} to output y(s) = L {y(t)} (assuming the Laplace transforms
exist). Transfer function (2.3) is said to be proper or strictly proper if m ≤ n or m < n,
respectively. For n = m = 0 the transfer function (2.3) simplifies to F (s) = c0. N(s) and D(s)
represent numerator and denominator polynomial of transfer function (2.3), respectively. Some
z ∈ C is called (transmission) zero of (2.3) if N(z) = 0 (i.e. a root of the numerator) whereas
some p ∈ C is called pole of (2.3) if D(p) = 0 (i.e. a root of the denominator). A polynomial is
called Hurwitz polynomial (or simply Hurwitz) if all its roots have negative real part. A LTI
SISO system of form (2.3) is exponentially (or, equivalently, asymptotically) stable if, and only
if, the denominator D is a Hurwitz polynomial.

A state space representation (2.1) with x0 = 0n is called realization of (2.3), if

F (s) = c⊤(s In −A)−1b+ d, n ∈ N, (A, b, c, d) ∈ R
n×n × R

n × R
n × R. (2.4)

Note that n in (2.1) and (2.2) must not necessarily equal. A realization is said to be a minimal
realization, if there is no other realization with smaller dimension. (2.1) is a minimal realization
of (2.3) if, and only if, (A, b) is controllable and (A, c) is observable (see [24, Corollary 12.9.15]).
The direct feedthrough in (2.4) is uniquely determined by d = lims→∞ F (s) (see [24, p. 799]).
Moreover, any strictly proper transfer function has a minimal realization (see [24, Proposi-
tion 12.9.3]). Transfer function (2.4) represents the Laplace transform of the impulse response
of (2.1) for x0 = 0n (see [24, pp. 797, 799]). Alternatively, the transfer function (2.4) may be
computed as follows (see [24, pp. 799, 832])

F (s) = c⊤(sIn −A)−1b+ d =

− det

[
sIn −A b

c⊤ −d

]

det(sIn −A)
= d+

∞∑

i=1

c⊤Ai−1b

si
(2.5)

where, in the last term of (2.5), d and c⊤Ai−1b for i ≥ 1 are called Markov parameters (see [24,
p. 799]). For arbitrary x0 6= 0n, one may write

y(s) = c⊤(s In −A)−1x0 +
(
c⊤(s In −A)−1b+ d

)
u(s).

2.1.1 Relative degree

The term “relative degree” for nonlinear (or linear) systems in state space was coined by Christo-
pher I. Byrnes (1949–2010) and Alberto Isidori (1942– ) (see [36]), whereas the relative degree
of transfer functions is also known as pole excess (see [16, p. 93]) or difference degree/order
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(dt. Differenzordnung, see [58, Section 13.5.1]). The relative degree is an essential ingredient of
several adaptive and nonlinear control concepts, e.g. it must be known for high-gain adaptive
control (see e.g. [85]), for model reference adaptive control (see e.g. [138, p. 183-184]) or for
exact input/output linearization of nonlinear SISO systems (see e.g. [107, Section 4.2]).

The following definition of the relative degree of LTI SISO systems slightly differs from that
given in [107, Remark 4.1.2], also the case of relative degree zero is considered.

Definition 2.1 (Relative degree of LTI SISO systems).
(i) A system of form (2.1) is said to have relative degree r ≥ 1 if, and only if, the following
conditions hold:

d = 0, ∀ i ∈ {1, . . . , r − 2} : c⊤Aib = 0 and c⊤Ar−1b 6= 0. (2.6)

System (2.1) is said to have relative degree r = 0 if, and only if, d 6= 0 in (2.1).
(ii) A transfer function of form (2.3) is said to have relative degree r = n−m.

Loosely speaking, the relative degree indicates which time derivative of the system output y(·)
is directly affected by the control input u(·) and hence how “fast” y(·) is influenced by u(·). The
integer r specifies the number of integrators which at least have to “be passed” from input to
output. As a consequence, the relative degree cannot exceed the system order, i.e. r ≤ n. For
systems with feedthrough (i.e. d 6= 0) the control input directly acts on the system output.

For LTI SISO systems of form (2.1) the relative degree is globally defined, i.e. it holds for any
x⋆ ∈ R

n, whereas e.g. for control-affine nonlinear SISO systems of the form

ẋ(t) = f(x(t)) + g(x(t)) u(t), x(0) = x0 ∈ R
n (2.7)

with (smooth) functions f , g : Rn → R
n, it may change over R

n or may even be undefined for
some x⋆ ∈ R

n (see [107, p. 137 and Example 4.1.1]).

Note that the relative degree of a transfer function (2.3) and its realization (2.1) are related.

Lemma 2.2. Denote the relative degree of (2.1) and (2.3) by rSS ≥ 0 and rTF ≥ 0, respectively.
If (2.1) is a realization of (2.3), then rSS = rTF .

Proof. Since (2.1) is a realization of (2.3), (2.4) and (2.5) hold. In view of (2.5) and Defini-
tion 2.1, the following holds

∀ l ≥ max{1, rSS} : deg sl − deg
(
d sl + c⊤b sl−1 + · · ·+ c⊤Al−1b

)
= rSS. (2.8)

Hence

rSS
(2.8),(2.5)

= deg
(
det(sIn −A)

)
− deg

(
det

[
sIn −A b

c⊤ −d

])

(2.5),(2.3)
= deg(D)− deg(N) = n−m = rTF ,

which completes the proof.
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The relative degree is invariant to coordinate changes.

Proposition 2.3. Consider a system of form (2.1) with relative degree r where 0 ≤ r ≤ n.
The coordinate transformation

T : R
n → R

n, x 7→ x̃ := Tx, where T ∈ GLn(R) (2.9)

applied to system (2.1) yields the following system in new coordinates

˙̃x(t) = TAT−1
︸ ︷︷ ︸

=:Ã

x̃(t) + Tb︸︷︷︸
=:b̃

u(t), x̃(0) = Tx0

y(t) = c⊤T−1
︸ ︷︷ ︸
=:c̃⊤

x̃(t) + d u(t).





(2.10)

Denote the relative degree of the transformed system (2.10) by r̃, then r̃ = r.

Proof. In view of (2.9) the inverse T−1 ∈ R
n×n exists and a straightforward calculation gives

system (2.10) in new coordinates. First consider the case d 6= 0 in (2.1), then r = 0 by
Definition 2.4. Moreover, in view of (2.10), r̃ = 0 = r.
Next consider the case d = 0 in (2.1), then 1 ≤ r ≤ n and note that the following holds

∀ i ∈ N : c̃⊤Ã
i
b̃ = c⊤T−1 (TAT−1) · · · (TAT−1)︸ ︷︷ ︸

i-times

Tb = c⊤Aib. (2.11)

Hence, c̃⊤Ã
r−1
b̃ = c⊤Ar−1b 6= 0 and c̃⊤Ã

i
b̃ = c⊤Aib = 0 for all i ∈ {1, . . . , r − 2}, which in

view of Definition 2.1 yields r = r̃. This completes the proof.

2.1.2 High-frequency gain

For control system design, it is crucial to determine the “direction of influence” of control action
u(·) on system output y(·). The sign of the high-frequency or instantaneous gain1 (see [15,
p. 236]) indicates this influence. That is why the high-frequency gain is sometimes also called
control direction (see [150, p. 261,262]). It is defined as follows.

Definition 2.4 (High-frequency gain of LTI SISO systems).
(i) For a system given by (2.1) with relative degree r, the high-frequency gain γ0 is defined by

γ0 :=

{
d , r = 0

c⊤Ar−1b , 1 ≤ r ≤ n.
(2.12)

(ii) For a transfer function of form (2.3) with relative degree 0 ≤ r ≤ n, the high-frequency
gain γ0 is defined by

γ0 := lim
s→∞

srF (s) (2.13)

1Nowadays it is common to use the notion “high-frequency gain” for both system descriptions in time (state
space) or in frequency (transfer function) domain. Formerly, “high-frequency gain” denoted the “leading coeffi-
cient of the numerator of the transfer function whereas “instantaneous gain” was equivalently used in the time
domain (see [37]).
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Note that for F (s) as in (2.3) the high-frequency gain is given by γ0 = cm. In general, the high-
frequency gain γ0 corresponds to “the first non-vanishing coefficient of the impulse response”
(see [15, p. 334]) and is not to be confused with the steady-state gain (see [24, p. 799])

γ∞ := lim
s→0

F (s)
(2.3)
=

c0
a0

(2.4)
= −c⊤A−1b+ d,

which (for stable LTI SISO systems) quantifies amplification of the control input in steady-
state, i.e. limt→∞ y(t) = γ∞ limt→∞ u(t) (if limt→∞ u(t) exists).

Akin to the relative degree, also the high-frequency gain of a transfer function (2.3) and its
realization (2.1) are linked.

Lemma 2.5. Denote the high-frequency gain of (2.1) and (2.3) by γSS0 and γTF0 , respectively.
If (2.1) is a realization of (2.3), then γSS0 = γTF0 .

Proof. From Lemma 2.2 it follows that realization (2.1) and transfer function (2.3) have identical
relative degree r. Consider the case r = 0. Then by Definition 2.4 and uniqueness of d =
lims→∞ F (s) (see [24, p. 799]) it follows that γSS0 = d = lims→∞ F (s) = cm = γTF0 . Now
consider the case r ≥ 1, then the following holds

γTF0 = cm = lim
s→∞

srF (s)
(2.5)
= lim

s→∞

(
sr

∞∑

i=1

c⊤Ai−1b

si

)

(2.6)
= lim

s→∞

(
sr

∞∑

i=r

c⊤Ai−1b

si

)
= c⊤Ar−1b = γSS0 .

This completes the proof.

Moreover, also the high-frequency gain is invariant to similarity transformations.

Corollary 2.6. Consider a system of form (2.1) with high-frequency gain γ0. A coordinate
transformation as in (2.9) applied to (2.1) does not change the high-frequency gain, i.e. the
high-frequency gain γ̃0 of the transformed system (2.10) equals γ0.

Proof. Applying (2.9) to (2.1) yields (2.10). Denote the high-frequency gain of (2.10) and (2.1)
by γ̃0 and γ0, respectively. First consider the case d 6= 0. Then r = 0 and, in view of (2.10)
and Definition 2.4, γ0 = γ̃0 = d. Next consider the case d = 0, hence 1 ≤ r ≤ n and, in view of
Definition 2.4, γ0 = c⊤Ar−1b and γ̃0 = c̃⊤Ã

r−1
b̃, respectively. Invoking (2.11) yields γ0 = γ̃0.

This completes the proof.

2.1.3 Minimum-phase systems

For this thesis the definition of minimum-phase LTI systems is adopted from [86, p. 10]. Solely,
the SISO case is considered.

Definition 2.7 (Minimum-phase LTI SISO system).
(i) A system of form (2.1) is said to be minimum-phase if, and only if, the following holds

∀ s ∈ C≥0 : det

[
sIn −A b

c⊤ −d

]
6= 0. (2.14)
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(ii) A transfer function of form (2.3) is said to be minimum-phase if, and only if, the following
holds

∀ s ∈ C≥0 : N(s) = c0 + c1s+ · · ·+ cm−1s
m−1 + cms

m 6= 0. (2.15)

Note that in contrast to many (engineering) textbooks on linear control theory (see e.g. [124,
p. 294] or [58, p. 194]), minimum-phase systems of form (2.3) (or (2.1))—according to Defini-
tion 2.7—are not required to have poles (or eigenvalues) with negative real parts and a positive
high-frequency gain. Definition 2.7 allows for minimum-phase systems which are unstable and
have high-frequency gains of arbitrary sign.

In view of Definition 2.7, a realization (2.1) of (2.3) is minimum-phase, if it is stabilizable and
detectable and the transfer function (2.3) has only zeros in left complex half-plane (see [86,
p. 10]). This characterization written more formally gives:

Proposition 2.8. [86, Proposition 2.1.2]
Let (2.1) be a realization of (2.3). Then (2.14) holds if, and only if, the following conditions
are satisfied

(i) ∀ s ∈ C≥0 : rank[sIn −A, b] = n (i.e. (A, b) is stabilizable);

(ii) ∀ s ∈ C≥0 : rank

[
sIn −A
c⊤

]
= n (i.e. (A, c⊤) is detectable);

(iii) F (s) as in (2.3) has no (transmission) zeros in C≥0.

Remark 2.9 (Popov-Belevitch-Hautus (PBH) test).
Conditions (i) and (ii) in Proposition 2.8 are also known as the Popov-Belevitch-Hautus (rank)
test for stabilizability and detectability, respectively (see [24, Corollaries 12.5.4 and 12.8.4]).
Replacing ‘∀ s ∈ C≥0’ by ‘∀ s ∈ C’ in conditions (i) and (ii) of Proposition 2.8 gives the
Popov-Belevitch-Hautus (rank) test for controllability and observability, respectively (see [24,
Corollaries 12.6.19 and 12.3.19]).

The following proof makes use of the “Kalman decomposition” (see e.g. [24, p. 825]) and differs
from the brief proof in [86, p. 10].

Proof of Proposition 2.8.

Step 1: Kalman decomposition of state space realization.
For D ∈ R[s] as in (2.3), define n1 := deg(D). Since (2.1) is a realization of (2.3), (2.5) holds
and, for n as in (2.1), n ≥ n1. In view of Proposition 12.9.10 in [24, p. 825], there exists a
nonsingular S ∈ R

n×n such that

Ã := S−1AS =




A1 O A13 O

A21 A2 A23 A24

O O A3 O

O O A43 A4


 , S

−1b =




b1
b2
0n3

0n4


 and (c⊤S)⊤ =




c1
0n2

c3
0n4


 (2.16)

where n2, . . . , n4 ∈ N such that
∑4

i=1 ni = n, Ai ∈ R
ni×ni for all i ∈ {1, . . . , 4}, A13 ∈ R

n1×n3 ,
A21 ∈ R

n2×n1 , A23 ∈ R
n2×n3 , A24 ∈ R

n2×n4 , A43 ∈ R
n4×n3 , b1 ∈ R

n1 , b2 ∈ R
n2 , c1 ∈ R

n1 and
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c3 ∈ R
n3 . Note that, if some ni = 0, i ∈ {2, 3, 4}, then the corresponding entries in (2.16) are

empty. Clearly, F (s) = c⊤(sIn −A)−1b + d = c⊤S(sIn − Ã)−1S−1b + d and, moreover, the
subsystem (A1, b1, c1, d) is a minimal realization of (2.3) (see [24, Proposition 12.9.10]). Hence
(see [24, Theorem 12.9.16]) and since D ∈ R[s] as in (2.3) is monic, the following holds

D(s) = det(sIn1 −A1) (= det(sIn −A) if n2 = n3 = n4 = 0). (2.17)

Step 2: It is shown that the following implication holds: J (i), (ii) and (iii) K =⇒ J (2.14) K.
In view of Step 1, for A2, A3 and A4 as in (2.16), Proposition 12.9.10 in [24, p. 825] gives

(i) and (ii) =⇒ spec(A2), spec(A3), spec(A4) ⊂ C<0 (if not empty). (2.18)

Moreover, it is easy to see that (where det(sIni −Ai) := 1 if some ni = 0, i ∈ {2, 3, 4})

det(sIn −A) = det(S−1(sIn −A)S)
(2.16)
= det(sIn − Ã)

(2.16)
=

4∏

i=1

det(sIni −Ai). (2.19)

Since (2.1) is a realization of (2.3), (2.5) holds and, for F (s) = N(s)
D(s)

as in (2.3), rewriting gives

det

[
sIn −A b

c⊤ −d

]
(2.5)
= −N(s)

D(s)
det(sIn −A)

(2.19),(2.17)
= −N(s)

4∏

i=2

det(sIni −Ai). (2.20)

Invoking (2.18) and (iii) (i.e. ‘N(s) 6= 0 for all s ∈ C≥0’) yields (2.14).

Step 3: It is shown that the following implication holds: J (2.14) K =⇒ J (i), (ii) and (iii) K.
Note that (2.14) is equivalent to

∀ s ∈ C≥0 : rank

[
sIn −A b

c⊤ −d

]
= n+ 1, (2.21)

i.e. the n+1 column vectors of
[
sIn − A b

c⊤ −d

]
are linearly independent for all s ∈ C≥0. Moreover,

for any M ∈ R
k×l, k, l ∈ N, it holds that rank(M ) = rank(M⊤) (see [24, Corollary 2.5.3]). As

a consequence, (i) and (ii) follow from (2.21). Hence, in view of Step 1, (2.18) holds. Moreover,
(2.17), (2.19) and (2.20) also hold. Solving for N(s) in (2.20) and invoking (2.14) and (2.18)
yields ‘N(s) 6= 0 for all s ∈ C≥0’ which shows (iii). Combining Step 2 and Step 3 completes the
proof of Proposition 2.8.

Example 2.10. As a consequence of Proposition 2.8 the minimum-phase condition (2.14)
implies stabilizability and detectability, whereas there exist stabilizable and detectable systems
which are not minimum-phase. For illustration consider the first order system given by

ẋ(t) = 2x(t) + u(t), x(0) = x0 ∈ R

y(t) = x(t) + u(t)

which is stabilizable and detectable since

∀ s ∈ C≥0 : rank
[
s− 2, 1

]
= rank

[
s− 2
1

]
= 1,
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but F (s) = (s− 2)−1 + 1 = (s− 1)/(s− 2) has the zero z = 1 in the right complex half-plane.

To conclude this subsection, note that also the minimum-phase property is invariant to coor-
dinate changes.

Corollary 2.11. Consider a minimum-phase system of form (2.1). The coordinate transfor-
mation (2.9) applied to (2.1) yields a minimum-phase system of form (2.10).

Proof. Using the same notation as in (2.10), the result directly follows from

det

[
sIn − Ã b̃

c̃⊤ −d

]
= det

[
T (sIn −A)T−1 Tb

c⊤T−1 −d

]

= det

([
T 0

0 1

] [
sIn −A b

c⊤ −d

] [
T−1

0

0 1

])
= det(T ) det(T−1)︸ ︷︷ ︸

=1

det

[
sIn −A b

c⊤ −d

]
6= 0.

This completes the proof.

2.1.4 Byrnes-Isidori form

In [107, Section 4.1, Proposition 4.1.3] a coordinate transformation is introduced which “decom-
poses” a n-th order (nonlinear) dynamical system of form (2.7) with (known) relative degree
1 ≤ r ≤ n into a chain of r integrators from control input to system output (“forward dynam-
ics”) and a subsystem with reduced order n− r (“internal dynamics”). Since the relative degree
of nonlinear systems might only be defined locally around a point x⋆ ∈ R

n also this coordinate
change may only hold locally around x⋆. If the “internal dynamics” are decoupled from the
control input, then this decomposition is called Byrnes-Isidori form (BIF, see e.g. [72]) which
e.g. allows for exact input/output linearization by state feedback (linearization may only hold
locally, see [107, Section 4.2]). If the relative degree is defined at x⋆ ∈ R

n, then the BIF does
exist at x⋆ in general, however the corresponding coordinate transformation may not be found
easily (see [107, Remark 4.1.3]).

In contrast, for LTI SISO systems the relative degree is defined globally and hence the de-
composition holds globally. Moreover, the coordinate transformation to obtain the BIF can
be derived easily. The following lemma gives the explicit transformation matrix for LTI SISO
systems of form (2.1) with known relative degree r ≥ 1. The lemma was found independently
of Lemma 3.5 in [103] (there for the MIMO case). The presented proof slightly differs from
that given in [103].

Lemma 2.12 (Byrnes-Isidori form of LTI SISO systems with known relative degree).
Consider a system of form (2.1) with relative degree 1 ≤ r < n, i.e. (2.6) holds true. Define

C :=




c⊤

c⊤A
...

c⊤Ar−1


 ∈ R

r×n, B :=
[
b Ab · · · Ar−1b

]
∈ R

n×r (2.22)
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replacements

ż = ar+2 y +Ar+3 z

(a1, . . . , ar)




y
...

y(r−1)


+ a⊤

r+1 z + γ0 u

r integrators

u

z

y(r) y(r−1) ẏ y
· · ·

...

Figure 2.1: Block diagram of LTI SISO system in BIF with relative degree r ≥ 1 (initial values are
neglected).

and choose

V ∈ R
n×(n−r) such that imV = kerC, i.e. CV = Or×(n−r). (2.23)

Then the following hold:

(i) the matrix

S =

[
C

N

]
∈ R

n×n where N = (V ⊤V )−1V ⊤(In −B(CB)−1C) ∈ R
(n−r)×n

is invertible with inverse S−1 =
[
B(CB)−1, V

]
;

(2.24)

(ii) the matrix S as in (2.24) with z ∈ R
n−r allows for a coordinate transformation

S : Rn → R
n,

(
y, ẏ, · · · , y(r−1), z⊤

)⊤
:= Sx (2.25)

which gives the Byrnes-Isidori form (BIF) as follows

d
dt




y(t)
ẏ(t)
...

y(r−1)(t)


 =




0 1 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . . 1 0
0 · · · · · · 0 1
a1 · · · · · · ar−1 ar




︸ ︷︷ ︸
=:Ar∈Rr×r




y(t)
ẏ(t)
...

y(r−1)(t)


+

[
O(r−1)×(n−r)

a⊤
r+1

]
z(t) +




0
...
0
0
γ0



u(t),

(
y(0), ẏ(0), · · · , y(r−1)(0)

)⊤
= Cx0

ż(t) =
[
ar+2 O(n−r)×r

]



y(t)
...

y(r−1)(t)


+Ar+3z(t), z(0) =Nx0





(2.26)
where γ0 = c

⊤Ar−1b ∈ R,
(
a1 a2 · · · ar

)
= c⊤ArB(CB)−1 ∈ R

1×r, a⊤
r+1 = c

⊤ArV ∈
R

1×(n−r), ar+2 =
1
γ0
NArb ∈ R

(n−r)×1 and Ar+3 =NAV ∈ R
(n−r)×(n−r);
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(iii) if system (2.1) with d = 0 is minimum-phase, then for Ar+3 as in (2.26) the following
holds

spec(Ar+3) ⊂ C<0.

In Fig. 2.1 a BIF of a LTI SISO system of form (2.1) with relative degree r ≥ 1 is depicted.
Note that for arbitrary α 6= 0 the scaled V α := αV also satisfies (2.23) and so the BIF is not
a unique representation.

Proof of Lemma 2.12.

Step 1: Some essential equalities are shown.
Define γ0 := c⊤Ar−1b and note that

CB =




c⊤b c⊤Ab · · · c⊤Ar−2b c⊤Ar−1b

c⊤Ab c⊤A2b · · · c⊤Ar−1b c⊤Arb
...

... . .
. ...

...
c⊤Ar−2b c⊤Ar−1b · · · c⊤A2r−4b c⊤A2r−3b

c⊤Ar−1b c⊤Arb · · · c⊤A2r−3b c⊤A2(r−1)b




(2.6)
=



0 γ0

. .
.

γ0 ⋆


 ∈ R

r×r

and det(CB) = γr0 6= 0. Hence, CB ∈ GLr(R) and its inverse has the form

(CB)−1 =




⋆ 1/γ0

. .
.

1/γ0 0


 . (2.27)

Furthermore, it is easy to see that the following hold

AB =
[
Ab, A2b, · · · , Arb

]
=

[
B

[
0
⊤
r−1

Ir−1

]
Arb

]
, (2.28)

CA =
[
c⊤A, c⊤A2, · · · , c⊤Ar

]⊤
=

[[
0r−1 Ir−1

]
C

c⊤Ar

]
, (2.29)

NB = (V ⊤V )−1V ⊤(In −B(CB)−1C)B = O(n−r)×r =⇒ Nb = 0n (2.30)

and

NV = (V ⊤V )−1V ⊤(In −B(CB)−1C)V
(2.23)
= (V ⊤V )−1V ⊤V = In−r. (2.31)

Step 2: It is shown that Assertions (i) and (ii) hold true.
For S as in (2.24) check

SS−1 =

[
C

N

] [
B(CB)−1, V

]
=

[
Ir O(n−r)×(n−r)

NB(CB)−1 NV

]
(2.30),(2.31)

= In,
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which shows Assertion (i). Moreover, applying (2.25) to (2.1) with d = 0 and defining

w :=
(
y, ẏ, · · · , y(r−1)

)⊤
and

(
w

z

)
:= Sx

yields
d
dt

(
w(t)
z(t)

)
= SAS−1

(
w(t)
z(t)

)
+ Sb u(t),

(
w(0)
z(0)

)
= Sx0

y(t) = c⊤S−1
(
w(t), z(t)

)⊤

where

SAS−1 =

[
CAB(CB)−1 CAV

NAB(CB)−1 NAV

]
,

Sb =
(
c⊤b, · · · , c⊤Ar−2b, c⊤Ar−1b, Nb

)⊤ (2.6),(2.30)
=

(
0r−1, γ0 , 0n−r

)⊤
,

and

c⊤S−1 =
(
1 0 · · · 0

)
︸ ︷︷ ︸

∈R1×r

CS−1 =
(
1 0 · · · 0

) [
CB(CB)−1,CV

]

(2.23)
=

(
1 0 · · · 0

) [
Ir,Or×(n−r)

]
=
(
1 0 · · · 0

)
∈ R

1×n.

Furthermore,

CAB(CB)−1 (2.29)
=

[[
0r−1 Ir−1

]
C

c⊤Ar

]
B(CB)−1 =




0 1 0 · · · 0
...

. . .
. . .

...
0 · · · 0 1 0
0 · · · · · · 0 1
c⊤ArB(CB)−1



,

CAV
(2.29)
=

[[
0r−1 Ir−1

]
CV

c⊤ArV

]
(2.23)
=

[
O(r−1)×(n−r)
c⊤ArV

]

and

NAB(CB)−1 (2.28)
= (V ⊤V )−1V ⊤(In −B(CB)−1C)

[
B

[
0
⊤
r−1

Ir−1

]
, Arb

]
(CB)−1

=
(V ⊤V )−1V ⊤

γ0

[
O(n−r)×(r−1), (In −B(CB)−1C)Arb

]
(CB)−1

(2.27)
=

(V ⊤V )−1V ⊤

γ0

[
(In −B(CB)−1C)Arb, O(n−r)×(r−1)

]
.

Combining the results above and defining γ0 := c⊤Arb,
(
a1 a2 · · · ar

)
:= c⊤ArB(CB)−1,

a⊤
r+1 := c

⊤ArV , ar+2 :=
1
γ0
NArb andAr+3 :=NAV yields the form as in (2.26) which shows

Assertion (ii) and completes Step 2.
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Step 3: It is shown that Assertion (iii) holds true.
If system (2.1) with d = 0 is minimum-phase, then the following holds

∀ s ∈ C≥0 : det

[
S(sIn −A)S−1 Sb

c⊤S−1 0

]
= det

([
S 0n

0
⊤
n 1

] [
sIn −A b

c⊤ 0

] [
S−1

0n

0
⊤
n 1

])

= det(S) det(S−1)︸ ︷︷ ︸
=1

det

[
sIn −A b

c⊤ 0

]
6= 0. (2.32)

Moreover, application of the cofactor (or Laplace) expansion [24, p. 114] yields for all s ∈ C≥0

det

[
S(sIn −A)S−1 Sb

c⊤S−1 0

]
(2.26)
= (−1)r+2(n+1)γ0 det







−1 0 · · · · · · 0

s −1
. . .

. . .
...

0
. . .

. . .
. . .

...
...

. . .
. . . −1 0

0 · · · 0 s −1




O(r−1)×(n−r)

O(n−r)×(r−1) [sIn−r −Ar+3]




= −γ0 det
[
sIn−r −Ar+3

] (2.32)

6= 0

and hence spec(Ar+3) ⊂ C<0, which shows Assertion (iii), completes Step 3 and the proof of
Lemma 2.12.

Remark 2.13. For Ar and Ar+3 as in (2.26), note that

q
spec (Ar) ⊂ C<0 and spec(Ar+3) ⊂ C<0

y
6⇒

q
spec(A) ⊂ C<0

y
,

e.g. let n = 2, r = 1, a1 = A4 = −1 and a2 = a3 = 2 in (2.26) which yields χA(s) = s2+2s−3.

Remark 2.14 (BIF of LTI SISO systems with relative degree r = n).
Consider a system of form (2.1) with relative degree r = n, i.e. (2.6) holds for r = n and
C,B ∈ R

n×n in (2.22). From (2.27) in the proof of Lemma 2.12 it then follows that CB ∈
GLn(R). Hence, by defining S := C, it is easy to see that S−1 = B(CB)−1. Then for r = n
and Ar = An as in (2.26), the coordinate change

(
y, · · · , y(n−1)

)
= Sx = Cx applied to the

LTI SISO system (2.1) yields

d

dt




y(t)
...

y(n−1)(t)


 = An




y(t)
...

y(n−1)(t)


+

(
0n−1

γ0

)
u(t),




y(0)
...

y(n−1)(0)


 = Cx(0),

where γ0 = c
⊤An−1b and

(
a1 a2 · · · an

)
= c⊤AnB(CB)−1. Moreover note that

∣∣∣∣det
[
sIn −A b

c⊤ 0

]∣∣∣∣ =
∣∣∣∣det

[
S(sIn −A)S−1 Sb

c⊤S−1 0

]∣∣∣∣ =
∣∣∣∣∣det

[
sIn −An

(
0n−1

γ0

)

(
1, 0

⊤
n−1

)
0

]∣∣∣∣∣ = |γ0| 6= 0,

whence any LTI SISO system of form (2.1) with relative degree r = n is minimum-phase.
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2.2 Motivation for high-gain control: root locus method

In 1948 Walter Richard Evans (1920–1999) developed a graphical tool to analyze LTI SISO
systems of form (2.1) (or (2.3)) with d = 0 (or m < n) and known sign of the high-frequency
gain γ0 under constant “sign-correct” output feedback (and new input v(s) = L {v(t)})

∀ k ≥ 0: u(t) = − sign(γ0)k y(t) + v(t) d t u(s) = − sign(γ0)k y(s) + v(s), (2.33)

by drawing the “trajectories” of the closed-loop system poles in the complex plane for in-
creasing values of the gain k. His work—based on the ideas of P. Profos (a researcher from
Schwitzerland)—was first published in [54] for a second order LTI SISO system. The general-
ization to higher order LTI SISO systems followed in 1950 (see [55]). In [55] Evans named his
graphical analyses tool the “root locus method”. His method “helped to usher in a revolution
in the practice of servo-mechanism design” (see [52]) and finally lead to the text book [53] in
1954. For a mathematically thorough analysis also incorporating complex gains see e.g. [117].
A nice overview is given in [118].

The root locus method is quite useful to illustrate the motivation for high-gain output feedback
control of high-gain stabilizable systems defined as follows.

Definition 2.15 (High-gain stabilizable LTI SISO systems). [86, p. 19]
A system given by (2.1) (or (2.3)) is said to be high-gain stabilizable if there exists k⋆ ≥ 0
such that the closed-loop system (2.1), (2.33) (or (2.3), (2.33)) is exponentially stable for all
k ≥ k⋆, i.e. the system matrix of the closed-loop system (2.1), (2.33) (or the closed-loop transfer
function (2.3), (2.33)) has no eigenvalues (or no poles) in C≥0.

As the root locus method was introduced for transfer functions, the following is presented in
the frequency domain and is restricted to systems with relative degree greater than or equal to
one. Define the monic polynomials N,D ∈ R[s] as follows

N(s) := c0 + c1s+ · · ·+ cm−1s
m−1 + sm =

∏m
i=1(s− zi(N))

D(s) := a0 + a1s+ · · ·+ an−1s
n−1 + sn =

∏n
i=1(s− pi(D))

,
n, m ∈ N,
n > m

(2.34)

where z1(N), . . . , zm(N) ∈ C and p1(D), . . . , pn(D) ∈ C are the roots of N and D, respectively
(not accounting for multiplicities). Consider a LTI SISO system given by the transfer function

F (s) =
y(s)

u(s)
= γ0

N(s)

D(s)
, γ0 6= 0, N,D ∈ R[s] as in (2.34) and coprime (2.35)

with high-frequency gain γ0 and relative degree r = n − m ≥ 1 under proportional output
feedback (2.33). The controller gain k is regarded as design parameter and its variation and
influence on the closed-loop system (2.35), (2.33), i.e.

y(s)

v(s)
=

γ0N(s)

D(s) + k|γ0|N(s)
, γ0 6= 0, k ≥ 0, N,D ∈ R[s] as in (2.34) and coprime (2.36)

is analyzed. The poles of the closed-loop system (2.36), i.e.

p1(k) := p1(D + k|γ0|N), . . . , pn(k) := pn(D + k|γ0|N) ∈ C, (2.37)
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alter with increasing (or decreasing) values of k (see [118]). The root locus (see [77, p. 562]) is
given by the (infinite) set of complex points

{
s ∈ C

∣∣ D(s) + k|γ0|N(s) = 0 for some k ≥ 0
}
⊂ C. (2.38)

To obtain an approximation of the root locus successively for any (fixed) k ≥ 0 the closed-loop
poles (2.37) are computed and then plotted in the complex plane. So this (numerical) approx-
imation of the root locus reveals information on e.g. stability, dominant poles and damping of
the closed-loop system (2.36). Note that the closed-loop poles (2.37) are continuous functions
of the gain k (see [77, Corollary 4.2.4]).

The root locus (2.38) yields a plot in the complex plane which is symmetrical with respect to
the real axis and intersects at the root locus center (or root center of gravity, see [118]).

Definition 2.16 (Root locus center of LTI SISO systems).
For n > m consider the monic and co-prime polynomials N,D ∈ R[s] as in (2.34). Then

Ξ(N,D) :=
1

n−m
(cm−1 − an−1) =

1

n−m

(
n∑

i=1

pi(D)−
m∑

i=1

zi(N)

)
(2.39)

is called the root locus center of (2.35).

Note that equality in (2.39) directly follows from comparing coefficients of the polynomials and
the expanded versions of the products in (2.34) (see Corollary 3 in [117]). Moreover, since poles
and zeros with non-zero imaginary part always appear as conjugate-complex pairs, the root
locus center is located on the real axis of the complex plane.

Often not the “exact” root locus is required for controller design, primarily the asymptotic
behavior of the closed-loop poles (2.37) is of interest which leads to the following definition
(see [23]).

Definition 2.17 (Asymptotes of the root locus & angles of departure).
For n > m consider the monic and co-prime polynomials N,D ∈ R[s] as in (2.34). For
i ∈ {1, . . . , n−m} define the i-th asymptote of the root locus (2.38) by

Υi : R≥0 → C, k 7→ Υi(k) := Ξ(N,D) + (|γ0| k)
1

n−m exp

(
(2i− 1)πj

n−m

)
. (2.40)

The n−m asymptotes intersect at the root locus center Ξ(N,D) as in (2.39) with corresponding
angle of departure

∀i ∈ {1, . . . , n−m} : αi := arg(Υi) =
(2i− 1)π

n−m
. (2.41)

Note that the relative degree r = n − m of the transfer function (2.35) indicates how many
asymptotes exist. The following theorem describes the asymptotic behavior of the “trajectories”
of the closed-loop poles (2.37).
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Theorem 2.18 (High-gain root locus of LTI SISO systems).
For n > m and monic and co-prime polynomials N,D ∈ R[s] as in (2.34), consider the closed-
loop system given by (2.36). Denote the roots of N and D + k|γ0|N by z1(N), . . . , zm(N) and
p1(D + k|γ0|N), . . . , pn(D + k|γ0|N), respectively, then the following hold

(i) There exist m numbers l1, . . . , lm ∈ {1, . . . , n} such that for all i ∈ {1, . . . ,m}:

lim
k→∞

pli(D + k |γ0|N) = zi(N) (2.42)

(ii) For Υi(k) as in (2.40) there exist n−m numbers l1, . . . , ln−m ∈ {1, . . . , n} such that for
all i ∈ {1, . . . , n−m}:

lim
k→∞

|pli(D + k|γ0|N)−Υi(k)| = 0 (2.43)

Proof. see the proofs of Theorem 2 and Theorem 3 in [117].

Since the limits in (2.42) and (2.43) exist, Theorem 2.18 implies that for ε > 0 (arbitrary small)
there exists k⋆(ε) ≥ 0 such that for all k ≥ k⋆(ε) the following hold: (i) m of the n closed-loop
poles (2.37) remain within the union of the balls

⋃m
i=1 Bε(zi(N)) ⊂ C with radius ε > 0 around

the roots of N and (ii) the distance between corresponding asymptote (2.40) and closed-loop
pole (2.37) is smaller than ε, i.e. |pli(D + k|γ0|N)−Υi(k)| < ε for all i ∈ {1, . . . , n−m}. Now
two observations may be formulated:

• Observation 1: for minimum-phase systems with relative degree one or with relative degree
two and negative root locus center there exists ε > 0 and hence k⋆(ε) ≥ 0 such that for
all k ≥ k⋆(ε) all poles of the closed-loop system (2.36) exhibit negative real parts, i.e. the
closed-loop system is exponentially stable (see Fig. 2.2).

• Observation 2: for non-minimum-phase systems (of arbitrary relative degree) or for mini-
mum-phase systems with relative degree greater than two (or equal to two with positive
root locus center) there exists ε > 0 and so k⋆(ε) ≥ 0 such that for all k > k⋆(ε) at
least one closed-loop pole in (2.37) has non-negative real part and hence the closed-loop
system (2.36) is not exponentially stable (see Fig. 2.2).

Observation 1 and Fig. 2.2 illustrate the inherent “high-gain property” of minimum-phase sys-
tems (2.35) (or (2.1)) with relative degree one or with relative degree two and negative root
locus center: these systems are high-gain stabilizable. Observation 2 makes aware of the obsta-
cle of higher relative degrees: (even) minimum-phase systems with relative degree greater than
one (and positive root locus center in the relative degree two case) are not high-gain stabilizable
by simple output feedback of form (2.33).

In general, to allow for high-gain control of minimum-phase systems with higher relative degree,
more sophisticated feedback controllers must be used. For v(s) = L {v(t)} and sufficiently large
gain k, the following approaches achieve exponential stabilization of minimum-phase systems
of form (2.35) with relative degree r ≥ 2 and known sign of the high-frequency gain γ0:
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Figure 2.2: Root locus asymptotes Υi(·) ( ) with angles of departure αi, i = 1, . . . , 4, in the complex
plane for systems of form (2.35) having relative degree r = 1, . . . , 4 and root locus center x.

(i) if derivative feedback is admissible up to the order r− 1, i.e. y, ẏ . . . , y(r−1) are available
for feedback, the following simple controller is applicable:

u(s) = − sign(γ0) kM(s) y(s) + v(s),
with M ∈ R[s] monic and Hurwitz
and deg(M) = r − 1.

(2.44)

The denominator of the closed-loop system (2.35), (2.44) is given byD(s)+|γ0| kM(s)N(s)
where MN is Hurwitz and deg(MN) = n− 1. Hence, for sufficiently large k, exponential
stability follows from Observation 1;

(ii) if derivative feedback is not admissible, high-gain observers with high-gain state feedback
(see e.g. [33, Section 1.3.3]) or (dynamic) compensators (see e.g. [80]) are applicable which,
basically, estimate the r−1 output derivatives. For instance, a control law with admissible
compensator is given by (see [80, Theorem 5.1])

u(s) = − sign(γ0)
kr+1M(s)

sr + k br sr−1 + · · ·+ kr−1 b2s+ kr b1︸ ︷︷ ︸
compensator

y(s) + v(s)

where M ∈ R[s] is monic and Hurwitz with deg(M) = r − 1 and, for (known) b0 ≥ |γ0|,
br, . . . , b1 ∈ R>0 such that sr+1 + br s

r + · · ·+ b2s
2 + b1s+ ηb0 is Hurwitz for all η ∈ (0, 1].

In the following, solely systems with relative degree one or two will be considered. Moreover,
since derivative feedback is assumed to be admissible in the relative degree two case, the re-
mainder of this thesis will focus on Approach (i) with derivative feedback and its extensions to
the adaptive case.
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2.3 High-gain adaptive stabilization

Since LTI SISO systems of form (2.1) with direct feedthrough (i.e. d 6= 0) are of marginal
relevance for plant modeling in industry, this section will focus on systems with relative degree
greater than zero, i.e.

ẋ(t) = Ax(t) + b u(t),
y(t) = c⊤x(t)

n ∈ N, x(0) = x0 ∈ R
n, u(·) ∈ L1

loc(R≥0;R)
(A, b, c) ∈ R

n×n × R
n × R

n.

}
(2.45)

In view of Theorem 2.18 asymptotic stabilization of minimum-phase systems of form (2.45)
(or (2.35)) with relative degree one or with relative degree two and negative root locus center is
feasible by simple proportional output feedback (2.33), if the controller gain k is chosen larger
than or equal to a critical lower bound k⋆ ≥ 0. To fix an admissible value for k in (2.33) the
bound k⋆ must be known a priori. In general it depends (nonlinearly) on the system data,
i.e. k⋆ = k⋆(A, b, c) (or k⋆ = k⋆(γ0, N,D) for systems of form (2.35)).

To make this knowledge superfluous and to achieve robust stabilization, the principle idea of
high-gain adaptive control is as follows: the controller gain is variable and is (dynamically)
adapted such that, loosely speaking, k⋆ is found automatically. For the SISO case, a simple
high-gain adaptive controller with adequate gain adaption is given by

u(t) = − sign(γ0)k(t) y(t) where k̇(t) = y(t)2, k(0) = k0 > 0. (2.46)

It assures the following: (i) all states of the closed-loop system (2.45), (2.46) remain bounded
and (ii) the equilibrium at the origin is asymptotically reached, i.e.

x(·) ∈ L∞(R≥0;R
n), lim

t→∞
k(t) = k∞ ∈ R>0 and lim

t→∞
x(t) = 0n. (2.47)

It will be shown in Sections 2.3.3 and 2.3.4.1 that the controller (2.46) “asymptotically stabilizes”
minimum-phase systems with relative degree one or with relative degree two and negative root
locus center. In contrast, for relative degree two systems with unknown (or positive) root locus
center, additional assumptions on the system or an extended feedback strategy are required
(see Sections 2.3.4.2 and 2.3.4.3).

2.3.1 Brief historical overview

A recent overview and “state-of-the-art” (without explicit proofs) of high-gain adaptive control
is given in [93]. In compact form high-gain adaptive control, adaptive λ-tracking control and
funnel control are introduced, mainly for the relative degree one case. The case of higher relative
degree systems is briefly touched. A thorough survey is given in [85] or in the monograph [86].

Whereas adaptive control for the first 20 years focused on indirect methods based on system
parameter identification, in the mid-1980s, almost at the same time, three seminal contri-
butions [137] (1983), [129] (February 1984) and [37] (December 1984) were published which
introduced the basic idea of high-gain adaptive (or non-identifier based adaptive) control.
The high-gain adaptive controllers proposed in [129] and [37] assure (2.47) for minimum-phase
LTI SISO and MIMO systems, respectively, with relative degree one and known sign of the
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high-frequency gain. Moreover, in [129], Mareels already tries to generalize his results to sys-
tems with arbitrary-but-known relative degree if an upper bound on the high-frequency gain is
known. The order of his proposed controller depends on the relative degree r ≥ 1 and is quite
high with (r− 1)r/2 (not counting for the adaption law). Mareels approximates the r− 1 time
derivatives of the system’s output by filters of (unnecessarily) increasing order ranging from 1
to r − 1. Unfortunately, his results do not hold true in general, Hoagg and Bernstein present
a counter example for the relative degree five case in 2007 (see [80]). They provide a solution
to the problem under same assumptions by introducing a dynamic compensator of r-th order
(see [80]).

In 1983 A. Stephen Morse speculated, that a priori knowledge of the sign of the high-frequency
gain is necessary for (continuous) adaptive stabilization (see [137]). In the same year Roger D.
Nussbaum proved that this conjecture is wrong (see [141]). If the sign of the high-frequency
gain is not known a priori, then a piecewise right continuous2 and locally Lipschitz continu-
ous3 sign-switching function fNB : R → R (later on called “Nussbaum function”, see e.g. [86,
Definition 4.1.1]) with (Nussbaum) properties

sup
k>k0

1

k − k0

∫ k

0

fNB(x) dx = +∞ and inf
k>k0

1

k − k0

∫ k

0

fNB(x) dx = +∞ (2.48)

must be incorporated into the controller as follows

u(t) = fNB(k(t)) k(t)y(t) where k̇(t) = y(t)2, k(0) = k0 > 0.

to assure on-line detection of sign-correct feedback without probing signals. An example is
given by fNB : R → R, k 7→ fNB(k) := k2 cos(k), for more examples and a detailed discussion
see e.g. [86, Chapter 4]. Controllers which do not require information on the sign of the high-
frequency gain are called universal adaptive controllers and were first introduced for high-gain
adaptive stabilization in 1983 (see [141], for first order linear systems) and in 1984 (see [187],
for LTI SISO systems of arbitrary order). Albeit of theoretical interest universal high-gain
adaptive controllers are not reasonable for application in general. They may exhibit a “bursting
or peaking phenomena” (see e.g. [38, 75] or [91]) if e.g. noise deteriorates the output measure-
ment. The non-zero input in gain adaption leads to gain drift and possibly to sign switching of
the Nussbaum function which results in “short time destabilization” of the closed-loop system
with unpredictable bursts in system output (and state). For most plants in industry the sign
of high-frequency either can easily be obtained by experiments or is a priori known (due to
physical or assembly reasons, see e.g. Sections 5.2.2.1, 5.2.2.2, 5.2.3.1 and 5.2.3.2).

Since 1983 high-gain adaptive control has been successively extended to certain classes of non-
linear SISO and MIMO systems (see e.g. [114] (1987), [156] (1994) or [88] (2002)) and infinite
dimensional systems (see [122] (1992)). Universal high-gain adaptive control with internal
model is presented e.g. in [75] (1988, for bounded references) or in [135] (1992, for unbounded

2Let n ∈ N, X ⊂ R, Y ⊆ R
n and x0 ∈ X. A function f : X → Y is said to be left [or right] continuous

if for every neighborhood V ⊂ R
n around f(x0) there exists a δ > 0 such that f(X ∩ (x0 − δ, x0]) ⊂ V [or

f(X ∩ [x0, x0 + δ)) ⊂ V ] [4, p. 240]. The function f : X → Y is piecewise left [or right] continuous on X, if it
is left [or right] continuous at any point x0 ∈ X.

3see Definition 2.19.
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references and disturbances). The internal model assures asymptotic tracking and rejection
of suitable reference and disturbance signals (solving a linear ODE), respectively. The same
idea (without Nussbaum switching) was already published in 1984 (see [129]) however without
thorough proof. Asymptotic tracking without the use of an internal model but a discontin-
uous high-gain adaptive controller is feasible for nonlinearly perturbed minimum-phase LTI
MIMO systems with (strict) relative degree one [155]. In 2006 it was shown that high-gain
adaptive control of LTI MIMO systems with relative degree one is robust in the sense of the
gap metric (see [59]), i.e. for “small” initial values the controlled systems may even by non-
minimum-phase and of higher relative degree. Moreover, high-gain adaptive control retains the
properties in (2.47) even if input and output are disturbed by square integrable signals (see [59]).

To the best knowledge of the author, there do not exist (published) results for high-gain adaptive
control with derivative feedback.

2.3.2 Mathematical preliminaries

Before discussing the main results of this chapter, some technical preliminaries are introduced
to achieve a self-contained presentation.

2.3.2.1 Byrnes-Isidori form of LTI SISO systems with relative degree one and two

In the remainder of this chapter LTI SISO systems with relative degree one and two are of
special interest. Moreover, since the Byrnes-Isidori form (BIF) plays an essential role in the
upcoming proofs, the BIF of LTI SISO systems with relative degree one and two is derived,
respectively.

BIF of LTI SISO systems with relative degree one

Consider a system of form (2.45) with relative degree one, i.e. r = 1. Then, from Lemma 2.12,
it follows that C := c⊤ ∈ R

1×n, B := b ∈ R
n and V ∈ R

n×(n−1) such that c⊤V = 0
⊤
n−1 which

yields the transformation matrix

S =

[
c⊤

N

]
∈ R

n×n where N = (V ⊤V )−1V ⊤(In − 1
γ0
bc⊤) ∈ R

(n−1)×n

with inverse S−1 =
[

1
γ0
bc⊤, V

]
.

(2.49)

The coordinate transformation
(
y, z

)⊤
:= Sx applied to (2.45) yields the BIF of LTI SISO

systems with relative degree one, i.e.

ẏ(t) = a1y(t) + a
⊤
2 z(t) + γ0u(t), y(0) = c⊤x0

ż(t) = a3y(t) +A4z(t), z(0) =Nx0

}
(2.50)

where

γ0 = c
⊤b ∈ R, a1 = c

⊤Ab/γ0 ∈ R, a⊤
2 = c⊤AV ∈ R

1×(n−1),

a3 =
(V ⊤V )−1V ⊤

γ0
(In − 1

γ0
bc⊤)Ab ∈ R

(n−1)×1 and A4 =NAV ∈ R
(n−1)×(n−1).

(2.51)
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BIF of LTI SISO systems with relative degree two

For systems of form (2.45) with relative degree two, i.e. r = 2, Lemma 2.12 gives

C :=

[
c⊤

c⊤A

]
∈ R

2×n and B :=
[
b Ab

]
∈ R

n×2 (2.52)

and hence

CB =

[
0 γ0
γ0 c⊤A2b

]
∈ R

2×2 and CB−1 =

[− 1
γ0
c⊤A2b 1

γ0
1
γ0

0

]
. (2.53)

Now choose V ∈ R
n×(n−2) such that CV = O2×(n−2) and, moreover, S ∈ R

n×n and N ∈
R

(n−2)×n as in (2.24), then application of the coordinate transformation
(
y, ẏ, z

)⊤
:= Sx

to (2.1) yields the BIF of LTI SISO system with relative degree two, i.e.

d
dt

(
y(t)
ẏ(t)

)
=

[
0 1
a1 a2

](
y(t)
ẏ(t)

)
+

[
0
⊤
n−2

a⊤
3

]
z(t) +

(
0
γ0

)
u(t),

(
y(0)
ẏ(0)

)
= Cx0

ż(t) =
[
a4 0n−2

](y(t)
ẏ(t)

)
+A5z(t), z(0) = Nx0





(2.54)

where

γ0 = c
⊤Ab ∈ R,

(
a1, a2

)
= c⊤A2B(CB)−1 ∈ R

1×2, a⊤
3 = c⊤A2V ∈ R

1×(n−2),

a4 =
(V ⊤V )−1V ⊤

γ0
(In −B(CB)−1C)A2b ∈ R

(n−2)×1 and A5 =NAV ∈ R
(n−2)×(n−2).

(2.55)

2.3.2.2 Solution of ordinary differential equation

In this chapter, closed-loop systems (e.g. (2.45), (2.46)) will be considered, which yield initial-
value problems given by (nonlinear) ordinary differential equations of the form

ẋ(t) = f(t,x(t)), x(t0) = x
0 (2.56)

where t0 ∈ R is the initial time, x0 ∈ R
n, n ∈ N, is the initial state and f : R×R

n → R
n is called

the right-hand side of (2.56). For T ∈ (t0,∞] and T− ∈ [−∞, t0), a continuously differentiable
function x : (T−, T ) → R

n is called solution of the initial-value problem (2.56) if it satisfies (2.56)
for all t ∈ (T−, T ) and x(t0) = x0. Such a solution exists and it is unique if the right-hand
side of (2.56) satisfies two presuppositions. Before the existence and uniqueness result can be
restated, the notion of a “locally Lipschitz continuous” function must be introduced.

Definition 2.19 (see e.g. p. 242 in [5]). Let n ∈ N, I ⊆ R and X ⊆ R
n. A continuous function

f : I ×X → R
n is said to be locally Lipschitz continuous (with respect to its second argument

x ∈ X) if, and only if, for every point (t0, x
0) ∈ I × X there exists a (Lipschitz) constant

L ≥ 0 and a neighborhood4 J × U ⊂ I ×X of (t0, x
0) such that

∀ t ∈ J ∀x1,x2 ∈ U : ‖f(x1)− f(x2)‖ ≤ L ‖x1 − x2‖ .
4A set U ⊂ R

n, n ∈ N, is said to be a neighborhood of x0 ∈ R
n if, and only if, there exists δ > 0 such that

B
n
δ (x

0) ⊂ U (see [4, p. 144]). Clearly, for x0 ∈ R
n and δ > 0, B

n

δ (x
0) is a neighborhood of x0.
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Note that, in general, the Lipschitz constant L depends on (t0, x
0) and different neighborhoods

yield different Lipschitz constants.

Theorem 2.20 (Existence and uniqueness theorem (see e.g. Theorem 8.16 in [5])).
Let n ∈ N, I ⊆ R an open interval and D ⊆ R

n an open, non-empty set. If f : I × D → R
n

is (i) continuous in I × D and (ii) locally Lipschitz continuous (with respect to its second
argument) then, for each (t0, x

0) ∈ I×D, the initial-value problem (2.56) has a unique solution
x : (T−, T ) → R

n with maximal T ∈ (t0,∞], minimal T− ∈ [−∞, t0), x(t) ∈ D for all t ∈
(T−, T ) and x(t0) = x

0.

Proof. see [5, p. 246].

In the remainder of this chapter, only solutions on R≥0 with initial time t0 = 0 are considered.
Therefore, the (maximal) interval of existence (T−, T ) is restricted to [0, T ), T ∈ (0,∞]. For
linear initial-value problems of form (2.45), the solution is given by (see e.g. [5, p. 237])

∀t ≥ 0: x(t) = exp(At)x0 +

∫ t

0

exp
(
A(t− τ)

)
b u(τ) dτ .

It is unique and holds globally, i.e. T = ∞. In contrast, the solution of a nonlinear initial-value
problem of form (2.56) may blow up in finite time, i.e. T < ∞ and ‖x(t)‖ → ∞ as t → T .
Such systems have finite escape time and an exploding solution, as illustrated in the following
example.

Example 2.21 (Finite escape time and exploding solution). Consider the first order nonlinear
system given by

ẋ(t) = x(t)2, x(0) = 1. (2.57)

Clearly, the right hand-side of (2.57) is locally Lipschitz continuous, hence there exists a unique
solution x : [0, T ) → R. It is easy to see that x(t) = 1/(1 − t) solves (2.57) for all t ∈ [0, 1)
(i.e. T = 1) and, moreover, the solution cannot be extended any further, it “explodes” as t→ 1.

2.3.3 Relative degree one systems

Before the well known result of high-gain adaptive stabilization of minimum-phase LTI SISO
systems with relative degree one is revisited, the following linear system class is introduced.

Definition 2.22 (System class S lin
1 ).

A system of form (2.45) is of Class S lin
1 if, and only if, the following hold:

(S lin
1 -sp1) the relative degree is one and the sign of the high-frequency gain is known, i.e.

γ0 := c
⊤b 6= 0 and sign(γ0) is known;

(S lin
1 -sp2) it is minimum-phase, i.e. (2.14) holds, and

(S lin
1 -sp3) the (regulated) output y(·) is available for feedback.
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System class S lin
1 represents the linear equivalent of system class S1. Conform to system class

S1, in (2.45), y(·) is considered as regulated output and, to be available for feedback, must
coincide with the measured output. Clearly, all systems of class S lin

1 are high-gain stabilizable.

Note that “system properties” (S lin
1 -sp1) and (S lin

1 -sp2) are sufficient, but not necessary, for
high-gain stabilization as illustrated in the following example.

Example 2.23. Consider the second order system given by

ẋ(t) =

[
0 1
a0 a1

]
x(t) +

(
0
γ0

)
u(t),

y(t) =
(
0 1

)
x(t)

x(0) = x0 ∈ R
2,

a0, a1 ∈ R, γ0 > 0
(2.58)

which has relative degree one and a positive high-frequency gain, since (0 1)
(

0
γ0

)
= γ0 > 0.

Moreover, simple calculations show that

det




s −1 0
−a0 s− a1 γ0
0 1 0


 = (−1)3+2 det

[
s 0

−a0 γ0

]
= −γ0 s|s=0 = 0,

and thus system property (S lin
1 -sp2) is violated. System (2.58) is not minimum-phase. Now

switch to the frequency domain; the transfer function of (2.58) is given by

F (s) =
y(s)

u(s)
=
(
0 1

)(
s I2 −

[
0 1
a0 a1

])−1(
0
γ0

)
=

γ0 s

s2 − a1 s− a0
,

which, for a0 = 0, simplifies to

F (s)|a0=0 = γ0
�As

�As(s− a1)
=

γ0
s− a1

.

That is a first order system with relative degree one and positive high-frequency gain
lims→∞ s F (s)|a0=0 = γ0 > 0. Application of feedback (2.33) yields the closed-loop system
with transfer function

y(s)

v(s)
=

k F (s)|a0=0

1 + k F (s)|a0=0

=
γ0 k

s− a1 + γ0 k
,

which clearly is stable for all k > |a1|/γ0, since the denominator is Hurwitz for all k > |a1|/γ0.
Concluding, for a0 = 0, system (2.58) is high-gain stabilizable, but it is neither a minimal
realization of F (s)|a0=0 = γ0/(s− a1) nor element of S lin

1 .

The main result of this section is recorded in the following theorem.

Theorem 2.24 (High-gain adaptive control for systems of class S lin
1 ).

Consider a system of class S lin
1 given by (2.45). The high-gain adaptive controller

u(t) = − sign(c⊤b) k(t)y(t) where k̇(t) = q1 |y(t)|q2 , k(0) = k0 (2.59)
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with design parameters q1 > 0, q2 ≥ 1 and k0 > 0 applied to (2.45) yields a closed-loop initial-
value problem with the following properties:

(i) there exists a unique and maximal solution (x, k) : [0, T ) → R
n × R>0, T ∈ (0,∞];

(ii) the solution is global, i.e. T = ∞;

(iii) all signals are bounded, i.e. x(·) ∈ L∞(R≥0;R
n) and k(·) ∈ L∞(R≥0;R>0);

(iv) limt→∞ k̇(t) = 0 and limt→∞ x(t) = 0n.

Remark 2.25 (σ-modification).
Note that the gain adaption in (2.59) yields a non-decreasing gain k(·). σ-modification tries to
bypass this undesirable effect (see [105]): for some (small) σ > 0, the gain adaption in (2.59)
is replaced e.g. by

k̇(t) = −σ k(t) + y(t)2, k(0) = k0 > 0,

which, clearly, allows for gain decrease. However, high-gain adaptive controllers with σ-modi-
fication may yield limit cycles and chaos (see [130]) and, hence, should be “handled with care”.

Although the result in Theorem 2.24 is well known (see e.g. [85, Theorem 3.6], there for q1 = 1
and q2 = p) an explicit proof is presented. It differs from that given in [85, Theorem 3.6] and
illustrates the basic steps of argumentation as basis for the upcoming proofs.

Proof of Theorem 2.24.

Step 1: It is shown that Assertion (i) holds true, i.e. existence of a unique solution maximally
extended on [0, T ), T ∈ (0,∞].
It suffices to consider system (2.45) in the Byrnes-Isidori form (2.50). Define

D := R× R
n−1 × R>0 and I := R

and the function

f : I × D → D, (t, (µ, ξ, κ)) 7→




a1µ+ a⊤
2 ξ − |γ0|κµ

a3µ+A4ξ

q1|µ|q2


 .

Then, for S as in (2.49) and x̂ := (y, z, k)⊤, the closed-loop initial-value problem (2.50), (2.59)
can be written as

d
dt
x̂(t) = f(t, x̂(t)), x̂(0) =

(
(Sx0)⊤, k0

)⊤
. (2.60)

Clearly, the function f(·, ·) is continuous for all (t, (µ, ξ, κ)) ∈ I × D and, for every compact
C ⊂ I × D, there exists MC > 0 such that

∥∥(t, (µ, ξ⊤, κ))⊤
∥∥ ≤ MC for all (t, (µ, ξ, κ)) ∈ C.

Moreover, for all (t, (µ, ξ, κ)), (t, (µ̃, ξ̃, κ̃)) ∈ C, it follows that

|κµ− κ̃µ̃| = |(κ− κ̃)µ+ κ̃µ− κ̃µ̃| ≤ |µ||κ− κ̃|+ |κ̃||µ− µ̃|
≤ MC(|κ− κ̃|+ |µ− µ̃|),

∣∣|µ|q2 − |µ̃|q2
∣∣ ≤ q2M

q2−1
C

|µ− µ̃|
(2.61)
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and
∥∥∥f(t, (µ, ξ, κ))− f(t, (µ̃, ξ̃, κ̃))

∥∥∥ ≤ |a1||µ− µ̃|+ ‖a2‖
∥∥∥ξ − ξ̃

∥∥∥+ |γ0||κµ− κ̃µ̃|

+ ‖a3‖ |µ− µ̃|+ ‖A4‖
∥∥∥ξ − ξ̃

∥∥∥+
∣∣|µ|q2 − |µ̃|q2

∣∣
(2.61)

≤
(
|a1|+ ‖a3‖+ q2M

q2−1
C

+ |γ0|MC

)
|µ− µ̃|

+(‖a2‖+ ‖A4‖)
∥∥∥ξ − ξ̃

∥∥∥+ |γ0|MC|κ− κ̃|,

which shows that f(·, ·) is locally Lipschitz continuous (with respect to (µ, ξ, κ) ∈ D). Hence,
in view of Theorem 2.20, there exists a unique solution x̂ = (y, z, k) : [0, T ) → R × R

n−1 ×
R>0 of the initial-value problem (2.60) with maximal T ∈ (0,∞] (the interval (T−, 0) is ne-
glected) and (x, k) = (S−1(y, z), k) : [0, T ) → R

n × R>0 solves closed-loop initial-value prob-
lem (2.45), (2.59). This shows Assertion (i) and completes Step 1.

Step 2: Some technical inequalities are shown.
First note that the binomial theorem gives

∀m > 0 ∀ a, b ∈ R : ± 2 a b = −
(

a√
m

∓√
mb

)2

+
a2

m
+mb2 ≤ a2

m
+mb2. (2.62)

and by property (S lin
1 -sp2) and Lemma 2.12 the matrix A4 is Hurwitz, i.e. spec(A4) ⊂ C<0 and

hence (see e.g. Corollary 3.3.47 in [77, p. 284])

∃ a unique 0 < P⊤
4 = P 4 ∈ R

(n−1)×(n−1) : A⊤
4 P 4 + P 4A4 = −In−1. (2.63)

For P 4 as in (2.63) introduce the Lyapunov-like function

V : R× R
n−1 → R≥0, (y, z) 7→ V (y, z) := y2 + z⊤P 4z ≥ 0 (2.64)

and observe that the following holds (see e.g. [24, Corollary 4.8.2, p.487])

∀
(
y
z

)
∈ R

n : min
{
1, 1/

∥∥P−1
4

∥∥}
︸ ︷︷ ︸

=:µ
V
>0

∥∥∥∥
(
y
z

)∥∥∥∥
2

≤ V (y, z) ≤ max {1, ‖P 4‖}︸ ︷︷ ︸
=:µV >0

∥∥∥∥
(
y
z

)∥∥∥∥
2

(2.65)

By equivalence of norms in R
n (see [24, Theorem 9.1.8, p. 600]), note that

∀ p, q ∈ [1, ∞] ∃α > 0, β ≥ 1 ∀ ξ ∈ R
n : α ‖ξ‖p ≤ ‖ξ‖q ≤ β ‖ξ‖p (2.66)

and hence (for q = q2 and p = 2 in (2.66)) it follows that

∀ t ∈ [0, T ) : k̇(t)/q1 = |y(t)|q2 ≤
∥∥∥∥
(
y(t)
z(t)

)∥∥∥∥
q2

q2

(2.66)

≤ βq2
∥∥∥∥
(
y(t)
z(t)

)∥∥∥∥
q2

. (2.67)
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To conclude Step 2, the time derivative d
dt
V (·) along the solution of the closed-loop sys-

tem (2.50), (2.63) is given as follows

∀ t ∈ [0, T ) :
d
dt
V (y(t), z(t)) = 2 y(t)ẏ(t) + ż(t)⊤P 4z(t) + z(t)

⊤P 4ż(t)

= 2 (a1 − |γ0|k(t))y(t)2 + 2y(t)a⊤
2 z(t)

+z(t)⊤
(
A⊤

6 P 6 + P 6A6

)
z(t) + 2z(t)⊤P 4a3y(t)

(2.63)

≤ −2 (|γ0|k(t)− |a1|)y(t)2 + 2|y(t)| ‖a2‖ ‖z(t)‖
−‖z(t)‖2 + 2 ‖z(t)‖ ‖P 4‖ ‖a3‖ |y(t)|

(2.62)

≤ −2 (|γ0|k(t)− |a1| − 4 ‖a2‖2 − 4 ‖P 4‖2 ‖a3‖2)y(t)2

−1

2
‖z(t)‖2 . (2.68)

Step 3: It is shown that k(·) is bounded on [0, T ).
Seeking a contradiction, assume that k(·) is unbounded on [0, T ). In view of (2.59), k(·) is
non-decreasing on [0, T ), therefore

∃ t⋆ ≥ 0 ∀ t ∈ [t⋆, T ) : k(t) ≥ 1

|γ0|

(
|a1| − 4 ‖a2‖2 − 4 ‖P 4‖2 ‖a3‖2 +

1

4

)
.

Defining

µV :=
1

2
min{1, 1/ ‖P 4‖}

and using −‖z(t)‖2 ≤ −z(t)⊤P 4z(t)/ ‖P 4‖ in (2.68) yields

∀ t ∈ [t⋆, T ) : d
dt
V (y(t), z(t)) ≤ −1

2
y(t)2 − 1

2
‖z(t)‖2 ≤ −µV V (y(t), z(t)).

Application of the Bellman-Gronwall Lemma (in its differential form [18, Lemma 1.1, p. 2])
gives

∀ t ∈ [t⋆, T ) : V (y(t), z(t)) ≤ V (y(t⋆), z(t⋆)) exp(−µV (t− t⋆)) (2.69)

and in view of (2.65) it follows that

∀ t ∈ [t⋆, T ) :

∥∥∥∥
(
y(t)
z(t)

)∥∥∥∥
(2.65),(2.69)

≤
√
µV
µ
V

∥∥∥∥
(
y(t⋆)
z(t⋆)

)∥∥∥∥ exp
(
−µV

2
(t− t⋆)

)
. (2.70)
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Hence for all t ∈ [0, T )

k(t) = k(t⋆) +

∫ t

t⋆
k̇(τ) dτ

(2.67),(2.70)

≤ k(t⋆) + q1 β
q2

(
µV
µ
V

) q2
2 ∥∥∥∥
(
y(t⋆)
z(t⋆)

)∥∥∥∥
q2 ∫ t

t⋆
exp

(
−q2 µV

2
(τ − t⋆)

)
dτ

≤ k(t⋆) +
2q1 β

q2

q2 µV

(
µV
µ
V

) q2
2 ∥∥∥∥
(
y(t⋆)
z(t⋆)

)∥∥∥∥
q2

<∞,

which, with continuity of y(·), z(·) and k(·) on [0, T ) and compactness of [0, t⋆], contradicts
unboundedness of k(·) on [0, T ).

