
Technische Universität München 
Institut für Experimentelle Genetik 

(Institute of Experimental Genetics) 

 

 

Identification of Clinical Markers in Colon Cancer  

by Tissue Based in situ Proteomics 

 

 

Stephan Meding 

 

 

Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für 

Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung 

des akademischen Grades eines  

  

   Doktors der Naturwissenschaften (Dr. rer. nat.) 

  

genehmigten Dissertation.  

  

 

Vorsitzender:    Univ.-Prof. Dr. D. Langosch 

  

Prüfer der Dissertation:  1. apl. Prof. Dr. J. Adamski  

        2. Univ.-Prof. Dr. B. Küster 

        3. apl. Prof. Dr. A. Walch  

    (Albert-Ludwigs-Universität Freiburg) 

     

Die Dissertation wurde am 25.10.2011 bei der Technischen Universität München eingereicht 

und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung 

und Umwelt am 16.02.2012 angenommen.  



 ii 



 iii 

Table of Contents 

1 Abstract ............................................................................................................................ 1 

2 Introduction ...................................................................................................................... 4 

2.1 Impact of cancer ............................................................................................................... 4 

2.2 Definition of cancer.......................................................................................................... 5 

2.3 Carcinogenesis – The development of cancer.................................................................. 6 

2.3.1 Common features of carcinogenesis ............................................................................ 6 

2.3.2 Carcinogenesis of colorectal cancer............................................................................. 9 

2.4 Classification and staging of colon cancers ................................................................... 10 

2.5 Clinical challenges in colon cancer therapy................................................................... 13 

2.6 Methods applied in tissue analysis ................................................................................. 14 

2.6.1 MALDI Imaging ........................................................................................................ 15 

2.6.2 MALDI Profiling ....................................................................................................... 18 

2.6.3 Label-free quantitative proteomics ............................................................................ 18 

2.7 Scope of this thesis......................................................................................................... 19 

2.7.1 Proteomic markers for regional lymph node metastasis in colon cancer primary 

tumours..................................................................................................................... 19 

2.7.2 Discrimination of tumour entities by proteomic classification.................................. 20 

2.7.3 Proteomic markers for relapse in colon cancer primary tumours .............................. 20 

2.7.4 Methodological advances in MALDI Imaging – Opening new fields or research .... 21 

3 Materials......................................................................................................................... 23 

3.1 Chemicals, reagents and ready-to-use solutions ............................................................ 23 

3.2 Commercial solutions and kits ....................................................................................... 24 

3.3 Solutions and buffers...................................................................................................... 25 

3.4 Antibodies ...................................................................................................................... 28 

3.5 Matrices.......................................................................................................................... 28 



 iv 

3.6 Instrumentation .............................................................................................................. 29 

3.7 Software ......................................................................................................................... 30 

4 Methods.......................................................................................................................... 31 

4.1 Tissue fixation and storage............................................................................................. 31 

4.1.1 Cryo fixation – Native tissues.................................................................................... 31 

4.1.2 Formalin fixation – Formalin-fixed paraffin-embedded (FFPE) tissues ................... 31 

4.1.3 PAXgene fixation – PAXgene-fixed paraffin-embedded (PFPE) tissues.................. 31 

4.2 Construction of tissue microarrays................................................................................. 31 

4.3 Tissue sectioning............................................................................................................ 32 

4.3.1 Sectioning of native tissues........................................................................................ 32 

4.3.2 Sectioning of FFPE and PFPE tissues ....................................................................... 32 

4.4 Histological staining of tissues with haematoxylin and eosin ....................................... 32 

4.4.1 Staining of native tissues ........................................................................................... 32 

4.4.2 Staining of native, FFPE and PFPE tissues after MALDI Imaging........................... 33 

4.4.3 Staining of FFPE and PFPE tissues ........................................................................... 33 

4.5 MALDI Imaging ............................................................................................................ 33 

4.5.1 Tissue preparation...................................................................................................... 33 

4.5.1.1 Preparation of native tissues.................................................................................. 33 

4.5.1.2 Preparation of FFPE tissues .................................................................................. 34 

4.5.1.2.1 Preparation by antigen retrieval ......................................................................... 34 

4.5.1.2.2 Preparation by antigen retrieval and tryptic digest............................................. 34 

4.5.1.3 Preparation of PFPE tissues .................................................................................. 34 

4.5.2 Matrix application...................................................................................................... 34 

4.5.3 MALDI mass spectrometry measurement of tissue samples ..................................... 35 

4.5.3.1 Measurement in linear positive mode ................................................................... 35 

4.5.3.2 Measurement in reflectron mode........................................................................... 35 



 v 

4.5.4 Data processing.......................................................................................................... 35 

4.6 MALDI Profiling ........................................................................................................... 36 

4.6.1 Tissue preparation...................................................................................................... 36 

4.6.2 Matrix application...................................................................................................... 36 

4.6.3 MALDI mass spectrometry measurement of tissue samples ..................................... 36 

4.6.4 Data processing.......................................................................................................... 37 

4.7 Tissue lysate based label-free quantitative proteomics and protein identification ........ 37 

4.7.1 Protein extraction, sample preparation and peptide mass spectrometry .................... 38 

4.7.2 Label-free peptide quantification............................................................................... 39 

4.7.3 Database search and protein identification ................................................................ 40 

4.7.4 Protein identification for MALDI Imaging................................................................ 41 

4.8 Matrix proteome based protein identification ................................................................ 41 

4.8.1 Tissue sample preparation.......................................................................................... 41 

4.8.2 Protein extraction, sample preparation and peptide mass spectrometry .................... 42 

4.8.3 Database search and protein identification ................................................................ 43 

4.8.4 Protein identification for MALDI Imaging................................................................ 44 

4.9 Immunohistochemical staining ...................................................................................... 44 

4.10 Statistical analysis .......................................................................................................... 44 

4.10.1 Statistical analysis of MALDI Imaging and Profiling sample cohorts ...................... 44 

4.10.1.1 Statistical analysis of single samples .................................................................... 45 

4.10.1.2 Statistical analysis of sample cohorts.................................................................... 45 

4.10.1.2.1 Statistical comparison of sample cohorts using a Wilcoxon rank-sum test ....... 45 

4.10.1.2.2 Hierarchic clustering of sample cohorts ............................................................. 45 

4.10.1.2.3 Classification of sample cohorts......................................................................... 46 

4.10.1.2.4 Principal Component Analysis of sample cohorts ............................................. 47 

4.10.2 Statistical analysis of immunohistochemically stained sample cohorts .................... 47 



 vi 

4.10.2.1 Univariate analysis by Fisher’s exact test or by Pearson’s χ2 test ........................ 47 

4.10.2.2 Multivariate analysis with generalised linear model............................................. 48 

5 Results ............................................................................................................................ 49 

5.1 Proteomic markers for regional lymph node metastasis in colon cancer primary  

tumours ..................................................................................................................... 49 

5.1.1 Identifying markers for regional lymph node metastasis by MALDI Imaging ......... 50 

5.1.2 Protein identification of MALDI Imaging derived proteomic markers for regional 

lymph node metastasis ............................................................................................. 53 

5.1.3 Identifying markers for regional lymph node metastasis by label-free quantitative 

proteomics................................................................................................................ 55 

5.1.4 Immunohistochemical validation of FXYD3, S100A11 and GSTM3....................... 57 

5.2 Discrimination of tumour entities by proteomic classification ...................................... 60 

5.2.1 Classification of six tumour entities located in different organ sites......................... 61 

5.2.2 Classification of three tumour entities which are either located within the same  

organ site (liver) or which have the same origin (colon) ......................................... 64 

5.2.3 Principal component analysis for discrimination of different tumour entities .......... 66 

5.3 Proteomic markers for relapse in colon cancer primary tumours .................................. 69 

5.3.1 Identifying markers predicting relapse by MALDI Profiling .................................... 69 

5.3.2 Protein identification of MALDI Profiling derived proteomic markers for relapse 

prediction ................................................................................................................. 73 

5.4 Methodological advances in MALDI Imaging – Opening new fields of research ........ 76 

5.4.1 MALDI Imaging on formalin-fixed paraffin-embedded tissues – Gaining access  

to the tissue archives of pathology........................................................................... 76 

5.4.2 MALDI Imaging on alcohol-fixed paraffin-embedded tissues – Bypassing  

formalin-fixation ...................................................................................................... 87 

 



 vii 

6 Discussion ...................................................................................................................... 94 

6.1 Proteomic markers for regional lymph node metastasis in colon cancer primary  

tumours ..................................................................................................................... 94 

6.2 Discrimination of tumour entities by proteomic classification ...................................... 97 

6.3 Proteomic markers for relapse in colon cancer primary tumours ................................ 100 

6.4 Methodological advances in MALDI Imaging – Opening new fields of research ...... 104 

6.4.1 MALDI Imaging on formalin-fixed paraffin-embedded tissues – Gaining access  

to the tissue archives of pathology......................................................................... 104 

6.4.2 MALDI Imaging on alcohol-fixed paraffin-embedded tissues – Bypassing  

formalin-fixation .................................................................................................... 107 

6.5 Conclusion.................................................................................................................... 109 

7 References .................................................................................................................... 111 

8 Acknowledgements ...................................................................................................... 121 



 1 

1 Abstract 

Colon cancer is one of the most frequent cancers. Its carcinogenesis and progression are well 

studied. However, several clinically relevant aspects are still incompletely understood. For 

this, human tissue cohorts were analysed by mass spectrometric methods and validated by 

immunohistochemical tissue staining. Three clinically relevant aspects of colon cancer were 

addressed: regional lymph node metastasis, relapse, and tumour classification. For identifying 

proteomic markers associated with regional lymph node metastasis, a cohort of 54 primary 

colon tumour tissues was analysed by MALDI Imaging and label-free quantitative 

proteomics. This resulted in 38 discriminating proteins. Three of them were validated by 

immunohistochemical staining on an independent cohort of 168 primary colon tumour tissues: 

FXYD3 (p=0.0110), S100A11 (p=0.0071) and GSTM3 (p=0.0173). Addressing the problem 

of carcinomas of unknown primary, a proof-of-principle study of proteomic tumour 

classification was performed. At first, a cohort comprising 171 tumour tissues from  

6 different adenocarcinoma entities was analysed by MALDI Imaging. The resulting 

proteomic patterns were used for highly accurate classification (>80% accuracy). Then, a 

cohort of 55 tumour tissues comprising primary colon cancer, its liver metastasis, and primary 

hepatocellular carcinoma were also classified with high accuracy (>80%). For identifying 

proteomic markers for relapse in colon cancer, a cohort of 119 primary tumour tissues was 

analysed by MALDI Profiling. This resulted in 27 differentially expressed m/z species. 13 had 

a p-value below 0.05, and 14 had a p-value below 0.1. 8 of them could be identified: CRIP1, 

DEFA1, DEFA2, HBA1, MRPL14, S100A8, S100A9, and S100P. Additionally, 

methodological improvements of MALDI Imaging were made. Improved protocols for 

MALDI Imaging on formalin-fixed and alcohol-fixed paraffin-embedded tissues were 

established. In this thesis, several clinically relevant aspects of colon cancer were addressed. 

The resultant findings could support new, personalised approaches in diagnostics and therapy. 
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Abstract (deutsch) 

Das Kolonkarzinom gehört zu den häufigsten Krebserkrankungen. Seine Karzinogenese und 

Progression sind gut untersucht. Leider sind mehrere klinische Aspekte noch unvollständig 

verstanden. Deshalb wurden humane Gewebeproben massenspektrometrisch analysiert und 

mit immunhistochemischen Färbungen validiert. Drei klinisch relevante Aspekte des 

Kolonkarzinoms wurden untersucht: die lymphoregionäre Metastasierung, die Rezidivierung 

und die Tumorklassifikation. Um mit lymphoregionärer Metastasierung assoziierte 

proteomische Marker zu identifizieren, wurde ein Kollektiv aus 54 Primärtumoren des 

Kolonkarzinoms mit MALDI Imaging und markierungsfreier, quantitativer Proteomik 

untersucht. Dies führte zu 38 diskriminierenden Proteinen. Drei dieser wurden mit 

immunhistochemischer Färbung an einem unabhängigen Kollektiv aus 168 Primärtumoren 

des Kolonkarzinoms validiert: FXYD3 (p=0.0110), S100A11 (p=0.0071) und GSTM3 

(p=0.0173) Um die klinische Fragestellung des Karzinoms unbekannter Herkunft zu 

untersuchen, wurde eine “proof-of-principle” Studie zur proteomischen Tumorklassifikation 

durchgeführt. Zuerst wurde ein Kollektiv bestehend aus 171 Tumorproben sechs 

verschiedener Adenokarzinome mit MALDI Imaging analysiert. Die erhaltenen 

proteomischen Muster ermöglichten eine Klassifikation mit einer Genauigkeit von mehr als 

80%. Dann wurde ein Kollektiv aus 55 Tumorproben des Primärtumors und der 

Lebermetastasen des Kolonkarzinoms, sowie des hepatozellulären Karzinoms ebenfalls mit 

einer Genauigkeit von mehr als 80% klassifiziert. Um proteomische Marker für eine 

Rezidivierung beim Kolonkarzinom zu identifizieren wurden 119 Primärtumore mit MALDI 

Profiling untersucht. Dabei konnten 27 differentiell exprimierte m/z Spezies gefunden werden, 

13 mit einem p-Wert kleiner 0,05 und 14 mit einem p-Wert kleiner 0,1. 8 konnten identifiziert 

werden: CRIP1, DEFA1, DEFA2, HBA1, MRPL14, S100A8, S100A9 und S100P. Zusätzlich 

wurde die Methode MALDI Imaging verbessert. Bessere Verfahren zur Analyse Formalin 
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fixierter und Alkohol fixierter in Paraffin eingebetteter Gewebe wurden entwickelt. In dieser 

Arbeit wurden mehrere klinisch relevante Aspekte beim Kolonkarzinom bearbeitet. Die 

Ergebnisse könnten neue, personalisierte Ansätze in Diagnostik und Therapie unterstützen. 
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2 Introduction 

2.1 Impact of cancer 

Regarding noncommunicable diseases, cancer is the leading cause of death in economically 

developed countries and the second leading cause of death in developing countries.1 About 

12.7 million cancer cases and 7.6 million cancer deaths are estimated to have occurred in 

2008, worldwide.2 Only cardiovascular and infectious diseases pose a greater health risk 

(Figure 1). 

 

Figure 1 – Leading causes of death, worldwide in 2004.1 

The burden of cancer is increasing in economically developing and developed countries as a 

result of population aging and an adoption of cancer-associated lifestyle choices including 

smoking, physical inactivity and “westernized” diet.2 Regarding incidence and mortality 

colorectal cancer is amongst the top three, worldwide and in developed countries (Figure 2). 

In Europe, colorectal cancer is the most common cause of cancer deaths, accounting for 
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approximately 436,000 incident cases and 212,000 deaths in 2008.3 Rates of rectal cancer are 

about 50% higher and colon cancer rates about 20% higher in men than in woman.4  

 

Figure 2 – Estimated new cancer cases and deaths worldwide and in developed countries in 2008.2 

2.2 Definition of cancer 

The terms “tumour” and “cancer” are often used as synonyms. However, all cancers are 

tumours but not vice versa. In general, tumours are neoplastic tissue lesions. This means that 

their cells underwent genetic alterations changing their fundamental physiological properties. 

They are able to proliferate independently and indefinitely. Tumours can be either benign 

which indicates that they remain in the tissue of origin and lack the capability to invade the 

surrounding tissue or spread to other tissues and organs, or malignant which means that they 

are invasive and have the potential to spread. Once tumours have become malignant they are 

termed cancers.5 
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2.3 Carcinogenesis – The development of cancer 

Cancers do not occur spontaneously. They usually develop over years and sometimes decades 

until they become clinically overt. During this time they gradually develop from normal cells 

into neoplastic lesions. Every cancer and its carcinogenesis are unique. Nevertheless, most 

cancers share common features and progress by similar steps.5 

2.3.1 Common features of carcinogenesis 

Before genomic alterations occur there is often a hyperplasia of the tissue. It is induced by a 

dysregulated, increased cell proliferation. Yet, there are no DNA mutations. This hyperplasia 

is mostly induced by inflammation. It can develop into a neoplasia but it can also regress and 

become normal tissue again. 

 

Figure 3 – Molecular basis of cancer.5 

Once a cell acquires a persistent genomic alteration the carcinogenesis becomes irreversible 

(Figure 3). However, it is indetermined whether the cell will ever reach the stage of a cancer 

cell. Mutations are rare, random events. An accumulation of mutations within oncogenes, 

tumour suppressor genes, apoptosis related genes or DNA repair genes is very improbable. 
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Most cells will die off or remain at an early stage of carcinogenesis. Several factors can 

promote the carcinogenesis. Hereditary predisposition, such as mutations in DNA repair 

genes, exposition to carcinogenic substances, ionizing radiation or certain retroviruses can 

lead to an increased mutation frequency. Once a cell has acquired enough mutations to 

become a tumour cell it will be driven by selective pressure into increased malignancy.5 

Hanahan and Weinberg suggested six hallmarks of cancer which are alterations in cell 

physiology that collectively dictate malignant growth: self-sufficiency in growth signals, 

insensitivity to growth-inhibitory (antigrowth) signals, evasion of programmed cell death 

(apoptosis), limitless replicative potential, sustained angiogenesis, and tissue invasion and 

metastasis (Figure 4).6  

 

Figure 4 – Hallmarks of cancer.6 

Normal cells require mitogenic growth signals before they move from a quiescent state into 

an active proliferative state.6 Cancer cells have acquired self-sufficiency in growth signals. 

This can be achieved by several means, for instance by autocrine production of growth 

factors, by overexpression of or mutations in growth factor receptors, by mutations in signal-

transducing proteins or by mutations in transcription factors.5 
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Within a normal tissue, multiple antiproliferative signals operate to maintain cellular 

quiescence and tissue homeostasis.6 Antigrowth signals can block proliferation by two distinct 

mechanisms: by forcing cells into the quiescent (G0) state from which they may reemerge on 

some future occasion when extracellular signals permit or by inducing postmitotic states, 

which are usually associated with the acquisition of specific, differentiation associated traits, 

that permanently relinquish the proliferative potential of the cells.6 Insensitivity to antigrowth 

signals is induced by mutations in tumour suppressor genes and prevents tumour cells from 

going into an unproliferative state.5  

The ability of tumour cell populations to expand in number is determined not only by the rate 

of cell proliferation but also by the rate of cell attrition. Programmed cell death – apoptosis – 

represents a major source of this attrition.6 Thus, evading apoptosis is essential for successful 

expansion of neoplastic cells. 

Many, perhaps all types of mammalian cells carry an intrinsic, cell-autonomous program that 

limits their multiplication.6 It too must be disrupted in order for a clone of cells to expand to a 

size which constitutes a macroscopic, life-threatening tumour.6 Nearly all cancers acquire this 

limitless replicative potential by upregulation of telomerase expression.5 

The oxygen and nutrients supplied by the vasculature are crucial for cell function and 

survival, obligating virtually all cells in a tissue to reside within 100 µm of a capillary blood 

vessel.6 Tumours cannot enlarge beyond 1 to 2 mm in diameter unless they are vascularised. 

