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Abstract

The present thesis deals with the concept of cooperative (COOP) pulses
that are designed to cancel each other’s imperfections and act in a coop-
erative manner. Multi-scan COOP pulses are applied in several scans
and at the same position in a pulse sequence so that undesired sig-
nal contributions can be canceled. They complement and generalize
phase cycles and difference spectroscopy. We experimentally demon-
strate their advantages for broadband and band-selective pulses. Single-
scan cooperative (S2.-COOP) pulses are applied at different positions of
a pulse sequence in a single scan. They can be used to find general-
ized solutions for common building blocks in NMR spectroscopy. The
advantage of the S>-COOP approach is demonstrated in theory and ex-
periment for NOESY-type frequency-labeling blocks. Optimal tracking
is a generalization of the gradient ascent pulse engineering (GRAPE)
algorithm which allows for the design of pulse sequences that steer the
evolution of an ensemble of spin systems such that at defined points in
time, a specific trajectory of the density operator is tracked as closely as
possible. Optimal tracking has been used for the design of low-power
heteronuclear decoupling sequences for in vivo applications. Here, we
present the theory of cooperative tracking representing a generalization
of optimal tracking and multi-scan COOP pulses. Cooperative tracking
pulses, multi-scan and single-scan COOP pulses can be efficiently opti-
mized with extended versions of the GRAPE algorithm.
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Zusammenfassung

Die vorliegende Arbeit behandelt das Konzept kooperativer (COOP)
Pulse, die dazu ausgelegt sind, ihre Imperfektionen gegenseitig auszu-
gleichen und auf kooperative Weise zu wirken. Multi-Scan COOP Pul-
se werden in mehreren Scans an der gleichen Stelle einer Pulssequenz
eingesetzt, sodass sich unerwiinschte Signalbeitrdge gegenseitig aufhe-
ben konnen. Sie ergdnzen und verallgemeinern Phasenzyklen und Dif-
terenzspektroskopie. In Experimenten zeigen wir ihre Vorteile als breit-
bandige und bandselektive Pulse. Single-Scan-kooperative (S>-COOP)
Pulse werden an verschiedenen Positionen einer Pulssequenz in einem
Scan eingesetzt. Sie konnen dazu verwendet werden, um verallgemei-
nerte Losungen fiir gidngige Bausteine in der NMR-Spektroskopie zu
finden. Vorteile des S>-COOP-Verfahrens werden theoretisch und expe-
rimentell anhand NOESY-artiger Evolutionssequenzen aufgezeigt. Op-
timal Tracking ist eine Verallgemeinerung des gradient ascent pulse en-
gineering (GRAPE) Algorithmus’, die es ermoglicht, Pulssequenzen zu
entwickeln, die die Evolution eines Ensembles von Spinsystemen derart
steuern, dass zu bestimmten Zeitpunkten einer spezifischen Trajektorie
des Dichteoperators so genau wie moglich gefolgt wird. Mit Optimal
Tracking wurden bereits heteronukleare Entkopplungssequenzen mit
niedriger Leistung fiir in vivo Anwendungen entwickelt. Hier erldutern
wir die Theorie des Cooperative Tracking, einer Verallgemeinerung von
Optimal Tracking und multi-scan COOP Pulsen. Cooperative Tracking
Pulse, multi-scan und single-scan COOP Pulse kdnnen mit erweiterten
Versionen des GRAPE-Algorithmus’ effizient optimiert werden.
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1 Introduction

Wiinschelrute
Schlift ein Lied in allen Dingen
Die da trdumen fort und fort
Und die Welt hebt an zu singen
Triffst du nur das Zauberwort

Joseph von Eichendorff

In most interpretations of the above poem, its themes are poetry, chant
and the magic of speech. An interpretation from a different perspective
— thoughts are free — might show how the poetry of nature becomes
conceivable by scientific methods. Seen from a very special point of
view, it is the nuclear magnetic resonance (NMR) spectroscopist who
hits the world (or the nuclear spins in it) with his magic words (or
radio-frequency (rf) pulses) upon which a secret tune (free induction
decay, FID) can be heard, a tune which hitherto has been fast asleep
and now unravels the secrets of the world beyond our senses. Is it
not tempting to make the world sing? But as beautiful as it may be,
the art of spin manipulation using rf pulses is not free from pitfalls.
Undesired side-effects might be bothersome at first. But only when
they get bothersome enough to incite us to get rid of them and we are
successful in developing a method which lifts the problem will we find
— again — beauty and elegance.

As soon as Fourier-transform (FT) NMR was introduced [1], rectangular
rf pulses became the central tool in NMR spectroscopy. An rf pulse is
called “rectangular” or “square” when its amplitude and phase are con-
stant during the entire pulse duration. Rectangular pulses are simple,
their experimental implementation is straightforward and they perform
well within a certain parameter range. However, their applicability is
limited due to their imperfections. E.g. off-resonance effects are well
known [1] and limit the offset range that is covered by a rectangular
pulse of finite duration.
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In order to compensate for undesired pulse imperfections composite
(i.e. with constant amplitudes but variable phases) [2-5] and shaped
(i.e. with both phases and amplitudes being varied) [6,7] pulses were
developed. Among the class of shaped pulses, adiabatic pulses [7-9]
are among the best performing inversion pulses even if they tend to
have rather long durations. The ways in which these pulses have been
developed often rely on symmetry principles, analytical insights into
spin dynamics and intuition. Although many composite and shaped
pulses produce very good results, the traditional art of pulse design
very likely reached its limits as the complexity of the problems that
need to be solved have increased.

Fortunately, pulse design was lifted to a new level with help from opti-
mal control theory [10]. The latter was mainly developed in the course
of the United States and Soviet spaceflight programs and found appli-
cations in various fields ranging from engineering to economics. In the
field of NMR pulse design, optimal control theory forms the foundation
of gradient ascent pulse engineering (GRAPE) [11] which is a fast and
efficient algorithm for the numerical optimization of shaped rf pulses.
With the help of GRAPE, the art of pulse design has been transformed
into a science [12]: GRAPE has made it possible to explore the physical
limits of pulse performance [13-15]. Excitation pulses that are robust
with respect to offset frequency [16] and rf-field inhomogeneity [17] (o,
to some extent, even both [18]) have been developed with an unprece-
dented quality. In addition, broadband excitation and inversion pulses
with restricted rf amplitude [19] or restricted rf power [14], minimized
[20] or linear [21] phase dispersion have been presented. Relaxation-
optimized excitation pulses have been developed as well [22]. Not
only can excitation and inversion pulses representing point-to-point
(PP) transformations be designed, but it is possible to find high-quality
90° and 180° universal rotation (UR) [11,17,23] pulses as well. Also, se-
lective pulses with highly complicated excitation patterns that are at the
same time dependent on the rf field strength and the offset frequency,
so-called pattern pulses, can be designed [24]. GRAPE-designed pulses
have become part of the standard software package for Bruker spec-
trometers TOPSPIN [25]. GRAPE is stretching its arms like an octo-
pus [26] into all related fields: liquid-state NMR [11, 13-24] and solid-
state NMR [27-29], in vivo spectroscopy [30], EPR, quantum information



processing [31] and MRI [32], just to name the most important. Recently,
the convergence properties of GRAPE have been improved by exploit-
ing second-order information [33,34] which can be efficiently approxi-
mated using the limited-memory Broyden-Fletcher-Goldfarb-Shanno (-
BFGS) quasi-Newton algorithm [35]. (GRAPE is not the only numerical
pulse optimization algorithm: so-called Krotov methods [36] can be of
comparable performance with respect to GRAPE [34]. Analytical so-
lutions for problems of pulse design have been provided as well but
currently they are restricted to special cases [37—42].)

All the above examples represent cases where GRAPE is used to create
single and isolated transfers. However, most NMR experiments rely on
pulse sequences with many different transfer steps. Stand-alone pulses
for the necessary transfers can be designed using GRAPE and replace
the former pulses [43]. However, remaining pulse imperfections might
accumulate during the sequence and reduce the overall experimental
quality despite a good performance of the individual pulses. The prob-
lem of error accumulation can be alleviated by several methods. One of
them is to keep track of the magnetization during a pulse sequence or
a pulse train that is to be optimized: with the so-called optimal track-
ing algorithm [44], not only a single, isolated transfer or rotation but
an arbitrary number of successive transfers can be designed. The ad-
vantage of this approach lies in the fact that, for a later transfer, there
is no assumption about the initial state it is acting upon. Instead, the
initial state of all (but the first) pulses are defined by the outcome of
the precedent pulse. Thus, the possible deviations from ideal behavior
of a precedent pulse are handed over to the subsequent pulse so that
error compensation is possible. If the signal is recorded at the end of a
pulse sequence imperfections of individual pulses are irrelevant if these
imperfections cancel in the course of the pulse sequence. In addition,
the rf amplitudes at a given time slice have an influence on the fol-
lowing trajectory of the density operator and therefore on all following
tracking points. This is taken into account by the tracking algorithm: all
following tracking points have an influence on the rf parameters of each
earlier time slice. Optimal tracking has been successfully applied to the
problem of low-power decoupling for in vivo applications [44]. How-
ever, optimal tracking is not limited to decoupling but can in principle
be applied to many different pulse sequences.
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Most NMR experiments rely on pulse sequences with many different
pulses. In addition, in multi-scan experiments the overall signal is ob-
tained by averaging the signals obtained from each scan. Imperfections
in individual scans are irrelevant if these imperfections cancel in the to-
tal accumulated signal. Phase cycling [45—48] is routinely used for the
suppression of artifacts or unwanted signals: In each scan, a sequence
of identical pulses is repeated, except for a systematic phase variation
of the pulses (and the receiver). However, it is not only possible to just
change the overall phase of a given pulse in subsequent scans, but also
to cycle through a set of pulses which can be of any shape. We refer
to this class of cooperatively acting pulses as COOP pulses [49] which
can be efficiently optimized using an adapted version of the GRAPE al-
gorithm. In contrast to the version of the COOP pulse approach where
a single transfer is optimized by taking advantage of error cancelation
between several scans, it is — as with optimal tracking — possible to op-
timize several transfers in a single scan. We dub this modified COOP
approach single-scan COOP (S2.-COOP) which makes it possible to fur-
ther improve the performance of pulse sequences.

So far, the main restriction of GRAPE consisted in the fact that only
isolated stand-alone pulses could be optimized. With GRAPE we have
been able to find pulses that compensate their own imperfections to a
very high degree. With optimal tracking and the concept of cooperative
pulses we command two powerful methods that open up a new dimen-
sion in pulse sequence design. Now we are able to develop pulses that
do not only compensate their own but at equal measure each other’s im-
perfections, hence act in a cooperative manner.

The present thesis discusses how the properties of COOP pulses can be
applied to common problems in NMR spectroscopy:

¢ Chapter 2: COOP pulses in several scans, so-called COOP cycles,
are applied at the same position in several scans and carry out a
single transfer. Possible applications consist of excitation with min-
imized phase errors, band-selective excitation and inversion and
the suppression of solvent signals.

* Chapter 3: COOP pulses in a single scan, so-called S?>-COOP
pulses, are applied at different positions in a single scan and carry
out different transfers. Here, we discuss the optimization of a



frequency-labeling block consisting of two pulses separated by
a variable delay. Sequences of this kind are needed for various
NMR experiments, e.g NOESY [50, 51], INEPT-blocks [52], Ram-
sey experiments [53] and others.

¢ Chapter 4: We show in theory how the two methods of optimal
tracking and COOP pulses for several scans can be combined. The
presented method is particularly interesting for the design of het-
eronuclear decoupling sequences.

The shaped pulses presented in this thesis have been optimized using
an extended version of the OCTOPUS optimization software [26] in
combination with IPOPT, an implementation of the 1-BFGS algorithm
[54].
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2 Multi-scan cooperative pulses

In this chapter, we introduce the concept of cooperative (COOP) pulses
which are designed to compensate each other’s imperfections. In multi-
scan experiments, COOP pulses can cancel undesired signal contribu-
tions, complementing and generalizing phase cycles. COOP pulses can
be efficiently optimized using an extended version of the optimal con-
trol based gradient ascent pulse engineering (GRAPE) algorithm. The
advantage of the COOP approach is experimentally demonstrated for
broadband and band-selective pulses.

2.1 Introduction

In addition to simple rectangular rf pulses with constant amplitudes
and phases, composite and shaped pulses [3-6] are powerful tools for
the manipulation of spins in modern NMR spectroscopy and imaging.
In practice, both composite and shaped pulses are implemented as a
sequence of rectangular pulses (with different amplitudes and phases)
and in the following, we will use the generic term “pulse” for both
composite or shaped pulses. Only recently has it become possible to
explore the physical limits of pulse performance [13-15] using methods
from optimal control theory [10]. For example, for a given maximum
rf amplitude and a desired bandwidth and robustness with respect to
rf inhomogeneity, there exists a minimum pulse duration T* that is re-
quired to achieve a desired average fidelity or performance index. It
is not possible for a pulse to compensate its own imperfections to the
desired degree if the pulse duration is shorter than T*. Here, we show
that pulse durations can be further reduced by allowing pulses to com-
pensate each other’s imperfections. We refer to this class of cooperatively
acting pulses as COOP pulses. In multi-scan experiments, for exam-
ple, imperfections in individual scans are irrelevant if these imperfec-
tions cancel in the total accumulated signal. In many multi-scan ex-
periments, phase cycles [45—48] are routinely used for the suppression
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of artifacts or unwanted signals: In each scan, a sequence of identical
pulses is repeated, except for a systematic phase variation of the pulses
(and the receiver). Here, we demonstrate that it is possible to improve
the performance of pulse sequences by not only changing the overall
phase of a given pulse in subsequent scans, but by cycling through a
set of carefully designed COOP pulses which are in general not iden-
tical. Highly compensating COOP cycles can be efficiently optimized
using an adapted version of the optimal-control-based gradient ascent
pulse engineering (GRAPE) algorithm [11,55].

2.2 Theory

Before describing the algorithm for the simultaneous optimization of
a set of COOP pulses, we briefly review the standard optimal-control
based gradient ascent algorithm for the optimization of a single (shaped
or composite) pulse.

2.2.1 Single pulse optimization

Suppose for a given initial magnetization vector M (0) we want to find
a pulse of duration T that optimizes a defined performance index or
quality factor ®, which depends only on the final magnetization vector
M(T). In the case of an excitation pulse, for example, we start with z
magnetization, i.e. M(0) = (0,0,1) ", and a simple quality factor could
be defined as the x component of the final magnetization [16]. A given
pulse is fully characterized by the time-dependent x and y components
vx(t) = =B, () /27 and vy(t) = —yB,,(t)/27 (or alternatively by

the total rf amplitude v,¢(t) = /vi(t) +vi(t) and rf phase ¢(t) =
tan {uy (1) /2 (1))

We can improve the pulse if we know how the quality factor ® responds
when the controls vy(t) and v, (t) are varied, i.e. if we know the gradi-
ents 0@ /6vy(t) and 6®/dvy(t). These gradients can be approximated
using finite differences.