Step 4: It is shown that Assertion (ii) holds true, i.e. T = ∞.
From Step 3 it follows that k(·) is bounded on [0, T ). Since k(·) is continuous and non-decreasing
on [0, T ), the limit limt→T k(t) =: k∞ exists. Define

σ := |a1|+ |γ0|k∞ + ‖a2‖+ ‖a3‖+ ‖A4‖ ≥ 0.

and observe that for the closed-loop initial-value problem (2.50), (2.59) (neglecting the adaption
of k(·) in (2.59)) the following holds

∀ t ∈ [0, T ) :

∥∥∥∥
d
dt

(
y(t)
z(t)

)∥∥∥∥ ≤ σ

∥∥∥∥
(
y(t)
z(t)

)∥∥∥∥ .

Hence, for all T <∞, Hilfssatz 3.1 in [116, p. 120] gives

∀ t ∈ [0, T ) :

∥∥∥∥
(
y(t)
z(t)

)∥∥∥∥ ≤ exp (σ t)

∥∥∥∥
(
y(0)
z(0)

)∥∥∥∥ < exp (σT )

∥∥∥∥
(
y(0)
z(0)

)∥∥∥∥ <∞.

which, by maximality of T , implies T = ∞ and Assertion (ii) is shown. This completes Step 4.

Step 5: It is shown that Assertions (iii) and (iv) hold true, i.e. k(·) ∈ L∞(R≥0;R>0), x(·) ∈
L∞(R≥0;R

n), limt→∞ k̇(t) = 0 and limt→∞ x(t) = 0n.
Note that k(·) ∈ L∞(R≥0;R>0) is a direct consequence of Step 3 and 4. Boundedness of k(·)
on R≥0 combined with (2.59) implies y(·) ∈ Lq2(R≥0;R). From system property (S lin

1 -sp2) and
Lemma 2.12 it follows that spec(A4) ⊂ C<0 and, in view of the second equation in (2.50), this
combined with y(·) ∈ Lq2(R≥0;R) implies (see e.g. [46, Theorem C.2.14])

z(·) ∈ Lq2(R≥0;R
n−1) and ż(·) ∈ Lq2(R≥0;R

n−1).

Moreover, in view of the first equation in (2.50), this with y(·) ∈ Lq2(R≥0;R) implies ẏ(·) ∈
Lq2(R≥0;R). Invoking Lemma 2.1.7 in [86, p. 17] then gives

(y(·), z(·)) ∈ L∞(R≥0;R
n) and lim

t→∞
(y(t), z(t)) = 0n,
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which with S−1 as in (2.49) implies

x(·) = S−1(y(·), z(·)⊤)⊤ ∈ L∞(R≥0;R
n) and lim

t→∞
x(t) = lim

t→∞
S−1(y(t), z(t)⊤)⊤ = 0n.

Furthermore
lim
t→∞

k̇(t) = lim
t→∞

q1 |y(t)|q2 = lim
t→∞

q1 |c⊤x(t)|q2 = 0.

Hence Assertions (iii) and (iv) are shown, which completes the proof.

The simple high-gain adaptive controller (2.59) is an “asymptotic stabilizer” of all systems of
form (2.45) and element of class S lin

1 . For simplicity the initial controller gain k0 is restricted to
be positive. Clearly, since k(·) is non-decreasing, any negative value is also admissible but not
reasonable: k0 < 0 reverses the sign of control action in (2.59) and might initially destabilize
the closed-loop system (2.45), (2.59).

Remark 2.26 (Asymptotic stabilization versus asymptotic stability).
Note that, in general, the closed-loop system (2.45), (2.59) is not asymptotically stable in the
sense of Lyapunov (see e.g. [77, p. 199-202]). The controller (2.59) “solely renders” the origin
attractive, i.e. limt→∞ x(t) = 0n (not accounting for the gain k(·)) and so achieves “asymptotic
stabilization” of systems of class S lin

1 . For illustration consider the first order system

ẏ(t) = a1 y(t) + γ0 u(t), y(0) = y0 ∈ R, a1 ∈ R, γ0 6= 0. (2.71)

Clearly, for known sign(γ0) system (2.71) is element of class S lin
1 and therefore application

of high-gain adaptive controller (2.59) is admissible. Moreover, for a1 > 0 system (2.71) is
unstable. If, for 0 < k0 < a1, controller (2.59) is applied to (2.71), then for arbitrary ε > 0
there does not exist δ = δ(ε) > 0 such that |y(0)| < δ implies |y(t)| < ε for all t ≥ 0. The
closed-loop system blows up until for some t⋆ > 0 a sufficiently large “stabilizing” gain k(t⋆) > a1
is reached.

Simulations

To analyze the influence of the design parameters q1 and q2 in (2.59) on the control performance,
consider the closed-loop system (2.71), (2.59). For different choices of q1 and q2 the simulation
results are depicted in Fig. 2.3. For all simulations the initial gain k0 = 1, the initial value
y0 = 0.1 and the parameters γ0 = 1 and a1 = 10 are fixed. It is easy to imagine that larger
initial gains will result in “faster stabilization” with “smaller peaks” in the output and so such
simulations are not shown. For a comprehensive performance analysis the reader is referred
to [86, Chapter 7]. The influence of the design parameters on the control performance is
summarized in the following remark.

Remark 2.27 (Design parameters q1, q2 and k0).
The factor q1 > 0 scales gain adaption in (2.59), which allows to accelerate or decelerate
adaption speed in particular for small initial values |y(0)| ≪ 1. The exponent q2 ≥ 1 increases
adaption speed for large values of |y(·)|. Increased adaption speed in turn reduces peaking. The
“stabilizing gain” is found more rapidly (see also [91]). A very common choice for the exponent
is q2 = 2 (then also the proof simplifies). With k0 > 0 the control designer is able to fix a
first guess for the initial gain, e.g. for system (2.71) the choice k0 > a1 yields a closed-loop
system (2.71), (2.59) which is exponentially stable “right away”.
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(a) output y(·) for different designs.
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(b) gain k(·) for different designs.

Figure 2.3: Simulation results for closed-loop system (2.71), (2.59) with a1 = 10,
y0 = 0.1 and γ0 = k0 = 1 and different design parameters (q1, q2) ∈
{ (1, 1), (10, 1), (1, 2), (10, 2)}.

2.3.4 Relative degree two systems

In general the simple controller structure in (2.59) cannot be retained for relative degree two
systems of form (2.45). Either additional assumptions (e.g. negative root locus center) must be
imposed on the system or an extended controller structure must be applied (e.g. incorporating
a dynamic compensator or derivative feedback). In this section the following system class is
considered.

Definition 2.28 (System class S lin
2 ).

A system of form (2.45) is of Class S lin
2 if, and only if, the following hold:

(S lin
2 -sp1) the relative degree is two and the sign of the high-frequency gain is known, i.e.

c⊤b = 0, γ0 := c
⊤Ab 6= 0 and sign(γ0) is known;

(S lin
2 -sp2) it is minimum-phase, i.e. (2.14) holds, and

(S lin
2 -sp3) the (regulated) output y(·) and its derivative ẏ(·) are available for feedback.

System class S lin
2 is the linear counterpart to system class S2 and the following discussion can

be regarded as precursor of the generalization(s) to class S2 presented in Chapter 3 and 4.

2.3.4.1 High-gain adaptive controller if root locus center is negative

The root locus center of systems of form (2.45) with relative degree two is given by

Ξ(A, b, c) =
1

2

c⊤A2b

c⊤Ab
=

1

2γ0
c⊤A2b. (see Appendix C) (2.72)

As was already noted in Section 2.2, systems of class S lin
2 with negative root locus center are

high-gain stabilizable. Moreover, high-gain adaptive stabilization is feasible by retaining the
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simple structure of the high-gain adaptive controller (2.59). Solely the (altered) high-frequency
gain is to be incorporated into the controller appropriately.

Theorem 2.29. Consider a system of class S lin
2 described by (2.45) with root locus center

Ξ(A, b, c) as in (2.72). If Ξ(A, b, c) < 0, then the high-gain adaptive controller

u(t) = − sign(c⊤Ab) k(t) y(t) where k̇(t) = y(t)2, k(0) = k0 > 0 (2.73)

applied to (2.45) yields a closed-loop initial-value problem with the properties (i)-(iv) of Theo-
rem 2.24.

Proof. see [86, p. 63-66].

Note that, depending on the location of the root locus center Ξ(A, b, c) < 0 in the left complex
half-plane and the initial gain k0, the closed-loop system (2.45), (2.73) is possibly not well-
damped (in the sense of Example 11.3.7 in [24]): there might occur (undesired) oscillations
which cannot be damped actively.

Example 2.30. For illustration consider the second order system given by

ÿ(t) = a1 y(t) + a2 ẏ(t) + γ0 u(t),

(
y(0)
ẏ(0)

)
=

(
y0
y1

)
∈ R

2, a1, a2 ∈ R, γ0 6= 0. (2.74)

Its relative degree is two and, for a2 < 0, it has a negative root locus center

Ξ =
1

2γ0

(
0, 1

)( γ0
a2γ0

)
= a2/2 < 0.

Applying (2.73) to (2.74) yields the simulation results depicted in Fig. 2.4. For the (larger)
initial gain k0 = 10 the closed-loop system (2.74), (2.73) exhibits oscillations with greater am-
plitude and higher frequency than for the (smaller) initial gain k0 = 1. This observation holds
for both choices of a2 = −1 and a2 = −2 (see Fig. 2.4(a), (b)). In contrast, the closed-loop
system (2.74), (2.73) with root locus center Ξ = −1 (i.e. a2 = −2) is better damped for k0 = 1
and k0 = 10 than that with Ξ = −0.5 (i.e. a2 = −1), respectively.

The controller (2.73) will not work for systems with positive root locus center Ξ(A, b, c) > 0.
However, if derivative feedback is admissible (as claimed in class S lin

2 ), then Ξ(A, b, c) can be
shifted arbitrarily.

Corollary 2.31. Consider a system of class S lin
2 described by (2.45) with high-frequency gain

γ0 = c
⊤Ab and root locus center Ξ(A, b, c) as in (2.72). Then, for continuous v(·) : R≥0 → R,

application of derivative feedback of the form

u(t) = − sign(c⊤Ab) kS ẏ(t) + v(t), kS 6= 0. (2.75)

yields a shift of the root locus center, i.e.

ΞS := Ξ(A, b, c)− 1

2
|γ0|kS. (2.76)
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(a) simulation results for Ξ = −0.5 (i.e. a2 = −1):
top: y(·) for k0 = 1, y(·) for k0 = 10;
bottom: ẏ(·) for k0 = 1, ẏ(·) for k0 = 10.
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(b) simulation results for Ξ = −1 (i.e. a2 = −2):
top: y(·) for k0 = 1, y(·) for k0 = 10;
bottom: ẏ(·) for k0 = 1, ẏ(·) for k0 = 10.

Figure 2.4: Simulation results for closed-loop system (2.74), (2.73) with (y0, y1) = (1, 1), a1 = −1,
γ0 = 1 and k0 ∈ {1, 10} and a2 ∈ {−1, −2}.

Proof. Without loss of generality, consider system (2.45) in BIF (2.54). For B as in (2.52) and
(CB)−1 as in (2.53) observe that the following holds

(
a1, a2

)
= c⊤A2B(CB)−1 =

(
⋆, 1

γ0
c⊤A2b

)
∈ R

1×2 ⇒ a2 =
c⊤A2b

γ0

(2.72)
= 2Ξ(A, b, c).

Moreover, it is easy to see that the closed-loop system (2.54), (2.75) is similar to (2.54): sub-
stitute v(t) and a2 − |γ0| kS for u(t) and a2, respectively. Hence a2 − |γ0| kS =: 2ΞS which
gives (2.76).

Clearly, Corollary 2.31 allows for a left shift of the root locus center, if e.g. ρ > 0, Ξ(A, b, c) > ρ
and a lower bound γ0 > 0 on the high-frequency gain (i.e. γ0 ≤ γ0) are known, then any
kS > 2ρ/γ0 in (2.75) gives ΞS < 0 and Theorem 2.29 assures asymptotic stabilization of the
shifted system (2.54), (2.75) with “new” control input v(·). Drawback of this shift is that two
parameters must be known roughly. Later it will be shown that a “time-varying shift” of the
root locus center—obviating rough parameter knowledge—is feasible.

Remark 2.32. Consider a system in the frequency domain given by F (s) as in (2.35) with
relative degree r ≥ 1 and root locus center Ξ(N,D) as in (2.39) and introduce the following
input (or output) filter

FF (s) := u(s)
uF (s)

(
:= yF (s)

y(s)

)

:= γF
NF (s)
DF (s)

:= γF
∏nF

i=1

(s− zi(NF ))

(s− pi(NF ))
,

γF > 0, nF ∈ N,
NF , DF ∈ R[s], monic and coprime,
ℜ(zi), ℜ(pi) < 0 ∀ i ∈ {1, . . . , nF}.

(2.77)
with relative degree zero. In view of Definition 2.16 the root locus center of the serial intercon-
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nection FF (s)F (s) (or F (s)FF (s)) is given by

1

r

(
n∑

i=1

pi(D)−
m∑

i=1

zi(N) +

nF∑

i=1

(pi(DF )− zi(NF ))

)
= Ξ(N,D) +

1

r

nF∑

i=1

(pi(DF )− zi(NF )) ,

hence an adequate choice of the zeros z1(NF ), . . . , znF (NF ) and poles p1(DF ), . . . , pnF (DF ) of
the filter in (2.77) yields an arbitrarily shift of the root locus center of the serial interconnec-
tion FF (s)F (s) (or F (s)FF (s)). Again rough knowledge of the location of Ξ(N,D) is required
to achieve e.g. a shift into the left complex half plane.

2.3.4.2 High-gain adaptive controller with dynamic compensator

In 2007, motivated by finding an error in [129] (see Section 2.3.1), Hoagg and Bernstein
present “parameter-monotonic direct adaptive control ” of minimum-phase LTI SISO systems
with known sign of and known upper bound on the high-frequency gain if only output feedback
is admissible (see [80]). The proposed high-gain adaptive controllers incorporate dynamic com-
pensators (similar to that presented in Section 2.2 but with time-varying gain) and (under the
assumptions above) are capable to stabilize systems either with unknown but bounded relative
degree r if an upper bound r on r is known (see [80, Theorem 8.1]) or with exactly known rela-
tive degree r (see [80, Theorem 8.2]). The more general first controller (see [80, Theorem 8.1])
is robust to uncertainties in the relative degree by the use of Fibanocci series in the gain ex-
ponents and is of order r. The second controller is of order r (not accounting for gain adaption).

Since the relative degree of systems of class S lin
2 is exactly known and two, in the present work

only a simplified version of Theorem 8.2 in [80] is presented. Notation is adopted from [80].

Theorem 2.33. Consider a system of class S lin
2 described by (2.45). Let b0 ≥ |c⊤Ab| > 0 be

known and choose b1, b2 > 0 such that

s3 + b2 s
2 + b1 s+ η b0 ∈ R[s]

is Hurwitz for all η ∈ (0, 1], i.e. b1 b2 > b0. Then the dynamic compensator5 with high-gain
adaptive controller

˙̂x(t) =

[
−k(t)b2 1
−k(t)2b1 0

]
x̂(t) +

[
1
ẑ0

]
y(t), x̂(0) = x̂0 ∈ R

2

u(t) = − sign(c⊤Ab)
(
k(t)3, 0

)
x̂(t) where

k̇(t) = γ exp
(
− α k(t)

)
y(t)2, k(0) = k0





(2.78)

with design parameters b1, b2 > 0, ẑ0 > 0, γ, α > 0 and k0 > 0 applied to (2.45) yields a
closed-loop initial-value problem with the properties:

(i) there exists a unique and maximal solution (x, x̂, k) : [0, T ) → R
n×R

2×R≥0, T ∈ (0,∞];

(ii) the solution is global, i.e. T = ∞;

5Theorem 8.2 in [80] contained typing errors for the exponents of k in the compensator matrix. The errors
are corrected here.
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(iii) all signals are bounded, i.e. (x(·), x̂(·)) ∈ L∞(R≥0;R
n × R

2) and k(·) ∈ L∞(R≥0;R>0);

(iv) limt→∞ k̇(t) = 0 and limt→∞(x(t), x̂(t)) = (0n, 02).

Proof. see proof of Theorem 8.2 in [80].

Gain adaption in (2.78) exponentially decreases for large gains. Interesting to note that already
in [129] the proposed gain adaption is proportional to k(t)−(r−1) for systems with relative degree
r ≥ 2. Deceleration of the gain adaption for large gains is essential for the proofs (see e.g. Lemma
A.2 in [80] or (2.95) in the proof of Theorem 2.36).

Remark 2.34 (Design parameters γ, α, k0, b1, b2 and ẑ0.).
The parameters γ and α directly influence gain adaption, e.g. γ ≫ 1 and α ≪ 1 accelerate
whereas γ ≪ 1 and α ≫ 1 decelerate gain adaption. A large initial gain k0 ≫ 1 probably yields
“faster stabilization” than a small initial value k0 ≪ 1 (if the controlled system is unstable).
The parameters b1, b2 (under restriction that b1 b2 > b0) and ẑ0 > 0 permit tuning of the
dynamic compensator in (2.78). However their influence on the response of the closed-loop
system (2.78), (2.45) is not intuitive and hard to guess (see simulations in Section 2.3.4.4). A
severe drawback for implementation.

2.3.4.3 High-gain adaptive controller with derivative feedback

It was already shown in Section 2.3.4.1 that high-gain adaptive stabilization by simple output
feedback (2.73) is feasible for systems with relative degree two if either the root locus center
is located in or is shifted into the left complex half-plane. For the shift certain system param-
eters need to be known roughly. What about a “time-varying shift of the root locus center”
by replacing the constant gain kS in (2.73) by the time-varying (adapted) gain k(t)? Loosely
speaking, this question can be answered affirmatively as will be shown in the following.

First a simple result is presented which reduces the problem of high-gain adaptive stabilization
of systems of class S lin

2 to the problem of high-gain adaptive stabilization of systems of class
S lin
1 . The relative degree is reduced by introducing an augmented (auxiliary) output of the form

ŷ(t) := y(t) + q1ẏ(t) where q1 > 0. (2.79)

Moreover, if the original system (2.45) is minimum-phase, then the choice of q1 > 0 in (2.79)
retains the minimum-phase condition for the augmented system (2.45), (2.79). This approach
is similar to that presented in [96] to allow for high-gain adaptive speed control of elastically
coupled electrical drives.

Theorem 2.35. Consider a system of class S lin
2 described by (2.45) and, for q1 > 0, introduce

the augmented output as in (2.79). Then the high-gain adaptive controller

u(t) = − sign(c⊤Ab) k(t) ŷ(t) where k̇(t) = q2 |ŷ(t)|q3 , k(0) = k0 (2.80)

with design parameters q2 > 0, q3 ≥ 1 and k0 > 0 applied to (2.45) yields a closed-loop initial-
value problem with the properties (i)-(iv) as in Theorem 2.24.
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Proof of Theorem 2.35.
Without loss of generality, consider system (2.45) in BIF (2.54). Define x̂ := (y, ẏ, z⊤)⊤ and
observe that (2.45) with output (2.79) can be written as

d
dt
x̂(t) =



0 1 0

⊤
n−2

a1 a2 a⊤
3

a4 0n−2 A5




︸ ︷︷ ︸
=:Â

x̂(t) +




0
γ0

0n−2




︸ ︷︷ ︸
=:b̂

u(t), x̂(0) = Sx0

ŷ(t) =
(
1 q1 0

⊤
n−2

)
︸ ︷︷ ︸

=:ĉ⊤

x̂(t)

Moreover, it is easy to see that the following hold: (i) ĉ⊤b̂ = q1 γ0 6= 0 and sign(q1γ0) = sign(γ0)
known, (ii) ŷ is available for feedback and (iii)

det

[
sIn − Â b̂

ĉ⊤ 0

]
= |γ0|(s q1 + 1) det

(
sIn−2 −A5

) (Slin
2 −sp2)
6= 0 ∀ s ∈ C≥0.

Hence system properties (S lin
1 -sp1)-(S lin

1 -sp3) of class S lin
1 are satisfied and Assertions (i)-(iv)

follow from Theorem 2.24. This completes the proof.

Theorem 2.35 guarantees asymptotic stabilization of systems of class S lin
2 without additional

assumptions. Moreover, this result can easily be generalized to adaptive λ-tracking (see Sec-
tion 3.4) such that control objective (co2) holds for e(t) replaced by ŷref(t)− ŷ(t), i.e.

∀λ > 0: lim
t→∞

dist
(
|ŷref(t)− ŷ(t)|, [0, λ]

)
= 0.

where ŷref(·) ∈ W1,∞(R≥0;R) is some feasible reference. Nevertheless, the introduction of the
augmented output (2.79) is unattractive, since in general no statements can be made on the
asymptotic tracking accuracy of the “original error” e(·) = yref(·)− y(·).

Motivated by the approach of Hoagg and Bernstein (see Section 2.3.4.2), the following result
was found incorporating derivative feedback (admissible for systems of class S lin

2 ) instead of a
dynamic compensator. It will allow for a generalization to adaptive λ-tracking control and, in
addition, will ensure control objective (co2) (see Section 3.5.3).

Theorem 2.36 (High-gain adaptive control with derivative feedback for systems of class S lin
2 ).

Consider a system of class S lin
2 described by (2.45). The high-gain adaptive controller

u(t) = − sign(c⊤Ab)
(
k(t)2 y(t) + q1 k(t) ẏ(t)

)
where

k̇(t) = q2 exp(−q3 k(t))
∥∥(y(t), ẏ(t))⊤

∥∥2 , k(0) = k0

}
(2.81)

with design parameters q1, q2, q3 > 0 and k0 > 0 applied to (2.45) yields a closed-loop initial-
value problem with the properties (i)-(iv) as in Theorem 2.24.

Remark 2.37 (Design parameters q1, q2, q3 and k0 ).
The factor q1 > 0 in (2.81) allows for active damping of the closed-loop system (2.45), (2.81).
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Simulations (see Section 2.3.4.4) show that, if a lower bound γ0 > 0 on the high-frequency gain

γ0 = c⊤Ab is known such that |γ0| ≥ γ0, then (at least) for a second order system the choice
q1 ≥ 2/

√
γ0 yields an “overdamped” (or a “critically damped”) closed-loop system (in the sense

of Example 11.3.7 in [24, p. 717-718]). This observation will be important in view of application
in real world (see Chapter 5). The parameters q2 > 0 and q3 > 0 directly affect gain adaption
and allow for acceleration or deceleration of adaption speed. The parameter k0 > 0 allows to
fix a first guess for the initial gain.

Proof of Theorem 2.36.

Step 1: It is shown that Assertion (i) holds true, i.e. existence of a unique solution maximally
extended on [0, T ), T ∈ (0,∞].
It suffices to consider system (2.45) in the form (2.54). Define

D := R
2 × R

n−2 × R>0 and I := R

and the function

f : I × D → D, (t, (µ, ξ, κ)) 7→




[
0 1

a1 − |γ0|κ2 a2 − q1|γ0|κ

]
µ+

[
0
⊤

a⊤
3

]
ξ

[
a4 0

]
µ+A5ξ

q2 exp(−q3 κ) ‖µ‖2


 .

Then, for S as in (2.24) (with r = 2) and x̂ := ((y, ẏ)⊤, z⊤, k)⊤, the closed-loop initial-value
problem (2.54), (2.81) can be expressed in the form (2.60). Note that the function f(·, ·)
is continuous for all (t, (µ, ξ, κ)) ∈ I × D and for every compact C ⊂ I × D there exists
MC > 0 such that

∥∥(t, (µ⊤, ξ⊤, κ)⊤)
∥∥ ≤ MC for all (t, (µ, ξ, κ)) ∈ C. Furthermore, for all

(t, (µ, ξ, κ)), (t, (µ̃, ξ̃, κ̃)) ∈ C, the following holds
∥∥∥f(t, (µ, ξ, κ))− f(t, (µ̃, ξ̃, κ̃)

∥∥∥ ≤
(∥∥[ 0 1

a1 a2

]∥∥+ ‖a4‖+

MC (2q2 exp(−q3k0) + |γ0|(MC + q1))
)
‖µ− µ̃‖+

(‖a3‖+ ‖A5‖)
∥∥∥ξ − ξ̃

∥∥∥+ |γ0|MC(q1 + 2MC)|κ− κ̃|,

which shows that f(·, ·) is locally Lipschitz continuous (with respect to (µ, ξ, κ) ∈ D). Hence
Theorem 2.20 yields existence and uniqueness of a solution x̂ = ((y, ẏ)⊤, z⊤, k)⊤ : [0, T ) →
R

2 × R
n−2 × R>0 of the initial-value problem (2.60) with maximal T ∈ (0,∞] (the interval

(T−, 0) is neglected). Clearly, (x, k) = (S−1(y, ẏ, z), k) : [0, T ) → R
n × R>0 solves the closed-

loop initial-value problem (2.45), (2.81), which shows Assertion (i) and completes Step 1.

Step 2: Some technical inequalities are shown.
Introduce

A1 : [k0,∞) → R
2×2, k 7→ A1(k) :=

[
0 1

−|γ0|k2 −q1|γ0|k

]
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and

P 1 : [k0,∞) → R
2×2, k 7→ P 1(k) :=

1

2|γ0|

[
1
q1
+ |γ0|k2

q1
+ q1|γ0| 1

k
1
k

1
|γ0|k2q1 +

1
q1

]
.

For

p11(k) :=

(
1
q1
+ |γ0|k2

q1
+ q1|γ0|

)

2|γ0|
> 0, p12(k) :=

1

2|γ0|k
> 0 and p22(k) :=

(
1

|γ0|k2 + 1
)

2q1|γ0|
> 0

(2.82)

note that

∀ k ≥ k1 := max{q1/2, 1/
√

|γ0|} > 0: 0 < p12(k) + p22(k) ≤ 2/(q1|γ0|). (2.83)

In view of (2.82) observe that p11(k) p22(k)− p12(k)
2 > 0 for all k ≥ k0 and hence it is easy to

see that

∀ k ≥ k0 > 0: P 1(k) = P 1(k)
⊤ > 0 and A1(k)

⊤P 1(k) + P 1(k)A1(k) = −kI2. (2.84)

Moreover, since P 1(·) ∈ C∞([k0,∞);R2×2), it follows that

∀ k ≥ k0 > 0:
∂P 1(k)

∂k
=

1

2|γ0|

[
2|γ0|k
q1

− 1
k2

− 1
k2

− 2
|γ0|k3q1

]
.

For any q3 > 0, simple calculations show that the following holds

∀k ≥ k2 := 2max{1/q3, 1/q2}+ 1 > 0: (2.85)

q3

(
1

q1
+

|γ0|k2
q1

+ q1|γ0|
)
− 2|γ0|k

q1
> 0 and

(
q3

(
1

q1
+

|γ0|k2
q1

+ q1|γ0|
)
− 2|γ0|k

q1

)(
q3

(
1

|γ0|k2q1
+

1

q1

)
+

2

|γ0|k3q1

)
−
(
q3
k

+
1

k2

)2

> 0

and hence

∀k ≥ k2 : q3P 1(k)−
∂P 1(k)

∂k
> 0. (2.86)

Due to (S lin
2 -sp2) and Lemma 2.12, the matrix A5 is a Hurwitz matrix, i.e. spec(A5) ⊂ C<0,

and therefore

∃ a unique 0 < P⊤
5 = P 5 ∈ R

(n−2)×(n−2) : A⊤
5 P 5 + P 5A5 = −In−2. (2.87)

For notational brevity, define

∀ t ≥ 0: w(t) := (y(t), ẏ(t))⊤
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and, for P 1(k(t)) as in (2.84) and P 5 as in (2.87), introduce the Lyapunov-like function

V : R2 × R
n−2 × [k0,∞) → R≥0,

(w, z, k) 7→ V (w, z, k) := exp(−q3 k)
(
w⊤P 1(k)w + z⊤P 5z

)
≥ 0.

(2.88)

The time derivative d
dt
V (·) along the solution of the closed-loop (2.54), (2.81) is given as follows

∀ t ∈ [0, T ) :
d
dt
V (w(t), z(t), k(t)) = exp(−q3 k(t))

{
2w(t)⊤P 1(k(t))ẇ(t) + 2z(t)⊤P 5ż(t)

−k̇(t)w(t)⊤
(
q3P 1(k(t))−

∂P 1(k(t))

∂k

)
w(t)

−q3k̇(t)z(t)⊤P 5z(t)

}
. (2.89)

Furthermore note that, for l ∈ N and for p12(k) and p22(k) as in (2.82), the following holds

∀α, β ∈ R
l :

∥∥∥∥P 1(k)

[
0
⊤
l

α⊤

]
β

∥∥∥∥ =

∥∥∥∥
[
p12(k)α

⊤

p22(k)α
⊤

]
β

∥∥∥∥ ≤ (p12(k) + p22(k)) ‖α‖ ‖β‖ . (2.90)

Invoking (2.54), (2.81) yields

∀ t ∈ [0, T ) : 2w(t)⊤P 1(k(t))ẇ(t)
(2.84)

≤ −k(t) ‖w(t)‖2 + 2 ‖w(t)‖
∥∥∥∥P 1(k(t))

[
0 0
a1 a2

]
w(t)

∥∥∥∥

+ 2 ‖w(t)‖
∥∥∥∥P 1(k(t))

[
0
⊤

a⊤
3

]
z(t)

∥∥∥∥
(2.90)

≤ −k(t) ‖w(t)‖2 + 2 ‖w(t)‖
(
p12(k(t)) + p22(k(t))

)

·
(∥∥(a1, a2)⊤

∥∥ ‖w(t)‖+ ‖a3‖ ‖z(t)‖
)

(2.62)

≤ −
(
k(t)− 2

(
p12(k(t)) + p22(k(t))

) ∥∥(a1, a2)⊤
∥∥

− 4
(
p12(k(t)) + p22(k(t))

)2 ‖a3‖2
)
‖w(t)‖2 − 1

4
‖z(t)‖2

(2.91)

and

∀ t ∈ [0, T ) : 2z(t)⊤P 5ż(t)
(2.87)

≤ −‖z(t)‖2 + 2 ‖z(t)‖ ‖P 5‖ ‖a4‖ ‖w(t)‖
(2.62)

≤ −3

4
‖z(t)‖2 + 4 ‖P 5‖2 ‖a4‖2 ‖w(t)‖2 , (2.92)

respectively.
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Step 3: It is shown that k(·) is bounded on [0, T ).
Seeking a contradiction, assume that k(·) is unbounded on [0, T ). In view of (2.81), k(·) is
non-decreasing on [0, T ), therefore with k1 as in (2.83) and k2 as in (2.85)

∃ t⋆ ≥ 0 ∀ t ∈ [t⋆, T ) : k(t) ≥ max

{
k1, k2, q2 +

4
∥∥(a1, a2)⊤

∥∥
q1|γ0|

+
16 ‖a3‖2
q21|γ0|2

+ 4 ‖P 5‖2 ‖a4‖2
}
.

(2.93)

Moreover, in view of (2.89), it follows that for all t ∈ [t⋆, T )

d
dt
V (w(t), z(t), k(t))

(2.86),(2.81)

≤ exp(−q3 k(t))
{
2w(t)⊤P 1(k(t))ẇ(t) + 2z(t)⊤P 5ż(t)

}
(2.94)

(2.91),(2.92)

≤ exp(−q3 k(t))
{

−
(
k(t)− 2

(
p12(k(t)) + p22(k(t))

) ∥∥(a1, a2)⊤
∥∥

−4
(
p12(k(t)) + p22(k(t))

)2 ‖a3‖2 − 4 ‖P 5‖2 ‖a4‖2
)
‖w(t)‖2

−1

2
‖z(t)‖2

}

(2.83)

≤ exp(−q3 k(t))
{

−
(
k(t)− q2 −

4

q1|γ0|
∥∥(a1, a2)⊤

∥∥

− 16

q21|γ0|2
‖a3‖2 − 4 ‖P 5‖2 ‖a4‖2

)
‖w(t)‖2

−1

2
‖z(t)‖2 − q2 ‖w(t)‖2

}

(2.93)

≤ −q2 exp(−q3 k(t)) ‖w(t)‖2 (2.81)
= −k̇(t). (2.95)

Integration from t⋆ to t < T and solving for k(t) yields

∀ t ∈ [t⋆, T ) : k(t) ≤ V (w(t⋆), z(t⋆), k(t⋆)) + k(t⋆)

and since [0, t⋆] is compact and w(·), z(·) and k(·) are continuous on [0, T ) the contradiction
follows.

Step 4: It is shown that Assertions (ii) holds true, i.e. T = ∞.
From Step 1 & 3 and (2.81) it follows that k(·) is continuous, non-deacreasing and bounded on
[0, T ). Hence the limit

k∞ := lim
t→T

k(t) ≥ k0 > 0 (2.96)

exists and observe that for the closed-loop initial-value problem (2.54), (2.81) (neglecting the
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adaption in (2.81)) the following holds

∀ t ∈ [0, T ) :

∥∥∥∥
d

dt

(
w(t)
z(t)

)∥∥∥∥ ≤
(∥∥∥∥
[
0 1
a1 a2

]∥∥∥∥+ |γ0|k∞
(
k∞ + q1

)
+ ‖a3‖+ ‖a4‖+ ‖A5‖

)∥∥∥∥
(
w(t)
z(t)

)∥∥∥∥,

which with Proposition 2.1.19 in [77, p. 86] implies, by maximality of T , that T = ∞. This
shows Assertion (ii) and completes Step 4.

Step 5: It is shown that Assertions (iii) and (iv) hold true, i.e. k(·) ∈ L∞(R≥0;R>0), x(·) ∈
L∞(R≥0;R

n), limt→∞ k̇(t) = 0 and limt→∞ x(t) = 0n.
From Step 3 and 4 it directly follows that k(·) ∈ L∞(R≥0;R>0). Moreover, for k∞ as in (2.96)
the following holds

∀ t ≥ 0: q2 exp(−q3k∞)

∫ t

0

∥∥(y(τ), ẏ(τ))⊤
∥∥2 dτ

(2.81)

≤
∫ t

0

k̇(τ) dτ = k(t)− k(0) < k∞ <∞,

which implies (y(·), ẏ(·))⊤ ∈ L2(R≥0;R
2). Hence, in view of the second equation in (2.54) and

due to spec(A5) ⊂ C<0, it also follows that z(·) ∈ L2(R≥0;R
n−2). Invoking (2.54) again yields

d
dt

(y(·), ẏ(·))⊤ ∈ L2(R≥0;R
2) and ż(·) ∈ L2(R≥0;R

n−2),

respectively. Combining the results above and applying Lemma 2.1.7 in [86, p. 17] yields
(y(·), ẏ(·))⊤ ∈ L∞(R≥0;R

2) and z(·) ∈ L∞(R≥0;R
n−2), which with S−1 as in (2.24) gives

x(·) = S−1((y(·), ẏ(·))⊤, z(·)⊤)⊤ ∈ L∞(R≥0;R
n)

and hence Assertion (iii) is shown. Furthermore, Lemma 2.1.7 in [86, p. 17] also gives

lim
t→∞

(y(t), ẏ(t))⊤ = 02 and lim
t→∞

z(t) = 0n−2

which implies

lim
t→∞

k̇(t) ≤ q2 exp(−q3 k0) lim
t→∞

∥∥∥∥
(
y(t)
ẏ(t)

)∥∥∥∥
2

= 0 and

lim
t→∞

x(t) = lim
t→∞

S−1((y(t), ẏ(t))⊤, z(t)⊤)⊤ = 0n.

Hence Assertion (iv) is shown. This completes the proof of Theorem 2.36.

Remark 2.38. There exists an alternative to controller (2.80) which also achieves high-gain
adaptive stabilization of systems of class S lin

2 . If (2.81) is replaced by

u(t) = − sign(c⊤Ab)
(
k(t) y(t) + d

dt
(k(t)y(t))

)
where

k̇(t) = |y(t)|p, p ≥ 1 k(0) = k0 > 0,
(2.97)

then Assertions (i)-(vi) of Theorem 2.24 also hold true (see [85, Proposition 4.1]). The slightly
more complex controller (2.81) has been introduced since it paved the way for and lead to the
adaptive λ-tracking controller (3.46) proposed in Section 3.5.3. It was not possible to general-
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Time t [s]

0 5 10 15 20

−1

−0, 5

0

0, 5

1

(a) output y(·) for different designs.

Time t [s]

0 5 10 15 20
1

1, 2

1, 4

1, 6

1, 8

(b) gain k(·) for different designs.

Figure 2.5: Simulation results for closed-loop system (2.74), (2.78) with (y0, y1) = (1, 0),
a1 = a2 = 0, γ0 = k0 = b0 = γ = α = 1 and (b1, b2, ẑ0) ∈
{ (2, 1, 0.1), (2, 1, 1), (2, 5, 0.1), (5, 1, 0.1)}.

ize (2.97) to the adaptive λ-tracking problem.

2.3.4.4 Simulations

To investigate the influence of the design parameters of controller (2.78) and (2.81) on the
closed-loop system response, both controllers are applied to the exemplary system (2.74) with
initial value (y0, y1) = (1, 0) and system parameters a1 = a2 = 0 and γ0 = 1. Both closed-loop
systems (2.74), (2.78) and (2.74), (2.81) are implemented in Matlab/Simulink.

For the upcoming simulations, only the design parameters (b1, b2, ẑ0) of (2.78) and q1 of (2.81)
are modified (see caption of Fig. 2.5 and 2.6). Clearly, the remaining design parameters—
i.e. γ, α, k0 for (2.78) and q2, q3, k0 for (2.81)—only affect gain adaption (adaption speed) and
initial gain and so only change the transient response quantitatively (in the sense of a time-
scaling in Fig. 2.5 and 2.6, resp.). For simplicity, these tuning parameters are set to one (see
captions of Fig. 2.5 and 2.6). The simulation results of the closed-loop system (2.74), (2.78)
and (2.74), (2.81) are shown in Fig. 2.5 and Fig. 2.6, respectively.

Discussion for high-gain adaptive controller with dynamic compensator (2.78): Simulation stud-
ies reveal (see Fig. 2.5) the following influence of the design parameters (b1, b2, ẑ0) on the
closed-loop performance (identical behavior was also observed for different values of γ0 6= 1):
(i) b1 > max{b2, ẑ0}γ0 yields a response with nearly no overshoot and small oscillations but
“slow” convergence (see ), (ii) 10γ0 > b2 ≥ max{b1, ẑ0}γ0 leads to oscillations with over-
shoot (see ), (iii) b2 ≫ max{b1, ẑ0}γ0 and ẑ0 ≫ max{b1, b2}γ0 result in “brief destabiliza-
tion” and turbulent but decaying oscillations with large amplitudes (≫ 10) and high frequency
(not shown due to scaling), (iv) ẑ0 ≈ max{b1, b2}γ0 gives with large overshoot and (v)
ẑ0 ≪ max{b1, b2}γ0 yields with small overshoot and fast decay. To conclude, control
design of (2.78) is not intuitive and must be performed by trial and error. Moreover, design
parameters do not have a distinct influence on the control performance.
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Time t [s]

0 5 10 15 20
−1

−0, 5

0

0, 5

1

(a) output y(·) for different designs.

Time t [s]

0 5 10 15 20
1

1, 5

2

2, 5

(b) gain k(·) for different designs.

Figure 2.6: Simulation results for closed-loop system (2.74), (2.81) with (y0, y1) = (1, 0), a1 = a2 = 0,
γ0 = k0 = q2 = q3 = 1 and q1 ∈ { 0.1, 1, 2, 5}.

Discussion for high-gain adaptive controller with derivative feedback (2.81): The damping of
the closed-loop system (2.74), (2.81) is easily tuned by variation of q1 (see Fig. 2.6). It is
well known that (weighted) feedback of the output derivative increases damping (see e.g. [174,
p. 212-213]). The following observations also hold for γ0 6= 1 and y0 6= 1 (even though no simu-
lation results are shown). For q1 < 2

√
γ0, the closed-loop system response exhibits oscillations

with increasing amplitude and frequency for decreasing values of q1. For q1 ≥ 2
√
γ0, the system

response is “overdamped”, i.e. no overshoot occurs. However, the larger q1 is chosen, the slower
is the closed-loop system response (2.74), (2.81) (see Fig. 2.6).

The influence of q1 on the closed-loop system (2.74), (2.81) may be explained by the following
linear analysis. Application of u(t) = k2y(t) + q1 k ẏ(t) with constant k > 0 to (2.74) with
a1 = a2 = 0 and γ0 > 0 yields the harmonic oscillator

ÿ(t) + γ0q1kẏ(t) + γ0k
2y(t) = 0. (2.98)

To obtain an “overdamped” (or a “critically damped”) oscillator (2.98) (in the sense of Exam-
ple 11.3.7 in [24, p. 717-718]) the eigenvalues must satisfy

p1,2 = −γ0q1k
2

(
1±

√
1− 4/(γ0q21)

)
< 0.

If γ0 ≥ γ0 > 0 and γ0 is known, the choice k > 0 and q1 ≥ 2/
√
γ0 implies 0 ≤ 1− 4/(γ0q

2
1) < 1.

Clearly, the argumentation above only holds for linear time-invariant systems, nevertheless sim-
ulation studies (e.g. in Fig. 2.6) indicate a similar behavior for the time-varying controller (2.81).

2.4 High-gain adaptive tracking with internal model

This far only stabilization of systems of form (2.45) either element of class S lin
1 or class S lin

2 was
discussed. What happens if reference signals yref : R≥0 → R are to be tracked by the system
output y(·) ? Are the presented high-gain adaptive controllers capable to guarantee asymptotic
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tracking, i.e.

lim
t→∞

e(t) = lim
t→∞

(
yref(t)− y(t)

)
= 0 ? (2.99)

The answer is affirmative if reference yref(·) is the solution of a known linear differential equa-
tion. Then the use of an “internal model” connected in series with the high-gain adaptive
controllers (2.59) or (2.81) assures asymptotic tracking as in (2.99) (see e.g. [86, Section 5.1]).
The “Internal Model Principle” postulates that “every good regulator must incorporate a model
of the outside world ” being capable to reduplicate “the dynamic structure of the exogenous
signals which the regulator is required to process” (see [189, p. 210]). Outside world does not
only cover known reference but also known disturbance signals. The disturbance dynamics of
processes in industry are mostly not structurally known, hence application of internal models
for disturbance rejection is often not feasible. In the following disturbance rejection by internal
models is neglected, for more information on asymptotic disturbance rejection see e.g. [135].
The internal model principle was extended to a nonlinear framework in [173].

In the remainder of this section, only “non-vanishing” reference signals are considered. For this
purpose, introduce the monic polynomial DIM ∈ R[s] with associated root set

R(DIM) :=
{
s0 ∈ C

∣∣ DIM(s0) = 0
}

and reference class

Yref :=

{
yref(·) ∈ C∞(R≥0;R)

∣∣∣∣∣ DIM

(
d
dt

)
yref(·) = 0,

DIM ∈ R[s], monic
with R(DIM) ⊂ C≥0

}
. (2.100)

Admissible references yref(·) ∈ Yref are e.g. constant, ramp-like, exponential and sinusoidal
functions and/or linear combinations thereof. Clearly, since DIM in (2.100) is not a Hur-
witz polynomial (more precisely, each root has non-negative real part, i.e. ℜ{s0} ≥ 0 for all
s0 ∈ R(DIM)), the admissible reference signals may also tend to +∞ (or −∞) as t→ ∞.

Note that, for monic and Hurwitz polynomial DIM ∈ R[s], DIM

(
d
dt

)
yref(·) = 0 implies that

reference yref(·) asymptotically (exponentially) vanishes, i.e. limt→∞ yref(t) = 0. Hence, for this
case, asymptotic tracking as in (2.99) is already accomplished by the stabilization results in
Section 2.3 (see also [86, p. 112]).

The principle idea of high-gain adaptive tracking with internal model is as follows: consider a
high-gain stabilizable albeit unknown LTI SISO system with transfer function F (s) as in (2.35)
and for yref(·) ∈ Yref introduce the internal model described by the following transfer function

FIM(s) :=
u(s)

v(s)
:=

NIM(s)

DIM(s)
,

coprime NIM , DIM ∈ R[s], DIM as in (2.100),
NIM monic and Hurwitz,
deg(NIM) = deg(DIM) and lim

s→∞
FIM(s) > 0.

(2.101)

from “new” input v(s) to control input u(s). Clearly the internal model in (2.101) is minimum-
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phase, has relative degree zero and positive high-frequency gain, i.e.

rIM = deg(NIM)− deg(DIM) = 0 and γ̂0 := lim
s→∞

FIM(s) > 0. (2.102)

Hence the serial interconnection

FS(s) :=
y(s)

v(s)
:= FIM(s)F (s)

again is high-gain stabilizable and, moreover, the internal model in (2.101) allows to redupli-
cate the reference signal yref(·) ∈ Yref (see Lemma 5.1.2 in [86]). Concluding, the problem
of high-gain adaptive tracking (with internal model) simplifies to that of high-gain adaptive
stabilization (see [86, Section 5.1]).

To formulate the results in the time domain, introduce a minimal realization of the internal
model (2.101) as follows

˙̂x(t) = Âx̂(t) + b̂ v(t)

u(t) = ĉ
⊤
x̂(t) + γ̂0v(t)

,
deg(DIM) =: p ∈ N, x̂(0) = x̂0 ∈ R

p,

(Â, b̂, ĉ) ∈ R
p×p × R

p × R
p, γ̂0 as in (2.102),

(2.103)

where v(·) represents the “new” control input of the serial interconnection of minimal realiza-
tion (2.103) and LTI SISO system of form (2.45). Furthermore, a technical lemma is required
which shows that interconnected system (2.103), (2.45) inherits the system properties of (2.45)
such as relative degree, sign of the high-frequency gain and minimum-phase property. The
following lemma covers LTI SISO systems with arbitrary relative degree greater than zero. It
is similar to Lemma 3.5 in [94] (there for LTI MIMO systems with relative degree one).

Lemma 2.39 (Serial interconnection of internal model and LTI SISO system).
Consider a system of form (2.45) with (known) relative degree 1 ≤ r ≤ n. If (2.103) is a
minimal realization of (2.101), then the serial interconnection (2.103), (2.45), given by

d
dt

(
x(t)
x̂(t)

)

︸ ︷︷ ︸
=:xS(t)

=

[
A bĉ

⊤

Op×n Â

]

︸ ︷︷ ︸
=:AS∈R(n+p)×(n+p)

(
x(t)
x̂(t)

)
+

(
γ̂0b

b̂

)

︸ ︷︷ ︸
=:bS∈Rn+p

v(t),

(
x(0)
x̂(0)

)
=

(
x0

x̂
0

)

︸ ︷︷ ︸
=:x0

S

∈ R
n×p

y(t) =
(
c⊤, 0

⊤
p

)
︸ ︷︷ ︸

=:c⊤S ∈R1×(n+p)

(
x(t)
x̂(t)

)
,





(2.104)
has the following system properties:

(i) its relative degree equals r;

(ii) its high-frequency gain is given by c⊤SA
r−1
S bS = γ̂0 c

⊤Ar−1b;

(iii) if (2.45) is minimum-phase, then so the serial interconnection (2.104), i.e.

∀ s ∈ C≥0 : det

[
sIn+p −AS bS

c⊤S 0

]
6= 0.
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Proof of Lemma 2.39.
Step1: It is shown that Assertions (i) and (ii) hold true.
Note that

∀ l ∈ N : Al
S =

[
A bĉ

⊤

Op×n Â

]l
=

[
Al ∑l

i=1A
l−ibĉ⊤Â

i−1

Op×n Â
l

]
(2.105)

where A0 = In and Â
0
= Ip and so the following holds

∀ l ∈ N : c⊤SA
l
SbS

(2.105)
=

(
c⊤ 0

⊤
p

)
[
Al ∑l

i=1A
l−ibĉ⊤Â

i−1

Op×n Â
l

](
γ̂0b

b̂

)

=
(
c⊤Al,

∑l
i=1 c

⊤Al−ibĉ⊤Â
i−1
)(γ̂0b

b̂

)

= γ̂0c
⊤Alb+

l∑

i=1

c⊤Al−ibĉ⊤Â
i−1
b̂. (2.106)

Now, either r = 1 then c⊤S bS = γ̂0c
⊤b or 1 < r ≤ n then c⊤S bS = c⊤b = 0 and in view of (2.106),

c⊤SA
l
SbS = 0 for all l ∈ {1, . . . , r− 2} and c⊤SA

r−1
S bS = γ̂0c

⊤Ar−1b 6= 0. This completes Step 1.

Step 2: It is shown that Assertion (iii) holds true.
If (2.45) is minimum-phase, then this implies stabilizability and detectability (see Proposi-
tion 2.8), i.e.

∀ s ∈ C≥0 : rank

[
sIn −A b

c⊤ 0

]
= n+ 1.

By assumption, (2.103) is a minimal realization of (2.101) and hence the pair (Â, b̂) is con-
trollable (and (ĉ⊤, Â) is observable). Hence the Popov-Belevitch-Hautus condition (see Re-
mark 2.9) implies

∀ s ∈ C : rank
[
sIp − Â, b̂

]
= p.

Combining this yields

∀ s ∈ C≥0 : rank

[
sIn+p −AS bS

c⊤S 0

]
= rank



sIn −A −bĉ⊤ γ̂0b

Op×n sIp − Â b̂

c⊤ 0
⊤
p 0


 = n+ p+ 1,

which shows Assertion (iii) and completes the proof of Lemma 2.39.

2.4.1 Relative degree one systems

Now high-gain adaptive tracking for systems of class S lin
1 is presented. From Lemma 2.39

it follows that the serial interconnection of system (2.45) and internal model (2.103) is again
element of class S lin

1 and hence, loosely speaking, a slight modification of the high-gain adaptive
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high-gain adaptive
controller (2.107)

(or (2.111))

internal
model (2.103)

system (2.45)
of class S lin

1

(or S lin
2 )

e yyref

ė ẏẏref

v u

−

−Yref

augmented system of class S lin
1 (or S lin

2 )

Figure 2.7: High-gain adaptive (tracking) control of systems of class S lin
1 (or S lin

2 ) with internal model.

controller (2.59) establishes asymptotic tracking.

Theorem 2.40 (High-gain adaptive tracking control of systems of class S lin
1 ).

Consider a system of class S lin
1 given by (2.45) and some arbitrary yref(·) ∈ Yref with known

DIM ∈ R[s] as in (2.100). Choose a Hurwitz polynomial NIM ∈ R[s] with deg(NIM) =

deg(DIM) such that lims→∞
NIM (s)
DIM (s)

> 0. If (2.103) is a minimal realization of NIM (s)
DIM (s)

, then

application of the high-gain adaptive (tracking) controller

v(t) = sign(c⊤b) k(t)e(t), where e(t) = yref(t)− y(t)

k̇(t) = q1 |e(t)|q2 , k(0) = k0

}
(2.107)

with design parameters q1 > 0, q2 ≥ 1 and k0 > 0 to the serial interconnection (2.104) yields,
for arbitrary initial-value x0

S ∈ R
n×p, a closed-loop initial-value problem (2.107), (2.104) with

the following properties

(i) there exists a unique and maximal solution (xS, k) : [0, T ) → R
n+p × R≥0, T ∈ (0,∞];

(ii) the solution is global, i.e. T = ∞;

(iii) the gain is bounded, i.e. k(·) ∈ L∞(R≥0;R>0);

(iv) the tracking error vanishes asymptotically, i.e. limt→∞ |e(t)| = limt→∞ |yref(t)− y(t)| = 0;

(v) the state does not grow faster than the reference, i.e.

∃M > 0 ∀ t ≥ 0: ‖xS(t)‖ ≤M(1 + max
s∈[0,t]

|yref(t)|).

Clearly, unbounded reference signals yref(·) might necessitate unbounded control actions u(·)
reduplicated by the internal model (2.103). If so, then in real world such references are not
admissible. In contrast, due to Assertions (iii) and (iv), the controller output v(·) as in (2.107)
is always bounded. The closed-loop system is depicted in Fig. 2.7.

Proof of Theorem 2.40.
Let w(·) be the unique solution of ẇ(t) = ASw(t),w(0) = w0 ∈ R

n+p where AS as in (2.104).
Clearly, such a solution exists on R≥0 and w(·) ∈ C∞(R≥0;R

n+p). In view of Lemma 5.1.2
in [86], there exists wref

0 ∈ R
n+p such that

ẇ(t) = ASw(t), w(0) = wref
0 ∈ R

n+p

yref(t) = c⊤Sw(t).
(2.108)
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Hence, for xS(·) as in (2.104), w(·) as in (2.108) and

∀ t ≥ 0: xe(t) := w(t)− xS(t).

the tracking error can be written as follows

∀ t ≥ 0: e(t) = yref(t)− y(t) = c⊤S
(
w(t)− xS(t)

)
= c⊤Sxe(t). (2.109)

Moreover, in view of (2.104) and (2.108), xe(·) is the unique solution of

ẋe(t) = ASxe(t)− bS v(t), xe(0) = w
ref
0 − x0

S ∈ R
n+p

e(t) = c⊤Sxe(t).
(2.110)

In view of Lemma 2.39, system (2.110) is element of class S lin
1 , hence Theorem 2.24 allows for

application of (2.59) substituting v(t) and −e(t) for u(t) and y(t), respectively, i.e. (2.107).
Furthermore, it follows from Theorem 2.24 that Assertions (i) and (ii) holds true and moreover

xe(·) ∈ L∞(R≥0;R
n+p), k(·) ∈ L∞(R≥0;R>0) and lim

t→∞
xe(t) = 0n+p.

The last statement implies
lim
t→∞

e(t) = lim
t→∞

c⊤Sxe(t) = 0

and therefore Assertions (iii) and (iv) hold true. Invoking Lemma 5.1.2 in [86] again gives

∃M1 > 0 ∀ t ≥ 0: ‖w(t)‖ ≤M1

(
1 + max

s∈[0,t]
|yref(t)|

)
.

Combining this with xe(·) ∈ L∞(R≥0;R
n+p) yields

∀ t ≥ 0: ‖xS(t)‖ = ‖w(t)− xe(t)‖ ≤ ‖w(t)‖+ ‖xe(t)‖ ≤ ‖xe‖∞ +M1

(
1 + max

s∈[0,t]
|yref(t)|

)

≤ max{‖xe‖∞, M1}︸ ︷︷ ︸
=:M>0

(
1 + max

s∈[0,t]
|yref(t)|

)

which shows Assertion (v) and completes the proof of Theorem 2.40.

2.4.2 Relative degree two systems

The following result is a direct consequence of Theorem 2.36 and Theorem 2.40. It assures
asymptotic tracking of systems element of class S lin

2 .

Corollary 2.41 (High-gain adaptive tracking control of systems of class S lin
2 ).

Consider a system of class S lin
2 given by (2.45) and some arbitrary yref(·) ∈ Yref with known

DIM ∈ R[s] as in (2.100). Under identical presuppositions as in Theorem 2.40, the high-gain
adaptive (tracking) controller

v(t) = sign(c⊤Ab)
(
k(t)2 e(t) + q1 k(t) ė(t)

)
where e(t) = yref(t)− y(t)

k̇(t) = q2 exp(−q3 k(t))
∥∥(e(t), ė(t))⊤

∥∥2 , k(0) = k0

}
(2.111)
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with design parameters q1, q2, q3, k0 > 0 applied to the serial interconnection (2.104) yields, for
arbitrary initial-value x0

S ∈ R
n×p, a closed-loop initial-value problem (2.111), (2.104) with the

properties (i)-(v) from Theorem 2.40 and (vi) limt→∞ |ė(t)| = limt→∞ |ẏref(t)− ẏ(t)| = 0.

Proof of Corollary 2.41.
Similar arguments as in the proof of Theorem 2.40 show that Assertions (i)-(v) hold true. From
Lemma 2.39, it follows for the relative degree two case that the serial interconnection (2.104)
is element of S lin

2 . Hence, in view of Theorem 2.36, application of (2.81) is feasible substituting
v(t), −e(t) and −ė(t) for u(t), y(t) and ẏ(t), respectively. Note that this substitution yields the
controller in (2.111). Moreover, Theorem 2.36 gives limt→∞ e(t) = 0 and limt→∞ xe(t) = 0n+p.
Note that this with c⊤S bS = 0 implies limt→∞ ė(t) = limt→∞ c

⊤
SASxe(t) = 0 and therefore

Assertion (vi) also holds.

2.4.3 Simulations

In this section, the application of internal models is illustrated. Simulation results are shown
for system (2.71) (with relative degree one) and for system (2.74) (with relative degree two).
The control objective is asymptotic tracking of an unbounded reference, given by

yref : R≥0 → R, t 7→ yref(t) := t+ sin(t) d t yref(s) =
1

s2
+

1

s2 + 1
. (2.112)

Clearly, yref(·) ∈ C∞(R≥0;R) in (2.112) and, by inspection, one obtains the denominator
DIM(s) = s4+s2 of the internal model with (unstable) poles p1,2(DIM) = 0 and p3,4(DIM) = ±j.
For the simulations NIM(s) = (s + 1)4 is chosen. Observe that deg(NIM) = deg(DIM) = 4
and lims→∞NIM(s)/DIM(s) = 1 > 0. Hence an appropriate internal model in the frequency
domain is given by

FIM(s) =
u(s)

v(s)
=
NIM(s)

DIM(s)
=

(s+ 1)4

s4 + s2
=

4s3 + 5s2 + 4s+ 1

s4 + s2
+ 1. (2.113)

For FIM(s) as in (2.113), fix γ̂0 = lims→∞ FIM(s) = 1 and choose the minimal realization

˙̂x(t) =



0 1 0 0
0 0 1 0
0 0 0 1
0 −1 0 0


x̂(t) +




0
0
0
1


 v(t), x̂(0) = 04 ∈ R

4

u(t) =
(
1, 4, 5, 4

)
x̂(t) + γ̂0 v(t).

(2.114)

At first consider the high-gain adaptive tracking problem for system (2.71) with a1 = 10
and γ0 = y0 = 1: the high-gain adaptive (tracking) controller (2.107) with parametrization
q1 = k0 = 1 and q2 = 2 applied to the serial interconnection (2.114), (2.71) assures high-gain
adaptive tracking. Simulation results for the closed-loop system (2.107), (2.114), (2.71) are
depicted in Fig. 2.8. Note that the serial interconnection (2.114), (2.71) is unstable, hence
it takes ≈ 2 [s] until a sufficiently large gain k(·) is found to “stabilize” the closed-loop sys-
tem (2.107), (2.113), (2.71). After ≈ 2 [s], output y(·) begins to track reference yref(·) with
errors |e(·)| ≪ 1 (see Fig. 2.8(a)). Controller output v(·) and controller gain k(·) asymptot-
ically converge to zero and a value smaller than 20, respectively (see Fig. 2.8 (b)), whereas
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Figure 2.8: Simulation results for closed-loop system (2.107), (2.114), (2.71) and reference (2.112) with
parametrization y0 = γ0 = 1, a1 = 10 and q1 = k0 = 1 and q2 = 2.

control action u(·) decreases (without bound) compensating for the scaled reference yref(·).
The scaling is due to the negative steady-state gain γ∞ = −1/10.

Next consider the high-gain adaptive tracking problem for system (2.74) with (y0, y1) = (1, 1)
and a1 = a2 = γ0 = 1: here application of (2.111) with parametrization q1 = q2 = q3 =
k0 = 1 assures high-gain adaptive tracking. The simulation results for the closed-loop sys-
tem (2.111), (2.114), (2.71) are shown in Fig. 2.9. The system response is similar to that in
Fig. 2.8. Due to the choice q3 = k0 = 1 in (2.111) gain adaption is decelerated and therefore the
“stabilization phase” is longer (≈ 10 [s]). Clearly, also the error derivative converges to zero (see
Fig. 2.9(a)). Controller output v(·) and control action u(·) must compensate for large system
states (during stabilization phase) and for the (unbounded) reference yref(·), respectively (see
Fig. 2.9(b)).
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(b) top: controller output v(·) and control
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Figure 2.9: Simulation results for closed-loop system (2.111), (2.114), (2.74) and reference (2.112) with
parametrization (y0, y1) = (1, 1), a1 = a2 = γ0 = 1 and q1 = q2 = q3 = k0 = 1.
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Chapter 3

Adaptive λ-tracking control

e(·)e(0)

λ

−λ
· · ·

λ-strip

lim
t→∞

dist
(
|e(t)|, [0, λ]

)

Time t [s]

Figure 3.1: Illustration of λ-strip and control objective (co2).

This chapter introduces adaptive λ-tracking control for systems of class S1 and for systems of
class S2. For suitable reference yref(·) ∈ W1,∞(R≥0;R) (or W2,∞(R≥0;R)), regulated output
y(·) and prescribed asymptotic accuracy λ > 0, the adaptive λ-tracking controllers assure that
the tracking error

∀ t ≥ 0: e(t) = yref(t)− y(t)

asymptotically converges into the “λ-strip” (see Fig. 3.1), given by

{ (t, e) ∈ R≥0 × R | |e| ≤ λ }.

It will be shown that, for both system classes S1 and S2, the developed adaptive λ-tracking
controllers accomplish control objectives (co1) and (co2), i.e.

x(·) ∈ L∞(R≥0;R
n), u(·) ∈ L∞(R≥0;R) and ∀λ > 0: lim

t→∞
dist

(
|e(t)|, [0, λ] = 0

)
. (3.1)

3.1 Motivation

Although the high-gain adaptive controllers presented in Chapter 2 work well for minimum-
phase LTI SISO systems with known sign of the high-frequency gain and either relative degree
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(a) gain drift due to noise nm(·) ∈ W2,∞(R≥0;R)
(ud(·) = 0): gain k(·), (noisy) output
y(·).
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(b) gain drift due to disturbance ud(·) ∈
L∞(R≥0;R) (nm(·) = 0): gain k(·)
and output y(·).

Figure 3.2: Simulation results for closed-loop system (3.2), (3.3) (only shown for the first 20 [s]).

one or relative degree two (e.g. if derivative feedback is admissible), they are mainly of theoreti-
cal interest. High-gain adaptive control as in Chapter 2 has (severe) limitations which motivate
for the introduction of adaptive λ-tracking control:

Motivation 1: The models considered in Chapter 2 are linear and do not account for (external)
disturbances or nonlinear (functional) perturbations as required for system class S1 or system
class S2 (see Section 1.6.2.2). Although there exist high-gain adaptive controllers for nonlinear
systems, such controllers only work if the system has an equilibrium at the origin (see [114]) or
the non-zero equilibrium is a priori known (see [2, Remark 3.4(ii)]). Both are strict presuppo-
sitions and do not hold in general.

Motivation 2: The application of internal models allows for asymptotic tracking of reference
signals element of the class Yref as in (2.100). However, the reference class Yref is limited,
e.g. the exemplary reference signals introduced in Section 1.6.2.4 (see Fig. 1.19) are not covered.

Motivation 3: Noise (in output measurement) or disturbances might cause gain drift in high-
gain adaptive control, i.e. the gain diverges as time tends to infinity. To illustrate this phe-
nomenon, consider the following closed-loop system consisting of the first order system

ẋ(t) = 10x(t) +
(
u(t) + ud(t)

)

y(t) = x(t) + nm(t)
,

x(0) = 1, ud(·) ∈ L∞(R≥0;R),
nm(·) ∈ W2,∞(R≥0;R)

(3.2)

and the high-gain adaptive controller

u(t) = −k(t)y(t) where k̇(t) = y(t)2, k(0) = 1. (3.3)

System (3.2) is subject to input disturbance ud(·) and sensor deviation nm(·) (e.g. measurement
noise). The simulation results are depicted in Fig. 1.19. Albeit bounded both disturbances cause
a monotone increase of gain k(·) (see Fig. 3.2 (a) and (b), respectively) which will eventually
result in k(t) → ∞ as t→ ∞.
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By sacrificing asymptotic stabilization (or asymptotic tracking and disturbance rejection) and
by introducing a dead-zone in gain adaption, e.g. of the following form

k̇(t) = dλ(|e(t)|)2, k(0) = k0 > 0 with dλ(·) as in (N.5),

adaptive λ-tracking control is applicable to a wider class of (nonlinear) systems with bounded
disturbances. Moreover, measurement noise is tolerated, gain k(·) will not diverge and tracking
with prescribed asymptotic accuracy in the sense of (3.1) is achieved. Hence, in contrast to
high-gain adaptive control, adaptive λ-tracking control is applicable in real world.

3.2 Brief historical overview

For a comprehensive overview of the development of adaptive λ-tracking or “approximate track-
ing” control see the surveys [85], [93] and the dissertation [33, Chapter 1].

The problem of gain drift due to noise was already mentioned in [129, Remark 4] (1984) and a
“more appropriate” gain adaption with dead zone was proposed. The term “[adaptive] λ-tracking
[control]” was coined by Ilchmann and Ryan (see [86, Section 5.2] (1993), [95] and [155] (1994)).
For constant references Ryan introduces the notion of λ-stabilization (see [156]). For unknown
sign of the high-frequency gain the use of Nussbaum functions is feasible and yields universal
adaptive λ-tracking (see e.g. [86, Chapter 5] (1993) or [95, 156] (1994)).

The problem of approximate tracking was implicitly solved in [134] (1991) for minimum-phase
LTI SISO systems with arbitrary relative degree and (exogenous) disturbances acting on state
derivative and output. The proposed controller invokes a non-decreasing gain switching strat-
egy and guarantees prescribed bounded overshoot and, moreover, invariance of the λ-strip after
some prescribed time. Gain switching yields discontinuous control action and is undesirable for
implementation in “real world” (in particular for motion control).