Like normal tissues, tumours require delivery of oxygen and nutrients and removal of waste 

products; presumably the 1 to 2 mm zone represents the maximal distance across which 

oxygen, nutrients, and waste can diffuse from or to blood vessels.5 Therefore, inducing 

angiogenesis is necessary for sustained tumour growth. However, tumour vasculature is 

abnormal. The vessels are leaky, dilated and have a haphazard pattern of connection.5 

The capability for invasion and metastasis enables cancer cells to escape the primary tumour 

mass and colonise new terrain in the body where, at least initially, nutrients and space are not 
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limiting.6 By this, the cancer can become a systemic disease. Two aspects are important for 

tumour spreading: firstly, the invasion of the extra cellular matrix and the successful 

penetration of several barriers, such as the basement membranes of the host tissue, of the 

vasculature and of the graft tissue; secondly, the vascular dissemination and the homing of the 

tumour cells to the target organ. Many tumours metastasise to the organ that represents the 

first capillary bed they encounter after entering the circulation. However, several tumours, 

such as lung cancer, spread differently. Thus, it is likely that homing of tumour cells is also 

regulated by cell adhesion molecules, chemokines and their receptors.5 

2.3.2 Carcinogenesis of colorectal cancer 

The carcinogenesis of colorectal cancer is intensely studied and described. In 1990, Fearon 

and Vogelstein proposed a model for the carcinogenesis of colorectal carcinoma.7 They 

proposed that mutations in at least four to five genes are required for the formation of a 

malignant tumour.7 Their model has been refined and several new oncogenes and tumour 

suppressor genes involved in the carcinogenesis have been identified since then.8 

Nevertheless, the core principle of the proposed model is still valid today and is termed the 

adenoma – carcinoma sequence (Figure 5). This pathway of carcinogenesis accounts for 

about 80% of sporadic colon tumours.5 



 10 

 

Figure 5 – The adenoma – carcinoma sequence in colorectal cancer carcinogenesis.5 

A second pathway of carcinogenesis in colorectal cancer has been identified. It is involved in 

10% to 15% of sporadic cases.5 It is termed serrated or mismatch repair pathway since sessile 

serrated adenomas are an important intermediate step in this carcinogenesis, and since defects 

in DNA repair are key features of the pathway (Figure 6).9 

 Figure 6 – The serrated pathway in colorectal cancer carcinogenesis.5 

2.4 Classification and staging of colon cancers 

Cancer treatment relies upon the accurate description of the respective tumour. For this, a 

generally accepted and used classification system is needed. The TNM System for the 

classification of malignant tumours was developed by Pierre Denoix (France) between the 

years 1943 and 1952.10 This system was expanded and refined over the next decades by the 

International Union Against Cancer (UICC). The present seventh edition of the TNM 

classification contains rules of classification and staging that correspond with those appearing 
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in the seventh edition of the AJCC (American Joint Committee on Cancer) Cancer Staging 

Manual (2009)11, and that have approval of all national TNM committees.10 The central aim 

of the TNM system for classification is the unambiguous description of tumours and cancers 

in respect to their histopathology and anatomical extent. The TNM system is based on three 

components: (i) the extent of the primary tumour (T), (ii) the absence or presence and extent 

of regional lymph node metastasis (N) and (iii) the absence or presence of distant metastasis 

(M) (Table 1).10 
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T – Primary tumour 

TX Primary tumour cannot be assessed 

T0 No evidence of primary tumour 

Tis Carcinoma in situ: intraepithelial or invasion of lamina propria 

T1 Tumour invades submucosa 

T2 Tumour invades muscularis propria 

T3 Tumour invades subserosa or into non-peritonealised pericolic or perirectal tissue 

Tumour directly invades other organs or structures and/or perforates visceral peritoneum 

T4a Tumour perforates visceral peritoneum 

T4 

T4b Tumour directly invades other organs or structures 

N – Regional lymph nodes 

NX Regional lymph nodes cannot be assessed 

N0 No regional lymph node metastasis 

Metastasis in 1 – 3 regional lymph nodes 

N1a Metastasis in 1 regional lymph node 

N1b Metastasis in 2 – 3 regional lymph nodes 

N1 

N1c Tumour deposit(s), i.e., satellites, in the subserosa, or in non-peritonealised 

pericolic or perirectal soft tissue without regional lymph node metastasis 

Metastasis in 4 or more regional lymph nodes 

N2a Metastasis in 4 – 6 regional lymph nodes 

N2 

N2b Metastasis in 7 or more regional lymph nodes 

M – Distant metastasis 

M0 No distant metastasis 

Distant metastasis 

M1a Metastasis confined to one organ (liver, lung, ovary, non-regional lymph node(s)) 

M1 

M1b Metastasis in more than one organ or the peritoneum 

Table 1 – TNM classification for colon and rectum tumours.10 

In addition to the TNM classification the primary tumours are also regularly characterised by 

their histopathological grading (G) which characterises cell differentiation of the cancer cells 

(Table 2). 
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G – Histopathological grading  

G1 Well differentiated 

G2 Moderately differentiated 

G3 Poorly differentiated 

G4 Undifferentiated 

 Table 2 – Histopathological grading for colon and rectum tumours.10 

Upon this TNM classification patients can be grouped into clinical stages, which have similar 

clinical characteristics and shared prognosis (Table 3). 

Stage grouping (according to UICC) 

Stage 0 Tis N0 M0 

Stage I T1, T2 N0 M0 

Stage II T3, T4 N0 M0 

Stage IIA T3 N0 M0 

Stage IIB T4a N0 M0 

Stage IIC T4b N0 M0 

Stage III Any T N1, N2 M0 

Stage IIIA T1, T2 

T1 

N1 

N2a 

M0 

Stage IIIB T3, T4a 

T2, T3 

T1, T2 

N1 

N2a 

N2b 

M0 

Stage IIIC T4a 

T3, T4a 

T4b 

N2a 

N2b 

N1, N2 

M0 

Stage IVA Any T Any N M1a 

Stage IVB Any T Any N M1b 

Table 3 – Stage grouping for colon and rectum tumours according to UICC.10 

2.5 Clinical challenges in colon cancer therapy 

Colon cancer can be treated efficiently by curative resection of the affected part of the colon if 

the tumour is diagnosed at an early stage. Unfortunately, most cancers are asymptomatic for 

many years and thus, are diagnosed at a relatively late stage.12 For early detection of colon 
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cancer several tests, such as sigmoidoscopy, colonscopy or stool tests, have been 

introduced.12-14 UICC stage I and UICC stage IIA patients (≤pT3N0) have a 5-year survival 

rate exceeding 80%.15 In case of local metastasis the 5-year survival rate drops drastically. 

UICC stage IIIA patients have a 5-year survival rate of approximately 60%, while UICC  

stage IIIC patients have a 5-year survival rate below 30%.14,16,17 If local metastasis is 

diagnosed, adjuvant (post operation) chemotherapy is regarded as beneficial for patients.18-20 

In patients without metastasis adjuvant chemotherapy is not regarded as being generally 

beneficial since these patients are mostly cured by tumour resection.18-20 However, a 

significant fraction of UICC stage I (~5%) and UICC stage II (~15-25%) patients who 

underwent curative resection have a relapse.21-24 Mostly, the relapse occurs within 5 years 

after curative resection in the liver, the local site, the abdomen, or the lung.25 Patients with a 

high risk for developing a relapse would probably benefit from adjuvant chemotherapy.22,26 

Therefore, markers that could reliably predict the likelihood for tumour recurrence would be 

particularly helpful for UICC stage II patients.21 Unfortunately, no reliable markers for 

predicting tumour recurrence are sufficiently validated for clinical application.8,21,27 Once the 

cancer has spread to distant organ sites, prognosis becomes very poor (5-year survival rate 

<10%).14,20 Then, it has to be decided whether a curative or a palliative treatment is 

adequate.28 In both cases neoadjuvant chemotherapy and targeted therapy, such as α-EGFR 

and α-VEGF antibody treatment, are being employed.19,28,29 Unfortunately, only very few 

markers, such as KRAS mutations, have been identified which can predict the therapy 

response.8,27 So, patient treatment could be improved if colon cancer was better understood in 

respect to occurrence, progression, relapse and biological behaviour.   

2.6 Methods applied in tissue analysis 

Clinical problems can be addressed in many ways. The easiest way is looking at the patient’s 

symptoms and by this deducing his ailment. However, for most diseases the symptoms are 
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either inconclusive or overt symptoms arise very late. Therefore, elaborate non-invasive and 

invasive methods have been developed. Many invasive methods result in tissue biopsy 

procurement and consecutive tissue analysis. In general, the invasive methods for tissue 

analysis can be divided into two groups. In situ techniques require intact tissue morphology, 

while the second group works with tissue lysates. In situ techniques use either specific dyes, 

antibodies for specific labelling with chromogenes and fluorophores, or specific DNA/RNA-

probes.30 By this, the spatial distribution of certain cellular features can be visualised within a 

tissue section. However, only very few features can be labelled at the same time and the 

features have to be known in advance. So, these methods lack the capability for extensive 

multiplexing and screening. Lysate based methods can analyse cellular components, such as 

DNA, RNA and proteins, in a directed but also in a screening approach. For proteomic 

analysis several techniques have been established. Especially mass spectrometric analyses 

have acquired great analytical depth which allows screening for a multitude of proteins and 

their modifications.31 Nevertheless, it remains open where these proteins were located within 

the tissue. So, a combination of in situ techniques and proteomic mass spectrometry would be 

highly beneficial for tissue screening. With laser microdissection this combination is partially 

achieved. Tissue areas of interest can be excised and then analysed by lysate based 

techniques. Anyhow, laser microdissection is very time consuming, requires a lot of tissue 

material and the cellular content of the excised tissue cannot be verified afterwards.32 These 

limitations are overcome by MALDI Imaging and with minor restrictions by MALDI 

Profiling.33 

2.6.1 MALDI Imaging  

Matrix-assisted laser desorption/ionisation (MALDI) Imaging (mass spectrometry) is a 

powerful tool for the analysis of a variety of different endogeneous and exogeneous molecules 

directly in tissue sections.34 It is used for a variety of applications, including biomarker 
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research or the determination of protein, peptide, endogeneous metabolites and drug 

distribution within tissues.35 For clinical research MALDI Imaging is capable of filling the 

gap between in situ techniques which require a defined target for labelling, and lysate based 

screening techniques which lack the direct relationship between tissue morphology and the 

expression of a specific protein.32 

Figure 7 – Concept of MALDI Imaging. A matrix-coated tissue section is spot by spot analysed in a mass 
spectrometer. After the MALDI Imaging measurement the tissue section is histologically stained. This allows a 
histology driven analysis of the proteomic pattern acquired by mass spectrometry.36 

MALDI Imaging of proteins is a straightforward approach. Tissue sections are directly 

analysed by mass spectrometry without destroying the tissue morphology. For this, native 

tissue sections are mounted onto a conductive MALDI Imaging slide, briefly washed with 

ethanol, and then coated with organic MALDI matrix. Afterwards, the tissues are analysed in 

a mass spectrometer in a spatially resolved, grid-like manner. By this, a mass spectrum is 

generated for every measurement spot (Figure 7). After the measurement the tissue is 

histologically stained and the mass spectra data can be correlated with the tissue morphology 

by superimposing the spectra data with the virtual microscopy image of the stained tissue 

section.36 The resolution of measurements is usually between 50 and 250 µm with the 

attainable resolution depending on the matrix coating method.37 The matrix coating can be 

done either by an automated spray device or by an automated spotter. Both have their 
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advantages. Spraying yields a higher measurement resolution. Recently, the resolution could 

be improved to 20 µm using a spray device and a commercially available mass 

spectrometer.38 Spotting yields better mass spectra but resolution is limited to approximately 

100 µm due to the matrix spot size.39 After data analysis, the resulting peak patterns can be 

used for comparison of patient cohorts in respect to certain clinical endpoints, such as 

HER2/neu status, therapy response, prognosis or tumour type.40-48 Only the molecular weight 

of proteins is measured. So, an additional protein identification step is necessary in order to 

identify each new marker. For this, a robust, routine method is still lacking but considerable 

effort is spent on this issue.35 Taken together, MALDI Imaging is a powerful discovery tool 

for clinical research which has many strengths but also several limitations (Table 4).32-35,49 

Advantages Limitations 

• Minimal need of sample material  

• Morphology based analysis 

• Label-free analysis 

• Multiplexing capability 

• Full protein analysis (physiological and 

posttranslational protein modifications 

detectable) 

• Restricted to low molecular weight  

(≤25 kDa), soluble proteins 

• No direct protein identification 

• Potential ion suppression 

Table 4 – Advantages and limitations of MALDI Imaging. 

Since most patient tissues are stored as formalin-fixed paraffin-embedded (FFPE) tissue 

specimens, several groups have attempted to analyse these samples by MALDI Imaging. 

Using a tryptic digest step before matrix application allowed MALDI Imaging on FFPE 

tissues.50-54 However, the protocols will have to be improved, especially since spatial 

resolution is still inadequate for detailed tissue analysis.* A different approach for tackling the 

FFPE “problem” is to establish alternative alcohol-based fixation protocols.55-57† 

                                                

* Work on this protocol improvement will be presented in the results section. 
† Establishing a protocol will be presented in the results section. 
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2.6.2 MALDI Profiling 

MALDI Profiling is a method very similar to MALDI Imaging. A droplet of matrix is 

manually applied onto a tissue section, which is prepared and washed in the same way as in 

MALDI Imaging tissue preparation, and then the spot is analysed by mass spectrometry.33 

This of course reduces the spatial resolution. Nevertheless, the morphology of the analysed 

tissue remains intact, so the cellular content of the tissue at the site of matrix application can 

be assessed after measurement and taken into consideration during data analysis. The biggest 

advantage of MALDI Profiling is the preparation and analysis time. While in MALDI 

Imaging matrix application and measurement require usually several hours per tissue section, 

in MALDI Profiling this is reduced to several minutes. Thus, large patient cohorts can be 

analysed in a few days.33 

2.6.3 Label-free quantitative proteomics 

Quantitative proteomics rely on a lysate based analysis approach. In the beginning,  

two-dimensional gel electrophoresis was used for protein separation prior to protein 

identification. Nowadays, liquid chromatography based protein separation methods are state-

of-the-art.58 Quantitative proteomics can be separated into two major approaches; the use of 

stable isotope labelling – such as isotope-coded affinity tags (ICAT), stable isotope labels 

with amino acids in cell culture (SILAC) or isobaric tags for relative and absolute 

quantification (iTRAQ) – and label-free techniques.59 Labelling strategies were often 

considered to be more accurate than label-free ones, however they have several limitations, 

like the complex sample preparation, the requirement for increased sample concentration, the 

incomplete labelling, the expensive labelling reagents, and the reduced capability for 

multiplexing.58-60 With high-performance liquid chromatography, high-end mass 

spectrometers and novel software analysis tools, label-free strategies are now comparable in 

quality and accuracy with labelling strategies.59,60 Label-free quantitative proteomics consists 
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of three steps: (i) sample preparation including protein extraction, (initial gel based protein 

separation,) reduction, alkylation, and digestion; (ii) sample separation by liquid 

chromatography and analysis by tandem mass spectrometry; (iii) data analysis including 

peptide/protein identification, quantification, and statistical analysis.58 

Label-free quantitative proteomics based on liquid chromatography coupled mass 

spectrometry provides a good complementation of the MALDI Imaging approach since it is 

capable of analysing proteins in the higher mass range.  

2.7 Scope of this thesis 

Within this thesis several clinically relevant aspects of colon cancer were addressed: 

(i) proteomic markers for regional lymph node metastasis were identified,* 

(ii) accurate proteomic classification of tumour entities was achieved.†  

(iii) proteomic markers for relapse were identified,‡ 

Additionally, methodological advances in MALDI Imaging were made.56,61  

2.7.1 Proteomic markers for regional lymph node metastasis in colon cancer primary 

tumours 

The presence of regional lymph node metastasis drastically reduces patients’ prognosis in 

colon cancer. Patients with regional lymph node metastasis have a 5-year survival rate below 

50%.14,16,17 The process of lymphoid metastasis is still not fully understood and proteomic 

markers indicating the metastatic risk are still scarce.62 However, such marker proteins could 

give a better insight into the molecular processes leading to lymphoid metastasis, help finding 

                                                

* The results will be submitted to “The Journal of Pathology”.  
† The results were submitted to “The Journal of Proteome Research” and are currently in 
revision. 
‡ The results are part of an ongoing study which is intended to be published in a clinical 
journal. 



 20 

new therapeutic targets, or be used as diagnostic markers for assessing the metastatic potential 

of a primary tumour. 

For proteomic marker identification, a tissue cohort of 54 primary colon tumours was 

analysed by MALDI Imaging and label-free quantitative proteomics. Subsequent validation of 

identified proteins was done by immunohistochemical staining on an independent cohort of 

colon cancer primary tumour tissues (n = 168).  

2.7.2 Discrimination of tumour entities by proteomic classification  

Correct, unambiguous tumour diagnosis is the initial step in cancer. However, in a significant 

number of metastasised cancers (2.3-4.2% of cancer cases, worldwide) the primary tumour 

cannot be identified and thus, they are diagnosed as cancer of unknown primary (CUP).63,64 

So far, clinical diagnosis relies on histological and often extensive immunohistochemical 

analyses of tumour biopsies.65 Classification by gene expression66-72 and proteomic means73-77 

has been attempted. These methods often need more tissue material than available and 

consider tissues to be homogeneous. MALDI Imaging could overcome these two limitations 

and has already been used for discriminating tumours according to their clinical 

endpoints.40,45,47,51,78-80  

Therefore, it was tested whether MALDI Imaging can also be used for tumour classification. 

This was done in a two-step approach. For an initial proof-of-principle, six adenocarcinoma 

entities were classified according to their proteomic patterns. Then, a setting closer to the 

clinical problem of cancers of unknown primary was chosen. Colon cancer primary tumours, 

liver metastases and hepatocellular carcinoma were classified. 

2.7.3 Proteomic markers for relapse in colon cancer primary tumours 

The majority of colon cancer patients can be treated successfully if the cancer is diagnosed at 

an early, non-metastasised stage. After curative resection of the primary tumour, patients are 

considered fully cured if no detectable residual tumour remains. However, a significant 
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fraction of these “cured” patients develops a relapse within the first 5 years after resection 

(~5% of UICC stage I and ~15-25% of UICC stage II patients).21,22 At present, no markers for 

relapse prediction exist which could be used in clinical diagnostics and aftercare.8,21,27 

Therefore, identifying new markers could lead to individually tailored, personalised 

therapeutic regimens and better aftercare, and thus could improve the patients’ benefit. 

Herein, we have analysed a cohort of 119 primary colon cancer tissues samples from UICC 

stage II patients by MALDI Profiling. The median follow-up for the cohort was 106 months, 

with a minimum of 3 month and a maximum of 180 month. A subgroup of this cohort  

(n = 25) developed a relapse while the other patients remained tumour-free (n = 94). This 

cohort was analysed in order to identify a panel of proteomic markers correlated with the later 

development of a relapse. 

2.7.4 Methodological advances in MALDI Imaging – Opening new fields or research 

For MALDI Imaging, cryo preserved tissues are the most common type of sample material. 

Unfortunately, only a minority of clinical samples is stored as cryo preserved material. Most 

clinical samples are stored as formalin-fixed paraffin-embedded tissues in the archives of 

pathology.35 In order to gain access to these vast tissue archives, several attempts to 

implement protocols for MALDI Imaging on formalin-fixed paraffin-embedded tissues have 

been made.50-54,81-85 Due to the used preparation method, which relied on trypsin and matrix 

spotting, the lateral resolution could not exceed 200 µm.  

To overcome this limitation, a different protocol, which relied on spray application of trypsin 

and matrix, was tested in this study. After establishing this novel protocol on colon cancer 

tissue specimens the obtained data sets were used for testing a software algorithm, which 

could increase the lateral resolution of MALDI Imaging data after the measurement. 

In pathology, alcohol-based fixation is a well-known method for tissue preparation. This 

preparation method could combine the advantages of cryo preservation and formalin fixation. 
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The intact tissue proteome could be analysed while the samples are easy to handle and store. 

Herein, a novel alcohol-based fixative, named PAXgene, was tested for its suitability for 

MALDI Imaging. Afterwards, this fixative was used in a proteomic study of the mammalian 

retina. 
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3 Materials 

3.1 Chemicals, reagents and ready-to-use solutions 

Chemicals Manufacturer 

Acetic acid, p.a. Merck, Darmstadt, Germany 

Acetonitrile, HPLC grade Sigma-Aldrich, Steinheim, Germany 

Acrylamide/bis solution, 37.5:1 Serva, Heidelberg, Germany 

Ammonium hydrogen carbonate, ≥99.5% Sigma-Aldrich, Steinheim, Germany 

Ammonium hydrogen phosphate, ≥99.5% Sigma-Aldrich, Steinheim, Germany 

Ammonium persulfate, ≥98% National Diagnostics, Atlanta, GA, USA 

Bromophenol blue, for electrophoresis Sigma-Aldrich, Steinheim, Germany 

Citric acid, ≥99.0% Sigma-Aldrich, Steinheim, Germany 

Coomassie brilliant blue R250 Serva, Heidelberg, Germany 

α-Cyano-4-hydroxycinnamic acid, ≥99.0% Sigma-Aldrich, Steinheim, Germany 

2,5-Dihydroxybenzoic acid, ≥99.0% Sigma-Aldrich, Steinheim, Germany 

2,4-Dithiothreitol Merck, Darmstadt, Germany 

EDTA, ≥99.0% Carl Roth, Karlsruhe, Germany 

Eosin Y disodium, for microscopy Sigma-Aldrich, Steinheim, Germany 

Ethanol, p.a. Merck, Darmstadt, Germany 

Formalin solution, neutral buffered, 10% Sigma-Aldrich, Steinheim, Germany 

Formic acid, p.a. Sigma-Aldrich, Steinheim, Germany 

Glycine, ≥99.0% Sigma-Aldrich, Steinheim, Germany 

Glycerol, ≥99.5% Merck, Darmstadt, Germany 

2-Iodoacetamide Merck, Darmstadt, Germany 

Isopropanol, p.a. Merck, Darmstadt, Germany 

Mayer’s haematoxylin solution Carl Roth, Karlsruhe, Germany 

β-Mercaptoethanol, for electrophoresis Sigma-Aldrich, Steinheim, Germany 

Methanol, p.a. Merck, Darmstadt, Germany 

NP40, ≥99.5% Sigma-Aldrich, Steinheim, Germany 

Peptide calibration standard II Bruker Daltonik GmbH, Bremen, Germany 

Pertex mounting medium Medite, Burgdorf, Germany 

Poly-L-lysine, 0.1% (w/v) in water Sigma-Aldrich, Steinheim, Germany 
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Protein calibration standard I Bruker Daltonik GmbH, Bremen, Germany 

Sodium dodecyle sulfate (SDS), ≥99.0% Sigma-Aldrich, Steinheim, Germany 

Sinapinic acid, ≥99.0% Sigma-Aldrich, Steinheim, Germany 

TBS pH 8.0, powder Sigma-Aldrich, Steinheim, Germany 

TEMED Bio-Rad, München, Germany 

Triethylammonium bicarbonate buffer 

(TEAB), 1M, for HPLC 

Sigma-Aldrich, Steinheim, Germany 

Trifluoroacetic acid Applied Biosystems, Carlsbad, CA, USA 

TRIS, ≥99.0% Sigma-Aldrich, Steinheim, Germany 

Trypsin Gold, mass spectrometry grade Promega, Madison, WI, USA 

Xylene, p.a. Merck, Darmstadt, Germany 

 

3.2 Commercial solutions and kits 

Reagent Manufacturer 

BCA Protein Assay 

 