The same high-dimensional gradients 6® /vy (t) and 6P /v, () can effi-

ciently be calculated to first order based on principles of optimal control
theory [10,11,16,55,56]. This approach requires calculation of the tra-
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jectories of the magnetization vector M(t), and of the so-called costate
vector A(t), for 0 < t < T [10,11,16,18-20,22,24,55,56]. The desired
gradients are approximated to first order by the x and y components of
the cross product M(t) x A(t) [16,19,20]:

55?(1) = My(D)A=(t) = Mz(£)Ay (1), 2.1)
0P
Suy () Mz (£)Ax(t) — Mx(t)A=(t). (2.2)

For a spin with offset v,¢¢, the effective field vector v,(t) is defined as

ve(t) = (VX(t)rVy(t)/Voff)T (2.3)

and starting from the initial magnetization vector M(0) = M;, the tra-
jectory of the magnetization vector M(t) can be calculated by solving
the Bloch equations

M(t) = 27ve(t) x M(t). (2.4)

Here, for simplicity we assume that relaxation effects can be neglected,
however if necessary they can be taken into account in a straightforward
way [11,22].
If the pulse performance ® depends only on the magnetization vec-
tor M(T) at the end of the pulse, the costate vector A(T) is given
by 0®/dM(T) [16], i.e. the three components of the costate vector
A(T) = (Ax(T), Ay(T), A=(T)) " are
0P 0P 0P
M(T) = 5, M(T) = 55—, M(T) = 57— 2.5

+(T) OM,(T) v(T) oM, (T) (T) oM, (T) 23)
For example, if the quality factor is simply the projection of the final
magnetization vector onto a desired target state F, i.e.

D, = Mx(T)Fx+My(T)Py+Mz(T)FZI (2-6)

the final costate vector is simply A(T) = F [16]. On the other hand, if
the quality to reach a target state F is defined as [20]

@y =1 —a1(Mx(T) = Fr)? — az(My(T) — Fy)? — a3(M:(T) — E;)?, (2.7)
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the resulting final costate vector is given by A(T) = —(2a1(My — Fy),
2a5(My — F), 2a3(M: — F.)) ". Here a1, a, and a3 represent the relative
weights given to the desired match of the x, y, and z components of the
magnetization vector and the target state.

The equation of motion for the costate vector has the same form as the
Bloch equations (cf. Eq. 2.4) [16,19,20,22], i.e.

A(t) = 2mve(t) x A(t), (2.8)

and by propagating A(T) backward in time, we obtain A(f) for 0 <t <
T.

Robustness with respect to offset and rf inhomogeneity can be achieved
by averaging the gradients over all offsets v, and rf scaling factors s of
interest [11,16]. Starting from an initial pulse with rf amplitudes vy (t)
and vy(t), the pulse performance can be optimized by following this
averaged gradient. In the simplest approach, the gradient information
can be used in steepest ascent algorithms, but faster convergence can of-
ten be found using conjugate gradient or efficient quasi-Newton meth-
ods [54] that are also based on the gradients 6® /vy (t) and 6®/dv,(t).

2.2.2 Optimization of COOP pulses

Now we consider a set of N individual pulses PU) of duration T with
rf amplitudes 1/3((]. ) (t) and vy ) (t) for j € {1,2,...,N}. For a given initial
state M) (0) = M) (0) = --- = MIN)(0) = M;, the corresponding N
trajectories M U)(t) of the magnetization vectors under the pulses PU)
can be calculated for 0 < t < T using the Bloch equations. If the quality
factor ® depends only on the final magnetization vectors MU)(T), the
components of the costate vectors AW (T) are given by

od A( i) od )\( i) od

Gy — — - =
S T ey T a0

(2.9)

and the N trajectories AU (t) can be calculated for 0 < t < T using the
equation of motion of the costate vectors in analogy to Eq. 2.8. The
gradient of the quality factor ® with respect to the controls 1/,((] ) (t) and

vy ) () is given by the x and y components of the vectors M) (£) x AU (#)

10
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[16]:
0Py 0) () 1y 0)
51/5((]')(15) - My] ()AL (1) — M (t))‘y] (), (2.10)
e = MO OAL ()~ M L) @11)
Sy (#)

For example, consider the optimization of COOP excitation pulses with
minimal overall phase error. If applied in successive scans, the real and
imaginary parts of the accumulated signal S,+iSy are proportional to
the x and y components of the average magnetization vector

M(T) = % % MU)(T). (2.12)
j=1

The goal is to maximize M,(T) and to minimize M,(T) in order to
minimize the phase error of the accumulated signal, while M,(T) is
irrelevant. This goal can be quantified by

P. =1— (1 —M(T))* —aM,(T)?, (2.13)
which is a generalization of the quality factor ®;, (cf. Eq. 2.7), where
M(T) is replaced by M(T), with F = (1,0,0)", a; = 1, a, = a, and
a3 = 0. Here, the relative weight given to the deviation of M, and
M, from the target values Fy = 1 and F, = 0 can be adjusted by the
parameter a. According to Eq. 2.9, the costate vectors A (T) are given
by

, 2 _ _

AD(T) = (1= Mx(T), ~a My(T),0)7, (2.14)

which is independent of j, i.e. all costate vectors are identical at the
end of the pulse A)(T) = A®(T) = ... = AIN)(T)) and depend on
the average magnetization vector M(T). However, the back propaga-
tion of the costates under the different pulses PU) results in different
trajectories AD() foro <t < T.

With the trajectories M) () and A()(t), the gradients (Egs. 2.10, 2.11)
can be efficiently calculated, providing a powerful means for the simul-
taneous optimization of a set of mutually compensating COOP pulses.
In the following, illustrative examples will be given to demonstrate the
COQP approach. Experiments were performed on Bruker AV 250 and
AV 1III 600 spectrometers using a sample of ~ 1% H,O in D,O doped
with copper sulfate.

11
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2.3 Examples

2.3.1 Total elimination of magnetization

As a first illustrative example, we consider the problem of completely
eliminating all components of the average magnetization vector, i.e.
M, = My = M, = 0 in the absence of By gradients, B; inhomogene-
ity and relaxation effects, starting from z magnetization. Clearly, this
cannot be accomplished by a single pulse and at least two scans are
required to achieve this goal. We optimized COOP cycles consisting of
two or three individual pulses, using the quality factor

Peijy = 1= Mx(T)* = My(T)* = Mx(T)*. (2.15)

For the simplest case of a single spin on resonance, the extended GRAPE
algorithm finds the intuitive solution of two rectangular 90° pulses with
a relative phase-shift of 180°. Similarly, the optimization of a three-step
COQP cycle yields three 90° pulses with phase differences of 120° and
240° as expected (data not shown), demonstrating that the algorithm
is able to “rediscover” simple phase cycles. If the elimination of mag-
netization is desired not only for the on-resonance case but for a finite
range of offsets and limited rf amplitudes, the optimal solution is not
clear a priori. For an offset range of £10 kHz and a maximum rf am-
plitude of 10 kHz we optimized a two-step COOP cycle, consisting of
two individual pulses with a duration of 50 us each. For each individ-
ual pulse a different random pulse shape was created at the start of
the optimization and no symmetry constraints were imposed. Fig. 2.1
shows the optimized pulse shapes, the final magnetization components
after each individual pulse and the components of the average final
magnetization vector as a function of offset. The two-step COOP cy-
cle efficiently eliminates the average magnetization vector as expected.
Here, the optimal solution consists of two saturation pulses that are
identical up to an overall phase shift of 180°. Each individual satura-
tion pulse brings the magnetization vector to the transverse plane and
hence eliminates the z component in each scan with high fidelity for the
desired range of offsets. The remaining transverse magnetization com-
ponents are then averaged to zero by repeating the saturation pulse
with a phase shift of 180°. This solution is not unexpected and a single
saturation pulse could have been optimized and phase cycled with the
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same result. However, initially it was by no means clear if this is in fact
the best possible strategy. As the COOP approach is not limited to a
restricted set of solutions (e.g. pairs of saturation pulses), it is also able
to find unexpected solutions if they exist, as will be shown in the next

examples.
360 360
(] [}
3. 3.
Y Y
0 0
0 t [ps] 50 0 t [pus] 50
C first pulse D second pulse E average magnetization

10
Voff [kHZ] Voff [kHZ] Voff [kHZ}

Figure 2.1: Two-step COOP cycle for the complete elimination of the av-
erage magnetization vector M for offsets in the range of +10
kHz for a constant rf amplitude v,y = 10 kHz and a pulse du-
ration of 50 ys. A and B show the phase modulations ¢()(t)
and ¢ (t), simulated offset-profiles of M) (T), M@ (T)
and M(T) are drawn in C, D and E. The x, y and z com-
ponents are plotted as solid black, dashed gray and solid
gray curves, respectively.

2.3.2 Band-selective excitation pulses

As a second example, we consider band-selective COOP pulses that
excite magnetization in a defined offset range and simultaneously elim-
inate the average magnetization vector in other offset ranges. We use

13



2 Multi-scan cooperative pulses

the quality factor @, (Eq. 2.7) for various offset-dependent target states
F(v,¢f). Here we consider the example where F(v,¢) = (1,0,0) " for
[Vosfl < 2 kHz (the “pass band”) and F(v,sr) = (0, 0,0)" for 2 kHz
< |voffl < 10 kHz (the “stop band”) . The pulse duration T and
the maximum rf amplitude vf}‘” were set to 500 ys and 10 kHz, re-
spectively. In contrast to the first example, in this case the COOP opti-
mization yields two different pulses that are not simply related by an
overall phase shift (Fig. 2.2). Figure 2.2 also shows the simulated and
experimental final magnetization components created by the individual
pulses and the average magnetization vector. While the response of the
individual COOP pulses appears to be erratic, the cancelation of the un-
desired terms is almost perfect. An excellent match is found between
experimental (gray) and simulated (black) data.

For comparison, Fig. 2.3 shows the results of a conventional approach
based on two individually optimized pulses: a broadband pulse with
a target state Fy(vorr) = (1,0,0)" for |v,¢f| < 10 kHz and a band-
selective pulse with F(vorf) = (1,0,0) " for |v¢s| < 2kHz and F(voff) =
(—1,0,0)" for 2 kHz < [Vorfl < 10 kHz. These pulses also yield the
desired average magnetization profile. Very good suppression of the
x component is achieved by this approach in the stop band. However,
large residual ¥ and z components of the average magnetization vector
of more than 40% remain in the vicinity of the transition regions at +2
kHz (see Fig. 2.3). In contrast, using the the COOP approach, the unde-
sired y and z components can be almost completely suppressed in the
pass band, the stop band as well as in the transition region (cf. Fig. 2.2).

Similar results were found for band-selective inversion pulses and dif-
ferent ranges of pass and stop bands (data not shown). It is interesting
to note that in the case of band-selective inversion (and complete elimi-
nation of the average magnetization vector in the stop band), the COOP
approach resulted in two very similar pulses with a relative phase shift
of 180°. In this case, the target profile of the average magnetization vec-
tor can be approached by a pulse that inverts the magnetization in the
pass band and brings it into the transverse plane in the stop band. By
repeating the pulse with a phase shift of 180°, all transverse magnetiza-
tion components are perfectly canceled. Hence in this case, the COOP
approach yields a solution that could also be constructed using a con-
ventional optimization of a single pulse combined with a phase cycle.

14
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Figure 2.2: Two-step COOP cycle for band-selective excitation and sat-

uration. The rf amplitudes vr(}) (t) and phases ¢ (t) for the
two COQP pulses are shown in A and B. Simulated (black,
dash-dotted curves) and experimental (gray, solid curves)

components of MM (T), M) (T) and M(T) are shown in
C.
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Figure 2.3: Two conventional pulses that were independently opti-
mized for band-selective and broadband excitation, respec-
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tively. The rf amplitudes v,¢(t) and phases ¢(t) for each
individual pulse are shown in A and B. Simulated (black,

dash-dotted curves) and experimental (gray, solid curves)
components of MM (T), M) (T) and M(T) are shown in

C.
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However, it was by no means obvious before that this approach yields
the optimal solution, which is in fact very different from the naive ap-
proach of combining individually optimized pulses for band-selective
and broadband inversion.

2.3.3 Broadband excitation of x magnetization with minimum phase
error

Here we ask the question of whether the duration of broadband exci-
tation pulses can be reduced using the COOP approach. In order to
avoid phase errors in the resulting spectrum, a single pulse for broad-
band excitation of x magnetization is not allowed to create significant
y components in the desired offset range. In contrast, the creation of

relatively large y components |M}(/ ) (T)| by the individual members of
a cycle of COOP excitation pulses is acceptable, provided |M,(T)] is
small (and M,(T) is large). This provides additional degrees of free-
dom in the optimization.

As a concrete example, we consider the optimal excitation of x mag-
netization with minimal phase errors in an offset range of £20 kHz
with a maximum rf amplitude of 1/:7!”‘ = 17.5 kHz [16,19,20] and a ro-
bustness with respect to variations of the rf amplitude of £5%. For this
problem, the duration of efficient optimal control based pulses could be
reduced from 2 ms [16] to 500 us [19] by generalizing the algorithm to
take rf limit limits into account during the optimization. Subsequently,
the pulse duration could be reduced even further to only 125 us [20] by
using a quality factor similar to ®, (Eq. 2.13) for N = 1 that is better
adapted to the problem of excitation with minimal phase errors than
quality factors based on @, (Eq. 2.6).

For the same specifications, we optimized a single pulse (N = 1) and
COQP cycles (N > 1) using the quality factor ®. (Eq. 2.13). The numer-
ically determined quality factor ®. (Eq. 2.13 with a = 1) of the single
125 us long pulse from [20] is &, =0.999852. The gradient of the quality
factor for the COOP pulse optimization can be efficiently approximated
to first order using Eqgs. 2.10 — 2.11, where AY)(T) is given by Eq. 2.14.
For example, for a three-step COOP cycle, a comparable quality factor
(P = 0.999856) can be achieved with a reduced duration of only 100
us of each individual pulse. Hence, in this case it is possible to reduce
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the duration of excitation pulses by an additional 20% without loss in
pulse performance using the COOP approach. The x component of the
excited average magnetization vector is about 0.99, and the phase error
is less than 0.4° for the entire offset range of 40 kHz.

In order to explore the performance limit of even shorter pulses, we
also optimized single and COOP pulses with a duration of T = 50 ps,
which is only 3.5 times longer than the duration of a hard 90° pulse
for an rf amplitude of 17.5 kHz. Fig. 2.4 shows the achieved quality
factors for a single pulse (N = 1) and for COOP cycles with N between
2 and 6. The optimized pulses for N = 1, 2, and 3 are shown in Fig.
2.5. All pulses have constant amplitude, taking full advantage of the
maximum allowed rf amplitude of vf}ax =17.5 kHz. The optimal single
pulse (N = 1) shown in Fig. 2.5 A is purely phase-alternating with
phases +7t/2. This class of phase-alternating pulses implies the fol-
lowing symmetry relations for the x and y components of the excited
magnetization vectors at offsets +v [4]:

My (v) = My(—v), (2.16)

My(v) = —My(—v). (2.17)

(In additon, M;(v) = M(—v), however, this is not relevant here, as .
has no explicit M, dependence, cf. Eq. 2.13.) The symmetry relations
for the x and the y components of the final magnetization vectors match
the symmetry of the problem: Maximum M, (v) is desired both for pos-
itive offsets (between 0 and 20 kHz) and for negative offsets (between
0 and —20 kHz), and, according to Eq. 2.16, a large M,(v) implies an
equally large M, (—v). In addition, |M,|(v) ~ 0 is desired both for pos-
itive and negative offsets, and, according to Eq. 2.17, a small | M, |(v) at
frequency v implies an equally small |M,|(—v).