In 1994 (universal) adaptive λ-tracking control was introduced for nonlinearly perturbed
minimum-phase systems with relative degree one (see [95] and [156]) for reference signals
yref(·) ∈ W1,∞(R≥0;R). In [95] the MIMO case is considered whereas [156] focuses on the
SISO case but, in addition, allows for actuators with hysteresis and dead-zone (incorporating
differential inclusion). The control strategies are similar, require knowledge of an upper bound
on the nonlinear perturbation in terms of some continuous function g : R → R≥0 (in the SISO
case) and use the following gain adaption

k̇(t) = dλ(|e(t)|)
(
|e(t)|+ g(e(t)− yref(t))

)
, k(0) = k0 > 0. (3.4)

In [87] (1998) adaptive λ-tracking control for nonlinear MIMO systems with polynomially
bounded nonlinearity is introduced. For controller design an upper bound s ≥ 1 on the max-
imal polynomial degree is required and it is shown that gain adaption (3.4) could be replaced
by the following simpler variant

k̇(t) = dλ(|e(t)|)s, k(0) = k0 > 0. (3.5)

Universal adaptive λ-tracking for nonlinear SISO systems with relative degree one described
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by functional differential equations is presented in [158] (2002) within a framework of differen-
tial inclusion. In [89] (2008) it was shown that adaptive λ-tracking control is robust in terms
of the gap metric. Loosely speaking, by defining a measure for the “gap” between a nominal
minimum-phase LTI MIMO system S0 with relative degree one and a system S (possibly not
minimum-phase and/or with higher relative degree), it can be shown that for “small” initial
values and if the measure is sufficiently small (yielding a “small gap”) then adaptive λ-tracking
control of system S is still feasible.

There are few results for systems with higher relative degree. The most important are [190]
(1999) and [34] (2005). In [190] Ye proposes an universal adaptive λ-tracking controller for non-
linear SISO systems with arbitrary-but-known relative degree, unknown high-frequency gain
and polynomially bounded nonlinearity (again an upper bound on the maximum polynomial
degree is assumed to be known). His control method incorporates a compensator (filter) and
is based on a backstepping procedure (resulting in a complex structure, see Section 3.5.1). In
contrast, in [34] Bullinger and Allgöwer introduce adaptive λ-tracking control in combination
with a high-gain observer for nonlinear SISO systems with arbitrary-but-known relative degree
with sector bounded nonlinearity (see Section 3.5.2). Adaptive λ-tracking with derivative feed-
back for LTI MIMO systems with arbitrary-but-known (and unknown-but-bounded) relative
degree is introduced in [81, Section 2.3.3] (2010). However, the proposed controllers require
derivative feedback up to the r-th order. System class S2 has relative degree two (i.e. r = 2),
but only permits feedback of y(·) and ẏ(·).

Adaptive λ-tracking control is applicable in real world. Several applications are mentioned
in literature. Most application are found in process automation of chemical reactions (chemi-
cal engineering): substrate concentration control of continuous aerobic continuous stirred tank
reactors with input constraints (see [61]), set-point temperature control of chemical reactors
without and with input constraints (see [2] and [100], resp.), biomass concentration control in
activated sludge processes (see [60]) or pH regulation of biogas tower reactors (see [92]). Besides
adaptive λ-tracking control was successfully implemented in anesthesia depth control (see [33,
Chapter 4] or [35]) or applied to bio-inspired sensors with relative degree two and negative root
locus center (see [20], however the proofs are incomplete).

To the best knowledge of the author, theoretical results for adaptive λ-tracking control with
derivative feedback for systems of class S2 (or similar systems which only allow for derivative
feedback up to the first order) have not yet been published and, moreover, adaptive λ-tracking
control has not yet been applied for speed and position control of industrial servo-systems.

3.3 Mathematical preliminaries

For Chapter 3 and Chapter 4, some more mathematical preliminaries will be required. These
are presented in this section. At first “Byrnes-Isidori like forms” of systems of class S1 and class
S2 are derived. These forms are similar to the Byrnes-Isidori forms presented in Section 2.3.2.1
and facilitate system analysis in the upcoming proofs. Since reference tracking is the control
objective, in particular, the rewritten “error Byrnes-Isidori like form” is of interest. At the end
of this section, existence theory of functional differential equations is briefly revisited.
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3.3.1 Byrnes-Isidori like form of systems of class S1

System class S1 comprises systems of form (1.36) with relative degree one (see Definition 1.6).
Application of the coordinate transformation (y, z) := Sx with S as in (2.49) (see Sec-
tion 2.3.2.1) to (1.36) gives the following Byrnes-Isidori like form of systems of class S1

ẏ(t) = a1y(t) + a
⊤
2 z(t) + γ0(u(t) + ud(t)) + c

⊤BT

(
(T(S−1

(
y

z

)
))(t) + d(t)

)
, y|[−h,0] = c⊤x0

ż(t) = a3y(t) +A4z(t) +NBT

(
(T(S−1

(
y

z

)
))(t) + d(t)

)
, z|[−h,0] =Nx0

}

(3.6)
where γ0, a1, a2, a3 and A4 are as in (2.51), respectively. Note the similarity to the BIF (2.50)
of LTI SISO systems with relative degree one. Let yref(·) ∈ W1,∞([−h,∞);R) (i.e. extend
yref(·) ∈ W1,∞(R≥0;R) to the interval [−h, 0]), then substituting yref(t) − e(t) for y(t) in (3.6)
and solving for ė(t) gives the “error Byrnes-Isidori like form” as follows

ė(t) = a1(e(t)− yref(t)) + ẏref(t)− a⊤
2 z(t)− γ0(u(t) + ud(t))

−c⊤BT

(
(T(S−1

(
yref − e

z

)
))(t) + d(t)

)
, e|[−h,0] = (yref |[−h,0] − c⊤x0)

ż(t) = a3(yref(t)− e(t)) +A4z(t) +NBT

(
(T(S−1

(
yref − e

z

)
))(t) + d(t)

)
, z|[−h,0] =Nx0





(3.7)

3.3.2 Byrnes-Isidori like form of systems of class S2

Systems of class S2 have relative degree two (see Definition 1.7). For r = 2, the coordinate
change (y, ẏ, z) := Sx with S as in (2.24) applied to system (1.36), yields

d
dt

(
y(t)
ẏ(t)

)
=

[
0 1
a1 a2

](
y(t)
ẏ(t)

)
+

[
0
⊤
m

a⊤3

]
z(t) +

(
0
γ

)(
u(t) + ud(t)

)

+

[
0
⊤
m

c⊤ABT

](
(T(S−1

(
y

ẏ

z

)
))(t) + d(t)

)
,

(
y
ẏ

)∣∣∣∣
[−h,0]

= Cx0

ż(t) =
[
a4 0n−2

](y(t)
ẏ(t)

)
+A5z(t) +NBT

(
(T(S−1

(
y

ẏ

z

)
))(t) + d(t)

)
, z|[−h,0] =Nx0,





(3.8)
where γ0, (a1, a2), a3, a4 and A5 are as in (2.55), respectively. Note that c⊤BT = 0

⊤
m in

(S2-sp1) is essential for this transformation. For extended reference yref(·) ∈ W2,∞([−h,∞);R),
substitute yref(t) − e(t) and ẏref(t) − ė(t) for y(t) and ẏ(t) in (3.8), respectively, and solve for
(e(t), ė(t))⊤ which yields the “error Byrnes-Isidori like form” as follows

d
dt

(
e(t)
ė(t)

)
=

[
0 1
a1 a2

](
e(t)− yref(t)
ė(t)− ẏref(t)

)
+

(
ẏref(t)
ÿref(t)

)
−
[
0
⊤
m

a⊤3

]
z(t)−

(
0
γ

)(
u(t) + ud(t)

)

−
[

0
⊤
m

c⊤ABT

](
(T(S−1

(
yref − e

ẏref − ė

z

)
))(t) + d(t)

)
,

(
e
ė

)∣∣∣∣
[−h,0]

=

((
yref |[−h,0]
ẏref |[−h,0]

)
−Cx0

)

ż(t) =
[
a4 0n−2

](yref(t)− e(t)
ẏref(t)− ė(t)

)
+A5z(t) +NBT

(
(T(S−1

(
yref − e

ẏref − ė

z

)
))(t) + d(t)

)
,

z|[−h,0] =Nx0.





(3.9)
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3.3.3 Solution of functional differential equation

Systems of class S1 and S2 are described by a functional differential equation of form (1.36).
More precisely, for h ≥ 0, a non-empty open set D ⊂ R

n, a causal operator T element of class
T (see Definition 1.5, p. 40) and a function f : [−h,∞)×D×R

m → R
n, initial-value problems

of the form

ẋ(t) = f(t,x(t), (Tx)(t)), x|[−h,0] = x0 ∈ C([−h, 0]) with x0(0) ∈ D (3.10)

will be considered. For the upcoming proofs one is interested in a solution of the initial-value
problem (3.10). By a solution of the initial-value problem (3.10) one means an absolutely
continuous function x(·) : [−h, T ) → R

n, T ∈ (0,∞] with x = x|[−h,0] which satisfies (3.10) for
almost all t ∈ [0, T ) and x(t) ∈ D for all t ∈ [0, T ). Such a solution does exist if the function
f(·, ·, ·) in (3.10) satisfies so called “Carathéodory conditions”, or in other words, if f(·, ·, ·) is a
“Carathéodory function” defined as follows:

Definition 3.1 (Carathéodory function (in the sense of Footnote 4 in [99])).
Let n,m ∈ N and h ≥ 0. For open and non-empty D ⊂ R

n, a function f : [−h,∞)×D×R
m →

R
n is said to be a Carathéodory function if, and only if, the following hold:

(i) f(t, ·, ·) is continuous for almost all t ≥ 0;

(ii) f(·,x,w) is measurable for each fixed (x,w) ∈ D × R
m;

(iii) for each compact C ⊂ D×R
m, there exists lC(·) ∈ L1

loc([−h,∞);R≥0) such that ‖f(t,x,w)‖ ≤
lC(t) for almost all t ∈ [−h,∞) and all (x,w) ∈ C.

And so an existence theorem can be restated which gives sufficient conditions to conclude on
existence of a solution of the initial-value problem (3.10).

Theorem 3.2 (Existence theorem for functional differential equation (see Theorem 5 in [99])).
Let n,m ∈ N and h ≥ 0. Consider an open and non-empty set D ⊂ R

n, an operator T of
class T and x0(·) ∈ C([−h, 0];R) such that x0(0) ∈ D. Now, if f : [−h,∞) × D × R

m → R
n

is a Carathéodory function, then there exists a solution x : [−h, T ) → R
n, T ∈ (0,∞] of the

initial-value problem (3.10) with x([0, T )) ⊂ D and every solution can be extended to a maximal
solution. Moreover, if in addition f(·, ·, ·) is locally essentially bounded and x : [−h, T ) → R

n,

x([0, T )) ⊂ D, is a maximal solution with T <∞, then, for every compact C̃ ⊂ D, there exists

t̃ ∈ [0, T ) such that x(t̃) /∈ C̃.

Proof. see [99, p. 10,11].

Note that Theorem 3.2 does not guarantee existence of a unique solution in contrast to the clas-
sical theory of Carathéodory (see e.g. Theorem 2.1.14 in [77]). In contrast to the Carathéodory
conditions stated in [77, p. 84], in Definition 3.1, the function f : [−h,∞) × D × R

m → R
n is

not required to satisfy a locally Lipschitz-like condition.
The last statement in Theorem 3.2 implies that, for any maximal solution x : [−h, T ) → R

n

with T < ∞, either ‖x(t)‖ → ∞ as t → T or the boundary ∂D of D is not empty and
limt→T dist(x(t), ∂D) = 0.
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3.4 Relative degree one systems

The well known result of adaptive λ-tracking is presented for systems of class S1. In contrast to
the results in [87] or [158] the following theorem allows for nonlinear state-dependent functional
perturbations. However, the admissible operators must be globally bounded.

Theorem 3.3 (Adaptive λ-tracking control for systems of class S1).
Consider a system of class S1 described by (1.36). Then, for arbitrary initial trajectories x0(·) ∈
C([−h, 0];Rn) and k0(·) ∈ C([−h, 0];R>0) and reference signal yref(·) ∈ W1,∞(R≥0;R), the
adaptive λ-tracking controller

u(t) = sign(c⊤b) k(t)e(t), where e(t) = yref(t)− y(t)

k̇(t) = q1 dλ(|e(t)|)q2 , k(0) = k0(0)

}
(3.11)

with design parameters q1 > 0, q2 ≥ 2, k0(0) > 0 and λ > 0 applied to (1.36) yields a closed-loop
initial-value problem with the properties:

(i) there exists a solution (x, k) : [−h, T ) → R
n ×R>0 which can be maximally extended and

T ∈ (0,∞];

(ii) the solution is global, i.e. T = ∞;

(iii) all signals are bounded, i.e. x(·) ∈ L∞(R≥0;R
n) and k(·) ∈ L∞(R≥0;R>0);

(iv) the λ-strip is asymptotically reached, i.e. limt→∞ dist
(
|e(t)|, [0, λ]

)
= 0.

Note that Assertion (iii) combined with the choice of u(·) in (3.11) and boundedness of the
reference yref(·) establish boundedness of u(·). Hence Theorem 3.3 implies that control objec-
tives (co1) and (co2) are accomplished for all systems of class S1. Simulations are omitted.
The adaptive λ-tracking controller (3.11) will be applied for speed control of electrical drives
in Section 5.2.2.

Remark 3.4 (Design parameters q1, q2, λ and k0(0).). Clearly, for arbitrary initial gain tra-
jectory k0(·) ∈ C([−h, 0];R>0) the initial gain k(0) = k0(0) can be specified. The design pa-
rameters q1, q2 and k0(0) have identical influence on the control performance of the closed-loop
system (1.36), (3.11) as the design parameters q1, q2 and k0 of the high-gain adaptive con-
troller (2.81) (see Remark 2.27). The value of λ > 0 fixes the desired asymptotic accuracy.

The following proof differs from that given in [87], nonlinear functional perturbations are in-
cluded. The proof illustrates the principle idea of argumentation and helps to understand the
more technical result for adaptive λ-tracking control with derivative feedback of systems of class
S2 (see Section 3.5.3). Without loss of generality, in the proof (and all other proofs in the remain-
der of this thesis) measurement noise (or sensor error) nm(·) ∈ W2,∞(R≥0;R) ⊂ W1,∞(R≥0;R)
is neglected. A simple substitution of yref(·)−nm(·) for reference yref(·) yields the result consid-
ering noise. If nm(·) ∈ W2,∞(R≥0;R) corrupts output y(·), then the tracking error e(·) in (3.11)
becomes e(·) = (yref(·) − nm(·)) − y(·) and, clearly, the “corrupted reference” yref(·) − nm(·) is
(asymptotically) tracked instead of yref(·) (recall also the discussion in Section 1.6.2.5).
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Proof of Theorem 3.3.

Step 1: It is shown that Assertion (i) holds true, i.e. existence of a maximally extended solution.
It suffices to consider system (1.36) of class S1 in the Byrnes-Isidori like form (3.7). Extend
yref(·) to [−h, 0) such that yref(·) ∈ W1,∞([−h,∞);R). Define the open set

D := R× R
n−1 × R>0,

the function

f : [−h,∞)×D × R
m → D,

(t, (µ, ξ, κ),w) 7→




a1(µ− yref(t)) + ẏref(t)− a⊤2 ξ − |γ0|κµ
−γ0 ud(t)− c⊤BT

(
w + d(t)

)

a3(yref(t)− µ) +A4ξ +NBT

(
w + d(t)

)

q1 dλ(|µ|)q2




and the operator

T̂ : C([−h,∞);Rn+1) → L∞
loc(R≥0;R

m), (T̂(µ, ξ, κ))(t) := (T(S−1
(
yref − µ

ξ

)
))(t).

Then, for x̂ := (e, z, k), the initial-value problem (3.7), (3.11) may be written in the following
form

d
dt
x̂(t) = f(t, x̂(t), (T̂x̂)(t)), x̂|[−h,0] =

(
yref |[−h,0] − c⊤x0, (Nx0)⊤, k0

)⊤
(3.12)

and note that, for any non-empty compact set C ⊂ D × R
m, the following holds

∃MC > 0 ∀ ((µ, ξ, κ),w) ∈ C : ‖((µ, ξ, κ),w)‖ ≤MC. (3.13)

It is easy to see that for ud(·) ∈ L∞([−h,∞); R), d(·) ∈ L∞([−h,∞); Rm) and yref(·) ∈
W1,∞([−h,∞); R), the function f(·, ·, ·) has the following properties: (i) f(t, ·, ·) is contin-
uous for each fixed t ∈ [−h,∞); (ii) for each fixed ((µ, ξ, κ),w) ∈ D × R

m the function
f(·, (µ, ξ, κ),w) is measurable and (iii) for almost all t ∈ [−h,∞) and for all ((µ, ξ, κ),w) ∈ C

the following holds

‖f(t, (µ, ξ, κ),w)‖
(3.13)

≤ MC

(
|a1|+ ‖a2‖+ |γ0|MC + ‖c‖ ‖BT‖+ ‖a3‖

+ ‖A4‖+ ‖N‖ ‖BT‖+ q1 (MC + λ)q2
)
+ (‖c‖+ ‖N‖) ‖BT‖ ‖d‖∞

+ (|a1|+ ‖a3‖)‖yref‖∞ + ‖ẏref‖∞ + |γ0| ‖ud‖∞ =: lC.

Hence, in view of Definition 3.1, f(·, ·, ·) is a Carathéodory function which, in view of The-
orem 3.2, implies existence of a solution x̂ : [−h, T ) → R × R

n−1 × R>0 of the initial-value
problem (3.12) with x̂([0, T )) ∈ D, T ∈ (0,∞]. Moreover, every solution can be extended to a
maximal solution. In the following, let x̂ := (e, z, k) : [−h, T ) → R×R

n−1×R>0 be a fixed and
maximally extended solution of the initial-value problem (3.12), where (e, z, k) : [−h, T ) →
R×R

n−1×R>0 solves the closed-loop initial-value problem (3.7), (3.11) for almost all t ∈ [0, T )
which shows Assertion (i).
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Step 2: Some technical preliminaries are introduced.
Introduce the sub-coordinate change

∀ ν ∈ (0, 1/2) : v(t) := k(t)−νz(t). (3.14)

and rewrite the closed-loop system (3.7), (3.11) as follows

ė(t) =
(
a1 − |γ0| k(t)

)
e(t)− a1yref(t) + ẏref(t)− a⊤

2 k(t)
νv(t)− γ0ud(t)

−c⊤BT

(
(T(S−1

(
yref − e

kνv

)
))(t) + d(t)

)
, e|[−h,0] = (yref |[−h,0] − c⊤x0)

v̇(t) = − k̇(t)
k(t)
v(t) + k(t)−νa3(yref(t)− e(t)) +A4v(t)

+k(t)−νNBT

(
(T(S−1

(
yref − e

kνv

)
))(t) + d(t)

)
, v|[−h,0] = (k0)−νNx0





(3.15)

Due to system property (S1-sp2) and Lemma 2.12, the matrix A4 is Hurwitz, i.e. spec(A4) ⊂
C<0 and hence (2.63) holds. For P 4 as in (2.63) introduce the Lyapunov-like function

V1 : R× R
n−1 → R≥0, (e,v) 7→ V1(e,v) := e2 + v⊤P 4v ≥ 0.

and define the constants

Me := |a1|‖yref‖∞ + ‖ẏref‖∞ + |γ0|‖ud‖∞ + ‖c‖ ‖BT‖
(
MT + ‖d‖∞

)
,

Mv := ‖P 4‖
(
‖a3‖ ‖yref‖∞ + ‖N‖ ‖BT‖

(
MT + ‖d‖∞

))
and

µV := 1
2
min{1, 1

‖P 4‖}.

For notational brevity, write

∀ t ∈ [0, T ) : V1(t) := V1(e(t),v(t)) with derivative along (3.15):
∀ t ∈ [0, T ) : d

dt
V1(t) = 2 e(t)ė(t) + 2v(t)⊤P 4v̇(t).

(3.16)

In view of (3.15), the following hold for almost all t ∈ [0, T )

2 e(t)ė(t)
(3.15)

≤ −
(
2|γ0|k(t)− 2|a1|

)
e(t)2 + 2|e(t)|

(
|a1|‖yref‖∞ + ‖ẏref‖∞

+|γ0|‖ud‖∞ + ‖c‖ ‖BT‖
(
MT + ‖d‖∞

)
+ ‖a2‖ k(t)ν ‖v(t)‖

)

(3.16),(2.62)

≤ −
(
2|γ0|k(t)− 2|a1| −

2M2
e

µV λ2
− 8 ‖a2‖2 k(t)2ν

)
e(t)2 +

µV λ
2

2
+

‖v(t)‖2
8

(3.17)

and

2v(t)⊤P 4v̇(t)
(3.15)

≤ −‖v(t)‖2

≤0︷ ︸︸ ︷
−2

k̇(t)

k(t)
v(t)⊤P 4v(t)+2 k(t)−ν ‖v(t)‖ ‖P 4‖ ·

·
(
‖a3‖

(
‖yref‖∞ + |e(t)|

)
+ ‖N‖ ‖BT‖

(
MT + ‖d‖∞

))

(3.16),(2.62)

≤ −3

4
‖v(t)‖2 + 8 k(t)−2ν

(
M2
v + ‖P 4‖2 ‖a3‖2 |e(t)|2

)
. (3.18)
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Inserting (3.17) and (3.18) into (3.16) gives for almost all t ∈ [0, T )

d
dt
V1(t) ≤ −

(
2|γ0|k(t)− 2|a1| −M2

e

2

µV λ2
− 8 ‖a2‖2 k(t)2ν − 8 k(t)−2ν ‖P 4‖2 ‖a3‖2

)
e(t)2

−1

2
‖v(t)‖2 + µV

λ2

2
+ 8 k(t)−2νM2

v . (3.19)

Step 3: It is shown that k(·) is bounded on [0, T ).
Seeking a contradiction, assume that k(·) is unbounded on [0, T ). In view of (3.11), k(·) is
non-decreasing on [0, T ), whence

∃ t⋆ ≥ 0 ∀ t ∈ [t⋆, T ) : 2|γ0|k(t)− 2|a1| −
2M2

e

µV λ2
− 8 ‖a2‖2 k(t)2ν −

8 ‖P 4‖2 ‖a3‖2
k(t)2ν

≥ 1/2

and k(t)2ν ≥ 16M2
v

µV λ2
. (3.20)

Moreover, using −‖v(t)‖2 ≤ −v(t)⊤P 4v(t)/ ‖P 4‖ in (3.19), it follows that

for a.a. t ∈ [t⋆, T ) : d
dt
V1(t)

(3.20)

≤ −µV V1(t) + µV
λ2

2
+ 8 k(t)−2νM2

v .

Since |e(t)| ≤
√
V1(t) for all t ∈ [0, T ) it follows that

∀ t ∈ [0, T ) : k̇(t)
(3.11)
= q1 dλ(|e(t)|)q2 ≤ q1 dλ

(√
V1(t)

)q2
. (3.21)

Furthermore, observe that

for a.a. t ∈ [t⋆, T ) : µV
λ2

2
+ 8 k(t)−2νM2

v

(3.20)

≤ µV λ
2 (3.22)

and, for any t ∈ [0, T ), the following implication holds

r√
V1(t) ≤ λ

z
(N.5)
=⇒

r
dλ
(√

V1(t)
)
= 0

z
(3.23)

For dλ(·) as in (N.5) consider the non-negative function dλ(·)2 with derivative

d
ds

dλ(s)
2 =

{
0 , s < λ

limh→0
dλ(s+h)

2−dλ(s)2
h

= 2(s− λ) , s ≥ λ.
(3.24)

Clearly, dλ(·)2 is continuously differentiable. Then, the time derivative 1
2

d
dt
dλ(
√
V1(t))

2 along
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the solution of the closed-loop initial-value problem (3.15) is, for almost all t ∈ [t⋆, T ), given by

1
2

d
dt
dλ

(√
V1(t)

)2
= 1

2
d
ds
dλ(s)

2
∣∣∣√

V1(t)

d
dt

√
V1(t)

(3.24),(N.5)
=

dλ

(√
V1(t)
)

2
√
V1(t)

d
dt
V1(t)

(3.19)

≤ dλ

(√
V1(t)
)

2
√
V1(t)

(
− µV V1(t) + µV

λ2

2
+ 8 k(t)−2νM2

v

)

(3.22)

≤ −dλ

(√
V1(t)
)

2
√
V1(t)

(µV V1(t)− µV λ
2)

= −µV
2
dλ

(√
V1(t)

)2 (√
V1(t)− λ

)(
1 + λ√

V1(t)

)

(3.23)

≤ −µV
2
dλ

(√
V1(t)

)2
.

Hence integration yields

∀ t ∈ [t⋆, T ) : dλ

(√
V1(t)

)2
≤ exp

(
− µV (t− t⋆)

)
max

{
dλ

(√
V1(t⋆)

)2
, λ2
}
. (3.25)

By compactness of [0, t⋆], continuity of (e(·),v(·)), V1(·) = V1(e(·),v(·)) and dλ

(√
V1(·)

)
on

[0, T ), the contradiction follows

∀ t ∈ [t⋆, T ) : k(t)− k(t⋆) =

∫ t

t⋆
k̇(τ) dτ

(3.21)

≤ q1

∫ t

t⋆
dλ

(√
V1(τ)

)q2
dτ

(3.25)

≤ q1 max
{
dλ

(√
V1(t⋆)

)q2
, λq2

} ∫ t

t⋆
exp

(
− q2µV

2
(τ − t⋆)

)
dτ

≤ 2q1
q2µV

max
{
dλ

(√
V1(t⋆)

)q2
, λq2

}
<∞.

Step 4: It is shown that Assertions (ii) holds true, i.e. T = ∞.
From Step 3 and (3.46) it follows that k(·) is continuous, non-increasing and bounded on [0, T ).
Hence the limit

k∞ := lim
t→T

k(t) ≥ k(0) > 0

exists and in view of the closed-loop system (3.7), (3.11) the following holds for almost all
t ∈ [0, T )

∥∥∥∥
d
dt

(
e(t)
z(t)

)∥∥∥∥ ≤
(
|a1|+ |γ0| k∞ + ‖a2‖+ ‖a3‖+ ‖A4‖

)∥∥∥∥
(
e(t)
z(t)

)∥∥∥∥+ |a1|‖yref‖∞ + ‖ẏref‖∞
+|γ0|‖ud‖∞ + ‖a3‖ ‖yref‖∞ + (‖c‖+ ‖N‖) ‖BT‖ (MT + ‖d‖∞),

which with Proposition 2.1.19 in [77, p. 86] implies, by maximality of T , that T = ∞. This
shows Assertion (ii) and completes Step 4.

Step 5: It is shown that Assertion (iii) holds true, i.e. k(·) ∈ L∞(R≥0;R>0) and x(·) ∈
L∞(R≥0;R

n).
Note that k(·) ∈ L∞(R≥0;R>0) follows from Step 3 and 4. It remains to show that x(·) ∈
L∞(R≥0;R

n).
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Step 5a: It is shown that z(·) is bounded on R≥0.
For k∞ as in Step 4 note that the following holds

∀ t ≥ 0:

∫ t

0

dλ(|e(τ)|)q2 dτ
(3.11)
=

1

q1

∫ t

0

k̇(τ) dτ ≤ 1

q1
(k∞ − k0(0)) <∞

which implies

k̇(·) ∈ L1(R≥0;R≥0) and dλ(|e(·)|) ∈ Lq2(R≥0;R≥0). (3.26)

Define

δ2 : R → R, e 7→ δ2(e) :=

{
dλ(|e|) e|e| , |e| > λ

0 , |e| ≤ λ
and

δ∞ : R → R, e 7→ δ∞(e) :=

{(
1− dλ(|e|)

|e|

)
e , |e| > λ

e , |e| ≤ λ

(3.27)

and observe that, in view of (3.26) and (3.27), the following holds

∀ t ≥ 0: e(t) = δ2(e(t)) + δ∞(e(t)) ∧ |δ∞(e(t))| ≤ λ and δ2(e(·)) ∈ Lq2(R≥0;R). (3.28)

For P 4 as in (2.63) introduce the Lyapunov candidate

V2 : R
n−1 → R≥0, v 7→ V2(v) := v

⊤P 4v.

For Mv as in (3.16),

M1 := 8 k0(0)−2ν
(
‖P 4‖2 ‖a3‖2 λ2 +M2

v

)
and M2 := 8 k0(0)−2ν ‖P 4‖2 ‖a3‖2 ,

the time derivative d
dt
V2(v(t)) along the solution of the (second equation of) closed-loop sys-

tem (3.15) is, for almost all t ≥ 0, bounded from above as follows

d
dt
V2(v(t)) ≤ −‖v(t)‖2 + 2 k0(0)−ν ‖v(t)‖ (‖P 4‖ ‖a3‖ |e(t)|+Mv)

(3.28)

≤ −‖v(t)‖2 + 2 k0(0)−ν ‖v(t)‖
(
‖P 4‖ ‖a3‖ (|δ2(e(t))|+ λ) +Mv

)

(2.62)

≤ −1

2
‖v(t)‖2 + 8 k0(0)−2ν

(
‖P 4‖2 ‖a3‖2 (|δ2(e(t))|2 + λ2) +M2

v

)

(3.16)

≤ −µV V2(v(t)) +M1 +M2 |δ2(e(t))|2 ≤ −µV V2(v(t)) +M1 +M2

(
1 + |δ2(e(t))|q2

)

where Fact 1.12.31 in [24, p. 39] was used in the last step. Application of the Bellman-Gronwall
Lemma (in its differential form [18, Lemma 1.1, p. 2]) yields

∀ t ≥ 0: V2(v(t))
(3.74)

≤ V2(v(0)) +
M1 +M2

µV
+ M2

∫ t

0

≤1︷ ︸︸ ︷
exp (−µV (t− τ)) |δ2(e(τ))|q2 dτ

︸ ︷︷ ︸
≤‖δ2(e)‖q2Lq2<∞

.
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and therefore V2(v(·)) is bounded on R≥0, which implies v(·) ∈ L∞(R≥0;R
n−2). From this, com-

bined with k(·) ∈ L∞(R≥0;R>0) and (3.14), it follows that z(·) = k(·)νv(·) ∈ L∞(R≥0;R
n−1).

This completes Step 5a.

Step 5b: It is shown that e(·) is bounded on R≥0.
Define

∀ t ≥ 0: g(t) := a1 yref(t) + ẏref(t)− a⊤
2 z(t)− γ0ud(t)− c⊤BT

(
(T(S−1

(
yref − e

z

)
))(t) + d(t)

)
.

For δ2(·) and δ∞(·) as in (3.27), k∞ > 0 as in Step 4 and l =
(
1 + a1

)
/γ0 − sign(γ0)k∞ rewrite

the first equation of the closed-loop system (3.7), (3.11) as follows

d
dt
e(t) = −

(
1− |γ0|(k∞ − k(t))

)
e(t) + γ0 l

(
δ2(e(t)) + δ∞(e(t))︸ ︷︷ ︸

=e(t)

)
+ g(t).

(3.29)

For Me as in (3.16) note that the following holds

∀ t ≥ 0: |g(t)| ≤Me + ‖a2‖ ‖z‖∞ =:Mg and

J limt→∞(k∞ − k(t))(t) = 0 K =⇒
r
∃ t̃1 ≥ 0 ∀t ≥ t̃1 : |γ0|(k∞ − k(t)) ≤ 1

4

z (3.30)

and observe that the time derivative d
dt
e(t)2 along the solution of (3.29) is, for almost all t ≥ t̃1,

bounded from above as follows

d
dt
e(t)2

(3.28),(3.30)

≤ −2
(
1− |γ0|(k∞ − k(t))

)
e(t)2 + 2|e(t)|

(
Mg + |γ0|l(λ+ δ2(e(t)))

)

(2.62)

≤ −e(t)2 + 4
(
M2

g + |γ0|2l2
(
λ2 + δ2(e(t))

2
))

≤ −e(t)2 + 4
(
M2

g + |γ0|2l2
(
λ2 + 1 + |δ2(e(t))|q2

))
.

Applying the Bellman-Gronwall Lemma and invoking Theorem C.2.14 in [46, p. 241] again
yields

∀ t ≥ t̃1 : e(t)
2

(3.28)

≤ e(t̃1)
2 + 4

(
M2

g + |γ0|2l2
(
λ2 + 1 + ‖δ2(e)‖q2Lq2

))
<∞,

which by continuity of e(·) on R≥0 and by compactness of [0, t̃1] implies e(·) ∈ L∞(R≥0;R).

Step 5c: It is shown that x(·) ∈ L∞(R≥0;R
n).

From Step 3 and 4 it follows that k(·) ∈ L∞(R≥0;R>0). From Step 5b & 5a it follows that
e(·) ∈ L∞(R≥0;R) and z(·) ∈ L∞(R≥0;R

n−1), resp. This combined with yref(·) ∈ W1,∞(R≥0;R)
and S−1 as in (2.24) yields

x(·) = S−1(e(·)− yref(·), z(·)⊤)⊤ ∈ L∞(R≥0;R
n).

This shows Assertion (iii) and completes Step 5.

Step 6: It is shown that Assertion (iv) holds true, i.e. limt→∞ dist
(
|e(t)|, [0, λ]

)
= 0.

First note that e(·) ∈ L∞(R≥0;R), in view of (3.11), implies k̇(·) ∈ L∞(R≥0;R>0). From
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Step 5a recall that v(·) ∈ L∞(R≥0;R
n−1). Combining this with d(·) ∈ L∞(R≥0;R

m), yref(·) ∈
W2,∞(R≥0;R), ud(·) ∈ L∞(R≥0;R) and global boundedness of the operator T (see system
property (S2-sp3)) gives, in view of (3.15), ė(·) ∈ L∞(R≥0;R). Furthermore it holds that

∀ t ≥ 0: k̈(t) =
d
dt

(
q1 dλ

(
|e(t)|

)q2) =

{
0 , |e(t)| < λ

q1q2dλ (|e(t)|)q2−1 sign(e(t))ė(t) , |e(t)| ≥ λ.

Hence, k̈(·) ∈ L∞(R≥0;R). This with (3.26) allows for application of Lemma 2.1.7 in [86, p. 17]
(or Barbălat’s Lemma [106, Lemma 3.2.6. p. 76]) which gives limt→∞ k̇(t) = 0 and therefore
limt→∞ dλ(|e(t)|) = 0, which shows Assertion (iv). This completes Step 6 and the proof of
Theorem 3.3.

Remark 3.5. It can be shown that Assertions (i)-(iv) of Theorem 3.3 also hold for q2 ≥ 1.
Then, for 0 < P 4 = P⊤

4 ∈ R
(n−1)×(n−1), choose V2 : R

n−1 → R≥0, v 7→ V2(v) :=
√
v⊤P 4v

instead of V2(v) := v
⊤P 4v in Step 5a and |e| instead of e2 in Step 5b of the proof of Theorem 3.3.

Note that these choices are not continuously differentiable at v = 0n−1 and e = 0, respectively,
and imply the use of upper right-hand derivatives (see [115, p. 659]) which are not considered
in the present work.

3.5 Relative degree two systems

In this section, adaptive λ-tracking control for systems of class S2 is discussed. At first the
results of Ye [190] and Bullinger & Allgöwer [34] for systems with arbitrary-but-known relative
degree are revisited which incorporate dynamic compensators (and backstepping) and high-gain
observers, respectively. Both approaches do not require derivative feedback, but the controller
structures are complex and do not allow for intuitive tuning. Moreover, both controllers achieve
unsatisfactory control performance (see simulations in Section 3.5.4) and so no attempts are
made to transfer the results to system class S2. Both controllers are presented for their respec-
tive system class as they were originally introduced (see [34, 190]) but, conform to system class
S2, with restriction to the relative degree two case. Finally, the adaptive λ-tracking controller
with derivative feedback is introduced and comparative simulations are presented.

3.5.1 Adaptive λ-tracking controller with backstepping

In 1999 Ye proposes an universal adaptive λ-tracking controller for minimum-phase LTI SISO
systems with arbitrary-but-known relative degree, unknown sign of the high-frequency gain and
polynomially bounded perturbation. Ye considers systems of the following form

ẋ(t) = Ax(t) + b u(t) + f(t,x(t)),
y(t) = c⊤x(t)

n ∈ N, f : R≥0 × R
n → R

n, x(0) = x0 ∈ R
n,

(A, b, c) ∈ R
n×n × R

n × R
n.

(3.31)
and imposes three assumptions: (A1) known relative degree r of the unperturbed system,
i.e. f = 0n in (3.31) and (2.6), (A2) the unperturbed system is minimum-phase, i.e. f = 0n

in (3.31) and (2.14) and (A3) f : R≥0×R
n → R

n is a Carathéodory function and polynomially
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bounded, i.e.

∀x ∈ R
n for a.a. t ≥ 0: ‖f(t,x)‖ ≤ α(1 + |c⊤x|q) (3.32)

where α > 0 is unknown and q ∈ N known. For controller design the values r and q are
necessary. Note the similarity of systems of form (3.31) and of form (1.36) being element of
class S2. For q = 0 class S2 comprises systems of form (3.31).

Remark 3.6. Note that the nonlinear perturbation term f(t,x) may change the relative degree
r of the unperturbed linear system. Consider e.g. the case r = 3, then c⊤b = c⊤Ab = 0 and
c⊤A2b 6= 0, but c⊤ ∂f(t,x)

∂x

∣∣
(x⋆,t⋆)

b 6= 0 is possible for some x⋆ ∈ R
n or some t⋆ ≥ 0. Hence at

(x⋆, t⋆) ∈ R
n×R≥0 the relative degree r⋆ = 2 of the perturbed system is smaller than r = 3. Ye

permits this case.

Ye’s controller consists of a stable (r − 1)-th order compensator (in view of Bullinger [33] a
reduced-state observer) and an adaptive λ-tracking controller with slightly modified gain adap-
tion rule (both to be specified later). To achieve sign-correct control action he implements a
Nussbaum function fNB : R → R with properties as in (2.48). For yref(·) ∈ W1,∞(R≥0;R), his
controller assures control objectives (co1) and (co2). For presentation measurement noise in
the output is neglected, even though measurement noise nm(·) ∈ W1,∞(R≥0;R) is tolerated but
yields asymptotic tracking of the “deteriorated reference” yref(·)− nm(·) (see [190]).

In the following, to account for the exponent q in (3.32), choose

q̄ :=

{
q , q odd
q + 1 , q even,

(3.33)

and, conform to system class S2, only consider systems of form (3.31) with relative degree two,
i.e. r = 2, and known sign of the high-frequency gain. Due to backstepping, Ye’s controller is
recursively defined and, already in the relative degree two case, becomes quite complex. For
tracking error e(t) = yref(t)− y(t), controller gain k(t) and compensator state ζ1(t) (both to be
specified in (3.37)), introduce

∀ t ≥ 0: ζ⋆1 (t) := k(t)
(
e(t) + e(t)q̄

)
and ζ̃1(t) := ζ⋆1 (t)− ζ1(t). (3.34)

For compensator gain kF > 0 and “design functions” q1(·) ∈ C∞(R;R≥0) and q2(·) ∈ C∞(R; [1,∞)),
satisfying

∀ e ∈ R : q1(e) ≥ dλ(|e|)q̄
(
|e|+ |e|q̄

)
and q2(e) ≥ 1 + dλ(|e|)q̄, (3.35)

define (see [190])

∀ t ≥ 0: ζ⋆2 (k(t), e(t), ζ1(t)) := kF ζ1(t) +
[
q1(e(t))

2
(
e(t) + e(t)q̄

)2

+
(
1 + q̄e(t)q̄−1

)2(
k(t)2 ζ1(t)

2 + q2(e(t))
2
)
+ 1
]
ζ̃1(t). (3.36)
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Then Ye’s adaptive λ-tracking controller with compensator is given as follows

ζ̇1(t) = −kF ζ1(t) + u(t),

u(t) = sign(c⊤Ab) ζ⋆2
(
k(t), e(t), ζ1(t)

)
,

k̇(t) = dλ(|e(t)|)q̄
(
|e(t)|+ |e(t)|q̄

)
,

ζ1(0) = ζ01 ∈ R, kF > 0,

where e(t) = yref(t)− y(t) and
ζ⋆2
(
k(t), e(t), ζ1(t)

)
as in (3.36),

k(0) = k0 ≥ 0.





(3.37)

Combining altogether, Ye’s result can be formulated in the following theorem.

Theorem 3.7. Consider a system of form (3.31) satisfying assumptions (A1)-(A3) with rel-
ative degree two and known sign of the high-frequency gain. Then, for arbitrary initial value
(x0, ζ01 ) ∈ R

n+1 and reference yref(·) ∈ W1,∞(R≥0,R), the adaptive λ-tracking controller (3.37),
with design parameters q̄ ≥ 1 as in (3.33), k0 ≥ 0, kF > 0, λ > 0 and q1(·) ∈ C∞(R;R≥0) and
q2(·) ∈ C∞(R; [1,∞)) with properties as in (3.35), applied to (3.31) yields a closed-loop initial-
value problem with the properties:

(i) there exists a solution (x, ζ1, k) : [−h, T ) → R
n×R×R>0 which can be maximally extended

and T ∈ (0,∞];

(ii) the solution is global, i.e. T = ∞;

(iii) all signals are bounded, i.e. (x(·), ζ1(·)) ∈ L∞(R≥0;R
n+1) and k(·) ∈ L∞(R≥0;R>0);

(iv) the λ-strip is asymptotically reached, i.e. limt→∞ dist
(
|e(t)|, [0, λ]

)
= 0.

Proof. see the proof of Theorem 1 in [190].

The choice of q̄ as in (3.33) is essential for the Lyapunov-like analysis in the proof of Theo-
rem 1 in [190]. It guarantees domination of the gain adaption over the nonlinear perturbation
‖f(·,x(·))‖ (similar to (3.5) as introduced in [87]).

Remark 3.8 (Design parameters q̄, k0, λ, kF , ζ01 , q1(·) and q2(·)).
Ye’s adaptive λ-tracking controller (3.37) is set up by seven design parameters. In [190] Ye
does not offer recommendations on parameter tuning. The parameter q̄ ≥ 1 (must be odd)
will increase gain adaption speed and, clearly, λ and k0 specify asymptotic accuracy and initial
gain, respectively. Influence of kF , ζ01 , q1(·) and q2(·) on the control performance is not easy
to predict (see simulations in Section 3.5.4). The smooth functions q1(·) and q2(·) scale ζ̃1(·)
in (3.36) and should be chosen “as small as” possible (but such that (3.35) holds) to avoid un-
necessarily large control action. Large values in kF yield a sensitive filter—in the sense that
already “small” changes in u(·) will affect the filter state—and so the closed-loop system might
exhibit oscillations with large amplitude and frequency. The initial value ζ01 might be helpful
to fix a non-zero control action at startup independently of the error. Simulations show that
Ye’s controller is sensitive to measurement noise and hence can hardly be implemented in “real
world”. Note that, in [190], Ye does not provide simulations results for u(·) (which should reveal
high noise amplification).
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Remark 3.9. The principle idea of Ye’s approach becomes clearer by transforming system (3.31)
into Byrnes-Isidori like form (similar to (3.7)). In [190, Lemma 1] it is shown that there ex-
ists an invertible, linear mapping T : R

n+1 → R
n+1 which, if assumptions (A1)-(A3) hold,

transforms the closed-loop system (3.31), (3.37) into the following equivalent form

ė(t) = f1 e(t) + f
⊤
2 η(t) + β ζ1(t) + d1(t, e(t),η(t), ζ1(t))

η̇(t) = f 3 e(t) + F 4η(t) + d2(t, e(t),η(t), ζ1(t))

ζ̇1(t) = kF ζ1(t) + u(t)

,



e(0)
η(0)
ζ1(0)


 = T

(
x0

ζ01

)
(3.38)

where β > 0, f1 ∈ R, f 2,f 3 ∈ R
n−1, F 4 ∈ R

(n−1)×(n−1), d1 : R≥0 × R × R
n−1 × R → R and

d2 : R≥0×R×R
n−1×R → R

n−1. Moreover, spec(F 4) ⊂ C<0 and there exist α1, α2 > 0 such that
|d1(t, e,η, ζ1)| ≤ α1

(
1+ |e|q̄

)
and ‖d2(t, e,η, ζ1)‖ ≤ α2

(
1+ |e|q̄

)
for all (e,η, ζ1) ∈ R×R

n−1×R

and for almost all t ≥ 0.
Regarding ζ1 as (virtual) control input of system (3.38), it is easy to see that (3.38) can be
interpreted as minimum-phase system with relative degree one and positive high-frequency gain
β > 0. Thus adaptive λ-tracking control would be possible for

ζ1(t) = ζ⋆1 (k(t), e(t)) = k(t)
(
e(t) + e(t)q̄

)
.

In general ζ1 will differ from the desired (virtual) control input ζ⋆1 (k, e). But if—loosely speaking—
the “(virtual) control input error” ζ̃1(t) as in (3.34) can be kept “small”, then λ-tracking is still
feasible. This intuition is exploited by Ye‘s approach.

3.5.2 Adaptive λ-tracking controller with high-gain observer

Bullinger and Allgöwer present adaptive λ-tracking control for control-affine nonlinear SISO
systems of the form

ẋ(t) = f(x(t)) + g(x(t)) u(t),
y(t) = h(x(t))

x(0) = x0 ∈ R
n,

f(·), g(·) ∈ C∞(Rn;Rn), h(·) ∈ C∞(Rn;R)
(3.39)

if, loosely speaking, the following assumptions hold (see [34]): (A1) the relative degree1 r ≥ 1 is
arbitrary-but-known and globally defined, (A2) the high-frequency gain is positive, uniformly
bounded away from zero and a lower bound γ0 > 0 is known, i.e. γ0(x) := LgL

r−1
f h(x) ≥ γ0

for all x ∈ R
n, (A3) the nonlinearities are “sector bounded” (see Definition 1 in [34]) and (A4)

the zero-dynamics2 of (3.39) can be decomposed into a “bounded and an exponentially stable
part” (see Assumption 4 in [34]).

The controller proposed by Bullinger and Allgöwer consists of a r-th order high-gain adaptive
observer and an adaptive λ-tracking controller with observer state feedback (instead of output
feedback). For yref(·) ∈ W1,∞(R≥0;R) their controller attains control objectives (co1) and (co2)
(see Theorem 1 in [34]). Gain adaption affects observer and feedback gains. The observer states

1A system of form (3.39) is said to have relative degree r at a point x⋆ ∈ R
n if the following two conditions

hold: (i) LgL
i
fh(x) = 0 for all x in a neighborhood of x⋆ and all i ∈ {1, . . . r − 1} and (ii) LgL

r−1
f h(x) 6= 0

(see [107, p. 137]) where Lifh(x) := (∂Li−1
f h(x)/∂x)f(x) represents the i-th Lie derivative of h(·) along f(x)

(see e.g. [115, p. 509,510]). If both conditions hold for any x⋆ ∈ R
n, the relative degree r is globally defined.

2For a definition and a detailed discussion see [107, Section 4.3].

– 111 –



Chapter 3: Adaptive λ-tracking control

represent estimates of system output y(·) and its r−1 time derivatives. Note that neither mea-
surement noise nor bounded (discontinuous) disturbances (in e.g. L∞(R≥0;R)) are explicitly
permitted by Bullinger and Allgöwer (although those should be admissible).

Conform to system class S2, in the following assume that system (3.39) has global relative degree
two (i.e. r = 2). Then, under assumptions (A3) and (A4), system (3.39) can be transformed into
(nonlinear) Bynres-Isidori form (see Remark 2 in [34]), i.e. there exists a global diffeomorphism3

Φ : R
n → R

n, x 7→ ((y, ẏ), z) := Φ(x) which yields

d
dt

(
y(t)
ẏ(t)

)
=

[
0 1
0 0

](
y(t)
ẏ(t)

)
+

(
0
1

)(
f1
(
(y(t), ẏ(t)), z(t)

)
+ f 2

(
(y(t), ẏ(t)), z(t)

)⊤
(
y(t)
ẏ(t)

)

+f 3

(
(y(t), ẏ(t)), z(t)

)⊤
z(t) + γ0

(
(y(t), ẏ(t)), z(t)

)
u(t)

)
,

ż(t) = f 4

(
(y(t), ẏ(t)), z(t)

)
y(t) + f 5

(
z(t)

)
+ f 6

(
(y(t), ẏ(t)), z(t)

)
,

(ξ(0), z(0)) = Φ(x0)





(3.40)
where

f1(·, ·) ∈ L∞(R2 × R
n−2;R), f 2

(
·, ·
)
, f 3

(
·, ·
)
∈ L∞(R2 × R

n−2;R2),

f 4

(
·, ·
)
, f 6

(
·, ·
)
∈ L∞(R2 × R

n−2;Rn−2), ∀ (ξ, z) ∈ R
2 × R

n−2 : γ0
(
ξ, z
)
≥ γ0 > 0

and the dynamics ż = f 5

(
z
)

are globally exponentially stable.





(3.41)

Although system (3.40) is nonlinear, due to the restrictions in (3.41), it is structurally similar
to the Byrnes-Isidori like form (3.8) of system class S2. Note that the admissible nonlinearities
in f1(·, ·) and f 6(·, ·) are covered by the operator T.

To present Bullinger’s and Allgöwer’s adaptive λ-tracking controller with high-gain observer
for systems of form (3.40) with (3.41) and relative degree two, introduce for p0, p1 > 0 and
g, q0, q1 > 0 the polynomials

p(s) := s2 + p1s+ p0 and qg(s) := s2 + g q1 s+ g q0 (3.42)

and the following definition.

Definition 3.10. Let n ∈ N, ǫ > 0 and µ > 0. A polynomial l(s) = sn +
∑n−1

i=0 lis
i ∈ R[s] is

element of H(ǫ, µ) if there exists a matrix P = P⊤ > 0 which satisfies for

Al :=




0 1 0 . . . 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
0 . . . . . . 0 1
−l0 −l1 . . . −ln−2 −ln−1




3Let n ∈ N. A function Φ : R
n → R

n is called a global diffeomorphism if (i) Φ is invertible, i.e. Φ−1(Φ(x)) =
x for all x ∈ R

n and (ii) Φ(·), Φ(·)−1 ∈ C∞(Rn;Rn) (see e.g. [107, p. 11]).
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and Ψn := diag{0, 1, . . . , n− 1} the two inequalities

A⊤
l P + PAl ≤ −2µP ,

D := Ψ
⊤
nP + PΨn ≥ −2ǫP .

}
(3.43)

Note that, in view of (3.43), H(ǫ, µ) is a subset of the Hurwitz polynomials. In Appendix B.2
of [33] it is shown that for any Hurwitz polynomial l(s) there exists a positive definite solution
P which satisfies (3.43) and, moreover, there exist ǫ > 0 and µ > 0, such that l(·) ∈ H(ǫ, µ)
for all ǫ ≥ ǫ and µ ≤ µ, respectively.

Now Bullinger’s and Allgöwer’s main result can be formulated in the following theorem.

Theorem 3.11. Consider a system of form (3.40) satisfying (3.41). Let α > β > 0 and
p0, p1, q0, q1, γ > 0, respectively. Choose ǫ > 0 and µ > 0 such that the polynomials p(s) and
qg(s) as in (3.42) are in H(ǫ, µ) for all g ≥ γ0 and

γ̃ > 2αǫ+ (α− β)− 1

2
. (3.44)

Then, for arbitrary initial value (x0, x̂0) ∈ R
n+2 and reference yref(·) ∈ W1,∞(R≥0,R), the

adaptive λ-tracking controller with high-gain observer

˙̂x(t) =

[
−p1κ̂(t) 1
−p0κ̂2(t) 0

]
x̂(t)−

[
p1κ̂(t)
p0κ̂

2(t)

]
e(t), x̂(0) = x̂0 ∈ R

2

u(t) =
(
q0 κ(t)

2, q1 κ(t)
)
x̂(t) where

e(t) = yref(t)− y(t), κ̂(t) := k(t)α, κ(t) := k(t)β

k̇(t) = γ k(t)−2 γ̃dλ(|e(t)|)2, k(0) = k0 > 0





(3.45)

applied to (3.40) yields a closed-loop initial-value problem with the properties:

(i) there exists a solution (x, x̂, k) : [−h, T ) → R
n × R

2 × R>0 which can be maximally
extended and T ∈ (0,∞];

(ii) the solution is global, i.e. T = ∞;

(iii) all signals are bounded, i.e. (x(·), x̂(·)) ∈ L∞(R≥0;R
n+1) and k(·) ∈ L∞(R≥0;R>0);

(iv) the λ-strip is asymptotically reached, i.e. limt→∞ dist
(
|e(t)|, [0, λ]

)
= 0.

Proof. see proof of Theorem 1 in [34].

Remark 3.12 (Design parameters p0, p1, q0, q1, γ, γ̃, k0, α and β).
Controller (3.45) has nine design parameters which severely affect control performance. Bul-
linger and Allgöwer do not provide any rules of thumb for controller tuning. Clearly “fast
observer dynamics” seem desirable, i.e. p0, p1 ≫ 1 (see also simulations in Section 3.5.4). The
influence of the feedback parameters q0 and q1 is not obvious and they must be chosen by trial
and error (endangering application in real world, what if “bad” values are used?). The presup-
positions in Theorem 3.11 make control design tedious. In particular the check for affiliation
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of p(s) and qg(s) as in (3.42) to the set H(ǫ, µ) is unattractive. Any change in p0, p1 or q0,
q1 may require revision of γ̃ as in (3.44) and so limit degrees of freedom in controller design
(e.g. large values of γ̃ prevent rapid gain adaption). By γ and k0 adaption speed and initial gain
are varied. The exponents α and β allow tuning of observer and controller gains. Simulations
show that a choice α > β ≫ 1 leads to “good” tracking performance and “fast” disturbance
rejection but tremendous noise sensitivity and hence should be avoided.

3.5.3 Adaptive λ-tracking controller with derivative feedback

For relative degree r ≥ 2, the proposed adaptive λ-tracking controllers with derivative feedback
in [81, Section 2.3.3] require derivative feedback up to the r-th order. Systems of class S2 do
not offer feedback of ÿ(·). The following result is motivated by the high-gain adaptive controller
proposed by Hoagg and Bernstein (see [80]), Theorem 2.36 (in Section 2.3.4.3) and the position
control problem where y(·) and ẏ(·) are available for feedback.

Theorem 3.13 (Adaptive λ-tracking control with derivative feedback for systems of class
S2). Consider a system of class S2 described by (1.36). Then, for arbitrary initial trajectories
x0(·) ∈ C0([−h, 0];Rn) and k0(·) ∈ C0([−h, 0];R>0) and reference yref(·) ∈ W2,∞(R≥0;R), the
adaptive λ-tracking controller

u(t) = sign(c⊤Ab)
(
k(t)2e(t) + q1 k(t)ė(t)

)
where e(t) = yref(t)− y(t)

k̇(t) = q2 exp(−q3 q4 k(t)) dλ
(∥∥(e(t), ė(t)/k(t))⊤

∥∥
)q4

, k(0) = k0(0)



 (3.46)

with design parameters q1, q2, q3 > 0, q4 ≥ 2, k0(0) > 0 and λ > 0 applied to (1.36) yields a
closed-loop initial-value problem with the properties:

(i) there exists a solution (x, k) : [−h, T ) → R
n × R>0, T ∈ (0,∞] which can be maximally

extended;

(ii) the solution is global, i.e. T = ∞;

(iii) all signals are bounded, i.e. x(·) ∈ L∞(R≥0;R
n) and k(·) ∈ L∞(R≥0;R>0);

(iv) the λ-strip is asymptotically reached, i.e. limt→∞ dist
(∥∥(e(t), ė(t)/k(t))⊤

∥∥ , [0, λ]
)
= 0.

Remark 3.14 (Design parameters q1, q2, q3, q4, k0(0) and λ ).
The controller (3.46) is tuned by six parameters. Influence of the parameters q1, q2 and k0(0) on
the closed-loop system response has already been discussed in Remark 2.37 (see also discussion
in Section 2.3.4.4). The parameter q3 > 0 scales the exponent in gain adaption (3.46) and
should be chosen small, i.e. q3 ≪ 1/(q4k

0(0)). Practically, large initial exponents q3q4k
0(0) ≫ 1

might stop gain adaption “too early” due to truncation of small numbers in binary format (in
the real-time system). The exponent q4 ≥ 2 allows to accelerate gain adaption for large values
of ‖(e(·), ė(·)/k(·))‖. The asymptotic accuracy is prescribed by λ > 0.

Proof of Theorem 3.13.

Step 1: It is shown that Assertion (i) holds true, i.e. existence of a maximally extended solution.
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It suffices to consider system (1.36) in the form (3.9). Extend yref(·) to [−h, 0) such that
yref(·) ∈ W2,∞([−h,∞);R) and define the open and non-empty set

D := R
2 × R

n−2 × R>0,

the function

f : [−h,∞)×D × R
m → D,

(t, (µ, ξ, κ), ζ) 7→




[
0 1
a1 a2

](
µ−

(
yref(t)
ẏref(t)

))
− |γ0|

(
0

κ2 µ1 + q1 κµ2

)
−
(
0
γ0

)
ud(t)

+

(
ẏref(t)
ÿref(t)

)
−
[
0
⊤

a⊤3

]
ξ −

[
0
⊤

c⊤ABT

]
(ζ + d(t))

[
a4 0

]((yref(t)
ẏref(t)

)
− µ

)
+A5ξ +NBT (ζ + d(t))

q2 exp(−q3 q4 κ) dλ(‖(µ1, µ2/κ)‖)q4




and the operator

T̂ : C([−h,∞);Rn+1) → L∞
loc(R≥0;R

m), (T̂(µ, ξ, κ))(t) := (T(S−1
(
yref − µ1
ẏref − µ2

ξ

)
))(t).

Then, by introducing the expanded state variable x̂ := ((e, ė), z, k), the initial-value prob-
lem (3.9), (3.46) may be expressed in the form

d
dt
x̂(t) = f(t, x̂(t), (T̂x̂)(t)), x̂|[−h,0] =




yref |[−h,0] − c⊤x0

ẏref |[−h,0] − c⊤Ax0

Nx0

k0


 . (3.47)

Choose a non-empty compact set C ⊂ D × R
m and note that

∃MC > 0 ∀ ((µ, ξ, κ), ζ) ∈ C : ‖((µ, ξ, κ), ζ)‖ ≤MC. (3.48)

Then, for ud(·) ∈ L∞([−h,∞); R), d(·) ∈ L∞([−h,∞); Rm), and yref(·) ∈ W2,∞([−h,∞); R),
the function f(·, ·, ·) has the following properties: (i) f(t, ·, ·) is continuous for each fixed
t ∈ [−h,∞); (ii) for each fixed ((µ, ξ, κ), ζ) ∈ D×R

n the function f(·, (µ, ξ, κ), ζ) is measurable;
(iii) for almost all t ∈ [−h,∞) and for all ((µ, ξ, κ), ζ) ∈ C the following holds

‖f(t, (µ, ξ, κ), ζ)‖
(3.48)

≤
∥∥∥∥
[
0 1
a1 a2

]∥∥∥∥ (MC + 2max{‖yref‖∞, ‖ẏref‖∞}) + |γ0|M2
C
(MC + q1)

+ |γ0| ‖ud‖∞ + 2(max{‖ẏref‖∞, ‖ÿref‖∞}+ ‖a4‖max{‖yref‖∞, ‖ẏref‖∞})
+ (‖a3‖+ ‖a4‖+ ‖A5‖)MC + (‖c‖ ‖A‖+ ‖N‖) ‖BT‖ (MC + ‖d‖∞)

+ q2 exp(−q3 q4 k0(0))
(
MC

√
1 + 1/k0(0)2 + λ

)q4
=: lC.

Hence, f(·, ·, ·) is a Carathéodory function (see Definition 3.1) and existence of a solution
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x̂ : [−h, T ) → R
2×R

n−2×R≥0 of the initial-value problem (3.47) with x̂([0, T )) ∈ D, T ∈ (0,∞]
follows from Theorem 3.2. Every solution can be extended to a maximal solution. For the
following, let x̂ := ((e, ė), z, k) : [−h, T ) → R

2×R
n−2×R>0 be a fixed and maximally extended

solution of the initial-value problem (3.47). Note that this implies that ((e, ė), z, k) : [−h, T ) →
R

2×R
n−2×R>0 solves the closed-loop initial-value problem (3.9), (3.46) for almost all t ∈ [0, T ).

Hence Assertion (i) is shown.

Step 2: Some technical preliminaries are introduced.

Step 2a: Lyapunov equations, an inequality and a coordinate transformation.
For q1 > 0 and γ0 6= 0 (see system property (S2-sp1)) the matrix

A1 :=

[
0 1

−|γ0| −|γ0|q1

]
(3.49)

and by system property (S2-sp2) the matrix A5 as in (3.9) are Hurwitz, resp. Hence there exist

0 < P⊤
1 = P 1 =

1
2 |γ0| q1

[|γ0| q21 + |γ0|+ 1 q1

q1
1

|γ0| + 1

]
and 0 < P⊤

5 = P 5 ∈ R
(n−2)×(n−2)

such that A⊤
1 P 1 + P 1A1 = −I2 and A⊤

5 P 5 + P 5A5 = −In−2.

(3.50)

Note that k(t) ≥ k0(0) > 0 for all t ∈ [0, T ). Define

K(k(t)) :=

[
1 0
0 k(t)

]
(3.51)

and the (sub-)coordinate change

w(t) :=K(k(t))−1

(
e(t)
ė(t)

)
and ∀ ν ∈ [1/2, 1] : v(t) := k(t)−νz(t). (3.52)

Then, for A1 as in (3.49), the closed-loop system (3.9), (3.46) can be written as

ẇ(t) =

(
− k̇(t)
k(t)

[
0 0
0 1

]
+

[
0 0
a1
k(t)

a2

]
+ k(t)A1

)
w(t)

+k(t)−1

{[
0 0
a1 a2

](
yref(t)
ẏref(t)

)
+

(
0

ÿref(t)

)
−
[
0
⊤

a⊤
3

]
k(t)νv(t)−

(
0
γ0

)
ud(t)

−
[

0
⊤

c⊤ABT

](
(T(S−1

(
yref − w1
ẏref − k w2

kνv

)
))(t) + d(t)

)}
,

w|[−h,0] =K(k0)−1

((
yref |[−h,0]
ẏref |[−h,0]

)
−Cx0

)

v̇(t) =
(
−ν k̇(t)

k(t)
In−2 +A5

)
v(t) + k(t)−ν

{[
a4 0

]((yref(t)
ẏref(t)

)
−w(t)

)

+NBT

(
(T(S−1

(
yref − w1
ẏref − k w2

kνv

)
))(t) + d(t)

)}
, z|[−h,0] = (k0)−νNx0

k̇(t) = q2 exp(−q3 q4 k(t)) dλ(‖w(t)‖)q4 , k|[−h,0] = k0




(3.53)
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Step 2b: Introduction of a Lyapunov-like function.
For P⊤

1 = P 1 > 0 and P⊤
5 = P 5 > 0 as in (3.50), introduce the Lyapunov-like function

V1 : R
2 × R

n−2 × [k0(0),∞) → R≥0,

(w,v, k) 7→ V1(w,v, k) := exp(−2q3k)
(
w⊤P 1w + v⊤P 5v

)
.

and define the constants

Mw := ‖P 1‖
(√

a21 + a22(‖yref‖∞ + ‖ẏref‖∞) + ‖ÿref‖∞ + |γ0|‖ud‖∞ + ‖c‖ ‖A‖ ‖BT‖ (MT + ‖d‖∞)

)
,

Mv := ‖P 5‖ (‖a4‖ ‖yref‖∞ + ‖N‖ ‖BT‖ (MT + ‖d‖∞)) (3.54)

and

∀ t ∈ [0, T ) : M1(t) := k(t)−2M2
w + 8k(t)−2νM2

v ≥ 0. (3.55)

For notational brevity, write

∀ t ∈ [0, T ) : V1(t) := V1(w(t),v(t), k(t)) with derivative along (3.53):

∀ t ∈ [0, T ) :
d
dt
V1(t) = 2 exp(−2q3k(t))

(
w(t)⊤P 1ẇ(t) + v(t)⊤P 5v̇(t)

)
− 2q3k̇(t)V1(t).

(3.56)

In view of (3.53), the following holds for almost all t ∈ [0, T )

2w(t)⊤P 1ẇ(t)
(3.50),(3.54)

≤ −
(
k(t)− 2 ‖P 1‖

√
a21

k0(0)2
+ a22

)
‖w(t)‖2 + 2

k̇(t)

k(t)
‖P 1‖ ‖w(t)‖2

+2k(t)−1Mw ‖w(t)‖+ 2k(t)−1+ν ‖P 1‖ ‖a3‖ ‖v(t)‖ ‖w(t)‖
(2.62)

≤ −
(
k(t)− 2 ‖P 1‖

√
a21

k0(0)2
+ a22 − 1− 8‖P 1‖2‖a3‖2

k(t)2(1−ν)

)
‖w(t)‖2

+2
k̇(t)

k(t)
‖P 1‖ ‖w(t)‖2 + 1

8
‖v(t)‖2 + k(t)−2M2

w (3.57)

and

2v(t)⊤P 5v̇(t)
(3.50),(3.54)

≤ −‖v(t)‖2 + 2 k(t)−ν
(
Mv + ‖P 5‖ ‖a4‖ ‖w(t)‖

)
‖v(t)‖

(2.62)

≤ −3

4
‖v(t)‖2 + 8k(t)−2ν

(
M2
v + ‖P 5‖2 ‖a4‖2 ‖w(t)‖2

)
(3.58)

where ‘− k̇(t)
k(t)
v(t)⊤P 5v(t) ≤ 0 for all t ∈ [0, T )’ was used (k̇(t) ≥ 0 for all t ∈ [0, T ) see (3.46)).