Pierce Protein Research, Thermo Fisher Scientific, 

Rockford, IL, USA 

DAB Map detection kit Ventana Medical Systems, Tuscon, AZ, USA 

NuPAGE Novex 4-12% Bis-Tris 

Mini Gel 

Invitrogen, Life Technologies, Carlsbad, CA, USA 

NuPAGE LDS Sample Buffer (4X) Invitrogen, Life Technologies, Carlsbad, CA, USA 

PAXgene Tissue Container Qiagen, Hilden, Germany 

Tissue homogenizing CKMix  Bertin Technologies, Montigny-le-Bretonneux, France 

 



 25 

 

3.3 Solutions and buffers 

Solution Constituents Concentration 

ABC solution  

ammonium bicarbonate 

in water 

50 mM 

Antigen retrieval buffer pH 9.0 

TRIS 

EDTA 

in water 

10 mM 

1 mM  

DDT solution  

2,4-dithiothreitol 

in water 

5 mM 

Destaining solution II  

ethanol 

TEAB 

in water 

50% 

2.5 mM 

Eluent A  

acetonitrile 

formic acid 

in water 

2% 

0.1% 

Eluent B  

water 

formic acid 

in acetonitrile 

2% 

0.1% 

Eosin solution  

eosin Y disodium 

in water 

1 g/L 

Extraction solution I  

acetonitrile 

trifluoroacetic acid 

in water 

50% 

0.5% 

Extraction solution II acetonitrile 

trifluoroacetic acid 

99.5% 

0.5% 

Extraction solution III  

acetonitrile 

trifluoroacetic acid 

in water 

7.5% 

0.1% 

Extraction solution IV  

acetonitrile 

trifluoroacetic acid 

in water 

60% 

0.1% 
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Fixation solution /  

Destaining solution I 

 

methanol 

acetic acid 

in water 

50% 

12% 

IAA solution I  

2-iodoacetamide 

in water 

25 mM 

IAA solution II  

2-iodoacetamide 

in water 

100 mM 

Laemmli buffer 5x 

 

pH 6.8 

TRIS 

SDS 

glycerol 

β-mercaptoethanol 

bromophenol blue 

in water 

250 mM 

5% 

50% 

500 mM 

0.04% 

LC solution  

acetonitrile 

trifluoroacetic acid 

in water 

2% 

0.5% 

Lysis buffer 

 

 

TBS 

NP40 

in water 

0.5 mM 

1% 

Peptide calibration standard (125 µL per vial) 

acetonitrile 

trifluoroacetic acid 

in water 

33% 

0.7% 

Poly-lysine solution  

poly-L-lysine 

NP40 

in water  

50% 

0.1% 

Protein calibration standard (125 µL per vial) 

acetonitrile 

trifluoroacetic acid 

in water 

33% 

0.07% 

Reconstitution buffer  

NuPAGE LBS buffer 

2,4-dithiothreitol 

in water 

2x 

50 mM 
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Running buffer for PAGE pH 8.6 

TRIS 

glycine 

SDS 

in water 

25 mM 

192 mM 

0.1% 

SDS-PAGE (15% resolving gel) pH 8.8 

TRIS 

acrylamide/bis 

SDS 

TEMED 

ammonium persulfate 

in water 

375 mM 

15% 

0.1% 

0.1% 

0.05% 

SDS-PAGE (4% stacking gel) 

 

pH 6.8 

TRIS 

acrylamide/bis 

SDS 

TEMED 

ammonium persulfate 

in water 

125 mM 

4% 

0.1% 

0.2% 

0.1% 

Staining solution  

methanol 

acetic acid 

Coomassie brilliant blue R250 

in water 

50% 

12% 

0.04% 

TBS buffer pH 7.4  

TRIS 

NaCl 

in water 

50 mM 

150 mM 

Trypsin solution  

(for MALDI Imaging) 

 

ammonium hydrogen carbonate 

trypsin (from stock solution) 

in water 

80 mM 

1 µg/gL  

Trypsin solution I 

(for peptide mass spectrometry) 

 

ammonium hydrogen carbonate 

trypsin (from stock solution) 

in water 

50 mM 

0.01 µg/gL  

Trypsin solution II 

(for peptide mass spectrometry) 

 

ammonium hydrogen carbonate 

trypsin (from stock solution) 

in water 

5 mM 

0.01 µg/gL  

Trypsin stock solution 

 

 

acetic acid 

in water 

50 mM 
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3.4 Antibodies 

Antibody Dilution Buffer Manufacturer 

FXYD3 1:25  Tris-EDTA Polyclonal, R01849, Sigma Life Science, St. Louis, 

MO, USA 

GSTM3 1:100 Tris-EDTA Monoclonal, 730.A17.1, NCI-CPTC, Developmental 

Studies Hybridoma Bank, Iowa City, IA, USA 

PSAT1 1:100 Tris-EDTA Monoclonal, 707.A45.1, NCI-CPTC, Developmental 

Studies Hybridoma Bank, Iowa City, IA, USA 

S100A11 1:50 Tris-EDTA Polyclonal, rabbit, 10237-1-A8, ProteinTech, Chicago, 

IL, USA 

S100A4 1:500 Tris-EDTA Polyclonal, rabbit, ab41532, Abcam, Cambridge, UK 

TRX 1:500 Tris-EDTA Monoclonal, rabbit, C63C6, #2429, Cell Signaling 

Technology, Danvers, MA, USA 

UGDH 1:750 Tris-EDTA Polyclonal, rabbit, HPA036656, R34779, Sigma Life 

Science, St. Louis, MO, USA 

 

3.5 Matrices 

Matrix Concentra-

tion (w/v) 

Solvent  

α-Cyano-4-hydroxy-

cinnamic acid (CHCA) 

7 g/L 50% acetonitrile in water, 0.2% trifluoroacetic acid 

2,5-Dihydroxybenzoic 

acid (DHB) 

30 g/L 50% methanol in water, 0.2% trifluoroacetic acid 

Sinapinic acid (SA) 10 g/L 60% acetonitrile in water, 0.2% trifluoroacetic acid 

60% methanol in water, 0.2% trifluoroacetic acid 
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3.6 Instrumentation 

Instrument Manufacturer 

Automated Stainer Ventana Discovery XT; Ventana Medical Systems, Tuscon, AZ, 

USA 

Cryostat Microtome CM 1950; Leica Microsystems GmbH, Wetzlar, Germany 

Mass Spectrometer 

for LC-MS/MS 

LTQ OrbiTrapXL with nano spray ion source, Thermo Fisher 

Scientific, Rockford, IL, USA 

Mass Spectrometer 

for MALDI Imaging 

Ultraflex III TOF/TOF; Bruker Daltonik GmbH, Bremen, Germany 

Matrix Spray Roboter ImagePrep; Bruker Daltonik GmbH, Bremen, Germany 

Microtome HM340E; Microm International, Walldorf, Germany  

Nano-HPLC (for 

tissue proteomics) 

Ultimate3000 nano HPLC system with PepMap column (15 cm x 75 

µm ID, 3 µm/100Å pore size); Dionex, Sunnyvale, CA, USA 

Nano-HPLC (for 

matrix proteomics) 

nanoLC-1D plus; Eksigent, Dublin, CA, USA with a in-house 

packed Reprosil Pur (15 cm x 75 µm, 3µm/60Å pore size) column; 

Dr. Maisch, Ammerbuch-Entringen, Germany 

Slide Scanner Mirax Desk System; Carl Zeiss MicroImaging GmbH, Göttingen, 

Germany 

Tabletop Scanner CanoScan 8800F, Canon, Tokyo, Japan 

Tissue Arrayer  MTA-1; Beecher Instruments, Sun Prairie, WI, USA 

Tissue homogeniser Precellys24; Bertin Technologies, Montigny-le-Bretonneux, France 

Vacuum concentrator Univapo 150 ECH, Uniequip GmbH, Planegg, Germany 
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3.7 Software 

Program Manufacturer 

ClinProTools (2.2) Bruker Daltonics, Bremen, Germany 

FlexAnalysis (3.3) Bruker Daltonics, Bremen, Germany 

FlexControl (3.0) Bruker Daltonics, Bremen, Germany 

FlexImaging (2.1 and 3.0) Bruker Daltonics, Bremen, Germany 

Mascot (2.2 and 2.3) Matrix Science, Boston, MA, USA 

Mascot Distiller (2.2) Matrix Science, Boston, MA, USA 

Progenesis LC-MS (3.0) Nonlinear Dynamics, Newcastle upon Tyne, UK 

R (2.13) R Foundation for Statistical Computing 

Scaffold Viewer (3.0 and 3.1) Proteome Software, Portland, OR, USA 

 



 31 

 

4 Methods 

4.1 Tissue fixation and storage 

4.1.1 Cryo fixation – Native tissues 

Native tissues were snap-frozen in liquid nitrogen. Tissues were stored in liquid nitrogen for 

long-term storage or at -80 °C for short to medium term storage. 

4.1.2 Formalin fixation – Formalin-fixed paraffin-embedded (FFPE) tissues 

Formalin fixation and paraffin embedding was done in a standardised manner according to the 

protocols for diagnostic tissue material preparation of the Institute of Pathology, Technische 

Universität München. Tissue preparation was done at the histology facility of the Institute of 

Pathology, Helmholtz Zentrum München. FFPE tissues were stored at room temperature. 

4.1.3 PAXgene fixation – PAXgene-fixed paraffin-embedded (PFPE) tissues 

PAXgene fixation was done in a standardised manner according to manufacturer's protocol. 

Tissues were fixed for 3 h and stabilised overnight. Tissue preparation was done at the 

histology facility of the Institute of Pathology, Helmholtz Zentrum München, using formalin 

free reagents. PFPE tissues were stored at 4 °C. 

4.2 Construction of tissue microarrays 

Tissue microarrays were made using a manual tissue arrayer according to manufacturer’s 

protocol. The punch size was 1 mm in diameter. One representative core per patient sample 

was used. 
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4.3 Tissue sectioning 

For histological staining, immunohistochemical staining, or MALDI Imaging the tissues were 

sectioned in the same way. For histological and immunohistochemical staining adhesive 

microscopy slides were used, for MALDI Imaging poly-lysine coated, conductive slides were 

used. 

4.3.1 Sectioning of native tissues 

Native tissues were sectioned in a cryostat microtome. Depending on the tissue type and its 

consistency the temperature while sectioning was set between -16 and -25 °C. The samples 

were mounted onto precooled specimen discs using a droplet of ice-cold, deionised water and 

the quick-freeze shelf of the cryostat. Sections were cut with a thickness of 12 µm.  

4.3.2 Sectioning of FFPE and PFPE tissues 

FFPE or PFPE tissues were sectioned in a microtome. The tissue blocks were precooled for 

30 min at 4 °C. Sections were cut with a thickness of 3.5 µm and transferred to a water-bath 

(45 °C) before mounting. 

4.4 Histological staining of tissues with haematoxylin and eosin 

4.4.1 Staining of native tissues 

Native tissue sections were fixed for 15 min in formalin solution and rinsed afterwards with 

deionised water. Then, they were stained for 1 min in haematoxylin, washed 2 min with tap 

water and stained for 1 min in eosin. The sections were rinsed in a graded alcohol series 

(70%, 90% and 100% ethanol, isopropanol, xylene twice; 30 sec each). Each tissue section 

was covered with mounting medium and a coverslip, which was pressed gently onto the 

section to remove excess mounting medium. Then, the tissue sections were dried at 60 °C. 
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4.4.2  Staining of native, FFPE and PFPE tissues after MALDI Imaging 

For MALDI Imaging slides, the fixation step with formalin solution was omitted. Instead, the 

matrix was rinsed off with 70% ethanol. The further steps were done as described in section 

4.4.1. 

4.4.3  Staining of FFPE and PFPE tissues 

FFPE or PFPE tissues were deparaffinised with xylene (10 min, twice). Then, the sections 

were rehydrated in a graded alcohol series (isopropanol, 100%, 90%, 70% and 50% ethanol;  

1 min each). The further steps were done as described in section 4.4.1. 

4.5  MALDI Imaging  

MALDI Imaging consists of four steps: (i) tissue sectioning and preparation, (ii) matrix 

application, (iii) mass spectrometric measurement and (iv) data processing.36 

4.5.1 Tissue preparation 

For all tissue types MALDI Imaging slides were used because they have a conductive indium-

tin oxide covering which allows MALDI mass spectrometry. The slides were coated with 

poly-lysine for better tissue adherence. For this, 20 µL of poly-lysine solution were streaked 

out on a MALDI Imaging slide with a Drigalski spatula. The slide was then dried on a hot 

plate (60 °C). 

4.5.1.1 Preparation of native tissues 

Tissue samples were sectioned as described in section 4.3.1. The sections were mounted onto 

MALDI Imaging slides, which have been kept cold in the cryostat. The respective slide was 

hand-warmed at the site of application before mounting the tissue. The mounted tissue was 

dried by hand warming the backside of the slide. Then, the slide was kept cold in the cryostat. 

After removing the slide from the cryostat the condensed water was evaporated using a cold 

airflow. Then, the slide was rinsed for 1 min each in 70% and 100% ethanol and air-dried.36 
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4.5.1.2 Preparation of FFPE tissues 

Two methods were applied for FFPE sample preparation. Tissue samples were sectioned as 

described in section 4.3.2. 

4.5.1.2.1 Preparation by antigen retrieval  

FFPE tissue sections were placed for 15 min on a hot plate (60 °C). Then, they were 

deparaffinised with xylene (5 min, twice), rehydrated in a graded alcohol series (isopropanol, 

100%, 90%, 70% and 50% ethanol; 3 min each), rinsed for 5 min in TBS buffer and boiled for 

40 min in antigen retrieval buffer. Afterwards, the sections were washed for 5 min with 

deionised water and dried for 10 min at 40 °C. 

4.5.1.2.2 Preparation by antigen retrieval and tryptic digest 

The in situ tryptic digest was done with the ImagePrep spraying device according to 

manufacturer's protocol. First, the FFPE tissues were prepared as described in section 

4.5.1.2.1. Then, 200 µL trypsin solution were applied onto the tissue in 12 cycles which 

consisted each of an initial spraying followed by 8 min of incubation.  

4.5.1.3 Preparation of PFPE tissues 

Tissue samples were sectioned as described in section 4.3.2. PFPE tissue sections were 

deparaffinised with xylene (10 min, twice), rehydrated in a graded alcohol series (isopropanol, 

100%, 90%, 70% and 50% ethanol; 5 min each), and dried for 10 min at 40 °C.36,56  

4.5.2 Matrix application 

For measurement, the tissue section had to be coregistered with a light scan of it. For this, 

teach markings were painted onto the glass slide using Tipp-Ex. Then, the slide was scanned 

with a tabletop scanner with 2400 dpi resolution. Afterwards, the MALDI matrix was applied 

according to manufacturer's protocol using the ImagePrep spraying device. For each matrix 

the recommended spray program was used. After matrix application the glass slide was 
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immersed for 5 sec in ice-cold ammonium hydrogen phosphate solution and dried at room 

temperature. Matrix coated tissues were stored until the measurement in a vacuum chamber. 

4.5.3 MALDI mass spectrometry measurement of tissue samples 

A protein standard for linear mode measurement, a peptide standard for reflectron mode 

measurement was mixed with matrix (0.5 µL each) and spotted adjacent to the tissue section. 

Using the teach markings, the each tissue section was coregistered with its light scan image in 

the FlexControl software. Then, measurement regions were selected and the spotted standard 

was used for calibration.  

4.5.3.1 Measurement in linear positive mode 

For linear positive mode measurement, a mass range of 2,500 – 25,000 m/z, a sampling rate of 

0.1 GS/s, and a lateral resolution between 50 and 200 µm (with adequate laser focus; medium 

or large) was selected. 200 laser shots were accumulated per measurement spot. The lateral 

resolution and the laser focus were kept constant within each study. The laser intensity and 

the detector sensitivity were adjusted for each measurement. 

4.5.3.2 Measurement in reflectron mode 

For reflectron mode measurement, a mass range of 600 – 4,000 m/z, a sampling rate of  

1.0 GS/s, and a lateral resolution between 50 and 200 µm (with adequate laser focus; medium 

or large) was selected. 200 laser shots were accumulated per measurement spot. The lateral 

resolution and the laser focus were kept constant within each study. The laser intensity and 

the reflector detector sensitivity were adjusted for each measurement. 

4.5.4 Data processing 

After the mass spectrometric measurement, the tissue sections were stained as described in 

section 4.4.2 and a virtual microscopy scan was made with the light microscopy scanner. The 

MALDI Imaging file was opened with the FlexImaging software and coregistered with the 
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virtual microscopy scan. A first quality assessment was made by looking at the intensity of 

the dominant peak within the single spectra. If the unstandardised intensity was above 5 

(arbitrary units) the spectra quality was considered as adequate. The data set was standardised 

to the total ion count (TIC). Then, regions of interest were selected. By default, the whole 

tissue section, the tumour region, the carcinoma cells only, and, if present, the mucosa region 

were selected and exported. If any selection consisted of more than one region of interest it 

was pooled into one region of interest by a self-written Perl programme after exporting. 

Further data analysis is described in the section 4.10.  

4.6 MALDI Profiling  

MALDI Profiling consists of four steps: (i) tissue sectioning and preparation, (ii) matrix 

application, (iii) mass spectrometric measurement and (iv) data processing.   

4.6.1 Tissue preparation 

Native tissue preparation was done as described in section 4.5.1. 

4.6.2 Matrix application 

For measurement, the tissue section had to be coregistered with a light scan image of it. For 

this, teach markings were painted onto the glass slide using Tipp-Ex. Then, the MALDI 

matrix was applied manually. Sinapinic acid (0.5 µL) was spotted onto the tissue at the site of 

interest. The matrix application was repeated three times with drying in between. For each 

section, 1 to 3 matrix spots were applied to sites of interest. Afterwards, the slide was scanned 

with a tabletop scanner with 2400 dpi resolution. 

4.6.3 MALDI mass spectrometry measurement of tissue samples 

A protein standard was mixed with matrix (0.5 µL each) and spotted adjacent to the tissue 

section. Using the teach markings, the section was coregistered with its light scan image in 
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the FlexControl software. Then, the measurement regions were selected and the spotted 

standard was used for calibration.  

The measurement was done in linear positive mode with a mass range of 2,500 – 25,000 m/z, 

a sampling rate of 0.1 GS/s, and a lateral resolution of 70 µm (medium laser focus). 200 laser 

shots were accumulated per measurement spot. The laser intensity and the detector sensitivity 

were adjusted for each measurement. 

4.6.4 Data processing 

After measurement the tissue sections were stained as described in section 4.4.2 and a virtual 

microscopy scan was made with the light microscopy scanner. The MALDI Profiling file was 

opened with the FlexImaging software and coregistered with the virtual microscopy scan. The 

data set was standardised to the total ion count (TIC). Then, the cellular composition of the 

measurement region was checked. The spectra of the region were only exported for later 

analysis if the region contained an adequate amount of appropriate cellular components. If 

more than one region was exported from a single sample, the regions were pooled into a 

single region by a self-written Perl programme. Further data analysis is described in the 

section 4.10.  

4.7 Tissue lysate based label-free quantitative proteomics and protein identification  

Label-free quantitative proteomics and protein identification were done in a combined 

approach in close collaboration with Alexander Schäfer and Dr. Stefanie Hauck, Research 

Unit Protein Science, Helmholtz Zentrum München. For identification, only a single sample 

is needed. For the quantitative proteomics, at least two samples are needed. In this case six 

were used, three in each of the two groups. (In this case: UICC stage II and UICC stage III 

primary colon cancer tissues.)  
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4.7.1 Protein extraction, sample preparation and peptide mass spectrometry  

The tissue samples were cryo-sectioned (12 µm; 60 mg; ≥80% cancer cells within the 

sections) and lysed in 1 mL TBS buffer (10x) with 1% NP40 using a Precellys24 tissue 

homogeniser with the appropriate tissue homogenising CKMix. The lysates were spun-down 

twice (30 min, 16,000 g) and the supernatant was collected. The protein concentrations were 

determined with a BCA assay. For protein separation, equal amounts of protein (60 µg) were 

mixed with Laemmli buffer, boiled for 10 min and loaded onto a SDS-PAGE gel (4% 

stacking and 15% resolving gel). The electrophoresis was performed with 80 V for the 

stacking gel and 160 V for the resolving gel. Running distance of the dye was 5 cm. Then the 

gel was incubated for 30 min in fixation solution, overnight in staining solution, for 30 min in 

destaining solution I, and twice for 10 min in deionised water. The gel was horizontally cut 

into 6 equidistant fractions before the lanes were separated. The fractions were washed in 

60% acetonitrile and deionised water (100 µL, 10 min each). The supernatant was removed 

and the fractions were incubated in 100 µL DDT solution for 15 min at 60 °C. The 

supernatant was removed, and the fractions were incubated in 100 µL IAA solution I for  

15 min in the dark. The fractions were washed with 100 µL deionised water (5 min), 100% 

acetonitrile (10 min), ammonium bicarbonate solution (10 min), 60% acetonitrile, and 100% 

acetonitrile. The gel fractions were covered with trypsin solution I and digested overnight at 

37 °C. The resultant peptides were eluted from the gel by two consecutive extraction steps. 