In contrast to the case N = 1, the individual COOP pulses for N = 2
shown in Fig. 2.5 B are not phase-alternating but have smooth phase
modulations. However, the phase modulations are not independent but
are related by phase inversion and an additional phase shift by 7:

@ (t) = —pW(t) +m, (2.18)

corresponding to a reflection of the phase around 77/2. (In terms of the
x and y components of the rf amplitudes, this relation corresponds to
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1/,((2) = —1/,(51) and 1/52) = vy).) Applying well-known principles of pulse

sequence analysis [4], it is straightforward to show that Eq. 2.18 implies
the following symmetry relations between the transverse components
of the excited magnetization vectors after the first and second pulse:

MP ) = MY (~v), (2.19)
MP (v) = =MV (—v) (2.20)

(and in addition MP (v) = MY (—v)). As a direct consequence of Egs.
2.19 and 2.20, the transverse components of the average magnetization
vector after the two-step COOP cycle are related by

My (v) = Ma(—v), (221)

M, (v) = —My(—v). (2.22)

which is analogous to the relations in Eqs. 2.16 and 2.17 for a single
phase-alternating pulse and which matches the symmetry of the prob-
lem as discussed above. The symmetry relations for the average trans-
verse magnetization components (Eqs. 2.21 and 2.22) can always be
realized if the N-step COOP cycle consists of symmetry-related pulse
pairs (with phase relations corresponding to Eq. 2.18) and/or phase-
alternating pulses with phases +-77/2. For example, the three-step COOP
cycle consists of one symmetry-related pulse pair and one phase-alter-
nating pulse (see Fig. 2.5 C). For N = 4, 5, and 6, we always find two
symmetry-related pulse pairs and an according number of phase-alter-
nating pulses.

Fig. 2.6 shows the location of the individual and of the average magne-
tization vectors in the y-z plane after the three-step COOP cycle (N = 3)
(cf. Fig. 2.5 C). The points denoted a, b, and c correspond to offsets
of —20 kHz, 0 kHz and 20 kHz, respectively. Figs. 2.6 B and C illus-
trate the symmetry relations of Eqs. 2.16, 2.17 and of Egs. 2.21, 2.22.
Relatively large y components of up to 40% are found for each individ-
ual pulse, illustrating the additional degrees of freedom gained by the
COOQOP approach. However, the average magnetization vectors are lo-
cated very close to the x-z plane as shown in Fig. 2.6 E. In Fig. 2.6 F, the
corners of the triangles represent the locations of the magnetization vec-
tors after the individual pulses and the centers of the triangles indicate
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the location of the average magnetization vectors for offsets —20 kHz
(a), 0 kHz (b) and 20 kHz (c), illustrating the averaging process. For
comparison, Fig. 2.6 D also displays the location of the magnetization
after the optimized single pulse (cf. Fig. 2.5 A).

A good match is found between the simulated and experimental per-
formance of the COOP pulses, as demonstrated in Fig. 7, where the x
component and the phase of the average magnetization vector is shown
for the optimized single pulse and for the COOP cycles with N = 3
and N = 6. For the single pulse, the excitation efficiency is below 92%
for a large range of offsets, whereas for N = 6, the excitation efficiency
approaches 95% for almost the entire offset range. At the same time,
the largest phase error is reduced from about 8° to 5° at the extreme
offsets and from about 3° to less than 1.3° for offsets between +18 kHz.

In [20] we conjectured that for a single pulse a duration of 100 us is
a conservative lower limit for achieving better than 95% excitation ef-
ficiency and a phase error of no more than 4° in a relative bandwidth
of Avoff / 1/:,1}“ = 2.3 and with rf tolerance of +5%. With the COOP
approach, we were able to push the lower limit on pulse length below
65 us for N = 6 (data not shown).

0.996

0.994

Figure 2.4: Quality factor ® for excitation of x magnetization with
pulse durations of T = 50 us as function of the number of
COQOP pulses N.
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A single pulse B two-step COOP cycle
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Figure 2.5: Excitation pulses with minimized phase errors with a dura-
tion of T = 50 us: (A) conventional single pulse, (B) two-
step COOP cycle (N = 2), (C) three-step COOP cycle (N =
3). For both pulse pairs with “smooth” phase modulation
in B and C, the individual pulses are symmetry-related by
Ut (t) = —@U)(t) — 7 which is equivalent to Eq. 2.18.

21



2 Multi-scan cooperative pulses

X B s C os
b b
N ¢ s o a
C
-05 a -0.51 ¢
-05 05 o5 ) 05
M@ M
y y
E s F s b N=1
Cc
N N
= s
a b
-0.5 -0.5 a c
-05 0.5 -05 05
M M

y Y

Figure 2.6: In A - C, the individual offset-profiles for a three-step COOP
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cycle (N = 3) from Fig. 2.5 C are shown. The final states

of My ) (T) and Mg ) (T) within an offset frequency range of
+20 kHz are displayed, where in each subplot, the offsets
—20 kHz, 0 kHz and 20 kHz are indicated by symbols (open
circles, squares and triangles) denoted a,b and c, respectively.
For these three offsets, the y and z components of M1 (T),
M®)(T) and M®)(T) (open symbols) and of M(T) (solid
discs) are shown in D, illustrating the cancelation of phase
errors. Subplot E shows the location of the average mag-
netization vector M(T) for the entire offset range of +20
kHz. For comparison, the location of the magnetization vec-
tor M(T) for the single, conventionally optimized pulse (N
=1, cf. Fig. 2.5 A) is shown in E.
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simulation experiment

-20 20 -20 20
Vit [kHZz] Vst [kHZz]

Figure 2.7: Simulated and experimental offset profiles for the average
magnetization M, (T) and the phase error ¢(T) for a single
pulse (N =1, cf. Fig. 2.5 A) and COOP cycles with N = 3 (cf.
Fig. 25 C) and N = 6.
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2.3.4 Broadband excitation with linear offset dependence of phase

In the previous section the target was to create pulses with offset inde-
pendent phase, i.e. pulses where no phase correction of first or higher
order is necessary. As shown in [21], an even larger bandwidth can be
achieved for so-called ICEBERG pulses that create transverse magneti-
zation with a linear offset dependence of the phase. For example, for a
simple rectangular 90° pulse, the resulting phase is almost linear for a
large range of offsets and can be corrected by first-order phase correc-
tion. Fig. 2.8 shows the offset profile of the x component of M,(T) mag-
netization and the residual phase error after first-order phase correction
with 2.9° /kHz for a rectangular 14.29 us 90° pulse, corresponding to an
rf amplitude of v,f = 17.5 kHz. Over a range of +50 kHz, the phase
error is less than about 5°. However, for offset frequencies beyond £30
kHz the excitation efficiency decreases rapidly.

We optimized a single pulse and a two-step COOP cycle (N = 2) with
a duration of 60 ps each, a maximum rf amplitude 17.5 kHz, 5% rf in-
homogeneity for a bandwidth of £50 kHz allowing for the same first
order phase correction of 2.9° /kHz as for the simple rectangular pulse.
Simulated and experimental results are displayed in Fig. 2.8. The per-
formance of the optimized single pulse is significantly better than the
performance of the simple rectangular pulse with larger transverse mag-
netization of more than 90% (except for offsets near —50 kHz where the
efficiency drops to about 80%) compared to 45% and comparable phase
errors. However, the performance of the optimized COOP pulses shows
a significant further improvement with an excitation efficiency of more
than than 95% and phase errors of less than 2.4° over the entire offset
range of £50 kHz.
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Figure 2.8: Offset profiles for M; and phase deviation A¢ for a single
rectangular pulse (A), an optimized individual ICEBERG
pulse [21] with N =1 (B, cf. dash-dotted curve in Fig. 2.9)
and a two-step COOP cycle (N = 2) (C, cf. solid curves in
Fig. 2.9). M; is the x component of M(T) and A¢ is the
residual phase error after a first-order phase correction of
2.9°/kHz. Solid gray and dash-dotted black curves repre-
sent experimental and simulated data.
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Figure 2.9: A single (dash-dotted gray curve) ICEBERG and a two-step
(N = 2) COOP ICEBERG cycle (solid black curves). For the
COOQP pulse pair the symmetry relation from Eq. 2.18 is
approximately fulfilled.
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2.3.5 COOP WET pulses

The final example demonstrating the power of the COOP approach is
motivated by the WET (water suppression enhanced through T; effects)
solvent suppression sequence [57,58]. In order to also suppress sol-
vent signals in regions away from the center of the rf coil and there-
fore experiencing smaller rf amplitudes, pulses are required that act as
broadband 90° pulses for the full rf amplitude but that do not excite the
solvent signal in regions of the sample where the rf amplitude is signif-
icantly scaled down. One solution is based on a composite pulse, such
as the 90790,902,90°, pulse [58,59], which is applied in every scan.
However, in multi-scan experiments, improved performance was found
if in three out of four scans a simple rectangular 907 pulse is used and in
one out of four scans a simple rectangular 270° , pulse [58]. This set of
four pulses (903, 903, 903, 270° ), which are applied in successive scans,
was derived in [58] based on linear response theory, which however
is strictly valid only for flip angles approaching zero. In contrast, the
COQP approach introduced here allows us to develop an optimized cy-
cle of COOP pulses for this task, taking into account the full non-linear
spins dynamics.

To illustrate this, we optimized COOP pulses with an excitation pattern
[24] as a function of offset v, and rf scaling factor s that is adapted to
the problem (see Fig. 2.10). For rf scaling factors in the range 0.95 < s <
1.05, the goal is to excite x magnetization in an offset range of £5 kHz

with minimal phase error. For rf scaling factors in the range 0 < s < 0.6,

. L — S —
the goal is to minimize the transverse component M| = (My + M,)!/?

of the average magnetization vector for a reduced range of offset (near
the solvent resonance) of £500 Hz. We assume initial z magnetization
and a maximum nominal rf amplitude of v;’}ﬂx = 20 kHz.

Fig 2.10 and 2.11 show the performance of an optimized two-step COOP
cycle (N = 2) with a duration T = 200 us for each of the two individual
COQP pulses. For comparison, we also show the performance of the
composite pulse 90790,902,90°, [59], of a sequence based on (903, 90,
903, 2702 ) [58] and an optimized individual pulse (N = 1).
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A 90390590° ,90° , B 902;902;902; 270°

0 0
Vost [kHz] Vot [kHZ]

C  single optimized pulse D COOP (N = 2)

Figure 2.10: Comparison of the average transverse magnetization as a
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function of offset v,¢s and rf scaling s for a two-step cycle
of COOP WET pulses (D, N = 2) with the 907907902 ,902
composite pulse (A, [59]), the four-scan sequence based on
90%;90%,907,270° . (B, [58]) and an optimized individual
pulse (C, N = 1). The areas for which optimal excitation
and optimal suppression of transverse magnetization are
desired are indicated by black and white dashed rectan-
gles.
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Figure 2.11: Slices from Fig. 2.10 A (dotted), B (dash-dotted), C (dashed)
and D (solid curve) for the on resonance case. The gray
squares and black discs represent experimental data for the
conventionally optimized pulse and the two-step COOP
WET cycle from Fig. 2.10 C and D, respectively.
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2.4 Discussion and conclusion

In this chapter, we introduced the concept of simultaneously optimized
pulses that act in a cooperative way, compensating each other’s imper-
fections. Although for simplicity only examples involving uncoupled
spins were considered, it is important to note that the COOP approach
can also be applied to coupled spin systems. With the help of gener-
alized optimal control based algorithms, such as the presented variant
of the GRAPE (gradient ascent pulse engineering) algorithm, COOP
pulses can be efficiently optimized.

Although the COOP approach is not limited to multi-scan experiments,
here we focussed on applications where different members of a COOP
cycle are used in different scans. In such multi-scan experiments, the
COQP approach can be viewed as complementing and/or generaliz-
ing phase cycling [45-48] and difference spectroscopy. In conventional
phase cycling, identical pulses are applied in each scan, up to an overall
phase shift. In section 2.3.1, the optimal COOP cycle also consisted of
pulses that were identical up to an overall phase shift. Hence, it is pos-
sible to automatically generate phase cycles using the COOP approach.
However, it is important to point out that here it was not possible to
achieve the target of the optimization by considering coherence order
pathways alone. Hence, the COOP solution relied on the simultaneous
optimization of specific pulse shapes (saturation pulses) in combination
with the resulting simple phase cycle. As demonstrated in sections 2.3.2
—2.3.5, COOP pulses are in general not simply related by overall phase
shifts. In the presented COOP examples, a constant receiver phase was
assumed. However, it is straightforward to lift this restriction by adding
one additional control for the receiver phase for increased flexibility
as in conventional phase cycles or in difference spectroscopy. In con-
ventional difference spectroscopy, often different pulses are applied in
successive scans. However, these pulses are typically either simple rect-
angular pulses or are optimized for each individual scan, not taking
advantage of the full flexibility of the COOP approach introduced here.
For example, this was illustrated in section 2.3.5 for the problem of
solvent suppression.

Optimal control based techniques for the efficient optimization of com-
plex COOP pulses open new avenues for pulse sequence optimization.
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2.4 Discussion and conclusion

The goal of the presented examples was to illustrate the basic concept
and to point out potential applications of COOP pulses. For example,
in section 2.3.5 it was demonstrated that the approach may be useful
for water suppression techniques such as WET. However, for practical
solvent suppression, it is necessary to adjust the design criteria for the
optimized COOP pulses, which is beyond the scope of the present the-
sis. It is also important to point out that the presented algorithm for the
optimization of COOP pulses can be generalized in a straightforward
way to include relaxation effects [11,22]. We hope that the presented
COQP approach will find practical applications in NMR spectroscopy
and imaging.
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In this chapter, we present the concept of single-scan cooperative (S?-
COQP) pulses. In contrast to multi-scan COOP pulses that are applied
at the same position in different scans, S>-COOP pulses act in a single
scan and at different positions of a pulse sequence. S*>-COOP pulses
can be efficiently optimized using an extended version of the gradient
ascent pulse engineering (GRAPE) algorithm. The advantage of the S*-
COQP approach is demonstrated in theory and experiment for NOESY-
type frequency-labeling blocks.

3.1 Introduction

In the previous chapter, we have shown that the physical limits of pulse
performance can be extended using the concept of cooperative (COOP)
pulses that complements and generalizes phase-cycles [49]. In multi-
scan experiments, COOP pulses can cancel undesired signal contribu-
tions: At the same position of a pulse sequence, a different pulse is
applied in each scan so that the constituents of a so-called COOP cycle
can cancel each other’s imperfections. By taking advantage of the pos-
sibility of error cancelation between several scans the optimization en-
hances the overall fidelity of a selected transfer step in a pulse sequence.
However, most NMR experiments rely on pulse sequences with several
different transfer steps. Although it is possible to independently opti-
mize different pulses before combining them to a pulse sequence [43]
these pulses will only cancel each other’s errors by chance or will even
accumulate each other’s errors in the course of a pulse sequence. There-
fore, the demand on the fidelity of individually optimized pulses that
are grouped together to a pulse sequence is extraordinarily high. It has
been shown before how undesired effects of a precedent pulse can in
part be canceled out by a subsequent pulse [5,56,60]. There, in con-
trast to the more flexible COOP approach, the precedent pulse remains
unchanged so that the subsequent pulse alone has to compensate the
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errors of the precedent pulse. Another approach to avoid error accu-
mulation is optimal tracking [44] which has so far only been applied to
generate heteronuclear decoupling pulses. Here, we show that in con-
trast to our earlier COOP approach where a single transfer is optimized
by taking advantage of error cancelation between several scans, it is pos-
sible to optimize several transfers in a single scan. We dub this modified
COOP approach single-scan COOP (S>-COOP) which makes it possible
to further improve the performance of pulse sequences.