Furthermore, using

∀ t ∈ [0, T ) : V1(t)
(3.50)

≥ exp(−2q3k(t))

(
‖w(t)‖2∥∥P−1

1

∥∥ +
‖v(t)‖2∥∥P−1

5

∥∥

)
≥ exp(−2q3k(t))

‖w(t)‖2∥∥P−1
1

∥∥ (3.59)
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yields

∀ t ∈ [0, T ) : − 2 exp(−2q3k(t))
k̇(t)

k(t)
‖P 1‖ ‖w(t)‖2 − q3k̇(t)V1(t)

(3.59)

≤ −k̇(t) exp(−2q3k(t))

(
q3∥∥P−1
1

∥∥ − 2 ‖P 1‖
k(t)

)
‖w(t)‖2 . (3.60)

Then the time derivative d
dt
V1(t) as in (3.61) along the solution of the closed-loop system (3.53)

is, for almost all t ∈ [0, T ), bounded from above as follows

d
dt
V1(t)

(3.57),(3.58),(3.60)

≤ exp(−2q3k(t))

{
−
(
k(t)− 2 ‖P 1‖

√
a21

k0(0)2
+ a22 − 1

−8k(t)−2(1−ν) ‖P 1‖2 ‖a3‖2 − 8k(t)−2ν ‖P 5‖2 ‖a4‖2
)
‖w(t)‖2

−1

2
‖v(t)‖2 + k(t)−2M2

w + 8k(t)−2νM2
v︸ ︷︷ ︸

=M1(t)

}
− q3k̇(t)V1(t)

−k̇(t) exp(−2q3k(t))

(
q3∥∥P−1
1

∥∥ − 2 ‖P 1‖
k(t)

)
‖w(t)‖2 . (3.61)

Step 3: It is shown that k(·) is bounded on [0, T ).
Seeking a contradiction, assume that k(·) is unbounded on [0, T ). In view of (3.46), k̇(t) ≥ 0
for all t ∈ [0, T ), hence k(·) is non-decreasing on [0, T ) and

∃ t⋆ ≥ 0 ∀ t ∈ [t⋆, T ) : k(t) ≥ max

{
2

q3
‖P 1‖

∥∥P−1
1

∥∥ , 4
∥∥P−1

1

∥∥
µV λ2

(M2
w + 8M2

v),

2 ‖P 1‖
√

a21
k0(0)2

+ a22 + 1 + 8k0(0)−2(1−ν) ‖P 1‖2 ‖a3‖2 + 8k0(0)−2ν ‖P 5‖2 ‖a4‖2 +
1

2

}
. (3.62)

For M1(t) as in (3.55) and

µV := min

{
1

2 ‖P 1‖
,

1

2 ‖P 5‖

}
> 0, (3.63)

invoking (3.61) and the facts ‘−‖w‖2 ≤ − 1
‖P 1‖w

⊤P 1w’, ‘−‖v‖2 ≤ − 1
‖P 5‖v

⊤P 5v’ and ‘q3/
∥∥P−1

1

∥∥−

2 ‖P 1‖ /k(t)
(3.62)

≥ 0’ yields

for a.a. t ∈ [t⋆, T ) :
d
dt
V1(t)

(3.62)

≤ exp(−2q3k(t))
{
− ‖w(t)‖2+‖v(t)‖2

2
+M1(t)

}
− q3k̇(t)V1(t)

≤ −(µV + q3k̇(t))V1(t) + exp(−2q3k(t))M1(t). (3.64)
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Define

∀ t ∈ [0, T ) : Λ(t) :=
λ exp(−q3k(t))
2
√∥∥P−1

1

∥∥
> 0, with derivative Λ̇(t) = −q3k̇(t)Λ(t), (3.65)

and, for dΛ(t)(·) as in (N.5), note that the following holds

∀ t ∈ [0, T ) : ‖w(t)‖
(3.59)

≤
√∥∥P−1

1

∥∥ exp(q3k(t))
√
V1(t)−

√∥∥P−1
1

∥∥ exp(q3k(t))
√∥∥P−1

1

∥∥ exp(q3k(t))
λ

2
+
λ

2

(3.65)
=

√∥∥P−1
1

∥∥ exp(q3k(t))
(√

V1(t)− Λ(t)
)
+
λ

2
(3.66)

≤
√∥∥P−1

1

∥∥ exp(q3k(t)) dΛ(t)
(√

V1(t)
)
+ λ. (3.67)

Since dλ(x) ≤ dλ(y) for all 0 ≤ x ≤ y it follows that

∀ t ∈ [0, T ) : k̇(t)
(3.46)
= q2 exp(−q3q4k(t)) dλ(‖w(t)‖)q4

(3.67)

≤ q2
∥∥P−1

1

∥∥q4/2 dΛ(t)
(√

V1(t)
)q4

.

(3.68)

Furthermore, observe that

for a.a. t ∈ [t⋆, T ) : exp(−2q3k(t))M1(t)− µVΛ(t)
2

(3.55),(3.52),(3.65)

≤ exp(−2q3k(t))

(
M2
w + 4M2

v

k(t)
− µV

4

λ2∥∥P−1
1

∥∥

)
(3.62)

≤ 0 (3.69)

and, since for any t ∈ [0, T ), the following implications hold

r√
V1(t) ≤ 2Λ(t)

z
(3.65),(3.66)

=⇒
r

‖w(t)‖ ≤ λ
z

(3.46)
=⇒

r
k̇(t) = 0

z

and

r√
V1(t) > 2Λ(t)

z
=⇒

r (
V1(t)− 2Λ(t)

√
V1(t)

)
=
√
V1(t)

(√
V1(t)− 2Λ(t)

)
> 0

z
,

it follows that

∀ t ∈ [0, T ) : − k̇(t)
(
V1(t)− 2Λ(t)

√
V1(t)

)
≤ 0. (3.70)
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Now it is easy to see that the time derivative 1
2

d
dt
dΛ(t)

(√
V1(t)

)2
along the solution of the

closed-loop initial-value problem (3.53) is, for almost all t ∈ [t⋆, T ), bounded from above as
follows

1

2

d
dt
dΛ(t)

(√
V1(t)

)2
= dΛ(t)

(√
V1(t)

) d
dt

(√
V1(t)− Λ(t)

)

=
dΛ(t)

(√
V1(t)
)

2
√
V1(t)

(
d
dt
V1(t)− 2Λ̇(t)

√
V1(t)

)

(3.64),(3.65)

≤ dΛ(t)

(√
V1(t)
)

2
√
V1(t)

(
− µV V1(t) + exp(−2q3k(t))M1(t)

−q3k̇(t)
(
V1(t)− 2Λ(t)

√
V1(t)

))

(3.70)

≤ −dΛ(t)

(√
V1(t)
)

2
√
V1(t)

(
µV V1(t)− exp(−2q3k(t))M1(t)

)

(3.69)

≤ −dΛ(t)

(√
V1(t)
)

2
√
V1(t)

(
µV V1(t)− µVΛ(t)

2
)

= −µV
2
dΛ(t)

(√
V1(t)

)(√
V1(t)− Λ(t)

)(
1 +

Λ(t)√
V1(t)

)

≤ −µV
2
dΛ(t)

(√
V1(t)

)2
.

Integration yields

∀ t ∈ [t⋆, T ) : dΛ(t)

(√
V1(t)

)2
≤ dΛ(t⋆)

(√
V1(t⋆)

)2
exp

(
− q4µV (τ − t⋆)

)
(3.71)

and so the contradiction follows

∀ t ∈ [t⋆, T ) : k(t)− k(t⋆) =

∫ t

t⋆
k̇(τ) dτ

(3.68)

≤ q2
∥∥P−1

1

∥∥q4/2
∫ t

t⋆
dΛ(τ)

(√
V1(τ)

)q4
dτ

(3.71)

≤ q2
∥∥P−1

1

∥∥q4/2 dΛ(t⋆)
(√

V1(t⋆)
)q4 ∫ t

t⋆
exp

(
− q4µV

2
(τ − t⋆)

)
dτ

≤ 2q2
∥∥P−1

1

∥∥q4/2

q4µV
dΛ(t⋆)

(√
V1(t⋆)

)q4(
1− exp

(
− q4µV

2
(t− t⋆)

))

< ∞.

Step 4: It is shown that Assertions (ii) holds true, i.e. T = ∞.
From Step 3 and (3.46) it follows that k(·) is continuous, non-increasing and bounded on [0, T ).
Therefore the limit

k∞ := lim
t→T

k(t) ≥ k(0) > 0

exists and the following holds for almost all t ∈ [0, T )
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∥∥∥∥∥∥
d
dt



(
e(t)
ė(t)

)

z(t)



∥∥∥∥∥∥

≤
(∥∥∥∥
[
0 1
a1 a2

]∥∥∥∥+ |γ0| k∞(k∞ + q1) + ‖a3‖+ ‖a4‖+ ‖A5‖
)∥∥∥∥∥∥



(
e(t)
ė(t)

)

z(t)



∥∥∥∥∥∥

+

∥∥∥∥
[
0 1
a1 a2

]∥∥∥∥ (‖yref‖∞ + ‖ẏref‖∞) + |γ0|‖ud‖∞ + ‖ẏref‖∞ + ‖ÿref‖∞
+ ‖a4‖ ‖yref‖∞ + (‖c‖ ‖A5‖+ ‖N‖) ‖BT‖ (MT + ‖d‖∞)

which in combination with Proposition 2.1.19 in [77, p. 86] implies, by maximality of T , that
T = ∞. This shows Assertion (ii) and completes Step 4.

Step 5: It is shown that Assertion (iii) holds true, i.e. k(·) ∈ L∞(R≥0;R>0) and x(·) ∈
L∞(R≥0;R

n).
Note that k(·) ∈ L∞(R≥0;R>0) follows from Step 3 and 4.

Step 5a: It is shown that z(·) is bounded on R≥0.
For k∞ as in Step 4 observe that the following holds

∀ t ≥ 0: exp(−q3q4k∞)

∫ t

0

dλ(‖w(τ)‖)q4 dτ ≤
∫ t

0

exp(−q3q4k(τ))dλ(‖w(τ)‖)q4 dτ

(3.46)
=

1

q2

∫ t

0

k̇(τ) dτ ≤ 1

q2
(k∞ − k0(0)) <∞

which implies

k̇(·) ∈ L1(R≥0;R≥0) and dλ(‖w(·)‖) ∈ Lq4(R≥0;R≥0). (3.72)

Define

δ2 : R
2 → R

2, w 7→ δ2(w) :=

{
dλ(‖w‖) w

‖w‖ , ‖w‖ > λ

0 , ‖w‖ ≤ λ
and

δ∞ : R
2 → R

2, w 7→ δ∞(w) :=

{(
1− dλ(‖w‖)

‖w‖

)
w , ‖w‖ > λ

w , ‖w‖ ≤ λ

(3.73)

and note that, in view of (3.72) and (3.73), the following holds

∀ t ≥ 0: w(t) = δ2(w(t)) + δ∞(w(t)) ∧ ‖δ∞(w(t))‖ ≤ λ and δ2(w(·)) ∈ Lq4(R≥0;R
2).
(3.74)

Introduce the Lyapunov candidate

V2 : R
n−2 → R≥0, v 7→ V2(v) := v

⊤P 5v.
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For Mv as in (3.54),

M2 := 8 k0(0)−2ν
(
‖P 5‖2 ‖a4‖2 λ2 +M2

v

)
and M3 := 8 k0(0)−2ν ‖P 5‖2 ‖a4‖2 , (3.75)

the time derivative d
dt
V2(v(t)) along the solution of the (second equation of) closed-loop sys-

tem (3.53) is, for almost all t ≥ 0, bounded from above as follows

d
dt
V2(v(t)) ≤ −‖v(t)‖2 + 2 k0(0)−ν ‖v(t)‖ (‖P 5‖ ‖a4‖ ‖w(t)‖+Mv)

(3.74)

≤ −‖v(t)‖2 + 2 k0(0)−ν ‖v(t)‖
(
‖P 5‖ ‖a4‖ (‖δ2(w(t))‖+ λ) +Mv

)

(2.62)

≤ −1

2
‖v(t)‖2 + 8 k0(0)−2ν

(
‖P 5‖2 ‖a4‖2 (‖δ2(w(t))‖2 + λ2) +M2

v

)

(3.63),(3.75)

≤ −µV V2(v(t)) +M2 +M3 ‖δ2(w(t))‖2

≤ −µV V2(v(t)) +M2 +M3(1 + ‖δ2(w(t))‖q4)

where in the last step Fact 1.12.31 in [24, p. 39] was used. Now application of the Bellman-
Gronwall Lemma (in its differential form [18, Lemma 1.1, p. 2]) yields

∀ t ≥ 0: V2(v(t))
(3.74)

≤ V2(v(0)) +
M2 +M3

µV
+M3

∫ t

0

≤1︷ ︸︸ ︷
exp

(
− t− τ

2 ‖P 5‖

)
‖δ2(w(τ))‖q4 dτ

︸ ︷︷ ︸
≤‖δ2(w)‖q4

Lq4
<∞

.

Hence V2(v(·)) is bounded on R≥0, which implies v(·) ∈ L∞(R≥0;R
n−2). From this, combined

with k(·) ∈ L∞(R≥0;R>0) and (3.52), it follows that z(·) = k(·)νv(·) ∈ L∞(R≥0;R
n−2), which

completes Step 5a.

Step 5b: It is shown that (e(·), ė(·))⊤ is bounded on R≥0.
For k∞ > 0 as in Step 4, consider the first equation of the closed-loop system (3.9), (3.46) and
note that

∀ a1, a2 ∈ R : rank

[(
0
γ0

)
,

[
0 1
a1 a2

](
0
γ0

)]
= rank

[
0 γ0
γ0 a2

]
= 2,

where, by system property (sp1), γ0 6= 0 is satisfied. Hence the “first sub-system” in (3.9),
(3.46) is controllable and there exists l ∈ R

2 such that

Al :=

[
0 1

a1 − |γ0|k2∞ a2 − q1|γ0|k∞

]
−
(
0
γ0

)
l (3.76)

is a Hurwitz matrix and furthermore there exists a unique P l = P⊤
l > 0 such that A⊤

l P l +
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P lAl = −I2. Now, for Al as in (3.76), w(t) as in (3.52) and by defining

∀ t ≥ 0: e(t) :=

(
e(t)
ė(t)

)
and g(t) :=

[
0 0
a1 a2

](
yref(t)
ẏref(t)

)
+

(
0

ÿref(t)

)
−
[
0
⊤

a⊤3

]
z(t)

−
(
0
γ0

)
ud(t)−

[
0
⊤

c⊤ABT

](
(T(S−1

(
yref − e

ẏref − ė

z

)
))(t) + d(t)

)
,

rewrite the first equation of the closed-loop system (3.9), (3.46) as follows

d
dt
e(t) =

(
Al + |γ0|

[
0 0

k2∞ − k(t)2 q1(k∞ − k(t))

]

︸ ︷︷ ︸
=:F (t)

)
e(t) +

(
0
γ0

)
lK(k(t))w(t) + g(t),

(3.77)
where w(·) = δ2(w(·)) + δ∞(w(·)) and z(·) ∈ L∞(R≥0;R

n−2) are considered as continuous
external signals, resp. For Mw as in (3.54), K(k(t)) as in (3.51) and P 1 as in (3.50), note that

∀ t ≥ 0: ‖g(t)‖ ≤ Mw

‖P 1‖ + ‖a3‖ ‖z‖∞ =:Mg, ‖K(k(t))‖ ≤ max{1, k∞} =: K∞

and J limt→∞ F (t) = 0 K =⇒
r
∃ t̃1 ≥ 0 ∀t ≥ t̃1 : ‖F (t)‖ ≤ 1

16
1

|γ0|‖P l‖

z
.

(3.78)

Now introduce the Lyapunov candidate

V3 : R
2 → R≥0, e 7→ V3(e) := e

⊤P le ≥ 0

and, for

M4 := 8 ‖P l‖2
(
M2
g + |γ0|2 ‖l‖2K2

∞λ
2
)

and M5 := 8 ‖P l‖2 |γ0|2 ‖l‖2K2
∞ (3.79)

observe that the time derivative d
dt
V3(e(t)) along the solution of (3.77) is, for almost all t ≥ t̃1,

bounded from above as follows

d
dt
V3(e(t))

(3.77),(3.78)

≤ −
(
1− 2|γ0| ‖P l‖ ‖F (t)‖

)
‖e(t)‖2

+2 ‖P l‖ ‖e(t)‖
(
Mg + |γ0| ‖l‖K∞ ‖w(t)‖

)

(3.78),(3.74)

≤ −7

8
‖e(t)‖2 + 2 ‖P l‖ ‖e(t)‖

(
Mg + |γ0| ‖l‖K∞(‖δ2(w(t))‖+ λ)

)

(2.62)

≤ − 1

2 ‖P l‖
V3(e(t)) + 8 ‖P l‖2

(
M2
g + |γ0|2 ‖l‖2K2

∞
(
‖δ2(w(t))‖2 + λ2

))

(3.79)

≤ − 1

2 ‖P l‖
V3(e(t)) +M4 +M5(1 + ‖δ2(w(t))‖q4).

Invoking the Bellman-Gronwall Lemma and Theorem C.2.14 in [46, p. 241] again yields

∀ t ≥ t̃1 : V3(e(t))
(3.74)

≤ V3(e(t̃1)) + 2 ‖P l‖ (M4 + M5) + M5‖δ2(w)‖q4Lq4 < ∞,
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which by continuity of e(·) = (e(·), ė(·))⊤ on R≥0 and by compactness of [0, t̃1] implies
(e(·), ė(·))⊤ ∈ L∞(R≥0;R

2).

Step 5c: It is shown that x(·) ∈ L∞(R≥0;R
n).

From Step 3 and 4 it follows that k(·) ∈ L∞(R≥0;R>0). From Step 5b & 5a it follows that
(e(·), ė(·))⊤ ∈ L∞(R≥0;R

2) and z(·) ∈ L∞(R≥0;R
n−2), resp. This combined with yref(·) ∈

W2,∞(R≥0;R) and S−1 as in (2.24) yields

x(·) = S−1(e(·)− yref(·), ė(·)− ẏref(·), z(·)⊤)⊤ ∈ L∞(R≥0;R
n).

This shows Assertion (iii) and completes Step 5.

Step 6: It is shown that Assertion (iv) holds true, i.e. limt→∞ dist
(∥∥∥∥
(
e(t), ė(t)

k(t)

)⊤∥∥∥∥ , [0, λ]
)
= 0.

First note that k(·) ∈ L∞(R≥0;R>0) and (e(·), ė(·))⊤ ∈ L∞(R≥0;R
2) imply

w(·) =K(k(·))(e(·), ė(·))⊤ ∈ L∞(R≥0;R
2)

and hence, by (3.46), k̇(·) ∈ L∞(R≥0;R>0). From Step 5a recall that v(·) ∈ L∞(R≥0;R
n−2).

Combining this with d(·) ∈ L∞(R≥0;R
m), yref(·) ∈ W2,∞(R≥0;R), ud(·) ∈ L∞(R≥0;R) and

global boundedness of the operator T (see system property (S2-sp3)) gives, in view of (3.53),
ẇ(·) ∈ L∞(R≥0;R

2) and v̇(·) ∈ L∞(R≥0;R
n−2), resp. Furthermore it holds that

for a.a. t ≥ 0: k̈(t) =
d
dt
k̇(t) =

d
dt

(q2 exp(−q3q4k(t))dλ (‖w(t)‖)q4)

=

{
0 , ‖w(t)‖ = 0

−q3q4k̇(t)2 + q2q4 exp(−q3q4k(t))dλ (‖w(t)‖)q4−1 w(t)⊤ d

dt
w(t)

‖w(t)‖ , ‖w(t)‖ > 0.

Hence, k̈(·) ∈ L∞(R≥0;R) and moreover, in view of (3.72), Lemma 2.1.7 in [86, p. 17] gives
limt→∞ k̇(t) = 0. Therefore limt→∞ dλ(‖w(t)‖) = limt→∞ dλ(

∥∥(e(t), ė(t)/k(t))⊤
∥∥) = 0, which

shows Assertion (iv). This completes Step 6 and the proof of Theorem 3.13.

3.5.4 Simulations

In this subsection, the controllers (3.37), (3.45) and (3.46) are applied to the following simple
second order system, given by

ÿ(t) = γ0
(
u(t) + ud(t)

)
,

(y(0), ẏ(0)) = (y0, y1) ∈ R
2,

γ0 6= 0, ud(·) ∈ L∞(R≥0;R),
(3.80)

to try for a direct comparison of their control performance. System (3.80) is subject to input
disturbance ud(·). Output y(·) and output derivative ẏ(·) are assumed to be available for
feedback and deteriorated by measurement noise nm(·) ∈ W2,∞(R≥0;R) and its derivative
ṅm(·), respectively. Clearly, for known sign(γ0), system (3.80) is element of class S2 and hence
application of the controllers (3.37), (3.45) and (3.46) is admissible. System (3.80) represents
the simplest model for any position control problem: a double integrator with inertia 1/γ0.
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The closed-loop systems (3.80),(3.37), (3.80),(3.45) and (3.80),(3.46) are implemented in Mat-
lab/Simulink. The comparative simulations are performed for 30 [s]. Control objective is set-
point tracking of yref(·) = 1 on [0, 5] [s], set-point tracking under constant load ud(·) = −1 on
[5, 10] [s] (see Fig. 3.3) and reference tracking under changing load on [10, 30] [s] (see Fig. 3.4).
The set-point tracking problem on [0, 5] [s] is formulated in terms of motion control objec-
tives (mco1)-(mco3) (see Section 1.1) where maximum rise time, maximum settling time and
maximum overshoot are (arbitrarily) specified as follow

trref,0.8 = 1.0 [s] , tsref,0.1 = 2.0 [s] and ∆os
ref = 50 [%] . (3.81)

The controllers (3.37), (3.45) and (3.46) are designed such that (3.81) (with overshoot as small
as possible) and the presuppositions in Theorem 3.7, 3.11 and 3.13 hold, respectively. Tuning
of (3.37) and (3.45) is performed by trial and error. Controller design of (3.46) is based on
Remark 3.14 (and Remark 2.37). Clearly, a comparison always lakes of objectivity. But, to the
best knowledge of the author, each controller is tuned such that “best performance” is achieved
in a comparable setting (e.g. all controllers have an initial gain of 2).

System data and design parameters are collected in Tab. 3.1. The simulation results for the
closed-loop systems (3.80), (3.37), (3.80), (3.45) and (3.80), (3.46) are depicted
in Fig. 3.3 for set-point tracking and in Fig. 3.4 for (overall) reference tracking. Due to mea-
surement noise nm(·), the tracking error is given by e(·) =

(
yref(·)− nm(·)

)
− y(·) (similarly its

derivative) and so, at most, “exact” tracking of the corrupted reference yref(·)−nm(·) is feasible.

Control performance of each controller is evaluated by means of rise time try(·),0.8, overshoot
∆os
y(·), settling time tsy(·),0.1, maximal required control action maxt≥0 |u(t)| and integral time

absolute error (ITAE4) criterion

ITAE :=

∫ tend

0

τ · |e(τ)| dτ for tend ≥ 0. (3.82)

where, for the simulations, tend = 30 [s]. Evaluation results and maximal gains are summarized
in Tab. 3.2 (values are rounded). All controllers accomplish specification (3.81).

Discussion for adaptive λ-tracking controller (3.37) with backstepping: Ye’s controller yields
the second best ITAE value. Especially rise and settling time beat the other two concepts.
Overshoot is within the admissible range. Although the generated maximal gain is the lowest
in the study, due to (3.36), the highest control action is generated at startup and noise sensi-
tivity is unacceptable (see Fig. 3.4(c)). In conclusion, Ye’s controller seems not applicable in
real world.

Discussion for adaptive λ-tracking controller (3.45) with high-gain observer: The controller of
Bullinger and Allgöwer is the second best of this study concerning rise and settling time. In
contrast overshoot and ITAE value are the highest. Albeit generating the largest control gain,

4ITAE is used in favor of integral squared error (ISE) or integral absolute error (IAE) (see e.g. [120, p. 218])
due to time-weighting: non-zero errors at future times have greater influence on the performance measure than
those at earlier times.
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data/parametrization

Matlab solver ode15s (stiff/NDF) with variable step size (maximum 10−3 [s])

system (3.80) γ0 = 3, (y0, y1) = (0, 0), ‖ud‖∞ ≤ 2 (see Fig. 3.4(c)),
‖nm‖∞ ≤ 5 · 10−3 and ‖ṅm‖∞ ≤ 5 · 10−2 [1/s]

reference yref(·) ‖yref‖∞ = 5 (see Fig. 3.4(a)), ‖ẏref‖∞ = 1 and ‖ÿref‖∞ = 10

controller (3.37) q̄ = 1, kF = 1, k0 = 2, λ = 0.1, ζ01 = 0, q1(e) = 2 e2, q2(e) = 2 + e2

controller (3.45) γ0 = γ0, q0 = 1, q1 = 2/
√
γ0, p0 = 100, p1 = 20, ǫ = 1, µ = 0.19,

α = 1, β = 0.5, x̂0 = 02, γ = 10, γ̃ = 2, k0 = 2

controller (3.46) γ0 = γ0/3, q1 = 2/
√
γ0, q2 = 10, q3 = 0.1, q4 = 2, k0(0) = 2

Table 3.1: System data and design parameters for comparative simulations.

the controller reacts somehow “slowly” on varying references and disturbances. Its ITAE value
could be reduced by choosing larger values for α > β ≫ 1 (e.g. α = 2 and β = 1), however this
would imply increased noise sensitivity. For the parametrization in Tab. 3.1 noise sensitivity is
the lowest in the study. Due to tedious controller design (with too many tuning parameters)
and bad control performance (ITAE and overshoot), the controller (3.45) seems not suitable
for real application.

Discussion for adaptive λ-tracking controller (3.46) with derivative feedback: The proposed
controller is the slowest concerning rise and settling time but yields a closed-loop system re-
sponse with the smallest overshoot. This is due to the special choice of q1 ≥ 2/

√
γ0 (recall

Remarks 3.14 and 2.37). Without noise, the response is “overdamped” (i.e. no overshoot).
Maximal control gain is comparable to that of controller (3.45). Maximal control action is the
smallest in the study. Good tracking performance and disturbance rejection give the smallest
ITAE value. Noise sensitivity is acceptable and but slightly higher than that of (3.45). Since
design parameters have a clear and easy to understand influence on the closed-loop system
response, controller tuning of (3.46) is the most intuitive in this study (an attractive feature for
implementation). Controller (3.46) will be implemented for position control of 1MS and 2MS
(see Section 5.2.3).

Controller try(·),0.8 [s] tsy(·),0.1 [s] ∆os
y(·) [%] max

t∈I
|u(t)| [1] ITAE [s2] max

t∈I
k(t)

(3.37) 0.11 0.15 6.53 644.0 70.8 3.49
(3.45) 0.26 0.69 14.43 15.0 113.7 4.02
(3.46) 0.95 1.28 0.28 4.0 26.9 3.87

Table 3.2: Performance evaluation of closed-loop systems (3.80),(3.37), (3.80),(3.45)
and (3.80),(3.46) with parametrization as in Tab. 3.1 and I = [0, 30] [s].
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(b) control action u(·)

Figure 3.3: Simulation results for set-point tracking under load of closed-loop systems (3.80),(3.37),
(3.80),(3.45) and (3.80),(3.46) with parametrization as in Tab. 3.1.
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(b) control action u(·) and disturbance −ud(·)
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(c) error e(·) and λ-strip
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Figure 3.4: Simulation results for reference tracking under load of closed-loop systems (3.80),(3.37),
(3.80),(3.45) and (3.80),(3.46) with parametrization as in Tab. 3.1.
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Funnel control

ŷref + ψ(·)

ŷref − ψ(·)

yref(·)

ŷref

y(·)

(1 + p)ŷref

(1− p)ŷref
p̃ŷref

tsref,ptrref,p̃

0

0

ŷref ∆
os
ref

Time t [s]

Figure 4.1: Set-point tracking problem of reference step yref(·) with amplitude ŷref > 0: exemplary
evolution of system output y(·) constrained by prescribed limiting function ψ(·).

In this chapter, funnel control is introduced for systems of class S1 and for systems of class
S2. It will be shown that, for reference yref(·) ∈ W1,∞(R≥0;R) (or W2,∞(R≥0;R)), regulated
output y(·), tracking error e(·) = yref(·) − y(·) and (prescribed) limiting function ψ(·), the
presented funnel controllers achieve tracking with prescribed transient accuracy if the initial
error is enclosed by the limiting function, i.e.

∀λ > 0 ∀ψ(·) ∈ W1,∞(R≥0; [λ,∞)) ∀ |e(0)| < ψ(0) ∀ t ≥ 0: |e(t)| < ψ(t). (4.1)

According to this, the system output y(·) is constrained by the function ψ(·) (later on called
funnel boundary) and the reference yref(·) (see Fig. 4.1), i.e.

∀ t ≥ 0: yref(t)− ψ(t) < y(t) < yref(t) + ψ(t).

Clearly, (4.1) is stronger than control objective (co2) (see Section 1.6.2.3). Moreover, it will be
shown that funnel control assures boundedness of system state and control action, i.e.

x(·) ∈ L∞(R≥0;R
n) and u(·) ∈ L∞(R≥0;R). (4.2)

Hence, control objectives (co1)-(co3) are accomplished simultaneously by funnel control.
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Time t [s]
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(a) shortrun: noisy output y(·) + nm(·),
reference yref(·), yref(·)± λ.

Time t [s]
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(b) longrun: noisy output y(·) + nm(·),
reference yref(·), yref(·)± λ.

Figure 4.2: Simulation results for closed-loop system (3.2), (3.11) with yref(·) = 10, λ = k(0) = q1 = 1,
q2 = 2, y(0) = 0, noise nm(·) ∈ W1,∞(R≥0; [−0.1, 0.1]) and disturbance ud(·) = 0.

4.1 Motivation

The adaptive λ-tracking controllers in Chapter 3 achieve control objectives (co1) and (co2),
tolerate disturbances and measurement noise and therefore are indeed applicable in real world.
However, two major limitations remain which motivate for introduction of funnel control:

Motivation 1: Adaptive λ-tracking (and high-gain adaptive) control exhibit a non-decreasing
gain and so, as time tends to infinity, it is likely that e.g. noise sensitivity permanently exceeds
an acceptable level (if gain adaption is not stopped).

Motivation 2: Adaptive λ-tracking control assures tracking with prescribed asymptotic accu-
racy, however statements on the transient accuracy are not possible: e.g. albeit bounded large
overshoots might occur1 (see Fig. 4.2(a)) and, in general, the λ-strip is not reached in finite
time (see Fig. 4.2(b)).

It will be shown that, for both system classes S1 and S2, funnel control achieves tracking with
prescribed transient accuracy (4.1) and also permits gain decrease. For instance, for systems
of class S1, a simple funnel controller is given by

u(t) = sign(c⊤b)k(t)e(t) where e(t) = yref(t)− y(t) and k(t) =
1

ψ(t)− |e(t)| . (4.3)

That is a proportional but time-varying controller. Note that gain k(·) in (4.3) is instanta-
neously adjusted and not dynamically tuned. Principle idea behind gain adaption is as follows:
the gain k(·) becomes “time-varying” and is inversely proportional to the (actual) distance
ψ(t) − |e(t)| between limiting function ψ(·) and absolute value |e(·)| of the error. Hence, the
gain k(·) increases only if absolute error |e(·)| advances on the boundary ψ(·) (critical situation)
and may decrease again as soon as |e(·)| departs from ψ(·) (noncritical situation). Hence, funnel
gain k(·) in (4.3) is not necessarily non-decreasing in contrast to the gain in adaptive λ-tracking

1Clearly, the overshoot might be decreased by accelerating gain adaption (i.e. k̇(t) = q1dλ(|e(t)|)q2 with
q1 ≫ 1 and/or q2 ≫ 2). However, no bound on output (or states) can be specified a priori.
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(or high-gain adaptive) control. Class S2 necessitates an augmented funnel controller, but the
principle idea is similar (see Section 4.4).

Clearly, by adequate choice of the limiting function ψ(·), funnel control directly allows to ac-
count for motion control objectives (mco1), (mco3) and (mco4) in controller design. Hence
implementation effort is reduced. Iterations in controller tuning are not necessary. For illustra-
tion, let ψ(·) ∈ W1,∞(R≥0;R>0), consider the set-point tracking problem depicted in Fig. 4.1
and assume that ŷref > 0, p̃ ∈ (0, 1], p ∈ (0, 1), 0 ≤ trref,p̃ ≤ tsref,p = τλ and 0 < λ = p ŷref are
specified. If ψ(·) is designed such that the following hold

ψ(0) > |ŷref − y(0)|, ∀ t ≥ trref,p̃ : ψ(t) ≤ p̃ŷref and ∀ t ≥ τλ = tsref,p : ψ(t) ≤ λ = p ŷref ,

then the motion control objectives (mco1), (mco3) and (mco4) are clearly met (see grey-shaded
region in Fig. 4.1). Note that motion control objective (mco2) cannot be addressed in gen-
eral: suppose ∆os

ref > 0 and ŷref > 0 such that ∆os
ref ŷref < ψ(0)+ ŷref , then there might exist t ≥ 0

such that y(t) > ŷref∆
os
ref (see Fig. 4.1).

4.2 Brief historical overview

In 1991 a contribution by Miller and Davison [134] addressed the problem of prescribed transient
accuracy for disturbed minimum-phase LTI SISO systems with known high-frequency and arbi-
trary relative degree. Their proposed controller guarantees prescribed bounded overshoot and
tracking with prescribed accuracy after some prescribed time. However, it has a non-increasing
piecewise-constant gain adjusted by a switching strategy which yields a discontinuous control
action. Moreover, the prescribed error bound is piecewise constant and hence limited in shaping
the prescribed transient accuracy.

Funnel control is still a “young idea”. It was introduced in 2002 by Ilchmann, Ryan and Sangwin
for nonlinear functional differential equations with relative degree one and positive (general-
ized) high-frequency gain (see [99]). In [101] the concept was equipped with two extensions
in gain adjustment: (i) gain scaling (introduced as distance scaling) and (ii) “future distance”
evaluation taking into account that the future evolution of the prescribed funnel boundary is
a priori known. The extensions may help to improve the transient behavior of the closed-loop
system.

In [102] (2006) and in [103] (2007), funnel control was introduced for systems with known-but-
arbitrary relative degree: in [102] for nonlinearly perturbed minimum-phase LTI MIMO systems
and in [103] for nonlinear MIMO systems. However, the proposed controllers are complex due
to the use of a dynamic compensator (input filter) and a back-stepping procedure. Moreover,
already in the relative degree two case, the controller gain occurs with k(t)7 and hence the
controller is extremely sensitive to noise—an insuperable obstacle for real implementation (see
Section 4.4.3). In 2010 funnel control with derivative feedback for nonlinear systems with rel-
ative degree two was developed. The results have been submitted for publication to “SIAM
Journal of Control and Optimization” (see the joint work in [72]). In the same year bang-bang
funnel control was introduced for nonlinear SISO system with relative degree one and two
(see [121]). The bang-bang controller generates a discontinuous two-point like control action
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(switching between two values) and is not appropriate for motion control (due to switching, it
would entail an unnecessarily high power consumption and, in particular for systems with elas-
ticity, it would excite oscillations). In [104] funnel control was successfully applied to nonlinear
SISO systems with relative degree one and hysteresis in the control input.

Funnel control with input saturation was first addressed in 2004 for a class of exothermic reac-
tor models (see [98]). More general results for LTI MIMO systems (see [82]) and for nonlinear
SISO systems (see [83]) were published in 2010 for the relative degree one case. Results for the
relative degree two case (if derivative feedback is admissible) have been submitted for publica-
tion to “SIAM Journal of Control and Optimization” (see the joint work in [72]).

Funnel control is robust in terms of the gap metric (see [90] for LTI MIMO systems with relative
degree one and see [72] for LTI SISO systems with relative degree two). Loosely speaking (for
the SISO case), by defining a measure for the “gap” between a nominal system S0 element of
class S lin

1 (or S lin
2 ) and a system S not element of S lin

1 (or S lin
2 ), it can be shown that, if the initial

value of S and the gap are sufficiently small, then funnel control is still applicable for system S.

There exist some few applications. Funnel control works for set-point temperature control of
chemical reactor models (see [98]) and it was successfully implemented for speed and position
control of electrical drives (see [96] (2009) and [72] (2010) and [65] (2011)). First results for
position control of 1MS and 2MS have been accepted for publication in “International Journal
of Control” and will be discussed (with slight modifications and improvements) in Section 5.2.3.

4.3 Relative degree one systems

First funnel control for systems element of class S1 is introduced. The following results are
well known (see e.g. [99, 101]), nevertheless they will be discussed in detail to achieve a self-
contained presentation and a unified framework for systems of class S1. In literature the
operator T : C([−h,∞);R) → L∞

loc(R≥0;R
m) is “solely” allowed to map output y(·) to (Ty)(·).

In the present work an operator mapping T : C([−h,∞);Rn) → L∞(R≥0;R
m) from state x(·)

to (Tx)(·) is feasible, but it must be globally bounded.

4.3.1 Performance funnel

In this subsection, the admissible set of limiting functions ψ(·) is formalized and the notions
of “performance funnel” and “funnel boundary” are introduced. Clearly, the limiting function
ψ(·) should be continuous, class S1 precludes “jumps” in the output. Moreover, in view of
application in “real world”, the limiting function should have a bounded derivative. The output
derivative is constrained e.g. due to actuator saturation. So, for ψ(·) belonging to the set

B1 :=
{
ψ : R≥0 → R>0

∣∣ ∃ c > 0 : ψ(·) ∈ W1,∞(R≥0, [c,∞))
}
, (4.4)

introduce the performance funnel (see Fig. 4.3)

Fψ := { (t, e) ∈ R≥0 × R | |e| < ψ(t) } (4.5)
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e(·)

e(0) ψ(·) = ∂Fψ(·)

ψ(0)

−ψ(0)

e(t)

ψ(t)

−λ
t

funnel Fψ

Time t [s]

Figure 4.3: Illustration of performance funnel Fψ with boundary ψ(·), asymptotic accuracy λ and ex-
emplary error evolution e(·).

with funnel boundary
∀ t ≥ 0: ∂Fψ(t) = ψ(t). (4.6)

Any ψ(·) ∈ B1 is bounded and has an (essentially) bounded derivative. Hence, any ψ(·) ∈ B1

is (globally) Lipschitz continuous. Moreover, for any ψ(·) ∈ B1, the (prescribed) asymptotic
accuracy is given by

λ := lim inf
t→∞

ψ(t) > 0.

Note that B1 as in (4.4) also allows for increasing funnel boundaries ψ(·) and so the width of
the performance funnel Fψ does not necessarily decrease. In most applications a non-increasing
boundary ψ(·) and so a shrinking funnel Fψ is desirable. Nevertheless, a temporarily increasing
boundary might be reasonable, e.g. to avoid unacceptable large control actions due to (a priori
known) rapid changes in reference (or disturbance) or events like sensor calibration/reset.

Examples 4.1. Let TL, TE > 0 [s] and Λ ≥ λ > 0. Then admissible funnel boundaries are
given by

ψL : R≥0 → [λ, Λ], t 7→ ψL(t) := max
{
Λ− t/TL, λ

}
(4.7)

and

ψE : R≥0 → (λ, Λ], t 7→ ψE(t) := (Λ− λ) exp
(
− t/TE

)
+ λ. (4.8)

Both, ψL(·) and ψE(·), are non-increasing, have asymptotic accuracy λ > 0 and start at Λ =
ψL(0) = ‖ψL‖∞ = ψE(0) = ‖ψE‖∞. Their derivatives are bounded by ‖ψ̇L‖∞ = 1/TL and
‖ψ̇E‖∞ = (Λ− λ)/TE, respectively.

Remark 4.2 (Infinite funnels). In [99] (or [72]) also performance funnels with “infinite initial
width” (i.e. limt→0+ ψ(t) = ∞) are considered, which allows to show global results, in the sense
that the assumption on the initial error can be dropped: any initial error e(0) ∈ R will “start”
inside the “infinite performance funnel”. Such a generalization is mainly of theoretical interest.
In “real world” the initial error e(0) is (at least) roughly known and hence there always exists an
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adequate choice ψ(·) ∈ B1 such that |e(0)| < ψ(0) ≤ ‖ψ‖∞ < ∞. Furthermore, even for non-
zero initial errors (i.e. e(0) 6= 0), infinite boundaries yield zero initial control action (without
gain scaling), i.e. limt→0+ u(t) = 1/(ψ(t) − |e(0)|) = 0 and so a “delayed” closed-loop system
response.

4.3.2 Proportional controller with prescribed transient accuracy

Before presenting the main result for systems of class S1, an astonishing observation is discussed.
Tracking with prescribed transient accuracy is already established by simple proportional out-
put feedback of the following form

u(t) = sign(c⊤b) k e(t) where e(t) = yref(t)− y(t) and k > 0, (4.9)

if the constant controller gain k is fixed sufficiently large. Loosely speaking, the “output
dynamics” of the closed-loop system (1.36), (4.9) become faster and faster for larger and larger
values of k. Thus tracking of an arbitrary reference yref(·) ∈ W1,∞(R≥0;R) with prescribed
transient accuracy is feasible. This formulated more precisely gives the following proposition
(see [99]).

Proposition 4.3. Consider a system of class S1 given by (1.36). Then, for non-increasing
funnel boundary ψ(·) ∈ B1, reference yref(·) ∈ W1,∞(R≥0;R) and initial trajectory x0 ∈
C([−h, 0];Rn) satisfying

|yref(0)− c⊤x0(0)| < ψ(0), (4.10)

there exists a threshold gain k⋆ > 0 such that, for all k ≥ k⋆, the proportional controller (4.9)
applied to system (1.36) yields a closed-loop initial-value problem with the properties:

(i) there exists a solution x : [−h, T ) → R
n which can be maximally extended and T ∈ (0,∞];

(ii) the solution is global, i.e. T = ∞;

(iii) the state variable is bounded, i.e. x(·) ∈ L∞(R≥0;R
n);

(iv) and the tracking error evolves within the funnel, i.e. |e(t)| < ψ(t) for all t ≥ 0.

The proof is similar to that given in [99]. It is adjusted to fit for system class S1.

Proof of Proposition 4.3.

Step 1: It is shown that Assertion (i) holds true, i.e. existence of a maximally extended solution.
It suffices to consider the system (1.36) of class S1 in the Byrnes-Isidori like form (3.7). Extend
yref(·) to [−h, 0) such that yref(·) ∈ W1,∞([−h,∞);R) and |yref(t) − c⊤x0(t)| < ψ(|t|) for all
t ∈ [−h, 0]. This is possible since x0(·) and ψ(·) are continuous. Define the open set

D := R× R
n−1,

the function

f : [−h,∞)×D × R
m → R× R

n−1,

(t, (µ, ξ),w) 7→




a1(µ− yref(t)) + ẏref(t)− a⊤2 ξ − |γ0| k µ
−γ0 ud(t)− c⊤BT

(
w + d(t)

)

a3(yref(t)− µ) +A4ξ +NBT

(
w + d(t)

)




– 134 –



4.3 Relative degree one systems

and the operator

T̂ : C([−h,∞);Rn) → L∞
loc(R≥0;R

m), (T̂(µ, ξ))(t) := (T(S−1
(
yref − µ

ξ

)
))(t).

For x̂ := (µ, ξ⊤)⊤ rewrite the closed-loop initial-value problem (3.7), (4.9) as follows

d
dt
x̂(t) = f(t, x̂(t), (T̂x̂)(t)), x̂|[−h,0] =

(
yref |[−h,0] − c⊤x0

Nx0

)
. (4.11)

For any non-empty compact set C ⊂ D × R
m note that

∃MC > 0 ∀ ((µ, ξ),w) ∈ C : ‖((µ, ξ),w)‖ ≤MC (4.12)

and thus it is easy to see that, for ud(·) ∈ L∞([−h,∞); R), d(·) ∈ L∞([−h,∞); Rm) and
yref(·) ∈ W1,∞([−h,∞); R), the function f(·, ·, ·) is a Carathéodory function (see Defini-
tion 3.1), since (i) f(t, ·, ·) is continuous for each fixed t ∈ [−h,∞), (ii) for each fixed ((µ, ξ),w) ∈
D × R

m the function f(·, (µ, ξ),w) is measurable and (iii) for almost all t ∈ [−h,∞) and for
all ((µ, ξ),w) ∈ C the following holds

‖f(t, (µ, ξ),w)‖
(4.12)

≤ MC(|a1|+ ‖a2‖+ |γ0| k + ‖c‖ ‖BT‖+ ‖a3‖+ ‖A4‖+ ‖N‖ ‖BT‖)
+ (|a1|+ ‖a3‖)‖yref‖∞ + ‖ẏref‖∞ + |γ0| ‖ud‖∞
+ (‖c‖+ ‖N‖) ‖BT‖ ‖d‖∞ =: lC.

Now Theorem 3.2 ensures existence of a solution x̂ : [−h, T ) → R × R
n−1 of the initial-value

problem (4.11), with x̂([0, T )) ∈ D, T ∈ (0,∞]. Every solution can be extended to a maximal
solution.

In the following, let x̂ := (e, z) : [−h, T ) → R×R
n−1 be a fixed and maximally extended solu-

tion of the initial-value problem (4.11), where (e, z) : [−h, T ) → R×R
n−1 solves the closed-loop

initial-value problem (3.7), (4.9) for almost all t ∈ [0, T ). Hence Assertion (i) is shown.

Step 2: It is shown that |e(t)| < ψ(0) for all t ∈ [0, T ).
Since ψ(·) ∈ B1 and is non-increasing, it follows that

∀ t ≥ 0: 0 < λ := inf
t≥0

ψ(t) ≤ ψ(t) ≤ ψ(0) = ‖ψ‖∞.

Seeking a contradiction, assume there exists

t⋆ := min{ t ∈ [0, T ) | |e(t)| = ‖ψ‖∞ }. (4.13)

Then, by continuity of e(·) on [0, T ), there exists

t⋆ := max{ t ∈ [0, t⋆) | |e(t)| = λ/2 } (4.14)

and the following holds

∀ t ∈ [t⋆, t
⋆] : λ/2 ≤ |e(t)| ≤ ‖ψ‖∞ and ∀ t ∈ [0, t⋆] : |e(t)| ≤ ‖ψ‖∞. (4.15)
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Due to system property (S1-sp2) and Lemma 2.12, the matrix A4 is Hurwitz, hence there exists
P 4 = P

⊤
4 > 0 such that A⊤

4 P 4+P 4A4 = −In−1 is satisfied, i.e. (2.63). Now, for P 4 = P
⊤
4 > 0

as in (2.63), introduce the Lyapunov candidate

V : R
n−1 → R≥0, z 7→ V (z) := z⊤P 4z ≥ 0 (4.16)

and define

MV̇ := ‖P 4‖
(
‖a3‖ (‖ψ‖∞ + ‖yref‖∞) + ‖N‖ ‖BT‖ (MT + ‖d‖∞)

)
≥ 0. (4.17)

The time derivative d
dt
V (z(t)) along the solution of the closed-loop system (3.7), (4.9) is, for

almost all t ∈ [0, t⋆), given by

d
dt
V (z(t)) ≤ −‖z(t)‖2 + 2 ‖z(t)‖ ‖P 4‖

(
‖a4‖ (‖yref‖∞ + ‖ψ‖∞)

+ ‖N‖ ‖BT‖ (MT + ‖d‖∞)
)

(4.17)

≤ −1

2
‖z(t)‖2 + 2M2

V̇
≤ − 1

2 ‖P 4‖
V (z(t)) + 2M2

V̇
(4.18)

Hence, for MV̇ as in (4.17), the Belman-Gronwall Lemma (in its differential form (see e.g. [18,
Lemma 1.1, p. 2]) gives

∀t ∈ [0, t⋆) : V (z(t)) ≤ V (z(0)) exp

(
− t

2 ‖P 4‖

)
+

∫ t

0

2M2
V̇
exp

(
− t− s

2 ‖P 4‖

)
ds

≤ V (z(0)) + 4 ‖P 4‖ M2
V̇
≤ ‖P 4‖

(
‖z(0)‖2 + 4M2

V̇

)
,

and, moreover, the following holds

∀ t ∈ [0, t⋆) : ‖z(t)‖ ≤
√

‖P 4‖
∥∥P−1

4

∥∥
√

‖z(0)‖2 + 4M2
V̇
=:Mz. (4.19)

For δ > 0 and Mz as in (4.19) define

M := |a1|(‖ψ‖∞ + ‖yref‖∞) + ‖ẏref‖∞ + ‖a2‖Mz + |γ0|‖ud‖∞ + ‖c‖ ‖BT‖ (MT + ‖d‖∞)
(4.20)

and

k⋆ := 2(δ +M + ‖ψ̇‖∞)/(γ0 λ). (4.21)

In view of the first equation in (3.7) note that

for a.a. t ∈ [0, T ) : ė(t) = a1(e(t)− yref(t)) + ẏref(t)− a⊤
2 z(t)− γ0(u(t) + ud(t))

− c⊤BT

(
(T(S−1

(
yref − e

z

)
))(t) + d(t)

)
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which, with M as in (4.20), yields

for a.a. t ∈ [0, t⋆) : −M − γ0 u(t) ≤ ė(t) ≤M − γ0 u(t). (4.22)

Observe that (4.15) precludes a sign change on [t⋆, t
⋆]. Consider only the case e(·) > 0 on

[t⋆, t
⋆], the other case follows analogously. Then inserting (4.9) into (4.22) gives

for a.a. t ∈ [t⋆, t
⋆] : ė(t) ≤M − |γ0|ke(t)

(4.15)

≤ M − |γ0|k
λ

2

(4.21)

≤ −(δ + ‖ψ̇‖∞). (4.23)

Since e(t⋆) ≤ λ/2 < ψ(0), the contradiction follows by integration

∀ t ∈ (t⋆, t
⋆] : 0 ≤ e(t)− e(t⋆) =

∫ t

t⋆

ė(τ) dτ
(4.14)
= e(t)− λ/2

(4.23)

≤ −δ(t− t⋆) < 0.

Step 3: It is shown that Assertions (ii) and (iii) hold true, i.e. T = ∞ and x(·) ∈ L∞(R≥0;R).

From Step 2, it follows that |e(t)| < ‖ψ‖∞ for all t ∈ [0, T ) and hence ‖z(t)‖ ≤ Mz for all
t ∈ [0, T ) which, by maximality of T ∈ (0,∞], implies T = ∞. Hence Assertion (ii) is shown.
From yref(·) ∈ W1,∞(R≥0;R) and ‖ψ‖∞ > |e(t)| = |yref(t) − y(t)| for all t ≥ 0 it follows that
y(·) ∈ L∞(R≥0;R). Combining this with z(·) ∈ L∞(R≥0;R

n−1) yields x(·) = S−1(y(·), z(·))⊤ ∈
L∞(R≥0;R

n), which shows Assertion (iii) and completes Step 3.

Step 4: It is shown that Assertion (iv) holds true, i.e. |e(t)| < ψ(t) for all t ≥ 0
Claim there exists s ≥ 0 such that |e(s)| < λ/2. Seeking a contradiction, suppose otherwise.
Then ‖ψ‖∞ > |e(t)| ≥ λ/2 for all t ≥ 0 and either e(·) > 0 or e(·) < 0 on R≥0. Consider only
the case sign e(t) = 1 for all t ≥ 0, the other case follows analogously. Hence inequality (4.23)
holds for almost all t ≥ 0 and integration yields the contradiction

∀ t ≥ 0:

∫ t

0

ė(τ) dτ
(4.23)

≤ −δ t =⇒ e(t) ≤ e(0)− δ t,

whence there exists s ≥ 0 such that |e(s)| < λ/2. Now fix t̂ := min{ t ≥ 0 | |e(t)| ≤ λ/2 } and
claim that |e(t)| < λ for all t ≥ t̂. Seeking a contradiction, assume there exist s > t̂ such that
|e(s)| ≥ λ. Then, by continuity of e(·) on R≥0, there exists

s⋆ := min{ t ∈ [t̂, s) | |e(t)| = λ } and s⋆ := max{ t ∈ [t̂, s⋆) | |e(t)| = λ/2 }.

Clearly, λ/2 ≤ |e(t)| ≤ λ for all t ∈ [s⋆, s
⋆], which precludes a sign change of e(·) on [s⋆, s

⋆].
Again consider only the case e(·) > 0 on [s⋆, s

⋆], the other case follows analogously. Hence (4.23)
holds on [s⋆, s

⋆] and the contradiction follows

λ/2 < λ = e(s⋆)
(4.23)
< e(s⋆) = λ/2.

Furthermore, since ‖ψ‖∞ ≥ ψ(t) ≥ λ for all t ≥ t̂ it follows that |e(t)| < ψ(t) for all t ≥ t̂. The
remainder of Step 4 is to show that |e(t)| < ψ(t) for all t ∈ [0, t̂]. If t̂ = 0 then |e(0)| < ψ(0)
trivially holds. Suppose t̂ > 0, then ‖ψ‖∞ > |e(t)| ≥ λ/2 for all t ∈ [0, t̂] precluding a sign
change of e(·) on [0, t̂]. Again only consider the case sign e(·) = 1, the other case follows
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analogously. Note that (4.23) holds on [0, t̂] and, since ψ(·) ∈ W1,∞(R≥0; [λ,∞)), it follows
that ψ(t) ≥ ψ(0)− ‖ψ̇‖∞ t for all t ∈ [0, t̂], whence

∀ t ∈ [0, t̂] : e(t)− e(0) =

∫ t

0

ė(τ) dτ
(4.23)
< −‖ψ̇‖∞ t ≤ ψ(t)− ψ(0)

=⇒ 0 < ψ(0)− e(0) < ψ(t)− e(t).

This shows Assertion (iv) and completes the proof.

4.3.3 Funnel controller

Proposition 4.3 shows that for all k ≥ k⋆ with k⋆ as in (4.21) the state variable of the closed-
loop system (1.36), (4.9) remains bounded and furthermore, if |e(0)| < ψ(0), any admissible
reference yref(·) ∈ W1,∞(R≥0;R) may be tracked with prescribed transient accuracy specified by
the (non-increasing) funnel boundary ψ(·) ∈ B1. The threshold k⋆ in (4.21) obviously depends
on system data, disturbance, reference signal and funnel boundary and must be known a priori.

The following well known result (see e.g. [99, 101]) shows that for systems of class S1 tracking
with prescribed transient accuracy is feasible without a priori knowledge of k⋆. Solely the gain
must be adapted appropriately.

Theorem 4.4 (Funnel control for systems of class S1).
Consider a system of class S1 described by (1.36). Then, for arbitrary funnel boundary ψ(·) ∈
B1, gain scaling function ς(·) ∈ B1, reference yref(·) ∈ W1,∞(R≥0;R) and initial trajectory
x0(·) ∈ C([−h, 0];Rn) satisfying (4.10), the funnel controller

u(t) = sign(c⊤b)k(t)e(t) where e(t) = yref(t)− y(t) and k(t) =
ς(t)

ψ(t)− |e(t)| (4.24)

applied to (1.36) yields a closed-loop initial-value problem with the properties

(i) there exists a solution x : [−h, T ) → R
n which can be maximally extended and T ∈ (0,∞];

(ii) the solution x(·) does not have finite escape time, i.e. T = ∞;

(iii) the tracking error is uniformly bounded away from the funnel boundary, i.e.

∃ ε > 0 ∀ t ≥ 0 : ψ(t)− |e(t)| ≥ ε;

(iv) gain and control action are uniformly bounded, i.e. k(·), u(·) ∈ L∞(R≥0;R).

Remark 4.5. The performance funnel must not shrink to zero. More precisely, for any ψ(·) ∈
B1, there exists ε > 0 such that ∂Fψ(t) = ψ(t) ≥ ε for all t ≥ 0. Hence, funnel control
may not guarantee asymptotic stabilization (i.e. limt→∞ y(t) = 0 for yref(·) = 0) or asymptotic
tracking (i.e. limt→∞ e(t) = 0). However, in [99, Proposition 9] and [94, Theorem 2.3] it is
shown that asymptotic stabilization and asymptotic tracking is feasible for linear systems if the
funnel boundary ψ(·) possesses certain properties (e.g. limt→∞ ψ(t) = 0) and an internal model
is applied, respectively.
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Note the potential singularity in gain adaption (4.24): if there exists t⋆ < ∞ such that
limt→t⋆ ψ(t)−|e(t)| = 0, then the closed-loop system (1.36), (4.24) will exhibit finite escape time.
Fortunately, a precise analysis invoking Theorem 3.2 yields that the closed-loop initial-value
problem (1.36), (4.24) is well-posed and the solution exists globally.

Proof of Theorem 4.4.

Step 1: It is shown that Assertion (i) holds true, i.e. existence of a maximally extended solution.
It suffices to consider the system (1.36) in the form (3.7). Extend ς(·) and yref(·) to [−h, 0)
such that

ς(·) ∈ W1,∞([−h,∞);R>0) and yref(·) ∈ W1,∞([−h,∞);R), (4.25)

respectively, and furthermore, such that the following holds

∀ t ∈ [−h, 0] : |yref(t)− c⊤x0(t)| < ψ(|t|) (4.26)

which is possible since ψ(·) ∈ B1 and yref(·) are both continuous. For Fψ as in (4.5), define the
non-empty and open set

D :=
{
(τ, µ, ξ) ∈ R× R× R

n−1 | (|τ |, µ) ∈ Fψ

}
, (4.27)

the function

f : [−h,∞)×D × R
m → R× R× R

n−1,

(t, (τ, µ, ξ),w) 7→




1

a1 (µ− yref(t)) + ẏref(t)− |γ0| ς(t)µ
ψ(|τ |)−|µ| − γ0ud(t)

−a⊤2 ξ − c⊤BT (w + d(t))

a3 (yref(t)− µ) +A4ξ +NBT (w + d(t))




and the operator

T̂ : C([−h,∞);R× R
n) → L∞

loc(R≥0;R
m), (T̂(τ, µ, ξ))(t) := (T(S−1

(
yref − µ

ξ

)
))(t). (4.28)

Then, introducing the artifact τ : [−h,∞) → R, t 7→ t and the augmented state variable
x̂ := (τ, e, z) and writing τ 0 := τ |[−h,0], the initial-value problem (3.7), (4.24) may be expressed
in the form

d
dt
x̂(t) = f(t, x̂(t), (T̂x̂)(t)), x̂|[−h,0] =




τ 0

yref |[−h,0] − c⊤x0

Nx0


 . (4.29)

Choose a compact set C ⊂ D × R
m and note that

∃MC > 0 ∀ ((τ, µ, ξ),w) ∈ C : ‖((τ, µ, ξ),w)‖ ≤MC

∃mC > 0 ∀ ((τ, µ, ξ),w) ∈ C : min{ψ(|τ |)− µ} ≥ mC.
(4.30)

Then it is easy to see that, for ud(·), yref(·) ∈ L∞([−h,∞); R), d(·) ∈ L∞([−h,∞); Rn) and
ς(·) ∈ W1,∞ ([−h,∞),R>0), the function f(·, ·, ·) has following properties (i) f(t, ·, ·) is con-
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tinuous for each fixed t ∈ [−h,∞) , (ii) for each fixed ((τ, µ, ξ),w) ∈ D × R
m the function

f(·, (τ, µ, ξ),w) is measurable and (iii) for almost all t ∈ [−h,∞) and for all ((τ, µ, ξ),w) ∈ C:

‖f(t, (τ, µ, ξ),w)‖
(4.30)

≤ 1 + (|a1|+ ‖a3‖) ‖yref‖∞ + ‖ẏref‖∞ + |γ0| ‖ud‖∞
+MC (|a1|+ ‖a2‖+ (‖c‖+ ‖N‖) ‖BT‖+ ‖a3‖+ ‖A4‖)
+ (‖c‖+ ‖N‖) ‖BT‖ ‖d‖∞ + |γ0|mCMC‖ς‖∞ =: lC. (4.31)

Hence, f(·, ·, ·) is a Carathéodory function (see Definition 3.1) and Theorem 3.2 yields existence
of a solution x̂ : [−h, T ) → R × R

n of the initial-value problem (4.29) with x̂([0, T )) ∈ D,
T ∈ (0,∞]. Every solution can be extended to a maximal solution. Moreover, since f(·, ·, ·) is
locally essentially bounded, it follows from Theorem 3.2 that if T <∞ then for every compact
set C̃ ⊂ D, there exists t̃ ∈ [0, T ) such that x̂(t̃) /∈ C̃.

In the following, let x̂ := (τ, e, z) : [−h, T ) → R×R×R
n−1 be a fixed and maximally extended

solution of the initial-value problem (4.29), where (e, z) : [−h, T ) → R×R
n−1 solves the closed-

loop initial-value problem (3.7), (4.24) for almost all t ∈ [0, T ).

Step 2: It is shown that z(·) is bounded on [0, T ) and an essential inequality holds true.
In view of Step 1, e(·) is continuous on [0, T ) and evolves within the funnel Fψ, hence by
properties of B1, it follows that

∀ t ∈ [0, T ) : |e(t)| < ψ(t) ≤ ‖ψ‖∞. (4.32)

Now similar arguments as in Step 2 of the proof of Proposition 4.3 with [0, t⋆) replaced by [0, T )
yield, for Mz as in (4.19),

∀ t ∈ [0, T ) : ‖z(t)‖ ≤Mz. (4.33)

Moreover note that identical arguments as in Step 2 of the proof of Proposition 4.3 yield, for
M as in (4.20),

for a.a. t ∈ [0, T ) : −M − γ0u(t) ≤ ė(t) ≤M − γ0u(t). (4.34)

This completes Step 2. For the following define

ς := inf
t≥0

ς(t) and λ := inf
t≥0

ψ(t). (4.35)

Step 3: For M as in (4.20) and ς, λ as in (4.35), it is shown that there exists a positive

ε ≤ min

{
λ

2
, ψ(0)− |e(0)|, |γ0|ς λ

2(M + ‖ψ̇‖∞)

}
(4.36)

such that ψ(t)− |e(t)| ≥ ε for all t ∈ [0, T ).

Seeking a contradiction, assume there exists

t1 := min{ t ∈ [0, T ) | ψ(t)− |e(t)| < ε }. (4.37)
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Then, by continuity of ψ(·)− |e(·)| on [0, T ), there exists

t0 := max{ t ∈ [0, t1) | ψ(t)− |e(t)| = ε }. (4.38)

Furthermore, for ε > 0 as in (4.36) and λ as in (4.35), the following holds

∀ t ∈ [t0, t1] : |e(t)| ≥ ψ(t)− ε
(4.36)

≥ λ− λ/2 = λ/2 (4.39)

and hence sign e(·) is constant on [t0, t1] ⊂ [0, T ). Consider only the case e(·) on [t0, t1], the
other case follows analogously. Then inserting (4.24) into (4.34) yields

for a.a. t ∈ [t0, t1] : ė(t) ≤M − |γ0|
ς(t)

ψ(t)− |e(t)|e(t)
(4.39)

≤ M − |γ0|
ς

ε

λ

2

(4.36)

≤ −‖ψ̇‖∞.

Integration and recalling ‘ψ(t) ≥ ψ(t0)− ‖ψ̇‖∞(t− t0) for all t ∈ [t0, t1]’ (see properties of B1)
gives

∀ t ∈ [t0, t1] : e(t)− e(t0) =

∫ t

t0

ė(τ) dτ ≤ −‖ψ̇‖∞(t− t0) ≤ ψ(t)− ψ(t0)

with which the contradiction follows

ε = ψ(t0)− e(t0) ≤ ψ(t1)− e(t1) < ε.

This completes Step 3.

Step 4: It is shown that Assertions (ii), (iii) and (iv) hold true.
At first Assertion (ii) will be shown. For ε as in (4.36) and Mz as in (4.19) define the compact
set

C̃ :=
{
(t, e, z) ∈ [0, T ]× R× R

n−1
∣∣ |e| ≤ ψ(t)− ε ∧ ‖z‖ ≤Mz

}
(4.40)

and let D be as in Step 1. If T < ∞ then C̃ ⊂ D is a compact subset of D which contains
the whole graph of the solution t 7→ (e(t), z(t)), which contradicts maximality of the solution.
Hence T = ∞ and Assertion (ii) is shown. Now, Assertion (iii) follows from Step 3 with ε > 0 as
in (4.36). Furthermore, Step 4 ensures that k(·) is uniformly bounded on R≥0 and from (4.32)
it follows that u(·) = k(·)e(·) is uniformly bounded on R≥0. This shows Assertion (iv) and
completes the proof.

4.3.3.1 Minimal future distance

As already noted, gain adaption in (4.24) is inversely proportional to the actual or “vertical”
distance ψ(t) − |e(t)|. Since ψ(·) is known a priori (it is chosen by the control designer), the
(minimal) future distance

dF : R≥0 × R → R>0, (t, e) 7→ dF (t, e) := min
tF≥0

√(
ψ(tF )− |e|

)2
+
(
tF − t

)2
(4.41)
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may be evaluated. Note that dF (t, e(t)) ≤ ψ(t) − |e(t)| and tF ∈ [t, t + ψ(t) − |e(t)|) for all
t ≥ 0. In [101] it is shown that

k(t) =
ς(t)

dF (t, e(t))
where e(t) = yref(t)− y(t) (4.42)

is also feasible. The gain adaption in (4.42) might be advantageous, since the future prescribed
transient accuracy ψ(tF ) for tF ≥ t is already considered at actual time t ≥ 0. Concerning
implementation, a computational effective numerical approximation of (4.41) must be found.
This issue is out of the scope of this thesis. In [101] or [68, 69] several numerical algorithms to
approximate the future distance (4.41) are proposed. A comparison can be found in [167, p. 731-
741]. For the remainder of this thesis, minimal future distance evaluation is not considered.

4.3.3.2 Gain scaling

The gain adaption in (4.24) is similar to (4.3) but, in addition, allows for gain scaling. Gain
scaling was introduced in [101] as distance scaling and is helpful for implementation: it increases
the degrees of freedom for controller tuning. For example, adequate gain scaling permits (in-
dependently of boundary design):

(i) to specify a minimal gain permanently, i.e.

∀ (t, e) ∈ Fψ : k(t) =
ς(t)

ψ(t)− |e| ≥
inft≥0 ς(t)

‖ψ‖∞
> 0; (4.43)

(ii) to fix an (arbitrary) initial control action, i.e.

|u(0)| = ς(0)

ψ(0)− |e(0)| |e(0)|,

e.g. to accelerate (or decelerate) the closed-loop system response at startup.

Simulation results are presented in Section 4.3.3.4. More illustrative examples are discussed in
e.g. [68, 69, 99] or [167, Sections 17.2-17.4]. In Section 5.2.2 the funnel controller (4.24) will be
applied for speed control of 1MS and 2MS.