Each gel fraction was first incubated in ∼100 µL extraction solution I for 15 min and the 

liquid was collected. Then, the gel fraction was incubated in ∼100 µL of extraction solution II 

for 15 min and the liquid was collected. Both fractions were combined and dried in a vacuum 

concentrator. The samples were dissolved directly prior to LC-MS/MS analyses in  

LC solution. Then the peptide mixture within the samples was separated by reversed phase 

chromatography operated on a nano-HPLC system with a nonlinear 170 min gradient using 

eluent A and eluent B with a flow rate of 250 nL/min. The gradient settings were: 0-140 min:  
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2-5-31% B, 140-154 min: 31-95% B, 145-150 min: constant at 95% B, 150-155 min: 

95-5% B. The nano-HPLC was connected to a linear quadrupole ion trap-Orbitrap mass 

spectrometer equipped with a nano-ESI source. The mass spectrometer was operated in the 

data-dependent mode to automatically switch between Orbitrap-MS and LTQ-MS/MS 

acquisition. Survey full scan mass spectra (from m/z 300 to 1500) were acquired in the 

Orbitrap with a resolution of R = 60,000 at m/z 400 (after accumulation to a target of 

1,000,000 charges in the LTQ). The used method allowed sequential isolation of the most 

intense ions, up to ten, depending on signal intensity, for fragmentation on the linear ion trap 

using collision induced dissociation at a target value of 100,000 ions. High resolution mass 

spectrometry scans in the Orbitrap, and MS/MS scans in the linear ion trap were performed in 

parallel. Target peptides already selected for MS/MS were dynamically excluded for  

30 seconds. General mass spectrometry conditions were: electrospray voltage, 1.25-1.4 kV; 

no sheath and auxiliary gas flow. Ion selection threshold was 500 counts for MS/MS, and an 

activation Q-value of 0.25 and activation time of 30 ms were also applied for MS/MS. 

4.7.2 Label-free peptide quantification 

The acquired spectra were loaded (Thermo raw files) into the Progenesis software and  

label-free quantification was performed as described previously.86 For each fraction from the 

SDS-PAGE, the profile data of the MS scans as well as MS/MS spectra were transformed to 

peak lists with Progenesis LC-MS using a proprietary algorithm and then stored in peak lists 

comprising m/z and abundance. One sample was set as a reference, and the retention times of 

all other samples within the experiment were aligned (3 to 5 manual landmarks, followed by 

automatic alignment) to create maximal overlay of the two-dimensional feature maps. 

Features with only one charge or more than 7 charges were masked at this point and excluded 

from further analyses and all remaining features were used to calculate a normalisation factor 

for each sample which corrects for experimental variation. Samples were then allocated to 
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their experimental group. (In this case: UICC stage II and UICC stage III primary colon 

cancer tissues.) For quantification, all peptides (with Mascot score ≥ 30 and p < 0.01, see 

below) of an identified protein were included and the total cumulative abundance was 

calculated by summing the abundances of all peptides allocated to the respective protein. No 

minimal thresholds were set for the method of peak picking or selection of data to use for 

quantification. Statistical analysis was performed using the “between subject design” and  

p-values were calculated by a repeated measures ANOVA using the sum of the normalised 

abundances across all runs. After processing of all samples from the fractionation, the 

quantification files were merged into a complete data set. 

4.7.3 Database search and protein identification 

MS/MS spectra were exported from the Progenesis software as Mascot Generic file (mgf) and 

used for peptide identification with Mascot in the Ensembl database for human (Homo 

sapiens; GRCh37, download from ftp://ftp.ensembl.org/pub/current_fasta/homo_sapiens/pep/) 

containing a total of 77,460 protein sequences. The used search parameters were: 10 ppm 

peptide mass tolerance and 0.6 Da fragment mass tolerance, one missed cleavage allowed, 

carbamidomethylation was set as fixed modification and methionine oxidation, as well as 

deamidation of asparagine and glutamine were allowed as variable modifications. For the 

UICC stage II vs. UICC stage III data set, the Mascot integrated decoy database search 

calculated a false discovery of ≤1.11% when searching was performed on the concatenated 

mgf files with an ion score cut-off of 30 and a significance threshold of p ≤ 0.01. Only 

peptides with ion scores of 30 and above and only proteins with at least one unique peptide 

ranked as top candidate (bold red in Mascot) were considered and re-imported into Progenesis 

software. For accumulation of relative protein abundances, only peptides unique for a given 

protein were used. 
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4.7.4 Protein identification for MALDI Imaging 

MALDI Imaging allows no direct identification of proteins. Therefore, the protein identity of 

the m/z species has to be identified afterwards. For this, the MS/MS data of the quantitative 

proteomics approach was used. The identified molecular weights of the proteins were 

compared with the m/z species of the MALDI Imaging and with protein identification results 

published in other MALDI Imaging articles. If the molecular weights of the proteins 

identified by MS/MS were in high accordance (≤5 Da) with the m/z species derived by 

MALDI Imaging, the protein was assumed to be identified if the subsequent 

immunohistochemical validation supported the previously made findings. Thus, the protein 

identification was highly stringent which resulted in few identified m/z species but implied 

also a very low false-positive rate. 

4.8 Matrix proteome based protein identification 

Matrix proteome based protein identification was done in close collaboration with Stefan 

Maier and Prof. Dr. Bernhard Küster, Chair of Proteomics and Bioanalytics, Technische 

Universität München. For reduction of the proteomic complexity only the proteins which are 

embedded in the matrix of a MALDI Imaging sample are analysed. For a robust result more 

than one sample is required. (In the case of the relapse cohort, 3 samples were used for 

identifying the matrix proteome.) 

4.8.1 Tissue sample preparation 

Native tissues were sectioned as described in section 4.3.1 and mounted onto a plain 

microscope slide. Only tissue which contained more than 80% tumour cells were considered 

adequate. Approximately, 5 to 6 tissue sections of medium size (1 cm2) per tissue sample 

were mounted onto a single microscopy slide and used of proteomic analysis. Then, the 

sinapinic acid matrix was applied onto the tissue sections according to manufacturer's 

protocol using the ImagePrep spraying device.  
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4.8.2 Protein extraction, sample preparation and peptide mass spectrometry 

For the recovery of peptides and proteins co-crystallised with the matrix layer a two step 

extraction procedure was employed. For the first extraction step the matrix directly above the 

tissue section was covered with a thin layer of extraction solution III. After some seconds the 

liquid was removed and collected. This procedure was repeated with a total amount of 300 µL 

for one microscopic slide. For the second extraction step the same procedure was repeated 

with extraction solution IV. The remaining tissue was removed using a scalpel and collected 

in a tube containing 150 µL extraction solution IV. All three kinds of sample extracts were 

dried and reconstituted afterwards in reconstitution buffer. The sample extracts were mixed 

thoroughly and shortly spun-down. Reduction of disulfide bonds was carried out at 90 °C for 

45 min. For the alkylation of free sulfhydryl groups 20 µL of IAA solution II was added and 

incubated for 30 min at room temperature in the dark. Subsequently the sample extracts were 

centrifuged at 13,000 rpm for 10 min and heated for 10 min at 90 °C. 25 µL supernatant of 

each sample extract was loaded onto a NuPAGE gel. For the matrix extracts, separation was 

carried out at 200V for 10 minutes and for the tissue extracts for 45 minutes. Then, the gels 

were incubated for 30 min in fixation solution, overnight in staining solution, for 30 min in 

destaining solution I, and twice for 10 min in deionised water. For the matrix extract gel 

separation, the protein containing region was excised. For the tissue extract gel separation, the 

samples lanes were cut into 12 slices. The proteins within the samples were in-gel digested 

with trypsin according to the manufacturer’s protocol.  

Each gel slice was destained twice with destaining solution II for 90 min each. The destaining 

solution II was discarded and the gel slides were rehydrated with 100% ethanol. The ethanol 

was removed and the proteins within the gel slices digested. At first, 12 µL of trypsin  

solution II were added to each slice and the slices were incubated for 15 min. Then, 20 µL of 

5 mM TEAB were added to each sample and the samples were digested overnight at 37 °C. 

The trypsin solution II was removed and the gel slices were acidified with 5 µL of 5% formic 
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acid. The peptides were extracted in three steps. The gel slices were twice incubated in 30 µL 

of 1% formic acid for 30 min and the liquid was collected. Then, the gel slices were incubated 

in 20 µL of extraction solution IV for 30 min and the liquid was collected. The three liquid 

fractions of each gel slice were united and dried down. For LC-MS analysis the samples were 

reconstituted in 0.1% formic acid.  

LC-MS/MS measurements were performed on an LTQ-Orbitrap XL mass spectrometer 

coupled to a nano-HPLC. For the peptide samples derived from the matrix extracts a  

200 minute linear gradient (0-35 % acetonitrile in 0.1 % formic acid) with a flow rate of 300 

nL/min was used. For the peptide samples derived from tissue extracts a 100 min linear 

gradient (0-35 % acetonitrile in 0.1 % formic acid) with a flow rate of 300 nL/min was used. 

Intact masses of eluting peptides were determined in the orbitrap in a mass range from 300 to 

1300 m/z at a resolution of 60,000. The 15 most intensive species were selected for further 

fragmentation by collision-induced dissociation (CID) in the linear iontrap with a normalised 

collision energy of 35%.  Singly charged ions as well as ions with unknown charge state were 

rejected. Dynamic exclusion was set to 30 seconds. 

4.8.3 Database search and protein identification 

Peak lists were created using Mascot Distiller and database searches were performed using the 

Mascot search engine with a parent ion tolerance of 10 ppm and a fragment ion tolerance of 

0.6 Da against the IPI Database (http://www.ebi.ac.uk/IPI). Carbamidomethylation of cysteine 

residues was considered as a fixed modification and the oxidation of methionine as a variable 

modification. Up to 2 missed cleavages were accepted. Search result files were imported into 

Scaffold and filters for peptide and protein probability were adjusted to get a protein false 

discovery rate of smaller or equal to 1%. 
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4.8.4 Protein identification for MALDI Imaging 

MALDI Imaging allows no direct identification of proteins. Therefore, the protein identity of 

the m/z species has to be identified afterwards. For this, the MS/MS data of the matrix 

proteome was used. The identified molecular weights of the proteins were compared with the 

m/z species of the MALDI Imaging and with protein identification results published in other 

MALDI Imaging studies. If the molecular weight of a protein identified by MS/MS was in 

high accordance (≤5 Da) with the m/z species derived by MALDI Imaging, the protein was 

assumed to be identified.  

4.9  Immunohistochemical staining 

Immunohistochemical staining of tissue sections was carried out using an automated stainer 

(see section 3.6) with its respective reagent kit (see section 3.2) according to the 

manufacturer’s protocol. The used antibodies, dilutions and the buffers are listed in  

section 3.4. 

4.10 Statistical analysis 

4.10.1 Statistical analysis of MALDI Imaging and Profiling sample cohorts 

The following settings were applied for data analysis with the ClinProTools software. A 

resolution of 800, a Top Hat baseline subtraction with 10% minimal baseline width, a 

Savitsky Golay smoothing with 2.0 m/z width and 5 cycles, a recalibration with 1000 ppm 

maximal peak shift and 20% match to calibrant peaks was employed. Null spectra exclusion 

was enabled. Spectra grouping was supported if more than one case per group was analysed. 

Peak pickling was applied on the total average spectrum with a signal to noise threshold of 

5.00 and 0.000% relative threshold base peak. For peak calculation, intensities were used. 
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4.10.1.1 Statistical analysis of single samples 

Single samples were analysed for assessing the measurement quality. This was done by 

hierarchic clustering of the acquired spectra using Euclidean distance measurement and ward 

linkage mode using the ClinProTools software. The clustering results were visualised in the 

FlexImaging software. If the clustering reflected the histology the spectra quality was 

assumed as being adequate for further analysis. 

4.10.1.2 Statistical analysis of sample cohorts 

MALDI Imaging and MALDI Profiling sample cohorts were analysed in several ways: by (i) 

statistical comparison using a Wilcoxon rank-sum-test, (ii) hierarchic clustering, (iii) 

classification, and (iv) principal component analysis. 

4.10.1.2.1 Statistical comparison of sample cohorts using a Wilcoxon rank-sum test  

Identical numbers of tumour spectra were randomly selected from each single sample data set. 

These data sets were grouped according to the examined clinical endpoint into two groups. 

This sample cohort data set was statistically compared using the ClinProTools software. 

Statistical comparison relied on a Wilcoxin rank-sum test with subsequent p-value correction 

according to Benjamini-Hochberg.87 This resulted in a panel of differentially expressed  

m/z species. Additionally, the AUC values for the differentially expressed m/z species were 

computed using the R software and its ROCR package. 

4.10.1.2.2 Hierarchic clustering of sample cohorts 

Identical numbers of tumour spectra were randomly selected from each single sample data set. 

These data sets were grouped according to the examined clinical endpoint into two groups. 

Then, a peak list was created using the ClinProTools software and exported as CART file. 

This peak list was used for hierarchic clustering in the R software using stats and ROCR 
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package. Several settings were iteratively applied and the clustering with the highest 

specificity and sensitivity in regard to the sample grouping was identified.  

4.10.1.2.3 Classification of sample cohorts 

Identical numbers of tumour spectra (40) were randomly selected from each single sample 

data set. These data sets were grouped according to the examined clinical endpoint into 

groups. Then, a peak list was created using the ClinProTools software and exported as CART 

file. This peak list was used for classification in the R software using the boot, caret, e1071, 

randomForest and ROCR packages. First, the sample cohort was split into a training set for 

establishing the classifier and a test set for validating it. The training set comprised two thirds 

of each group of samples, the test set the other third. The sample selection was done 

randomly. Then, the discriminating peaks were selected by pairwise comparison of the groups 

within the training set using a Wilcoxon rank-sum test and consecutive Benjamini-Hochberg 

p-value correction.87 Only peaks were selected which had a p-value smaller than 0.05 and an 

AUC higher than 0.8 in at least one of the pairwise comparisons. Support vector machine and 

Random Forest were employed as classifiers. The classifiers were generated using the 

selected peaks and the training set. Then, it was validated on the test set. For the Random 

Forest classifier the calculation was repeated 100 times and the average of the individual 

results was calculated. To reduce the sampling error, sampling for the training and test set was 

repeated 50 times, and a classification was performed on each set. The final classification 

result is the average of the 50 individual classification results. 

For correlation of the misclassification rate with the respective tumour depth (T) or grading 

(G) a Spearman’s rank correlation was done using the R software and its stats package. The 

frequency of misclassifications in all samplings and in case of the Random Forest algorithm 

for all repeats was counted for each sample within the test set. The resulting numbers were 

correlated with the tumour depth (T) or grading (G). For the combined analysis a weighted 
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average of the frequency of both classifications was used. Since the Random Forest 

classification had 100 additional repeats for each sampling its frequency was divided by 100 

before uniting it with the frequency of misclassifications of the Support Vector Machine 

classification. 

4.10.1.2.4 Principal Component Analysis of sample cohorts 

Identical numbers of tumour spectra (40) were randomly selected from each single sample 

data set. These data sets were grouped according to the examined clinical endpoint into 

groups. Then, a peak list was created using the ClinProTools software and exported as CART 

file. This peak list was used for the Principal Component Analysis in the R software using the 

stats and scatterplot3d packages. The discriminatory power of the first three principal 

components was graphically visualised in a three dimensional plot of the samples. 

Additionally, the score (% sum explained variance) was exported into a table. 

4.10.2 Statistical analysis of immunohistochemically stained sample cohorts 

Immunohistochemically stained sections of the tissue sample cohorts were evaluated using a 

visual scoring system with scores ranging from 0 to 3. The scoring algorithm was set up 

before analysis and then applied to the respective tissue cohort. The staining pattern of the 

whole tumour cells, of the cytoplasm, of the nucleus, or of the membranes was determined. A 

cut-off for the scores was determined and the samples grouped accordingly in high and low 

intensity staining. 

4.10.2.1 Univariate analysis by Fisher’s exact test or by Pearson’s χ2
 test 

The staining data and the data for one clinical endpoint of the samples were entered into a 

contingency table. Then, the statistical significance (p-value) was determined by Fisher’s 

exact test or by Pearson’s χ2 test using the R software and its stats package. 
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4.10.2.2 Multivariate analysis with generalised linear model 

The staining data and the data of multiple clinical endpoints of the samples were entered into 

a data table. Then, multivariate analysis was performed with the generalised linear model. For 

this, the R software and its stats package were used. By this, the statistical significance of the 

multiple clinical endpoints in respect to the staining data and in respect to each other could be 

determined. 
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5 Results 

5.1 Proteomic markers for regional lymph node metastasis in colon cancer primary 

tumours 

The presence of regional lymph node metastasis drastically reduces patients’ prognosis in 

colon cancer.14,16,17 The molecular processes leading to lymph node metastasis are still not 

fully understood and no diagnostic markers for risk assessment have been established.62 

Therefore, proteomic markers could give a better insight into the molecular processes leading 

to lymphoid metastasis, help finding new therapeutic targets, or be used as diagnostic markers 

for assessing the metastatic potential of a primary tumour. 

For finding such proteomic markers an approach comprising two complementary mass 

spectrometric methods, MALDI Imaging and label-free quantitative proteomics, was applied 

on a first cohort of primary colon cancer tissues. For validation of the identified proteomic 

markers, immunohistochemical staining was performed on a second, independent cohort of 

primary colon cancer tissues (Figure 8).* 

 

 

 

 

 

 

 

Figure 8 – Work-flow for the identification of proteomic 
markers for regional lymph node metastasis. First, 
candidate proteins are identified by MALDI Imaging and 
label-free quantitative proteomics on a cohort of primary 
colon tumour tissues. In a consecutive step, the candidate 
proteins are validated by immunohistochemical staining 
on a second, independent cohort of primary colon tumour 
tissues. 

                                                

* The results will be submitted to “The Journal of Pathology”. 
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5.1.1 Identifying markers for regional lymph node metastasis by MALDI Imaging 

In order to define proteomic markers indicating regional lymph node metastasis a tissue 

cohort of primary colon tumours (UICC stage II, pN0, n = 21; UICC stage III, pN2, n = 33) 

was analysed by MALDI Imaging (Table 5). The tissue samples were taken from the tumour 

bank of the Department of Medicine, Technische Universität München. The clinical and 

pathological data were provided by the Department of Surgery, Klinikum rechts der Isar, 

Technische Universität München, and the Institute of Pathology, Technische Universität 

München. 

Characteristics Patient cohort for 

MALDI Imaging 

Patient cohort for  

label-free quantitative 

proteomics 

Patient cohort for  

immunohistochemical 

validation 

Patients 54 6 168 
Mean age [years] 
(range)      

67.3  
(41.4 – 89.3) 

66.6  
(56.1 – 80.4) 

70.9  
(28.9 – 95.0) 

Gender  
     male 
     female 

 
33 
21 

 
5 
1 

 
101 
67 

Tumour depth (pT) 
     pT1 
     pT2 
     pT3 
     pT4 

 
0 
1 

23 
30 

 
0 
0 
1 
5 

 
1 
1 

129 
37 

Nodal status (pN) 
     pN0 
     pN2 

 
21 
33 

 
3 
3 

 
87 
81 

Tumour grading (G) 
     G1 
     G2 
     G3 

 
1 

23 
30 

 
0 
3 
3 

 
2 

80 
86 

Table 5 – Histopathological characteristics of the patient cohorts. 

Subsequent histological staining of the analysed tissue sections with haematoxylin and eosin 

allowed selecting mass spectra specific for the tumour regions by designating regions of 

interest. The mass spectra specific for the tumour regions were extracted and used for 

statistical comparisons. Spectra alignment and calibration of the mass spectra of the sample 

cohort resulted in 136 m/z species present in all samples. Several m/z species showed different 

intensity levels between the UICC stage II and UICC stage III patients. Statistical analysis 
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using non-parametric Wilcoxon rank-sum test with subsequent p-value correction according 

to Benjamini-Hochberg87 yielded a panel of 10 significantly discriminating m/z species 

(Figure 9 and Table 6). 

Figure 9 - MALDI Imaging of primary colon cancer tissue specimens. The average spectra of UICC stage II 
(blue) and UICC stage III (orange) patient tissue samples are displayed. Asterisks indicate significantly 
differentially expressed m/z species. Three m/z species (m/z 9264, m/z 11607 and m/z 11646) are enlarged. All 
three are stronger expressed in UICC stage II patient tissues than in UICC stage III patient ones. 
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m/z p-value
1
 

AUC 

value 

Protein name 

(Uniprot ID) 
Associated with cancer Associated with colon cancer 

11607 0.0120 0.79 - - - 

11646 0.0120 0.79 S100A11 (P31949) 

Associated with differentiation in breast 

cancer88 

Upregulated in gastric cancer89 

Association with carcinogenesis in 

hepatocellular carcinoma90 

Upregulated in colorectal cancer91,92 

Associated with tumour progression in 

colorectal cancer93 

11747 0.0120 0.79 - - - 

11827 0.0206 0.77 - - - 

6277 0.0436 0.75 - - - 

6670 0.0572 0.74 - - - 

6649 0.0670 0.73 - - - 

6224 0.0892 0.72 - - - 

6979 0.0899 0.72 - - - 

9264 0.0899 0.72 FXYD3 (Q14802) 

Downregulation in lung cancer94 

Upregulation in pancreatic cancer 95 

Prognostic factor in rectal cancer96 

Associated with tumour progression in 

colorectal cancer97 

Table 6 – MALDI Imaging derived candidate m/z species discriminating the nodal status. (1Wilcoxon rank-sum 
test with Benjamini-Hochberg p-value correction) 

M/z 11607, m/z 11646, m/z 11747, m/z 11827, m/z 6277 had a p-value below 0.05 (p < 0.05), 

and m/z 6670, m/z 6649, m/z 6224, m/z 6979, m/z 9264 had a p-value between 0.05 and 0.1 

(0.05 ≤ p < 0.1). The AUC value, which is a second indicator for the discriminating power of 

the identified m/z species, was calculated by receiver operator characteristics (ROC) analysis. 