3.2 Theory

As a simple and illustrative example, we consider the frequency-labeling
block in a standard 2D NOESY experiment. Building-blocks of this kind
are routinely used in multidimensional NMR experiments in order to
create offset-frequency labelled z magnetization [50, 51]. In addition,
they can be used as initial and final pulses in a modified INEPT block
where instead of the central 180° universal rotation (UR) pulses two
pairs of PP inversion pulses are applied on both nuclei [61,62]. Here,
we will focus on the frequency-labeling block of a 2D NOESY experi-
ment. In Fig. 3.1 (top) the pulse sequence of a 2D NOESY experiment
is drawn schematically.

3.2.1 Frequency-labeling of z magnetization

The consecutive steps of an ideal conventional (i.e. using perfect 90°
UR pulses [11,23]) 2D NOESY frequency-labeling block are shown in
the upper panel of Fig. 3.2. Two exemplary magnetization vectors
with two different offset frequencies are drawn as solid and dashed ar-
rows. The successive UR rotations are indicated by red arrows around
the corresponding rotation axis. (PP and S>-COOP transformations
are indicated by segments of meridians on the Bloch sphere.) The
theoretical effects of the first pulse (left), the t; evolution delay (cen-
ter) and last pulse (right) are shown. Brighter arrows correspond to
the magnetizations before a pulse or delay, darker arrows show the
situation afterwards. In an ideal version of the 2D NOESY experi-
ment based on UR pulses (top panel of Fig. 3.2), an initial 90; pulse
(left) uniformly and independently of w creates x magnetization, i.e.
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Figure 3.1: Schematic representations of 2D NOESY pulse sequences
are shown. If pulses with R = 0 are employed, the delay
t1 is equal to the effective free evolution time 7. However, if
R # 0 and both pulses have the same value of R the effective
free evolution time is T = t; + 2RT. Thus, for same pulse
lengths, the overall duration of a sequence with R > 0 is
reduced by 2RT. Simultaneously, there is a minimal value
for t1: £ = 2RT (see text).
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3 Single-scan cooperative pulses

M(w) = (My(w), My(w), Mz(w))" = (1,0,0)". During t; (center)
M (w) evolves according to its offset frequency v,¢r = w/(27), result-
ing in M(w) = (cos(wt), sin(wt), 0)7. Then the x component of
M(w) is rotated back to the z axis by a 902, pulse (right), resulting
in M(w) = (0, sin(wt), cos(wt))'. The remaining transverse magne-
tization is removed by coherence pathway selection techniques [45—47]
and the important result of this preparation sequence is the modulated
z magnetization given by M;(w) = cos(wt). (Polarization transfer takes
place during the mixing period 7, (cf. Fig. 3.1). The remaining origi-
nal z magnetization and the z magnetization having been transferred to
other spins by NOE are finally transferred to observable magnetization
by the last pulse which in the final 2D-spectrum results in diagonal and
cross-peaks, respectively.)

Since rectangular pulses are not ideal hard pulses, their behavior is
close to that of ideal pulses only within a narrow offset range. If a wider
offset range has to be covered, one could replace rectangular pulses by
optimized UR pulses [11,23]. However, in this setting it is not neces-
sary to employ two UR pulses, a transformation series z — x followed
by x — z is sufficient. This can also be performed by two PP transfor-
mations. Replacing UR by PP pulses confers an additional degree of
freedom to the optimization (cf. Fig. 3.3 and table 3.1). Therefore, for
the same experimental parameters and constraints, a higher fidelity is
expected when using PP instead of UR pulses. Alternatively, shorter
pulse sequences with the same fidelity can be obtained when replacing
UR by PP pulses.

As shown in Fig. 3.2, a UR 90; and a PP,_., pulse on M, will both
create M. However, there is an important difference: For a UR 90;
pulse there is for all offset frequencies v, = w/27 only one solution
for the effective rotation matrix S(w) that describes the effect of a pulse
on a magnetization vector M (cf. appendix 3.5.1) which is in our case

Sur(w) = Ry(7/2) 3.1)

where R;(77) rotates by # about the  axis and [ = x, v, z. (In addition, a
rotation matrix can be represented by a rotation vector » = 17 e describ-
ing a rotation by # about the axis e.) Therefore, the optimization of a
UR pulse has no degrees of freedom with respect to the target effective
rotation matrix. In contrast, the effective rotation matrix of a PP,_.,
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3.2 Theory

pulse can be written as
Spp(w) = Ry(7/2)R;(a). (3.2)

Here, we wrote Spp(w) in a fixed-frame Euler angle decomposition
using the zyz-convention (Eq. 3.30 in appendix 3.5.1): Any rotation
S can be completely described by three successive rotations: (1) by «
about z, (2) by g about y and (3) by y about z,i.e. S = R;(y)Ry(B)R:(«).
Since for the PP,_., pulse we start at M, an arbitrary z-rotation R;(«) is
allowed since it will not affect the initial magnetization. The following
rotations transform M, to My, therefore § = 71/2 and v = 0. Because
« may take any value, replacing the initial UR by a PP pulse provides
one additional degree of freedom. The set of all admissible rotation
vectors r for a PP,_., pulse is displayed in Fig. 3.3 as a black line (cf.
Fig 2 in [23]). The only solution for the UR 90 pulse is r = (0 77/20) ',
indicated by a black circle in Fig. 3.3, which is only one of an infinite
number of solutions for the PP problem.

Another difference between the UR and PP sequences from Fig. 3.2
is observed in the last step of the sequence: The final 90°, UR pulse
rotates all x components back to the z axis and all y components remain
along the y axis. Also in the case of the PP sequence, all x components
are brought back to the z axis, however, y components do not in general
stay along the y axis. Nevertheless, all ¥ magnetization that is present
at the beginning of the PP,_., pulse, is still in the transverse plane at its
end (cf. appendix 3.5.5 Eq. 3.35). However, the phase of the transverse
magnetization component is undefined which reflects the additional
degree of freedom with respect to the UR sequence. Here, the set of
allowed final states is formed by a cone with its apex being identical to
the origin, its axis being collinear with the z axis and its aperture being
defined by 0 = 2wt (cf. Fig. 3.2). In the course of a 2D experiment,
the transverse components will be removed by techniques of coherence
pathway selection [45—47]. Thus, a frequency-labeling block using PP
pulses has the same net effect as the sequence employing UR pulses.
For both the UR as well as the PP sequences it is sufficient to only
optimize one single pulse. For the UR sequence a simple phase shift of
7t is sufficient to create the 90°_y-rotation. The conversion of a PP,_,y
to a PP,_., pulse is shown in appendix 3.5.1. Entire frequency-labeling
sequences using UR and PP pulses are described in theory in sections
3.5.4 and 3.5.5 of the appendix, respectively.
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UR

PP

COOP

Figure 3.2:
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The effects of the first pulse (left), the ¢;-evolution delay (cen-
ter) and of the second pulse (right) of a frequency-labeling
sequence (cf. Fig. 3.1) with R = 0 are shown for universal
rotation (UR), point-to-point (PP) and single-scan COOP (S2-
COQP) pulses. In the left and center graphs, bright and dark
arrows represent the situation before and after the pulse or
delay, respectively. The straight arrow stands for a spin with
smaller, the dashed arrow stands for a spin with a larger
offset frequency.
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3.2.2 Frequency-labeling with S>-COOP pulses

In the conventional implementations of the NOESY experiment which
we discussed so far, a first pulse transforms M, to M,, i.e. magnetiza-
tion with uniform phase for all offsets w, and the second pulse rotates
M, back to M. For t; > 0 only the remaining x component is rotated
back to z and retained whereas all other components are discarded (Fig.
3.2 PP and UR). However, it is not necessary that all magnetization vec-
tors are oriented along the same axis after the first pulse. In principle,
the first pulse can rotate the initial z magnetization to any position in the
transverse plane. However, the second pulse of the sequence then has
to pick up the magnetization at the same place where it was placed by
the first pulse. Due to the chemical shift evolution during ¢; the magne-
tization will be rotated by wt; and only the cos(wt;)-modulated compo-
nent of M will be rotated back to z wheras the sin(wt; )-component will
remain in the transverse plane. The overall result of such a sequence is
equivalent to the results of the UR and PP sequences (Fig. 3.2).

This results in the problem to find a pair of pulses of which the first,
starting from M, creates transverse magnetization with arbitrary phase
and the second brings back this magnetization to the initial z magne-
tization. This problem can be solved by a new approach which we
call single-scan cooperative (S?>-COOP) pulses. The S>-COOP approach
represents a modification of our previously presented multi-scan COOP
pulses (cf. chapter 2 and [49]).

General description of the S>-COOP approach

The S?>-COOP pulse approach comprises two steps: The first step is
the optimization of a pulse pair A and B that starting from M, creates
transverse magnetization with opposite phase ¢, i.e.

(p(A) = —(p(B). (3.3)

In other words, starting from z magnetization for each pulse, the two
tinal magnetization vectors created by the pulses must be symmetric
with respect to the x axis (Fig. 3.4). Representing the effective rotation
matrices of the pulses A and B, S (w) and §¥)(w), in the zyz Euler
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angle base (appendix 3.5.1 Eq. 3.30) yields

S (w) = Ra(7)Ry(7/2)Re(a!V)
and
$®)(w) = Ra(—7)Ry(1/2)Rz(aP))

where, in this case, v = ¢(4) and —y = ¢(P).

One of these pulses, e.g. pulse A, can directly be employed as pulse
1 in a frequency-labeling sequence (Fig. 3.1). Pulse 2 of the sequence
is obtained in the second step of the S>-COOP pulse approach. In this
step, the other pulse, e.g. pulse B, is phase-inverted and time-reversed
to yield the second pulse (2) of the sequence. For example, when using
Eq. 3.31 from appendix 3.5.1 and using A as the first pulse the effective
rotation matrix of pulse 2 can be written as [23]

——tr

§P(w) = 8" (w) = Ra(a™)Ry(~7/2)Ra(—17).

The consecutive steps of the sequence are

(1) rotation of M, to the transverse plane (S (4) (w))

(2) chemical shift evolution (R;(wt;)) and

(3) backrotation of the cos(wt;)-modulated part of the transverse mag-

—Bti’
netization to the z axis (§¥) (w)):

SP" (@) R (wh)S (@) =R («®)R, (= /2) Ro(~7)
X Ry (wty)Re(7)Ry(7/2) Ry (')
=R, («'P))Ry(—7/2)
X Rz (wh)Ry(7/2) Rz (alY).

(3.4)

In the above equation, R;(y) and R;(—) cancel. Apart from two dif-
ferent values for a(4) and a(P), the final line is equivalent to the effect of
a corresponding PP sequence (cf. appendix 3.5.5). However, R, (a(4))
does not have any effect in the experiment because it is applied to z
magnetization. Then, multiplication with Ry(71/2) yields M, which
evolves chemical shift according to R;(wt;). The resulting x compo-
nent M cos(wty) is then rotated back to the z axis by R,(—7/2). The
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same rotation keeps the y component M, sin(wt;) untouched. The fi-
nal rotation R, (a(B)) has no effect on the desired cos(wt)-modulated z
magnetization. The same rotation causes a phase-shift by a(8) of the y
component which will however stay in the transverse plane. All trans-
verse components will be canceled using coherence transfer pathway
selection [45-47]. Thus, the same overall effect as for UR or PP se-
quences is obtained although we allowed the magnetization phase after
the first pulse to take an arbitrary value. This is only possible if the
transverse magnetization phases created by A and B are related by ¢(4)
= —¢(B): Two S2-COOP pulses transform the magnetization vectors not
in a uniform (UR and PP) but yet in a concerted fashion. The fact that
the phase of M may be undefined after the first pulse opens up another
degree of freedom to the frequency-labeling sequence which in turn
paves the way for improved frequency-labeling sequences.

Fig. 3.3 illustrates the gain in degrees of freedom for UR, PP and S?-
COQP pulses. The admissible sets of effective rotation vectors r (see
also above and [23]) for a PP pulse (black line) and S>-COOP pulses
(gray surface) are displayed. For a UR pulse the effective rotation angles
in the zyz Euler base (Eq. 3.30) are all defined, iie. &« =0, B = 71/2
and v = 0. There is no degree of freedom and the only solution is
r=(07t/20)" (black circle in Fig. 3.3). Since for a PP pulse we initially
start at M, a can be of any value because R;(«) does not have an effect
on M,. However, § and vy are fixed: B = 71/2 and y = 0. The admissible
effective rotation vectors for a PP,_., pulse are defined by the set of all
effective rotation matrices S(w) = Ry (71/2)R;(x) where & may take any
value (Eq. 3.2). In Fig. 3.3 the tips of these vectors are displayed as a
black line reflecting the single degree of freedom. The admissible set
of S2-COOP pulses is defined by S(w) = R:(7)Ry(7/2)R:(x) where
now both a and ¢ may take any value as long as y(4) = —(B). There
are two degrees of freedom for a S>-COOP pulse. Thus, the admissible
rotation vectors form a two-dimensional surface of revolution. However,
the effective number of degrees of freedom for a pair of S2-COOP pulses
is restricted: When an effective rotation vector for A is chosen from the
two-dimensional surface, it will lie on a line of an equivalent PP pulse
that transforms M to M, cos(¢) + My sin(¢@). Then the admissible set
of effective rotation vectors for B collapses to a line corresponding to a
PP pulse that transforms M, to My cos(—¢) + My sin(—¢). Thus, the
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3 Single-scan cooperative pulses

overall number of degrees of freedom for a S2-COOP pulse pair is equal
to three. The results are summarized in table 3.1.

/N2 -

@ UR
rZ S = PP
o S2-COOP

—m/N2

—t/\2 /N2

rX nAN2 T \2 ry

Figure 3.3: The sets of all admissible rotation vectors for a S2-COOP
(or saturation) pulse and a PP pulse are displayed as a
gray surface and a black curve, respectively. For a UR
pulse the admissible set is restricted to a single point, e.g.
B = (0, /2, 0)" for a 7t/2-rotation about y (black circle).

Quality factor

The first step of the S>-COOP approach comprises the optimization of
a cooperative pulse pair A and B that both starting from M, create
transverse magnetization with opposite phases ¢(4) = —@(B) (cf. Eq.
3.3 and Fig. 3.4). In other words, at the end of each pulse with pulse
duration T4 = T(B) = T, both M(4)(T) and M®)(T) (1) should lie in
the transverse plane and (2) should be of opposite phase, corresponding
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M(A)(T)

L 4

Figure 3.4: The first step of the construction procedure of two S>-COOP
pulses comprises the optimization of a pulse pair A and B
that starting from z magnetization create transverse magne-
tiza(tic))n MA(T) and MB)(T) with opposite phase: ¢(4) =
—@ B).