4.3.3.3 Asymmetric funnel

For the set-point tracking problem (see Fig. 4.1) with step magnitude ŷref > 0 and maximum
overshoot ∆os

ref ≥ 0, it was already noted that, in general, motion control objective (co2) cannot
be included in boundary design. In particular, since ψ(0) > |e(0)| must hold, a too large initial
error |e(0)| > ŷref∆

os
ref precludes appropriate boundary design assuring y(·) ≤ ŷref∆

os
ref . There

might exist t ≥ 0 such that y(t) > ŷref∆
os
ref . If an asymmetric funnel is admitted and ∆os

ref > 0,
then funnel control can assure motion control objective (co2) independently of the initial error.
For the design of an asymmetric funnel, two (differing) limiting function must be introduced
(see Fig. 4.4). Denote “upper” and “lower” limiting function by ψ+(·) and ψ−(·), respectively,
and assume that ψ+(·), −ψ−(·) ∈ B1, then the asymmetric performance funnel is defined by

F(ψ+,ψ−) :=
{
(t, e) ∈ R≥0 × R | ψ−(t) < e < ψ+(t)

}
. (4.44)
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Figure 4.4: Illustration of asymmetric performance funnel F(ψ+,ψ−) with “upper” and “lower” limiting
functions ψ+(·) and ψ−(·) and exemplary error evolution e(·).

Moreover, by introducing the function

uAS : F(ψ+,ψ−) → R, (t, e) 7→ uAS(t, e) :=





e

ψ+(t)− e
, e ≥ 0

e

e− ψ−(t)
, e < 0

(4.45)

an asymmetric funnel controller for system class S1 can be proposed.

Theorem 4.6. Consider a system of class S1 described by (1.36). Then, for arbitrary limiting
functions ψ+(·), −ψ−(·) ∈ B1, gain scaling function ς(·) ∈ B1, reference yref(·) ∈ W1,∞(R≥0;R)
and initial trajectory x0(·) ∈ C([−h, 0];Rn) satisfying

ψ−(0) < yref(0)− c⊤x0(0) < ψ+(0), (4.46)

the “asymmetric” funnel controller

u(t) = sign(c⊤b)ς(t) uAS
(
t, e(t)

)
with e(t) = yref(t)− y(t) and uAS(·, ·) as in (4.45), (4.47)

applied to (1.36) yields a closed-loop initial-value problem with the properties (i), (ii) and (iv) of
Theorem 4.4 and (iii) the tracking error is uniformly bounded away from the limiting functions,
i.e.

∃ ε > 0 ∀ t ≥ 0 : ψ−(t) + ε < e(t) < ψ+(t)− ε.

Clearly, for adequate funnel design, Theorem 4.6 assures control objectives (co1)-(co3) and hence
motion control objectives (mco1), (mco3) and (mco4) may be accomplished. Moreover, for given
maximum overshoot ∆os

ref > 0 and positive (or negative) reference step (1.2) with ŷref > 0 (or
ŷref < 0), the choice ψ−(t) ≥ −ŷref∆os

ref (or ψ+(t) ≤ −ŷref∆os
ref) guarantees that motion control

objective (mco2) is met, i.e. ∆os
y(·) ≤ ∆os

ref . Simulations are performed in Section 4.3.3.4. In [70]
an asymmetric funnel in combination with gain scaling is introduced for speed control of a
flexible servos-system to avoid overshoots in the closed-loop system response.

Proof of Theorem 4.6.
The proof is similar to the proof of Theorem 4.4, only the essential changes are presented. It
suffices to consider system (1.36) in the form (3.7).
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Step 1: It is shown that Assertion (i) holds true, i.e. existence of a maximally extended solution.
Extend ς(·) and yref(·) to [−h, 0) such that (4.25) and

∀ t ∈ [−h, 0] : ψ−(|t|) < yref(t)− c⊤x0(t) < ψ+(|t|)

hold. This is feasible since ψ+(·), −ψ−(·) ∈ B1 and yref(·) are continuous, respectively. For
F(ψ+,ψ−) as in (4.44), define the non-empty and open set

D :=
{
(τ, µ, ξ) ∈ R× R× R

n−1
∣∣ (|τ |, µ) ∈ F(ψ+,ψ−)

}

and the function

f : [−h,∞)×D × R
m → R× R× R

n−1,

(t, (τ, µ, ξ),w) 7→




1

a1 (µ− yref(t)) + ẏref(t)− |γ0|ς(t)uAS(|τ |, µ)− γ0ud(t)
−a⊤2 ξ − c⊤BT (w + d(t))

a3 (yref(t)− µ) +A4ξ +NBT (w + d(t))


.

Now, for T̂ as in (4.28) and by introducing τ : [−h,∞) → R, t 7→ t, x̂ := (τ, (e, z) and
τ 0 := τ |[−h,0], the initial-value problem (3.7), (4.47) may be written in the form (4.29). Note that
uAS(t, 0) = 0 for all t ≥ 0 and so uAS(·, ·) is locally Lipschitz continuous on F(ψ+,ψ−). Moreover,
since −ψ−(·) ∈ B1 it follows that ψ−(t) < 0 for all t ≥ 0 and so, for every compact C ⊂ D×R

m,
there existsMC,mC > 0 such that ‖((τ, µ, ξ),w)‖ ≤MC and min{ψ+(|τ |)−µ, µ−ψ−(|τ |)} ≥ mC

for all ((τ, µ, ξ),w) ∈ C, respectively. Now identical arguments as in Step 1 of Theorem 4.4
show that (4.31) holds and that f(·, ·, ·) is a Carathéodory function. Hence there exists a
maximally extended solution x̂ : [−h, T ) → R × R

n of the initial-value problem (4.29) with
x̂([0, T )) ∈ D, T ∈ (0,∞], where (e, z) : [−h, T ) → R×R

n−1 solves the closed-loop initial-value
problem (3.7), (4.47) for almost all t ∈ [0, T ).

Step 2: It is shown that z(·) is bounded on [0, T ) and an essential inequality holds true.
Define

ς := inf
t≥0

ς(t) and λ := min

{
inf
t≥0

ψ+(t), inf
t≥0

−ψ−(t)

}
(4.48)

and (by abuse of notation)

‖ψ‖∞ := max{‖ψ−‖∞, ‖ψ+‖∞} and ‖ψ̇‖∞ := max{‖ψ̇−‖∞, ‖ψ̇+‖∞}. (4.49)

In view of Step 1, e(·) is continuous on [0, T ) and the following holds

∀ t ∈ [0, T ) : ‖ψ−‖∞ ≤ ψ−(t) < e(t) < ψ+(t) ≤ ‖ψ+‖∞, (4.50)

hence, for ‖ψ‖∞ as in (4.49), Mz as in (4.19) and M as in (4.20), the inequalities (4.33)
and (4.34) hold true, respectively. This completes Step 2.
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Step 3: For M as in (4.20), ς, λ as in (4.48) and ‖ψ̇‖∞ as in (4.49), it is shown that there
exists a positive

ε ≤ min

{
λ

2
, ψ+(0)− e(0), e(0)− ψ−(0),

|γ0|ς λ
2(M + ‖ψ̇‖∞)

}
(4.51)

such that ψ−(t) + ε ≤ e(t) ≤ ψ+(t)− ε for all t ∈ [0, T ).

Seeking a contradiction, assume there exists

t+1 := min{ t ∈ [0, T ) | ψ+(t)− e(t) < ε } or t−1 := min{ t ∈ [0, T ) | e(t)− ψ−(t) < ε }.

Then a case-by-case analysis and invoking similar arguments as in Step 3 of the proof of The-
orem 4.4 prove the claim of Step 3. The details are omitted.

Step 4: It is shown that Assertions (ii), (iii) and (iv) hold true.
For ε as in (4.51) and Mz as in (4.19), replace C̃ in (4.40) by

C̃ :=
{
(t, e, z) ∈ [0, T ]× R× R

n−1
∣∣ ψ−(t) + ε ≤ e ≤ ψ+(t)− ε ∧ ‖z‖ ≤Mz

}
,

then identical arguments as in Step 4 of the proof of Theorem 4.4 show that the claim of Step 4
holds true. This completes the proof.

4.3.3.4 Simulations

In this section, the funnel controller (4.24) with and without scaling (i.e. ς(·) = 1) and the
asymmetric funnel controller (4.47) are applied to the following third order system

F (s) =
(1 + 0.5 s) (1 + 0.1 s)

s3 + 1
. (4.52)

The system has relative degree r = 1 and positive high-frequency gain γ0 = lims→∞ s F (s) =
0.05. It is minimum-phase with transmission zeros z1 = −10 [1/s] and z2 = −2 [1/s]. Hence
the system is element of class S lin

1 ⊂ S1 and application of the funnel controllers is admissible.

Control task is the set-point tracking of yref(·) = ŷref = 1 on [0, 5] [s]. The control objec-
tive is formulated in terms of maximum rise time trref,0.8 = 1.0 [s] and maximum settling time
tsref,0.1 = 2.0 [s]. In addition, the asymmetric funnel controller (4.47) must guarantee a maxi-
mum overshoot ∆os

ref = 0.1.

The “symmetric” funnel controllers (4.24) with and without scaling are equipped with boundary
ψ(·) = ψE(·) as in (4.8), respectively. For the asymmetric funnel controller (4.47), upper and
lower limiting function are chosen as follows

∀ t ≥ 0: ψ+(t) = ψE(t) and ψ−(t) = −min{ψE(t), ŷref∆os
ref}.

Gain scaling is given by ς(·) = 10ψ(·) = 10ψ+(·). Exponential boundary ψE(·) as in (4.8) is
parametrized by Λ = 2, λ = 0.05 and TE = 0.39 [s].
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Figure 4.5: Simulation results for closed-loop systems (4.52), (4.24) without scaling (i.e. ς(·) = 1),
(4.52), (4.24) with scaling ς(·) = 10ψ(·) and (4.52), (4.47) with scaling ς(·) =

10ψ+(·).

The control-loops are implemented in Matlab/Simulink using solver ode4 (Runge-Kutta) with
(fixed) step size 10−5 [s]. Simulation results for the closed-loop systems (4.52), (4.24) with-
out scaling (i.e. ς(·) = 1), (4.52), (4.24) with scaling ς(·) = 10ψ(·) and (4.52), (4.47)
with scaling ς(·) = 10ψ+(·) are depicted in Fig. 4.5.

All closed-loop systems accomplish try(·),0.8 ≤ trref,0.8 and tsy(·),0.1 ≤ tsref,0.1 (see Fig. 4.5(a)) and
each control error e(·) evolves within its prescribed performance funnel (see Fig. 4.5(b)). Due
to the asymmetric funnel design, controller (4.47) assures the specified maximum overshoot,
whereas the other controllers with and without scaling, by far, exceed the limit (see Fig. 4.5(a),
(b)). All three controllers generate a comparable magnitude in control action (see Fig. 4.5(c)),
nevertheless, due to the choice of ψ−(·), the asymmetric controller (4.47) exhibits a huge peak in
the control gain (see Fig. 4.5(d)). Due to gain scaling, the controllers (4.24) and (4.47)
generate a larger initial control action than the “unscaled” controller (4.24) (see Fig. 4.5(c)).
Gain scaling accelerates their closed-loop system response and yields a smaller rise time.
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4.3.4 Funnel controller with saturation

In “real world” the actuator limits the available control action. Although Theorem 4.4 ensures
a bounded control action, the funnel controller (4.24) might generate control actions by far
exceeding the available range. The following theorem gives a sufficient condition for funnel
control to work even under actuator saturation. In addition, bounded control input disturbances
uF : R≥0 → R are considered to account e.g. for actuator deviations or feedforward control. The
following theorem is similar to the results published in [82, 83]. It is tailored for system class S1.

Theorem 4.7 (Funnel control with saturation for systems of class S1).
Consider a system of class S1 described by (1.36). Then, for arbitrary input disturbance
uF (·) ∈ L∞(R≥0;R), funnel boundary ψ(·) ∈ B1, scaling function ς(·) ∈ B1, reference yref(·) ∈
W1,∞(R≥0;R), initial trajectory x0(·) ∈ C([−h, 0];Rn) satisfying (4.10) there exists a feasibility
number ufeas > 0 such that, for all û ≥ ufeas, the saturated funnel controller

u(t) = sign(c⊤b) satû

(
k(t) e(t) + uF (t)

)
where

k(t) =
ς(t)

ψ(t)− |e(t)| and e(t) = yref(t)− y(t)





(4.53)

applied to (1.36) yields a closed-loop initial-value problem with the properties (i)-(iii) as in
Theorem 4.4,

(iv) the gain is uniformly bounded, i.e. k(·) ∈ L∞(R≥0;R>0);

(v) the control action u(·) is unsaturated at some time, i.e.

∃ tus ≥ 0: |u(tus)| < û

(vi) and, if ς(·) is non-increasing, then it remains unsaturated thereafter, i.e.

∃ tus ≥ 0 ∀t ≥ tus : |u(t)| < û.

A direct consequence of Assertion (vi) of Theorem 4.7 is that the following implication holds

r
∀ t ≥ 0: |u(t)| < û

z
⇐⇒

r
|e(0)| < ψ(0)

ς(0)

û

1 + û

z
.

Hence, if the control action is initially not saturated, it will never become saturated. The
feasibility number ufeas depends on system data, reference, disturbances, funnel design and
scaling function; more precisely, for M as in (4.20) and some δ > 0 (arbitrarily small), it is
given by

ufeas :=
(
M + δ + ‖ψ̇‖∞

)
/|γ0| > 0. (4.54)

Clearly, to verify û ≥ ufeas, rough system knowledge is required which foils the striking advan-
tage of high-gain adaptive control. Nevertheless, Theorem 4.7 underpins applicability of funnel
control for plants with saturated actuators. Moreover, at least for low order systems, evaluation
of (4.54) is feasible even though the computed value might be conservative (see Section 5.2.2).
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Proof of Theorem 4.7.

Step 1: It is shown that Assertion (i) holds true, i.e. existence of a maximally extended solution.
It suffices to consider the system (1.36) in the form (3.7). Extend uF (·), ς(·) and yref(·) to [−h, 0)
such that

uF (·) ∈ W1,∞([−h,∞);R), ς(·) ∈ W1,∞([−h,∞);R>0) and yref(·) ∈ W1,∞([−h,∞);R),

respectively, and furthermore, such that (4.26) holds. Clearly, this is possible since ψ(·) ∈ B1

and yref(·) are continuous. Let D and T̂ be defined as in (4.27) and (4.28), respectively.
Introduce the function

f : [−h,∞)×D × R
m → R× R× R

n−1,

(t, (τ, µ, ξ),w) 7→




1

a1 (µ− yref(t)) + ẏref(t)− |γ0| satû
(

ς(t)µ
ψ(|τ |)−|µ| + uF (t)

)
− γ0ud(t)

−a⊤3 ξ − c⊤BT (w + d(t))

a3 (yref(t)− µ) +A4ξ +NBT (w + d(t))



.

Then, for τ : [−h,∞) → R, t 7→ t and x̂ := (τ, (e, ė), z) and writing τ 0 := τ |[−h,0], the initial-
value problem (3.7), (4.53) may be expressed in the form (4.29). Note that, for MC as in (4.30),
ud(·), yref(·) ∈ L∞([−h,∞); R), d(·) ∈ L∞([−h,∞); Rn) and ς(·) ∈ W1,∞ ([−h,∞),R>0), the
function f(·, ·, ·) is a Carathéodory function (see Definition 3.1), since (i) f(t, ·, ·) is contin-
uous for each fixed t ∈ [−h,∞) , (ii) for each fixed ((τ, µ, ξ),w) ∈ D × R

m the function
f(·, (τ, µ, ξ),w) is measurable and (iii) for almost all t ∈ [−h,∞) and for all ((τ, µ, ξ),w) ∈ C:

‖f(t, (τ, µ, ξ),w)‖
(4.30)

≤ 1 + (|a1|+ ‖a3‖) ‖yref‖∞ + ‖ẏref‖∞ + |γ0| ‖ud‖∞
+MC (|a1|+ ‖a2‖+ (‖c‖+ ‖N‖) ‖BT‖+ ‖a3‖+ ‖A4‖)
+ (‖c‖+ ‖N‖) ‖BT‖ ‖d‖∞ + |γ0|û =: lC.

Hence, in view of Theorem 3.2 there exists a solution x̂ : [−h, T ) → R×R
n of the initial-value

problem (4.29) with x̂([0, T )) ∈ D, T ∈ (0,∞]. Every solution can be extended to a maximal
solution. Moreover, since f(·, ·, ·) is locally essentially bounded, it follows from Theorem 3.2
that if T <∞ then for every compact set C̃ ⊂ D, there exists t̃ ∈ [0, T ) such that x̂(t̃) /∈ C̃.

For the remainder of the proof, let x̂ := (τ, e, z) : [−h, T ) → R × R × R
n−1 be a fixed and

maximally extended solution of the initial-value problem (4.29) and observe that this implies
that (e, z) : [−h, T ) → R × R

n−1 solves the closed-loop initial-value problem (3.7), (4.24) for
almost all t ∈ [0, T ).

Step 2: Some technical preliminaries are introduced.
From Step 1 it follows that e(·) is continuous on [0, T ) and evolves within the funnel Fψ, hence
e(·) is bounded on [0, T ), i.e. (4.32) holds. Similar arguments as in Step 2 of the proof of
Theorem 4.4 yield boundedness of z(·) on [0, T ), i.e. (4.33) holds, and, moreover, show that
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inequality (4.34) also holds. Inserting (4.53) into (4.34) gives for M as in (4.20)

for a.a. t ∈ [0, T ) : −M −|γ0| satû
(
k(t)e(t)+uF (t)

)
≤ ė(t) ≤M −|γ0| satû

(
k(t)e(t)+uF (t)

)
.

(4.55)
Since ψ(·), ς(·) ∈ B1 the infima ς > 0 and λ > 0 as in (4.35) exist.

Step 3: It is shown that there exists a positive

ε ≤ min
{
λ/2, ψ(0)− |e(0)|, ς λ/

(
2(û+ ‖uF‖∞)

)}
(4.56)

where M as in (4.20) and ς, λ as in (4.35) such that ψ(t)− |e(t)| ≥ ε for all t ∈ [0, T ).

Seeking a contradiction, assume there exists t1 ≥ 0 as in (4.37). Clearly, by continuity of
ψ(·)−|e(·)| on [0, T ) there exists t0 < t1 as in (4.38) and, in view of (4.39), sign e(·) is constant
on [t0, t1] ⊂ [0, T ). Consider only the case e(·) > 0 on [t0, t1], the other case follows analogously.
Then in view of (4.55), (4.39) and since û ≥ ufeas by assumption the following holds

for a.a. t ∈ [t0, t1] : ė(t) ≤M − |γ0| satû
(ς λ
2 ε

− ‖uF‖∞
) (4.56)

≤ M − |γ0|û
(4.54)

≤ −‖ψ̇‖∞ − δ.

(4.57)

Now identical arguments as in Step 3 of the proof of Theorem 4.4 yield the contradiction which
completes Step 3.

Step 4: It is shown that Assertions (ii), (iii) and (iv) hold true.
For ε as in (4.56), identical arguments as in Step 4 of the proof of Theorem 4.4 show Assertion
(ii)-(iv), respectively.

Step 5: It is shown that Assertions (v) and (vi) hold true.
Seeking a contradiction, assume that |u(t)| ≥ û for all t ≥ 0. Note that this precludes a sign
change of e(·) on R≥0. Consider only the case e(t) > 0 for all t ≥ 0, the other case follows
analogously. Then (4.57) clearly holds on R≥0. Since δ > 0 in (4.54) integration yields the
contradiction

∀ t ≥ 0: 0 < e(t) = e(0) +

∫ t

0

ė(τ)
(4.57)

≤ e(0)− δ t,

hence there exists tus ≥ 0 such that |u(tus)| < û which shows Assertion (v). Now suppose
there exists t̂1 > tus such that |u(t̂1)| = û and, for δ > 0 as in (4.54), choose δ̂ ∈ (0, δ/2]. By
continuity of u(·) on R≥0, there exists

t̂0 := max{ t ∈ [tus, t̂1) | |u(t)| = û− δ̂/|γ0| }.

In view of û ≥ ufeas > 0 the choice of δ̂ precludes a sign change of e(·) on [t̂0, t̂1]. Again consider
only the case sign e(t) = 1 for all t ∈ [t̂0, t̂1], the other case follows analogously. Then, (4.57)
holds with δ replaced by δ/2 which implies |e(t)| < |e(t̂0)| for all t ∈ [t̂0, t̂1]. Moreover, since
ς(·) is non-increasing it follows that ς(t) ≤ ς(t̂0) for all t ∈ [t̂0, t̂1]. Integration and recalling
‘ψ(t) ≥ ψ(t0)− ‖ψ̇‖∞(t− t̂0) for all t ∈ [t̂0, t̂1]’ (see properties of B1) yields

∀ t ∈ [t̂0, t̂1] : e(t)− e(t̂0) ≤ (−‖ψ̇‖∞ − δ/2)(t− t̂0) < ψ(t)− ψ(t̂0)
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whence the contradiction

û = u(t̂1) =
ς(t̂1)|e(t̂1)|

ψ(t̂1)− |e(t̂1)|
<

ς(t̂0)|e(t̂0)|
ψ(t̂0)− |e(t̂0)|

= u(t̂0) = û− δ̂ < û.

This completes the proof.

Remark 4.8 (Relaxation of system property (S1-sp3) of class S1).
Let h ≥ 0, T̂ : C([−h,∞);R) → L∞

loc([−h,∞);Rm), T : C([−h,∞);Rn) → L∞
loc([−h,∞);Rm)

and T̂,T ∈ T (see Definition 1.5) and consider a system (1.36) of class S1. If the opera-
tor in (1.36) “only” maps the output, i.e. Tx = T̂y in (1.36), and funnel controller (4.24)
(or (4.53)) is applied to the system, then system property (S1-sp3) in Definition 1.6 may be
relaxed as follows: in view of (4.32) in the proof of Theorem 4.4, it follows that

∀ t ∈ [0, T ) : |y(t)| ≤ ψ(t) + ‖yref‖∞,

which due to property (op2) of operator class T implies that there exists ∆ > 0 such that
‖(T̂y)(t)‖ ≤ ∆ for all t ∈ [0, T ). Replace MT by ∆ in (4.20). Then it is easy to see that the
proof of Theorem 4.4 (or Theorem 4.7) goes through without global boundedness of the operator.
Hence presupposition MT < ∞ in (S1-sp3) of Definition 1.6 can be dropped: the nonlinear
perturbation T̂y may grow without bound.

4.4 Relative degree two systems

In this section, funnel control with derivative feedback for systems of class S2 is developed.
At first, a result without derivative feedback is revisited which was introduced in [103] and
which achieves tracking with prescribed transient accuracy for systems with arbitrary-but-
known relative degree. Due to its complexity and noise sensitivity, this approach seems not
reasonable for implementation. In Section 4.4.2, funnel control with derivative feedback is
discussed. On the basis of the “original” funnel controller with derivative feedback (introduced
in the joint work [72]), a slightly extended and altered controller is proposed. The “modified”
funnel controller is easy to tune and simple in structure and allows for a well-damped closed-loop
system response. The proposed controller also works under constrained inputs if a feasibility
condition is satisfied. In Section 4.4.3, comparative simulations are presented.

4.4.1 Funnel controller with backstepping

In [103] Ilchmann, Ryan and Townsend present funnel control for nonlinear MIMO systems
modeled by a functional differential equation with arbitrary-but-known relative degree r ≥ 1
and possibly unknown but sign definite high-frequency gain. The considered system class com-
prises finite and infinite dimensional linear systems, nonlinear delay systems and systems with
hysteresis. The paper extends and generalizes the results in [102] (there for nonlinearly per-
turbed LTI MIMO systems).

The proposed controller incorporates a time-varying gain adaption (similar to (4.3)), a Nuss-
baum-like switching function (online detection of the correct sign of the control action) and
a (r − 1)-th order dynamic compensator (input filter). The system in conjunction with the
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filter behaves like a system with (strict) relative degree one. Filter and controller construction
emerge from a backstepping procedure, motivated by the intuition of reducing the relative
degree to one and then exploiting the intrinsic high-gain property of minimum-phase systems
with relative degree one (similar to Ye’s approach, see Section 3.5.1). Due to backstepping the
controller is recursively defined and yields a complex structure (already for the relative degree
two case, see below). It will be illustrated in Section 4.4.3 that this controller is not reasonable
for implementation and so the result is not transferred to system class S2. It is presented for
the same system class as introduced in [103]. Ilchmann et al. consider systems of the form (only
the SISO case is presented)

ẋ(t) = Ax(t) + f (p(t), (Ty)(t),x(t)) + b u(t),
y(t) = c⊤x(t), x|[−h,0] = x0(·) ∈ C([−h, 0];Rr)

}
(4.58)

where h ≥ 0, l,m ∈ N, p : R≥0 → R
l, f : Rl × R

m × R
r → R

r, T : C([−h,∞);Rr) →
L∞

loc(R≥0;R
m) and

A =




0 1 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . . 1 0
0 · · · · · · 0 1
a1 · · · · · · ar−1 ar



∈ R

r×r, b =




0
...
0
0
γ0


 ∈ R

r and c =




1
0
0
...
0


 ∈ R

r (4.59)

and impose the following assumptions on system (4.58): (A1) the unperturbed system (i.e. f(·) =
0r) has a non-zero high-frequency gain, i.e. γ0 6= 0 and known relative degree r ≥ 1, (A2) the
exogenous disturbance is bounded, i.e. p(·) ∈ L∞(R≥0;R

l), (A3) the operator T is element of
class T and (A4) the function f : Rl × R

m × R
r → R

r is continuous, and for all nonempty
compact sets P ⊂ R

l, W ⊂ R
m and Y ⊂ R, there exists c0 = c0(P,W, Y ) > 0 such that

‖f(p,w,x)‖ ≤ c0 for all (p,w,x) ∈ P ×W × {x ∈ R
r | c⊤x ∈ Y }.

Note that the nonlinear perturbation f(·, ·, ·) (and its dependence on x in particular) may entail
that the relative degree of (4.58) is not defined at some point x∗ ∈ R

r (in terms of [107, p. 138]).
However, in the unperturbed case, system (4.58) is a LTI SISO system and clearly has relative
degree r ≥ 1. Assumption (A4) is essential and constrains the influence of f(·, ·, ·) on the state
derivative in (4.58). In particular, if there exists a continuous function cf : Rl×R

m×R → R≥0

such that ‖f(p,w,x)‖ ≤ cf (p,w, c
⊤x) for all (p,w,x) ∈ R

l × R
m × R

r then (A4) holds.
Loosely speaking, state dependence (third argument) of the function f(p,w, ·) is bounded in
terms of the output y(·) = c⊤x(·).

System description (4.58) is similar to the form (1.36). The nonlinear functional perturbation,
in contrast to system class S2, is not required to be globally bounded but restricted to output
mappings. Certain internal dynamics can be subsumed in the operator mapping Ty (see Ex-
ample B.2).

In the following, conform to class S2, the presentation is restricted to systems of form (4.58)
with relative degree two (i.e. r = 2) and known sign of the high-frequency gain. Then the
Nussbaum-like sign switching in the controller is unnecessary, the filter simplifies to a first
order system and the following simplified version of Theorem 5.5 in [103] can be stated.
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Theorem 4.9. Consider a system of form (4.58) with (4.59) satisfying assumptions (A1)-
(A4) with relative degree two and known sign of the high-frequency gain γ0 = c

⊤Ab. Then, for
arbitrary reference yref(·) ∈ W1,∞(R≥0,R), funnel boundary ψ(·) ∈ B1, filter parameter kF > 0
and initial trajectory (x0, ζ01 ) ∈ C([−h, 0];Rn+1) satisfying |yref(0)−c⊤x0(0)| < ψ(0), the funnel
controller with filter

ζ̇1(t) = −kF ζ1(t) + u(t), ζ1(0) = ζ01 (0)

u(t) = sign(γ0) kF k(t)e(t)

−kF k(t)4
(
e(t)2 + k(t)2

)(
1 + ζ1(t)

2
)(
ζ1(t)− sign(γ0)k(t)e(t)

)
where

k(t) =
ψ(t)2

ψ(t)2 − e(t)2
and e(t) = yref(t)− y(t).





(4.60)

applied to (4.58) yields a closed-loop initial-value problem with the properties:

(i) there exists a solution (x, ζ1) : [−h, T ) → R
n × R which can be maximally extended and

T ∈ (0,∞];

(ii) the solution is global, i.e. T = ∞;

(iii) the tracking error e(·) is uniformly bounded away from the funnel boundary ψ(·), i.e.

∃ ε > 0 ∀ t ≥ 0 : ψ(t)− |e(t)| ≥ ε;

(iv) all signals are bounded, i.e. (x(·), ζ1(·)) ∈ L∞(R≥0;R
n+1), k(·) ∈ L∞(R≥0;R>0) and u(·) ∈

L∞(R≥0;R).

Proof. see the proof of Theorem 5.5 in [103].

Note that the compensator in (4.60) is identical to the filter in (3.37) of Ye’s approach (see
Section 3.5.1). Moreover, the motivation for funnel controller (4.60) is based on the fact that
there exists a similarity transformation (see Lemma 5.1 in [103]) which converts system (4.58)
into a form similar to (3.38) which, regarding ζ1 as (virtual) control input, has relative degree
one and is minimum-phase. Thus control action u(·) in (4.60) can be interpreted as follows: the
first term represents the “classical” funnel controller for relative degree one systems (scaled by
kF ) whereas the second term compensates for the fact of higher relative degree (here two).
Unfortunately, the controller gain occurs with k(t)7 in (4.60) which will result in tremendous
noise sensitivity (already for small gains larger than one) and so controller (4.60) is unattractive
for application in real world (see also simulations in Section 4.4.3).

Remark 4.10 (Design parameters ψ(·), kF and ζ01 (0)).
The funnel controller (4.60) with input filter and output feedback is set up by 3 “design param-
eters”. Funnel boundary ψ(·) ∈ B1 allows to account for costumer specifications (e.g. motion
control objectives (mco1), (mco3) and (mco4)). The value of kF > 0 [1/s] specifies the cut-off
frequency of the filter in (4.60). In [103] no recommendations are provided for filter design.
Simulation studies show that the choice of kF drastically influences the control performance,
e.g. the closed-loop system response might exhibit high-frequent oscillations with large overshoot
for very large or very small values of kF . So an intuitive effect could not be deduced. The initial
value ζ01 (0) of the filter might be useful to specify an initial control action independently of the
initial error, however the choice ζ01 (0) = 0 seems most adequate and simple.
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4.4.2 Funnel controller with derivative feedback

In the previous section, a funnel controller was presented which works for systems with relative
degree two, however due to backstepping and the use of a filter its structure is complex. So the
striking simplicity of funnel controller (4.24) (for relative degree one systems) is lost. Moreover,
the gain occurs with k(t)7 in the control law which indicates high noise sensitivity.

In [72] funnel control with derivative feedback is introduced which retains a simple controller
structure and works for nonlinear systems with relative degree two (and one). Moreover, error
and error derivative are forced to evolve within a prescribed performance funnel. Based on
this original idea, a slightly modified controller will be proposed for systems of class S2 which
allows for easy tuning and overdamped transient behavior (at least for systems similar to the
mechatronic systems introduced in Section 1.4). First the extended performance funnel for
error and error derivative is presented.

4.4.2.1 Performance funnel

In contrast to the relative degree one case, two limiting functions ψ0(·) and ψ1(·) are introduced
to limit the absolute value |e(·)| of the error and the absolute value |ė(·)| of the error derivative,
respectively (see Fig. 4.6). Goal is to achieve tracking with prescribed transient accuracy for
output and output derivative. Clearly, both limiting functions should be continuous and have a
bounded derivative. System class S2 precludes “jumps” in error and error derivative. Moreover,
in view of implementation, the second time derivative of the error is constrained (e.g. due to
actuator saturation). More formerly, the limiting functions ψ0(·) and ψ1(·) are chosen from the
set

B2 :=

{
(ψ0, ψ1) : R≥0 → R

2

∣∣∣∣∣
(i) ∀ i ∈ {0, 1} ∃ ci > 0: ψi(·) ∈ W1,∞(R≥0, [ci,∞)),

(ii) ∃ δ > 0 for a.a. t ≥ 0: ψ1(t) ≥ − d
dt
ψ0(t) + δ

}
(4.61)

and allow to introduce the performance funnel (see Fig. 4.6)

F(ψ0,ψ1) :=
{
(t, e0, e1) ∈ R≥0 × R× R

∣∣ |e0| < ψ0(t) and |e1| < ψ1(t)
}

(4.62)

with funnel boundary
∀ t ≥ 0: ∂F(ψ0,ψ1)(t) = (ψ0(t), ψ1(t)).

Condition (i) in (4.61) implies that both limiting functions—i.e. the “subboundary” ψ0(·) for
e(·) and ψ1(·) for ė(·)—are (absolutely) continuous and differentiable almost everywhere (with
essentially bounded derivative). The asymptotic accuracies of the subboundaries (see Fig. 4.6)
are given by

λ0 := lim inf
t→∞

ψ0(t) and λ1 := lim inf
t→∞

ψ1(t),

respectively. In most applications non-increasing performance funnels are desirable, however
the subboundaries may increase as well. This might be reasonable if, due to large reference
changes or sensor calibration/reset, error or error derivative will increase drastically leading
to unacceptably large control actions. Condition (ii) in (4.61) is essential: only if an error
derivative with sign(e(t))ė(t) < d

dt
ψ0(t) is admissible, then the error e(·) “can depart” from the

boundary ψ0(·) (see Fig. 4.6).
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e(·)

e(0) ψ0(·)

ψ0(0)

−ψ0(0)

e(t)

ψ0(t)

−λ0

t

t

Time t [s]

Time t [s]

ė(·)

ė(0)

ψ1(·)

ψ1(0)

−ψ1(0)

ė(t)

ψ1(t) ≥ − d

dt
ψ0(t) + δ

λ1

F(ψ0,ψ1)

Figure 4.6: Performance funnel for relative degree two systems: limiting function ψ0(·) for error e(·)
(top) and limiting function ψ1(·) for error derivative ė(·) (bottom).

Similar to the relative degree one case, motion control objectives (mco1), (mco3) and (mco4) can
easily be met by adequate boundary design, whereas (mco2) cannot be accounted for in general
(see Section 4.1). Nevertheless, it will be shown (by simulations and measurements) that the
proposed funnel controller with derivative feedback allows for a closed-loop system response
with (almost) no overshoot, i.e. ∆os

y(·) ≪ 1%. Infinite performance funnels (i.e. ψi(t) → ∞,
i = 0, 1 as t → 0) or asymmetric funnels (i.e. ψ+

i (t) > 0 > ψ−
i (t), i = 0, 1 for all t ≥ 0) are

admissible (see [72] or [121], respectively) but not considered in the remainder of this thesis.

Examples 4.11. According to the Examples 4.1, two simple funnel boundaries are presented.
Let Λ0 ≥ λ0 > 0, TL, TE > 0 [s] and λ1 > 0 [s], then admissible boundaries are given by

(ψ0, ψ1) : R≥0 → [λ0,Λ0]× {1/TL + λ1}
t 7→ (ψ0(t), ψ1(t)) := (max

{
Λ0 − t/TL, λ0

}
, 1/TL + λ1) (4.63)
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and

(ψ0, ψ1) : R≥0 → (λ0,Λ0]× (λ1, (Λ0 − λ0)/TE]

t 7→ (ψ0(t), ψ1(t)) :=

(
(Λ0 − λ0) exp

(
− t

TE

)
+ λ0,

Λ0 − λ0
TE

exp

(
− t

TE

)
+ λ1

)
.

(4.64)

Both boundaries are positive, non-increasing and bounded. (ψ0, ψ1) in (4.64) is actually smooth.
The asymptotic accuracies of (4.63) and (4.64) are given by (λ0, 1/TL+λ1) and (λ0, λ1), respec-
tively. They start at (Λ0, 1/TL+λ1) and (Λ0,

Λ0−λ0
TE

+λ1) and their derivatives are (essentially)

bounded by (1/TL, 0) and
(
(Λ0 − λ0)/TE, (Λ0 − λ0)/T

2
E

)
, respectively. By setting δ := λ1 and

noting that ψ1(t) ≥ −ψ̇0(t) + δ for (almost) all t ≥ 0 in (4.63) and (4.64), respectively, it is
easy to see that both boundaries are element of B2.

4.4.2.2 Funnel controller

For (ψ0(·), ψ1(·)) ∈ B2 and yref(·) ∈ W2,∞(R≥0;R), the “original” funnel controller with deriva-
tive feedback proposed in [72] has the following form

u(t) = sign(c⊤Ab)
(
k0(t)

2e(t) + k1(t)ė(t)
)

where

ki(t) =
1

ψi(t)− |e(i)(t)| , i ∈ {0, 1} and e(t) = yref(t)− y(t)





(4.65)

and may be applied to systems of form (1.36) being element of class S2. It guarantees that error
e(·) and error derivative ė(·) are uniformly bounded away from the boundary (ψ0(·), ψ1(·)).
Hence both controller gains k0(·) and k1(·) and control action u(·) are uniformly bounded
(see [72]).

Remark 4.12. In [72] it has been also shown that the funnel controller (4.65) can be applied to
minimum-phase LTI SISO systems with relative degree one (i.e. systems of form (2.45) element
of class S lin

1 ). However, due to derivative feedback in (4.65), application of (4.65) yields an
implicit differential equation which necessitates to allow for arbitrary initial values for ė(0), and
hence infinite funnel boundaries are required. Moreover, in order to be able to utilize the Implicit
Function Theorem the functions ψ0(·), ψ1(·) and ẏref(·) must be continuously differentiable (see
Appendix A.3 in [72]).

Clearly, control objectives (co1)-(co3) are accomplished. Moreover, the funnel controller (4.65)
was successfully implemented for position control of a stiff one-mass system. However the con-
trol performance is rather disappointing. The closed-loop system response exhibits turbulent
oscillations in error, error derivate, gains and control action. In particular, due to measurement
noise, the asymptotic accuracy λ1 of ψ1(·) must be chosen “large” and so active damping is not
feasible by the controller (4.65) (see Fig. 4.3(c)-(f) in [72] or the simulations presented in Sec-
tion 4.4.3). Since oscillations lead to system wear, ineffective power consumption and possibly
to deficient work pieces in machine tools, they are undesirable and should be avoided or damped.

With the goal to achieve a better damped closed-loop system response but retain the nice
features and simplicity of the original funnel controller (4.65), the following “modified” funnel
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controller is proposed. In addition, conform to the relative degree one case, gain scaling is
considered.

Theorem 4.13 (Funnel control with derivative feedback for systems of class S2).
Consider a system of class S2 described by (1.36). Then, for arbitrary funnel boundary
(ψ0(·), ψ1(·)) ∈ B2, gain scaling functions ς0(·), ς1(·) ∈ B1, reference yref(·) ∈ W2,∞(R≥0;R)
and initial trajectory x0(·) ∈ C([−h, 0];Rn) satisfying

|yref(0)− c⊤x0(0)| < ψ0(0) and |ẏref(0)− c⊤Ax0(0)| < ψ1(0), (4.66)

the (modified) funnel controller

u(t) = sign(c⊤Ab)
(
k0(t)

2e(t) + k0(t)k1(t)ė(t)
)

where

ki(t) =
ςi(t)

ψi(t)− |e(i)(t)| , i ∈ {0, 1} and e(t) = yref(t)− y(t)





(4.67)

applied to (1.36) yields a closed-loop initial-value problem with the properties

(i) there exists a solution x : [−h, T ) → R
n which can be maximally extended and T ∈ (0,∞];

(ii) the solution x(·) does not have finite escape time, i.e. T = ∞;

(iii) the signals e(·), ė(·) are uniformly bounded away from the funnel boundary, i.e.

∀ i ∈ {0, 1} ∃ εi > 0 ∀ t ≥ 0 : ψi(t)− |e(i)(t)| ≥ εi

(iv) control action and control gains are uniformly bounded, i.e. u(·), k0(·), k1(·) ∈ L∞(R≥0;R).

In Section 4.4.3 it will be shown (by comparative simulations) that the modified funnel con-
troller (4.67) allows for active damping and, moreover, if an lower bound on the magnitude of
the high-frequency gain is known a priori, overdamped transient behavior may be achieved (at
least for a second order system).

Proof of Theorem 4.13.

Step 1: It is shown that Assertion (i) holds true, i.e. existence of a maximally extended solution.
It suffices to consider system (1.36) in the Byrnes-Isidori like form (3.9). Define

∀ i ∈ {0, 1} : ς
i
:= inf

t≥0
ςi(t) and λi := inf

t≥0
ψi(t) (4.68)

and extend ς1(·), ς2(·) and yref(·) to [−h, 0) such that

ς1(·), ς2(·) ∈ W1,∞([−h,∞);R>0) and yref(·) ∈ W2,∞([−h,∞);R) (4.69)

and furthermore such that

∀ t ∈ [−h, 0] : |yref(t)− c⊤x0(t)| < ψ0(|t|) and |ẏref(t)− c⊤Ax0(t)| < ψ1(|t|), (4.70)
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which is possible since (4.66) holds and yref(·) is continuous and (ψ0(·), ψ1(·)) ∈ B2. For F(ψ0,ψ1)

as in (4.62), define the non-empty and open set

D :=
{
(τ,µ, ξ) ∈ R× R

2 × R
n−2

∣∣ (|τ |, µ1, µ2) ∈ F(ψ0,ψ1)

}
, (4.71)

the function

f : [−h,∞)×D × R
m → R× R

2 × R
n−2,

(t, (τ,µ, ξ),w) 7→




1

[
0 1
a1 a2

](
µ−

(
yref(t)
ẏref(t)

))
− |γ0|

(
0

ς0(t)2 µ1
(ψ0(|τ |)−|µ1|)2

+ ς0(t)
ψ0(|τ |)−|µ1|

ς1(t)µ2
ψ1(|τ |)−|µ2|

)

−
(
0
γ0

)
ud(t) +

(
ẏref(t)
ÿref(t)

)
−
[
0
⊤

a⊤3

]
ξ −

[
0
⊤

c⊤ABT

]
(w + d(t))

[
a4 0

]((yref(t)
ẏref(t)

)
− µ

)
+A5ξ +NBT (w + d(t))




and the operator

T̂ : C([−h,∞);R× R
n) → L∞

loc(R≥0;R
m), (T̂(τ,µ, ξ))(t) := (T(S−1

(
yref − µ1
ẏref − µ2

ξ

)
))(t). (4.72)

Then, for the artifact τ : [−h,∞) → R, t 7→ t, x̂ := (τ, (e, ė), z) and by writing τ 0 := τ |[−h,0]
the initial-value problem (3.9), (4.67) can be written in the form

d
dt
x̂(t) = f(t, x̂(t), (T̂x̂)(t)), x̂|[−h,0] =

(
τ0

yref |[−h,0] − c⊤x0

ẏref |[−h,0] − c⊤Ax0

Nx0

)
. (4.73)

Choose a compact set C ⊂ D × R
m and note that

∃MC > 0 ∀ ((τ,µ, ξ),w) ∈ C : ‖((τ,µ, ξ),w)‖ ≤MC

∃mC > 0 ∀ ((τ,µ, ξ),w) ∈ C : min{ψ0(|τ |)− |µ1|, ψ1(|τ |)− |µ2|} ≥ mC.
(4.74)

Then, for ud(·) ∈ L∞([−h,∞); R), d(·) ∈ L∞([−h,∞); Rm), yref(·) ∈ W2,∞([−h,∞); R) and
ς0(·), ς1 (·) ∈ W1,∞ ([−h,∞),R>0), observe that the function f(·, ·, ·) has the following prop-
erties: (i) f(t, ·, ·) is continuous for each fixed t ∈ [−h,∞), (ii) for each fixed ((τ,µ, ξ),w) ∈
D×R

m the function f(·, (τ,µ, ξ),w) is measurable and (iii) for almost all t ∈ [−h,∞) and for
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all ((τ,µ, ξ),w) ∈ C the following holds

‖f(t, (τ,µ, ξ),w)‖
(4.74)

≤ 1 +

∥∥∥∥
[
0 1
a1 a2

]∥∥∥∥ (MC + 2max{‖yref‖∞, ‖ẏref‖∞}) + |γ0| ‖ud‖∞

+
2|γ0|MC ‖ς0‖∞

m2
C

max{‖ς0‖∞, ‖ς1‖∞}+
(
‖a3‖+ ‖a4‖+ ‖A5‖

)
MC

+ 2(max{‖ẏref‖∞, ‖ÿref‖∞}+ ‖a4‖max{‖yref‖∞, ‖ẏref‖∞})
+ (‖c‖ ‖A‖+ ‖N‖) ‖BT‖ (MC + ‖d‖∞) =: lC.

Clearly f(·, ·, ·) is a Carathéodory function (see Definition 3.1) and invoking Theorem 3.2 yields
existence of a solution x̂ : [−h, T ) → D of the initial-value problem (4.73) with x̂([0, T )) ∈ D,
T ∈ (0,∞]. Each solution can be extended to a maximal solution. Moreover f(·, ·, ·) is essen-
tially bounded, hence if T < ∞ then for every compact C̃ ⊂ D, there exists t̃ ∈ [0, T ) such
that x̂(t̃) /∈ C̃. In the following, let x̂ := (τ, (e, ė), z) : [−h, T ) → R×R

2 ×R
n−2 be a fixed and

maximally extended solution of the initial-value problem (4.73), where ((e, ė), z) : [−h, T ) →
R

2 × R
n−2 solves the closed-loop initial-value problem (3.9), (4.67) for almost all t ∈ [0, T ).

Step 2: Some technical inequalities are introduced.
In view of Step 1, e(·) and ė(·) are continuous on [0, T ) and evolve within the funnel F(ψ0,ψ1),
hence by the properties of B2, it follows that

∀ t ∈ [0, T ) : |e(t)| < ψ0(t) ≤ ‖ψ0‖∞ ∧ |ė(t)| < ψ1(t) ≤ ‖ψ1‖∞. (4.75)

Due to (S2-sp2) and Lemma 2.12, the matrix A5 is Hurwitz, hence there exists P 5 = P
⊤
5 > 0

such that A⊤
5 P 5 + P 5A5 = −In−2 is satisfied, i.e. (2.87). Now, define

MV̇ := ‖P 5‖
(
‖a4‖ (‖ψ0‖∞ + ‖yref‖∞) + ‖N‖ ‖BT‖ (MT + ‖d‖∞)

)
. (4.76)

and consider the Lyapunov candidate

V : R
n−2 → R≥0, z 7→ V (z) := z⊤P 5z ≥ 0.

Taking the time derivative of V (·) along the solution of the closed-loop system (3.9), (4.67)
gives

for a.a. t ∈ [0, T ) :
d
dt
V (z(t))

(2.87),(4.75)

≤ −‖z(t)‖2 + 2 ‖z(t)‖ ‖P 5‖
(
‖a4‖ (‖yref‖∞ + ‖ψ0‖∞)

+ ‖N‖ ‖BT‖ (MT + ‖d‖∞)
)

(4.76)

≤ −1

2
‖z(t)‖2 + 2M2

V̇
≤ −V (z(t))

2 ‖P 5‖
+ 2M2

V̇

Applying the Bellman-Gronwall Lemma yields

∀ t ∈ [0, T ) : V (z(t)) ≤ V (z(0)) + 4 ‖P 5‖M2
V̇
≤ ‖P 5‖

(
‖z(0)‖2 + 4M2

V̇

)
,
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and hence

∀ t ∈ [0, T ) : ‖z(t)‖ ≤
√
‖P 5‖

∥∥P−1
5

∥∥
√
‖z(0)‖2 + 4M2

V̇
=:Mz (4.77)

where Mz ≥ 0. Moreover, invoking the first equation in (3.9) yields

for a.a. t ∈ [0, T ) : ë(t) = a1 [e(t)− yref(t)] + a2 [ė(t)− ẏref(t)] + ÿref(t)− a⊤
3 z(t)

− γ0(u(t) + ud(t))− c⊤ABT

(
(T(S−1

(
yref − e

ẏref − ė

z

)
))(t) + d(t)

)

and hence, for

M := |a1|
(
‖ψ0‖∞ + ‖yref‖∞

)
+ |a2|

(
‖ψ1‖∞ + ‖ẏref‖∞

)
+ ‖a3‖Mz

+ ‖ÿref‖∞ + |γ0|‖ud‖∞ + ‖c‖ ‖A‖ ‖BT‖ (MT + ‖d‖∞) ≥ 0 (4.78)

with Mz as in (4.77), it follows that

for a.a. t ∈ [0, T ) : −M − γ0u(t) ≤ ë(t) ≤M − γ0u(t). (4.79)

Step 3: It is shown that |e(·)| is uniformly bounded away from the boundary ψ0(·); more precisely
for positive

ε0 ≤ min

{
λ0
4
, ψ0(0)−|e(0)|

2
,

1
2
|γ0|δς0λ0

2|γ0|‖ς1‖∞‖ψ1‖∞+
√

4|γ0|2‖ς1‖2∞‖ψ1‖2∞+2δ2λ0|γ0|(M+‖ψ̇1‖∞)
,

1
2
|γ0|δς20λ0

2|γ0|ς0‖ς1‖∞‖ψ1‖∞+δ(‖ψ1‖∞+‖ψ̇0‖∞)
2
+
√
(2|γ0|ς0‖ς1‖∞‖ψ1‖∞+δ(‖ψ1‖∞+‖ψ̇0‖∞)2)

2
+2|γ0|δ2ς20λ0M

}
(4.80)

it holds that ψ0(t)− |e(t)| ≥ ε0 for all t ∈ [0, T ).

Step 3a: It is shown that for ε0 ∈ (0, λ0/2) the following implication holds on any interval
[t0, t1] ⊆ [0, T ):

r
ψ0(t0)− |e(t0)| = 2ε0 ∧ for a.a. t ∈ [t0, t1] : ë(t) sign e(t) ≤ −(‖ψ1‖∞ + ‖ψ̇0‖∞)2/(2ε0)

z

=⇒
r
∀ t ∈ [t0, t1] : ψ0(t)− |e(t)| ≥ ε0

z
. (4.81)

First consider the case

∀ t ∈ [t0, t1] : ψ0(t)− |e(t)| ≤ 2ε0 (4.82)

Then λ0 > 2ε0 implies that sign e(·) is constant on [t0, t1]. Consider only the case sign e(·) = 1,
the case sign e(·) = −1 follows analogously. Integrating the inequality ë(·) ≤ − (‖ψ1‖∞+‖ψ̇0‖∞)2

2ε0
twice yields

∀ t ∈ [t0, t1] : e(t) ≤ e(t0)− (‖ψ1‖∞+‖ψ̇0‖∞)2

4ε0
(t− t0)

2 + ė(t0)︸︷︷︸
≤‖ψ1‖∞

(t− t0).
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This combined with ‘ψ0(t) ≥ ψ0(t0)−‖ψ̇0‖∞(t− t0) for all t ∈ [t0, t1]’ (see property i) in (4.61))
implies

ψ0(t)− e(t) ≥ ψ0(t0)− e(t0)︸ ︷︷ ︸
=2ε0

−
(
(‖ψ1‖∞ + ‖ψ̇0‖∞)(t− t0)− (‖ψ1‖∞+‖ψ̇0‖∞)2

4ε0
(t− t0)

2
)
.

for all t ∈ [t0, t1]. The parabola t 7→ (‖ψ1‖∞ + ‖ψ̇0‖∞)(t− t0)− (‖ψ1‖∞+‖ψ̇0‖∞)2

4ε0
(t− t0)

2 attains
its maximum at t − t0 = 2ε0

‖ψ1‖∞+‖ψ̇0‖∞
with the maximum value ε0, hence ψ0(t) − e(t) ≥ ε0

for all t ∈ [t0, t1]. This proves Step 3a in case of (4.82). It remains to consider the case that
there exists t ∈ [t0, t1] such that ψ0(t) − |e(t)| > 2ε0. Now either ψ0(t) − |e(t)| ≥ 2ε0 for all
t ∈ [t0, t1] in which case the claim of Step 3a holds anyway, or there exists t̂ ∈ [t0, t1] such that
ψ0(t̂)− |e(t̂)| < 2ε0. Then, by continuity of t 7→ ψ0(t)− |e(t)|, one may choose [t̂0, t̂1] ⊂ [t0, t1]
such that t̂ ∈ [t̂0, t̂1] and (4.82) holds for [t0, t1] replaced by [t̂0, t̂1]. Now a contradiction follows
as in the first case and the proof of Step 3a is complete.

Step 3b: It is shown that for positive ε0 as in (4.80) the following implication holds on any
interval [t0, t1] ⊂ [0, T ):

q
∀ t ∈ [t0, t1] : i) ψ0(t)−

∣∣e(t)
∣∣ ≤ 2ε0 ∧ ii) ė(t) sign e(t) ≥ −ψ1(t) + δ/2

y

=⇒
r

for a.a. t ∈ [t0, t1] : ë(t) sign e(t) ≤ −(‖ψ1‖∞ + ‖ψ̇0‖∞)2/(2ε0)
z
. (4.83)

Due to presupposition i) in (4.83) and 0 < ε0 ≤ λ0/4, see (4.80), it follows that

∀ t ∈ [t0, t1] : |e (t)| ≥ ψ0 (t)− 2ε0 ≥ λ0 − λ0/2 = λ0/2 > 0, (4.84)

which precludes a sign change of e(·) on [t0, t1]. Consider only the case sign e(·) = 1, sign e(·) =
−1 follows analogously. Inserting (4.67) into (3.9) and invoking inequality (4.79) yields

for a.a. t ∈ [t0, t1] : ë(t) ≤M − |γ0|k0(t)2e(t)− |γ0|k0(t)k1 (t) ė(t). (4.85)

Furthermore, presupposition i) in (4.83) implies

∀ t ∈ [t0, t1] : −k0 (t) /ς0 = −ς0(t)/(ς0(ψ0(t)− |e(t)|)) ≤ −1/(2ε0) (4.86)

and presupposition ii) in (4.83) implies, either ė(t) ≥ −ψ1(t) + δ/2 ≥ 02 for all t ∈ [t0, t1], or
ė(t) ≥ 0 ∨ 0 > ė(t) ≥ −ψ1(t) + δ/2 for all t ∈ [t0, t1]. Then, in view of (4.75), one obtains

∀ t ∈ [t0, t1] : −k0(t)k1(t)ė(t) = −k0(t)
ς1(t)

ψ1(t)− |ė(t)| ė(t) ≤ k0(t)
2

δ
‖ς1‖∞‖ψ1‖∞. (4.87)

Inserting (4.87) into (4.85) and invoking (4.84) yields

for a.a. t ∈ [t0, t1] : ë(t) ≤M + |γ0|
2

δ
‖ς1‖∞‖ψ1‖∞ k0 (t)− |γ0|

λ0
2
k0 (t)

2

2For e.g. ψ̇0(t) = δ and λ1 < δ/2, the case −ψ1(t) + δ/2 ≥ 0 for all t ∈ [t0, t1] is possible.
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To show implication (4.83), due to (4.86), it is sufficient to show that

∀ t ∈ [t0, t1] : M + |γ0|
2

δ
‖ς1‖∞‖ψ1‖∞ k0 (t)− |γ0|

λ0
2
k0 (t)

2 ≤ −
(
‖ψ1‖∞ + ‖ψ̇0‖∞

)2
k0(t)/ς0,

rewriting gives

2δMς
0︸ ︷︷ ︸

=:c>0

+2

(
2|γ0|ς0‖ς1‖∞‖ψ1‖∞ + δ

(
‖ψ1‖∞ + ‖ψ̇0‖∞

)2)

︸ ︷︷ ︸
=:b>0

k0 (t)− |γ0|δς0λ0︸ ︷︷ ︸
=:a>0

k0 (t)
2 ≤ 0. (4.88)

Regard k0 (t) as argument of the parabola p 7→ −ap2+bp+c with d2

dp2
(−ap2+bp+c) = −2a < 0

having maximum (2|γ0|ς0‖ς1‖∞‖ψ1‖∞+δ(‖ψ1‖∞+‖ψ̇0‖∞)2)2/
(
|γ0|δς0λ0

)
+2δMς

0
> 0. Hence

for all

p ≥
2|γ0|ς0‖ς1‖∞‖ψ1‖∞ + δ

(
‖ψ1‖∞ + ‖ψ̇0‖∞

)2
+

√(
2|γ0|ς0‖ς1‖∞‖ψ1‖∞ + δ(‖ψ1‖∞ + ‖ψ̇0‖∞)2

)2
+ 2|γ0|δ2ς20λ0M

|γ0|δς0λ0
> 0

inequality (4.88) is fulfilled. This, with the choice of ε0 as in (4.80), (4.86) and 1/(2ε0) ≥ p/ς
0
,

implies (4.83).

Step 3c: It is shown that for ε0 ∈ (0, λ0/2) the following implication holds for any [t0, t1] ⊂
[0, T ):

J ∀ t ∈ [t0, t1] : ė(t) sign e(t) ≤ −ψ1(t) + δ/2 ∧ ψ0(t)− |e(t)| ≤ 2ε0 K
=⇒

r
t 7→ ψ0(t)− |e(t)| is monotonically increasing on [t0, t1]

z
(4.89)

Again, only consider the case sign e(·) = 1, the other case follows analogously. Now, invoking
‘ψ1(t) ≥ − d

dt
ψ0(t) + δ for all t ≥ 0’ (see property (ii) in (4.61)) gives

∀ t ∈ (t0, t1] :
d
dt
ψ0(t)− ė(t) ≥ d

dt
ψ0(t) + ψ1(t)−

δ

2
≥ δ − δ

2
=
δ

2
> 0

whence (4.89).

Step 3d: It is shown that for positive ε0 as in (4.80) the following implication holds for any
t ∈ [t0, t1] ⊂ [0, T ):

J ∀ t ∈ [t0, t1] : ψ0(t)− |e(t)| ≤ 2 ε0 ∧ ė(t0) sign e(t0) = −ψ1(t0) + δ/2 K
=⇒ J ∀ t ∈ [t0, t1] : ė(t) sign e(t) ≤ −ψ1(t) + δ/2 K (4.90)

Again, sign e(·) is constant on [t0, t1] and consider only the case sign e(·) = 1, the other case
follows analogously. Seeking a contradiction, assume

∃ t̂ ∈ (t0, t1] : ė(t̂) > −ψ1(t̂) + δ/2. (4.91)
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Then, by continuity of ė(·) and ψ1(·),

∃ t̂0 ∈ [t0, t̂) : ė(t̂0) = −ψ1(t̂0) + δ/2 and ∀ t ∈ [t̂0, t̂] : ė(t) ≥ −ψ1(t) + δ/2. (4.92)

Furthermore, invoking (4.85) with (4.84) and (4.87) and recalling (4.86), i.e. k0(t) ≥ ς
0
/(2ε0)

for all t ∈ [t̂0, t̂] ⊆ [t0, t1] gives

for a.a. t ∈ [t̂0, t̂] : ë(t) ≤M + |γ0|
2

δ
‖ς1‖∞‖ψ1‖∞ k0 (t)− |γ0|

λ0
2
k0 (t)

2
(4.80)

≤ −‖ψ̇1‖∞ (4.93)

with which and ‘ψ1(t) ≤ ψ1(t̂0)+‖ψ̇1‖∞(t− t̂0) for all t ∈ [t̂0, t̂]’ one arrives at the contradiction

δ/2
(4.91)
< ė(t̂) + ψ1(t̂) = ė(t̂0) + ψ1(t̂0) +

∫ t̂

t̂0

(ë(s) + ψ̇1(s)) ds
(4.93)

≤ ė(t̂0) + ψ1(t̂0)
(4.92)
= δ/2.

(4.94)

Step 3e: Finally it is shown show that the claim of Step 3 holds true for positive ε0 as in (4.80).
Seeking a contradiction, assume

∃ t̂ ∈ [0, T ) : ψ0(t̂)− |e(t̂)| < ε0. (4.95)

By continuity of t 7→ ψ0(t)− |e(t)|, the point in time

t0 := max{t ∈ [0, t̂) |ψ0(t)− |e(t)| = 2ε0},

is well defined. It then follows that ψ0(t) − |e(t)| ≤ 2ε0 for all t ∈ [t0, t̂], hence, by ε0 ≤ λ0/4,
it holds that sign e(·) is constant on [t0, t̂]. Only consider the case sign e(·) = 1, the other case
follows analogously. Now for ε0 as in (4.80), the following three cases yield a contradiction to
assumption (4.95):

(i) ė(t) > −ψ1(t) + δ/2 for all t ∈ [t0, t̂], then implication (4.83) together with (4.81) yields
ψ0(t)− |e(t)| ≥ ε0 for all t ∈ [t0, t̂],

(ii) ė(t) < −ψ1(t) + δ/2 for all t ∈ [t0, t̂], then implication (4.89) yields ψ0(t)− |e(t)| ≥ ε0 for
all t ∈ [t0, t̂] and

(iii) ė(t0) = −ψ1(t0)+δ/2, then implication (4.90) together with (4.89) yields ψ0(t)−|e(t)| ≥ ε0
for all t ∈ [t0, t̂].

Therefore, assume that

∃ t⋆ := min{ t ∈ (t0, t̂] | ė(t) = −ψ1(t) + δ/2} and ∀ t ∈ [t0, t
⋆) : ė(t) > −ψ1(t) + δ/2. (4.96)

Then, by continuity of ė(·) and ψ1(·), it follows that ė(t) ≥ −ψ1(t) + δ/2 for all t ∈ [t0, t
⋆].

This, for ε0 as in (4.80), combined with implication (4.83) and (4.81) yields ψ0(t
⋆)− e(t⋆) ≥ ε0.

Furthermore, for ε0 as in (4.80), the choice of t⋆ in (4.96) and implication (4.90) give ė(t) ≤
−ψ1(t)+δ/2 for all t ∈ [t⋆, t̂], which together with implication (4.89) yields ε0 ≤ ψ0(t

⋆)−|e(t⋆)| ≤
ψ0(t) − |e(t)| for all t ∈ [t⋆, t̂], contradicting the assumption (4.95). This completes the proof
of Step 3.
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Step 4: For positive

ε1 ≤ min

{
λ1
2
, ψ1(0)− |ė(0)|,

1
2
|γ0|ς0ς1λ1ε20

‖ψ0‖∞(M + ‖ψ̇1‖∞)ε20 + |γ0|‖ς0‖2∞‖ψ0‖2∞

}
, (4.97)

where M as in (4.79) and ε0 as in (4.80), it is shown that ψ1(t)− |ė(t)| ≥ ε1 for all t ∈ [0, T ).

From Step 3, for ε0 > 0 as in (4.80), it follows that ψ0(t)− |e(t)| ≥ ε0 for all t ∈ [0, T ) and for
ς0(·) ∈ W1,∞(R≥0; [ς0,∞)), one obtains

∀ t ∈ [0, T ) : ς
0
/‖ψ0‖∞ ≤ k0(t) = ς0(t)/(ψ0(t)− |e(t)|) ≤ ‖ς0‖∞/ε0 (4.98)

which together with (4.75) yields −k0(t)2e(t) ≤ ‖ς0‖2∞ ‖ψ0‖∞/ε20 for all t ∈ [0, T ). Now assume
that there exists t̂ ∈ [0, T ) such that ψ1(t̂)− |ė(t̂)| = ε1, then

|ė(t̂)| = ψ1(t̂)− ε1 ≥ λ1/2 ∧ k1(t̂) = ς1(t̂)/ε1 ≥ ς
1
/ε1. (4.99)

Again consider only the case sign ė(t̂) = 1, the case sign ė(t̂) = −1 follows analogously. Then
in view of (4.79) and (4.67), simple calculations show that the choice of ε1 in (4.97) implies

for a.a. t̂ ∈ [0, T ) : ë(t̂) ≤ M − |γ0|k0(t̂)2e(t̂)− |γ0|k0(t̂)k1(t̂)ė(t̂)
(4.98),(4.99)

≤ M +
|γ0|‖ς0‖2∞‖ψ0‖∞

ε20
− |γ0|ς0ς1

‖ψ0‖∞ε1
λ1
2

(4.97)

≤ −‖ψ̇1‖∞.

Hence ‘ψ1(t) − |ė(t)| = ε1 for all t ∈ [0, T )’ implies ‘ë(t) sign ė(t) ≤ −‖ψ̇1‖∞ for almost all
t ∈ [0, T )’ and since | d

dt
ψ1(t)| ≤ ‖ψ̇1‖∞ for almost all t ∈ [0, T ) and ψ1(0) > |ė(0)|, the set

{(t, ξ) ∈ R≥0 × R | ψ1(t)− |ξ| ≥ ε1} cannot be left by ė(·) which completes Step 4.

Step 5: It is shown that Assertions (ii)-(iv) hold true.
At first it is shown that Assertion (ii) holds, i.e. T = ∞. For ε0 as in (4.80), ε1 as in (4.97) and
Mz as in (4.77) define the compact set

C̃ :=
{
(t, e0, e1, z) ∈ [0, T ]× R× R× R

n−2
∣∣ ∀ i ∈ {0, 1} : |ei| ≤ ψi(t)− εi ∧ ‖z‖ ≤Mz

}
.

Let D be as in Step 1. If T < ∞ then C̃ is a compact subset of D which contains the whole
graph of the solution t 7→ (e(t), ė(t), z(t)), which contradicts the maximality of the solution.
Hence T = ∞. Now, Assertion (iii) follows from Step 3 and Step 4, where ε0 as in (4.80) and ε1
as in (4.97). Step 3 and Step 4, respectively, ensure that k0(·) and k1(·) are uniformly bounded
on R≥0. From (4.75) it also follows that u(·) is uniformly bounded on R≥0, hence Assertion (iv)
is shown. This completes the proof.