For all listed m/z species the AUC value was greater than or equal to 0.72, for the m/z species 

with a p-value lower than 0.05 it was even greater than or equal to 0.75 (Table 6). For 

assigning the differentially expressed m/z species to the tissue regions in which they are 

expressed they were visualised in the analysed tissue sections. M/z 9264, m/z 11607 and  

m/z 11646 were predominantly expressed in the tumour regions. Additionally, they were 

higher expressed in the tumour regions of the tissue sections of the UICC stage II patients 

than in the tumour sections of the UICC stage III patients. Representative ion images for 

UICC stage II and UICC stage III patients are given in Figure 10. 
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Figure 10 – MALDI Imaging derived ion images of m/z 9264, m/z 11607 and m/z 11646 in representative sample 
sections. On the left, the haematoxylin and eosin staining, on the right, ion images indicating the expression 
levels of the m/z species within the tissue sections are displayed. The expression levels of the three m/z species 
are higher in the tumour area of the UICC stage II sample tissue than in the tumour area of the UICC stage III 
sample tissue. 

5.1.2 Protein identification of MALDI Imaging derived proteomic markers for 

regional lymph node metastasis 

MALDI Imaging allows no direct identification of proteins. Therefore, the protein identity of 

the differentially expressed m/z species had to be identified by bottom-up tandem mass 

spectrometric methods and consecutive immunohistochemical staining for validation.  

Bottom-up protein identification was done in collaboration with Alexander Schäfer and  

Dr. Stefanie Hauck, Research Unit Protein Science, Helmholtz Zentrum München. For this, a 

set of 6 primary colon tumours was used (UICC stage II, pN0, n = 3; UICC stage III, pN2, n = 

3). The specimens are representative samples of the cohort used for MALDI Imaging and will 

also be used for label-free quantitative proteomics (Table 5). By this, two proteins could be 

identified (Table 6 and Figure 11).  
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Figure 11 – Sequence coverage and fragment spectra for the identification of MALDI Imaging derived proteins. 
(A) Identification of FXYD3. FXYD3 (Q14802) was identified with a Mascot score of 91 (p < 0.01). FXYD3 
could only be identified on a single peptide because only one tryptic peptide is in the detection range of the 
analysis. The other tryptic peptides are either smaller than 500 Da, or larger than 2460 Da. FXYD3 could be 
assigned to m/z 9264 in the MALDI Imaging experiment. (B) Identification of S100A11. S100A11 (P31949) was 
identified with a Mascot score of 1318 (p < 0.01). By theoretical considerations and according to literature98 it 
could be assigned to m/z 11646 in the MALDI Imaging experiment. 

FXYD3 (m/z 9264) has not been reported in any other MALDI Imaging study. S100A11  

(m/z 11646) was identified in a previous MALDI Imaging study investigating a different 

scientific context.98 
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5.1.3 Identifying markers for regional lymph node metastasis by label-free 

quantitative proteomics 

As a complementary approach for detecting protein markers discriminating the nodal status in 

colon cancer, label-free quantitative proteomics was performed on a set of 6 primary colon 

tumours (UICC stage II, pN0, n = 3; UICC stage III, pN2, n = 3; Table 5). The specimens are 

representative samples of the cohort used for MALDI Imaging and were also used for protein 

identification. Whole protein tissue extracts were first processed for mass spectrometry, then 

LC-MS/MS was done, and finally, quantitative analysis was performed using the Progenesis 

software package. A total of 1682 proteins could be identified, 1217 of them with 2 or more 

peptides. Only proteins with 2 or more identified peptides were considered for quantitative 

comparison of their expression levels. 28 proteins were differentially expressed (p < 0.05).  

12 of them were more than 2-fold up- or downregulated. 12 proteins were upregulated in 

UICC stage II samples, 16 proteins were upregulated in UICC stage III samples (Table 7). 
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Associated with cancer Associated with colon cancer 

GSTM3 (Glutathione  

S-transferase Mu 3; 
P21266) 

0.003 3.5 N2 4(4) 

Associated with prognosis in 
bladder cancer99 

Downregulated in ovarian 
cancer100 

Gene polymorphism associated 
with progression and prognosis 

in colorectal cancer101 
 

CSRP1 (Cysteine and 

glycine-rich protein 1; 
P21291) 

0.006 2.1 N0 2(2) 
Downregulated in 

hepatocellular carcinoma102 
Downregulated in colorectal 

cancer103  

PSAT1 (Phosphoserine 

aminotransferase; Q9Y617) 
0.008 2.6 N2 5(4) 

Therapy response in breast 
cancer104 

Upregulated in colorectal 
cancer105 

PTPLAD1 (3-hydroxyacyl-

CoA dehydratase 3; 
Q9P035) 

0.009 2.2 N2 2(2) - - 

UGDH (UDP-glucose  

6-dehydrogenase; O60701) 
0.014 2.8 N2 8(8) 

Upregulated in prostate 
cancer106 

- 

OGFR (Opioid growth 

factor receptor; Q9NZT2) 
0.019 1.6 N2 2(2) 

Downregulated in head and 
neck squamous cell 

carcinoma107 
- 

MTTP (Microsomal 

triglyceride transfer protein 

large subunit; P55157) 
0.019 7.3 N2 10(9) - - 

MOGS (Mannosyl-

oligosaccharide 

glucosidase; Q13724) 
0.021 1.8 N0 2(2) - - 
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PRDX3 (Thioredoxin-

dependent peroxide 

reductase, mitochondrial; 
P30048) 

0.026 1.7 N0 6(6) 

Upregulated in hepatocellular 
carcinoma108 

Upregulated in cervical 
cancer109 

Upregulated in prostate 
cancer110 

- 

AHSA1 (Activator of  

90 kDa heat shock protein 

ATPase homolog 1; 
O95433) 

0.033 1.5 N2 2(2) 
Associated with drug sensitivity 

in cancer cell lines111 
- 

HSPA1B (Heat shock  

70 kDa protein 1A/1B; 
P08107) 

0.034 1.4 N2 23(21) 
Associated with progression 

and grade in cervical cancer112 

Downregulated in colorectal 
cancer113 

Association with survival in 
colorectal cancer114 

NUDC (Nuclear migration 

protein nudC; Q9Y266) 
0.034 2.7 N2 2(2) 

Associated with carcinogenesis 
and metastasis in esophageal 

cancer115 
- 

HSP90AB1 (Heat shock 

protein HSP 90-beta; 
P08238) 

0.034 1.7 N2 41(22) Upregulated in gastric cancer116 - 

DCD (Dermcidin; P81605) 0.040 2.4 N2 3(3) 
Expressed in cancer cell lines 

and tissues117 
- 

PACAP (Plasma cell-

induced resident 

endoplasmic reticulum 

protein; Q8WU39) 

0.041 2.8 N0 4(4) - - 

COPG (Coatomer subunit 

gamma; Q9Y678) 
0.042 1.9 N0 3(3) Upregulated in lung cancer118 - 

TKT (Transketolase; 
P29401) 

0.042 1.9 N0 12(12) 
Downregulated in HER2 
negative breast cancer119 

Upregulated in thyroid cancer120 

Associated with progression in 
colorectal cancer121 

YWHAQ (14-3-3 protein 

theta; P27348) 
0.043 1.4 N2 11(8) 

Upregulated in lung cancer122 
Serum marker for lung 

cancer123 
- 

KARS (Lysyl-tRNA 

synthetase; Q15046) 
0.043 1.6 N2 9(9) - - 

PDCD6IP (Programmed 

cell death 6-interacting 

protein; Q8WUM4) 
0.043 1.7 N0 8(8) - - 

NDUFAF3 (NADH 

dehydrogenase 

[ubiquinone] 1 alpha 

subcomplex assembly factor 

3; Q9BU61) 

0.044 4.2 N0 2(2) - - 

NDUFB5 (NADH 

dehydrogenase 

[ubiquinone] 1 beta 

subcomplex subunit 5, 

mitochondrial; O43674) 

0.044 2.1 N0 2(2) - - 

GDI2 (Rab GDP 

dissociation inhibitor beta; 
P50395) 

0.045 1.6 N2 21(20) Upregulated in gastric cancer124 - 

ACOT7 (Cytosolic acyl 

coenzyme A thioester 

hydrolase; O00154) 
0.046 2.7 N2 5(5) - - 

TNPO1 (Transportin-1; 
Q92973) 

0.046 1.4 N2 2(2) - - 

FSCN1 (Fascin; Q16658) 0.046 1.6 N0 2(2) 

Associated with lymph node 
metastasis and prognosis in 
oesophageal squamous cell 

carcinoma125 
Associated with prognosis in 

breast cancer126 
Upregulated  in prostate 

cancer127 

Associated with lymph node 
metastasis in colorectal 

cancer128 

FH (Fumarate hydratase, 

mitochondrial; P07954) 
0.047 1.3 N0 3(3) Downregulated in clear cell 

renal cancer129 
- 

SSR1(Translocon-

associated protein subunit 

alpha; P43307) 
0.049 1.5 N0 2(2) - - 

Table 7 – Label-free quantitative proteomics derived candidate proteins discriminating the nodal status 
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5.1.4 Immunohistochemical validation of FXYD3, S100A11 and GSTM3 

Three proteins, which discriminated the nodal status of colon cancer samples in the initial 

screening by MALDI Imaging or label-free quantitative proteomics, were validated by 

immunohistochemical staining of an independent patient cohort (n = 168). For this, a tissue 

microarray comprising non-metastasised (UICC stage II, pN0, n = 87) and regionally 

metastasised (UICC stage III, pN2, n = 81) primary tumour tissue samples was established 

(Table 5). The tissue samples were taken from the tumour bank of the Department of 

Medicine, Technische Universität München. Pathological data were provided by the Institute 

of Pathology, Technische Universität München. Two proteins identified by MALDI Imaging, 

FXYD3 and S100A11, and GSTM3, which had the highest discriminating power (p = 0.003) 

in label-free quantitative proteomics, were validated by immunohistochemical staining of this 

tissue microarray (Figure 12).  
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Figure 12 – Immunohistochemical validation of FXYD3, S100A11 and GSTM3. Representative tissues of UICC 
stage II (left) and UICC stage III (right) patient samples are shown. For FXYD3 (top) and S100A11 (middle) the 
respective m/z species are displayed. For GSTM3 (bottom) the expression levels determined in label-free 
quantitative proteomics are shown. The immunohistochemical staining displays clear differences in expression in 
UICC stage II and UICC stage III patients. FXYD3 and S100A11 are stronger expressed in UICC stage II 
patients. GSTM3 is stronger expressed in UICC stage III patients. 

For analysis, the staining intensities of the tumours were visually assessed, a cut-off between 

low and high staining intensity was determined, and the samples were grouped accordingly. 

For FXYD3 the cut-off was set between low and intermediate expression, for S100A11 
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between no detectable and weak expression, and for GSTM3 between no detectable and weak 

expression. Then, a correlation of the immunohistochemical staining intensity with the nodal 

status (pN), the tumour depth (pT), the tumour grading (G) and the patients’ gender was tested 

first in a univariate setting with Fisher’s exact test and then in a multivariate setting with a 

generalised linear model (Table 8). 

FXYD3 S100A11 GSTM3  
low high p-value 

(uni.)1 
p-value 
(mult.)2 

low high p-value 
(uni.)1 

p-value 
(mult.)2 

low high p-value 
(uni.)1 

p-value 
(mult.)2 

Total number of 
patients (ratio) 

96 
(0.64) 

54 
(0.36) 

  96 
(0.6) 

64 
(0.4) 

  23 
(0.14) 

139 
(0.86) 

  

Gender 
    male 
    female 

 
56 
40 

 
33 
21 

0.8627 0.8166  
17 
6 

 
80 
59 

0.1711 0.1597  
56 
40 

 
39 
25 

0.8696 0.8019 

Tumour depth  
    pT1 
    pT2 
    pT3 
    pT4 

 
1 
1 

67 
27 

 
0 
0 

48 
6 

0.0210 

 
 

0.0141
3 

0.1256  
0 
1 

17 
5 

 
1 
0 

109 
29 

0.2486 
 
 

0.78613 

0.7538  
1 
1 

73 
21 

 
0 
0 

52 
12 

0.8893 
 
 

0.69133 

0.7859 

Nodal status  
    pN0 
    pN2 

 
41 
55 

 
35 
19 

0.0110 0.0683  
6 

17 

 
79 
60 

0.0071 0.0232  
59 
37 

 
25 
39 

0.0063 0.0173 

Tumour grading 
    pG1 
    pG2 
    pG3   

 
0 

41 
55 

 
2 

30 
22 

0.0293 

 
0.0881

4 

0.1669  
0 
8 

15 

 
2 

69 
68 

0.3995 
 

0.18364 

0.5247  
2 

49 
45 

 
0 

27 
37 

0.3208 
 

0.25744 
 

0.5404 

Table 8 – Immunohistochemical validation – Univariate and multivariate analysis. (1Fisher’s exact test [uni. = 
univariate]; 2Generalised Linear Model [mult. = multivariate]; 3pT3 vs. pT4; 4G2 vs. G3) 

With Fisher’s exact test, FXYD3 displayed the highest correlation with the nodal status  

(p = 0.0110) and lower correlations with the tumour depth (p = 0.0210) and the tumour 

grading (p = 0.0293). S100A11 displayed a significant correlation with the nodal status  

(p = 0.0071) and no significant correlation with the tumour depth or the tumour grading. 

GSTM3 displayed a significant correlation with the nodal status (p = 0.0063) and no 

significant correlation with tumour depth or the tumour grading. No correlation between the 

staining intensities of the three proteins and the patients’ gender was observed. 

With the generalised linear model, a significant correlation with the nodal status was observed 

for S100A11 (p = 0.0232) and GSTM3 (p = 0.0173), and a correlation by trend for FXYD3  

(p = 0.0683). For all three proteins, no significant correlation of the staining intensity with the 

tumour depth, the tumour grading, or the patients’ sex was determined in multivariate analysis 

(Table 8). 
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5.2 Discrimination of tumour entities by proteomic classification  

Correct, unambiguous tumour diagnosis is the initial step in cancer therapy since the patient’s 

regimen is based on the correct tumour classification. So far, clinical diagnosis relies on 

histological and often extensive immunohistochemical analyses of tumour biopsies.65 

Proteomic classification might support this standard diagnostic approach in the future. 

The suitability of MALDI Imaging for tumour classification was assessed in a two-step 

approach.* At first, it was tested whether it is possible to discriminate tumour entities located 

in different organ sites by their proteomic profiles. For this, primary tumour tissue samples of 

six adenocarcinoma entities were analysed by MALDI Imaging (Table 9) and a proteomic 

classifier that could discriminate these tumour entities with high accuracy was generated. 

After this proof-of-principle, this approach was tested in the more clinically relevant context 

of identifying the tumour origin of a metastasis with an unknown primary tumour. Therefore, 

it was tested whether it is possible to discriminate tumour entities which are either located 

within the same organ site (liver) or which have the same origin (colon).  

                                                

* The results of this classification approach have been submitted to the Journal of Proteome 
Research and are currently in revision. 
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Organ site Tumour origin Tumour type Subtype Grading 
Number of 

samples 

Distal oesophagus Primary tumour Adenocarcinoma 
- 

(Barrett’s) 

G1 

G2 

G3 

3 

11 

19 

Breast Primary tumour Adenocarcinoma 
Invasive 

Ductal 

G2 

G3 

2 

28 

Colon Primary tumour Adenocarcinoma  
G2 

G3 

13 

8 

Liver Primary tumour Adenocarcinoma 
Hepato-

cellular 

G1 

G2 

G3 

1 

9 

5 

 
Metastasis of 

colon carcinoma 
Adenocarcinoma - 

G2 

G3 

16 

3 

Intestinal 
G2 

G3 

9 

14 

Diffuse G3 9 

Mixed G3 3 
Stomach Primary tumour Adenocarcinoma 

NA 
G2 

G3 

3 

5 

Thyroid gland Primary tumour Adenocarcinoma Papillary - 29 

Table 9 – Characteristics of the tumour samples for proteomic classification. 

5.2.1 Classification of six tumour entities located in different organ sites 

Tumour samples (n = 171) of six tumour entities located in different organ sites (Barrett’s 

cancer, n = 33; breast cancer, n = 30; colon cancer, n = 21; hepatocellular carcinoma, n = 15; 

gastric cancer, n = 43; thyroid cancer, n = 29) were analysed by MALDI Imaging (Table 9 

and Figure 13). The tissue samples were taken from the tumour bank of the Department of 

Medicine, Technische Universität München. The pathological data were provided by the 

Institute of Pathology, Technische Universität München. 
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Figure 13 – Histological staining (haematoxylin and eosin) of representative samples of each tumour entity (A: 
Barrett’s Cancer, B: Breast Cancer, C: Colon Cancer, D: Gastric Cancer, E: Hepatocellular Carcinoma, F: 
Thyroid Cancer) and their average proteomic spectra. The classification was based on 112 to 123 m/z species 
with an average over the 50 repeats of 117 m/z species. Exemplarily, 7 of them are highlighted in grey and 
marked with asterisks. 

This resulted in differential mass spectra, which could already be discriminated by sight. The 

cancer cell specific spectra were extracted and classified (Figure 14 and Table 10).  

 

Figure 14 – Schematic display of the classification of the six adenocarcinoma entities. First, a model is generated 
using a training set. Then, this model is validated on a test set. For reducing the sampling error the classification 
results are the average of 50 independent samplings. (hepat. carcinoma = hepatocellular carcinoma) 

 
Barrett’s 

cancer 

Breast 

cancer 

Colon 

cancer 

Gastric 

cancer 

Hepat. 

carcinoma 

Thyroid 

cancer 

Total 

number of 

samples 

Total 

number of 

samples 

33 30 21 43 15 29 171 

Samples in 

training set 
22 20 14 29 10 19 114 

Samples in 

test set 
11 10 7 14 5 10 57 

Table 10 – Classification of six tumour entities located in different organ sites – Training set and test set  
make-up. (hepat. = hepatocellular) 

The classification was based on 112 to 123 m/z species with an average over the 50 repeats of 

117 m/z species. For the training set the overall accuracy was 99.33% for the Support Vector 

Machine and 100% for the Random Forest algorithm. The sensitivities, specificities, and 

accuracies for the individual tumour entity subsets were higher than 98% for the Support 

Vector Machine (SVM) and 100% for the Random Forest (RF) algorithm (Table 11).  
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 Barrett’s 

cancer 

Breast 

cancer 

Colon 

cancer 

Gastric 

cancer 

Hepat. 

carcin. 

Thyroid 

cancer 

Overall 

result 

 SVM RF SVM RF SVM RF SVM RF SVM RF SVM RF SVM RF 

Training set 

Sensitivity 

[%] 
100 100 99.70 100 98.43 100 98.97 100 98.20 100 100 100   

Specificity 

[%] 
100 100 99.81 100 100 100 99.98 100 99.79 100 99.64 100   

Accuracy 

[%] 
100 100 99.79 100 99.81 100 99.72 100 99.65 100 99.70 100 99.33 100 

Test set 

Sensitivity 

[%] 
85.82 84.96 80.40 85.27 82.86 88.69 81.00 76.25 73.20 54.36 88.80 87.96   

Specificity 

[%] 
98.26 94.51 96.85 97.80 98.56 97.13 90.00 92.36 98.31 99.08 96.47 95.81   

Accuracy 

[%] 
95.86 92.66 93.96 95.60 96.63 96.09 87.79 88.40 96.11 95.16 95.12 94.44 82.74 81.18 

Table 11 – Classification of six tumour entities located in different organ sites – Classification results. (hepat. 
carcin. = hepatocellular carcinoma) 

Applying the classifiers to the test set yielded an overall accuracy of 82.74% for the Support 

Vector Machine and 81.18% for the Random Forest algorithm. The individual sensitivities 

were mostly above 80%. The sensitivity for the hepatocellular carcinoma sample subset was 

lower for both classification algorithms. For the gastric cancer sample subset it was slightly 

below 80% for the Random Forest algorithm (Table 11). The individual specificities for all 

tumour entity subsets and both classifiers were higher than 90%, mostly even higher than 

95% (Table 11). The individual accuracies were higher than 85%, in most of the cases even 

higher than 95% (Table 11).  

5.2.2 Classification of three tumour entities which are either located within the same 

organ site (liver) or which have the same origin (colon)  

After it has become clear that the different tumour entities located in different organ sites 

could be discriminated with high confidence, this proteomic classification approach was 

applied to a second cohort which emulated the clinical context of identifying the tumour 
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origin of a metastasis with an unknown primary tumour more closely. We tested whether it is 

possible to discriminate different tumour entities which are located within the same organ site 

or have the same origin. The cohort (n = 55) consisted of colon cancer primary tumour  

(n = 21), colon cancer liver metastasis (n = 19) and hepatocellular carcinoma (n = 15) 

samples. The patient samples were analysed by MALDI Imaging, the spectra specific for 

cancer cells were extracted and the cohort was classified as previously (Table 12).  