43



3 Single-scan cooperative pulses

Table 3.1: Euler rotation angles for different frequency-labeling se-

quences.
UR PP pseudo-S2-COOP S2-COOP

a) 0 | undefined' | aM(w) = —v@(—w) | undefined
B /2 /2 /2 /2
) 0 0 y 1) = 2 F D = —42)
0((2) 0 0 06(2) = _r)/(l) 0((2) = _r)/(l)
B2 /2 —7/2 —7/2 —7t/2
7(2) 0 | undefined' | y®(w) = —a)(—w) | undefined

degrees of freedom \ 0 \ 1 \ 2 ‘ 3

The effective rotation matrices of pulses 1 and 2 of the frequency-
labeling sequences can be written as §)(w) = R:(YW)Ry(BV)R,(aV))
and SP(w) = R.(v?)Ry(B?)R.(a?). For (pseudo-)S>-COOP pulse
pairs (p. 54) 1@ = —4@) (Eq. 3.3). For pseudo-S2-COOP pulses (and
symmetric $2-COOP pulse pairs, cf. Eq. 3.16): SP(w) = (SV(—w))!
(Eq. 3.22), e.g. aW(w) = —y?)(—w). In addition, for ideal S>-COOP
pulses that act symmetrically with respect to w (Egs. 3.19 and 3.20)
pulse 2 is the inverse of pulse 1: §? = (sM)~1 (Eq. 3.23), eg.

2l = _n(2)

(I) If the conversion principle from appendix 3.5.1 is used, then a(1) =
72 (Eq. 3.30).
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to a rr-rotation about the x axis (cf. Fig. 3.4):

M(T) M (T)
MA(T) = MAT | = -MPr) | = R.(m)MB)N(T). (3.5)
0 0

(S2-COOP pulses can in principle have different pulse durations. For
simplicity reasons, here, we only consider the case where both pulses
A and B have the same duration T.) One way to achieve this is to max-
imize the scalar product of M(4)(T) and the image of M5)(T) rotated
by 7t about the x axis:

®, = M(T) - M(T) — My () - MyP (T) (3.6)

Here, the pulse performance ®, only depends on the final magneti-
zation vectors MY (T) (k =A,B) after each pulse of duration T(4) =
T(B) = T so that the costate vectors AK)(T) of the GRAPE procedure
are given by 9®/dMK¥) (T) [16,49]. For @, the costate vectors are

mP/(T)
AT = | —mP(r) (3.7)
0
and
M ()
AT = My |- (3.8)
0

The costate A% (T) of one pulse exclusively depends on the final trans-
verse magnetization vectors generated by the other pulse. This reflects
that, although two different pulses are optimized, they are tightly inter-
twined. The gradient of the quality factor with respect to the controls

v,((k)(t) = wj(ck)(t)/Zn and vﬁk)(t) = wék)(t)/Zn is given by the x and y
components of the vectors M®) () x A% (¢) [16,49]:
0P (k)

s (0 (1) —Mgk)(t))ték)(t) (3.9)
Vx
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and 5D
=M AP () - MP AP (1) (3.10)
(51/5 )

A schematic overview of the gradient calculation is shown in Fig. 3.5.

3.2.3 S2-COOP pulses with linear phase slope

There are many practical applications where an excitation pulse is fol-
lowed by a free-evolution delay. This is also the case for the present
NOESY frequency-labeling block. We have shown before that in such
cases excitation pulses with uniform phase can be replaced by so-called
ICEBERG pulses that create transverse magnetization with linear phase
slope [21].

The phase slope of ICEBERG pulses can be characterized by the ratio
R of a virtual time T’ - during which chemical shift (and coupling)
evolution is active — and the pulse duration T: R = T'/T. A value
of R = 0 denotes an excitation pulse with uniform phase, whereas
R = 1 indicates that the corresponding pulse creates a magnetization
profile as if magnetization with uniform phase had been present at
t = 0 and free evolution took place during the entire duration of the
pulse T. Pulses with good performance can be optimized even if R < 0.
It has been shown that in many cases ICEBERG pulses perform better
than comparable uniform phase excitation pulses.

When a pulse that is applied before a free-evolution delay is to be re-
placed by an ICEBERG pulse one has to consider that for R > 0 chem-
ical shift and coupling already start to be effective during the pulse at
1 — RT. Therefore, the pulse has to be shifted by RT [21] which shortens
the total duration of the entire excitation-delay sequence (cf. Fig. 3.1).

In analogy to the ICEBERG formalism, we derived a quality factor (ap-
pendix 3.5.8) that allows to shift both pulses of a S>> COOP frequency-
labeling sequence towards t; (Fig. 3.1). Therefore, the duration of the
whole frequency-labeling block is shortened by 2RT. When the actual
delay between the two pulses is set to zero, the minimal effective free-
evolution time #/" is 2RT. The consequence on a 2D NOESY spectrum
that has been recorded with S?>-COOP pulses with R # 0 is a linear
phase error in t; which can be removed by first-order phase correction.
For larger values of RT first-order phase correction will lead to a rolling
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0 M A(T)
0 ~  MA(T)= M ~(T)
1 (A)
M.~
(MX(B)(T)
= MA)(T)= _My(B)(T)
\ 0
0 MX(B)(T)
0 ~  MO(T)= M &)
1 (A)
M)
M_A(T)
= MB)(T)= _My(A)(T)
0

The gradient calculation during the optimization of a pair
of S>-COOP pulses A and B is drawn schematically. First,
the trajectories of both magnetization vectors M (A)(t) and
M(B)(#) are calculated. Then, the final costate vectors A%)(T)
are calculated: The final costate vector of one pulse entirely
depends on the final state of the other pulse (red and blue
arrows). Then, the trajectories of the costates A(k)(t) are cal-
culated backward in time upon which the gradients of all

controls &/ 51/,(Ck)(t) and 6d/ 5v§k)(t) are calculated accord-
ing to Egs. 3.9 and 3.10. Either pulse A or B can be used
as the first pulse of a frequency-labeling sequence. Its coun-
terpart (B or A) is then time-reversed and phase-inverted to
yield the second pulse of the sequence (see text).
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base-line. This problem can be alleviated by applying backward linear
prediction instead of large first-order phase correction.

In terms of the Euler angle decomposition from appendix 3.5.1 (Eq.
3.30), the effective rotation matrices of the pulses A and B become

$ (w) = Ro(v"")Ry (m/2)Rz(a'Y))

3.11
= Ry (7" )R,(RTw)Ry(71/2) Ry (') N

and
$®(w) = Ro(v'P))Ry(7/2) Rz (a'P))
(3.12)
= R:(7""))Ro(RTw)Ry (7/2)Rx(a?)

For conventional ICEBERG pulses 7/(4) = +/(B) = 0. For S.-COOP
pulses with linear phase slope Eq. 3.3 still holds in a modified version:

A(A) = _A/(B), (3.13)

For R = 0, A and B ideally create transverse magnetization vectors that
are symmetric with respect to a 7r-rotation about the x axis (Eq. 3.5).
Due to the additional z-rotation R,(RTw) this rotation symmetry axis
becomes offset-dependent:

M(T) = Rgre (m)MB(T) (3.14)

In the above equation, R(ry,)(7r) corresponds to a 7r-rotation about an
axis in the transverse plane that forms an angle of RTw with respect
to the x axis. Since for conventional ICEBERG pulses 7/K) = 0, the
magnetization then lies on this symmetry axis.

3.3 Examples

As an illustrative example, we developed S2-COOP pulses for 2D 3C-
13C NOESY experiments [63,64] for a potential 30.5 T (1.3 GHz proton
resonance frequency) spectrometer. The pulses have to cover an off-
set frequency range of 70 kHz corresponding to a chemical shift range
of 215 ppm. The maximum allowed rf field amplitude was set to 10
kHz and an rf field inhomogeneity of 5% was considered. The pulse
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lengths for all optimized pulses was set to T = 75 us which is only three
times the duration of a rectangular 77/2 pulse at the same rf amplitude.
Pulse pairs for R ranging from 0 to 0.9 were optimized. Conventional
ICEBERG pulses and a PP,_., pulse were optimized using the fidelity
function

®g =1~ (Tx — Mx(T))* = (Ty — My(T))* — Mx(T)? (3.15)

where Ty = cos(RTw) and T, = sin(RTw) and the second pulse of
the sequence was created by phase-inversion and time-reversal of the
original pulse. The pulses were evaluated using ®, (Eq. 3.6) and &,
(Eq. 3.43), respectively . The results are displayed in Fig. 3.6.

For all considered values of R, S>-COOP pulse pairs perform better
than PP or ICEBERG pulses. The performance of S>-COOP pulses is
optimal for R being close to 0.5. The best ICEBERG pulse was found
for R = 0.6. For R > 0.7 the difference in performance of S*>-COOP and
ICEBERG pulses becomes smaller with increasing R. For R = 0.9 the
performances only differ by 0.0163 and the pulse shapes of ICEBERG
and S2-COOP pulses show large resemblance (Fig. 3.7). If R is close to
1 the effective chemical shift evolution time T’ = RT (Eq. [21]) is close
to the physical maximum T of a free evolution delay without any pulse.
Then, the freedom of the S>-COOP approach is reduced, since it has to
assure that chemical shift evolution takes place during almost the entire
pulse duration. As a consequence, the difference between the optimal
solutions for S>-COOP and ICEBERG pulses becomes small for values
of R that are only slightly smaller than one.

The phases of the S>-COOP pulses for R = 0.9 shown in Fig. 3.7 alternate
between the values +71/2 + ¢ for pulse A and £7/2 — J for pulse B. The
value for ¢ is constant and has no effect on the performance of this pulse
pair. In fact, the latter is true for any S>-COOP pulse pair. If a constant
value ¢ is added to the phase of pulse A and subtracted of the phase
of pulse B the same is true for the phases of the final magnetization
vectors ¢(4) and ¢(B). In Eq. 3.3, addition of ¢() to both sides yields

If a constant value J is added to ¢(4) and subtracted of ¢() we get

(¢ +0) + (P —6) =0,

49



3 Single-scan cooperative pulses

1.0f X .
_____ ..
,o—-""' o \"‘\
0.8’ "’.’, \\\‘ n
" ’
| |
0.6} f |
.
04} ® .
0 0.25 0.50 0.75 1.00

R

Figure 3.6: The quality functions ®, and ®;, respectively, are plotted
versus R for S>-COOP pulses (solid gray line and gray discs)
and for ICEBERG pulses (dashed black line and black discs).
The quality of a rectangular pulse is displayed as a square.
The performance of the pulse pair that was constructed us-
ing a saturation pulse and Eq. 3.16 is displayed as a black
cross. However, this construction principle does not work
for saturation pulses in general (see text).
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ICEBERG S%-COOP
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Figure 3.7: Pulse shapes of an ICEBERG pulse and a S*-COOP pulse
pair for R = 0.9. The time-dependent pulse amplitudes v, =

\/ (Vi +v) (top) and phases ¢ = atan(v,/vx) (bottom) are
shown. Note the large resemblance of the ICEBERG and
S?-COOP pulse shapes. The S>-COOP pulses obey Eq. 3.16.
In addition, the phases of both S>-COOP pulses alternate
between the values +71/2 + J for pulse A and £7/2 — 6 for
pulse B. The value for ¢ is constant and has no effect on the
performance of this pulse pair (see text).
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where ¢ cancels and Eq. 3.3 still holds.

The performance of a rectangular excitation pulse is indicated in Fig.
3.6 as a black square. The same rf amplitude as for the optimized
pulses (vf}“x = 10 kHz) was chosen. Here, the optimal value for R was
found to be R,p; = 0.567 (P}, = 0.62445). Close to resonance, the pulse
performs well, but for increasing offset the performance decreases and
almost reaches zero at the edges of the offset range (cf. Fig. 3.11 and
Fig. 3.9).

All S2.-COOP pulses with R < 0.6 are almost perfect constant amplitude
pulses completely exploiting the allowed maximum rf amplitude of 10
kHz. The amplitude profiles of all other S>-COOP pulse pairs that were
optimized are, for each pulse pair, almost identical. For all S>-COOP
pulse shapes with R > 0.1 as well as for the S>-COOP pulse pair with
R = 0.05 we find that the phases of the individual COOP pulses are

related by phase inversion and an additional phase shift by 7:
B =—oW + 7, (3.16)

which is equivalent to a reflection of the phase around /2. In chap-
ter 2, where the COOP approach for several scans was presented, we
observed exactly the same symmetry for the case of multi-scan COOP
pulses for broadband excitation of x magnetization with minimum pha-
se error [49]. Although it seems counterintuitive that the S2-COOP
pulses A and B, generating magnetization with arbitrary phase, share
symmetry properties with excitation pulses that generate magnetiza-
tion with exact phase, what these different types of COOP pulses have
in common, however, is that y magnetization that is present for an off-
set w at the end of one pulse has preferably the same magnitude but an

opposite sign than its counterpart, i.e. M;B)(w) = — ;A)(a)). (The dif-
ference between the two COQOP pulse types is that a small |M§k) (w)] is

favorable for excitation with minimum phase error whereas \Mék) (w)]
can be of any value for the present S>-COOP pulses.)

The relations we deduced for excitation pulses with minimum phase
error in [49] are also valid here. Thus for any pulse pair fulfilling Eq.
3.16 we can write
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(3.17)

and ®, simultaneously maximizes the amount of transverse magnetiza-
tion at the end of A and B with the condition that M(4)(T) be symmet-
ric to MB)(T) with respect to a 7r-rotation about the x axis. Thus, for
an ideal S>-COOP pulse pair A and B we find

(3.18)
MM (w) = —MP (w)
Upon combination of the two above equations we obtain
MY (@) = MY (—w) \ 10
(4) () — A G19)
My (w) = My~ (—w),
and
(B) B)
M =M, (—
P (w) = MO (—0) 520)

X
M (@) = MY (~w),

i.e. each pulse acts symmetrically with respect to w. For the case where
R # 0, a linear, offset-dependent component RTw is added. Then the
offset profile of the magnetization phase can be described as the sum
of a linear (RTw) and a symmetric component.
The pulse shapes are symmetric with respect to a 7r-rotation about the
y axis, so that the corresponding effective rotation matrices $)(w) and
S(B)(—w) are related by (appendix 3.5.2):

$\M(w) = Ry(m) $®)(—w) R, () (3.21)
Because Eq. 3.21 also holds for the inverse elements of $(4)(w) and
SB)(—w), using Eq. 3.31 we can write

ST (—w) = Ry(m) (S (~w)) ' Ry (m) = (S (@), (3:22)
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3 Single-scan cooperative pulses

For an ideal S?>-COOP pulse which acts symmetric with respect to w
(Egs. 3.19 and 3.20) the above relation becomes

SB (W) = (sW(w)) 1, (3.23)

A direct consequence of Eq. 3.23 is that in Eq. 3.4 #(4) = —a(B), There-
fore, for the cases where the pulse shapes of A and B obey the symme-
try rule of Eq. 3.16 and Egs. 3.19 and 3.20, the optimization algorithm
converges to pulses where pulse 2 is the inverse of pulse 1, which is,
however, not a necessary condition for S>-COOP pulses.