4.4.2.3 Motivation for the modified funnel controller

The original funnel controller (4.65)—introduced in [72]—applied for position control of a stiff
servo-system yields a badly damped closed-loop system response (see Fig. 4.3(c)-(f) in [72]).
Only for given non-increasing subboundary ψ0(·) and small δ ≪ 1 in (4.61), e.g. the choice
ψ1(·) = −ψ̇0(·) + δ yields a well damped system response. Since speed measurement is (very)
noisy, such a choice is not admissible for implementation. In contrast, for arbitrary δ > 1, the
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Time t [s]

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

yref(·)

(a) output y(·) and reference yref(·)
Time t [s]

0 0.5 1 1.5 2 2.5 3
−10

−5

0

5

10

(b) control action u(·)

Figure 4.7: Simulation results for closed-loop system (3.80), (4.67) with parametrization γ0 =
3, (y0, y1) = (0, 0), ud(·) = 0, funnel boundary (ψ0(·), ψ1(·)) as in (4.64)
where Λ0 = 1.5, λ0 = 0.1, TE = 0.379 [s] and λ1 = 3 [1/s] and different
gain scalings (ς0(·), ς1(·)) ∈ { (1, 1), (1, 2/

√
γ0 ψ1(·)), (1, 5/

√
γ0 ψ1(·)),

(1, 10/
√
γ0 ψ1(·)), (ψ0(·), 10/

√
γ0 ψ1(·))}.

modified funnel controller (4.67) may achieve a better damped closed-loop system response (see
Fig. 6(a)-(e) in [65] or the simulations presented in Section 4.4.3). Here the product k0(·)k1(·)
in (4.67) in combination with a special choice of ς1(·) seems to be essential. In simple simulation
studies for the closed-loop system (3.80), (4.67) it was observed that, for (known) γ0 ≤ γ0 and
given subboundary ψ1(·), the following gain scaling

J ∀ t ≥ 0: ς1(t) = 2ψ1(t)/
√
γ0 K =⇒ J ∀ (t, e(t), ė(t)) ∈ F(ψ0,ψ1) : k1(t) ≥ 2/

√
γ0 K (4.100)

results in an “overdamped” system response (i.e. no overshoot). One exemplary simulation
study is depicted in Fig. 4.7. Different gain scalings are implemented (for parametrization see
figure caption). Qualitatively identical results as in Fig. 4.7 are also obtained for (ψ0(·), ψ1(·)) as
in (4.63) (see Fig. 4.8) or for different values of high-frequency gain and/or reference magnitude
(not shown). It was not possible to prove this “overdamped” behavior in general. Nevertheless,
the observations above are noteworthy concerning application of the funnel controller (4.67) for
position control of 1MS and 2MS (see Section 5.2.2 and 5.2.3, respectively). Oscillations and
large overshoots should be avoided in “real world”.

An intuitive explanation (stemming from linear analysis) for the advantageous effect of the
product k0(·)k1(·) in (4.67) on the closed-loop system response might be as follows: Applica-
tion of the PD controller u(t) = k20y(t) + k0 k1 ẏ(t) with constant k0, k1 > 0 to the double
integrator (3.80), with γ0 > 0, (y0, y1) = (0, 0) and ud(·), yields the harmonic oscillator

ÿ(t) + γ0k0k1ẏ(t) + γ0k
2
0y(t) = 0, (y(0), ẏ(0)) = (0, 0). (4.101)

It is “overdamped” (or “critically damped”, in the sense of Example 11.3.7 in [24, p. 717-718])
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if its poles p1,2 are real and negative, i.e.

p1,2 = −γ0k0k1/2
(
1±

√
1− 4/(γ0k21)

)
< 0. (4.102)

If k0 > 0, γ0 ≥ γ0 > 0 and γ0 is known, then

J k1 ≥ 2/
√
γ0 K =⇒ J 0 ≤ 1− 4/(γ0k

2
1) < 1 K =⇒ (4.102). (4.103)

The implication above motivated for the proposed gain scaling in (4.100), which can be re-
garded as “recommendation” or “rule of thumb” for controller design of (4.67). The fastest but
“overdamped” closed-loop system response is obtained for γ0 = γ0 (see in Fig. 4.7). Hence
“good” system knowledge is beneficial and may be incorporated in controller design directly.

Remark 4.14. It can be shown that gain scaling is also admissible for the original funnel
controller (4.65), i.e. replace gain adaption in (4.65) by gain adaption in (4.67). The proof is
omitted, it is implicitly given in the proof of Theorem 4.4. Moreover, as simulations show, there
also exist adequate choices for gain scaling to achieve an overdamped system response by the
“scaled” original funnel controller (e.g. ς1(·) = c ψ1(·) with c > 0 sufficiently large). However,
it was not possible to deduce a “rule of thumb” as in (4.100).

4.4.2.4 Funnel controller with saturation

In [72] it is shown that the funnel controller (4.65) also works for constrained control inputs
(e.g. due to actuator saturation) if the available control action matches a feasibility condition.
In the following, based on the idea in [72], it will be shown that also the modified funnel
controller (4.67) is feasible under input constraints which underpins its applicability in “real
world”. To account e.g. for actuator deviations or feedforward control in the saturated controller,
the following theorem also considers arbitrary but bounded input disturbances.

Theorem 4.15 (Funnel control with derivative feedback & saturation for systems of class
S2). Consider a system of class S2 described by (1.36). Then, for arbitrary funnel boundary
(ψ0(·), ψ1(·)) ∈ B2, gain scaling functions ς0(·), ς1(·) ∈ B1, input disturbance uF (·) ∈ L∞(R≥0;R),
reference yref(·) ∈ W2,∞(R≥0;R) and initial trajectory x0(·) ∈ C([−h, 0];Rn) satisfying (4.66),
there exists a feasibility number ufeas such that, for all û ≥ ufeas, the saturated funnel controller

u(t) = sign(c⊤Ab) satû

(
k0(t)

2e(t) + k0(t)k1(t)ė(t) + uF (t)
)

where

ki(t) =
ςi(t)

ψi(t)− |e(i)(t)| , i = {0, 1} and e(t) = yref(t)− y(t)





(4.104)

applied to (1.36) yields a closed-loop initial-value problem with the properties

(i) there exists solution x : [−h, T ) → R
n which can be maximally extended and T ∈ (0,∞];

(ii) the solution x(·) does not have finite escape time, i.e. T = ∞;

(iii) the signals e(·), ė(·) are uniformly bounded away from the funnel boundary, i.e.

∀ i ∈ {0, 1} ∃ εi > 0 ∀ t ≥ 0 : ψi(t)− |e(i)(t)| ≥ εi
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(iv) the gains are uniformly bounded, i.e. k0(·), k1(·) ∈ L∞(R≥0;R>0) and

(v) the control input is unsaturated at some time, i.e. there exists t ≥ 0 such that |u(t)| < û.

The feasibility number ufeas can be quoted explicitly. In Section 5.2.3, it will be required for a
feasibility check in application (position control of industrial servo-systems). For ς

0
, ς

1
, λ0 and

λ1 as in (4.68), M as in (4.78) and γ0 = c⊤Ab define

ûS :=
δ2 λ0
|γ0|

{
(‖ψ1‖∞ + ‖ψ̇0‖∞)2

δ ς
0
λ0

+

(
(‖ψ1‖∞ + ‖ψ̇0‖∞)4

δ2 ς2
0
λ20

+
2|γ0|
δ2 λ0

[
2|γ0|‖ς1‖2∞‖ψ1‖2∞

δ2 λ0
+

|γ0|‖uF‖∞ +M + 2‖ς1‖∞‖ψ1‖∞
(‖ψ1‖∞ + ‖ψ̇0‖∞)2

δ ς
0
λ0

])1/2}
(4.105)

and

L := max

{
2 (‖ψ1‖∞ + ‖ψ̇0‖∞)2

λ0
,
(‖ψ1‖∞ + ‖ψ̇0‖∞)2

ψ0(0)− |e(0)| , ‖ψ̇1‖∞,
û2S − 4‖ς1‖2∞ ‖ψ1‖2∞

2δ2λ0
− ‖uF‖∞

}
,

(4.106)
then the feasibility condition is given by

û ≥ ufeas := (M + L) /|γ0| > 0. (4.107)

Clearly, to validate (4.107), rough knowledge of the system parameters is necessary. In par-
ticular, rough bounds on M as in (4.78), the high-frequency gain γ0 and the control input
disturbance uF (·) are needed. The other values in (4.105) and (4.106) are known to the control
designer. The dependence on M in (4.107) is the most severe: the constant M subsumes “all”
system data (e.g. A or BT), exogenous disturbances (e.g. ud(·) or d(·)) and the bound Mz on
the internal dynamics. At least, for systems with low order, evaluation of (4.107) is feasible and
helpful in verifying that funnel control for systems with constrained inputs is admissible. In
Section 5.2.3, it will be verified by experiments that the feasibility condition (4.107) is sufficient
but not necessary and that the feasibility number ufeas > 0 is (often) a very conservative bound
(see also [72]).

Proof of Theorem 4.15.

The outline of the proof of Theorem 4.15 is analogously to the proof of Theorem 4.13. Only
the essential changes are presented. Again it suffices to consider system (1.36) in Byrnes-Isidori
like form (3.9).

Step 1: It is shown that Assertion (i) holds true, i.e. existence of a maximally extended solution.
For the open and non-empty set D as in (4.71) and the extended signals ς0(·), ς1(·) and yref(·)
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as in (4.69) and (4.70), introduce

f : [−h,∞)×D × R
n → R≥0 × R

2 × R
n−2,

(t, (τ,µ, ξ),w) 7→




1
[
0 1
a1 a2

](
µ−

(
yref (t)
ẏref (t)

))
+

(
ẏref(t)
ÿref(t)

)
−
[
0
⊤

a⊤
3

]
ξ −

[
0
⊤

c⊤ABT

]
(w + d(t))

−|γ0|
(

0

satû

(
ς0(t)

2 µ1

(ψ0(|τ |)−|µ1|)
2 +

ς0(t)
ψ0(|τ |)−|µ1|

ς1(t)µ2
ψ1(|τ |)−|µ2|

+ uF (t)
)
+ ud(t)

)

[
a4 0

]((yref(t)
ẏref(t)

)
− µ

)
+A5ξ +NBT (w + d(t))




and the operator T̂ : C([−h,∞);R×R
n) → L∞

loc(R≥0;R
n) as in (4.72). Then, for τ : [−h,∞) →

R≥0, t 7→ t and x̂ := (τ, (e, ė), z) and τ 0 := τ |[−h,0], the initial-value problem (3.9), (4.104) can
be written in the form (4.73).
Now a similar argumentation as in Step 1 of the Proof of Theorem 4.13 yields existence of
a solution (τ, (e, ė), z) : [−h, T ) → R≥0 × R

2 × R
n−2 of the initial-value problem(4.73), where

((e, ė), z) : [−h, T ) → R
2 × R

n−2 solves the closed-loop initial-value problem (3.9), (4.104) for
almost all t ∈ [0, T ). The solution can be maximally extended and, moreover, if T < ∞ then
for every compact C̃ ⊂ D, there exists t̃ ∈ [0, T ) such that x̂(t̃) /∈ C̃. For the remainder of the
proof, let ((e, ė), z) : [−h, T ) → R

2 × R
n−2 be a fixed and maximally extended solution of the

closed-loop initial-value problem (3.9), (4.104).

Step 2: Some technical preliminaries are introduced.
Similar arguments as in Step 2 of the proof of Theorem 4.13 show that the inequalities (4.75),
(4.77) and, for M as in (4.78), (4.79) hold, respectively.
Moreover, inserting (4.104) into (4.79) yields

for a.a. t ∈ [0, T ) : −M − |γ0| satû
(
k0(t)

2 e(t) + k0(t)k1(t) ė(t) + uF (t)
)
≤ ë(t)

≤M − |γ0| satû
(
k0(t)

2 e(t) + k0(t)k1(t) ė(t) + uF (t)
)

(4.108)

where M as in (4.78).

Step 3: It is shown that |e(·)| is uniformly bounded away from the boundary ψ0(·), i.e.

∃ ε0 > 0 ∀ t ∈ [0, T ) : ψ0(t)− |e(t)| ≥ ε0

Step 3a: Note that identical argumentation as in Step 3a of the Proof of Theorem 4.13 show
that, for ε0 ∈ (0, λ0/2), implication (4.81) holds on any interval [t0, t1] ⊆ [0, T ).

Step 3b: It is shown that for positive

ε0 := min

{
λ0
4
,
ψ0(0)− |e(0)|

2
,

1
2
δς

0
λ0

2‖ς1‖∞‖ψ1‖∞ +
√
4‖ς1‖2∞‖ψ1‖2∞ + 2δ2λ0(‖uF‖∞ + û)

}

(4.109)
implication (4.83) holds on any interval [t0, t1] ⊆ [0, T ).
Due to presupposition i) in (4.83) and 0 < ε0 ≤ λ0/4, see (4.109), it is easy to see that (4.84)
holds. Hence sign e(·) is constant on [t0, t1]. Consider only the case e(·) > 0 on [t0, t1], the other
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case follows analogously. In view of (4.75), presupposition ii) in (4.83) implies (4.87).

Note that k0(t) ≥ ς
0
/(2ε0) for all t ∈ [t0, t1], hence the following holds

for a.a. t ∈ [t0, t1] : k0(t)
2 e(t) + k0(t)k1(t) ė(t) + uF (t)

(4.84),(4.87)

≥

k0(t)
2 λ0
2

− k0(t)
2

δ
‖ς1‖∞‖ψ1‖∞ − ‖uF‖∞

(4.109)

≥ û. (4.110)

To complete Step 3b, for ε0 as in (4.109), ufeas as in (4.107) and û ≥ ufeas, one needs to verify
that the following holds

for a.a. t ∈ [t0, t1] : ë(t) ≤M − |γ0| û ≤ −(‖ψ1‖∞ + ‖ψ̇0‖∞)2

2ε0
. (4.111)

Simple calculations show that, for ε0 = λ0/4 or ε0 = (ψ0(0)−|e(0)|)/2, (4.111) holds. It remains
to consider ε0 = (1

2
δς

0
λ0)/(2‖ς1‖∞‖ψ1‖∞+

√
4‖ς1‖2∞‖ψ1‖2∞ + 2δ2λ0(‖uF‖∞ + û)). Substituting

(u2S − 4‖ς1‖2∞‖ψ1‖2∞)/(2δ2λ0)− ‖uF‖∞ for û in (4.111) yields

− |γ0|
2δ2λ0

u2S +
(‖ψ1‖∞ + ‖ψ̇0‖∞)2

δς
0
λ0

uS + |γ0|
(
2‖ς1‖2∞‖ψ1‖2∞

δ2λ0
+ ‖uF‖∞

)

+M + 2‖ς1‖∞‖ψ1‖∞
(‖ψ1‖∞ + ‖ψ̇0‖∞)2

δς
0
λ0

≤ 0

which clearly holds for all uS ≥ ûS with ûS as in (4.105). This completes Step 3b.

Step 3c: The identical argumentation as in Step 3c of the Proof of Theorem 4.13 shows that
implication (4.89) holds for any [t0, t1] ⊂ [0, T ).

Step 3d: It is shown that for positive ε0 as in (4.109) implication (4.90) holds for any t ∈
[t0, t1] ⊂ [0, T ).
Presuppositions in (4.90) imply that sign e(·) is constant on [t0, t1]. Consider only the case
sign e(·) = 1, the other case follows analogously. Observe that, for ε0 as in (4.109), inequal-
ity (4.110) holds on the whole interval [t0, t1]. Seeking a contradiction assume that (4.91) holds.
Now identical arguments as in Step 3d of the proof of Theorem 4.13 lead to

for a.a. t ∈ [t̃0, t̃] : ë(t) ≤M − |γ0|û
(4.107)

≤ −‖ψ̇1‖∞

and, by integration as in (4.94), the contradiction follows. This completes Step 3d.

Step 3e: Finally it is shown that the claim of Step 3 holds true for positive ε0 as in (4.109).
Replacing ε0 in (4.80) by (4.109) and invoking implications (4.81), (4.83), (4.89) and (4.90)
allow for the identical argumentation as in Step 3e of the proof of Theorem 4.13. Hence the
claim of Step 3 holds true. This completes Step 3.
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Step 4: For positive

ε1 ≤ min

{
λ1
2
, ψ1(0)− |ė(0)|,

1
2
ς
0
ς
1
λ1ε

2
0

ε20‖ψ0‖∞(‖uF‖∞ + û) + ‖ς0‖2∞‖ψ0‖2∞

}
, (4.112)

where M as in (4.78) and ε0 as in (4.109), it is shown that ψ1(t)−|ė(t)| ≥ ε1 for all t ∈ [0, T ).
Assume there exists t̂ ∈ [0, T ) such that ψ1(t̂) − |ė(t̂)| = ε1, then clearly (4.99) holds and it
follows that

∣∣k0(t̂)2 e(t̂) + k0(t̂)k1(t̂) ė(t̂) + uF (t̂)
∣∣ (4.98),(4.99)

≥
∣∣∣∣∓

‖ς0‖2∞
ε20

‖ψ0‖∞ ± ς
0
ς
1
λ1

2‖ψ0‖∞ε1
∓ ‖uF‖∞

∣∣∣∣
(4.112)

≥ û

(4.113)

for almost all t̂ ∈ [0, T ). Consider only the case sign ė(t̂) = 1, the other case follows analogously.
Then in view of (4.108), simple calculations show that for almost all t̂ ∈ [0, T )

ë(t̂) ≤M − |γ0| satû
(
k0(t̂)

2 e(t̂) + k0(t̂)k1(t̂) ė(t̂) + uF (t̂)
) (4.113)

= M − |γ0|û
(4.107)

≤ −‖ψ̇1‖∞.

Now identical arguments as in Step 4 of the proof of Theorem 4.13 show the claim which com-
pletes Step 4.

Step 5: It is shown that Assertions (ii)-(iv) hold true.
In Step 5 of the proof of Theorem 4.13 substitute (4.109) and (4.112) for (4.80) and (4.97),
respectively. Then identical arguments show Assertions (ii)-(iv).

Step 6: It is shown that Assertion (v) holds true.
Seeking a contradiction, suppose that

∀ t ≥ 0 : | satû
(
k0(t)

2e(t) + k0(t)k1(t)ė(t) + uF (t)
)
| = û > 0,

which implies that sign(k0(t)
2e(t) + k0(t)k1(t)ė(t) + uF (t)) is constant for all t ≥ 0. Consider

only the case sign(k0(·)2e(·) + k0(·)k1(·)ė(·) + uF (·)) = 1, the other case follows analogously.
Since û ≥ ufeas in (4.107) it follows that û ≥ (M + 2(‖ψ1‖∞ + ‖ψ̇0‖∞)2/λ0)/|γ0| > 0, which
implies

for a.a. t ≥ 0 : ë(t) ≤M − |γ0| û ≤ −2(‖ψ1‖∞ + ‖ψ̇0‖∞)2

λ0
< 0

whence the contradiction follows

∀ t ≥ 0 : −‖ψ1‖∞ ≤ −ψ1(t) < ė(t) ≤ ė(0)− 2(‖ψ1‖∞ + ‖ψ̇0‖∞)2

λ0
t.

This completes the proof.

Remark 4.16 (Relaxation of system property (S2-sp3) of class S2).
Let h ≥ 0, T̂ : C([−h,∞);R2) → L∞

loc([−h,∞);Rm), T : C([−h,∞);Rn) → L∞
loc([−h,∞);Rm)

and T̂,T ∈ T (see Definition 1.5). If funnel controller (4.67) (or (4.104)) is applied to sys-
tem (1.36) of class S2 with Tx = T̂(y, ẏ), then system property (S2-sp3) in Definition 1.7 can
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controller/funnel parametrization

(4.60) ψ(·) = ψ0(·) as in (4.63), kF = 1.5 and ζ1,0 = 0,

(4.65) ψ0(·) and ψ1(·) as in (4.63)

(4.67) ψ0(·) and ψ1(·) as in (4.63), γ0 = γ0/3,
ς0(·) = 1 and ς1(·) = 2ψ1(·)/√γ0

boundary design Λ0 = 1.5, λ0 = 0.1, λ1 = 1.7 and TL = 0.77 [s]

Table 4.1: Controller and funnel design for comparative simulations.

be relaxed: the global boundedness of operator T can be dropped, i.e. MT <∞ in (S2-sp3) is not
necessary. This can be shown as follows (similar to Remark 4.8). It is easy to see that (4.75)
holds independently of (S2-sp3) and this implies that

∀ t ∈ [0, T ) : |y(t)| ≤ ‖ψ0‖∞ + ‖yref‖∞ and |ẏ(t)| ≤ ‖ψ1‖∞ + ‖ẏref‖∞.

Hence by property (op2) of operator class T , there exists ∆ > 0 such that ‖(T̂
(
y

ẏ

)
)(t)‖ ≤ ∆ for

all t ∈ [0, T ). Clearly, utilizing ∆ instead of MT in (4.77) and (4.78), respectively, does not
alter the argumentation in the proof and so the proof of Theorem 4.13 (or Theorem 4.15) goes
through without any further changes.

4.4.3 Simulations

Control performance of the controllers (4.60), (4.65) and (4.67) will be investigated. For
this the three controllers are applied to the double integrator (3.80). The closed-loop sys-
tems (3.80),(4.60), (3.80),(4.65) and (3.80),(4.67) are implemented in Matlab/Simulink with
identical setup as in Section 3.5.4, e.g. system (3.80) is parametrized as in Tab. 3.1, reference
yref(·) and disturbance ud(·) are as in Fig. 3.4(a) and Fig. 3.4(b), etc. Each closed-loop system
must accomplish the set-point control objectives specified in (3.81). Control performance of
each controller is evaluated by means of rise and settling time, maximal overshoot, maximal
control action and ITAE as in (3.82). To obtain a comparable setting, the performance funnels
of (4.60), (4.65) and (4.67) are designed with identical limiting functions. Implementation data
of controllers and funnel design is collected in Tab. 4.1. Simulation results3 for the closed-loop
systems (3.80), (4.60), (3.80), (4.65) and (3.80), (4.67) are depicted in Fig. 4.8 for
set-point tracking and in Fig. 4.9 for (overall) reference tracking. All three controllers achieve
the specifications in (3.81). Performance evaluation is summarized in Tab. 4.2.

Discussion for funnel controller (4.60) with backstepping: Filter gain kF > 0 in (4.60) is tuned
by trial and error to meet the maximum overshoot ∆os

ref = 50% (scarcely accomplished). With
the largest initial control action u(0) ≈ 123, the controller achieves the smallest rise time,
however settling time and overshoot are the worst in this study. Moreover, controller (4.60)
is outperformed by both other concepts concerning the ITAE criterion. This is due to “gain
scaling” in (4.60) with ψ(·)2 which yields a “decreased” minimal gain of 1 compared to (4.65)

3Albeit not shown qualitatively similar results are obtained for the exponential boundary (4.64) with Λ0 =
1.5, λ0 = 0.1, TE = 0.379 [s] and λ1 = 3 [1/s].
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Controller try(·),0.8 [s] tsy(·),0.1 [s] ∆os
y(·) [%] max

t∈I
|u(t)| [1] ITAE [s2] max

t∈I
(k0(t), k1(t))

(4.60) 0.22 1.06 48.40 1050.9 30.2 (19.8,−)
(4.65) 0.48 0.95 21.15 65.0 4.1 (29.3, 4.9)
(4.67) 0.94 1.05 0.37 8.3 3.3 (38.2, 3.0)

Table 4.2: Performance evaluation of closed-loop systems (3.80),(4.60), (3.80),(4.65)
and (3.80),(4.67) with parametrization as in Tab. 3.1 & 4.1 and I = [0, 30] [s].

and (4.67) (see e.g. Fig. 4.8(e)). The maximal control gain is the smallest in this study. Never-
theless, since control action in (4.60) is proportional to k(t)7, this controller is extremely noise
sensitive for gains greater than one (see interval (5, 23) [s] in Fig. 4.9(b) and (e)), which results
in huge control actions alternating between ≈ ±1050 (not shown). In Fig. 4.9(b) the ordinate
is limited to [−10, 10] to ensure visibility for the other controllers. Application of funnel con-
troller (4.60) with backstepping seems not advisable in real world.

Discussion for (original) funnel controller (4.65) with derivative feedback: Controller (4.65) is
designed by ψ0(·) and ψ1(·) as in Tab. 4.1, other options for controller tuning are not available.
The boundary design yields the closed-loop system response as in Fig. 4.8 and 4.9. The con-
troller performs acceptably well: rise time and ITAE value are the second best, settling time is
the best and overshoot is within the admissible range. Noise sensitivity is slightly better than
that of (4.67). However, due to turbulent oscillations, the controller requires the second largest
control action. Moreover, without gain scaling the oscillations cannot be damped. Hence, in
its simple form (4.65), the original funnel controller seems not suitable for industrial application.

Discussion for (modified) funnel controller (4.67) with derivative feedback: Based on the ob-
servations discussed in Section 4.4.2.3, gain scaling ς1(·) of (4.67) is fixed according to the rec-
ommendation in (4.100). So the closed-loop system (3.80),(4.67) exhibits a well-damped
response with almost no overshoot. Although rise and settling time are the worst in this study
and noise sensitivity is significant, the modified controller (4.67) achieves the best ITAE value
and generates the smallest control action. By gain scaling the degrees of freedom for controller
tuning are increased, which is effectively exploited to guarantee (almost) overdamped transient
behavior (see also discussion in Section 4.4.2.3). Concluding, obeying the recommendation
in (4.100), the modified controller (4.67) is easy to tune and performs reasonably well. It will
be applied for position control of 1MS and 2MS (see Section 5.2.3).
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Figure 4.8: Simulation results for set-point tracking under load of closed-loop systems (3.80),(4.60),
(3.80),(4.65) and (3.80),(4.67) with parametrization as in Tab. 3.1 & 4.1.
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Figure 4.9: Simulation results for reference tracking under load of closed-loop systems (3.80),(4.60),
(3.80),(4.65) and (3.80),(4.67) with parametrization as in Tab. 3.1 & 4.1.
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Applications

drive 1 (φ1, ω1)drive 2 (φ2, ω2)
replaceable inertias

replaceable shaft

Figure 5.1: Laboratory setup: coupled electrical drives.

In the previous chapters, the generalized high-gain adaptive control problem has been solved for
systems of class S1 and for systems of class S2. The presented adaptive λ-tracking controllers
and funnel controllers guarantee that control objectives (co1) & (co2) and (co1), (co2) & (co3)
are accomplished, respectively, for any system of class S1 and class S2.

It remains to prove that these high-gain adaptive controllers are applicable in “real world”—
e.g. at the laboratory setup depicted in Fig. 5.1—and so the high-gain adaptive motion control
problem is solvable. In this chapter, it will be shown that the following applications are feasible:

• high-gain adaptive speed control of industrial servo-systems (see Section 5.2.2),

• high-gain adaptive position control of industrial servo-systems (see Section 5.2.3) and

• position funnel control of rigid revolute joint robotic manipulators (see Section 5.3).

5.1 Mathematical preliminaries

For the following argumentation and implementation, two more mathematical preliminaries are
needed. It will be shown that (i) the use of internal models is also admissible for system classes
S1 and S2 and (ii) the LuGre friction operators, introduced in Section 1.4.5, are element of
operator class T .
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5.1.1 Internal model for system classes S1 and S2

The presented high-gain adaptive controllers in Chapters 3 & 4 are “memoryless” or “propor-
tional” controllers (i.e. no dynamic control action is incorporated). As is well known (see
e.g. [113]): for constant references and/or disturbances (or such exogenous signals approaching
constant limits asymptotically) proportional controllers, in general, do not achieve steady state
accuracy (i.e. limt→∞ e(t) = 0). Often integral control action is required. Therefore, following
the internal model principle (see Section 2.4) a proportional-integral internal model is presented.
It is similar to a PI controller and assures zero tracking errors for constant references and/or
disturbances if steady state is reached.

First a general technicality is shown. In Section 2.4 it has been established that any minimum-
phase LTI SISO system with relative degree zero and positive high-frequency gain connected
in series to a system of class S lin

1 or class S lin
2 yields an inter-connected system of class S lin

1 or
class S lin

2 (see Lemma 2.39). A similar result holds true for system classes S1 and S2.

Lemma 5.1 (Serial interconnection of internal model and system of class S1 (or S2)).
Consider a system of form (1.36) element of class S1 (or S2). If internal model (2.103) is a
minimal realization of (2.101) and x̂0(·) ∈ C([−h, 0];Rp) such that x̂0(0) = x̂0, then the serial
interconnection of system (1.36) and internal model (2.103), given by

d
dt

(
x(t)
x̂(t)

)
=

[
A bĉ

⊤

Op×n Â

](
x(t)
x̂(t)

)
+

(
γ̂0b

b̂

)
v(t) +

(
b

0p

)
ud(t) +

[
BT

Op×m

] (
(Tx)(t) + d(t)

)

y(t) =
(
c⊤, 0

⊤
p

)(x(t)
x̂(t)

)
,

(
x

x̂

)∣∣∣∣
[−h,0]

=

(
x0(·)
x̂
0(·)

)
∈ C
(
[−h, 0]; Rn+p

)
,





(5.1)
is again element of system class S1 (or S2).

Proof of Lemma 5.1.

Define

x̃ :=

(
x

x̂

)
∈ R

n+p, Ã :=

[
A bĉ

⊤

Op×n Â

]
∈ R

(n+p)×(n+p), b̃ :=

(
γ̂0b

b̂

)
∈ R

n+p,

B̃T :=

[
b BT

0p Op×m

]
∈ R

(n+p)×(m+1), c̃ :=

(
c

0p

)
∈ R

n+p, ũd(·) = 0, d̃(·) :=
(
ud(·)
d(·)

)

and

T̃ : C([−h,∞);Rn+p) → L∞
loc(R≥0;R

m+1), (T̃x̃)(t) :=

(
0

(Tx)(t)

)
.

Then it is easy to see that (5.1) may be expressed in the form (1.36). Moreover, system
properties (S1-sp1) and (S1-sp2) (or (S2-sp1) and (S2-sp2)) follow from Lemma 2.39 (see As-
sertions (i)-(iii)). Since T̃ ∈ T with M

T̃
:= MT < ∞, ũd(·) ∈ L∞([−h,∞);R) and d̃(·) ∈

L∞([−h,∞);Rm+1), system properties (S1-sp3) and (S1-sp4) (or (S2-sp3) and (S2-sp4)) are
satisfied. Furthermore, (S1-sp5) (or (S2-sp5)) trivially holds. This completes the proof.

– 176 –



5.1 Mathematical preliminaries

controller
(3.11) or (4.24)

internal
model (2.103)
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(a) Relative degree one case (with system of class S1)
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(b) Relative degree two case (with system of class S2)

Figure 5.2: High-gain adaptive closed-loop systems with internal model.

For the following denote the “controller combination” (serial interconnection) of some controller
(C) and some internal model (IM) by (C)+(IM), then

• Lemma 5.1 combined with Theorem 3.3 or Theorem 4.4 allows for application of controller
combination (3.11)+(2.103) or (4.24)+(2.103) to system (1.36) of class S1;

• Lemma 5.1 combined with Theorem 3.13 or Theorem 4.13 allows for application of con-
troller combination (3.46)+(2.103) or (4.67)+(2.103) to system (1.36) of class S2.

The resulting closed-loop systems are depicted in Fig. 5.2(a) and (b). Note that, for reference
classes W1,∞(R≥0;R) and W2,∞(R≥0;R), an internal model of form (2.103) not necessarily
guarantees asymptotic tracking.

However, if reference and/or disturbance are restricted to constant signals and the closed-loop
system attains steady state, then a PI controller (as internal model) assures zero tracking errors.
A PI controller has the following transfer function

FPI(s) =
u(s)

v(s)
= kP +

kI
s

=
kI + kP s

s
, kI , kP > 0, (5.2)

from input v(s) to output u(s). For kP > 0, it is easy to see that deg(s)− deg(kI + kP s) = 0
and lims→∞ kP +kI/s = kP > 0. Hence PI controller (5.2) has relative degree zero and positive
high-frequency gain. Moreover, since kI + kP s is Hurwitz for kI/kP > 0, the controller is
minimum-phase. A minimal realization of (5.2) is given by

ẋI(t) = v(t), xI(0) = 0,

u(t) = kP v(t) + kI xI(t), kI , kP > 0.

}
(5.3)

The observations above are recorded in the following corollary.

– 177 –



Chapter 5: Applications

Corollary 5.2. Consider a serial interconnection of system (1.36) and proportional-integral
internal model (5.3) with “new” control input v(t).

(i) If system (1.36) is element of class S1, yref(·) ∈ W1,∞(R≥0;R), ς(·) ∈ B1 and ψ(·) ∈ B1

such that ψ(0) > |yref(0)− c⊤x0(0)|, then

(a) application of adaptive λ-tracking controller (3.11) and funnel controller (4.24) is
admissible, respectively, and

(b) for the closed-loop systems (1.36), (3.11)+(5.3) and (1.36), (4.24)+(5.3) with tracking
error e(t) = yref(t)− y(t) the following holds:

∀ t ≥ 0: |e(t)| = |ẋI(t)|
k(t)

;

(ii) If system (1.36) is element of class S2, yref(·) ∈ W2,∞(R≥0;R), ς0(·), ς1(·) ∈ B1 and
(ψ0(·), ψ1(·)) ∈ B2 such that ψ0(0) > |yref(0)−c⊤x0(0)| and ψ1(0) > |ẏref(0)−c⊤Ax0(0)|,
then

(a) application of adaptive λ-tracking controller (3.46) and funnel controller (4.67) with
derivative feedback is admissible, respectively, and

(b) for closed-loop system (1.36), (3.46)+(5.3) and (1.36), (4.67)+(5.3) with tracking er-
ror e(t) = yref(t)− y(t) the following holds respectively:

∀ t ≥ 0: |e(t)| ≤ |ẋI(t)|
k(t)2

+ q1
|ė(t)|
k(t)

and |e(t)| ≤ |ẋI(t)|
k0(t)2

+ k1(t)
|ė(t)|
k0(t)

;

(iii) if steady state is reached, i.e. limt→∞
d
dt
(x(t), xI(t)) = 0n+1, and limt→∞ ẏref(t) = 0, then

limt→∞ e(t) = 0 for each closed-loop system.

Proof of Corollary 5.2.

Substitute v(t) for u(t) in (3.11), (4.24), (3.46) and (4.67), then Assertions (i)(a) and (ii)(a)
follow from Lemma 5.1 and Theorems 3.3, 4.4, 3.13 and 4.13, respectively. Inserting (3.11),
(4.24), (3.46) and (4.67) (with u(t) replaced by v(t)) into (5.3) and solving for |e(t)| yields
Assertions (i)(b) and (ii)(b), respectively. Note that, for limt→∞ ẋ(t) = 0n and limt→∞ ẏref(t) =
0, the following holds limt→∞ ė(t) = limt→∞

(
ẏref(t)− c⊤ẋ(t)

)
= 0. Then Assertion (iii) follows

from limt→∞ ẋI(t) = 0 and Assertions (i)(b) and (ii)(b).

The advantageous effect of a PI controller (or internal model (5.3)) on the control performance
is well known in industry (see [166, p. 81-82]). Concerning high-gain adaptive speed control of
electrical drives, the idea of connecting a PI controller in series to a high-gain adaptive controller
was first noted in [64, Section 4.1.3] and then published in [170]. For position control a similar
result has been accepted for publication in “International Journal of Control” (see [65]).

5.1.2 Friction operators element of operator class

In Section 1.4.5, based on the LuGre friction model introduced in [39], friction has been modeled
as (dynamic) operator. It will be shown that operator class T (see Definition 1.5) subsumes both
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friction operators: the (general) “LuGre friction operator” Lϑ0 as in (1.21) and the “simplified
LuGre friction operator” F as in (1.22) (where viscous friction is excluded).

Lemma 5.3. The “LuGre friction operator” Lϑ0 as in (1.21), parametrized by ϑ0 ∈ R, is
element of operator class T .

Proof of Lemma 5.3.

It suffices to check operator properties (op1), (op2) and (op3) of Definition 1.5.

Step 1: It is shown that (op1), (op2) and (op3)(a) hold true.
In view of (1.21) and Definition 1.5, Property (op1) is readily verified and it follows that
h = 0. To show Property (op2), choose δ > 0 arbitrarily and let ω(·) ∈ C(R≥0;R) such that
supt≥0 |ω(t)| < δ, which with (1.16), (1.20), (1.14) and boundedness of the solution ϑω(·) as
in (1.19) implies

∀ t ≥ 0: |(Lϑ0ω)(t)| ≤ σ max{uS/σ, |ϑ0|}+ νD δ

(
1 +

σ

uC
max{uS/σ, |ϑ0|}

)
+ νδδV =: ∆.

Hence, Property (op2) is satisfied. To show Property (op3)(a), choose ω1(·), ω2(·) ∈ C(R≥0;R)
such that the following holds

∀t ≥ 0 ∀ τ ∈ [0, t] : ω1(τ) = ω2(τ). (5.4)

Then, for any ϑ0 ∈ R, uniqueness of the solution of the initial-value problem (1.18) and (5.4)
imply

∀τ ∈ [0, t] : ϑω1(·)(τ) = ϑω2(·)(τ),

whence (Lϑ0ω1)(τ) = (Lϑ0ω2)(τ) for all τ ∈ [0, t], i.e. Property (op3)(a) and completes Step 1.

Step 2: It is shown that Property (op3)(b) holds true.
For σ > 0, fD(·) as in (1.20), β(·) as in (1.16) and fV (·) as in (1.14), define the functions

g1 : R× R → R, (ω, ϑ) 7→ g1(ω, ϑ) := ω − σ
|ω|
β(ω)

ϑ

and

g2 : R× R → R, (ω, ϑ) 7→ g2(ω, ϑ) := fD(ω)g1(ω, ϑ) + fV (ω). (5.5)

Observe that, g1(·, ·) and g2(·, ·) are locally Lipschitz in ω and ϑ, respectively. More precisely,
for any compact C ⊂ R× R, the following hold

∃L1 > 0 ∀ (ω1, ϑ1), (ω2, ϑ2) ∈ C : |g1(ω1, ϑ1)− g1(ω2, ϑ2)| ≤ L1

(
|ω1 − ω2|+ |ϑ1 − ϑ2|

)
(5.6)

and

∃L2 > 0 ∀ (ω1, ϑ1), (ω2, ϑ2) ∈ C : |g2(ω1, ϑ1)− g2(ω2, ϑ2)| ≤ L2

(
|ω1 − ω2|+ |ϑ1 − ϑ2|

)
. (5.7)
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Choose ω1(·), ω2(·) ∈ C(R≥0;R) such that, for arbitrary t ≥ 0, the following is satisfied

∀ ω̃(·) ∈ C([0, t];R) : ω1|[0,t] = ω̃ = ω2|[0,t] and
∃δ, τ > 0 ∀ s ∈ [t, t+ τ ] : ω1(s), ω2(s) ∈ [ω̃(t)− δ, ω̃(t) + δ]

(5.8)

and define

M := max
s∈[0,t]

|ω̃(s)|+ δ.

For ϑ0 ∈ R, denote the corresponding solution of the initial-value problem (1.18) by

ϑ1(·) := ϑ(·, ϑ0, ω1(·)) and ϑ2(·) := ϑ(·, ϑ0, ω1(·)),

respectively. Note that, due to (1.19), ϑ1(·) and ϑ2(·) are globally defined and uniformly
bounded on R≥0. In view of (5.8), same argumentation as in Step 1 yields ϑ1(α) = ϑ2(α) for
all α ∈ [0, t]. Hence, for

C := [−M, M ]×
[
−max{uS/σ, |ϑ0|}, max{uS/σ, |ϑ0|}

]
, (5.9)

the following holds for all s ∈ [t, t+ τ ]

|ϑ1(s)− ϑ2(s)|
(1.18)

≤ |ϑ1(t)− ϑ2(t)︸ ︷︷ ︸
=0

|+
∫ s

t

∣∣g1(ω1(α), ϑ1(α))− g1(ω2(α), ϑ2(α))
∣∣ dα

(5.7)

≤ L1

∫ s

t

(
|ω1(α)− ω2(α)|+ |ϑ1(α)− ϑ2(α)|

)
dα . (5.10)

Applying Theorem 1.4 in [18, p. 5] (a special version of the Bellman-Gronwall Lemma) yields

∀ s ∈ [t, t+ τ ] : |ϑ1(s)− ϑ2(s)| ≤ L1

∫ s

t

exp(L1(s− α)) |ω1(α)− ω2(α)| dα

≤ L1 max
s∈[t,t+τ ]

|ω1(s)− ω2(s)|
∫ s

t

exp(L1(s− α)) dα

≤ max
s∈[t,t+τ ]

|ω1(s)− ω2(s)|
(
exp (L1(s− t))− 1

)

≤
(
exp (L1τ)− 1

)
max

s∈[t,t+τ ]
|ω1(s)− ω2(s)|. (5.11)
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Now, for C as in (5.9), it follows that for all s ∈ [t, t+ τ ]

|(Lϑ0ω1)(s)− (Lϑ0ω2)(s)|
(1.21)

≤ σ|ϑ1(s)− ϑ2(s)|+
∣∣g2(ω1(s), ϑ1(s))− g2(ω2(s), ϑ2(s))

∣∣
(5.6),(5.11)

≤ σ
(
exp (L1τ)− 1

)
max

s∈[t,t+τ ]
|ω1(s)− ω2(s)|

+L2

(
|ω1(s)− ω2(s)|+ |ϑ1(s)− ϑ2(s)|

)

(5.11)

≤
[
(σ + L2)

(
exp (L2τ)− 1

)
+ L2

]

︸ ︷︷ ︸
=:c0

max
s∈[t,t+τ ]

|ω1(s)− ω2(s)|

which shows Property (op3)(b) and completes the proof.

For modeling of 1MS and 2MS as in (1.24) and (1.26), it is assumed that viscous friction is
linear (i.e. δV = 1 in (1.14)) on motor and load side. So the (general) “LuGre friction operator”
Lϑ0 as in (1.21) reduces to the “simplified LuGre friction operator” F as in (1.22).

Corollary 5.4. The “simplified LuGre friction operator” F as in (1.22) is element of operator
class T .

Proof of Corollary 5.4. Set fV (·) = 0 in (5.5), then it is easy to see that Corollary 5.4 directly
follows from Lemma 5.3.

5.2 Speed and position control of industrial servo-systems

In this section the high-gain adaptive motion control problem (see Section 1.6.1) will be solved
for stiff and elastic industrial servo-systems.

From a theoretical point of view, to prove applicability of the high-gain adaptive controllers pre-
sented in Chapters 3 & 4 for speed and position control, it suffices to show that 1MS (1.24), (1.25)
and 2MS (1.26), (1.27) (without saturation) are or “can be made” element of system classes
S1 and S2. Corresponding proofs are presented in Section 5.2.2 for speed control and in Sec-
tion 5.2.3 for position control. If affiliation is assured, then the results presented in Chapters 3
& 4 can directly be transferred to the high-gain adaptive motion control problem. Affiliation
depends on application and instrumentation configuration. It will be shown that:

• the high-gain adaptive speed control problem of 1MS and 2MS is a subproblem of finding
high-gain adaptive controllers for system class S1;

• the high-gain adaptive position control problem of 1MS and 2MS is a subproblem of finding
high-gain adaptive controllers for system class S2;

• in the presence of actuator saturation, application of funnel controller (4.24) for speed
control and application of funnel controller (4.67) with derivative feedback for position
control is admissible. Theorem 4.7 and Theorem 4.15 cover input saturation: for û = ûA
and uA = uF , saturated funnel controller (4.53) or (4.104) incorporates the serial inter-
connection of funnel controller (4.24) or (4.67) and saturated actuator (1.9), respectively
(see illustrations in Fig. 5.3).
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(b) relative degree two case (position control)

Figure 5.3: Serial interconnection of funnel controller and ‘actuator’ with saturation.

From a practical point of view, to prove applicability of the high-gain adaptive controllers
for speed and position control of industrial servo-systems, implementation in “real world” is
necessary. Comparative measurement results are presented in Section 5.2.2.3 for speed control
and in Section 5.2.3.3 for position control of 1MS and 2MS, respectively. However, not all high-
gain adaptive controllers, introduced in the previous chapters, are reasonable for application
(recall e.g. simulation studies in Sections 3.5.4 and 4.4.3), only the most promising are selected
for implementation:

• the high-gain adaptive controllers with output feedback for systems of class S1—i.e. the
adaptive λ-tracking controller (3.11), the funnel controller (4.24) and the funnel controller
with saturation (4.53)—are applied for speed control of 1MS and 2MS ;

• the high-gain adaptive controllers with derivative feedback for systems of class S2—i.e. the
adaptive λ-tracking controller (3.46), the funnel controller (4.67) and the funnel controller
with saturation (4.104)—are applied for position control of 1MS and 2MS.

These controllers are implemented at the laboratory setup (see Fig. 5.1) of the Institute
of Electrical Drive Systems and Power Electronics. To allow for a “fair” comparison with
standard PI/PID control and to achieve steady state accuracy, also the controller combina-
tions (3.11)+(5.3), (4.24)+(5.3), (3.46)+(5.3) and (4.67)+(5.3) with proportional-integral in-
ternal model (5.3) are implemented. First a brief description of the laboratory setup is given,
then speed control and position control are discussed.

5.2.1 Laboratory setup: coupled electrical drives

The laboratory setup is depicted in Fig. 5.1. It consists of two permanent magnetic syn-
chronous machines and power inverters coupled by a (flexible) shaft. The coupling is gear-less
(i.e. gr = 1). Both drives—machines and inverters—are identical in construction. Each ma-
chine is driven independently by its own power inverter. So drive 1 (with position φ1 and speed
ω1) or drive 2 (with position φ2 and speed ω2) allows to emulate a motor drive or a load drive.

The motor drive generates the motor torque mM(·) [Nm] and accelerates or decelerates the
coupled load under speed or position control, whereas the load drive induces the load torque
mL(·) [Nm]. Both drives are subject to bounded actuator deviation uA(·) [Nm] where ‖uA‖∞ <
0.6 [Nm] (measured), have actuator gain kA ≈ 1 [1] (measured) and are constrained by satu-
ration level ûA = 22 [Nm] (specified for protection of the machines). Torque generation is
(acceptably) fast: torque reference steps are tracked with delay times of Tσ ≈ 2 · 10−3 [s] (see
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drive (mM) load (mL)Θ︷ ︸︸ ︷

(a) “stiff” one-mass system (‘1MS’)

drive (mM)load (mL) Θ2 Θ1

cS, dS

(b) elastic two-mass system (2MS)

Figure 5.4: Emulated industrial servo-systems at the laboratory setup.

Fig. 5.5). Both drives are operated via a standard PC (Intel Pentium 4, 3Ghz, 2GB Ram) run-
ning the real-time operating system xPC-Target v1.6 by Mathworks with fixed sampling time
TS = 1·10−3 [s]. Depending on the selection of the motor drive, reference torque u(·) = mM,ref(·)
(control input) is send to either inverter 1 or to inverter 2 via CAN-Bus (baud rate 1Mbps,
SOFTING CAN-AC2 PCI board). An additional host computer (Intel Pentium 4, 3Ghz, 2GB
Ram, 80GB HD), running Windows XP SP1, is used for monitoring, rapid-prototyping and
data streaming. Rapid-prototyping is done in MATLAB/SIMULINK (Version 7.0.1). The im-
plemented controllers are compiled and then downloaded as executable program to the real-time
xPC target system via Ethernet (100Mbit LAN).

The build-in HEIDENHAIN RON 3350 encoders—with 2048 lines per revolution and 12-bit
interpolation (212 = 4096)—provide position information φ1(·) [rad] for drive 1 and φ2(·) [rad]
for drive 2 which allows for field-oriented (torque) control of each drive. The installed PCI
board HEIDENHAIN IK220 (capturing interface) evaluates the encoder signals simultaneously
and synchronously. By numeric differentiation, it computes the speed signals ω1(·) [rad/s] for
drive 1 and ω2(·) [rad/s] for drive 2 with time delays smaller than 50 · 10−6 [s] (see User’s
manual). Position measurement and speed measurement are deteriorated by bounded mea-
surement errors (see Section 1.4.4) subsumed in nm1(·) [rad] and ṅm1(·) [rad/s] for drive 1 and
nm2(·) [rad] and ṅm2(·) [rad/s] for drive 2, respectively, where ‖nm1‖∞, ‖nm2‖∞ < 6 · 10−5 [rad]
and ‖ṅm1‖∞, ‖ṅm2‖∞ < 4 · 10−2 [rad/s] (measured).

The stiff 1MS (1.24), (1.25) and the elastic 2MS (1.26), (1.27) are emulated at the laboratory
setup by using different shafts and different inertia ratios. Shaft and inertias are replaceable.
Inertia Θ1 and Θ2 [kgm2] can be modified via diverse mountable inertia wheels (e.g. differing
in mass and radius, see Fig. 5.1 and Tab. D.2). The replaceable shafts differ in stiffness
cS [Nm/rad] and damping dS [Nms/rad]. Two typical configurations are depicted in Fig. 5.4.
The linearized models in the frequency domain (transfer functions) of these configurations are
given by (see e.g. [166, p. 948 ff.])

F‘1MS’(s) =
ω2(s)

mM(s)
=

kA
s (Θ1 +Θ2)

·
s2 Θ2

cS
+ s dS

cS
+ 1

s2 Θ1Θ2

cS(Θ1+Θ2)
+ s dS

cS
+ 1

(for conf. in Fig. 5.4(a))

and

F2MS(s) =
ω2(s)

mM(s)
=

kA
s (Θ1 +Θ2)

·
s dS
cS

+ 1

s2 Θ1Θ2

cS(Θ1+Θ2)
+ s dS

cS
+ 1

(for conf. in Fig. 5.4(b))
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Figure 5.5: Torque generation at laboratory setup (left) and bode diagrams of the linearized models of
the configurations depicted in Fig. 5.4 (right).

with natural frequencies (see bode diagrams in Fig. 5.5(b) or use data in Tab. 5.1)

ω‘1MS’
0 =

√
cs(Θ1 +Θ2)

Θ1Θ2

≈ 661 [rad/s] and ω2MS
0 ≈ 61 [rad/s] .

Natural frequency ω‘1MS’
0 is high compared to the typical operation bandwidth (ranging from

0 to 200 [rad/s]) and yields a damped magnitude of ≈ −45 [dB] (see Fig. 5.5(b)), hence the
configuration in Fig. 5.4(a) can be considered as “stiff” one-mass system with overall inertia
Θ = Θ1 +Θ2. The configuration in Fig. 5.4(b) represents an elastic two-mass system.

Several sets of the mechanical parameters cS, dS, Θ1 and Θ2 of the laboratory setup are es-
timated in [7], [151, Appendix A] and [78, Appendix C]. Moreover, in [151, p. 195] friction is
identified using a static friction model (not covering e.g. presliding displacement). The available
sensors do not provide the required resolution (see Section 1.5.3) to identify dynamic friction
as in the LuGre friction model (1.22). For implementation friction will neither be compensated
for nor identified or estimated. Conform to the models of stiff 1MS (1.24), (1.25) and elastic
2MS (1.26), (1.27), the key data of the two configurations of the laboratory setup is collected
in Tab. 5.1, respectively. A complete list of technical data and a description of the electrical
setup can be found in Appendix D.

5.2.2 Speed control

The high-gain adaptive speed control problem is solved in [169]. However, 1MS and 2MS are
not modeled with gear, actuator saturation and motor side friction. Moreover, the presented
measurement results for funnel control are tentative: the chosen asymptotic accuracy is almost
three times larger than the chosen reference magnitude (see Section 6.4 in [169]).

In Sections 5.2.2.1 and 5.2.2.2, the available theoretical results are revisited and supplemented: it
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1MS (as in Fig. 5.4(a)) 2MS (as in Fig. 5.4(b))

actuator ‖uA‖∞ < 0.6 [Nm], kA ≈ 1 [1] (measured), ûA = 22 [Nm] (specified)

real-time system TS = 1 · 10−3 [s] (sampling time specified in xPC target)

mechanics
(
Θ1 = 0.0092 [kgm2], Θ1 = 0.166 [kgm2],
Θ2 = 0.333 [kgm2], Θ2 = 0.333 [kgm2],
cS = 3870 [Nm/rad] , cS = 410 [Nm/rad],
dS = 0.89 [Nms/rad]

)
dS = 0.25 [Nms/rad],

gr = 1 [1], gr = 1 [1]
Θ = Θ1 +Θ2 = 0.3422 [kgm2]

instrumentation ‖nm1‖∞, ‖nm‖∞ = ‖nm2‖∞ < 6 · 10−5 [rad] (position meas. error),
‖ṅm1‖∞, ‖ṅm‖∞ = ‖ṅm2‖∞ < 4 · 10−2 [rad/s] (speed meas. error)

friction ν1, ν2 < 0.005 [Nms/rad] and F1, F2 as in (1.22) with
MF1

,MF2
< 1 [Nm] (see [151, p. 195]), otherwise unknown

initial values x0 = 02

[
rad
s
, rad

]
x0 = 04

[
rad
s
, rad, rad

s
, rad

]

Table 5.1: Key data of laboratory setup (centered values hold for 1MS and 2MS, resp.)

will be shown that 1MS and 2MS with gear and motor and load side friction are or can be
rendered element of system class S1. In Section 5.2.2.3 comparative measurement results will
be presented which underpin industrial applicability.

5.2.2.1 One-mass system of class S1

For speed control, model (1.24) of the rotatory 1MS may be simplified: the state variable of
position φ(·) is irrelevant and so negligible. The simplification yields a reduction of the system’s
order and is motivated by the observation illustrated in Example 2.23. Model (1.24), (1.25)
is actually not element of system class S1. The reduced-order mathematical model for speed
control is given by

ω̇(t) = −ν1+ν2/g2r
Θ

ω(t) + kA
Θ
satûA

(
u(t) + uA(t)

)
− (F1ω)(t)

Θ
− mL(t)+(F2

ω
gr

)(t)

grΘ
,

y(t) = c1 ω(t), ω(0) = ω0 ∈ R

}
(5.12)

where

Θ > 0, gr ∈ R \ {0}, ν1, ν2 > 0, ûA, kA > 0, uA(·), mL(·) ∈ L∞(R≥0;R), c1 ∈ {1, 1/gr} and

∀ i ∈ {1, 2} : Fi as in (1.22) with MFi := sup { |(Fiζ)(t)| | t ≥ 0, ζ(·) ∈ C(R≥0,R) } <∞.

}

(5.13)

Conform to instrumentation configuration (1MS-ic1) (see Section 1.4.6.1) either motor speed
ω(·) or load speed ω(·)/gr is available for feedback, i.e. c1 = 1 or c1 = 1/gr in (5.12).

Proposition 5.5. Consider the 1MS given by (5.12), (5.13) with instrumentation configuration
(1MS-ic1). If actuator saturation is negligible, i.e. ûA → ∞ in (5.12), and if sign(gr) is known,
then it is element of system class S1.
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Proof of Proposition 5.5.

Consider only the case c1 = 1/gr, the other case follows analogously. For uA(·), mL(·), F1 and F2

as in (5.13), define h := 0, x := ω, A := −ν1+ν2/g2r
Θ

, b := kA
Θ

, c := c1 = 1/gr,BT :=
[− 1

Θ
, − 1

grΘ

]
,

T : C([−h,∞),R) → L∞
loc(R≥0;R

2), (Tx)(t) :=
(
(F1 x)(t), (F1 x/gr)(t)

)⊤
, ud(·) := uA(·) and

d(·) = (0, mL(·))⊤. Then, for ûA → ∞, system (5.12) can be expressed in the form (1.36).

Moreover, γ0 := c b = kA
grΘ

(5.13)

6= 0, sign(γ0)
(5.13)
= sign(gr) and

∀ s ∈ C≥0 : det

[
s− A b
c 0

]
= s+

ν1 + ν2/g
2
r + kA

Θ

(5.13)

6= 0,

which shows system properties (S1-sp1) and (S1-sp2), respectively. From Corollary 5.4 it
follows that T ∈ T . In view of (5.13), there exists MT :=

√
2max{MF1

, MF2
} < ∞,

ud(·) ∈ L∞(R≥0;R) and d(·) ∈ L∞(R≥0;R
2). Hence (S1-sp3) and (S1-sp4) are satisfied, re-

spectively. Due to (1MS-ic1), y(·) = ω(·)/gr is available for feedback which shows (S1-sp5).
This completes the proof.

Clearly, Proposition 5.5 with Theorem 3.3 or Theorem 4.4 assures that adaptive λ-tracking con-
troller (3.11) or funnel controller (4.24) are applicable for speed control of the unconstrained
1MS (5.12), (5.13). For funnel control, Theorem 4.7 allows to account for the actuator satura-
tion in (5.12). From Corollary 5.2 it follows that application of controller (3.11) and (4.24) in
combination with internal model (5.3) is admissible and, moreover, if steady state is reached
then both controller combinations guarantee asymptotic speed tracking.

5.2.2.2 Two-mass system of class S1

For speed control, the system order of 2MS (1.26), (1.27) may also be reduced. By introducing
angle of twist φS in [rad], defined by

∀ t ≥ 0: φS(t) :=
φ1(t)

gr
− φ2(t) =

∫ t

0

(
ω1(τ)

gr
− ω2(τ)

)
dτ −φ1(0)

gr
+ φ2(0)

︸ ︷︷ ︸
=−φS(0)

, (5.14)

and the reduced state variable

x(t) = (ω1(t), φS(t), ω2(t))
⊤ ∈ R

3,

the mathematical model (1.26), (1.27) of the 2MS simplifies to

d
dt
x(t) = Ax(t) + b satûA

(
u(t) + uA(t)

)
+BL

(
(F1ω1)(t)

mL(t) + (F2ω2)(t)

)
,

y(t) = c⊤x(t), x(0) = x0 ∈ R
3





(5.15)
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where

A =




−dS+g
2
rν1

g2rΘ1
− cS
grΘ1

dS
grΘ1

1
gr

0 −1

dS
grΘ2

cS
Θ2

−dS+ν2
Θ2


 , b =




kA
Θ1

0
0


 , BL =



− 1

Θ1
0

0 0
0 − 1

Θ2


 , c =



c1
c2
c3


 ,

Θ1,Θ2 > 0, cS, dS > 0, gr ∈ R\{0}, ν1, ν2 > 0, c1, c2, c3 ∈ R, ûA, kA > 0,

uA(·), mL(·) ∈ L∞(R≥0;R) and ∀ i ∈ {1, 2} : Fi as in (1.22) with MFi as in (5.13).





(5.16)

Instrumentation configuration (2MS-ic1)(c) (see Section 1.4.6.2) allows for feedback of all three
states which is indicated by the “general” output coupling vector c in (5.16). In [169, Sec-
tion 6.1.3]) it is shown that shaft oscillations can be actively damped if c2 6= 0 in (5.16) (only
then observability is retained). The following result was introduced in [96]. In contrast to the
model in [96] the 2MS (5.15), (5.16) includes (dynamic) friction on motor and load side and a
gear with ratio gr 6= 0.

Proposition 5.6. Consider the 2MS given by (5.15), (5.16) with instrumentation configuration
(2MS-ic1)(c) and assume that actuator saturation is negligible, i.e. ûA → ∞ in (5.15). If gear
ratio gr and initial value φS(0) of angle of twist are known then, for

c1 > 0,
c2
gr

≥ 0 and
c3
gr
> −c1, (5.17)

the 2MS (5.15), (5.16) is element of system class S1.

Note that knowledge of gear ratio gr is actually a mild presupposition. Typically, the value of
gr can be read off on the gear box and so, without loss of generality, may be assumed to be
known to the control designer.

Proof of Proposition 5.6.

Step 1: It is shown that properties (S1-sp1), (S1-sp3), (S1-sp4) and (S1-sp5) of system class S1

are satisfied.

For BL, uA(·), mL(·), F1 and F2 as in (5.16), define h := 0, ud(·) := uA(·), BT := BL,
d(·) := (0, mL(·))⊤ and

T : C([−h,∞);R3) → L∞
loc(R≥0;R

2), (Tx)(t) :=
(
(F1ω1)(t), (F2ω2)(t)

)⊤
.

Then, for ûA → ∞, system (5.15), (5.16) may be written in the form (1.36). Moreover, the
following hold

(i) γ0 := c⊤b = c1 kA/Θ1

(5.17),(5.16)
> 0 and sign(γ0) = sign(c1),

(ii) from Corollary 5.4 it follows that T ∈ T ,

(iii) in view of (5.16), MT ≤
√
2max{MF1

, MF2
} < ∞ and ud(·) ∈ L∞(R≥0;R) and d(·) ∈

L∞(R≥0;R
2), respectively and
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(iv) instrumentation configuration (2MS-ic1)(c) allows for feedback of ω1(t), ω2(t) and, since
gr and φS(0) are known, of φS(t) =

∫ t
0
(ω1(τ)/gr − ω2(τ)) dτ − φS(0), respectively.

Hence, system properties (S1-sp1), (S1-sp3), (S1-sp4) and (S1-sp5) are satisfied. This completes
Step 1.

Step 2: It is shown that property (S1-sp2) of system class S1 is satisfied.
Since γ0 6= 0 there exists a similarity transformation (see Section 3.3.1)

S : R3 → R
3, x 7→

(
y, z1, z2

)⊤
:= Sx

which converts (5.15), (5.16) into Byrnes-Isidori like form (3.6). Invoking (2.49) with

V = ker c⊤ =



− c2
c1

− c3
c1

1 0
0 1


 and N = (V ⊤V )−1V ⊤[I4 − b(c⊤b)−1c] =

[
0 1 0
0 0 1

]
,

yields the transformation matrix

S =



c1 c2 c3
0 1 0
0 0 1


 and S−1 =



− 1
c1

− c2
c1

− c3
c1

0 1 0
0 0 1


 .

Hence, conform to (3.6), one arrives at

d
dt

(
y(t)
z1(t)
z2(t)

)
= SAS−1

(
y(t)
z1(t)
z2(t)

)
+ Sb

(
u(t) + uA(t)

)
+ SBL


 (F1 row1(S

−1)
(
y

z1
z2

)
)(t)

mL(t) + (F2 row3(S
−1)
(
y

z1
z2

)
)(t)


 ,

(
y(0), z1(0), z2(0)

)⊤
= Sx0

where

SAS−1 =:

[
a1 a⊤

2

a3 A4

]
∈ R

3×3, Sb =



γ0
0
0


 ∈ R

3 and SBL =



− c1

Θ1
− c3

Θ2

0 0
0 − 1

Θ2


 ∈ R

3×2.

More precisely, in view of (2.51), one obtains

a1 = −dS+g
2
rν1

g2rΘ1
+ 1

gr
c2
c1
+ dS

grΘ2

c3
c1

∈ R,

a2 =


 c2

(
dS+ν1g

2
r

g2rΘ1
− dS

grΘ2

c3
c1
− 1

c1

c2
gr

)
+ cS

(
c3
Θ2

− c2
grΘ1

)

c3

(
dS+ν1g

2
r

g2rΘ1
− dS+ν2

Θ2
− 1

grc1

(
c2 + c3

dS
Θ2

))
− c2 + c1

dS
grΘ1


 ∈ R

2,

a3 =
(

1
grc1

, dS
grc1Θ2

)⊤
∈ R

2





(5.18)
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and

A4 =NAV =

[
− 1
gr
c2
c1

− 1
gr
c3
c1
− 1

− dS
grΘ2

c2
c1
+ cS

Θ2
− dS
grΘ2

c3
c1
− dS+ν2

Θ2

]
∈ R

2×2. (5.19)

It is easy to see that the characteristic polynomial of A4, given by

χA4(s) = s2 +

(
dS
c1Θ2

(
c1 +

c3
gr

)
+

1

c1

c2
gr

+
ν2
Θ2

)
s+

(
cS
c1Θ2

(
c1 +

c3
gr

)
+

ν2
c1Θ2

c2
gr

)
,

is Hurwitz for c1, c2 and c3 as in (5.17), hence

(5.17) =⇒ spec(A4) ⊂ C<0. (5.20)

Since

det

[
S(sI3 −A)S−1 Sb

c⊤S−1 0

]
= det

([
S 03

0
⊤
3 1

] [
sI3 −A b

c⊤ 0

] [
S−1

03

0
⊤
3 1

])

= det(S) det(S−1)︸ ︷︷ ︸
=1

det

[
sI3 −A b

c⊤ 0

]
,

note that, for γ0 = c1kA/Θ1 > 0, a1, a2 and a3 as in (5.18) and A4 as in (5.19), the following
holds

det

[
sI3 −A b

c⊤ 0

]
= det



s− a1 −a⊤

2 γ0
−a3 sI2 −A4 02

1 0
⊤
2 0


 = −γ0 det

[
sI2 −A4

] (5.20)

6= 0 ∀ s ∈ C≥0,

which shows property (S1-sp2) of system class S1. Combining Step 1 and Step 2 completes the
proof of Proposition 5.5.

Clearly, Proposition 5.6 with e.g. Theorem 4.4 allows for application of funnel controller (4.24)
for speed control of 2MS (5.15), (5.16) and, from Corollary 5.2, it follows that e.g. controller
combination (4.24)+(5.3) is admissible. Note that only if angle of twist φS(·) is used for feed-
back (i.e. c2 6= 0 in (5.17)), then its initial value φS(0) and gr must be known a priori. For
the case c2 = 0 in (5.17), knowledge of the sign of gear ratio gr is sufficient to satisfy the
presuppositions in (5.17).

To achieve a well damped system response, (positive) feedback of angle of twist φS(·) is necessary
(see [169, Section 6.1.3]). Any choice c2/gr > 0 increases damping of e.g. the closed-loop
system (5.15), (5.16), (4.24)+(5.3) but precludes asymptotic disturbance rejection of constant
loads (see Section 6.1.3 in [169]). To circumvent this conflict of objectives, Ilchmann and
Schuster propose the use of dynamic state feedback incorporating a high-pass filter for the
angle of twist (see [96] or in great detail [169, Section 6.2]). Their result is recapitulated in the
following proposition (again gear and motor side friction are supplemented).
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Proposition 5.7. Consider the 2MS given by (5.15), (5.16) with instrumentation configuration
(2MS-ic1)(c) and assume that actuator saturation is negligible, i.e. ûA → ∞ in (5.15), and let
gear ratio gr and initial value φS(0) of angle of twist be known. Then, for

c1 > 0,
c2
gr

≥ 0,
c3
gr
> −c1 and kF > 0, (5.21)

and with filter and augmented output, given by

ẋF (t) = −kF
(
xF (t) + φS(t)

)
, xF (0) = 0,

y(t) :=
(
c1, c2, c3, c2

)( x(t)
xF (t)

)
,





(5.22)

the augmented 2MS (5.15), (5.16), (5.22) is element of system class S1.

Proof of Proposition 5.7.