 Colon cancer 

primary tumour 

Colon cancer 

liver metastasis 

Hepat. 

carcinoma 

Total number 

of samples 

Total number 

of samples 
21 19 15 55 

Samples in 

training set 
14 13 10 37 

Samples in 

test set 
7 6 5 18 

Table 12 – Classification of three tumour entities either located within the same organ site (liver) or having the 
same origin (colon) – Training set and test set make-up. (hepat. = hepatocellular) 

The classification was based on 36 to 63 m/z species with an average over the 50 repeats of 50 

m/z species. For the training set the overall accuracy was 94.92% for the Support Vector 

Machine (SVM) and 100% for the Random Forest (RF) algorithm. The individual 

sensitivities, specificities, and accuracies for the three subsets were higher than 95% for the 

Support Vector Machine. Only the sensitivity for the hepatocellular carcinoma subset 

(87.20%) and the specificity for the colon cancer liver metastasis subset (92.42%) were 

slightly lower. The individual sensitivities, specificities and accuracies for the three subsets 

were 100% for the Random Forest algorithm (Table 13).  
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Colon cancer 

primary tumour 

Colon cancer 

liver metastasis 

Hepatocellular 

carcinoma 
Overall result 

 SVM RF SVM RF SVM RF SVM RF 

Training set 

Sensitivity [%] 95.71 100 100 100 87.20 100   

Specificity [%] 100 100 92.42 100 99.78 100   

Accuracy [%] 98.38 100 95.08 100 96.38 100 94.92 100 

Test set 

Sensitivity [%] 85.71 86.93 91.33 81.42 73.20 76.94   

Specificity [%] 93.09 89.62 85.50 86.99 97.23 96.30   

Accuracy [%] 90.02 88.57 87.44 85.14 90.56 90.92 84.11 82.32 

Table 13 – Classification of three tumour entities either located within the same organ site (liver) or having the 
same origin (colon) – Classification results. 

Applying the classifiers to the test set yielded an overall accuracy of 84.11% for the Support 

Vector Machine and 82.32% for the Random Forest algorithm. The individual sensitivities for 

the colon cancer primary tumour and for the colon cancer liver metastasis were higher than 

80% for both classifiers. The sensitivities for hepatocellular carcinoma were higher than 70%. 

The individual specificities and accuracies were higher than 85% for the three subsets and for 

both classifiers (Table 13).  

5.2.3 Principal component analysis for discrimination of different tumour entities 

Additionally, a principal component analysis of each of the two cohorts was performed. First, 

a principal component analysis was performed on the six adenocarcinoma entities located in 

different organ sites (Figure 15).  
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Figure 15 – Principal Component Analysis (PCA) of the six adenocarcinoma entities. (A) Visualisation of the 
separation of the six tumour entities of the sample cohort by the first three principal components. (B) Histogram 
displaying the cumulative score of the first 28 principal components, which constitute 90% of the cumulative 
score. (C) Table of the single and cumulative score of the first 11 principal components, which constitute 70% of 
the cumulative score. The entities could only be partially separated. This can be explained by the fact that the 
first three principal components accounted only for 41.74% of the cumulative score. Principal component 
analysis seems to be less suitable for discriminating tumour entities. 

The first three principal components accounted for 41.74% of the variance (score) and thus 

for the contained information (Figure 15C). For explaining 90% of the variance (score), the 

first 28 principal components were needed (Figure 15B). This explains why the six tumour 

entities were only partially separated in a three dimensional, graphic display (Figure 15A). 

Breast cancer, colon cancer and hepatocellular carcinoma samples were grouped together, 

while Barrett’s cancer, gastric cancer and thyroid cancer samples could be separated well. 

Then, a principal component analysis was performed on the three tumour entities, which are 

located within the same organ site or which have the same origin (Figure 16).  
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Figure 16 – Principal Component Analysis (PCA) of colon cancer primary tumours, liver metastases and 
hepatocellular carcinoma primary tumours. (A) Visualisation of the separation of the three tumour entities of the 
sample cohort by the first three principal components. (B) Histogram displaying the cumulative score of the first 
18 principal components, which constitute 90% of the cumulative score. (C) Table of the single and cumulative 
score of the first 8 principal components, which constitute 70% of the cumulative score. The three entities could 
be clearly, yet not fully separated. This can be explained by the fact that the first three principal components 
accounted only for 45.13% of the cumulative score. 

The first three principal components accounted for 45.13% of the variance (score)  

(Figure 16C). For explaining 90% of the variance (score), the first 18 principal components 

were needed (Figure 16B). Upon visualisation, the three tumour entities were clearly, yet not 

fully separated (Figure 16A). So, classification by Support Vector Machine or Random 

Forest has a higher discriminating power than principal component analysis. 
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5.3 Proteomic markers for relapse in colon cancer primary tumours 

Most patients with UICC stage I or stage II colon cancer can be fully cured by resection of the 

primary tumour. However, a significant fraction of initially “cured” patients develops a 

relapse with the first 5 years after resection (~5% of UICC stage I and ~15-25% of UICC 

stage II patients).21,22 At present, no markers for relapse prediction exist which could be used 

in clinical diagnostics and aftercare.8,21,27 

For identifying proteomic markers predicting the risk of tumour recurrence, a tissue based 

proteomic approach was undertaken using primary tumour tissues of a cohort of UICC  

stage II patients. Screening for candidate markers was done with MALDI Profiling. For 

protein identification, a novel bottom-up proteomics approach, which relied on analysing the 

matrix proteome, was employed. The resulting marker proteins will be validated in the near 

future.  

5.3.1 Identifying markers predicting relapse by MALDI Profiling 

For initial identification of proteomic markers that correlate with tumour recurrence in 

primary tumour tissues of colon cancer, a cohort comprising 119 tumour tissue specimens of 

UICC stage II patients was analysed by MALDI Profiling. The tissue samples were taken 

from the tumour bank of the Department of Medicine, Technische Universität München. The 

clinical and pathological data were provided by the Department of Surgery, Klinikum rechts 

der Isar, Technische Universität München, and the Institute of Pathology, Technische 

Universität München. For all primary tumour tissues, detailed histopathological and clinical 

data of the respective patient were available (Table 14).   
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Characteristics Relapse developing patients Relapse free patients 

Patients 25 94 

Mean age [years] (range) 63 (46 – 87) 62 (23 – 87) 

Gender 

    male 

    female 

 

15 

10 

 

54 

40 

Tumour depth (pT) 

    pT2 

    pT3 

    pT4 

 

1 

17 

7 

 

0 

79 

15 

Median overall survival 

[months] (range) 
55 (3 – 122) 111 (83 – 180) 

Median disease free survival 

[months] (range) 
22 (1 – 97) - 

Table 14 – Relevant histopathological and clinical data of the cohort for relapse marker identification.  

The patient cohort contained primary tumour tissues of 25 patients who developed a relapse, 

and 96 patients who remained tumour free (no relapse). The median for disease free survival 

(until relapse occurrence) was 22 months and overall survival 55 month for patients who 

developed a relapse. The median overall survival was 111 months for patients who remained 

tumour free. Subsequent histological staining of the analysed tissue sections with 

haematoxylin and eosin allowed a visual assessment of the tissue areas that had been analysed 

by MALDI Profiling. One to three profiling spots had been applied onto each tissue section 

depending on its size and tissue morphology. Only measurement areas (profiling spots) that 

contained tumour cells were used for later analyses. The mass spectra of these measurement 

areas were extracted. For each patient sample, 50 mass spectra were randomly selected and 

used for statistical comparison. Spectra alignment and calibration of the mass spectra of the 

sample cohort resulted in 142 m/z species present in all samples. The average spectra of 

relapse free and relapse developing patients exhibited differential proteomic patterns  

(Figure 17). 
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Figure 17 – MALDI Profiling of the relapse cohort. The average spectra of relapse free (blue, n = 94) and relapse 
developing (red, n = 25) patients are displayed. Differentially expressed m/z species (p < 0.05) are highlighted 
with asterisks. Four differentially expressed m/z species (m/z 3372, m/z 3443, m/z 10839, and m/z 13157) are 
enlarged and their p-values are given. 

Statistical analysis using non-parametric Wilcoxon rank-sum test with subsequent p-value 

correction according to Benjamini-Hochberg87 yielded a panel of 27 significantly 

discriminating m/z species (Table 15).  

Observed 

m/z 
p-value 

AUC 

value 

Putative 

protein name 

(Uniprot ID) 

Theoretical 

molecular 

weight 

(±∆) [Da] 

Associated with cancer 

13157 0.0439 0.72 S100A9 (P06702) 13153 (-4) 

Unfavourable prognosis in lung 

cancer130  

Poor tumour differentiation in lung 

cancer131 

Poor tumour differentiation in breast 

cancer132,133 

13240 0.0439 0.72 - - - 

6577 0.0439 0.71 - - - 

3329 0.0439 0.70 - - - 

3443 0.0439 0.70 DEFA1 (P59665) 3448 (+5) 
Tumour progression in colorectal 

cancer134,135 

Upregulated in gastric cancer136 

4046 0.0439 0.70 - - - 
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5268 0.0439 0.70 - - - 

5420 0.0439 0.70 - - - 

12693 0.0439 0.70 MRPL14 (Q6P1L8) 12688 (-5) - 

3372 0.0453 0.69 DEFA2 (P59665) 3377 (+5) 
Tumour progression in colorectal 

cancer134,135 

Upregulated in gastric cancer136 

10839 0.0453 0.69 S100A8 (P05109) 10835 (-4) 

Poor tumour differentiation in breast 

cancer132 

Overpressed in breast, gastric and 

colorectal cancer137-139 

3398 0.0461 0.69 - - - 

13375 0.0491 0.69 - - - 

3357 0.053 0.68 - - - 

7567 0.053 0.68 - - - 

11047 0.053 0.68 - - - 

4137 0.0562 0.68 - - - 

8045 0.0562 0.68 - - - 

3650 0.0576 0.67 - - - 

10447 0.0688 0.67 S100P (P25815) 10442 (-5) 

Unfavourable prognosis and metastasis 

in breast cancer140 

Tumour progression and metastasis in 

prostate cancer141 

Predictor of distant metastasis and 

prognosis in lung cancer142 

3668 0.0843 0.66 - - - 

16036 0.0843 0.66 - - - 

7937 0.0855 0.66 - - - 

8400 0.0855 0.66 CRIP1 (P50238) 8402 (+2) 

Upregulated in pancreatic cancer,143 

cervical cancer,144 breast cancer145 

Discriminating HER2 status in breast 

cancer45 

15130 0.0855 0.66 HBA1 (P69905) 15126 (-4) - 

16306 0.0855 0.66 - - - 

3465 0.0983 0.65 - - - 

Table 15 – M/z species differentially expressed between primary tumours of patients who developed a relapse 
and who stayed tumour free. The p-values are calculated by Wilcoxon rank-sum test with subsequent p-value 
correction according to Benjamini-Hochberg. Additionally, the putative protein names, the theoretical molecular 
weights, and the reported association with cancer are given.  

M/z 13157, m/z 13240, m/z 6577, m/z 3329, m/z 3443, m/z 4046, m/z 5268, m/z 5420,  

m/z 12693, m/z 3372, m/z 10839, m/z 3398, and m/z 13375 had a p-value below 0.05  

(p < 0.05), and m/z 3357, m/z 7567, m/z 11047, m/z 4137, m/z 8045, m/z 3650, m/z 10447,  
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m/z 3668, m/z 16036, m/z 7937, m/z 8400, m/z 15130, m/z 16306, and m/z 3465 had a p-value 

between 0.05 and 0.1 (0.05 ≤ p < 0.1) (Table 15). The AUC value, which is a second 

indicator for the discriminating power of the identified m/z species, was calculated by receiver 

operator characteristics (ROC) analysis. For all significant m/z species the AUC value was 

greater than or equal to 0.65, for the m/z species with a p-value lower than 0.05 it was even 

greater than or equal to 0.69 (Table 15).  

5.3.2 Protein identification of MALDI Profiling derived proteomic markers for relapse 

prediction 

MALDI Profiling – like MALDI Imaging – allows no direct identification of proteins. 

Therefore, the protein identity of the differentially expressed m/z species had to be identified 

by bottom-up tandem mass spectrometric methods. The employed identification approach 

varied from the previous one. For identifying proteins correlating with regional lymph node 

metastasis, tissue lysates were used. This time, the matrix proteome was analysed. For this, 

tissue sections were prepared in the same way as tissue sections for MALDI Imaging. Then, 

the proteins were extracted from the matrix and identified by bottom-up proteomics. This was 

done in collaboration with Stefan Maier and Prof. Dr. Bernhard Küster, Chair of Proteomics 

and Bioanalytics, Technische Universität München. Sections from three representative patient 

samples of the relapse cohort were analysed. Proteins were only considered identified if 2 or 

more peptides were identified. 200 proteins could be identified from the matrix extracts, and 

916 proteins could be identified from the tissue extracts. Uniting the matrix and tissue extract 

results, 938 proteins could be identified. The molecular weights of the identified proteins were 

calculated using the protein sequences, and the known protein processing (such as methionine 

removal or amino-terminal acetylation) listed in the Uniprot database (www.uniprot.org). 

Protein names could be assigned to 8 of the 27 differential m/z species: S100A9, DEFA1, 

MRPL14, DEFA2, S100A8, S100P, CRIP1, and HBA1 (Table 15).  
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Figure 18 – Sequence coverage and fragment spectra for the identification of MALDI Profiling derived proteins. 
(A) Identification of S100A8. S100A8 (P05109) was identified with 11 unique peptides, 12 unique spectra, a  
p-value below 0.01 (p < 0.01) and a sequence coverage of 60% (56/93 amino acids). S100A8 could be assigned 
to m/z 10839 in the MALDI Profiling experiment. (B) Identification of S100A9. S100A9 (P06702) was 
identified with 8 unique peptides, 13 unique spectra, a p-value below 0.01 (p < 0.01) and a sequence coverage of 
67% (76/114 amino acids). S100A9 could be assigned to m/z 13157 in the MALDI Profiling experiment.  
(C) Identification of DEFA1 and DEFA2. DEFA1 and DEFA2 (P59665) were identified with 5 unique peptides, 
6 unique spectra, a p-value < 0.01 and a sequence coverage of 27% (25/94 amino acids) for the whole, 
unprocessed protein. DEAF1 and DEFA2 comprise the last 30 or 29 amino acids of the unprocessed sequence. 
So, for this part of the sequence the coverage was actually 83% (25/30 amino acids) or 86% (25/29 amino acids), 
respectively. DEFA1 and DEFA2 could be assigned to m/z 3443 and m/z 3377 in the MALDI Profiling 
experiment. 
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5.4 Methodological advances in MALDI Imaging – Opening new fields of research 

The vast majority of clinical tissue samples, especially those with associated clinical data, are 

stored as formalin-fixed and paraffin-embedded (FFPE) tissue specimens in the archives of 

pathology departments.35 Thus, preparation protocols for MALDI Imaging on this kind of 

tissue material would open new fields research. So far, several groups have worked on 

establishing protocols for formalin-fixed tissues.50-54,81-85 Nevertheless, further improvement 

of theses protocols is needed, especially in regard to the achievable spatial resolution of the 

MALDI Imaging measurement and the reproducibility of the tissue preparation. Herein, 

MALDI Imaging on formalin-fixed paraffin-embedded tissues is attempted using a spray 

device for trypsin and matrix application onto the tissue sections in order to guarantee a high 

spatial resolution of the measurement.  

5.4.1 MALDI Imaging on formalin-fixed paraffin-embedded tissues – Gaining access 

to the tissue archives of pathology 

At first, MALDI Imaging on formalin-fixed paraffin-embedded tissues was done relying only 

on antigen retrieval for tissue preparation. For this, an endoscopic biopsy of the distal 

oesophagus was analysed. Tissue preparation consisted of antigen retrieval by heat and 

consecutive spray coating of the tissue section with cyanohydroxycinnamic acid matrix. 

MALDI Imaging was performed in linear mode and with a lateral resolution of 50 µm. The 

resulting overall spectrum and three differentially expressed m/z species are depicted in 

Figure 19.  
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Figure 19 – MALDI Imaging of an endoscopic biopsy of the distal oesophagus. In the upper part, haematoxylin 
and eosin staining of the tissue section after measurement (left) and visualisation of three m/z species located 
predominantly in the squamous epithelium (m/z 5295), the Barrett’s metaplasia (m/z 2689) and the Barrett’s 
carcinoma (m/z 3452). In the lower part, the average spectrum of the endoscopic biopsy, in which the three 
above visualised m/z species are highlighted in blue, is displayed. 

In Figure 19, three m/z species, which were predominantly expressed in the squamous 

epithelium (m/z 5295), the Barrett’s metaplasia (m/z 2689) and the Barrett’s carcinoma  

(m/z 3452), are displayed. Several other m/z species had a high correlation with the 

morphological features of the tissue, too. Many m/z species were predominately expressed in 

the squamous epithelium and the Barrett’s carcinoma. Only few m/z species had a specific 

expression in the Barrett’s metaplasia, and these m/z species had less pronounced differences 

in their expression levels comparing the expression intensity in Barrett’s metaplasia and in 

Barrett’s carcinoma or squamous epithelium. A total of 276 m/z species were detected in the 

average spectrum. After first visual assessment of the data set, a hierarchic clustering was 

performed on the data set (Figure 20). 
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Figure 20 – Hierarchic clustering of the MALDI Imaging data set of the endoscopic biopsy of the distal 
oesophagus. Haematoxylin and eosin staining of the endoscopic biopsy (left), hierarchic clustering (middle), and 
superimposition of both (right) are displayed. Squamous epithelium (green), Barrett’s metaplasia (blue) and 
Barrett’s carcinoma (red) could be clearly separated by the clustering algorithm. 

The hierarchic clustering resulted in a highly accurate separation of the three morphological 

features present in the endoscopic biopsy. Squamous epithelium, Barrett’s metaplasia and 

Barrett’s carcinoma specific spectra were grouped into different branches of the clustering 

tree (Figure 20). So, the tissue preparation protocol relying only on antigen retrieval resulted 

in specific and measurable expression patterns. However, the quality of the spectrum was 

suboptimal. It displayed broad peaks, which are a clear indication for protein degradation 

(Figure 19). Additionally, the number of differentially expressed m/z species was lower than 

in comparable, cryo preserved tissues. Therefore, tissue preparation with tryptic digest was 

attempted in the next step. 

For assessing the quality of tryptic tissue preparation, colon tumour samples were used. The 

carcinogenesis of colon cancer has distinct, well-described steps starting from healthy 

mucosa, progressing to adenoma, and ending in carcinoma. These steps in carcinogenesis can 

be easily identified and discriminated by histological tissue staining. This allowed a rapid and 

reliable analysis of the preparation quality. If the detected m/z species were differentially 

expressed in the different tissue types within a single tissue section the preparation could be 

assumed as successful. If the same m/z species were detectable in the same tissue types in 

different tissue sections, a statistical comparison of the different tissue types would result in 

statistically significant, discriminating m/z species. If discriminating m/z species were 
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detectable, the preparation could be assumed as robust and reliable. For testing the preparation 

quality, a cohort of 14 samples was analysed (Table 16). Suitable colon cancer tissue samples 

were taken from the tumour bank of the Department of Medicine, Technische Universität 

München. 

Evaluation 

Case 
Morphology of the 

sample 

Number 

of peaks 

(s/n > 10) 

Number 

of peaks 

(s/n > 5) 

Number 

of peaks 

(s/n > 3) 

Diff. exp. 

m/z species 

Overlap of 

morph. and 

clust. 

1 Mucosa / Adenoma 30 84 151 +++ +++ 

2 Mucosa / Adenoma 17 70 160 +++  

3 Mucosa / Adenoma 36 90 176 +++ +++ 

4 Adenoma 23 73 164 +  

5 Mucosa / Adenoma 31 90 171 +  

6 Mucosa / Carcinoma 37 83 183 ++  

7 Carcinoma 33 82 153 +++ +++ 

8 Adenoma 16 77 152 ++  

9 Mucosa / Carcinoma 29 92 188 +++  

10 
Mucosa / Adenoma / 

Carcinoma 
29 81 163 +++ ++ 

11 
Mucosa / Adenoma / 

Carcinoma 
19 75 176 ++  

12 
Mucosa / Adenoma / 

Carcinoma 
38 85 174 +  

13 Mucosa / Carcinoma 35 89 159 ++ ++ 

14 Mucosa / Adenoma 20 85 175 ++  

Av. 

Ran. 
- 

28.1 

[16-38] 

82.6 

[70-92] 

167.5 

[151-188] 
  

Table 16 – The cohort of formalin-fixed paraffin-embedded colon cancer samples. The morphology of the tissue 
samples, the number of the detected m/z species (depending on the s/n ratio), and a general assessment of the 
measurement quality in respect to the correlation of m/z species expression and tissue morphology are given. (s/n 
= signal/noise, diff. exp. = differentially expressed, morph. = morphology, clust. = clustering, av. = average,  
ran. = range) 
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Tissue preparation was done by antigen retrieval, in situ tryptic digest and spray coating with 

cyanohydroxycinnamic acid matrix. MALDI Imaging was performed in reflectron mode and 

with a lateral resolution of 150 µm. The average spectra of two representative samples are 

depicted in Figure 21. 
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Figure 21 – MALDI Imaging of two representative, formalin-fixed colon cancer samples (#1 and #3, Table 16). 
For both samples, three masses are visualised which are expressed predominately in the mucosa (green, m/z 
829), in the tumour (red, m/z 1342), or in the submucosa (yellow, m/z 2871). Below, the average spectra, which 
have the three visualised m/z species highlighted in grey, and the haematoxylin and eosin staining of the tissues 
are depicted. 