Pseudo-S?-COOP pulses

The pulse symmetry we observed for some of our optimized pulses
(cf. Eq. 3.16) can be used to construct symmetric pseudo-S2-COOP
pulses from a single optimized pulse (appendix 3.5.9). The symmetry
construction of pseudo-S>-COOP pulses A and B can be summarized
as follows:

* Optimize a pulse A that starting from M, maximizes transverse
magnetization. The magnetization phase ¢(w) must be the sum
of a symmetric term s(w) and a linear term RTw

¢(w) =s(w) + RTw, (3.24)
where s(w) = s(—w).
¢ Create pulse B by inverting the x control of pulse A.

Like for the original S>~COOP approach any pulse A or B can be used
as the first pulse of the sequence whereas the counterpart of this first
pulse (B or A) has to be time-reversed and phase-inverted to yield the
second pulse of the frequency-labeling sequence.

In order to find a pulse with optimal R, we implemented a dynamic
target optimization scheme where R is variable (cf. appendix 3.5.9).
We were able to obtain a pulse with R = 0.531 and &, = 0.99633. A
corresponding optimization of an S>-COOP pulse with equal R gave a
pulse pair with ®, = 0.99643 which is slightly better than the single
pulse. The S2.-COOP pulse pair approximately obeys the symmetry

54



3.3 Examples

relation of Eq. 3.16. The transverse magnetization profile at the end of
each pulse is almost identical and has values above 0.9975 for the entire
offset range of 70 kHz. The difference in quality mainly translates to
a difference in phase errors: The S>-COOP pulse pair keeps the phase
error smaller then 1° whereas the single pulse produces phase errors
up to slightly less than 2°. Here, we demonstrated that it is possible
to construct pseudo-S?>-COOP pulses where the optimization of only a
single pulse is necessary. However, the imposed symmetry represents
an unnecessary restriction which might in turn lead to reduced fidelity
with respect to the more general S>-COOP pulses.

Earlier, we had optimized a saturation pulse using the performance
function

®ypr = 1— ME(T) (3.25)

with the same specification as for the S>-COOP pulses. The optimiza-
tion produced a high-quality pulse with ®,;; = 0.99670. We noticed
the striking similarity of the pulse shape of the conventional saturation
pulse and the S>-COOP pulses with R = 0.5. Upon application of the
symmetry rule defined in Eq. 3.16, a second pulse could be constructed
so that two pulses A and B were obtained similar to the S2-COOP pro-
cedure. This pulse pair was also evaluated for various values of R
using @, as a quality measure. For R = 0.529 this constructed pulse
pair performed almost as well as the equivalent S>-COOP analogues.
(The values of ®;, were 0.99373 (saturation, black cross in Fig. 3.6) vs.
0.99645 (S2-COOP).) We found that this pulse approximately fulfills Eq.
3.24: By optimizing a saturation pulse we found a pseudo-S2-COOP
pulse by chance. We optimized a further saturation pulse using ®s,; for
different parameters. Although this pulse is a high-quality saturation
pulse (Ps,; = 0.99682) it does not obey Eq. 3.24 and we were not able to
generate a S>-COOP pulse pair with acceptable performance. This con-
tirms our finding that conventional saturation pulses cannot in general
be used as an alternative to S>-COOP pulses.

In Fig. 3.3 we show the set of admissible effective rotation vectors r
of an ideal S>-COOP pulse pair which forms a two-dimensional plane
of revolution. In Fig. 3.8 we compare this set of admissible effective
rotation vectors with the calculated effective rotation vectors of an op-
timized S?>-COOP pulse (R = 0.529). For better clarity, in Fig. 3.8 we
do not show the three-dimensional information (like in Fig. 3.3) but
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3 Single-scan cooperative pulses

merged the 7, and r, components of r to a single transverse component
r.o= 2+ rﬁ. As we expected, the effective rotation vectors of this

high-quality pulse lie on or very close to the predicted curve.

/N2 F

-2 L

72 /A2
r,

Figure 3.8: In Fig. 3.3 we showed the set of all admissible rotation vec-
tors for a S>-COOP (or saturation) pulse as a gray surface.
Here, the generatrix of this surface of revolution is displayed
as a black curve. Projections of the effective rotation vectors
#(w) on a plane are shown as black circles (r; = /(72 + rﬁ)).
We used the S>-COOP pulse with R = 0.529 (cf. Fig. 3.6) and
calculated 101 equally distributed points for the entire con-
sidered offset range of 70 kHz.

13c-13C NOESY experiments using S>-COOP pulses

The quality factor &, for the ICEBERG pulses was best at R = 0.6
(@, = 0.87572). For the corresponding S?>-COOP pulse pair (R = 0.6)
the quality factor is still — although slightly smaller — very close to the
optimum value at R = 0.529 (0.99598 vs. 0.99645). We selected these
pulses at R = 0.6 and a pair of rectangular pulses for a comparison
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of the conventional approach and the new S>-COOP pulses in order to
illustrate that even where the performance of conventional ICEBERG
pulses is best, the S>-COOP approach is far superior to the classical
method.

Two-dimensional *C-13C NOESY experiments were performed on a
Bruker AV III 600 spectrometer using a sample of 13C-labelled a-D-
glucose in DMSO which was chosen as a solvent in order to avoid mu-
tarotation [65]. We used the ¥3C-13C NOESY pulse sequence from [64]
where the unnecessary °N-decoupling pulses were omitted. Due to
large undesired contributions originating from zero-quantum coher-
ences we added a swept pulse/gradient pair for zero-quantum suppres-
sion [66]. A schematic drawing of the pulse sequence is displayed in Fig.
3.12 . The original pulse durations and maximum rf amplitudes were
changed from their original values 25 us (rectangular pulses), 75 us
(ICEBERG and S?>-COOP pulses) and 10 kHz to 289.8 us, 869.4 us and
862.7 Hz in order to reduce the original bandwidth of the optimized
pulse (70 kHz) to match the spectral width (6.04 kHz corresponding to
40 ppm). The last pulse of the sequence was a conventional rectangular
90° pulse (T = 20.5 us) which was sufficient for the present experimen-
tal conditions. For larger bandwidths, this pulse could be replaced by
an optimized broadband excitation pulse [14,16,19,20,22]. The mixing
time and recycle delay were set to 50 ms and 280 ms, respectively. The
spectra were recorded on a TXI probe at 293 K with 8192 x 512 data
points and 16 scans for each increment. Due to the considerable phase
slope in F1 the spectra were processed using backward linear predic-
tion (12 data points in ;) in order to reduce base-line roll caused by
large first-order phase correction. Processing parameters for both spec-
tra were identical. Selected slices of the '3C-13C NOESY spectra for
rectangular, ICEBERG and S?>-COOP pulses are shown in Fig. 3.9.

Close to the edges of the considered offset range, the ICEBERG pulse
pair produces phase errors larger than 50° in F1. However, for a large
portion of the considered offset range, the phase error does not excess
an absolute value of 13°. The absolute phase error of the S2-COOP
pulses remains below 1.33° for the entire offset range of 70 kHz. This
phase error is due to imperfections of the pulse performance: The
first pulse of a frequency-labeling sequence excites magnetization with
phase go(A) =9 (4) + RTw. Pulse B, in turn, creates transverse magne-
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tization with phase ¢(B) = /() 4 RTw. Ideally, for S>-COOP pulses
with linear phase slope, Eq. 3.3 is fulfilled: —1/(B) = ¢/(4). However,
for non-ideal pulses, the second pulse might pick up the magnetization
at the wrong phase so that —'(8) = ¢/(4) 4 Ag. Thus,

Ap = — (74 + /B (3.26)

is the phase error we observe in F1. For both ICEBERG and S2-COOP
pulses Ag is plotted as black curves in Fig. 3.10. One-dimensional slices
at constant F1 were extracted from the spectra and phase-corrected man-
ually using zero-order phase correction. The corresponding values for
the phase errors are represented as squares in Fig. 3.10. There is a rea-
sonable match of calculated and experimental values. A synopsis of the
performances of UR, PP, ICEBERG and S2-COOP pulses for R = 0 and
R # 0 is shown in Fig. 3.11. The results shown in the figures 3.9, 3.10
and 3.11 clearly demonstrate the superiority of the S>-COOP approach
compared to the conventional method of pulse optimization.

3.4 Discussion and conclusion

Here, we introduced the concept of S>-COOP pulses that are optimized
simultaneously and act in a cooperative way at different positions in a
single scan. The S>-COOP approach is a modification of the cooperative
pulse concept for several scans presented in chapter 2 and in [49]. With
the help of generalized optimal control based algorithms, such as the
presented variant of the GRAPE (gradient ascent pulse engineering)
algorithm, S>-COOP pulses can be efficiently optimized.

For simplicity, here, we focused on the example of a frequency-labeling
sequence for NOESY-type experiments which is an important build-
ing block of many multi-dimensional NMR experiments. Frequency-
labeling sequences can be designed using standard stand-alone PP, .,
and ICEBERG pulses. The goal of such pulses is to steer initial z mag-
netization to one defined final state where this final state can be con-
stant (PP) or offset-dependent (ICEBERG). However, between the first
and second pulses of a frequency-labeling sequence the magnetization
may be located anywhere in the transverse plane. Here, we showed
how this additional degree of freedom can be exploited in order to
design improved frequency-labeling sequences. In addition, we were
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ICEBERG S2-COOP

10} Ve » ]
2

> R, gy S
S
<

a
_‘| O L
35 v, [kHz] 3 35 v [kHz] 3

Figure 3.10: Calculated (straight line) and experimental (squares) phase
errors Ag vs. Vorr = w/2m of ICEBERG and S2-COOP
pulses with R = 0.6 are shown. Experimental values were
taken from a 2D NOESY spectrum of 3C-labelled a-D-
glucose in DMSO. This figure represents an enlarged view
of the plots in Fig. 3.11 marked with an asterisk.
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3 Single-scan cooperative pulses

<—t1—> -—— T ——» t

13C SP SP \ m 2
T
1H dec. (waltz 16) | | dec. (waltz 16) |
: =)
Gf GHS

Figure 3.12: Pulse sequence for the zero-quantum filtered *C-13C
NOESY experiment. Radio-frequency pulses are shown on
the lines marked 3C and 'H. The filled-in rectangle spec-
ifies a rectangular 90° pulse. Shaped pulses are indicated
by a smooth curve and the letters SP. The chirped inversion
pulse is indicated by an open box containing a diagonal
line. Gradient pulses are shown on the line marked G. Gy
denotes a homospoil gradient pulse, G¢ the weak gradient
of the zero-quantum filter [66].
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able to derive an alternative method for the optimization of pulses for
frequency-labeling sequences that involves the optimization of only a
single pulse. However, this method imposes unnecessary restrictions to
the optimization which might impair the pulse performance. In both
simulations and experiments S?>-COOP pulse pairs achieve improved
results with respect to conventional pulses (section 3.3). However, it is
important to note that, apart from frequency-labeling, the S>-COOP ap-
proach can also be applied to other problems, like INEPT-steps [52,62]
and Ramsey experiments [53]. In principle, the very S>-COOP pulses
presented in this chapter could be employed for such experiments.

So far, optimal control based techniques for the efficient optimization
of rf pulses were restricted to single steps. The S?>-COOP approach
lifts this restriction to single transfers and thus opens up new avenues
on the way to global pulse sequence optimizations. We hope that the
presented S>-COOP approach will find practical applications in NMR
spectroscopy and imaging.
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3 Single-scan cooperative pulses

3.5 Appendix

3.5.1 Conversion of a PP,_., to a PP,_., pulse

We consider an ensemble of uncoupled spin % particles without relax-
ation which can be described by the Bloch equations:

0 —w  wy

M(t) = AM(t) = ( w 0 wx> M(t). (3.27)

—Wy Wy 0

If w = (wx, wy, w)' is constant during At the solution is

M(t+ At) = e M(t) = R M(t). (3.28)

R is a rotation matrix acting on M(t). Shaped pulses are in practice
realized as a sequence of N piecewise-constant rectangular pulses with
duration At. Therefore, the effect of a shaped pulse on a magnetization
vector can be described by sequentially rotating the initial magnetiza-
tion vector M(0) for all w; with j ranging from 1 to N. The sequence of
rotation matrices can be grouped together to yield an effective rotation
matrix S(w):

M(T) = (RyRy_1 - R; ... RaRy) M(0) = S(w)M(0). (3.29)

S(w) can be described by a Euler angle decomposition in the zyz fixed-
frame convention:

S(w) = Rz(')’)Ry(IB)Rz(“)I (3.30)

It has been shown before that the transformation performed by a phase
inverted (S) and time reversed (S') pulse is the inverse of the original
transformation rotated by 7t about the y axis (Eq. 6 from [23]):

§"(w) = Ry(m) S < > g ()

= Ry(7) [Ra(7) Ry(B) Ro(w)] " Ry ()

R,(7) Ry 1( ) R, (B) R:'(7) R, ()

= [Ry(MR: (R ()] RyM(B) |Ry(m)R ()R ()|
R.(2) Ry(~B) R (7)

(70)
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In the second line S™!(w) was replaced using Eq. 3.30. In the third
line, simple matrix algebra was used: (ABC)™! = C"'B"'A~!. Then

we multiplied with a unity matrix 1 = R,/ '(7) Ry(n) in the fourth line

and exchanged the commuting operators R, L(B) and R, L(7). In the

last line we applied the resulting 7r,-rotation on R;'(a) and R; ()
yielding R;(«) and R;(vy), respectively. Thus, we obtained the same
result as in Eq. 3.30 with the difference that f has changed sign and «
and -y have changed places.

For an ideal PP, pulse B = 71/2 and <y = 0 so that upon time-reversal
and phase-inversion we obtain

—tr

S;—x(w) = Ry(a) Ry(—7/2)
Sx—z(w).

The (—7/2),-rotation transforms M, to M, upon which the a,-rotation
has no effect. Thus we have obtained the desired transformation from
x to z.

3.5.2 Relations between the effective rotation matrices of symmetric
S2-COOP and pseudo-S?-COOP pulse pairs

The controls of some S2-COOP and all pseudo-S?>-COOP pulse pairs A
and B fulfill Eq. 3.16:

which is equivalent to a rotation of the controls by 7t about the y axis.
In terms of the x and y components of w, this relation corresponds to
wJ(CA) = —w,(cB) and wéA) = aJﬁB). Then, the rotation matrix at the j-th

increment of pulse A can be written as

(A)

0 —w Wy
RM(w) = expiAt| w0 —w?
—wéA) w,(CA) 0
0 —w a)sz)
= exp At w 0 (UJ(CB)
—wéB) —wg(cB) 0
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0 w wy
= exp AtRy(m) | —w 0 —w® Ry_l(ﬂ)
—szB) w,(CB) 0
_ R,() R{*(~w) R, (), (3.32)

where in the last line we used the fact that R, (7r) is orthogonal: For
any orthogonal (or unitary) matrix V we can write exp{VAV 1} =
V exp{A} V! which is a general result from matrix algebra.

The effective rotation matrix of pulse A is

$M(w) =R(w)... R (w) ... RM(w)

=Ry (M) R{(~w)R; () ... Ry ()R (~w) R, ()

x Ry(m)RP(~w)R, () (3.33)
=R, (7) |[R{(~w) ... RP(—w) ... RP(—w)| Ry ()
=R, (7) [s<8>(—w)} R;(n),

which is the relation we used in Eq. 3.21.