The proof is similar to the proof of Proposition 5.6. Only the essential changes are presented.
Step 1: It is shown that properties (S1-sp1), (S1-sp3), (S1-sp4) and (S1-sp5) of system class S1

are satisfied.
For A, b, BL and c as in (5.15), define

Â :=

[
A 03

( 0, −kF , 0 ) −kF

]
, b̂ :=

(
b

0

)
, B̂L :=

[
BL

0
⊤
2

]
and ĉ :=

(
c

c2

)

and express system (5.15), (5.16) with (5.22) as follows

d
dt

(
x(t)
xF (t)

)
= Â

(
x(t)
xF (t)

)
+ b̂ satûA

(
u(t) + uA(t)

)
+ B̂L

(
(F1ω1)(t)

mL(t) + (F2ω2)(t)

)

y(t) = ĉ
⊤
(
x(t)
xF (t)

)
,

(
x(0)
xF (0)

)
=

(
x0

x0F

)
∈ R

4.





(5.23)

For uA(·), mL(·), F1 and F2 as in (5.16), define h := 0, ud(·) := uA(·), BT := B̂L, d(·) :=
(0, mL(·))⊤ and

T : C([−h,∞);R4) → L∞
loc(R≥0;R

2), (T

(
x

xF

)
)(t) :=

(
(F1ω1)(t), (F2ω2)(t)

)⊤
.

Then, for ûA → ∞, system (5.23) may be written in the form (1.36). Moreover, invoking similar
arguments as in Step 1 of the proof of Proposition 5.6 yields that properties (S1-sp1), (S1-sp3),
(S1-sp4) and (S1-sp5) are satisfied, which completes Step 1.

Step 2: It is shown that property (S1-sp2) of system class S1 is satisfied.

Note that γ0 := ĉ
⊤
Âb̂ = c1kA/Θ1 > 0. Hence there exists a similarity transformation

Ŝ : R5 → R
5,

(
x

xF

)
7→ w :=

(
y, z1, z2, z3

)⊤
:= Ŝ

(
x

xF

)

which takes (5.23) into Byrnes-Isidori like form (3.6). More precisely, for
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V̂ = ker ĉ =




− c2
c1

− c3
c1

− c2
c1

1 0 0
0 1 0
0 0 1


 and N̂ = (V̂

⊤
V̂ )−1V̂

⊤
[I4 −

b̂ĉ
⊤

γ0
] =



0 1 0 0
0 0 1 0
0 0 0 1




the transformation matrix is given by

Ŝ =

[
ĉ
⊤

N̂

]
=




c1 c2 c3 c2
0 1 0 0
0 0 1 0
0 0 0 1


 with inverse Ŝ

−1
=




1
c1

− c2
c1

− c3
c1

− c2
c1

0 1 0 0
0 0 1 0
0 0 0 1


 .

Conform to (3.8), one obtains

ẇ(t) = ŜÂŜ
−1
w(t) + Ŝb̂

(
u(t) + uA(t)

)
+ ŜB̂L

(
(F1 row1(Ŝ

−1
)w)(t)

mL(t) + (F2 row3(Ŝ
−1
)w)(t)

)
,

w(0) = Ŝ

(
x0

x0F

)
,

where

ŜÂŜ
−1

=:

[
â1 â

⊤
2

â3 Â4

]
∈ R

4×4, Ŝb̂ =




γ0
0
0
0


 ∈ R

4 and ŜB̂L =




− c1
Θ1

− c3
Θ2

0 0
0 − 1

Θ2

0 0


 ∈ R

4×2.

For a1, a2 and a3 as in (5.18), invoking (2.51) yields â1 = a1 ∈ R,

â2 =



(
a2

0

)
+




−c2kF
0

−c2
(
dS+g

2
rν1

g2rΘ1
− kF − dS

grΘ2

c3
c1
− 1

c1

c2
gr

)





 ∈ R

3,

â3 =
(
a⊤
3 , 0

)⊤ ∈ R
3 and

Â4 = N̂ÂV̂ =




− 1
gr
c2
c1

− 1
gr
c3
c1
− 1 − 1

c1

c2
gr

− dS
grΘ2

c2
c1
+ cS

Θ2
− dS
grΘ2

c3
c1
− dS+ν2

Θ2
− dS
grΘ2

c2
c1

−kF 0 −kF


 ∈ R

3×3.
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Note that the following hold

m0 := kF
cS
c1Θ2

(
c1 +

c3
gr

) (5.21)
> 0,

m1 := kF
dS
c1Θ2

(
c1 +

c3
gr

)
+

m0/kF︷ ︸︸ ︷
cS
c1Θ2

(
c1 +

c3
gr

)
+ ν2

Θ2

(
kF + 1

c1

c2
gr

) (5.21)
> 0,

m2 := dS
c1Θ2

(
c1 +

c3
gr

)
+ kF + ν2

Θ2
+ 1

c1

c2
gr

(5.21)
> 0 and m2m1 −m0 > 0.

Hence the characteristic polynomial of Â4, i.e. χÂ5
(s) = s3 +m2s

2 +m1s+m0, is Hurwitz [77,

Theorem 3.4.71, p. 339] and spec(Â4) ⊂ C<0. Now a similar argumentation as in Step 2 of
the proof of Proposition 5.6 shows that property (S1-sp2) is satisfied, which completes Step 2.
Combining Step 1 and Step 2 completes the proof of Proposition 5.7.

Clearly, Proposition 5.7 in conjunction with Theorem 3.3, Theorem 4.4 or Theorem 4.7 assures
that the high-gain adaptive controllers (3.11), (4.24) or (4.53) are applicable for speed control
of augmented 2MS (5.12), (5.13), (5.22), respectively. Furthermore, in view of Corollary 5.2,
the controller combinations (3.11)+(5.3) and (4.24)+(5.3) are also admissible. Due to the
augmented output

∀ t ≥ 0: y(t) = c1ω1(t) + c2φS(t) + c3ω2(t) + c2xF (t)

and since load speed tracking is the control task, it is necessary to scale load speed reference
ω2,ref(·) and introduce the augmented reference given by (see [169, p. 176])

∀ t ≥ 0: yref(t) := (c1/gr + c3)ω2,ref(t).

It is easy to see that e.g. funnel controller (4.24) with boundary ψ(·) ∈ B1 assures that the
augmented error e(·) = yref(·) − y(·) evolves within the performance funnel (i.e. |e(t)| < ψ(t)
for all t ≥ 0) however this does not imply that load speed error ω2,ref(·)− ω2(·) remains within
the prescribed region. Only if steady state is reached and controller combination (4.24)+(5.3)
(or (3.11)+(5.3)) is applied to the augmented 2MS (5.15), (5.16), (5.22), then limt→∞ e(t) = 0
implies also limt→∞ ω2,ref(t)− ω2(t) = 0 (see Theorem 6.11 in [169]).

Remark 5.8 (Design parameters c1, c2, c3 and kF ).
Besides the presuppositions in (5.21), the constants c1, c2, c3 and kF are free design parame-
ters. Some recommendations are given for controller implementation: The augmented output
in (5.22) incorporates filter state xF (·). An analysis in the frequency domain reveals the idea
behind the filter: denote the Laplace transforms of angle of twist and of filter state by φS(s) and
xF (s), respectively. Then, from (5.22), it follows that

xF (s) =
−kF
s+ kF

φS(s), (5.24)

which is a first-order low-pass filter of negative angle of twist φS(·) with cut-off frequency
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kF [rad/s]. Moreover, it is easy to see that the following holds

φS(s) + xF (s) =

(
1 +

−kF
s+ kF

)
φS(s) =

1

kF

s

1 + s/kF
φS(s)

︸ ︷︷ ︸
≈φ̇S(·) for kF≫1

. (5.25)

The transfer function in (5.25) can be regarded as high-pass filter of angle of twist φS(·). Clearly,
feedback of φ̇S(·) increases damping of the closed-loop system (see e.g. [166, p. 962]). The
observation in (5.25) (or see a detailed discussion in Section 6.1.3 in [169]) indicates that large
values for c2 and kF support system damping. Simulation and measurement results reveal that
a choice 0 > c3/gr > −c1 increases damping additionally.

5.2.2.3 Measurements

In the previous sections, it has been shown that high-gain adaptive speed control of (the models
of) 1MS (5.12), (5.13) and 2MS (5.15), (5.16) is admissible, respectively. Now it will be shown
that high-gain adaptive speed control of stiff and flexible industrial servo-systems in “real world”
is indeed feasible. Therefore, three speed control (SC) experiments are carried out at the
laboratory setup (see Section 5.2.1). The measurement results will show that

• adaptive λ-tracking controller (3.11) and funnel controller (4.24) in combination with
proportional-integral internal model (5.3) can keep up with standard PI speed control of
stiff servo-systems (1MS),

• high-gain adaptive speed control and, in addition, active damping of shaft oscillations of
flexible servo-systems (2MS) is practicable and

• speed funnel control of 1MS and 2MS in the presence of actuator saturation may work
even if feasibility condition (4.54) is violated.

Experiment SC1 — speed control of 1MS:
Five controllers are implemented at the laboratory setup for speed control of the emulated 1MS
(see Fig. 5.4(a)). Benchmark controller is a standard PI controller as in (1.28) (with kD = 0
and uF (·) = 0), whereas the other four controllers are the adaptive λ-tracking controller (3.11),
the funnel controller (4.24) and the serial interconnections (3.11)+(5.3) and (4.24)+(5.3) with
proportional-integral internal model (5.3).

Control task is set-point and reference tracking under changing disturbances (load torques).
Reference yref(·) = ωref(·) ∈ W1,∞(R≥0;R) and load torque mL(·) ∈ L∞(R≥0;R) are depicted
in Fig. 5.8 (see top and bottom, respectively). Controller implementation in the xPC target
real-time system is illustrated in Fig. 5.6. For each run the ‘speed controller’ in Fig. 5.6 corre-
sponds to one of the five controllers above. So Experiment SC1 consists of five runs in total.
A single run takes 50 [s].

To achieve comparable runs, all controllers are designed under the same circumstances:

(i) the available drive torque of the laboratory setup is not to be exceeded, i.e. u(t) ≤ ûA =
22 [Nm] for all t ≥ 0,
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speed
controller

(emulated) 1MS with ‘sensor’implementation in xPC target

e

ṅm2 =: ṅm

ω2 =: ω

ωm = ω + ṅm

yref = ωref u

−
W1,∞

Figure 5.6: Block diagram of implementation at laboratory setup for speed control of (emulated) 1MS.

(ii) the generated reference torque at startup equals the maximal admissible torque, i.e. u(0) =
mM,ref(0) = 22 [Nm] (to achieve the fastest possible initial acceleration). Note that actu-
ator deviations deteriorate the initial drive torque, hence solely mM(0) ≈ 22 [Nm] is to be
expected and

(iii) the following motion control objectives—formulated in terms of maximum rise and settling
time and maximum overshoot (similar to (mco1), (mco2) and (mco3) in Section 1.1)—must
be accomplished for set-point tracking without load (i.e. the interval [0, 5] [s]):

trref,0.8 = 0.5 [s] , tsref,0.1 = 1.0 [s] and ∆os
ref = 25 [%] for ŷref = 10 [rad/s] . (5.26)

To accomplish the motion control objectives in (5.26), the PI controller (1.28) and the adaptive
λ-tracking controller (3.11) with and without internal model (5.3) are tuned by trial and error
and so several implementation attempts are required to meet the specifications. In contrast,
funnel controller (4.24) with and without internal model (5.3) directly allows to include control
objectives (5.26) in boundary design and, consequently, the first implementation yields a suc-
cessful run (fulfilling the control objectives), respectively. Data of reference, disturbance and
controller design is collected in Tab. 5.4.

Control performance of each controller is evaluated by means of rise time try(·),0.8, settling
time tsy(·),0.1 and overshoot ∆os

y(·) for set-point tracking (i.e. the interval [0, 5] [s]) and by the
ITAE criterion as in (3.82) for reference tracking under (varying) load (i.e. the overall interval
[0, 50] [s]). Performance evaluation is summarized in Tab. 5.3. Measurement results are de-
picted in Fig. 5.7(a) for set-point tracking and in Fig. 5.8 for reference tracking under varying
load. The results are distinguishable from one another by the following color and line style
assignment (to improve readability the controllers are restated):

(1.28) with kD = 0 and uF (·) = 0, i.e. PI controller:

u(t) = kP e(t) + kI

∫ t

0

e(τ) dτ ;

(3.11), i.e. adaptive λ-tracking controller:

u(t) = k(t) e(t) where k̇(t) = q1 dλ
(
|e(t)|

)q2 , k(0) = k0;
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controller/system Experiment SC1 (1MS) Experiment SC2 (2MS)

reference ŷref = 10 [rad/s], for yref(·) see top of Fig. 5.8 & 5.10, resp.
‖yref‖∞ = 50 [rad/s], ‖yref‖∞ = 30 [rad/s],
‖ẏref‖∞ = 4 [rad/s2] ‖ẏref‖∞ = 2 [rad/s2]

load torque for mL(·) see bottom of Fig. 5.8, ‖mL‖∞ = 10 [Nm]

augmented output — c1 = 1 [1], c2 = 100
[
1
s

]
,

& filter as in (5.22) c3 = −0.1 [s], kF = 5
[
rad
s

]

initial error e(0) = 10
[
rad
s

]
e(0) = (c1 + c3)ŷref = 9

[
rad
s

]

PI controller kP = 2.2
[
Nms
rad

]
, kI = 6.0

[
Nm
rad

]
—

as in (1.28) kD = 0
[
Nms2

rad

]
, uF (·) = 0 [Nm]

λ-tracking controller q1 = 0.1 [1], q2 = 2 [1], λ = 0.99
[
rad
s

]

as in (3.11) k0 =
ûA
e(0)

= 2.2
[
Nms
rad

]
k0 =

ûA
e(0)

= 2.44
[
Nms
rad

]

funnel controller ψ(·) as in (4.8) and ς(·) = ûA(Λ−e(0))
Λe(0)

ψ(·) where
as in (4.24) Λ = 2e(0) = 20

[
rad
s

]
Λ = 2e(0) = 18

[
rad
s

]

λ = 0.99
[
rad
s

]
λ = 0.99

[
rad
s

]

TE = 0.134 [s] TE = 0.154 [s]

internal model
as in (5.3) kP = 1 [1], kI = 3

[
1
s

]
kP = 1 [1], kI = 2

[
1
s

]

Table 5.2: Implementation data of Experiment SC1 (speed control of 1MS) and Experiment SC2 (speed
control of 2MS). Centered values hold for both experiments.

(4.24), i.e. funnel controller:

u(t) = k(t) e(t) where k(t) =
ς(t)

ψ(t)− |e(t)| ;

(3.11)+(5.3), i.e. adaptive λ-tracking controller with internal model (kP = 1):

u(t) = k(t) e(t) + kI

∫ t

0

k(τ)e(τ) dτ where k̇(t) = q1 dλ
(
|e(t)|

)q2 , k(0) = k0;

(4.24)+(5.3), i.e. funnel controller with internal model (kP = 1):

u(t) = k(t) e(t) + kI

∫ t

0

k(τ)e(τ) dτ where k(t) =
ς(t)

ψ(t)− |e(t)| .

Discussion of the measurement results for set-point tracking (see Fig. 5.7(a)):
Clearly, all five controllers accomplish the motion control objectives specified in (5.26) (see
Tab. 5.3). The high-gain adaptive controllers (3.11) and (4.24) without internal model
yield no overshoots and the fastest settling times, but do not achieve steady state accu-
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experiment controller try(·),0.8 [s] tsy(·),0.1 [s] ∆os
y(·) [%] ITAE [rad s]

SC1 (1MS) (1.28) 0.22 0.98 18.2 96.5
(3.11) 0.30 0.48 0.0 1539.0
(4.24) 0.29 0.46 0.0 (aborted run)
(3.11)+(5.3) 0.19 0.82 17.7 70.3
(4.24)+(5.3) 0.21 0.55 13.3 80.9

SC2 (2MS) (3.11) 0.46 0.63 0.0 1709.2
(4.24) 0.36 0.45 0.0 (aborted run)
(3.11)+(5.3) 0.33 1.37 22.3 121.3
(4.24)+(5.3) 0.33 1.05 18.9 120.6

Table 5.3: Controller performance for Experiment SC1 (speed control of 1MS) and Experiment SC2
(speed control of 2MS).

racy. PI controller (1.28) and the high-gain adaptive controllers (3.11)+(5.3) and
(4.24)+(5.3) with internal model have comparable control performance and assure that the

control error asymptotically vanishes, respectively. The funnel controller (4.24)+(5.3) with
internal model shows the smallest settling time and the lowest overshoot but, to reach steady
state, this controller combination takes the longest time.

Discussion of the measurement results for reference tracking under varying load (see Fig. 5.8):
Adaptive λ-tracking controller (3.11) without internal model produces large contouring
errors and so has the worst ITAE value (see Tab. 5.3). Moreover, this controller does not
attain standstill at 50 [s]. Funnel controller (4.24) without internal model cannot assure
error evolution within the performance funnel. Due to the step-like load torque mL(·) at 5 [s]
the tracking error approaches the boundary very closely and modeling assumptions (ma1) and
(ma4) are violated (see Section 1.6.1): near the boundary, due to large gains (> 20, not shown),
noise amplification is drastically increased, real-time execution in “quasi-continuous time” does
not hold anymore and the actuator cannot provide the required drive torque sufficiently fast.
As a consequence the error suddenly ”jumps” out of the prescribed region which results in
reversed control action (sign change in the gain). Hence this run is aborted after ≈ 12 [s]. The
chosen asymptotic accuracy λ = 0.99 [rad/s] is too demanding for funnel control under load: at
the laboratory setup, speed measurement is too noisy and torque generation is too slow. In
Experiment SC3 it will be shown that funnel control without internal model works for speed
control of the 1MS if funnel design is more relaxed.

Control performance of the controllers (1.28), (3.11)+(5.3) and (4.24)+(5.3) with
integral control action is similar (see evaluation of ITAE criterion in Tab. 5.3). The fun-
nel controller (4.24)+(5.3) with internal model assures error evolution within the perfor-
mance funnel (by adequate gain adaption) whereas, for PI controller (1.28) and adaptive
λ-tracking controller (3.11)+(5.3) with internal model, the tracking error leaves the pre-
scribed region when step-like load torques are induced at 5, 15 and 35 [s], respectively. Nev-
ertheless (and interesting to note that), the adaptive λ-tracking controller (3.11)+(5.3)
with internal model gives the best ITAE value. Noise amplification of the high-gain adaptive
controllers (3.11), (3.11)+(5.3) and (4.24)+(5.3) is slightly higher than that of
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(b) Experiment SC2 (2MS) — top: measured load speed
ω2(·) + ṅm2(·); bottom: (augmented) error e(·)

Figure 5.7: Measurement results of Experiment SC1 & SC2: set-point tracking speed control of emu-
lated 1MS (left) and 2MS (right) for different controllers (see p. 194): (1.28) (only for
1MS), (3.11), (4.24), (3.11)+(5.3), (4.24)+(5.3) with parametrization as
in Tab. 5.2.

PI controller (1.28). Note that, only the gain of λ-tracking controller (3.11) dras-
tically and permanently exceeds gain kP = 2.2 [Nms/rad] of PI controller (1.28) with
limt→50 k(t) ≈ 7 [Nms/rad]. For the interval [5−35] [s] the tracking error cannot be kept within
the λ-strip. In contrast, for adaptive λ-tracking controller combination (3.11)+(5.3), the
error remains within the λ-strip for almost all time. After a fast adaption phase within the in-
terval [0, 1] [s], the controller gain of (3.11)+(5.3) stays almost constant (≈ 2.9 [Nms/rad])
and is slightly larger than kP = 2.2 of PI controller (1.28). The time-varying gain of funnel
controller combination (4.24)+(5.3) only increases if necessary, e.g. see the peak at 35 [s]
with k(35) = maxt∈[0, 50] k(t) ≈ 7.9 [Nms/rad] when the load torque is reduced step-like. Most
of the time, its gain is even smaller than gain kP of PI controller (1.28).

Remark 5.9. Obviously, the PI controller (1.28) could be designed more properly, using
e.g. anti-wind up strategies (see [166, Section 5.6]), such that better tracking performance and
disturbance rejection is to be expected. But for the comparison here, the intention is to show
the limits of classical PI speed control with constant gains: adaption to changing disturbances
is not possible.
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Figure 5.8: Measurement results of Experiment SC1 (speed control of 1MS) for different controllers
(see p. 194): (1.28), (3.11), (4.24), (3.11)+(5.3), (4.24)+(5.3) with
parametrization as in Tab. 5.2 (from top to bottom: measured speed ω(·) + ṅm(·), speed
error e(·), gain kP & k(·) and drive torque mM (·) = satûA

(
u(·) + uA(·)

)
).
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speed
controller

ẋF = −kF
(
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2MS with ‘sensors’

yref =
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implementation in xPC target
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ṅm1

ṅm2

ω1,m = ω1 + ṅm1

ω2,m = ω2 + ṅm2
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−

−
W1,∞

Figure 5.9: Block diagram of implementation at laboratory setup for speed control of 2MS.

Experiment SC2 — speed control of 2MS:
Experiment SC2 is similar to Experiment SC1. Control task is load speed set-point tracking
without load and reference tracking under varying loads. Load speed reference ω2,ref(·) ∈
W1,∞(R≥0;R) and disturbance torque mL(·) ∈ L∞(R≥0;R) are depicted in Fig. 5.10 (see top
and bottom, respectively). Since

ω2MS
0 = 61 [rad/s] ≪ 1/(2Tσ) = 1/(4 · 10−3) [rad/s] = 250 [rad/s]

(see Section 5.2.1), the implementation of PI controller (1.28) (with kD = 0 and uF (·) = 0)
requires re-design (deceleration) of torque controller in the inverter to assure stability of the
overall closed-loop system (see [166, Section 19.1]). Hence a comparison with standard PI
control is omitted and only the four high-gain adaptive controllers (3.11), (4.24),

(3.11)+(5.3) and (4.24)+(5.3) in conjunction with augmented output and high-pass
filter as in (5.22) are applied for speed control of the 2MS. Color assignment is identical to
Experiment SC1 (see p. 194). Again a single run takes 50 [s].

The implementation of the high-gain adaptive speed controllers is illustrated in Fig. 5.9. Fil-
ter and augmented output are shown for measured signals (with index m) deteriorated by
measurement errors. In comparison to Experiment SC1, due to the increased overall inertia
Θ1+Θ2 = 0.499 [kgm2], the reference ω2,ref(·) is slightly adjusted: its slope and so its maximal
magnitude ‖ω2,ref‖∞ = 30 [rad/s] are reduced (see top of Fig. 5.10). Also the motion control
objectives are relaxed as follows:

trref,0.8 = 1.0 [s] , tsref,0.1 = 1.5 [s] and ∆os
ref = 25 [%] for ŷref = 10 [rad/s] . (5.27)

All controllers are designed such that u(0) = mM,ref(0) = 22 [Nm] and |u(t)| ≤ 22 [Nm] for
all t ≥ 0. Design parameters of each implementation are listed in Tab. 5.2. Measurement
results are shown in Fig. 5.7(b) for set-point tracking without load (i.e. the interval [0, 5] [s])
and in Fig. 5.10 for reference tracking under changing load (i.e. the interval [0, 50] [s]). Eval-
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uation of control performance is done by means of rise time try(·),0.8, settling time tsy(·),0.1 and
overshoot ∆os

y(·) for load speed set-point tracking and by the ITAE criterion for load speed ref-
erence tracking. To compute the ITAE criterion, e(τ) in (3.82) is replaced by load speed error
ω2,ref(τ)− ω2(τ). Evaluation results are summarized in Tab. 5.3.

Discussion of the measurement results for load speed set-point tracking (see Fig. 5.7(b)):
First observe that all closed-loop systems exhibit noticeable oscillations in augmented error
e(·) whereas load speed ω2(·) is well damped (see bottom and top of Fig. 5.7(b), respectively).
Clearly, all four controllers accomplish the motion control objectives specified in (5.27) (see
Tab. 5.8). But for the 2MS, due to the augmented output, even funnel controller design re-
quires several tuning iterations: error evolution within the performance funnel does not imply
that load speed error ω2,ref(·)−ω2(·) evolves within the prescribed region (see top of Fig. 5.7(b)!).

Discussion of the measurement results for load speed reference tracking (see Fig. 5.10):
The measurement results are similar to Experiment SC1. The adaptive λ-tracking controller

(3.11) without internal model yields bad transient tracking accuracy (large contouring
errors) and so the largest ITAE value (see Tab. 5.3). After the load step at 5 [s], funnel con-
troller (4.24) without internal model is not capable to keep the augmented error within the
performance funnel. The run is aborted after ≈ 11 [s]. Again, boundary design (asymptotic
accuracy) is too demanding for the noisy speed sensor signal at the laboratory setup. The
controller combinations with internal model, i.e. (3.11)+(5.3) and (4.24)+(5.3), have
comparable control performance and achieve steady state accuracy (in augmented error and
load speed error!). Evaluation of the ITAE criterion yields similar values for both high-gain
adaptive controller combinations (see Tab. 5.3). Noise amplification of the high-gain adaptive
controllers (3.11) , (3.11)+(5.3) and (4.24)+(5.3) is acceptable.

Experiment SC3 — saturated funnel controller for speed control of 1MS and 2MS:
Experiment SC3 is similar to the runs of Experiment SC1 & SC2 with funnel controller (4.24).
Now, instead of (4.24), the saturated funnel controller (4.53) (with uF (·) = 0), i.e.

u(t) = satû

(
k(t) e(t)

)
where k(t) =

ς(t)

ψ(t)− |e(t)| and
ς(·) as in Tab. 5.2,
ψ(·) as in (4.8),

is implemented for speed control of 1MS and 2MS (see implementation in Fig. 5.6 and Fig. 5.9,
respectively). Reference and disturbance are as in Experiments SC1 & SC2 (see top and bottom
of Fig. 5.11(a) and (b), respectively). The purpose of this experiment is to illustrate that

(a) funnel control without proportional-integral internal model is feasible for speed control of
1MS and 2MS, if boundary design is not too demanding and

(b) funnel control with saturation is feasible for speed control of 1MS and 2MS, even if feasibility
condition (4.54) is violated.

To show (a), in contrast to Experiment SC1 & SC2, the funnel boundary of saturated funnel
controller (4.53) is designed with larger asymptotic accuracy (otherwise similar to the design in
Tab. 5.2). More precisely, for exponential boundary ψ(·) as in (4.8), the following parameters
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Figure 5.10: Measurement results of Experiment SC2 (speed control of 2MS) for different controllers
(see p. 194): (3.11), (4.24), (3.11)+(5.3), (4.24)+(5.3) with parametriza-
tion as in Tab. 5.2 (from top to bottom: measured load speed ω2(·) + ṅm2(·), (augmented)
error e(·), gain k(·) and drive torque mM (·) = satûA

(
u(·) + uA(·)

)
).
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are chosen:

for 1MS: Λ = 20 [rad/s] , λ = 2.99 [rad/s] and TE = 0.134 [s] and
for 2MS: Λ = 18 [rad/s] , λ = 2.99 [rad/s] and TE = 0.137 [s] .

}
(5.28)

The choice λ = 2.99 [rad/s] is the smallest possible to make funnel control without internal
model work at the laboratory setup.
To show (b), feasibility condition (4.54) is evaluated and saturation level û of saturated funnel
controller (4.53) is successively reduced until speed funnel control fails for 1MS and 2MS. So a
sufficient and a necessary condition for saturation level û is obtained, respectively.

The measurement results are depicted in Fig. 5.11 for 1MS and 2MS. The results underpin
that (load) speed tracking with prescribed transient accuracy for industrial servo-systems with
constrained control action is feasible. For the settings of Experiment SC3, the measurements in-
dicate that the following saturation levels are necessary: û = 15 [Nm] for 1MS and û = 13.5 [Nm]
for 2MS. To check sufficiency the feasibility condition (4.54) is evaluated for 1MS (5.12), (5.13)
and for augmented 2MS (5.15), (5.16), (5.22) (with filter). To ease computation, assume that
both systems are exactly known. Then collecting the system data in Tab. 5.1, the implementa-
tion data in Tab. 5.2 (reference, disturbance, etc.) and the data of boundary design as in (5.28),
invoking M as in (4.20) and choosing δ = 0.01 [1/s2] in (4.54) (arbitrarily) yields:

for 1MS: ‖ψ̇‖∞ = 126.95
[
rad/s2

]
, γ0 = 2.92

[
1/kgm2

]
and M = 53.99

[
1/s2

]

=⇒ ufeas = 61.97 [Nm] whereas û = 15 [Nm] !

for 2MS: ‖ψ̇‖∞ = 109.57
[
rad/s2

]
, γ0 = 6.02

[
1/kgm2

]
and M = 3.97 · 1013

[
1/s2

]

=⇒ ufeas = 6.60 · 1012 [Nm] whereas û = 13.5 [Nm] !

All values are rounded. Both feasibility numbers are much larger than the actually required
maximal torque. For the 1MS, the computed value of ufeas is still reasonable and realistic.
In contrast, for the 2MS, ufeas is extremely huge. This is due to the very rough bound Mz =
2.16·1010 as in (4.19) (with MV̇ = 2.02·107 as in (4.17)) on the internal dynamics1. Concluding,
evaluation of feasibility condition (4.54) gives very conservative bounds and might not be useful
(or helpful) for application. Nevertheless, the measurement results indicate that funnel control
works even in the presence of actuator saturation if the motion control objectives are reasonable.

5.2.3 Position control

In this section, a solution to the high-gain adaptive position control problem will be presented.
It will be shown that the high-gain adaptive controllers with derivative feedback for system
class S2 (presented in Chapters 3 & 4) are applicable for position control of stiff and flexible
industrial servo-systems. By adequate tuning the controllers assure fulfillment of e.g. motion
control objectives (mco1)-(mco3).

First, in Sections 5.2.3.1 and 5.2.3.2, affiliation of 1MS (1.24), (1.25) and 2MS (1.26), (1.27) to

1To obtain Mz and MV̇ , the augmented 2MS (5.15), (5.16), (5.22) must be transformed into BIF to allow
for computation of |â1|, ‖â2‖, ‖â3‖, etc. (see proof of Proposition 5.7). The details are omitted.
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Figure 5.11: Measurement results of Experiment SC3: saturated funnel controller (4.53) for speed con-
trol of 1MS ( left) and 2MS ( right).
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system class S2 is established, respectively. Hence, from a theoretical point of view, high-gain
adaptive position control is admissible. To underpin industrial applicability, in Section 5.2.3.3,
the high-gain adaptive (position) controllers are implemented at the laboratory setup and com-
parative measurement results are presented for a stiff and a flexible servo-system.

5.2.3.1 One-mass system of class S2

The 1MS (1.24), (1.25) represents the fundamental plant model for position control problems in
mechatronics. Neglecting actuator saturation, affiliation to system class S2 can be established
easily.

Proposition 5.10. Consider the 1MS given by (1.24), (1.25) with instrumentation configu-
ration (1MS-ic2) and output coupling c⊤ = (0, c2), c2 ∈ {1, 1/gr}. If actuator saturation is
negligible, i.e. ûA → ∞ in (1.24), and sign(gr) is known, then 1MS (1.24), (1.25) is element of
system class S2.

Note that gear ratio gr is written on the gear box. Hence its value and, clearly, its sign are
available to the control designer.

Proof of Proposition 5.10.

Only the case c2 = 1/gr is considered, the case c2 = 1 follows analogously. For BL, uA(·),
mL(·), F1 and F2 as in (1.25), define h := 0, ud(·) := uA(·), BT := BL, d(·) := (0, mL(·))⊤
and T : C([−h,∞);R2) → L∞

loc(R≥0;R
2), (Tx)(t) :=

(
(F1ω)(t), (F2ω/gr)(t)

)⊤
. Then, for

ûA → ∞, system (1.24) with (1.25) can be written in the form (1.36) and the following hold:

(i) c⊤b = 0, c⊤BT = 0
⊤
2 , γ0 := c⊤Ab

(1.24)
= kA

grΘ

(1.25)

6= 0 and sign(γ0)
(1.25)
= sign(gr),

(ii)

det



s+ ν1+ν2/g2r

Θ
0 kA

Θ

−1 s 0
0 1

gr
0


 = (−1)(1+3)kA

Θ
det

[−1 s
0 1

gr

]
= − kA

grΘ

(1.25)

6= 0,

(iii) Corollary 5.4 gives F1,F2 ∈ T , hence T ∈ T and, in view of (1.25), there exists MT :=√
2max{MF1

, MF2
} <∞ and ud(·) ∈ L∞(R≥0;R) and d(·) ∈ L∞(R≥0;R

2) and

(iv) in view of instrumentation configuration (1MS-ic2), output y(·) = φ(·)/gr and derivative
ẏ(·) = ω(·)/gr are available for feedback.

Hence, all properties (S2-sp1)–(S2-sp5) of system class S2 are satisfied. This completes the
proof.

Clearly, Proposition 5.10 with Theorem 3.13 and Theorem 4.13 allows for application of adaptive
λ-tracking controller (3.46) and funnel controller (4.67) with derivative feedback for position
control of 1MS (1.24), (1.25). In view of Corollary 5.2, the controller combinations (3.46)+(5.3)
and (4.67)+(5.3) with proportional-integral internal model (5.3) are admissible and moreover,
if steady state is reached, guarantee steady state accuracy. Theorem 4.7 allows to account
for actuator saturation and assures tracking with prescribed transient accuracy if feasibility
condition (4.107) is satisfied.
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5.2.3.2 Two-mass system of class S2

Model (1.26), (1.27) of the 2MS is not in general element of system class S2, even if actuator
saturation is negligible. Affiliation depends on the chosen output y(·). More precisely, output
coupling vector c in (1.26) determines the relative degree and affects the minimum-phase con-
dition. Under mild assumptions the 2MS (1.26), (1.27) without constrained actuator “can be
made” element of system class S2.

Proposition 5.11. Consider the 2MS given by (1.26), (1.27) with instrumentation configura-
tion (2MS-ic2)(c) and assume that actuator saturation is negligible, i.e. ûA → ∞ in (1.26).
Then, for

c⊤ =
(
0, c1, 0, c2

)
, c1 > 0 and

c2
gr
> −c1, (5.29)

the 2MS (1.26), (1.27) is element of system class S2.

The output coupling vector c in (5.29) yields the “auxiliary” output

∀t ≥ 0: y(t) = c1φ1(t) + c2φ2(t) (5.30)

(i.e. a linear combination of motor and load position) and assures, with the presuppositions
in (5.29), that 2MS (1.26), (1.27) is minimum-phase and has relative degree two and posi-
tive high-frequency gain. Note that only the sign of gear ratio gr is required to satisfy the
presuppositions in (5.29).

Proof of Proposition 5.11.

Step 1: It is shown that properties (S2-sp1), (S2-sp3), (S2-sp4) and (S2-sp5) of system class S2

are satisfied.
For BL, uA(·), mL(·), F1 and F2 as in (1.27), define h := 0, ud(·) := uA(·), BT := BL,
d(·) := (0, mL(·))⊤ and

T : C([−h,∞);R4) → L∞
loc(R≥0;R

2), (Tx)(t) :=
(
(F1ω1)(t), (F2ω2)(t)

)⊤
.

Then, for ûA → ∞, system (1.26) with (1.27) may be expressed in the form (1.36). Simple
calculations give

c⊤b = 0, c⊤BT = 0
⊤
2 , γ0 := c

⊤Ab = c1 kA/Θ1

(5.29),(1.27)
> 0 and sign(γ0) = sign(c1), (5.31)

which shows system property (S2-sp1). Furthermore, in view of Corollary 5.4 and (1.27), T ∈ T ,
MT ≤

√
2max{MF1

, MF2
} <∞ and ud(·) ∈ L∞(R≥0;R) and d(·) ∈ L∞(R≥0;R

2), respectively.
Hence system properties (S2-sp3) and (S2-sp4) are fulfilled. Due to instrumentation configura-
tion (2MS-ic2)(c), output y(·) = c1 φ1(·) + c2 φ2(·) and derivative ẏ(·) = c1 ω1(·) + c2 ω2(·) are
available for feedback which gives property (S2-sp5). This completes Step 1.

Step 2: It is shown that property (S2-sp2) of system class S2 is satisfied.
Since (5.31) holds, there exists a similarity transformation (see Section 3.3.2)

S : R4 → R
4, x 7→

(
y, ẏ, z1, z2

)⊤
:= Sx

– 205 –



Chapter 5: Applications

which takes (1.26), (1.27) with (5.29) into Byrnes-Isidori like form (3.8). For

C =

[
0 c1 0 c2
c1 0 c2 0

]
and B =

[
kA
Θ1

0 0 0

−kA dS+g
2
rν1

g2rΘ
2
1

kA
Θ1

kAdS
grΘ1Θ2

0

]⊤
,

the “subtransformation” matrices are given by

V = kerC =




− c2
c1

0

0 − c2
c1

1 0
0 1


 and

N = (V ⊤V )−1V ⊤[I4 −B(CB)−1C] =

[
0 − dS

grΘ2
1 − dSc2

grΘ2c1

0 0 0 1

]
,

which, in view of (2.24), yields

S =




0 c1 0 c2
c1 0 c2 0
0 − dS

grΘ2
1 − dSc2

grΘ2c1

0 0 0 1


 and S−1 =




− dSc2
grΘ2c21

1
c1

− c2
c1

0
1
c1

0 0 − c2
c1

dS
grΘ2c1

0 1 0

0 0 0 1


 .

Hence, conform to (3.8), the system in new coordinates has the following form

d
dt

(
y(t)
ẏ(t)
z1(t)
z2(t)

)
= SAS−1

(
y(t)
ẏ(t)
z1(t)
z2(t)

)
+ Sb

(
u(t) + uA(t)

)
+ SBL




(F1 row1(S
−1)

(
y

ẏ

z1
z2

)
)(t)

mL(t) + (F2 row3(S
−1)

(
y

ẏ

z1
z2

)
)(t)


 ,

(
y(0), ẏ(0), z1(0), z2(0)

)⊤
= Sx0,

where

SAS−1 =:



0 1 0

⊤
2

a1 a2 a⊤
3

a4 02 A5


 ∈ R

4×4, Sb =




0
γ0
0
0


 ∈ R

4 and SBL =




0 0
− c1

Θ1
− c2

Θ2

0 − 1
Θ2

0 0


 ∈ R

4×2.
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Moreover, in view of (2.55), the entries of SAS−1 are given by

a1 = cS
gr

(
1
Θ2

c2
c1
− 1

grΘ1

)
+ dS

grΘ1Θ2

(
dS
gr

(
1 + 1

gr
c2
c1

)
+ ν1

c2
c1

)

− dS
grΘ2

2

c2
c1

(
dS

(
1 + 1

gr
c2
c1

)
+ ν2

)
∈ R,

a2 = dS
gr

(
1
Θ2

c2
c1
− 1

grΘ1

)
− ν1

Θ1
∈ R,

a3 =


−dSc1

(
1 + 1

gr
c2
c1

)(
1
Θ2

c2
c1
− 1

grΘ1

)
+ c2

(
ν1
Θ1

− ν2
Θ2

)

−cSc1
(
1 + 1

gr
c2
c1

)(
1
Θ2

c2
c1
− 1

grΘ1

)

 ∈ R

2,

a4 = 1
grΘ2c1

(
cS − dS

Θ2

(
dS

(
1 + 1

gr
c2
c1

)
+ ν2

)

dS

)
∈ R

2

and

A5 =NAV =

[
− dS

Θ2

(
1 + 1

gr
c2
c1

)
− ν2

Θ2
− cS

Θ2

(
1 + 1

gr
c2
c1

)

1 0

]
∈ R

2×2. (5.32)

The characteristic polynomial of A5 is computed to

χA5(s) =s
2 +

(
dS
Θ2

(
1 +

1

gr

c2
c1

)
+
ν2
Θ2

)
s+

cS
Θ2

(
1 +

1

gr

c2
c1

)

and therefore

(5.29) =⇒ spec(A5) ⊂ C<0. (5.33)

Invoking

det

[
S(sI4 −A)S−1 Sb

c⊤S−1 0

]
= det

([
S 04

0
⊤
4 1

] [
sI4 −A b

c⊤ 0

] [
S−1

04

0
⊤
4 1

])

= det(S) det(S−1)︸ ︷︷ ︸
=1

det

[
sI4 −A b

c⊤ 0

]

yields

det

[
sI4 −A b

c⊤ 0

]
= det




s −1 0
⊤
2 0

−a1 s− a2 −a⊤
3 γ0

−a4 02 sI2 −A5 0
1 0 0

⊤
2 0


 = − det




−1 0
⊤
2 0

s− a2 −a⊤
3 γ0

02 sI2 −A5 0




= det

[
−a⊤

3 γ0
sI2 −A5 0

]
= −γ0 det

[
sI2 −A5

] (5.33)

6= 0 ∀ s ∈ C≥0,

which shows property (S2-sp2) of system class S2. Combining Step 1 and Step 2 completes the
proof of Proposition 5.11.
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Clearly, Proposition 5.11 with Theorem 3.13, Theorem 4.13 or Corollary 5.2 ensures applica-
bility of adaptive λ-tracking controller (3.46), funnel controller (4.67) or controller combina-
tions (3.46)+(5.3) and (4.67)+(5.3) for position control of 2MS (1.26), (1.27) with auxiliary
output (5.30). Position funnel control in the presence of actuator saturation is covered by
Theorem 4.15.

Remark 5.12 (Controllability and observability of linear 2MS without friction).
Neglecting friction (viscous and nonlinear, dynamic terms), actuator saturation and distur-
bances in (1.26), (1.27) with (5.29), i.e. uA → ∞, mL(·) = uA(·) = 0, (F1ω1)(·) = (F2ω2)(·) = 0
and ν1 = ν2 = 0, yields the linear model of a flexible 2MS. For the linear model, controllability
and observability matrix are given by

Qc =
[
b Ab A2b A3b

]
= kA




1
Θ1

− dS
g2rΘ

2
1

d2S

(

Θ1+
Θ2
g2r

)

−cSΘ1Θ2

g2rΘ
3
1Θ2

dS

(

Θ1+
Θ2
g2r

)(

2cSΘ1Θ2−d
2
S

(

Θ1+
Θ2
g2r

))

g2rΘ
4
1Θ

2
2

0 1
Θ1

− dS
g2rΘ

2
1

d2S

(

Θ1+
Θ2
g2r

)

−cSΘ1Θ2

g2rΘ
3
1Θ2

0 dS
grΘ1Θ2

−
d2S

(

Θ1+
Θ2
g2r

)

−cSΘ1Θ2

grΘ
2
1Θ

2
2

−
dS

(

Θ1+
Θ2
g2r

)(

2cSΘ1Θ2−d
2
S

(

Θ1+
Θ2
g2r

))

grΘ
3
1Θ

3
2

0 0 dS
grΘ1Θ2

−
d2S

(

Θ1+
Θ2
g2r

)

−cSΘ1Θ2

grΘ
2
1Θ

2
2




and

Qo :=




c⊤

c⊤A
c⊤A2

c⊤A3


 =




0 c1 0 c2
c1 0 c2 0

dS

(

c2−
c1Θ2
grΘ1

)

grΘ2

cS

(

c2−
c1Θ2
grΘ1

)

grΘ2

−dS

(

c2−
c1Θ2
grΘ1

)

Θ2

−cS

(

c2−
c1Θ2
grΘ1

)

Θ2
(

c2−
c1Θ2
grΘ1

)

(cSΘ1−d
2
S

(

1
g2r

+
Θ1
Θ2

)

)

grΘ1Θ2

−cSdS

(

c2−
c1Θ2
grΘ1

)

(

1
g2r

+
Θ1
Θ2

)

grΘ1Θ2

−
(

c2−
c1Θ2
grΘ1

)

(cSΘ1−d
2
S

(

1
g2r

+
Θ1
Θ2

)

)

Θ1Θ2

cSdS

(

c2−
c1Θ2
grΘ1

)

(

1
g2r

+
Θ1
Θ2

)

Θ1Θ2


,

respectively. Elementary row and column operations yield

det(Qc) =
k4Ac

2
S

g2rΘ
4
1Θ

2
2

(1.27)

6= 0 and | det(Qo)| =
∣∣∣∣∣
c2S
Θ2

2

(
c2 − c1

Θ2

grΘ1

)2(
c1 +

c2
gr

)2
∣∣∣∣∣ .

Hence, the following implication holds

s
(1.27) ∧ c2

gr
6= −c1 ∧ c2 6= c1

Θ2

grΘ1

{
=⇒ J det(Qo) 6= 0 K .

Controllability and observability are necessary for active damping of shaft oscillations. Loosely
speaking, it has to be assured that the drive torque (control input) may affect angle of twist and
that shaft oscillations are “visible” in the auxiliary output (5.30).

Due to auxiliary output (5.30) and to allow for load position tracking of reference φ2,ref(·) ∈
W2,∞(R≥0;R), the “auxiliary” reference

∀t ≥ 0: yref(t) := (c1/gr + c2)φ2,ref(t) (5.34)
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should be implemented accordingly. Note that in many industrial applications solely mo-
tor position φ1(·) and motor speed ω1(·) are available for feedback. Setting c1 = 1 and
c2 = 0 in (5.29), this case is covered by Proposition 5.11. However then, active damping
of shaft oscillations is not possible (see e.g. [140]). Moreover, asymptotic load position tracking
(i.e. limt→∞ φ2,ref(t)−φ2(t) = 0) cannot be assured in general (see [65]). This also holds if load
position φ2(·) is available for feedback, i.e. c1 > 0 and 0 6= c2/gr > −c1 in (5.29). To show this,
suppose that the following assumptions are satisfied

(i) controller combination (3.46)+(5.3) or (4.67)+(5.3) is applied for position control of
2MS (1.26), (1.27) with auxiliary output (5.30) and

(ii) steady state is reached and, for yref(t) as in (5.34), the “auxiliary error” tends to zero, i.e.

lim
t→∞

e(t) = lim
t→∞

(yref(t)− c1φ1(t)− c2φ2(t)) = 0.

Then it is easy to see that these assumptions do not imply limt→∞ φ2,ref(t) − φ2(t) = 0. The
load position error does not necessarily tend to zero asymptotically. To overcome this drawback
and to achieve steady state accuracy and active damping of shaft oscillations, the restriction
to the qualitative system knowledge as in (1.27) must be weakened.

If the system parameters dS and Θ2 in (1.27) are roughly and gear ratio gr is exactly known
(recall it can be read off on the gear box), then simulations and measurements show that active
damping and, simultaneously, asymptotic load position tracking of constant reference signals
can be achieved. Therefore dynamic feedback of angle of twist φS(·) = φ1(·)/gr − φ2(·) is
necessary (similar to high-gain adaptive speed control of the 2MS). The following result may
be formulated.

Proposition 5.13. Consider the 2MS given by (1.26), (1.27) with instrumentation configura-
tion (2MS-ic2)(c). Suppose that actuator saturation is negligible, i.e. ûA → ∞ in (1.26), and
introduce, for

c1
gr
> 0, 1 +

c2
c1
> 0 and 0 < kF <

dS
Θ2

(
1 +

c2
c1

)
, (5.35)

the filter and the augmented output as follows

ẋF (t) = −kF
(
xF (t) +

φ1(t)
gr

− φ2(t)
)
, xF (0) = 0,

y(t) :=
(
0, c1

gr
, 0, c2, c1

)
︸ ︷︷ ︸

=:ĉ⊤

(
x(t)
xF (t)

)
.





(5.36)

Then the augmented 2MS (1.26), (1.27), (5.36) is element of system class S2.

The filter in (5.36) with state variable xF [rad] represents a low-pass filter as in (5.24) of
(negative) angle of twist φS(·) = φ1(·)/gr − φ2(·), whereas the sum φ1(·)/gr − φ2(·) + xF (·) in
the augmented output (5.36) can be considered as high-pass filter (5.25) of φS(·) with cutoff
frequency kF [rad/s]. The augmented output in (5.36) and the presuppositions in (5.35) yield a
minimum-phase 2MS (1.26), (1.27), (5.36) with relative degree two and positive high-frequency
gain.
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Proof of Proposition 5.13.

The proof is similar to the proof of Proposition 5.11. Only the essential changes are highlighted.

Step 1: It is shown that properties (S2-sp1), (S2-sp3), (S2-sp4) and (S2-sp5) of system class S2

are satisfied.
For A, b and BL as in (1.26), introduce

Â :=

[
A 04

( 0, −kF
gr
, 0, kF ) −kF

]
∈ R

5×5, b̂ :=

(
b

0

)
∈ R

5 and B̂L :=

[
BL

0
⊤
2

]
∈ R

5×2,

(5.37)

and with ĉ as in (5.36) rewrite system (1.26), (1.27) with (5.36) as follows

d
dt

(
x(t)
xF (t)

)
= Â

(
x(t)
xF (t)

)
+ b̂ satûA

(
u(t) + uA(t)

)
+ B̂L

(
(F1ω1)(t)

mL(t) + (F2ω2)(t)

)
,

y(t) = ĉ
⊤
(
x(t)
xF (t)

)
,

(
x(0)
xF (0)

)
=

(
x0

x0F

)
∈ R

5.





(5.38)

Define h := 0, ud(·) := uA(·), BT := B̂L, d(·) := (0, mL(·))⊤ and

T : C([−h,∞);R5) → L∞
loc(R≥0;R

2), (T

(
x

xF

)
)(t) :=

(
(F1ω1)(t), (F2ω2)(t)

)⊤
.

Then, for ûA → ∞, system (5.38) can be expressed in the form (1.36). Moreover, similar
arguments as in Step 1 of the proof of Proposition 5.11 show that properties (S2-sp1), (S2-sp3),
(S2-sp4) and (S2-sp5) are satisfied. This completes Step 1.

Step 2: It is shown that property (S2-sp2) of system class S2 is satisfied.
Since

γ0 := ĉ
⊤
Âb̂ =

c1 kA
grΘ1

(5.35)
> 0, (5.39)

there exists a similarity transformation

Ŝ : R5 → R
5,

(
x

xF

)
7→ w :=

(
y, ẏ, z1, z2, z3

)⊤
:= Ŝ

(
x

xF

)

which transform (5.38) into Byrnes-Isidori like form (3.8). For

Ĉ =

[
0 c1

gr
0 c2 c1

c1
gr

− c1
gr
kF c2 c1kF −c1kF

]
and B̂ =

[
kA
Θ1

0 0 0 0

−kA dS+g
2
rν1

g2rΘ
2
1

kA
Θ1

kAdS
grΘ1Θ2

0 0

]⊤
,
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one obtains

V̂ = ker Ĉ =




−grc2
c1

−grkF
(
1 + c2

c1

)
0

0 −grc2
c1

−gr
1 0 0
0 1 0
0 0 1




and

N̂ = (V̂
⊤
V̂ )−1V̂

⊤
[I5 − B̂(ĈB̂)−1Ĉ] =



0 − dS

grΘ2
1 − c2dS

c1Θ2
− dS

Θ2

0 0 0 1 0
0 0 0 0 1


 .

Then, invoking (2.24), gives

Ŝ =

[
Ĉ

N̂

]
=




0 c1
gr

0 c2 c1
c1
gr

− c1
gr
kF c2 c1 kF −c1kF

0 − dS
grΘ2

1 − c2dS
c1Θ2

− dS
Θ2

0 0 0 1 0
0 0 0 0 1




and

Ŝ
−1

= [B̂(ĈB̂)−1, V̂ ] =




−gr dSc2−c1kFΘ2

c21Θ2

gr
c1

−grc2
c1

−grkF
(
1 + c2

c1

)
0

gr
c1

0 0 −grc2
c1

−gr
dS
c1Θ2

0 1 0 0

0 0 0 1 0
0 0 0 0 1




which allows for the coordinate change to the following form

ẇ(t) = ŜÂŜ
−1
w(t) + Ŝb̂

(
u(t) + uA(t)

)
+ ŜB̂L


 (F1 row1(Ŝ

−1
)w)(t)

mL(t) + (F2 row3(Ŝ
−1
)w)(t)


 ,

w(0) = Ŝ
(
x0, x0F

)
,

conform to (3.8), where

ŜÂŜ
−1

=:




0 1 0
⊤
3

â1 â2 â
⊤
3

â4 03 Â5


 ∈ R

5×5, Ŝb̂ =




0
γ0
0
0
0




∈ R
5 and ŜB̂L =




0 0
− c1
grΘ1

− c2
Θ2

0 − 1
Θ2

0 0
0 0



∈ R

5×2.
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Invoking (2.55) yields

â1 = cS

(
1
Θ2

c2
c1
− 1

g2rΘ1

)
+

d2S
g2rΘ1Θ2

(
1 + c2

c1

(
1 + g2r

ν1
dS

))
− d2S

Θ2
2

c2
c1

(
1 + c2

c1
+ ν2

dS

)

−kF
Θ1

(
dS
g2r

+ ν1

)
+ kF

dS
Θ2

(
1 + 2 c2

c1

)
∈ R,

â2 = dS

(
1
Θ2

c2
c1
− 1

g2rΘ1

)
− ν1

Θ1
− kF ∈ R,

â3 =




−c2
(
dS
Θ2

(
1 + c2

c1

)
+ ν2

Θ2
− ν1

Θ1

)
+ (c1 + c2)

(
kF + dS

g2rΘ1

)

−c2
(
1 + c2

c1

)
cS+kF dS

Θ2
+ (c1 + c2)

(
kF

ν1
Θ1

+ cS+kF dS
g2rΘ1

)

cS

(
c1

g2rΘ1
− c2

Θ2

)


 ∈ R

3,

â4 =




1
c1Θ2

(
cS + kFdS − dS

Θ2

(
dS

(
1 + c2

c1

)
+ ν2

))

dS
c1Θ2

−kF
c1


 ∈ R

3

and

Â5 = N̂ÂV̂ =



− dS

Θ2

(
1 + c2

c1

)
− ν2

Θ2
−
(
1 + c2

c1

)
cS+kF dS

Θ2
− cS

Θ2

1 0 0

0 kF

(
1 + c2

c1

)
0


 ∈ R

3×3.

The characteristic polynomial of Â5 is given by

χÂ5
(s) = s3 +

(
dS
Θ2

(
1 +

c2
c1

)
+
ν2
Θ2

)

︸ ︷︷ ︸
=:m2

s2 +
cS + kFdS

Θ2

(
1 +

c2
c1

)

︸ ︷︷ ︸
=:m1

s+ kF
cS
Θ2

(
1 +

c2
c1

)

︸ ︷︷ ︸
=:m0

.

For c1, c2 and kF as in (5.35) the coefficients m0, m1 and m2 are positive and

m2m1 −m0

(5.35)
>

cS
Θ2

(
1 +

c2
c1

)[
dS
Θ2

(
1 +

c2
c1

)
− kF

]
(5.35)
> 0,

hence χÂ5
is Hurwitz [77, Theorem 3.4.71, p. 339] and spec(Â5) ⊂ C<0. Now the same

argumentation as in Step 2 of the proof of Proposition 5.11 shows that property (S2-sp2)
is satisfied. This completes Step 2. Combining Step 1 and Step 2 completes the proof of
Proposition 5.13.

Clearly, affiliation of augmented 2MS (1.26), (1.27), (5.36) (without saturation) to system class
S2 implies applicability of the high-gain adaptive controllers (3.46), (4.67), (3.46)+(5.3) and
(4.67)+(5.3) for position control (see Theorem 3.13, Theorem 4.13 and Corollary 5.2, respec-
tively). Moreover, if funnel controller (4.67) is applied to 2MS (1.26), (1.27), (5.36), then
Theorem 4.15 allows to account for actuator saturation as in (1.26) (see Fig. 5.3(b)). Hence
high-gain adaptive position control of the augmented 2MS (1.26), (1.27), (5.36) is feasible.

To allow for load position tracking of reference φ2,ref(·) ∈ W2,∞(R≥0;R), due to the augmented
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output in (5.36), the use of the augmented reference

∀t ≥ 0: yref(t) := (c1 + c2)φ2,ref(t), φ2,ref(·) ∈ W2,∞(R≥0;R), (5.40)

is necessary and so the augmented error is given by

∀t ≥ 0: e(t) = yref(t)− y(t)

(5.36)
= yref(t)−

(
c1
gr
φ1(t) + c2φ2(t) + c1xF (t)

)

= yref(t)−
(
c1

(
1

gr
φ1(t)− φ2(t)

)
+ (c1 + c2)φ2(t) + c1xF (t)

)

(5.14),(5.40)
= (c1 + c2)

(
φ2,ref(t)− φ2(t)

)
− c1

(
φS(t) + xF (t)

)
. (5.41)

The following corollary states the observations above more precisely.

Corollary 5.14 (High-gain adaptive position control of augmented 2MS).
Consider the 2MS (1.26), (1.27) with filter and augmented output as in (5.36) and suppose that
actuator saturation is negligible, i.e. ûA → ∞ in (1.26), and that c1 and c2 satisfy (5.35). Let
φ2,ref(·) ∈ W2,∞(R≥0;R), λ > 0, φS(t) as in (5.14), e(t) as in (5.41) and (ψ0(·), ψ1(·)) ∈ B2

such that |e(0)| < ψ0(0) and |ė(0)| < ψ1(0).

(i) (a) Application of adaptive λ-tracking controller (3.46) and funnel controller (4.67) with
derivative feedback for position control of augmented 2MS (1.26), (1.27), (5.36) is admis-
sible and for both closed-loop systems the following holds:

∀ t ≥ 0: φ2,ref(t)− φ2(t) =
1

c1 + c2

(
e(t) + c1

(
φS(t) + xF (t)

))
. (5.42)

(b) If steady state is reached, i.e. limt→∞
d
dt
(x(t)⊤, xF (t)) = 0

⊤
5 , then

lim sup
t→∞

|φ2,ref(t)− φ2(t)| ≤
λ

c1 + c2
and lim sup

t→∞
|φ2,ref(t)− φ2(t)| ≤

lim supt→∞ ψ0(t)

c1 + c2
,

respectively.

(ii) (a) Application of the controller combinations (3.46)+(5.3) and (4.67)+(5.3) with propor-
tional-integral internal model (5.3) for position control of augmented
2MS (1.26), (1.27), (5.36) is admissible. Moreover for q1 > 0, ẋI(t) as in (5.3), k(t)
as in (3.46) and k0(t), k1(t) as in (4.67), the following holds

∀ t ≥ 0: φ2,ref(t)− φ2(t) =
1

c1 + c2

(
ẋI(t)

k(t)2
− q1
k(t)

ė(t) + c1
(
φS(t) + xF (t)

))
(5.43)

for closed-loop system (1.26), (1.27), (5.36), (3.46)+(5.3) and the following holds

∀ t ≥ 0: φ2,ref(t)− φ2(t) =
1

c1 + c2

(
ẋI(t)

k0(t)2
− k1(t)

k0(t)
ė(t) + c1

(
φS(t) + xF (t)

))
(5.44)

for closed-loop system (1.26), (1.27), (5.36), (4.67)+(5.3).
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(b) If steady state is reached, i.e. limt→∞
d
dt
(x(t)⊤, xF (t), xI(t)) = 0

⊤
6 , and

limt→∞ φ̇2,ref(t) = 0, then for both closed-loop systems the augmented error and the load po-
sition error vanishes asymptotically, i.e. limt→∞ e(t) = 0 and limt→∞ φ2,ref(t)− φ2(t) = 0,
respectively.

Proof of Corollary 5.14.

Assertion (i)(a) follows from Proposition 5.13 combined with Theorem 3.13 and Theorem 4.13.
Moreover, (5.42) directly follows from (5.41). Next Assertion (i)(b) is shown. Clearly,

lim
t→∞

ẋF (t) = 0
(5.36)
=⇒ lim

t→∞
(xF (t) + φS(t)) = 0 = lim sup

t→∞
|xF (t) + φS(t)|. (5.45)

Hence, Assertion (i)(b) directly follows from (5.42), (5.45) and Assertion (iv) of Theorem 3.13
and Assertion (iii) of Theorem 4.13, respectively.
Assertion (ii)(a) follows from Proposition 5.13 combined with Corollary 5.2, where (5.43) and
(5.44) are obtained by inserting (3.46) and (4.67)—with u(t) replaced by v(t) and with e(t)
as in (5.41)—into (5.3) and solving for φ2,ref(t) − φ2(t), respectively. In view of (5.40), the
presuppositions in Assertion (ii)(b) imply limt→∞ ẏref(t) = 0 and limt→∞ ė(t) = limt→∞

(
ẏref(t)−

c⊤ẋ(t)
)
= 0. Hence Assertion (ii)(b) directly follows from limt→∞

d
dt
(x(t)⊤, xF (t), xI(t)) = 0

⊤
6 ,

Assertion (iii) of Corollary 5.2, (5.45), (5.43) and (5.44), respectively. This completes the proof
of Corollary 5.14.

From (5.42) it follows that funnel controller (4.67) cannot in general assure that load posi-
tion error φ2,ref(·)− φ2(·) evolves within the prescribed region. However, usually φS(·) + xF (·)
in (5.42) is small, e.g. at the laboratory setup the sum’s magnitude does not exceed 10−2 [rad].
Hence, for small c1/(c1+c2), it is to be expected that φ2,ref(t)−φ2(t) ≈ e(t)/(c1+c2) for all t ≥ 0.

Although it was not possible to prove that active damping of shaft oscillations is achieved by
the use of the augmented output and the high-pass filter as in (5.36), the measurement results
in Section 5.2.3.3 show that damping is feasible by adequate design of feedback coefficients c1
and c2.

Remark 5.15 (Design parameters c1, c2 and kF ).
If 0 < dS,min ≤ dS and Θ2,max ≥ Θ2 > 0 and lower bound dS,min and upper bound Θ2,max are
known, then it is easy to see that

0 < kF <
dS,min

Θ2,max

(
1 +

c2
c1

)
(5.46)

satisfies (5.35). Besides the constraints imposed by the presuppositions in (5.35), the constants
c1, c2 and kF in (5.36) are free design parameters and directly affect (load) position control per-
formance. Measurements at the laboratory setup (gr = 1) indicate following rule of thumb: for
c1 ≪ |c2| the system response is badly damped, best damped responses are obtained for c1 ≈ c2
(e.g. c1 = c2 = 1). Cut-off frequency kF should not be chosen too small to avoid “slow filter
dynamics” which yields a deceleration of the system response (in particular, the smaller kF the
longer it takes to reach steady state).
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position
controller

(emulated) 1MS with ‘sensor(s)’implementation in xPC target

e

ė

nm := nm2

ṅm := ṅm2

φ := φ2

ω := ω2

y = φ+ nm

ẏ = ω + ṅm

yref = φref

ẏref = ωref

u

−

−W2,∞

Figure 5.12: Block diagram of implementation at laboratory setup for position control of 1MS.

5.2.3.3 Measurements

In the previous two sections, it has been shown that, from a theoretical point of view, high-
gain adaptive position control of (the models of) 1MS (1.24), (1.25) and 2MS (1.26), (1.27)
is admissible. It remains to show that, in “real world”, high-gain adaptive position control of
stiff and flexible industrial servo-systems is feasible. Therefore, similar to the speed control
experiments, three position control (PC) experiments are carried out at the laboratory setup
(see Section 5.2.1). The experiments will illustrate that:

• adaptive λ-tracking controller (3.46) and funnel controller (4.67) with derivative feedback
in combination with proportional-integral internal model (5.3) can compete with standard
PID position control of stiff servo-systems (1MS);

• high-gain adaptive position control with active damping of shaft oscillations of flexible
servo-systems (2MS) is feasible and

• position funnel control of 1MS and 2MS with constrained actuator may perform even if
feasibility condition (4.107) does not hold.

Experiment PC1 — position control of 1MS:
Five controllers are applied for position control of the emulated 1MS (see Fig. 5.4(a)). The PID
controller (1.28) with feedforward control is implemented as benchmark controller (the indus-
trial standard). The remaining four controllers are the adaptive λ-tracking controller (3.46),
the funnel controller (4.67) and the high-gain adaptive controller combinations (3.46)+(5.3)
and (4.67)+(5.3) with proportional-integral internal model (5.3).

So Experiment PC1 comprises five runs at the laboratory setup: one for each controller. Each
run takes 50 [s]. Control task is position set-point tracking without load (i.e. the interval
[0, 5] [s]) and position reference tracking under varying load (i.e. the overall interval [0, 50] [s]).
Reference yref(·) = φref(·) ∈ W2,∞(R≥0;R) and load torque mL(·) ∈ L∞(R≥0;R) are shown in
Fig. 5.14 (see top and bottom, respectively). Implementation in xPC target is illustrated in
Fig. 5.12 for measured position and speed signals (with index m) deteriorated by measurement
errors subsumed in nm(·) and ṅm(·), respectively. For each run, one of the five controllers above
is implemented as ‘position controller’ in Fig. 5.12.

To guarantee identical conditions for each run, the following constraints are imposed (similar
to Experiment SC1):
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(i) the available drive torque of the laboratory setup must not be exceeded, i.e. |u(t)| ≤ ûA =
22 [Nm] for all t ≥ 0,

(ii) fastest initial acceleration is desired, i.e. u(0) = ûA = 22 [Nm], and

(iii) for set-point tracking (without load), maximum rise time, maximum settling time and
maximum overshoot must be assured. More precisely, the following must be fulfilled:

trref,0.8 = 1.0 [s] , tsref,0.1 = 2.0 [s] and ∆os
ref = 0.5 [%] for ŷref = π [rad] . (5.47)

Since large overshoots may cause deficient workpieces, in many industrial applications—such
as position control of machine tools or milling machines—overshoots are to be avoided (see
e.g. [166, p. 250]). The motion control objectives in (5.47) account for such a demand.

To achieve small overshoots, the PID controller (1.28) is equipped with (decelerating) feedfor-
ward control2 (see [51, 123] and uF in Tab. 5.4), whereas the high-gain adaptive controllers
are tuned according to Remark 3.14 and the observations in Section 4.4.2.3. Therefore a lower
bound γ0 on the high-frequency gain γ0 = kA/(grΘ) is needed for implementation (see Tab. 5.4).

Remark 5.16. If lower bound γ0 is not known a priori, then appropriate choices for constant
q1 in (3.46) and gain scaling function ς1(·) in (4.67) may be found by trial and error. Clearly,
this will increase implementation effort in the sense that several attempts are needed to obtain
satisfactory results, but obviates the need of rough system knowledge.