The spectra contained between 151 – 188 m/z species (s/n > 3, Table 16). Increasing the 

signal to noise level reduced the number of detected peaks in all analysed samples. A signal to 

noise level of 10 resulted in 16 – 38 detected m/z species. No significant inter-sample 

variation of detectable m/z species could be observed. Slight variations were present, but there 
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was no indication that individual samples were better or less suited for tryptic digest. Many of 

the m/z species displayed a differential expression, which resulted in a tissue type specific 

revisualisation (Figure 21). For further analysis of the data quality, the data sets were 

subjected to a cluster analysis. Due to the data size and its complexity this could not be done 

at the Institute of Pathology. Instead, it was done in collaboration with Dr. Theodore 

Alexandrov and Prof. Dr. Peter Maass, Centre for Industrial Mathematics, University of 

Bremen. There, an algorithm for processing large MALDI Imaging data sets had been 

developed previously.146 Since MALDI Imaging data have a low signal to noise ratio this 

algorithm relied on an edge-preserving denoising of the mass spectra data which prevented 

the loss of signal information. After this denoising a high dimensional discriminant clustering 

was applied to the MALDI Imaging data set.146 This algorithm was employed on several 

sample data sets of the colon cancer cohort (Figure 22 and Table 16).  
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Figure 22 – Haematoxylin and eosin staining (left) and clustering (right) of three representative, formalin-fixed 
colon cancer samples (#1, #3 and #10, Table 16). The number of clusters was selected according to the 
morphology of the respective tissue. For the topmost sample four clusters, which correspond with the mucosa 
(green), the tumour (red) and the submucosa and muscle layer (light and dark blue), were chosen. For the middle 
sample seven clusters, which correspond with the mucosa (green), the tumour (red), the submucosa (yellow and 
orange), the muscle layer (middle and dark blue) and the subserosa (light blue), were chosen. For the lowermost 
sample four clusters, which correspond with the tumour and mucosa (red), the submucosa and subserosa (light 
and middle blue) and the muscle layer (dark blue), were chosen.  
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This clustering algorithm allowed a good discrimination of many morphological features of 

the tissue sections (Figure 22). Especially the tumour and mucosa regions could be 

discriminated well from the other morphological features of the tissues. Statistical comparison 

of the mucosa, adenoma and carcinoma regions of the whole sample cohort was performed, 

but did not result in statistically significant, discriminating m/z species. 

The MALDI Imaging data sets of the formalin-fixed colon cancer samples were additionally 

used for improving the previously mentioned clustering algorithm.61 Spatial resolution is still 

limited in MALDI Imaging for technical and preparatory reasons. In order to cope with this 

limitation, a computational approach for improving the spatial resolution of the clustering 

data of MALDI Imaging data sets was developed.61 This so-called super-resolution algorithm 

relies on a sophisticated smoothing of the boundaries of the clusters within the clustering, also 

termed segmentation maps. This led to an improved correlation of the clustering data with the 

histology of the tissue (Figure 23 and 24). 
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Figure 23 – Super-resolution segmentation of a formalin-fixed colon cancer sample. At the top, the haematoxylin 
and eosin staining (A) and the full segmentation map (B) of the sample are given. In the middle and at the 
bottom, haematoxylin and eosin staining (C and F), a segmentation map without super-resolution (D and G) and 
a segmentation map with super-resolution (E and H) are depicted.61 
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Figure 24 – Super-resolution segmentation of a formalin-fixed colon cancer sample. At the top, the haematoxylin 
and eosin staining (A) and the full segmentation map (B) of the sample are given. In the middle and at the 
bottom, haematoxylin and eosin staining (C and F), a segmentation map without super-resolution (D and G) and 
a segmentation map with super-resolution (E and H) are depicted.61 

In Figures 23 and 24 the effect of super-resolution is shown. This algorithm enhances the 

data resolution after data acquisition. Due to this, the correlation of the individual clusters of 

the segmentation maps with the tissue morphology is improved which makes data 

interpretation easier.61 
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5.4.2 MALDI Imaging on alcohol-fixed paraffin-embedded tissues – Bypassing 

formalin-fixation 

A different approach to tackle the formalin “problem” is to circumvent it by using a different 

fixative that does not cause covalent cross-linking of the proteins. Of course, this can only be 

done in prospective clinical studies or in studies with animal models. Herein, the feasibility of 

MALDI Imaging on tissues fixed with a commercial, alcohol-based reagent (PAXgene) is 

reported.56 This was done in collaboration with Dr. Bilge Ergin (now: Reischauer) and Prof. 

Dr. Karl-Friedrich Becker, Institute of Pathology, Technische Universität München. Human 

pancreatic tissues were used for comparison of the PAXgene fixative with two standard 

methods of tissue fixation: formalin fixation and cryo preservation. PFPE (PAXgene-fixed 

paraffin-embedded) and FFPE tissue sections were deparaffinised and spray coated with 

sinapinic acid matrix. No antigen retrieval was performed. Cryo preserved tissue sections 

were washed with ethanol and spray coated with sinapinic acid matrix. MALDI Imaging was 

performed in linear mode and with a lateral resolution of 70 µm. The different fixation 

methods resulted in spectra of different quality (Figure 25). 
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Figure 25 – Average spectra of the exo- (left) and endocrine pancreas (right) of human pancreatic tissue 
measured by MALDI Imaging. The effect of formalin fixation (top), PAXgene fixation (middle) and cryo 
preservation (bottom) on MALDI Imaging mass spectra is displayed. The marked m/z species are enlarged.56 

While formalin fixation resulted in a nearly complete absence of m/z species in MALDI 

Imaging, PAXgene fixation and cryo preservation resulted in spectra of good quality. 

Formalin fixation resulted in no detectable m/z species in the endocrine pancreas (Table 17). 

The two visible peaks in the spectrum of the endocrine pancreas (Figure 25) have a signal to 

noise ratio below 5 (s/n < 5) and are therefore not detected as m/z signals by the applied 

software algorithm. MALDI Imaging of PAXgene-fixed and cryo preserved pancreatic tissue 

sections resulted in similar spectra and a similar number of m/z species in the exocrine and the 

endocrine pancreas, respectively (Table 17). PAXgene-fixed tissues displayed slightly lower 

signal intensities, but signal intensity was high enough for high quality MALDI Imaging mass 

spectra.56 
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Fixation method 
Number of m/z species in 

the exocrine pancreas 

Number of m/z species in 

the endocrine pancreas 

Formalin 2 0 

PAXgene 87 68 

Cryo 96 73 

Table 17 – Number of m/z species detected by MALDI Imaging in formalin-fixed, PAXgene-fixed and cryo 
preserved pancreatic tissue samples (s/n > 5). 

The next step in assessing the suitablity of PAXgene fixation for MALDI Imaging was to 

visualise the expression patterns of m/z species in the tissue samples and to check if a  

delocalisation of the m/z species had occured. Two proteins of the endocrine pancreas are 

ideally suited for this task. Insulin (m/z 3485) and glucagon (m/z 5808) are strongly expressed 

in the endocrine pancreas while being absent in the exocrine pancreas. Visualisation of these 

two m/z species showed that they were predominantly expressed in the endocrine pancreas, 

while being nearly absent in the exocrine pancreas (Figure 26). So, no delocalisation of these 

two m/z species could be observed. No significant differences in the visualisation quality 

could be determined between PAXgene-fixed and cryo preserved pancreatic tissues, too.56 
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Figure 26 – Expression of insulin (m/z 3485) and glucagon (m/z 5808) in PAXgene-fixed (left) and cryo 
preserved (right) pancreatic tissue sections analysed by MALDI Imaging. On the image tiles insulin is visualised 
in red (A, C), glucagon in green (B, D), insulin and glucagon are co-visualised (E, G), and the haematoxylin and 
eosin staining of the pancreatic tissue sections is shown (F, H). In the haematoxylin and eosin stained pancreatic 
sections the endocrine pancreas (Islets of Langerhans) are encircled. In the bottom row spectra displaying the 
expression levels of insulin (I, L) and glucagon (K, M) in the endocrine (yellow) and exocrine (blue) pancreas 
are given.56 

After proving that PAXgene fixation is well suited for MALDI Imaging, the fixation method 

was used in a proteomic study: in situ analysis of the mammalian retina on a proteomic level. 

The light and dark adaptation of the mammalian retina is a complex process that is only 

partially understood. Therefore, it was analysed in situ by MALDI Imaging. Freshly resected 

porcine eyecups were procured from the local abattoir. The eyecups were PAXgene-fixed 

instead of cryo preserved for two reasons. Firstly, correct and reproducible orientation of the 

sample material during sectioning could only be ascertained with paraffin-embedded material. 

The eyecups were coronally sectioned. The posterior halves of the eyecups were sagitally 

oriented while paraffin embedding. Secondly, tissue morphology had to be fully retained 

(Figure 27). 
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Figure 27 – Comparison of cryo preserved and PAXgene-fixed retina tissue sections. On the left side, a 
haematoxylin and eosin stained section of a cryo preserved retina sample is displayed. Severe distortions of the 
tissue morphology are visible. On the right side, a haematoxylin and eosin stained section of a PAXgene fixed 
retina sample is displayed. The tissue morphology is fully retained. A representative area of the cones- and rods-
layer of the two sections is enlarged. In the section of the cryo preserved tissue the cones and rods are no longer 
visible while in the section of the PAXgene fixed tissue they are fully intact.  

The retina is a very fragile, multilayered tissue. Cryo preservation led to distortions of the 

tissue morphology while PAXgene fixation resulted in a very good preservation of the tissue 

integrity (Figure 27). Thus, PAXgene fixation was better suited for retina preparation than 

cryo preservation. For analysing light and dark adaptation of the retina, the eyecups were 

either illuminated for 30 min or kept in the dark, before they were PAXgene fixed as 

described above. Then, tissue sections were cut, mounted onto MALDI Imaging glass slides, 

deparaffinised, and spray coated with sinapinic acid matrix. MALDI Imaging was performed 

in linear mode and with a lateral resolution of 50 µm. MALDI Imaging of light- and dark-

adapted retina tissue sections resulted in differentially expressed m/z species (Figure 28).   
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Figure 28 – MALDI Imaging of light- and dark-adapted retina. The average spectra of light- and dark-adapted 
retina analysed by MALDI Imaging are displayed. The four m/z species which show the most prominent 
differences between light-adapted and dark-adapted state are enlarged. M/z 3166 and m/z 8565 show an 
increased expression in light-adapted state. The signal pairs of m/z 7519 / 7548 and m/z 21908 / 21936 show a 
different pattern. In either dark-adapted or light-adapted state, a double peak is visible which does not exist in the 
other respective state. The appearance of a double peak with a size difference of 29 / 28 Da upon adaptation can 
be best explained by the occurrence of posttranslational protein modifications. A double N-methylation would be 
the most likely modification. 

Several m/z species were differentially expressed. The four most prominent ones are depicted 

in Figure 28 and are listed in Table 18.  

M/z species Expression pattern Putative PTM 
Putative 

protein name 

3166 
Upregulated in light-adapted 

state 
- - 

7519 / 7548 
Shift of +29 Da in dark-

adapted state 

Mono- → Trimethylation 

or Dimethylation 
- 

8565 
Upregulated in light-adapted 

state 
- Ubiquitin 

21908 / 21936 
Shift of +28 Da in light-

adapted state 

Mono- → Trimethylation 

or Dimethylation 
- 

Table 18 – Differential m/z species between light-adapted and dark-adapted state of the mammalian retina 
identified by MALDI Imaging. (PTM = posttranslational modification) 

Two different ways of signal changes could be observed. In case of m/z 3166 and m/z 8565 

changes in expression intensities were observed (Figure 28). Both m/z species were 
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upregulated in the light-adapted state. The signal pairs m/z 7519 / 7548 and m/z 21908 / 21936 

showed a different pattern. A shift of the signal intensities could be observed. In the case of 

the signal pair m/z 7519 / 7548 an additional signal with a shift of 29 Da occurred in the dark-

adapted state while the intensity of the m/z 7548 signal was lowered in the dark-adapted state. 

The signal pair m/z 21908 / 21936 was present in the light-adapted state. In the dark-adapted 

state only the m/z 21908 signal was present. The 29 / 28 Da shift of m/z signals was in both 

cases probably caused by adaptation induced posttranslational modifications (Figure 28). The 

most reasonable explanation is a change in the methylation state of the measured protein. For 

example, a newly introduced double N-methylation or a change from single N-methylation to 

triple N-methylation (Table 18). Further experiments for protein identification and validation 

will be done in collaboration with Dr. Detlev Suckau, Bruker Daltonics, Bremen and with  

Dr. Alice Ly, Dr. Stefanie Hauck, and Prof. Dr. Marius Ueffing, Research Unit Protein 

Science, Helmholtz Zentrum München. 
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6 Discussion 

6.1 Proteomic markers for regional lymph node metastasis in colon cancer primary 

tumours 

Regional lymph node metastasis drastically reduces the survival rate in colon cancer14,16,17 and 

strongly affects the therapeutic approach.19 Therefore, a better understanding of the 

underlying molecular mechanisms causing lymphoid metastasis and reliable proteomic 

markers for clinical diagnostics are needed. We were able to correlate 38 proteins (identified 

or m/z species) which were differentially expressed in the primary tumours with respect to the 

nodal status of the patients. Of the 10 m/z species discovered by MALDI Imaging two were 

identified by name. Both have been described in the context of cancer but none of them has 

yet been shown to correlate with regional lymph node metastasis in colon cancer (Table 6). 

By label-free quantitative proteomics a total of 28 discriminating proteins were identified. For 

reducing the rate of false positives, only proteins were considered differentially expressed 

whose identification and quantification relied on 2 or more peptides. In tissue-based studies, 

11 of them have never been associated with cancer, 22 have never been associated with colon 

cancer, and only two of them have been previously described to be involved in metastasis 

(Table 7).115,125 Thus, by combining two tissue-based proteomic methods we found a large 

panel of novel proteins that could lead to a better understanding of the molecular processes 

underlying regional lymph node metastasis. Three of them, FXYD3, S100A11 and GSTM3, 

were confirmed by immunohistochemical staining on an independent tissue cohort (Figure 12 

and Table 8). Their association with regional lymph node metastasis in colon cancer has not 

been described so far. FXYD3 and GSTM3 have not been associated with regional lymph 

node metastasis, irrespective of the tumour type, while S100A11 has been associated with 

regional lymph node metastasis in lung cancer.147 
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FXYD3 is a modulator of Na+/K+-ATPase activity and has been reported to be expressed in 

several healthy human tissues.148 Several studies have reported its dysregulation in tumour 

cell lines and tissues.94,95,97,149-153 FXYD3 was found upregulated in a number of 

adenocarcinomas when compared to the respective normal tissue95,97,151-153 and downregulated 

in lung cancer.94 It was observed that FXYD3 expression correlated with unfavourable 

prognosis in rectal cancer patients with neoadjuvant treatment.96 In colon cancer, correlation 

of reduced FXYD3 expression with cancer progression (Dukes staging) was shown97 but no 

association with regional lymph node metastasis. In our study, we could clearly show an 

association of lowered FXYD3 expression with the presence of lymph node metastasis. In 

univariate analysis, the nodal status was the strongest correlating factor (p = 0.0110) 

compared to tumour depth and tumour grading which both displayed a less prominent but still 

significant correlation (Table 8). In multivariate analysis, FXYD3 was correlated by trend 

with the nodal status (p = 0.0683). Therefore, it seems that loss of FXYD3 expression is 

necessary for tumour progression and for the development of regional lymph node metastasis. 

S100A11, also known as Calgizzarin or S100C, is a calcium binding intracellular regulatory 

protein.154 In many studies it has been associated with cancer, mostly with progression or 

patient survival. In gastric cancer,89 pancreatic cancer155 and colorectal cancer91-93,156 it was 

shown to be overexpressed in comparison with the respective healthy tissues. While 

upregulation of S100A11 expression was mostly associated with tumour progression, it was 

also found that tumour progression led to a reduced S100A11 expression.155,157 In bladder 

cancer loss of S100A11 expression resulted in unfavourable prognosis,157 while in breast 

cancer increased expression of S110A11 resulted in unfavourable prognosis.88 In lung cancer 

it was shown that S100A11 overexpression was correlated with regional lymph node 

metastasis and tumour progression.147 Thus, S100A11 seems to be associated with tumour 

progression in adenocarcinomas but its actual role remains ambiguous and varying between 

different tumour entities. In our study, we found a correlation of reduced S100A11 expression 
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and the regional lymph node metastasis in colon cancer with two independent methods on two 

independent patient cohorts. The observed association might indicate that the mechanisms 

leading to regional lymph node metastasis are different in different tumour types, such as lung 

and colon cancer. 

Glutathione S-transferase µ (Mu) 3 (GSTM3) is a cytosolic enzyme involved in prostaglandin 

and leukotrienes synthesis and in metabolisation of toxic compounds, such as 

chemotherapeutic drugs, insecticides, herbicides, carcinogens and by-products of oxidative 

stress.158 GSTM3 has been associated with cancer risk on a genomic level where an 

association between a certain polymorphism and increased cancer risk was found in 

oesophageal cancer,159 hepatocellular carcinoma,160 lung cancer161 and colorectal cancer.101,162 

Promoter hypermethylation of GSTM3 was found in Barrett’s adenocarcinoma.163 On a 

proteomic level GSTM3 was shown to be downregulated in ovarian cancer.100 Correlations 

with clinical endpoints have rarely been undertaken. In urinary bladder cancer low GSTM3 

expression was associated with better survival.99 In our study, we could show a strong 

association of GSTM3 expression with lymph node metastasis on the proteomic level both in 

univariate (p = 0.0063) and multivariate (p = 0.0173) analysis. This is accordance with the 

data of the study on bladder cancer in which upregulation of GSTM3 reduced the survival rate 

of patients.99 Therefore, high cellular levels of GSTM3 might support the development of 

regional lymph node metastasis.  

This is the first time that MALDI Imaging and label-free quantitative proteomics were used as 

complementary methods. By this, we could identify a panel of 38 proteins (identified or m/z 

species) associated with regional lymph node metastasis. Most of them were identified for the 

first time in the context of metastasis. Three of them were validated by an independent 

method on an independent tissue cohort. The identification of new proteins associated with 

regional lymph node metastasis might lead to a better understanding of the molecular 

processes involved in tumour metastasis. Additionally, proteins correlating with regional 
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lymph node metastasis could become valuable markers for risk assessment in colon cancer 

patients. So far, the decision for adjuvant chemotherapy in high-risk UICC II patients is based 

on macroscopic and morphologic factors. Molecular markers indicating the potential for 

regional lymph node metastasis could complement the currently used factors leading to a 

refined decision making. Analysing the potential of the found markers will be the next step. 

For this, further in vitro and in vivo studies will be needed. 

6.2 Discrimination of tumour entities by proteomic classification  

The correct identification of the respective tumour entity is crucial for a personalised, 

individually tailored treatment regimen. Over the last decades, new molecular methods, such 

as gene and protein expression analysis, have been established for discriminating different 

tissue types or tumour entities. Gene expression analyses could provide accurate classification 

results.66-72 Proteomic analyses, which first used body fluids, mostly serum, and later turned 

to tissue samples, were able to discriminate tumour samples from healthy progenitor samples 

with high accuracy.73,75,76,78,80 The clinically more relevant and technically more challenging 

problem of discriminating various tumour entities or molecularly distinct tumour subgroups 

could also be addressed successfully.40 Gene expression profiling and proteomic methods 

which use tissue homogenates face two problems concerning sample material. Often, more 

sample material would be needed for analysis than can be procured in pretherapeutic 

diagnostics and the necessary assumption of tissue homogeneity can negatively influence the 

results. This might be a reason why these methods have not been implemented into 

diagnostics. In the last years, first mass spectrometric tissue profiling, then MALDI Imaging 

have emerged in order to cope with these two drawbacks. They require very little tissue 

material – basically, a single tissue section from an endoscopic biopsy is enough for analysis43 

– and retain the morphology during analysis. By this, the resulting proteomic pattern can be 
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compared with the histological staining in order to check the cellular composition of the given 

tissue.33 For these reasons we chose MALDI Imaging for tumour classification.  

The initial classification of six tumour entities located in different organ sites yielded a high 

accuracy in both training and test set. The training set could be classified nearly perfectly. The 

classification of the test set yielded a reduced but still high accuracy (82.74% for the Support 

Vector Machine and 81.18% for the Random Forest algorithm; Table 11). Both classifiers 

yielded comparable results, thus indicating a robustness of the results. Compared with the 

discrimination of tumour entities by Principal Component Analysis, it is obvious that the 

discrimination by classifiers is more accurate and thus better suited for reliable tumour 

classification. The misclassifications are probably not due to tumour depth or grading since 

the Spearman’s rank correlation test of the rate of misclassification with the tumour depth (T) 

and grading (G) could not determine a significant (p < 0.05) correlation (Tables 19 and 20). 

Tumour depth (T) 
Barrett's 

cancer 

Breast 

cancer 

Colon 

cancer 

Hepat. 

carcinoma 

Gastric 

cancer 

Thyroid 

cancer 

p-value (SVM) 0.19 0.82 0.46 0.36 0.05 0.67 

p-value (RF) 0.48 0.20 0.31 0.46 0.38 0.25 

p-value (combined) 0.13 0.55 0.25 0.36 0.25 0.27 

Table 19 – Correlation of misclassification rate with tumour depth (T) in the classification of six tumour entities 
located in different organ sites. 

Grading (G) 
Barrett's 

cancer 

Breast 

cancer 

Colon 

cancer 

Hepat. 

carcinoma 

Gastric 

cancer 

Thyroid 

cancer 

p-value (SVM) 0.17 0.33 0.27 0.13 0.13 NA 

p-value (RF) 0.82 0.79 0.66 0.87 0.80 NA 

p-value (combined) 0.71 0.47 0.39 0.69 0.42 NA 

Table 20 – Correlation of misclassification rate with tumour grading (G) in the classification of six tumour 
entities located in different organ sites. 