3.5.3 Theoretical description of selected frequency-labeling
sequences

Here, we describe the effect of various frequency-labeling sequences us-

ing the zyz-Euler angle decomposition of the effective rotation matrices

of the pulses (Eq. 3.30). Corresponding drawings are given in Fig. 3.2.

3.5.4 Universal rotations

The UR pulses of this sequence perform rotations about the y axis:
90y : S(w) = Ry(7/2) =90, : S(w) = Ry(—m/2).

Chemical shift evolution during t; corresponds to a z-rotation by an
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angle wt;:

Ry(—7/2) R(wh) Ry(70/2) M =
Ry(~7/2) R (wh) M;
= Ry(—m/2) (Mycos(wty) 4+ M, sin(wty))
= M;cos(wty) + M, sin(wty). (3.34)

3.5.5 Point-to-point transformations

Now we consider the case where the two UR pulses are replaced by PP
pulses.

S;—x(w) Rz(wtr) Szx(w)M; =
_ R,(—70/2)Ra(wh) Ry (77/2)R: () M
Ry( 7T/2)R, (wty) My
(—7/2) (Mycos(wty) + My sin(wty))
= MZ cos(wtl) + R («) (M, sin(wtq)) (3.35)

After the PP,_., pulse we obtain the desired cos(wt;)-modulated z mag-
netization plus a term R;(«) (M sin(wt)) = (M, sin(wty)) cos(a) —
(M, sin(wty)) sin(a) which represents transverse magnetization being
removed by coherence transfer pathway selection [45-47]. Because «
may take any value, the last line of Eq. 3.35 defines the set of admis-
sible magnetization vectors which is drawn as a cone on the rightmost
drawing of the PP-sequence in Fig. 3.2

3.5.6 Point-to-point transformations with linear phase slope

Now we consider the case of an excitation pulse with linear phase
slope [21]. Using the Euler angle decomposition from Eq. 3.30 we
can write v = RTw where R is the fraction of the pulse duration T dur-
ing which chemical shift is active. In the frequency-labeling sequence,
the first pulse creates transverse magnetization with linear phase slope,
ie. Mycos(RTw) + Mysin(RTw) = R;(RTw) M,. Att; = 0 the
time-reversed and phase-inverted pulse performs the rotation sequence
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R;(2)Ry(—7/2) R;(RTw) (Eq. 3.31) and we obtain:

R;(«)Ry(—m/2)R;(RTw) R (RTw)M, =
R (a)Ry(=7/2) R:(QRT w) M, (3.36)

min
tl

which corresponds to the above result for PP,_., pulses with the differ-
ence that t; has been replaced by 2RT. Therefore, when a frequency-
labeling sequence consisting of an excitation pulse with linear phase
slope followed by its time-reversed and phase-inverted counterpart is
applied, the effective evolution time T does not correspond to the inter-
pulse delay t; (cf. Fig. 3.1):

T =t; +2RT (3.37)

In a two-dimensional Fourier-transformed NOESY spectrum this re-
sults in a linear phase error with respect to F1 which can be phase-
corrected by first-order phase correction. For larger values of RT first-
order phase correction will lead to a rolling base-line. This problem can
be alleviated by applying backward linear prediction.

3.5.7 Single-scan cooperative pulses

Single-scan cooperative pulses create transverse magnetization with op-
posite phase, i.e. {4) = —(B). In other words, the final Euler rotation
angles (7 in Eq. 3.30) about z are of opposite sign:

S(A)(w) = RZ('Y)Ry(TC/Z)RZ(“(A))
and (3.38)
S(B)(W) = RZ(—’y)Ry(n/Z)Rz(oc(B)).

In the above equation, S (w) and $¥)(w) are the effective rotation
matrices of two S2-COOP pulse A and B, respectively. In a frequency-
labeling sequence we can directly use one of these pulses as first pulse
and its time-reversed and phase-inverted counterpart as second pulse.
Here, we use A as the first pulse. The effective rotation matrix of the
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entire sequence is

ST (@)Rs(wh)SW (w) =
= Rz(‘X(B))Ry(_”/Z)Rz(_'Y)RZ(th)RZ(’Y)Ry(”/z)Rz(‘X(A))
= R.(a®)Ry(—7/2)R;(wt;) Ry (7/2) Ry (a'Y). (3.39)

The rotations R;(7) and R.(—7) cancel: The pair of S>-COOP pulses
acts in a cooperative way such that the two pulses cancel each other’s
imperfections. The above result is equivalent to the result for PP pulses
(appendix 3.5.5). However, allowing an additional arbitrary rotation
R(vy) adds an additional degree of freedom to S>-COOP pulses with
respect to PP pulses.

When using S?-COOP pulses with linear phase slope the effective rota-
tion matrices are

S(A)(‘U) = RZ(’Y(A))Ry(”/z)RZ(“(A))
= R.(7' + RTw)Ry(71/2) Ry (') (3.40)
= R:(7)R:(RTw)Ry(7/2) Rz (')
and
S(B)(W) = RZ('Y(B))Ry(”/z)RZ(‘X(A))
= R.(— + RTw)Ry (7t/2) Ry (a'A) (3.41)
= R:(—7)R:(RTw)Ry(7/2) Ry (aY).
Again, in a frequency-labeling sequence ' and —v’ cancel yielding a

result equivalent to excitation pulses with linear phase slope (appendix
3.5.6).

3.5.8 Quality factor for S>-COOP pulses with linear phase slope

The first step of the S>-COOP approach comprises the optimization of
two pulses that rotate initial z magnetization to the transverse plane.
For the case of zero phase slope (R = 0), the two resulting transverse
magnetization vectors have to be related by a 7m-rotation about the x
axis (Eq. 3.5):

M (1) = Ry(m)MP)(T)
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If R # 0 Ry is rotated by RTw about z corresponding to a linear phase
slope of RT. Thus we can write Eq. 3.5 in a generalized form that allows
nonzero values for the phase slope:

M(T) = Rgr, (1) MP)(T)

3.42
= [RZ(RTw)Rx(n)Rz_l(RTw)] M®)(T) (342
The quality factor then becomes
@, = (MM ()M (1) = My ()MP (T)) - (€2 - 82)
(3.43)

+2 (M§A>(T)M§B>(T) + M§A>(T)M§B>(T)) - (CS).

where we used C = cos(RTw) and S = sin(RTw). Using the relation
A®(T) = 9@ /oMK (T) [16] we obtain the following costate vectors:

(€2 -2y MPB(T) +2cs - M )(T)
A(A)(T) = —(C2 SZ) M( )(T)+2CS M( )(T) (3.44)
0

and

(C?—52) - MM (T) +2Cs - M{™M(T)
AB(T) = (C2-8?). M JSA)(T)—l—ZCS M( )(T) (3.45)
0

3.5.9 Dynamic target optimization of pseudo-S2-COOP pulses

The offset-profile of the magnetization phase ¢(w) of any pulse can
be decomposed into a symmetric part s(w) and an antisymmetric part
a(w):

¢(w) =s(w) +a(w) = s(w) + RTw + a’'(w) (3.46)
with s(w) = 1(p(w) + p(~w)) and a(w) = }(p(w) — @(~w)). The
antisymmetric part a(w), in turn, can be decomposed to a linear com-
ponent RTw and an antisymmetric, non-linear component a'(w). In
order to fulfill Eq. 3.24, a’(w) has to vanish. Therefore, the goal of the
optimization is to minimize a'(w).
In a practical optimization, we choose a random pulse shape for which,
starting from z magnetization, the offset-profile of the phase of the final
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magnetization at the end of the pulse ¢(w) is computed. Using the
above equations, we derive s(w) (which is stored for a step later in the
optimization) and a(w). Then the radian phase of a(w) is unwrapped
by subtracting (adding) 277 from (to) a(w; + 1) if (a(w;j+ 1) — a(w)) is
larger (smaller) than (—)7. Then the slope of the linear, antisymmetric
component RTw can be extracted by linear regression:

iy a(wj) w;

RT = (3.47)
o
Now the target phase ¢;(w) is constructed according to Eq. 3.24:
¢t(w) = s(w) + RTw. (3.48)

The quality function we use is 9 =1 — (Ty — My(T))? — (T, — My(T))?
—M(T)? (Eq. 3.15) where the target magnetization vector is T =
(cos(¢;) sin(@;) 0)T. The gradients are calculated accordingly and
added to the pulse shape. This updated pulse is then used in the next
iteration to re-calculate ¢;(w) in the manner we described above upon
which new gradients are added to the pulse shapes. This process is
repeated iteratively until a convergence criterion is fulfilled.

The symmetric component of the phase profile s(w) may be of any
shape (cf. Fig. 3.13). In addition, the value for R is not fixed at the be-
ginning of the optimization and its optimal value is updated in each iter-
ation. Therefore, the dynamic target optimization of pseudo-S2-COOP
pulses also optimizes the phase slope R.
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3 Single-scan cooperative pulses
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Figure 3.13: The pseudo-S?>-COOP pulse with R = 0.531 (cf. section
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3.3) creates transverse magnetization with phase ¢(w) (left,
black curve). For comparison, the linear phase slope RTw
is plotted as a dashed gray line. The transverse magneti-
zation M| = /M3 + Mj created by this pulse is larger
than 0.9975 for the entire offset range of 70 kHz (data not
shown). If the linear component RTw is subtracted of ¢(w)
the result is approximately symmetric with respect to w
(center). The antisymmetric, non-linear component a’(w)
is minimized by the optimization (right).



4 Theory of cooperative tracking

In the previous chapters 2 and 3, we showed how COOP pulses can be
designed either as COOP cycles which are used for a single transfer in
several scans or as S>-COOP pulses which perform different transfers
in a single scan. For each case, COOP pulses cancel each other’s im-
perfections and act in a cooperative manner which enables enhanced
pulse sequence performances with respect to classical methods of pulse
sequence design.

Another method for the design of successive transvers in a single scan
is optimal tracking: A desired trajectory of the density matrix (or mag-
netization vector) at specified points in time is tracked as closely as
possible. Optimal tracking has been used for the development of novel
low-power heteronuclear decoupling sequences in the liquid state for in
vivo applications [44]. However, optimal tracking is not limited to the
design of decoupling sequences but could in principle be used for the
development of various pulse sequences.

In the present chapter, we discuss the theoretical framework of an algo-
rithm which combines the COOP pulse approach with optimal tracking
for the design of novel heteronuclear decoupling sequences: During the
optimization, we keep track of the density operator at all acquisition
points [44] and at the same time we allow for the signal to be the aver-
age of several scans [49], i.e. we optimize a set of cooperative heteronu-
clear decoupling pulses which are in general not identical. We hope
that this novel algorithm which we call cooperative tracking will result
in improved decoupling sequences, creating spectra with large and uni-
form signal amplitudes as well as reduced intensities of the decoupling
sidebands. In our description of the cooperative tracking algorithm we
will redraw the theory of optimal tracking as it is presented in [44].

Heteronuclear decoupling of two spins 2

Consider the case of a heteronuclear two-spin system with two spins
Y labeled I and S. We assume that spin I is observed while spin S is
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4 Theory of cooperative tracking

irradiated with a decoupling sequence. The overall Hamiltonian in a
doubly rotating frame [67] takes the form

H(t) = Hopr + Hopp + H® + Hpe(H) (4.1)
where
Hypp = 21l (4.2)
and
HS ;= 2755, (4.3)

are the offset terms of spin I and spin S, respectively. The heteronuclear
J coupling term is
H}® = 27]S. L. (4.4)

The remaining term represents the irradiated decoupling sequence:
Hff(t) = 2me{ux(t)Sx + uy(t)Sy}, (4.5)

where the controls u,(t) and u,(t) represent the x and y components
of the rf field and € is an rf scaling factor taking rf inhomogeneity and
miscalibration into account. Since Hg £f commutes with the terms Hg 1%

H}S and H° f(t) it is sufficient to consider the simplified Hamiltonian
H(£) = Hopp + H)* + Hye(t). (4.6)

If no decoupling sequence is applied, i.e. Hf f(t) = 0, then the evolution

of an initial density operator p(ty) = I is only governed by H}S because
Hgff and I, commute:

o(t) = Iy cos(rmJt) + 2I,S, sin(7]t). 4.7)

Due to the cos(7r]t)-modulation of the detectable operator I, the Fourier
transformation of the time-domain signal that represents the expecta-
tion value (I.) yields a spectrum consisting of a doublet with splitting
J. The | coupling can be used for different types of experiments, e.g.
J-resolved spectroscopy [68,69] and for heteronuclear coherence trans-
fer [52]. However, in many cases it is advantageous to suppress the
J-coupling evolution. In general, decoupled spectra show fewer peaks
than spectra that have been recorded without decoupling which facil-
itates the analysis of the spectrum [67]. The task of a heteronuclear
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decoupling sequence is to suppress the effects of H}S so that the dou-
blet collapses to a single line and, in the absence of relaxation effects,
p(t) = I throughout the decoupling sequence. Typically, the time-
domain signal is not recorded continuously but only at discrete points
in time Tj. Therefore, for decoupling it is sufficient that p(t) is equal to
I, at the Ny, + 1 acquisition points Ty (0 < k < N,;) which are typically
evenly spaced over the acquisition time T,;. For the case of non-uniform
sampling the position in time of the acquisition points can be adjusted
accordingly. So we can write

p(Tk) = I. (4.8)

Typically, the dwell-time AT = Ty — T_1 between two acquisition points
is longer than the duration At = t,, —t,,_1 of an increment of the de-
coupling sequence, i.e. the discretization of the decoupling sequence
is typically finer than the digitization of the detected signal. (Here,
M = AT/At is the number of pulse increments per interval AT. The
values of AT and At are chosen such that M is an integer.)

In analogy to COOP pulses in several scans (Chapter 2), we try to op-
timize a set of N decoupling pulses that are in general not identical.
Hence, the entire COOP decoupling cycle consists of N pulse sequences.
Each of the latter consists of N;;M pulse increments and is character-

ized by control amplitudes ugcn)(j) and ué")(j) with 1 < j < NyyM and
1 < n < N. The overall signal 5 is obtained by averaging the N signals
s,((n) that are obtained in N scans where we cycle through the entire set

of N COOP decoupling sequences:

™M=
»m/-\
S

S
X
I

Zl= Z~
i

S
I
[uay

(L™ (Ty))

™M=

(4.9)
1 N
= (I X " (To))
n=1

= (Ll (Tk))

with
(L |p(Ty) = te{I} p(Tx)}. (4.10)
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4 Theory of cooperative tracking

Although signal averaging cannot increase the amplitude of a decou-
pled resonance line, it allows for cancelation of undesired signal con-
tributions such as decoupling sidebands and deviations from a desired
offset profile. Thus, even if the individual members of a COOP de-
coupling cycle show imperfections in terms of undesired signal contri-
butions, the COOP tracking algorithm is given the possibility to find
solutions where these undesired signals cancel upon signal averaging.
A desired offset profile in the context of heteronuclear decoupling can
be a maximum and uniform amplitude of the decoupled signal over
the entire considered offset range which is of special interest for decou-
pling sequences in quantitative NMR experiments [70]. Other desired
offset profiles can be band-selective decoupling profiles where the de-
coupling sequence only affects a certain offset range and has no effect
for the remaining considered offset frequencies [71,72]. Yet another de-
sired offset profile is a defined, offset-dependent scaling of the coupling
constant | as it has been shown in [73].