For design of PID controller (1.28), adaptive λ-tracking controller (3.46) and adaptive λ-tracking
controller combination (3.46)+(5.3) with internal model, several implementation attempts are
necessary to meet the specifications in (5.47). In contrast, funnel controller (4.67) and funnel
controller combination (4.67)+(5.3) with internal model are easier to implement. By adequate
boundary design, maximum rise and settling time are guaranteed right away. Since speed mea-
surement is very noisy (recall the problems during speed control experiments in Section 5.2.2.3),
as a precaution the asymptotic accuracy of “speed funnel boundary” ψ1(·) is chosen (extra) large
with λ1 = 10 [rad/s]. A complete list of the implementation data is given in Tab. 5.4. The
following color and line style assignment is used for the different controllers (control laws are
restated to ease readability):

(1.28), i.e. PID controller with feedforward control (to suppress overshoots):

u(t) = kP e(t) + kI

∫ t

0

e(τ) dτ + kD ė(t) + uF (t);

(3.46), i.e. adaptive λ-tracking controller with derivative feedback:

u(t) = k(t)2e(t) + q1k(t)ė(t) where k̇(t) = q2 exp
(
− q3q4k(t)

)
dλ

(∥∥∥∥∥

(
e(t)
ė(t)
k(t)

)∥∥∥∥∥

)q4

, k(0) = k0;

2Another common approach, to avoid overshoots for PID position control, is to smooth the reference signal
by a first order filter (see e.g. [166, p. 81 f.]). However then, set-point tracking of an initial reference step—as
required for Experiment PC1—is not possible.
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(4.67), i.e. funnel controller with derivative feedback:

u(t) = k0(t)
2e(t) + k0(t)k1(t)ė(t) where ki(t) =

ςi(t)

ψi(t)− |e(i)(t)| , i ∈ {0, 1};

(3.46)+(5.3), i.e. adaptive λ-tracking controller with internal model (kP = 1):

u(t) = k(t)2e(t) + q1k(t)ė(t) + kI

∫ t

0

(
k(τ)2e(τ) + q1k(τ)ė(τ)

)
dτ

where k̇(t) = q2 exp
(
− q3q4k(t)

)
dλ
(
‖(e(t), ė(t)/k(t))‖

)q4 , k(0) = k0;

(4.67)+(5.3), i.e. funnel controller with internal model (kP = 1):

u(t) = k0(t)
2e(t) + k0(t)k1(t)ė(t) + kI

∫ t

0

(
k0(τ)

2e(τ) + k0(τ)k1(τ)ė(τ)
)
dτ

where ki(t) =
ςi(t)

ψi(t)− |e(i)(t)| , i ∈ {0, 1}.

Control performance of all controllers is compared. Therefore, for set-point tracking, rise time
try(·),0.8, settling time tsy(·),0.1 and overshoot ∆os

y(·) are analyzed and, for reference tracking, the
ITAE criterion as in (3.82) (with tend = 50 [s]) is evaluated. The evaluation results are sum-
marized in Tab. 5.5. Measurement results are depicted in Fig. 5.13(a) for set-point tracking
and in Fig. 5.14 for reference tracking. To allow for a direct comparison of the controller gains
of (1.28), (3.46), (4.67), (3.46)+(5.3) and (4.67)+(5.3), the “proportional
gains” kP , k(·)2 and k0(·)2 and the “derivative gains” kD, q1 k(·) and k0(·) k1(·) are plotted in
Fig. 5.14, respectively.

Discussion of the measurement results for set-point tracking (see Fig. 5.13(a)):
Clearly, all five controllers accomplish the control objectives in (5.47) (see Tab. 5.5). Moreover,
their control performance is almost identical (see Tab. 5.5). Adaptive λ-tracking controller

(3.46) and funnel controller (4.67) show no overshoot but do not achieve steady state
accuracy. The controllers with integral control action, i.e. (1.28), (3.46)+(5.3) and

(4.67)+(5.3), exhibit very small (almost negligible) overshoots and achieve steady state ac-
curacy for set-point tracking. The funnel controllers and, by chance, also the other controllers
assure error evolution within the performance funnel.

Discussion of the measurement results for reference tracking (see Fig. 5.14):
Adaptive λ-tracking controller (3.46) and funnel controller (4.67) yield noticeable con-
touring errors and so large ITAE values. Since funnel controller (4.67) assures error evo-
lution within the prescribed region, its ITAE performance is better than that of adaptive
λ-tracking controller (3.46), but many times worse than the ITAE performance of PID con-
troller (1.28) and of controller combinations (3.46)+(5.3) and (4.67)+(5.3) with
internal model (see Tab. 5.5). All three controllers with integral control action achieve asymp-
totic disturbance rejection. Nevertheless, the ITAE value of PID controller (1.28) is almost
three times larger than that of funnel controller combination (4.67)+(5.3). Similar to the
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controller/system Experiment PC1 (1MS) Experiment PC2 (2MS)

assumed bounds γ0 = γ0/3
[

1
kgm2

]
where γ0 = γ0/3 where γ0

(5.39)
= 6.02

[
1

kgm2

]
,

γ0 =
kA
grΘ

= 2.92
[

1
kgm2

]
dS,min = dS/5, Θ2,max = 3Θ2

reference ŷref = π [rad], for yref(·) see top of Fig. 5.14 or 5.16, resp.
‖yref‖∞ = 5π [rad], ‖ẏref‖∞ = π/2

[
rad
s

]
and ‖ÿref‖∞ = 15.72

[
rad
s2

]

load torque for mL(·) see bottom of Fig. 5.14 or 5.16, ‖mL‖∞ = 10 [Nm]

augmented output — c1 = c2 = 1 [1],
& filter as in (5.36) kF = 0.01 [rad/s]

initial error e(0) = π [rad] e(0) = (c1 + c2)ŷref = 2π [rad]

PID controller kP = 11
[
Nms
rad

]
, kI = 7

[
Nm
rad

]
—

as in (1.28) kD = 4
[
Nms2

rad

]
, uF = −12.6 [Nm]

λ-tracking controller q1 = 2/
√
γ0 [1], q2 = 2 [1], q3 = 0.1 [1], q4 = 2 [1], λ = 0.09π [rad],

as in (3.46) k0 =
√

ûA
e(0)

= 2.65
[
Nms
rad

]
k0 =

√
ûA
e(0)

= 1.87
[
Nms
rad

]

funnel controller (ψ0(·), ψ1(·)) as in (4.64) where Λ0 = 2e(0), λ0 = λ, λ1 = 10
[
rad
s

]
,

as in (4.67) TE = 0.35 [s] TE = 0.28 [s]

gain scaling ς0(t) =
√

ûA
e(0)

(Λ0−e(0))
Λ0

ψ0(t) and ς1(t) = 2√
γ0
ψ1(t)

internal model
as in (5.3) kP = 1 [1], kI = 5

[
1
s

]
kP = 1 [1], kI = 3

[
1
s

]

Table 5.4: Implementation data of Experiment PC1 (position control of 1MS) and Experiment PC2
(position control of 2MS) (centered values hold for both experiments, resp.)

experiment controller try(·),0.8 [s] tsy(·),0.1 [s] ∆os
y(·) [%] ITAE [rad s]

PC1 (1MS) (1.28) 0.85 1.19 0.02 60.7
(3.46) 0.89 1.22 0.00 405.3
(4.67) 0.82 1.17 0.00 261.2
(3.46)+(5.3) 0.86 1.21 0.01 6.5
(4.67)+(5.3) 0.83 1.19 0.01 21.8

PC2 (2MS) (3.46) 0.76 1.01 0.00 281.1
(4.67) 0.65 0.88 0.00 148.5
(3.46)+(5.3) 0.71 0.98 0.01 12.2
(4.67)+(5.3) 0.65 0.89 0.01 27.3

Table 5.5: Controller performance for Experiment PC1 (position control of 1MS) and Experiment PC2
(position control of 2MS).
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Figure 5.13: Measurement results of Experiments PC1 & PC2: set-point tracking position control of
1MS (left) and 2MS (right) for different controllers (see p. 216): (1.28) (only for
1MS), (3.46), (4.67), (3.46)+(5.3), (4.67)+(5.3) with parametrization as
in Tab. 5.4.

speed control experiments, adaptive λ-tracking controller combination (3.46)+(5.3) shows
the best ITAE performance. Noise sensitivity (i.e. noise amplification) of all four high-gain
adaptive controllers is acceptable. Especially, for funnel controller (4.67) without inter-
nal model, noise amplification is temporarily noticeable due to the largest proportional gain
(i.e. maxt∈[0, 50] k0(t)

2 ≈ 55 [Nm/rad]) and the largest derivative gain (i.e. maxt∈[0, 50] k0(t)k1(t) ≈
17 [Nms/rad]). Clearly, due to monotone gain adaption, the λ-tracking controllers (3.46)
and (3.46)+(5.3) yield large proportional and derivative gains at the end of the experi-
ment. Since, for adaptive λ-tracking controller combination (3.46)+(5.3), the λ-strip is
reached after ≈ 2 [s] and not left again, gain adaption stops and proportional gain k(·)2 and
derivative gain q1k(·) of (3.46)+(5.3) remain constant on [2, 50] [s]. Note that, for most of
the time, proportional gain k0(·)2 and derivative gain k0(·)k1(·) of funnel controller combina-
tion (4.67)+(5.3) is even smaller than proportional gain kP and derivative gain kD of PID
controller (1.28), respectively. The generated control actions are very similar and mainly
differ in noise amplification.

Remark 5.17. Similar to the speed control experiment SC1, the PID controller could be imple-
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Figure 5.14: Measurement results of Experiment PC1 (position control of 1MS) for different controllers
(see p. 216): (1.28), (3.46), (4.67), (3.46)+(5.3), (4.67)+(5.3) with
parametrization as in Tab. 5.4 (from top to bottom: measured position φ(·) + nm(·), posi-
tion error e(·), proportional gain kP , k(·)2 & k0(·)2, error derivative ė(·), derivative gain
kD, q1k(·) & k0(·)k1(·) and drive torque mM (·) = satûA

(
u(·) + uA(·)

)
).
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position
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φ1,m = φ1 + nm1

φ2,m = φ2 + nm2

ω1,m = ω1 + ṅm1

ω2,m = ω2 + ṅm2y ẏ

ẋF

yref =
(c1 + c2)φ2,ref

ẏref =
(c1 + c2)ω2,ref

u

−

−W2,∞

c1
gr

c1

c2

ẋF = −kF
(
xF +

φ1,m
gr

− φ2,m
)

y =
c1
gr
φ1,m + c2φ2,m + c1xF

filter & aug. output

Figure 5.15: Block diagram of implementation at laboratory setup for position control of 2MS.

mented with larger gains to accelerate the closed-loop system response and to achieve a better
control performance, but then the controller runs into actuator saturation which necessitates
anti-wind up strategies. Again the comparison tries to highlight the drawbacks of classical PID
controller design with constant gains: varying and unknown disturbances may unexpectedly dete-
riorate control performance (e.g. customer specifications may not be accomplished under load).

Experiment PC2 — position control of 2MS:
Experiment PC2 is similar to Experiment PC1. Now the high-gain adaptive controllers (3.46),
(4.67), (3.46)+(5.3) and (4.67)+(5.3) are implemented at the laboratory setup for position con-
trol of an flexible servo-system (see Fig. 5.4(b)). Since P(I)D control is “inadequate” for flexible
servo-systems (see [174, p. 225]), a comparison with a PID controller is omitted. So Exper-
iment PC2 consists of four runs à 50 [s]. Control task is load position tracking of reference
φ2,ref(·) ∈ W2,∞(R≥0;R) under varying load disturbance mL(·) ∈ L∞(R≥0;R). Reference and
load signals are the same as in Experiment PC1 (see top and bottom of Fig. 5.16, respectively).
Moreover, each controller of Experiment PC2 is designed under the identical constraints (i)-(iii)
as in Experiment PC1.

In Section 5.2.2.2 it has been shown that an augmented output is necessary to allow for high-
gain adaptive position control of flexible servo-systems. Moreover, to achieve steady state
accuracy, dynamic feedback is required and so, for this experiment, the high-gain adaptive
controllers (3.46), (4.67), (3.46)+(5.3) and (4.67)+(5.3) are implemented in
conjunction with the augmented output and the filter as in (5.36). Color and line style assign-
ment is identical to Experiment PC1 (see p. 216). Real-time implementation is illustrated in
Fig. 5.15. Filter and augmented output are shown for measured signals (with index m). Position
and speed on motor and load side are deteriorated by measurement errors nm1(·) & ṅm1(·) and
nm2(·) & ṅm2(·), respectively. For each run, one of the four high-gain adaptive controllers is
implemented as ‘position controller’ in Fig. 5.15. Design parameters are collected in Tab. 5.4.
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Fig. 5.13(b) and Fig. 5.16 show the measurement results for set-point tracking (i.e. the interval
[0, 5] [s]) and for reference tracking under changing load (i.e. the complete interval [0, 50] [s]).
Note that, for filter design, a lower bound dS,min on damping coefficient dS and an upper bound
Θ2,max on load inertia Θ2 must be known a priori. The assumed bounds are rough (see Tab. 5.4)
and yield relative errors of 80% and 200%, respectively. For these bounds and feedback co-
efficients c1 = c2 = 1, the upper bound as in (5.35) on the cut-off frequency kF is given by
dS,min/Θ2,max (1 + c2/c1) = 0.1. Clearly the choice kF = 0.01 [rad/s] satisfies the presupposition
in (5.35).

Similar to Experiment PC1, for each run, rise time try(·),0.8, settling time tsy(·),0.1 and overshoot
∆os
y(·) are used to rate set-point tracking control performance. Overall control performance of

each run is evaluated by the ITAE criterion (where e(τ) in (3.82) is replaced by load position
error φ2,ref(τ)− φ2(τ)). Tab. 5.5 lists the evaluation results.

Discussion of the measurement results for set-point tracking (see Fig. 5.13(b)):
First note that each of the four controllers can fulfill the control objectives in (5.47) and each
closed-loop system response is well damped. Concerning rise time, settling time and overshoot
all high-gain adaptive controllers show comparable results (see Tab. 5.5). Funnel controller

(4.67) and funnel controller with internal model (4.67)+(5.3) yield the fastest tran-
sient responses (see Tab. 5.5). Conform to the Assertions of Corollary 5.14, only the high-gain
adaptive controllers with internal model, i.e. (3.46)+(5.3) and (4.67)+(5.3), achieve
steady state accuracy in augmented error e(·) and load position error φ2,ref(·)− φ2(·).

Discussion of the measurement results for reference tracking (see Fig. 5.16):
The measurement results are almost identical to Experiment PC1, since all controllers in con-
junction with augmented output and filter assure a well damped closed-loop system response.
Adaptive λ-tracking controller (3.46) gives large contouring errors yielding the largest ITAE
value. Clearly, the funnel controllers (4.67) and (4.67)+(5.3) achieve tracking with
prescribed transient behavior, i.e. the augmented error (5.41) evolves within the performance
funnel. By chance, also adaptive λ-tracking controller with internal model (3.46)+(5.3)
yields an error evolution within the prescribed region. Again, its ITAE performance is the
best in this study (see Tab. 5.5). Noise sensitivity of all four high-gain adaptive controllers is
acceptable. Funnel controller (4.67) yields the most noticeable noise amplification.

Experiment PC3 — saturated funnel controller for position control of 1MS & 2MS:
For Experiment PC3, the runs of Experiment PC1 & PC2 with funnel controller (4.67) are
repeated. However now, instead of (4.67), the saturated funnel controller (4.104) (with uF (·) =
0), i.e.

u(t) = satû

(
k0(t)

2e(t) + k0(t)k1(t)ė(t)
)

where for i ∈ {0, 1} :

ki(t) =
ςi(t)

ψi(t)− |e(i)(t)| and ςi(·), ψi(·) as in Tab. 5.4,

is implemented for position control of 1MS and 2MS (see implementation in Fig. 5.12 and
Fig. 5.15). Each run is carried out under the same conditions as specified in Experiment PC1
& PC2, e.g. constraints (i)-(iii), reference, disturbance and boundary design (see Tab. 5.4) are
identical. For both runs, saturation level û of funnel controller (4.104) is reduced stepwise (by
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Figure 5.16: Measurement results of Experiment PC2 (position control of 2MS) for different controllers
(see p. 216): (3.46), (4.67), (3.46)+(5.3), (4.67)+(5.3) with parametriza-
tion as in Tab. 5.2 (from top to bottom: measured load position φ2(·)+nm2(·), (augmented)
error e(·), proportional gain k(·)2 & k0(·)2, (augmented) error derivative ė(·), derivative
gain q1k(·) & k0(·)k1(·) and drive torque mM (·) = satûA

(
u(·) + uA(·)

)
).
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0.5 [Nm] at a time) until position control fails for 1MS and 2MS. So, for the circumstances of
this experiment, a necessary (minimum) drive torque level û is obtained for 1MS and 2MS,
which assures tracking with prescribed transient accuracy in the presence of control saturation.
In contrast, evaluation of feasibility condition (4.107) yields a sufficient lower bound ufeas for
1MS and 2MS. The goal of this experiment is to show that funnel control in the presence of
actuator saturation is applicable for position control of 1MS and 2MS, even if feasibility con-
dition (4.107) is violated.

The measurement results are depicted in Fig. 5.17 for 1MS and 2MS. Note that, within the
first two seconds, the augmented error e(·) of the 2MS is so close to the boundary ψ0(·)
such that proportional gain k0(·)2 and derivative gain k0(·)k1(·) attain their maximal values
maxt∈[0, 2] k0(t)

2 = 1.56 · 106 [Nms/rad] and maxt∈[0, 2] k0(t)k1(t) = 4.20 · 103 [Nm/rad], respec-
tively. In Fig. 5.17(b), these peaks are not shown to allow for a quantitative comparison with the
measurement results of the 1MS. Clearly, the measurement results prove feasibility of position
funnel control of 1MS and 2MS with saturated actuator. For the settings of Experiment PC3,
the following necessary (minimum) saturation levels are determined: û = 11.5 [Nm] for 1MS
and û = 13.0 [Nm] for 2MS. Now feasibility condition (4.107) is evaluated for 1MS (1.24), (1.25)
and for augmented 2MS (1.26), (1.27), (5.36) (with filter). For simplicity, it is assumed that
both plants are exactly known. Hence the data in Tab. 5.1 is available to the control designer.
Furthermore, the parameters of funnel design and gain scaling in Tab. 5.4 yield the following
(rounded) values:

for 1MS: ‖ψ0‖∞ = 2π, ‖ψ̇0‖∞ = 17.13, ‖ψ1‖∞ = 27.13, ‖ψ̇1‖∞ = 48.89, ς
0
= 0.37, etc.

for 2MS: ‖ψ0‖∞ = 4π, ‖ψ̇0‖∞ = 43.87, ‖ψ1‖∞ = 53.87, ‖ψ̇1‖∞ = 156.63, ς
0
= 0.26, etc.

Then, collecting the data above and the data in Tables 5.1 & 5.4 (reference, disturbance, etc.)
allows to compute M as in (4.78) and, for δ = λ1 = 10 [rad/s], to evaluate ûS in (4.105) and L
as in (4.106). Combining altogether gives the following (rounded) values3:

for 1MS: M = 64.5
[
1/s2

]
, ûS = 3.89 · 104

[
1/s2

]
, L = 2.65 · 107

[
1/s2

]
and

γ0 = 2.92
[
1/kgm2

]
=⇒ ufeas = 9.08 · 106 [Nm] whereas û = 11.5 [Nm] !

for 2MS: M = 1.10 · 1013
[
1/s2

]
, ûS = 1.02 · 107

[
1/s2

]
, L = 1.84 · 1012

[
1/s2

]
and

γ0 = 6.02
[
1/kgm2

]
=⇒ ufeas = 2.14 · 1012 [Nm] whereas û = 13 [Nm] !

The computed values of feasibility number ufeas for 1MS and 2MS are both extremely huge
and unrealistic and by far exceed the actually required torque û = 11.5 [Nm] for 1MS and û =
13.0 [Nm] for 2MS. This is mainly due to L as in (4.106), where e.g. the term (‖ψ1‖∞+‖ψ̇0‖∞)4

yields ≈ 3.84 ·106 for the 1MS and ≈ 91.27 ·106 for the 2MS. For the 2MS, the rough bound Mz

as in (4.77) on the zero dynamics degrades M and so usefulness of the feasibility condition even
more. To conclude, similar to speed control experiment SC3, also for position control, feasibility
condition (4.107) is mainly of theoretical interest. For implementation more realistic feasibility

3 To compute M for the feasibility check, the augmented 2MS (1.26), (1.27), (5.36) must be transformed
into BIF (see proof of Proposition 5.13) such that |â1|, ‖â2‖, etc. are available for evaluation of MV̇ as in (4.76)
and Mz as in (4.77). The details are omitted.
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numbers are desirable. This far, the available theory cannot serve this need. Nevertheless, the
presented measurement results underpin applicability of funnel controller (4.67) for position
control of 1MS and 2MS even in the presence of actuator saturation.

5.3 Position funnel control of rigid revolute joint robotic

manipulators

As a “side product” of the theoretical development of Theorem 4.13, a first result for funnel
control with derivative feedback in robotics has been found. In this section, it will be shown
that the (SISO) funnel controller (4.67) may be extended to the MIMO case and then applied
for position control of rigid revolute joint robotic manipulators if the inertia matrix is known.
For illustration the proposed MIMO funnel controller is implemented for position control of a
planar (elbow-like) two degree-of-freedom (DOF) robotic manipulator and simulation results
are shown.

In the following let n ∈ N and consider a n-DOF robotic manipulator, given by the functional
differential equation (see e.g. [112, p. 77], there without dynamic friction term)

M (y(t))ÿ(t) +
(
C(y(t), ẏ(t)) +CV

)
ẏ(t) + (Fẏ)(t) + g(y(t)) + d(t) = u(t),(

y(0), ẏ(0)
)
=
(
y0, y1

)
∈ R

2n, (5.48)

where y(t) in [rad]n and ẏ(t) in [rad/s]n represent position and speed (vector) at time t ≥
0, respectively. M(·) ∈ C(Rn;Rn×n) is the position dependent inertia matrix. C(·, ·) ∈
C(Rn × R

n;Rn×n) is the position and speed dependent centrifugal and Coriolis force matrix.
CV := diag{ν1, . . . , νn} ∈ R

n×n with ν1, . . . , νn > 0 represents the viscous friction matrix
and F : C(R≥0;R

n) → L∞(R≥0;R
n) with F := (F1, . . . ,Fn)

⊤ and F1, . . . ,Fn as in (1.22) mod-
els dynamic friction. Similar to 1MS and 2MS, it is assumed that friction may be split into
unbounded viscous part CV ẏ and bounded nonlinear and dynamic part Fẏ modeled by the
simplified LuGre friction operator. d(·) ∈ L∞(R≥0;R

n) represents an exogenous disturbance
and g(·) ∈ C(Rn;Rn) is the position dependent gravity vector. The robot is actuated by joint
torque vector u [Nm]n (control input). For simplicity, elasticity in the joints (or the links),
torque generation in the actuator and actuator saturation are neglected. The following as-
sumptions are imposed on the model (5.48):

(A1) the inertia matrix is uniformly bounded from above and below (see e.g. [63]), i.e.

∃ cM , cM > 0 ∀y ∈ R
n : 0 < cMIn ≤M (y) =M(y)⊤ ≤ cMIn;

(A2) the centrifugal and Coriolis force matrix is upper bounded (see e.g. [112, Sections 4.2]) as
follows

∃ cC > 0 ∀y,v,w ∈ R
n : ‖C(y,v)w‖ ≤ cC‖v‖‖w‖;

(A3) the gravity vector is uniformly bounded (see e.g. [112, Sections 4.3]), i.e.

∃ cg > 0 ∀y ∈ R
n : ‖g(y)‖ ≤ cg;
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Figure 5.17: Measurement results of Experiment PC3: saturated funnel controller (4.104) for position
control of 1MS ( left) and 2MS ( right).
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(A4) the friction operator is element of class T and globally bounded, i.e.

F ∈ T and MF := sup {‖(Fξ)(t)‖ | t ≥ 0, ξ(·) ∈ C(R≥0,R
n)} <∞;

(A5) the exogenous disturbance is uniformly bounded, i.e. d(·) ∈ L∞(R≥0;R
n) and

(A6) feedback of position y(·) and speed ẏ(·) is admissible.

Assumptions (A1)-(A3) are standard properties of rigid robotic manipulators with exclusively
revolute joints (see e.g. [112, Sections 4.1-4.3]). Assumptions (A4)-(A6) are similar to system
properties (S2-sp3)-(S2-sp5) and realistic for mechatronic systems.

Funnel control in robotics is introduced in [71]. Although a robot of form (5.48) has (strict
vector) relative degree two, a MIMO funnel controller for relative degree one systems (see [99])
is applied. The (vector) relative degree is reduced to one by introducing the auxiliary output

∀t ≥ 0: ŷ(t) :=KP y(t) +KD ẏ(t) where 0 <KP =K⊤
P ∈ R

n×n, 0 <KD =K⊤
D ∈ R

n×n.

Control objective is reference tracking of position reference yref(·) ∈ W2,∞(R≥0;R
n). In [71] it

is shown that, for auxiliary reference ŷref(·) :=KP yref(·)+KD ẏref(·), auxiliary error ŷref(·)−
ŷ(·) evolves within a prescribed (MIMO) performance funnel. However, the drawback of this
approach is that

actual position error e(·) := yref(·)− y(·) or actual speed error ė(·) := ẏref(·)− ẏ(·)

may leave the prescribed region. Therefore an extension of (SISO) funnel controller (4.67) with
derivative feedback to the robot model (5.48) is desirable to achieve tracking with prescribed
transient accuracy for position error e(·) and speed error ė(·), respectively. More precisely, for
(ψ0(·),ψ1(·)) ∈ Bn2 , introduce the (MIMO) performance funnel

F(ψ0,ψ1) := {(t, ξ,η) ∈ R≥0 × R
n × R

n | ∀ i ∈ {1, . . . , n} : |ξi| < ψ0, i(t) ∧ |ηi| < ψ1, i(t)}
(5.49)

and find a (MIMO) funnel controller which assures that position and speed error evolve within
the prescribed performance funnel, i.e. (t, e(t), ė(t)) ∈ F(ψ0,ψ1) for all t ≥ 0. If inertia matrix
M (·) is known, then the result directly follows from a straightforward extension of Theorem 4.13
to the MIMO case.

Theorem 5.18 (Funnel control with derivative feedback of rigid revolute joint robotic ma-
nipulators). Let n ∈ N and consider a n-th DOF rigid revolute joint robotic manipulator
of form (5.48) which satisfies assumptions (A1)-(A6). Then, for arbitrary position reference
yref(·) ∈ W2,∞(R≥0,R

n), funnel boundary (ψ0(·),ψ1(·)) ∈ Bn2 , gain scaling ς0(·), ς1(·) ∈ Bn1
and initial value (y0,y1) ∈ R

2n satisfying

∀ i ∈ {1, . . . , n} : |yref,i(0)− y0i | < ψ0,i(0) and |ẏref,i(0)− y1i | < ψ1,i(0), (5.50)
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the MIMO funnel controller

u(t) =M (y(t))
(
K0(t)

2e(t) +K0(t)K1(t)ė(t)
)

where e(t) = yref(t)− y(t),

K0(t) = diag
{
k0,1(t), . . . , k0,n(t)

}
, K1(t) = diag

{
k1,1(t), . . . , k1,n(t)

}
and

∀ i ∈ {1, . . . , n} : k0,i(t) =
ς0,i(t)

ψ0,i(t)− |ei(t)|
and k1,i(t) =

ς1,i(t)

ψ1,i(t)− |ėi(t)|





(5.51)

applied to (5.48) yields a closed-loop initial-value problem with the properties:

(i) there exists a solution (y, ẏ) : [0, T ) → R
2n which can be maximally extended and T ∈

(0,∞];

(ii) the solution (y(·), ẏ(·)) does not have finite escape time, i.e. T = ∞;

(iii) the signals e(·) and ė(·) are uniformly bounded, i.e.

∀ i ∈ {1, . . . , n} ∃ε0,i, ε1,i > 0 ∀ t ≥ 0 :

ψ0, i(t)− |ei(t)| ≥ ε0, i and ψ1,i(t)− |ėi(t)| ≥ ε1,i;

(iv) control action and control gain matrices are uniformly bounded, i.e. u(·) ∈ L∞(R≥0;R
n)

and K0(·), K1(·) ∈ L∞(R≥0;R
n×n).

This far, exact knowledge of inertia matrix M(·) is essential for the proof of Theorem 5.18.
Only then the basic idea of the proof of Theorem 4.13 can be reused and allows to extend the
(SISO) funnel controller (4.67) with derivative feedback to the MIMO case. Including inertia
matrix M (·) into the controller as in (5.51) yields a decoupled mechanical system, in the sense
that actual error acceleration ëi(t) of joint i is solely affected by

k0,i(t)
2ei(t) + k0,i(t) k1,i(t)ėi(t), i ∈ {1, . . . , n},

which corresponds to SISO controller (4.67) (applied to each joint i). It was not possible to
extend the result to unknown or roughly known inertia matrices.

Proof of Theorem 5.18.

Step 1: Some preliminaries.

It is easy to see, that (A1) is equivalent to

∃γ0, γ0 > 0 ∀y ∈ R
n : γ0In ≤ Γ0(y) :=M

−1(y) = Γ0(y)
⊤ ≤ γ0In. (5.52)

Write system (5.48) as

d
dt

(
y(t)
ẏ(t)

)
=




ẏ(t)

−Γ0(y(t))
[(
C(y(t), ẏ(t)) +CV

)
ẏ(t) + (Fẏ)(t)

+g(y(t)) + d(t)
]


+

(
0

Γ0(y(t))

)
u(t)
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and, for error e(t) = yref(t)− y(t), as

d
dt

(
e(t)
ė(t)

)
=




ė(t)

Γ0(yref(t)− e(t))
[(
C(yref(t)− e(t), ẏref(t)− ė(t)) +CV

)
(ẏref(t)− ė(t))

+(F(ẏref − e))(t) + g(yref(t)− e(t)) + d(t)
]




+

(
0

ÿref(t)

)
−
(

0

Γ0(yref(t)− e(t))

)
u(t),

(
e(0)
ė(0)

)
=

(
yref(0)− y0

ẏref(0)− y1

)
.





(5.53)
For the following define the constants

∀ i ∈ {1, . . . , n} : ς
0,i

:= inft≥0 ς0,i(t) and ς
1,i

:= inft≥0 ς1,i(t),

∀ i ∈ {1, . . . , n} : λ0,i := inft≥0 ψ0,i(t) and λ1,i := inft≥0 ψ1,i(t).
(5.54)

Step 2: It is shown that Assertion (i) holds true, i.e. existence of a maximally extended solution.

It suffices to consider system (5.48) in the form (5.53). For F(ψ0,ψ1) as in (5.49) define the
non-empty and open set

D :=
{
(τ,µ, ξ) ∈ R× R

n × R
n
∣∣ (|τ |,µ, ξ) ∈ F(ψ0,ψ1)

}
, (5.55)

the function

f : R≥0 ×D × R
n → R× R

2n,

(t, (τ,µ, ξ),w) 7→




1

ξ

Γ0(yref(t)− µ)
[(
C(yref(t)− µ, ẏref(t)− ξ) +CV

)
(ẏref(t)− ξ)

+w + g(yref(t)− µ) + d(t)
]
+ ÿref(t)

− diag
{

ς0,1(t)

ψ0,1(|τ |)−|µ1| , . . . ,
ς0,n(t)

ψ0,n(|τ |)−|µn|

}2

µ

− diag
{

ς0,1(t)ς1,1(t)

(ψ0,1(|τ |)−|µ1|)(ψ1,1(|τ |)−|ξ1|) , . . . ,
ς0,n(t)ς1,n(t)

(ψ0,n(|τ |)−|µn|)(ψ1,n(|τ |)−|ξn|)

}
ξ




and the operator

T̂ : C(R≥0;R× R
2n) → L∞

loc(R≥0;R
n), (T̂(τ,µ, ξ))(t) := (Fξ)(t).

Then, for artifact τ : R → R, t 7→ t and extended state variable x̂ := (τ, (e, ė)), the initial-value
problem (5.53), (5.51) may be expressed in standard form

d
dt
x̂(t) = f(t, x̂(t), (T̂x̂)(t)), x̂(0) =

(
0

yref (0) − y0

ẏref (0) − y1

)
∈ R

2n+1. (5.56)

Choose a compact set C ⊂ D × R
n and observe that the following holds

∃MC > 0 ∀ ((τ,µ, ξ),w) ∈ C : ‖((τ,µ, ξ),w)‖ ≤MC

∃mC > 0 ∀ ((τ,µ, ξ),w) ∈ C : min
i∈{1,...,n}

{ψ0,i(|τ |)− |µi|, ψ1,i(|τ |)− |ξi|} ≥ mC. (5.57)
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Then, for d(·) ∈ L∞(R≥0; R
n), yref(·) ∈ W2,∞(R≥0; R

n) and ς0(·), ς1(·) ∈ W1,∞ (R≥0,R
n
>0),

note that the function f(·, ·, ·) has the following properties: (i) f(t, ·, ·) is continuous for each
fixed t ≥ 0, (ii) for each fixed ((τ,µ, ξ),w) ∈ D×R

n the function f(·, (τ,µ, ξ),w) is measurable
and (iii) for almost all t ≥ 0 and for all ((τ,µ, ξ),w) ∈ C the following holds

‖f(t, (τ,µ, ξ),w)‖
(A1)−(A5), (5.57)

≤ 1 +MC + γ0

[
cC(‖ẏref(t)‖+MC)

2 +

max{ν1, . . . , νn}(‖ẏref(t)‖+MC) +MC + cg + ‖d(t)‖
]

‖ÿref(t)‖+ ‖ς0(t)‖
(
‖ς0(t)‖+ ‖ς1(t)‖

)MC

m2
C

=: lC(t)

where lC(·) ∈ L∞(R≥0;R≥0) ⊂ L1
loc(R≥0,R≥0). Hence f(·, ·, ·) is a Carathéodory function (see

Definition 3.1) and invoking Theorem 3.2 yields existence of a solution x̂ : [0, T ) → R × R
2n

of the initial-value problem (5.56) with x̂([0, T )) ∈ D, T ∈ (0,∞]. Each solution can be
extended to a maximal solution. Moreover f(·, ·, ·) is essentially bounded and so, if T < ∞,
then for any compact C̃ ⊂ D, there exists t̃ ∈ [0, T ) such that x̂(t̃) /∈ C̃. In the following, let
x̂ := (τ, e, ė) : [0, T ) → R×R

n×R
n be a fixed and maximally extended solution of the initial-

value problem (5.56). Note that (e, ė) : [0, T ) → R
n × R

n solves the closed-loop initial-value
problem (5.53), (5.51) for almost all t ∈ [0, T ). This shows Assertion (i) and completes Step 2.

Step 3: Some technical inequalities are introduced.
In view of Step 1, e(·) and ė(·) are continuous on [0, T ) and evolve within the funnel F(ψ0,ψ1).
Hence and due to the properties of B2 (see p. 153), it follows that

∀ i ∈ {1, . . . , n} ∀ t ∈ [0, T ) : |ei(t)| < ψ0, i(t) ≤ ‖ψ0, i‖∞ and |ėi(t)| < ψ1, i(t) ≤ ‖ψ1, i‖∞

or

∀ t ∈ [0, T ) : ‖e(t)‖ < ‖ψ0‖∞ and ‖ė(t)‖ < ‖ψ1‖∞. (5.58)

Define

d̂ : R≥0 × R
n × R

n × R
n → R

n;

(t,µ, ξ,w) 7→ Γ0(yref(t)− µ)
[(
C(yref(t)− µ, ẏref(t)− ξ) +CV

)
(ẏref(t)− ξ)

+w + g(yref(t)− µ) + d(t)
]
+ ÿref(t) =: d̂(t,µ, ξ,w)

and the constant

M := γ0

[
cC (‖ẏref‖∞ + ‖ψ1‖∞)2 +max{ν1, . . . , νn} (‖ẏref‖∞ + ‖ψ1‖∞)

+MF + cg + ‖d‖∞
]
+ ‖ÿref‖∞. (5.59)
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Invoking assumptions (A2), (A3), (A4) and (A5) yields for almost all t ∈ [0, T )

∥∥∥d̂
(
t, e(t), ė(t), (F(yref − e))(t)

)∥∥∥
(5.52)

≤ γ0

[
cC ‖ẏref(t)− ė(t)‖2 +MF + cg + ‖d‖∞

+max{ν1, . . . , νn} ‖ẏref(t)− ė(t)‖
]
+ ‖ÿref‖∞

(5.58),(5.59)

≤ M,

hence the following holds

∀ i ∈ {1, . . . , n} for a.a. t ∈ [0, T ) : |d̂i
(
t, e(t), ė(t), (F(yref − e))(t)

)
| ≤M. (5.60)

Inserting (5.51) into (5.53) and invoking (5.60) yields

∀ i ∈ {1, . . . , n} ∀ t ∈ [0, T ) :

−M − k0,i(t)
2 ei(t)− k0,i(t) k1,i(t) ėi(t) ≤ ëi(t) ≤M − k0,i(t)

2 ei(t)− k0,i(t) k1,i(t) ėi(t). (5.61)

Step 4: For all i ∈ {1, . . . , n} it is shown that |ei(·)| is uniformly bounded away from the
boundary ψ0, i(·); more precisely for positive

ε0,i ≤ min

{
λ0,i
4
,
ψ0,i(0)−|ei(0)|

2
,

1
2
δiς0,iλ0,i

2‖ς1,i‖∞‖ψ1,i‖∞+
√

4‖ς1,i‖2∞‖ψ1,i‖2∞+2δ2i λ0,i(M+‖ψ̇1,i‖∞)
,

1
2
δiς

2
0,i
λ0,i

2ς
0,i

‖ς1,i‖∞‖ψ1,i‖∞+δi(‖ψ1,i‖∞+‖ψ̇0,i‖∞)
2
+

√
(2ς0,i‖ς1,i‖∞‖ψ1,i‖∞+δi(‖ψ1,i‖∞+‖ψ̇0,i‖∞)2)

2
+2δ2i ς

2
0,iλ0,iM



 ,

(5.62)

with λ0,i, λ1,i, ς0,i and ς
1,i

as in (5.54), δi = δ as in (4.61) and M as in (5.59), it holds that

ψ0,i(t)− |ei(t)| ≥ ε0,i for all i ∈ {1, . . . , n} and all t ∈ [0, T ).

Choose i ∈ {1, . . . , n} arbitrarily and note that for ε0,i as in (5.62) the Steps 3a-e in the proof
of Theorem 4.13 (see p. 159ff.) go through without changes (using γ0 = 1). Hence the claim of
Step 4 holds true.

Step 5: For all i ∈ {1, . . . , n} it is shown that |ėi(·)| is uniformly bounded away from the
boundary ψ1, i(·); more precisely for positive

ε1,i ≤ min

{
λ1,i
2
, ψ1,i(0)− |ėi(0)|,

1
2
ς
0,i
ς
1,i
λ1,iε

2
0,i

‖ψ0,i‖∞(M + ‖ψ̇1,i‖∞)ε20,i + ‖ς0,i‖2∞‖ψ0,i‖2∞

}
, (5.63)

with M as in (5.59) and ε0,i as in (5.62), it holds that ψ1,i(t)−|ėi(t)| ≥ ε1,i for all i ∈ {1, . . . , n}
and all t ∈ [0, T ).

Again choose i ∈ {1, . . . , n} arbitrarily and observe that identical arguments as in Step 4 of the
proof of Theorem 4.13 (see p. 163ff. and set γ0 = 1) show the claim of Step 5.
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Step 6: It is shown that Assertions (ii)-(iv) hold true.
For M as in (5.59), ε0,i as in (5.62) and ε1,i as in (5.63), i ∈ {1, . . . , n} define

C̃ :=
{
(t,µ, ξ) ∈ [0, T ]× R

2n
∣∣ ∀ i ∈ {0, . . . , n} : |µi| ≤ ψ0, i(t)− ε0, i ∧ |ξi| ≤ ψ1, i(t)− ε1, i

}

Let D be as in Step 2. If T < ∞ then C̃ ⊂ D and contains the whole graph of the solution
t 7→ (e(t), ė(t)), which contradicts maximality of the solution. Hence T = ∞. Assertion (iii)
follows from Step 4 and Step 5. Moreover, Step 4 and Step 5 with boundedness of ς0(·)
and ς1(·) on R≥0 imply that K0(·) and K1(·) are uniformly bounded on R≥0, respectively.
Then, from (5.58), (A1) and (5.51), it follows that u(·) is uniformly bounded on R≥0, hence
Assertion (iv) is shown. This completes the proof.

Simulation

For illustration, the MIMO funnel controller (5.51) with derivative feedback is applied to the
planar two DOF rigid revolute joint robotic manipulator depicted in Fig. 5.18.

u1

u2

l1

l2

m1

m2

y1

y2

Figure 5.18: Planar two DOF rigid revolute joint robotic manipulator.

The planar (elbow-like) robot has two revolute joints actuated by u1 and u2 [Nm], respectively.
The links are assumed massless and have length l1 and l2 [m]. Point masses m1 and m2 [kg] are
attached to their distal ends, respectively. Control objective is position control of joint angles
y1 and y2 [rad] with prescribed transient accuracy. The mathematical model of this robot is
given by (see e.g. [174, p. 259ff.])

M (y(t)) ÿ(t) +C(y(t), ẏ(t)) ẏ(t) + g(y(t)) = u(t),
(
y(0), ẏ(0)

)
=
(
0, 0

)
∈ R

4 (5.64)
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data/parametrization

Matlab solver ode45 (Dormand-Prince) with variable step size (max. 10−3 [s])

robot (5.64) m1 = m2 = 1 [kg], l1 = l2 = 1 [m], g = 9.81 [m/s2],
(y(0), ẏ(0)) = (0, 0)

[
rad, rad

s

]2
reference (yref,1(·), yref,2(·)) as in top of Fig. 5.19

initial error e(0) = (π/2,−π/4)⊤ [rad]2

(MIMO) funnel M (y) as in (5.65), (ψ0,i(·), ψ0,i(·)), i ∈ {1, 2} as in (4.64) with
controller (5.51) (Λ0,1, Λ0,2) = 5 e(0) [rad]2, (λ0,1, λ0,2) = (π/18, π/18) [rad]2,

(TE,1, TE,2) = (1.32, 1.63) [s]2, (λ1,1, λ1,2) = (π, π) [rad/s]2,
ς0(·) = (ψ0,1(·), ψ0,2(·)), ς1(·) = 10 (ψ1,1(·), ψ1,2(·))

Table 5.6: Robot, simulation and controller parameters for simulation.

with inertia matrix

M : R
2 → R

2×2,

y 7→M (y) :=

[
m1 l

2
1 +m2 (l

2
1 + l22 + 2l1l2 cos(y2)), m2(l

2
2 + l1l2 cos(y2))

m2(l
2
2 + l1l2 cos(y2)), m2l

2
2

]
, (5.65)

centrifugal and Coriolis force matrix

C : R2 × R
2 → R

2×2, (y,v) 7→ C(y,v) =

[
−2m2l1l2 sin(y2)v1, −m2l1l2 sin(y2)v2

−m2l1l2 sin(y2)v1, 0

]

and gravity vector

g : R
2 → R

2, y 7→ g(y) := g

(
m1l1 cos(y1) +m2(l1 cos(y1) + l2 cos(y1 + y2))

m2l2 cos(y1 + y2)

)

where g = 9.81 [kgm2] is the (rounded) gravity constant. For simplicity, friction, gears, dis-
turbances and measurement errors (e.g. noise) are neglected. The simulation is performed in
Matlab/Simulink. Robot, simulation and controller parameters are collected in Tab. 5.6.

The simulation results for closed-loop system (5.64), (5.51) are shown in Fig. 5.19. The funnel
controller (5.51) achieves tracking with prescribed transient accuracy for joint positions y1(·)
& y2(·) and joint velocities ẏ1(·) & ẏ2(·), respectively. Both joint position errors e1(·) & e2(·)
and both joint velocity errors ė1(·) & ė2(·) evolve within the performance funnel. Since gears
are not considered in the simulation, the generated motor torques u1(·) & u2(·) are seemingly
large. In “real world” gears (with ratios ≫ 10) yield a torque reduction on motor side.
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Figure 5.19: Simulation results for closed-loop system (5.64), (5.51): joint i = 1 and joint i = 2
(from top to bottom: position y1(·) & y2(·), position error e1(·) & e2(·), proportional gain
k0,1(·)2 & k0,2(·)2, speed error ė1(·) & ė2(·), derivative gain k0,1(·)k1,1(·) & k0,2(·)k1,2(·)
and torque u1(·) & u2(·)).
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Conclusion and outlook

High-gain adaptive control and its possible applications in mechatronics—i.e. speed and posi-
tion control—have been discussed. More precisely, starting with “classical” high-gain adaptive
control for linear time-invariant (LTI) single-input single-output (SISO) systems, adaptive λ-
tracking control and funnel control have been revisited and developed, in a general framework,
for SISO systems with

(i) relative degree one (for speed control) or relative degree two (for position control),

(ii) known sign of the high-frequency gain,

(iii) bounded disturbances and state-dependent, functional perturbations and

(iv) stable zero-dynamics (the unperturbed system is minimum-phase).

Moreover, it is assumed that (v) the systems with relative degree one allow for feedback of the
regulated output (the variable to be controlled is measured and hence available for feedback),
whereas the systems with relative degree two allow for feedback of the regulated output and
its derivative. In particular for position control, derivative feedback is justified. The presented
high-gain adaptive controllers are “simple” (in the sense of non-complex and of low order).
Especially for the relative degree two case, since the developed high-gain adaptive controllers
incorporate derivative feedback, they are (much) simpler than the available high-gain adaptive
controllers in literature.

For controller implementation, only the “structural system properties” (i)-(v) must be satisfied.
Therefore, the presented adaptive λ-tracking controllers and funnel controllers are inherently
robust (e.g. to parameter uncertainties not affecting the “system properties”) and, consequently,
attractive for industrial application. Moreover, due to their non-complex structure and since
design parameters have distinct and easy to understand influence on the closed-loop control
performance, the controllers are easy to implement (in any process automation software pro-
viding standard building blocks for e.g. integration, summation, multiplication, etc.) and easy
to tune. Furthermore,

• the adaptive λ-tracking controllers guarantee tracking with prescribed asymptotic accuracy
(see Theorem 3.3 for the relative degree one case and Theorem 3.13 for the relative degree
two case), i.e. for prescribed λ > 0 the tracking error (the difference between reference
signal and measured output) approaches the interval [−λ, λ] asymptotically;
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• the funnel controllers assure tracking with prescribed transient accuracy (see Theorem 4.4
for the relative degree one case and Theorem 4.13 for the relative degree two case), i.e. the
absolute value of the tracking error is bounded by a prescribed positive (possibly non-
increasing) function of time (i.e. the funnel boundary). Moreover, the funnel controllers
are feasible in the presence of (actuator) saturation, if a feasibility condition is satisfied
(see Theorem 4.7 for the relative degree one case and Theorem 4.15 for the relative degree
two case);

• in conjunction with a proportional-integral internal model (similar to a PI controller), the
“proportional” and “memoryless” (i.e. without integral control action) high-gain adaptive
controllers achieve steady state accuracy (i.e. the tracking error vanishes asymptotically)
if steady state is reached (see Corollary 5.2).

Concerning application, the developed adaptive λ-tracking controllers and funnel controllers
have been proposed for speed and position control of industrial servo-systems. In addition,
as a “side product” of the development of funnel control with derivative feedback for systems
with relative degree two, a first result for position funnel control of rigid revolute joint robotic
manipulators (with known inertia matrix) has been established (see Theorem 5.18). The con-
sidered mechatronic systems are subject to unknown (but bounded) disturbances (e.g. load
torques, measurement noise, etc.) and nonlinear friction (on motor and load side). Friction is
modeled by unbounded viscous friction and by a bounded, causal friction operator (covering
dynamic friction effects such as presliding displacement or frictional memory) motivated by the
well known LuGre friction model. To allow for application of the high-gain adaptive controllers
in “real world”, the mechatronic systems must “solely” satisfy “system properties” (i)-(v). Sys-
tem identification or parameter estimation is not required. For the considered mechatronic
systems, it has been shown that “system properties” (i)-(v) hold under mild presuppositions
and if actuator saturation is negligible (see Propositions 5.5, 5.6, 5.10 and 5.11). The “system
properties” may be checked by invoking rough system knowledge only (using upper or lower
bounds on system parameters). In the majority of cases, already the signs of the system pa-
rameters (such as inertia or gear ratio, etc.) are sufficient for an affirmative verification. By
physical means, these signs either are known to the control designer or can be determined easily.

The proposed adaptive λ-tracking controllers and funnel controllers have been implemented at
the laboratory setup for speed and position control of a stiff one-mass system (1MS) and a
flexible two-mass system (2MS). For speed and position funnel control with saturation, the fea-
sibility conditions yield (very) conservative and unrealistic bounds on the required drive torque.
Nevertheless, as measurement results show, application is reasonable even if the feasibility con-
dition is violated. To allow for steady state accuracy, the high-gain adaptive controllers have
also been implemented in conjunction with a proportional-integral internal model. In particular
for speed and position control of the 1MS, the measurement results confirm that the adaptive
λ-tracking controllers and the funnel controllers (without and with internal model) guarantee
speed and position tracking with prescribed asymptotic accuracy and with prescribed transient
accuracy, respectively. High-gain adaptive speed control and high-gain adaptive position con-
trol of the flexible 2MS are slightly more involved. Besides reference tracking and disturbance
rejection, the controllers must also assure damping of shaft oscillations. Therefore, the high-
gain adaptive controllers are supplemented by dynamic feedback (i.e. a high-pass filter for angle
of twist) which allows to suppress oscillations. Moreover, to assure the “structural system prop-
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erties” (i)-(v) and so applicability of the adaptive controllers, an augmented output (i.e. a linear
combination of motor and load quantities) must be introduced (see Proposition 5.7 for speed
control and Proposition 5.13 for position control). As a consequence, the adaptive λ-tracking
controllers and the funnel controllers “solely” achieve tracking with prescribed asymptotic ac-
curacy and with prescribed transient accuracy for the augmented output, respectively. Hence,
load speed or load position does not necessarily evolve within the prescribed region. This is
only assured if steady state is attained.

The experimental results at the laboratory setup verify that the control performance of the
high-gain adaptive controllers with internal model can keep up with the control performance of
PI and PID controllers (without anti-windup), respectively, for speed and position control of
stiff servo-systems. Especially the funnel controllers allow to include costumer specifications—
such as maximum rise time, maximum settling time and maximum overshoot—into controller
design by adequate “shaping” of the funnel boundary. Hence implementation effort is reduced.
Also for flexible servo-systems, the experimental results underpin industrial applicability of the
high-gain adaptive controllers for speed and position control. Active damping of shaft oscilla-
tions is feasible by adequate feedback and filter design.

Due to a dynamic and monotone gain adaption, the adaptive λ-tracking controllers generate
non-decreasing controller gains and, at first sight, seem to be inadequate for real implementa-
tion in contrast to the funnel controllers which, due to a time-varying gain adaption (inversely
proportional to the distance between funnel boundary and absolute value of the error), also
allow for gain decrease. In fact, measurement results show that adaptive λ-tracking speed
and position control is reasonable and may even yield better control performance than funnel
control. From a practical point of view, in order to avoid permanently too large gains, gain
adaption of the adaptive λ-tracking controllers may be stopped as soon as control performance
(evaluated by e.g. the ITAE criterion) is satisfactory. The presented measurement results also
show that speed funnel control under load without proportional-integral internal model may
fail, if boundary design is too demanding and speed measurement is too noisy. Due to (tem-
porarily) too large gains and limited sampling rate in the real-time system, noise sensitivity
(amplification) may be too high to keep the tracking error within the prescribed region. As
a consequence, funnel control should preferably be implemented with (proportional-integral)
internal model.

To summarize: it has been shown that high-gain adaptive speed control and high-gain adaptive
position control of mechatronics systems are admissible and, in conjunction with an internal
model, achieve a very acceptable control performance. Consequently, high-gain adaptive motion
control may be considered as a simple, robust and promising alternative to standard motion
control in industry. However, some issues are still to be examined. Future research should
include the following:

• consideration of gear backlash and gear dynamics (as starting point see e.g. [139]);

• improvement of the feasibility condition(s) for funnel control with saturation (e.g. evalu-
ation of time-varying feasibility condition(s), as starting point see [121]);

• derivation of feasibility condition(s) for adaptive λ-tracking control with saturation (as
starting point see e.g. [61, 100]);
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• analysis of the effect(s) of windup caused by high-gain adaptive controllers with propor-
tional-integral internal model applied to systems with (actuator) saturation (as starting
point see e.g. [166, Section 5.6]);

• extension of position funnel control to rigid revolute joint robotic manipulators without
known inertia matrix and, eventually, to flexible revolute joint robotic manipulators (as
starting point see e.g. [152]) and

• theoretical analysis of discrete time implementation of high-gain adaptive controllers on
sampled data systems (as starting point see e.g. [97]).
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A Abbreviations

Abbreviation Meaning

1MS one-mass system (servo-drive with stiff coupling)
2MS two-mass system (servo-drive with elastic coupling)
AC alternating current
BIF Byrnes-Isidori form
CCF controllable canonical form
DC direct current
DOF degrees of freedom
DTC direct torque control (of induction motors)
FOC field oriented control (of induction motors)
IM induction motor (or machine)
ITAE integral time(-weighted) absolute error criterion with value

xITAE(t0, T ) :=

∫ T

t0

τ · |e(τ)| dτ , 0 ≤ t0 ≤ T, e(·) ∈ L∞(R≥0;R)

LTI linear time-invariant (system)
MIMO multiple-input multiple-output (system)
MPDTC model predictive direct torque control (of induction motors)
ODE ordinary differential equation
PMSM permanent magnetic synchronous motor (or machine)
PWM pulse width modulation
RMS root mean square (quadratic mean) of signal x(·) ∈ L∞(R≥0;R)

xRMS(t0, T ) :=

√
1

T

∫ t0+T

t0

x(τ)2 dτ , 0 ≤ t0 ≤ T

SISO single-input single-output (system)
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B Two simple operators of class T
Two examples of operator class T are presented and operator properties (op1)-(op3) are checked.

Example B.1 (“Static nonlinearity”).
In the simplest case the operator class T may describe any (possibly nonlinear) locally Lipschitz
continuous function g(·) : Rn → R

m, n,m ∈ N. Note that due to the locally Lipschitz condition,
the following holds: for any compact Cg ⊂ R

n there exists Lg ≥ 0 such that ‖g(v)− g(w)‖ ≤
Lg ‖v −w‖ for all v,w ∈ Cg. Now define the operator

TSN : C(R≥0;R
n) → L∞

loc(R≥0;R
m), x(·) 7→ (TSNx)(·) := g(x(·)).

It is shown that TSN is element of operator class T : It is easy to see that properties (op1) and
(op3)(a) trivially hold. Next, choose δ > 0 and x(·) ∈ C(R≥0;R

n) with supt≥0 ‖x(t)‖ < δ, then
‖(TSNx)(t)‖ = ‖g(x(t))‖ < supw∈Bδ(0) ‖g(w)‖ =: ∆ < ∞ for all t ≥ 0. Hence property (op2)
also holds. Now, for any t ≥ 0, fix β(·) ∈ C([0, t];Rn) and τ, δ > 0 arbitrarily and define M :=
maxs∈[0, t] ‖β(s)‖ + δ. Then, for all x1(·),x2(·) ∈ C(R≥0;R

n) with x1(·)|[0,t] = x2(·)|[0,t] = β(·)
and x1(s),x2(s) ∈ Bδ(β(t)) for all s ∈ [t, t+ τ ], the following holds x1(s),x2(s) ∈ BM(0) ⊂ R

n

for all s ∈ [t, t + τ ]. Note that BM(0) is compact and therefore there exists L
BM

> 0 such that
‖(TSNx1)(s)− (TSNx2)(s)‖ ≤ L

BM
‖x1(s)− x2(s)‖ for all s ∈ [t, t+ τ ], which shows property

(op3)(b). Hence, TSN ∈ T .

Example B.2 (Linear time-invariant single-input single-output systems).
For n ∈ N consider the linear dynamical system given by

ẋ(t) = Ax(t) + b u(t), x(0) = x0 ∈ R
n, (A, b, c, d) ∈ R

n×n × R
n × R

n × R

y(t) = c⊤x(t) + d u(t), u(·) ∈ C(R≥0;R), spec(A) ⊂ C<0.
(B.1)

Variation-of-Constants yields

∀ t ≥ 0: x(t) = exp(At)x0 +

∫ t

0

exp(A(t− τ)) b u(τ) dτ

and spec(A) ⊂ C<0 implies that there exist λA > 0 and MA ≥ 1 (see e.g. [77, Lemma 3.3.19,
p. 263]), such that

∀ t ≥ 0: ‖ exp(At)‖ ≤MA exp(−λAt). (B.2)

Define the operator

TL : C(R≥0;R) → L∞
loc(R≥0;R

n), (TLu)(t) := c
⊤
∫ t

0

exp(A(t− τ)) b u(τ) dτ + d u(t).

Note that the operator TL is linear and taking norms and invoking (B.2) yields

∀ t ≥ 0: ‖(TLu)(t)‖ ≤MA ‖c‖ ‖b‖
∫ t

0

exp(−λA(t− τ))|u(τ)| dτ + |d| |u(t)|. (B.3)

It is shown that TL ∈ T . Set h = 0. It is easy to see that Properties (op1) and (op3)(a) hold.
Furthermore, for all u(·) ∈ C(R≥0;R) with |u(·)| < δ on R≥0, the following holds ‖(TLu)(t)‖ ≤
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(MA ‖c‖ ‖b‖ /λA + |d|) δ =: ∆ for all t ≥ 0 and hence Property (op2) also holds. Now for
τ > 0 and u1(·), u2(·) ∈ C(R≥0;R) with u1(·) = u2(·) on [0, t], one obtains

sup
s∈[t, t+τ ]

‖(TLu1)(s)− (TLu2)(s)‖

≤ ‖c‖ sup
s∈[t, t+τ ]

∥∥∥ exp(As)
(∫ t

0

exp(−Aα) b (u1(α)− u2(α))︸ ︷︷ ︸
=0 on [0,t]

dα

+

∫ s

t

exp(−Aα) b (u1(α)− u2(α)) dα
)∥∥∥+ |d| sup

s∈[t, t+τ ]
|u1(s)− u2(s)|

≤ max

{
MA

λA
‖c‖ ‖b‖ , |d|

}

︸ ︷︷ ︸
=:c0

sup
s∈[t, t+τ ]

|u1(s)− u2(s)|,

which shows that Property (op3)(b) is also satisfied. Hence TL is of class T and systems of the
form (B.1) may be expressed in the compact form

y(t) = c⊤ exp(At)x0 + (TLu)(t),
(A, c) ∈ R

n×n × R
n, spec(A) ⊂ C<0, x0 ∈ R

n,
h = 0, TL ∈ T and u(·) ∈ C(R≥0;R).
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C Root locus center of LTI SISO systems in state space

For the following let a LTI SISO system be given by the ODE

ẋ(t) = Ax(t) + b u(t),
y(t) = c⊤x(t)

ñ ∈ N, x(0) = x0 ∈ R
ñ,

(A, b, c) ∈ R
ñ×ñ × R

ñ × R
ñ (C.4)

or by the transfer function (with coprime numerator and denominator)

F (s) =
y(s)

u(s)
= γ0

c0 + c1s+ · · ·+ cm−1s
m−1 + sm

a0 + a1s+ · · ·+ an−1sn−1 + sn
,

n, m ∈ N, n > m, γ0 6= 0
c0, . . . , cm−1 ∈ R,
a0, . . . , an−1 ∈ R.

(C.5)

Definition C.3 (Root locus center of LTI SISO systems in state space).
Consider a system of form (C.4) with known relative degree 1 ≤ r ≤ ñ. Then

Ξ(A, b, c) :=
1

r

c⊤Arb

c⊤Ar−1b
(C.6)

is called the root locus center of (C.4).

The root locus center of a transfer function (C.5) and the root locus center of its minimal
realization (C.4) are related.

Lemma C.4. Denote the root locus center of (C.4) and (C.5) by ΞSS and ΞTF , respectively.
If (C.4) is a minimal realization of (C.5), then ΞSS = ΞTF .

Proof of Lemma C.4.
Denote the relative degree of (C.5) by r = n−m > 0. From Lemma 2.2 it follows that relative
degree of (minimal) realization (C.4) and transfer function (C.5) are equal. Since (C.4) is a
minimal realization of (C.5), (A, b) is controllable and ñ = n. Hence, there exists T : Rn → R

n,
x 7→ xC := Tx which converts (C.4) into controllable canonical form (see [24, p. 822-823])

ẋC(t) = AC xC(t) + bC u(t), xC(0) = Tx0 ∈ R
n,

y(t) = c⊤CxC(t)

where

AC = TAT−1 =




0 1 0 . . . 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
0 . . . . . . 0 1

−α0 −α1 . . . −αn−2 −αn−1



∈ R

n×n, bC = Tb =




0
...
0
1


 ∈ R

n

and c⊤C = c⊤T−1 =
(
β0, . . . , βn−1

)
∈ R

n. (C.7)

Moreover, by comparing coefficients of numerator and denominator in

F (s) = c⊤(s In −A)−1b = c⊤C(s In −AC)
−1bC =

β0 + β1 s+ · · ·+ βn−1 s
n−1

α0 + α1 s+ · · ·+ αn−1 sn−1 + sn
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it follows that

∀ i ∈ {0, . . . , n− 1} : αi = ai, ∀ i ∈ {0, . . . ,m− 1} : βi = γ0 ci,
βm = γ0 and ∀j ∈ {m+ 1, . . . , n− 1} : βj = 0.

(C.8)

In view of (C.7), (C.8) and r = n−m, the following hold

∀ i ∈ {0, . . . , r − 1} : c⊤CA
i
C = (0⊤

i , β0, . . . , βm−1︸ ︷︷ ︸
∈R1×m

, βm, 0, . . . , 0︸ ︷︷ ︸
∈R1×(r−i)

) ∈ R
1×n (C.9)

and

ACbC =
(
0
⊤
n−2, 1, −αn−1

)⊤ ∈ R
n. (C.10)

Hence

c⊤Arb
(2.11)
= c⊤CA

r
CbC = c⊤CA

r−1
C ACbC =

(C.9)(C.10)
=

(
0
⊤
r−1, β0, . . . , βm−1︸ ︷︷ ︸

∈Rm

, βm
)



0n−2

1
−αn−1


 = βm−1 − βmαn−1

(C.8)
= γ0(cm−1 − an−1)

and

c⊤Ar−1b
(2.11)
= c⊤CA

r−1
C bC = c⊤CA

r−2
C ACbC

(C.9)(C.10)
=

(
0
⊤
r−2, β0, . . . , βm−1︸ ︷︷ ︸

∈Rm

, βm, 0
)



0n−2

1
−αn−1


 (C.8)

= γ0.

Combining the results above, recalling r = n−m and evaluating (C.6) yields

ΞSS =
1

r

c⊤Arb

c⊤Ar−1b
=

1

n−m
(cm−1 − an−1) = ΞTF ,

which completes the proof.
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D Technical data of laboratory setup

The electrical block diagram of the laboratory setup is depicted in Fig. D.1. The three-phase
mains-operated power supply with alternating current (AC) is rectified by a converter and bal-
anced by an intermediate circuit capacitor for each permanent magnetic synchronous machine
(PMSM). The intermediate circuits of both machines are connected in parallel. The interme-
diate circuit voltage u0 (DC link) allows for pulse width modulation (PWM) in each power
inverter. The machines are fed by variable currents (with appropriate frequency and ampli-
tude) required for torque generation. In regenerative mode (braking) the stored kinetic energy
of the setup is fed back to the intermediate circuit. If necessary, excessive energy is dissipated
in the braking module (resistor) to avoid over-voltages in the DC link. Technical data of the
laboratory setup is collected in Tab. D.2.

power supply: 50 [Hz], 400 [V]/230 [V]

po
w

er
in

ve
rt

er
(i

nd
ex

2) pow
er

inverter
(index

1)

PMSMPMSM
(index 2) (index 1)

braking module
(with resistor)

φ2 φ1

u0
u0

(ω2) (ω1)

φS

replaceable shaft sensorsensor

Figure D.1: Electrical block diagram of laboratory setup.
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Description Symbol & Value Dimension

Machines: SIEMENS “Brushless Servomotor” 1FT6086-8AC71-1CD3

Nominal speed nN = 2000
[

1
min

]
, ωN = 209.44

[
rad
s

] [
1

min

]
= 60

2π

[
rad
s

]

Nominal torque mN = 22.0 [Nm]
Nominal current iN = 10.9 [A]
Nominal motor power PN = 4.8 [kW] = 103 [W]
Rotor inertia ΘRotor = 6.65 · 10−3 [kgm2]

Inverters: SIEMENS Simovert MasterDrive SC 6SE7022-6EC30

Mains voltage (3-phase, AC) uRMS
AC = 380 . . . 460 (±15%) [V]

Voltage link (DC) u0 = 510 . . . 620 (±15%) [V]
Output voltage (3-phase AC) uRMS

out = 0 . . . 0.86 · uRMS
AC [V]

Mains frequency fn = 50/60 (±15%) [Hz] =
[
1
s

]

Output frequency fout = 0 . . . 600 [Hz] =
[
1
s

]

Pulse frequency fp = 5 . . . 7, 5 [kHz] = 103 [Hz]

Output nominal current iRMS
N = 25.5 [A]

Base load current iRMS
BL = 23.2 [A]

Short-time current iRMS
max = 40.8 [A]

Dissipation loss Ploss = 0.43 (at 5 [Hz]) [kW] = 103 [W]
Efficiency factor η = 96 . . . 98% [1]

Encoders: HEIDENHAIN RON 3350 Sinusoidal 2048

Lines (per revolution) lr = 2048 [1]
Interpolation 12 bit (212 = 4096) –
Sinusoidal output voltage upp = 1 [V]

Different inertia wheels

Small inertia wheel Θsw = 8.93 · 10−5 [kgm2]
Medium inertia wheel Θmw = 1.3 · 10−3 [kgm2]
Large inertia wheel Θlw = 77.2 · 10−3 [kgm2]
Drive 1 axle inertia Θai1 = 2.4 · 10−3 [kgm2]
Drive 2 axle inertia Θai2 = 9.1 · 10−3 [kgm2]

Table D.2: Technical data of machines, inverters, encoders and inertia wheels.
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