A reasonable explanation for the misclassifications is the existence of molecular subtypes 

within tumour entities. In breast cancer five distinct subtypes are recognised which express 

different molecular features and display a different clinical outcome.164 Such molecular 

heterogeneity is likely to exist in all tumour entities. 
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So far, most proteomic studies were concerned with the discrimination of normal, “healthy” 

tissue from tumour tissue. However, there are studies which were concerned with the 

discrimination of tumour entities. Villanueva et al. were able to distinguish three tumour 

entities, prostate, bladder and breast cancer, using serum samples.77 Bloom et al. were able to 

generate a classifier with an overall accuracy of 82% for a patient cohort consisting of six 

tumour entities: breast, colon, gastric, kidney, lung, and ovary cancer.74 While these two 

studies proved that tumour entities can be discriminated by classification our study furthers 

these results. Apart from also containing six tumour entities it consists of a training set for 

generation of the classifier and a test set for its validation. This feature is highly relevant for 

assessing the power of a classification. If a classifier is employed on a new, independent test 

cohort the risk for data overfitting of the classifier to the initial data set is reduced and thus the 

classification results become more reliable.165 

After proving that MALDI Imaging derived proteomic patterns can be used for accurate 

discrimination of tumour entities a second cohort was analysed which is closer to an 

important challenge in diagnostics where metastases have to be correctly classified even if the 

primary tumour is occult. For this, we selected a cohort comprising tumour entities which are 

either located within the same organ site or which have the same origin. Since colon cancer 

frequently metastasises to the liver, primary colon cancer, its liver metastasis, and primary 

hepatocellular carcinoma were selected. Again the classification of the training set was close 

to perfect. The more interesting classification of the test set yielded also a high accuracy 

(84.11% for the Support Vector Machine and 82.32% for the Random Forest algorithm; 

Table 13). This result indicates that even such closely related entities as the primary tumour 

of colon cancer and its liver metastasis could be classified efficiently. As before, the rate of 

misclassifications displayed no significant (p < 0.05) correlation with the tumour depth and 

grading, which was tested by Spearman’s rank correlation test (Tables 21 and 22). 
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Tumour depth (T) 
Colon cancer 

primary tumour 

Colon cancer liver 

metastases 

Hepatocellular 

carcinoma 

p-value (SVM) 0.42 NA 0.06 

p-value (RF) 0.51 NA 0.39 

p-value (combined) 0.35 NA 0.32 

Table 21 – Correlation of misclassification rate with tumour depth (T) in the classification of three tumour 
entities either located within the same organ site (liver) or being of the same origin (colon). 

Tumour Grading (G) 
Colon cancer 

primary tumour 

Colon cancer liver 

metastases 

Hepatocellular 

carcinoma 

p-value (SVM) 0.12 0.23 0.21 

p-value (RF) 0.10 0.25 0.34 

p-value (combined) 0.19 0.25 0.44 

Table 22 – Correlation of misclassification rate with tumour grading (G) in the classification of three tumour 
entities either located within the same organ site (liver) or being of the same origin (colon). 

The more likely explanation for the misclassifications is again the imminent molecular 

heterogeneity within tumours of the same entity. 

MALDI Imaging opens new fields in tissue sample classification. This proof-of-principle 

study shows for the first time that proteomic classification of solid tumour entities can be 

highly accurate while needing only a minimal amount of tissue. Also other applications can 

be envisioned, for example the classification of lymphomas79, tumour subtypes40, or 

morphologically similar, non-neoplastic diseases such as chronic inflammatory diseases. 

Thus, MALDI Imaging might become a valuable tool in clinical diagnostics in the future.  

6.3 Proteomic markers for relapse in colon cancer primary tumours 

A significant proportion of colon cancer patients who have no detectable metastasis at the 

time of operation develop a relapse after curative resection of the primary tumour.21-24 These 

patients would probably benefit from adjuvant chemotherapy.22,26 However, clear predictive 

markers for relapse are lacking.8,21,27 High-risk patients are subjected to adjuvant therapy but 

the definition for high-risk is still rather vague. According to ESMO (European Society for 

Medical Oncology) guidelines the general consensus is that patients with stage II are at high 
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risk if they present at least one of the following characteristics: lymph nodes sampling <12; 

poorly differentiated tumour; vascular or lymphatic or perineural invasion; tumour 

presentation with obstruction or tumour perforation and pT4 stage [II].166 It is obvious that the 

decision for adjuvant therapy is based rather on macroscopic and morphologic features of the 

tumour than on markers describing the molecular properties of the cancer. Several molecular 

markers have been found in clinical studies but none of them is recommended for clinical 

diagnostics so far.21,26,27,167 The identified prognostic molecular markers included the 

expression levels of various microRNAs23,24 and proteins, such as Bcl-2,26 Ubiquitin D,168 

S100B,169 CIAPIN1,170 LMNA,171 SPARC and FOXP3.172 Unfortunately, several of the 

aforementioned prognostic markers were identified in studies which included UICC stage III 

patients.168-170 This makes it difficult to clearly distinguish metastasis induced secondary 

tumours from tumour relapse. Taken together, no study could produce a predictive marker for 

relapse in colon cancer that was reliable enough for clinical application.  

In order to find such predictive markers this study was undertaken. It had several advantages 

over the previously attempted studies. The large number of samples of patients who were all  

without regional lymph node or distant metastasis and had a long follow-up of nearly 10 years 

together with the tissue and morphology based screening method allowed a reliable 

identification of novel proteomic markers. Applying MALDI Profiling on the tumour tissue 

cohort resulted in a panel of 27 relapse associated m/z species, 8 of which could be identified: 

S100A9, DEFA1, MRPL14, DEFA2, S100A8, S100P, CRIP1, and HBA1 (Table 15). Apart 

from MRPL14 and HBA1 all of them have been associated with cancer, and none of them has 

been associated with tumour relapse in colon cancer. 

The expression of CRIP1, a cytosolic protein involved in cell proliferation,45 has been 

associated with cancer. Most studies were based on expression profiling of cell lines, but 

several also used tumour tissues for analyses.45,145,173,174 CRIP1 was reported to be 

overexpressed in pancreatic cancer,174 cervical cancer173 and breast cancer.145 Additionally, 
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CRIP1 was part of a set of proteins that could distinguish the HER2 receptor status of breast 

cancer samples with high accuracy,45 and it could be used as a prognostic marker in gastric 

cancer.48 CRIP1 has never been reported in the context of colon cancer, tumour metastasis, or 

tumour relapse. In this study, a correlation (p = 0.0855) of increased CRIP1 expression with 

tumour relapse could be observed. 

There is increasing evidence suggesting that S100P, an intra- and extracellular signalling 

molecule, has a significant role in cancer.175 It was reported to be upregulated in pancreatic 

cancer.176 In breast cancer, S100P was reported to be upregulated in cancer cells177 and 

associated with HER2 expression.178 Additionally, overexpression could be associated with 

unfavourable prognosis and metastasis.140 In prostate cancer S100P expression was associated 

with tumour progression and metastasis.141 In lung cancer S100P expression was shown to be 

a predictor of distant metastasis and prognosis.142 Specific expression of S100P in colon 

cancer cells and positive effects on proliferation and cell migration in colon cancer cell lines 

were reported.179 So, association of S100P with prognosis and metastasis has been reported 

for several cancers. However, little is known about its role in carcinogenesis and tumour 

progression of colon cancer. This study could for the first time associate reduced S100P levels 

with relapse in colon cancer (p = 0.0688). 

S100A8 and S100A9 predominately form a heterodimer under physiological conditions180 and 

have intra- and extracellular functions.181 Their role seems to be ambivalent. Pro- and anti-

inflammatory effects are reported.182 It was shown that S100A8 and S100A9 were expressed 

in breast cancer, gastric cancer and colorectal cancer tissues,137-139 and that increased 

expression levels correlated with reduced tumour differentiation.131-133 Data from various 

tumour cancer cell lines and a mouse line suggest a role in tumour cell invasion and 

migration.183-185 S100A9 overexpression was associated with unfavourable prognosis in lung 

cancer.130 These findings suggest an involvement of S100A8 and S100A9 in cancer 
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progression. Herein, a correlation of reduced S100A8 (p = 0.0453) and S100A9 (p = 0.0439) 

levels with tumour relapse was reported for the first time. 

DEFA1 and 2, also known as neutrophil defensin 1 and 2, are antimicrobial and 

immunomodulatory peptides which are mainly synthesised and secreted by neutrophils, but 

can also be expressed by tumour cells.186 Both peptides are overexpressed in gastric cancer,43 

squamous cell carcinoma,187 bladder cancer,188 renal cell carcinoma,189 and colon cancer.190 

They have also been associated with invasiveness in bladder cancer,188 and with tumour 

progression.134,135 In this study, a correlation of reduced DEFA1 (p = 0.0439) and DEFA2  

(p = 0.0453) levels with tumour relapse was reported for the first time. 

All six proteins (CRIP1, S100P, S100A8, S100A9, DEFA1 and DEFA2) are potential 

markers for tumour relapse. Their association with cancer has been reported in several studies. 

For CRIP1 and S100P an association with prognosis was also reported. In the case of CRIP1, 

higher CRIP1 expression lead to unfavourable prognosis.48 The here presented association 

with tumour relapse is in accordance with this previous result. In the case of S100P, increased 

S100P levels were also reported to result in unfavourable prognosis.140,142 This is in contrast 

to the observation made in this study. Herein, reduced S100P levels correlated with relapse. A 

possible explanation might me that S100P causes different effects whether it is localised intra- 

or extracellularly. For S100A8 and A9 same runs true. According to literature they are 

associated with unfavourable prognosis in lung cancer.130 This is in contrast with the observed 

correlation of reduced S100A8 and S100A9 levels with relapse. It was reported that S100A8 

and A100A9 are pro- and anti-inflammatory depending on their concentration and 

localisation.182 This might explain the difference between the findings of this study and 

previous ones. There are no reports on an association of DEFA1 and DEFA2 with prognosis. 

It is known that inflammation and immune response is an important factor in tumour 

progression. Jensen and co-workers reported that the presence of intratumoural neutrophils 

was associated with unfavourable patient prognosis in renal cell carcinoma.191 Since DEFA1 
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and DEFA2 are predominately expressed by neutrophils one would expect that both proteins 

are higher expressed in relapse developing patient. In this study the contrary was observed. In 

this study, the overall levels of DEFA1 and DEFA2 were measured which is not necessarily 

the same as the number of neutrophils within a tissue, especially since it has been shown that 

also tumour cells can express DEFA1 and DEFA2.186 It would also be reasonable if low levels 

of these inflammatory peptides correspond with an increased risk for tumour relapse. 

In conclusion, 6 of the 8 identified proteins which correlate with relapse have already been 

associated with cancer. Looking at their function and the previously published findings the 

observed results seem plausible. The next step will be a validation of the results, ideally on an 

independent cohort. Since such a tissue cohort is hard to obtain, validation will be done on the 

present cohort using immunohistochemical tissue staining.  

6.4 Methodological advances in MALDI Imaging – Opening new fields of research 

MALDI Imaging is a relatively novel method and further development of this method is 

needed. Apart from technical improvements that allow a higher sensitivity and lateral 

resolution, the tissue preparation protocols will have to be refined. One aspect is most 

certainly the development of preparation protocols for sample tissues that are not native (cryo 

preserved). 

6.4.1 MALDI Imaging on formalin-fixed paraffin-embedded tissues – Gaining access 

to the tissue archives of pathology 

Human tissue samples, especially those, which are associated with clinical data, are mostly 

stored as formalin-fixed paraffin-embedded tissue specimens in the archives of pathology 

departments.35 Therefore, most histological methods used in diagnostics and research are 

adapted to this kind of tissue material. Formalin fixation results in covalent cross-linking of 

proteins and other molecules and therefore, prevents direct mass spectrometric analysis. In 

order to cope with the covalent cross-linking of proteins, trypsin based protocols for mass 
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spectrometry on FFPE tissues have been established.192,193 For MALDI Imaging, several 

studies have shown that FFPE tissues can be used if in situ tryptic digest is done before 

analysis.50-54,81-85 In these studies the lateral resolutions reached only 200 µm. For a detailed 

correlation of MALDI Imaging data sets with the tissue morphology the lateral resolution will 

have to be improved. With the reported methods of trypsin and matrix application, an 

improvement of lateral resolution in measurement is technically not possible since they rely 

on acoustic or mechanic spotting of the trypsin and the matrix solutions. Thus, new tissue 

preparation protocols will have to be established. Herein, a preparation protocol which used 

spray application of both trypsin and matrix solutions was reported. Spray application of 

trypsin resulted in a drastic improvement of the lateral resolution. Now, only the size of the 

droplets (∼20 µm) is limiting. 

At first, MALDI Imaging on FFPE tissues was attempted without tryptic digest for 

preparation. For this an endoscopic biopsy of the distal oesophagus was used. This resulted in 

a differential expression of several m/z species (Figure 19) and the hierarchic clustering 

displayed a high correlation with the tissue morphology (Figure 20). Unfortunately, only few 

signals were specific for Barrett’s metaplasia and the mass spectrum displayed broad peaks, 

which are a strong indication for protein degradation. This led to the conclusion that tryptic 

digest is indeed necessary for successful MALDI Imaging. Therefore, a preparation protocol 

was established which included in situ tryptic digest by spray application, and a cohort of 14 

colon cancer samples was analysed using this protocol (Table 16). This preparation method 

resulted in a multitude of m/z species within each spectrum. These signals displayed a 

differential expression between the different tissue types within each sample (Figure 21). 

Hierarchic clustering was not possible because of the data size. Therefore, clustering was 

done in collaboration with Dr. Theodore Alexandrov and Prof. Dr. Peter Maass who had 

developed a clustering algorithm for large MALDI Imaging data sets.146 This clustering 

algorithm was applied to MALDI Imaging data sets of 5 colon cancer samples. It resulted in a 
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good discrimination of different morphological features of the respective tissue samples 

(Figure 22). This indicated that the preparation protocol resulted in peptide spectra that 

feature tissue type specific proteomic patterns. Comparison of morphological features 

(mucosa, adenoma or carcinoma) within the sample cohort could not provide significantly 

differentially expressed m/z species. So, it became obvious that the preparation method was 

successful because it resulted in a specific, differential peptide pattern within each sample 

measurement. It also became obvious that the preparation method was not robust since it did 

not provide m/z species which were differentially expressed in the present tissue types 

(mucosa, adenoma, and carcinoma) within the cohort. The reasons for this remain open. It 

could be speculated that the tryptic digest is inhomogeneous due to slight inter-sample 

variations of the amount of applied trypsin or due to different enzymatic activity of the 

applied trypsin caused by the molecular composition of the underlying sample tissue. 

The acquired MALDI Imaging data sets of the formalin-fixed colon cancer samples were used 

for another study which also aimed at improving the lateral resolution in MALDI Imaging.61 

This time it was not attempted to improve the measurement protocol but to increase the 

resolution of the data set after acquisition by software algorithms. Lateral resolution is still 

limited in MALDI Imaging. The highest lateral resolution with commercially available mass 

spectrometers is 20 µm.38 Normally, MALDI Imaging measurements have a resolution 

between 50 and 250 µm. In collaboration with Dr. Theodore Alexandrov and  

Prof. Dr. Peter Maass, a software algorithm that is able to increase the resolution of clustering 

data (also termed segmentation map) was generated and tested on the formalin-fixed colon 

cancer data sets (Figure 23 and 24). By increasing the resolution of the segmentation maps, a 

higher correlation of the individual clusters of the segmentation maps with the tissue 

morphology could be observed. This showed that the generated algorithm is capable to 

artificially increase the resolution of MALDI Imaging data sets after measurement. Since it is 

uncertain when and if MALDI Imaging sample preparation and instrumentation will reach the 
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level of a single cell (1-10 µm), this software algorithm might compensate for the low lateral 

resolution in the meantime. It could become a valuable tool by increasing the lateral 

resolution in an indirect way.61 

6.4.2 MALDI Imaging on alcohol-fixed paraffin-embedded tissues – Bypassing 

formalin-fixation 

As mentioned previously, formalin fixation causes protein cross-linking and therefore, 

MALDI Imaging on formalin-fixed tissues requires in situ tryptic digest for tissue 

preparation. By this, only peptides, not full-length proteins can be analysed. Alcohol-based 

tissue fixation is another preservation method well known in pathology. It should also be 

compatible with MALDI Imaging since the proteins remain intact and unmodified.  

Pancreatic tissue specimens were used for testing the suitability of a novel, alcohol-based 

fixative named PAXgene. Pancreatic tissue consists of two distinct tissue types, the endocrine 

and the exocrine pancreas. Within the endocrine pancreas, glucagon and insulin are produced 

and both of them can be measured by MALDI Imaging. The localisation of these two proteins 

in a small, defined and histologically discernable region is ideal for assessing the quality of 

the fixative in respect to the preservation of protein localisation. The PAXgene fixation was 

compared with formalin fixation and cryo preservation. MALDI Imaging was performed on 

these differently fixed tissues (Figure 25). While formalin fixation yielded no signals (since 

no antigen retrieval or tryptic digest was undertaken), PAXgene fixation and cryo 

preservation yielded similar spectra. The intensity and the number of the m/z species detected 

in PAXgene-fixed tissues were slightly lower than in cryo preserved tissues (Table 17). No 

delocalisation of insulin and glucagon could be observed (Figure 26).56 These findings are in 

accordance with other studies. Chaurand and coworkes used 70% ethanol for fixation.55 

Mangé and coworkers used RCL2/CS100 for fixation.57 Chaurand observed reduced signal 

intensity. Mangé reported a decrease of signal intensity by a factor of 2. Both saw no negative 
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effect of alcohol preservation on protein localisation within the measured tissue sections. 

However, their lateral resolution was only 150 to 200 µm. In this study, the pancreatic 

sections have been measured with a lateral resolution of 70 µm. The higher lateral resolution 

together with the histologically distinct regions of exocrine and endocrine pancreas within the 

pancreas sections allowed a better assessment of the degree of protein (de)localisation within 

the tissue.56 Taken together, it could be proven that PAXgene is an appropriate fixative for 

MALDI Imaging. It could also be shown that PAXgene fixation is compatible with other 

molecular biological methods.56 Therefore, PAXgene might become an alternative to formalin 

for tissue fixation. It combines the advantages of both, formalin fixation and cryo 

preservation. Due to paraffin embedding the samples can be oriented during preparation 

resulting in optimal sectioning planes. Additionally, paraffin embedding allows easy long 

term storage. In the same way as cryo preservation, alcohol preserves fully intact proteins 

allowing top-down as well as bottom-up proteomics. 

The PAXgene fixative has been used for the analysis of the mammalian retina. The retina is 

very fragile. Therefore, cryo preservation of the retina is not possible. The morphology is 

distorted and most of the cells, especially the cones and rods are lysed. With PAXgene 

fixation the morphology is fully retained (Figure 27). MALDI Imaging on sections which 

were either adapted to light or dark state yielded differential m/z species (Figure 28). Looking 

closer into the differential protein patterns showed that some of the differences within the 

spectra are probably due to posttranslational modifications, most probably double  

N-methylations (Table 18). This was the first time that molecular modifications induced by 

light/dark adaptation could be observed in situ. This highlights the big advantage of MALDI 

Imaging and top-down proteomics in general. Since they deal with full-length proteins they 

also detect the full protein with its posttranslational modifications. Bottom-up proteomics has 

limitations in the measurement of posttranslational modifications due to its set-up. Peptides 

are measured and identified and afterwards the corresponding proteins are deduced. This can 
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cause problems in analysis. For instance, a posttranslational modification can only be detected 

if the peptide is measured, or a posttranslational modification can prevent the peptide 

identification if the search algorithm employed for peptide identification cannot cope with it. 

Regarding the high number of different protein modifications this should happen frequently. 

Another limitation of bottom-up proteomics in respect to posttranslational modification 

analysis is the fact that the modifications of a protein, which exists in different states (such as 

isoforms) with distinct modification patterns, can often not be correctly assigned to the right 

state. Therefore, a top-down method like MALDI Imaging seems to be best suited for the 

analysis of dynamic changes of posttranslational modifications in situ. 

6.5 Conclusion 

Within this thesis several relevant clinical problems could be addressed successfully. Novel 

proteomic markers for regional lymph node metastasis could be identified by MALDI 

Imaging and label-free quantitative proteomics. Three of them, FXYD3, S100A11 and 

GSTM3, were additionally validated on an independent cohort. These markers might help to 

make a better risk assessment for regional lymph metastasis and identify high-risk patients 

which would benefit from adjuvant chemotherapy.  

In a proof-of-principle study it could be shown that MALDI Imaging derived proteomic 

profiles can be successfully used for highly accurate tumour classification. This might help to 

establish new diagnostic methods for solving the clinical problem of cancers of unknown 

primary.  

By MALDI Profiling on a patient cohort including relapse patients, 27 m/z species correlating 

with relapse could be detected. 8 of them were identified by proteomic identification. These 

markers might help to improve patient treatment and aftercare by identifying patients with a 

increased risk for a relapse. 
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Additionally, methodological advances in MALDI Imaging were made. A protocol for 

MALDI Imaging on formalin-fixed paraffin-embedded tissues and a protocol for MALDI 

Imaging on alcohol-fixed paraffin-embedded tissues were established. The availability of 

MALDI Imaging protocols for these kinds of tissue material will give access to a wider range 

of clinical tissue samples and open new fields of research.  
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