One method for the reduction of decoupling sidebands in several scans,
DESIRE [74], is a two-dimensional NMR technique where the decou-
pled spectrum corresponds to the slice of the 2D spectrum at F1 = 0.
The decoupling sidebands appear at F1 # 0 where the value of F1 cor-
responds to the splitting of the decoupling sidebands. With DESIRE
an up to 100-fold reduction of the decoupling sideband intensities can
be achieved. However, in order to obtain a decoupled spectrum with
DESIRE, a considerable number of scans in order to sufficiently resolve
the spectrum in the indirect dimension is necessary. (In [74] the shown
decoupled spectra were recorded with 64 and 128 ¢;-increments, respec-
tively.) Another method for the reduction of decoupling sidebands in
several scans is bi-level decoupling [75]. In bi-level decoupling, several
different decoupling sequences are applied in different scans so that de-
coupling sidebands are cancelled in part upon signal averaging. In the
first scan of a bi-level decoupling cycle decoupling is performed with
a low rf amplitude (“low-level decoupling”). In all successive scans, a
decoupling sequence with high rf amplitude (“high-level decoupling”)
is applied at the beginning of the sequence which is followed by a low-
level decoupling sequence. The duration of the high-level sequence is
increased with each scan. The total signal is obtained by averaging the
individual signals from each scan. Thus, it is possible to reduce the
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intensities of the decoupling sidebands. Bi-level decoupling has been
applied to the chemical analysis of polymer compounds [76]. However,
the necessary rf amplitudes for high-level decoupling are considerably
large. Another disadvantage of bi-level decoupling, especially with re-
spect to quantitative NMR, are the large deviations from a uniform
offset profile of the amplitudes of the decoupled signal. A uniform de-
coupling profile can be obtained when decoupling sequences based on
adapted adiabatic pulses are applied [70]. However, in [70] the prob-
lem of decoupling sidebands is not addressed and the possibilities that
the latter can be reduced by signal averaging is not taken into account.
Here, we present the theory of cooperative tracking which is in prin-
ciple able to find decoupling sequence cycles that create both uniform
and maximum decoupled signal amplitudes for the considered offset
range and minimize decoupling sidebands.

The amplitude of a decoupled on-resonance signal in the spin I spec-
trum for a given rf scaling factor € and offset v is given by

Nug
€,V Sil€E,V
¢(e,vs) Nuq+12k s)

1 N
= Lo (e, vg, T

(4.11)

where in the first line we replaced si(€,vs) in Eq. 13 from [44] with
5¢(€,vg). In the second line we used the identity from Eq. 4.9.

Here, instead of using the signal amplitude ¢ (e, vs) as the quality factor
of a decoupling sequence at a specific rf scaling factor € and a specific
offset frequency vs, we choose ¢'(€, vs) which is

, 1 _
¢levs) =7 L (1- (1 -Sile,vs))?)
”ql N:j (4.12)

=1 L (17 0= lplers T)7).

This choice assures that full advantage is taken of the COOP pulse prin-
ciple (cf. Eq. 4.36). We define the overall performance function ® of
a decoupling sequence as the average of all quality factors ¢’(€, vs) for
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4 Theory of cooperative tracking

all N rf scaling factors and all N, offsets of interest [44]:

Loy 2 ¢ (e 0. (4.13)

p=1g=1

Simplified relaxation model

The general analytical expressions for the gradients d®/ 5u,§(”)(j) (for
u&n)(j) = eug(cn)(j) and eu](/n)(j)) can be derived for the case of an arbi-
trary relaxation matrix. However, a simplified relaxation model where
the relevant terms of the density operator relax with the similar rate x
reflecting T (or T;) allows a tremendous simplification of the tracking
algorithm. For many cases, this is a reasonable approximation. In the
simplified relaxation model, the density operator at time t,, of the nth

scan is given by

0" () = exp{—xtm} p"tw) (4.14)
and
() =) Ul o) Ut Uit (4.15)

The propagator U, for the uth time slice of the nth scan is given by
Ul = exp{—intH} (4.16)
z p L -
where
Hy =My + M +27Te< ) S+ )" )(y)sy) (4.17)

with uSJ’”(y) and u;n)(y) being the constant control amplitudes during

this time slice. Hence, using this simplified relaxation model we can
write for the signal amplitude 5j:

51 = exp{—«TH(L[P (TL)). (4.18)

where in the context of the simplified relaxation model (Eq. 4.14)

1 N
= LY . @19

n=1
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Derivation of the gradient § <I>/c5u,(x")( 7)

The gradient §&/ (5u,§”)( j) is given by

Ne Ny

oD o) 1 (q)

= Y Y ¢ (€W )

sul)  sul"(j) (NeNv p=14=1 ( )
1 Ne Ny 6¢ (e”’%vé‘”)

~ N.N,

(4.20)

p=14q=1 5u§(n)(]-)

Thus we need to average all gradients for all rf scaling factors e(?) and

all offset frequencies véq) of interests. The gradient ¢/’ (e, vs)/ (Sug‘n)(j)
for a specific scaling factor € and a specific offset frequency vs is

e s) 0 L Yoy 2 ) 421
5%&11)(]) 5141&”)(]) <N‘W+1k¥0( ( Sk(GIVS)) ) : (4.21)

Now we are interested in the effect on the quality factor ¢’ (e, vs) if
the control amplitude u&”)(]) or uén)(j) is varied in the jth time slice,
i.e. between the time points ¢; ; and ;. This time slice lies between
the acquisition points T; and Tj, 1, where | j/M | is the truncated value

(also called floor function) of the ratio j/ M, i.e. the number of complete
intervals AT between the time points ¢y and ;. The controls ug(cn)( j) and
uén)(]) only have an effect on the detected signal s for k > 1 = | j/M |.
Hence we find

6p'(e,vs) & 1 _

2 _ d5¢(€,vs)
= N1 Y (1 —5¢(e,v5)) (W) :

(4.22)

Using our simplified relaxation model (Eq. 4.14) for 65 (e, vs)/ 5u§”)( 7)
we find

4 ﬁ(e‘,l/s) _ exp{—KTk} 5<IX|F(Tk)>
us" ) ui) w23
_ 1 O{Le|p " (Ti)) '
N exp{—«Ty} (Sug”)(j) .
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4 Theory of cooperative tracking

The density operator at the acquisition time Tj of the nth scan can
be calculated by propagation of the initial density operator which is
o (to) = I, for all N COOP decoupling sequences. Thus we can write

S(I|p (T, 6
{ |p(n)§ ) _ o . ut . u ety ut )
Ouy (f) Suy (f)
0 (m) g () (mt gt ()t
= ——tr LU u e ()i
T ] f /
(n)
U
= tr{L,u" —— uMo(to)yt Ut ut
uy (j
(m)t
U,
+ru . u . u (o) up L uh
Sug (f)
(4.24)

where we used Eq. 4.10 and took advantage of I, being Hermitian (i.e.
I, = IT) in the second line and in the third line we applied the product

rule. Using Eq. 4.16 the propagator U].(") can be written as

u™ = exp{—intH'"(t))} (4.25)
with
ROt = H (1) = Sy, + HIS + 2me {ul™(j) Sx + uy(j) Sy} (4.26)

where u,(cn)( j) and ué”)(j) are the controls of the nth COOP decoupling

sequence at the jth time slice. In the limit where At < ||H/(")(¢;)|| 71
[11,77] we obtain to first order in ¢

u;” ()
(nf)_ = —i27At Sy U, (4.27)
Sug (f)
and
(Su(”)+ (n)t
J = i27nAt U S, (4.28)
sug"\j)
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Plugging this result into equation 4.24 we can write

S{LLIP " (TY) _

o)
= —i2mAte{L U s, Ul up(te) Uyt U
—Lu () L Ut s, L uTy
= —i27TAt
xte{u' L uM L. Ul s El].(”)... up(to)uM"... u].<”>i
X,(cn‘)r(tj) ﬁ(;)r(tj)
_ E[Jﬁﬂ* LuMta u}_’% u™... uMp(t)uy"... u].(’”i S.}
X,ﬁ”y(tj) 5
= —i 2t (AUt Su 5 ONE) — 5 OE) Sa ALE))
— —i2mAt (Sa | [P, A E))). (4.29)

Hence we can write the gradient of the quality function é¢’ (¢, vs) / 5u§¢”)( 7)
to first order in At as

5’ (e,vs) . 1 2
————= =1 21Tt — ) exp{—«Ty}
sul™(j) Nog+1 N kz>z (4.30)
x (1= 5(e,vs) (S| [7"ep), A1)
. . . (), . 1), . .
We can refine this result by replacing A, (t;) with A’,"/(¢;) which is
2 _ 3 (n
M) = < (1=5ile,ve)) A(E) (431)
and we obtain
/
PNENS) _jomar
oug (j) aq +
x Y exp{—xT} (S«| [p"t), A (1)])  @32)
k>1

. 1 ~ n
= i 27TAL No 1 (Sa| [p(n)(tj), Al(< )(tj) 1)
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so that we are now able to calculate the gradients d®/ (Su&”)( j) (Eq. 4.13).
The operator A(”)(t]') is defined as

A () = Y exp{—xTe} AL(E) (4.33)
k>1

and can efficiently be calculated in complete analogy to the method pre-
sented in Appendix 3 of [44]. For each of the N members of the COOP
cycle, the density operator at time point {; is obtained by unitarily evolv-

ing the initial density operator pM(tg) = p@(ty) = ... = pMN(ty) = I,
forward in time (Eq. 4.15). We call
A = ulh’ L ugt A (T ug) U (4.34)

the kth costate of the nth COOP decoupling sequence at time point £;

that is obtained by unitarily evolving A'()(T}) backward in time where
N()(Ty) is defined as

2 _
AT = 5 (1= Uxlo(e,vs, TO)) I, (4.35)
which is independent of #, i.e. at the same acquisition time T all N
costates are identical (A’ (1)(Tk) =\ (2)(Tk) — ... = ANI(T})) and de-

pend on the average expectation value (I) = (I|p (€, vs, Tx)). However,
the back propagation of the costates under the different decoupling se-

quences results in different trajectories A]i(”)(t]-) for 1 < j < NggM. If,
instead of ¢’(e,vs), we choose ¢(€,vs) (Eq. 4.11) as a quality factor the
corresponding costate is

. 1
AT = < L. (4.36)

The costate A,(cn)(Tk) is independent of the average expectation value

(I;) = (Ix|p (e,vs, Tx)) and does not contain any information from the
other members of the COOP decoupling sequence cycle. Hence, an
optimization where ¢(¢€,vs) is employed as the quality factor, can not
take advantage from the COOP pulse principle and equals to a parallel
optimization of N stand-alone decoupling sequences.

By following the gradients d®/ (Su&”)( j), ie.

n), . n), . od
ul(j) = ) + e —
Ouy

(4.37)
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where ¢ is a variable step size, we are able to create a set of controls with
improved performance ®. This is taken as the basis of a generalized
version of the GRAPE algorithm [11] which combines the advantages
of both optimal tracking [44] and the cooperative pulse approach (cf.
Chapter 2 and [49]) which can be applied to the problem of efficient
heteronuclear decoupling with minimized side-bands and uniform am-
plitude of the decoupled signal.

Summary of the cooperative tracking algorithm

For the case of uniform relaxation rates x considered here, the basic
cooperative GRAPE tracking algorithm can be summarized as follows:

1. Guess initial controls u,(cn)(j) and uén)(]) for 1 < j < NyM and

1<n<N.

2. Starting from pM(tg) = p@(ty) = ... = pN)(ty) = I, calculate all
ﬁ(”)(tj) for1<j< NyMand 1 <n <N using Eq. 4.15.

3. Starting from A(l)(TNaq) = A(z)(TNaq) =...= A(N)(TNM) = (2/N)
x (1= (Is|p(e,vs, Ty))) I calculate all A(”)(tj) for1 <j < NyM
and 1 < n < N using Eqgs. 4.33-4.35.

4. Calculate 5¢(6(P),v§q))/5u§”)(]’) for1<j<NyMand1<n<N
using Eq. 4.32.

5. Repeat steps 2—4 for all rf scaling factors €(P) and offsets véq) and

calculate (5<I>/5u§c”)(j) and §CI>/5u§")(j) for 0 < j < NyyMand 0 <
n < N using Eq. 4.20.

6. Update the 2N,;MN control amplitudes ug(cn)( j) and uén)( j) accord-
ing to Eq. 4.37.

7. With these as the new controls, go to step 2.

The algorithm is terminated if a certain convergence criterion is ful-
filled. For faster convergence, the gradient information (Eq. 4.20) can
be used in more general optimizing algorithms such as conjugate gradi-
ents or quasi-Newton methods like limited-memory BFGS [35,54]. The
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rf power of the decoupling sequence can be minimized or fixed as de-
scribed in [11,14]. The maximum rf amplitude #,,,x can be limited by
resetting the amplitude to the maximum amplitude if it is exceeded
after step 6 [11,19].

In addition, it is possible to describe the system with a reduced four-
dimensional state vector [44,78-80] which minimizes the computational
effort. Cooperative tracking is not limited to the simplified relaxation
model which we used here. For example, the system of interest can
also be described using a full relaxation matrix approach. In addition,
cooperative tracking is not restricted to the optimization of decoupling
sequences but the present algorithm could in principle be used for the
optimization of various pulse sequences.

In order to be able to take rf field inhomogeneity and miscalibration into
account, we derived gradients for the scaled controls u,(xn)( j) = eu,(cn)(j)

and eué”)(j). Thus, we do not optimize a single set of controls u,(c”)(j)

and u](/n)( j) but a distribution of control sets discretized by €. In [44] the

gradients were derived for ufx(")( j) = u,(c”)( j) and uén)( j) no matter which

value is taken by €. In the context of cooperative tracking an according
derivation would lead to the modified gradient

o9(e,vs) _ i 2meAt

Sy A,
sulj) Nag + 1 (Sa[[0Y(t7), A1), (438)

which differs from Eq. 4.32 by a factor €. By the principle of reci-
procity [81] the detection sensitivity is proportional to € which repre-
sents a physical justification for a scaling of the gradients according to
Eq. 4.38. However, the transmitter and receiver coils are not identical
in general and especially not for the case of heteronuclear decoupling.
If the deviations of € from 1 are small the difference between the gra-
dients from Eqgs. 4.32 and 4.38 are probably negligible. However, for
larger inhomogeneities [17] different convergence properties might be
observable for the two different gradients. All pulses presented in this
thesis where rf inhomogeneity was taken into account, were optimized
using gradients in analogy to Eq. 4.32 where the gradient is not scaled
by €. It remains an open question if one of the two methods is to be
preferred in general.
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We expect our new algorithm to be especially interesting for 1>C-detected
quantitative NMR where uniform signal amplitudes and minimized
sidebands are desired for the considered offset frequency range [70].
Existing decoupling techniques either reduce decoupling sidebands in
several scans or create a uniform decoupling profile in a single scan.
Optimal tracking [44] has lead to excellent low-power decoupling se-
quences. With cooperative tracking, where we applied the cooperative
pulse approach to optimal tracking, we provide a method that is in
principle capable of creating decoupling sequence cycles that both have
a highly uniform offset profile and, at a time, minimize decoupling
sidebands.
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