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Abstract—We report on our investigation of the capacity region
of a Gaussian multiple access channel with two independent trans-
mitters for the case where the receiver’s antenna spacing is very
small (compared to the wavelength). In contrast to common belief,
we �nd that a rectangular capacity region can be maintained even
as the distance of the antennas approaches zero. Moreover, the size
of the capacity region even increases as the antenna separation is
reduced. Therefore, high-performance multiple access is perfectly
possible in con�ned space situations such as in hand-held mobile
devices using standard frequencies for mobile communications.

I. Introduction

In a multiple access channel (mac), some number of indepen-
dent transmitters communicate simultaneously with a receiver
while using the same band of frequencies. The capacity region
of the mac can be increased if the receiver uses multiple an-
tennas [1]. Consider, for instance, the Gaussian mac with two
independent single-antenna transmitters, where

CC
N ∋ y = h1x1 + h2x2 + n (1)

is the received signal vector, n ∼ CN(0, σ 2
n I) is additive white

Gaussian noise (awgn), x1 and x2 are the independent Gaus-
sian transmit signals, while h1 and h2 are the N-dimensional
channel vectors, where N is the number of receiver antennas.
Assuming that the receiver knows the channel vectors h1 and
h2, it is possible that the capacity region of this mac has got
rectangular shape. This happens only when h

H
2 h1 = 0, that is,

when the channel vectors are (by chance) orthogonal. When
the capacity region is rectangular, each transmitter can achieve
the same rate as it could have achieved if it had the channel
only to itself. This is the best situation for independent trans-
mitters. Of course, all of this is well known.

The contribution of this paper is the analysis of what actu-
ally happens when the distance between the antennas inside
the receiver’s array becomes small compared to the wavelength
and, ultimately, is reduced towards zero. In this extreme case,
the antennas are almost at the same position in space, forming
something that might be called a »point-array«. It seems fairly
natural that all the antennas of the point-array should sample
essentially the same electric �eld, for they are located almost
at the same position in space. Therefore, the channel vectors
h1 and h2 should converge to scaled all-ones vectors when
the antenna separation is reduced towards zero. Obviously, in
this case the channel vectors are not orthogonal any more, in
fact they are co-linear. As a result, the capacity region cannot
be rectangular anymore when the antennas are placed very
densely. All this seems quite intuitive. Only, is it true?

The trouble with this standard argument given above is that
it ignores the electromagnetic interaction of closely spaced an-

tennas. Electric currents �owing in each antenna excite electro-
magnetic �elds of their own which are felt and responded to
by neighboring antennas. For small antenna separation (com-
pared to the wavelength) this leads to strong mutual near-�eld
coupling. These electrodynamic e�ects turn out to have pro-
found in�uence on the information theoretic capabilities of
the communication system.
In this paper, we show that the mac channel vectors actu-

ally can be orthogonal despite the antenna separation being re-
duced towards zero (with respect to the wavelength). Thus, the
capacity region of the resulting Gaussian mac actually can be
rectangular, no matter how compactly the receiver antennas are
spaced. Moreover, it turns out that the Gaussian mac capacity
region employing dense arrays is strictly larger than that for
the more usual case of widely spaced antennas. These results
indicate that the size of the receiver’s antenna array does not
limit the information theoretic capability of the resulting mac.
This has practical implications for con�ned space situations
like in mobile hand-held devices, indicating the capability to
deliver excellent multi-antenna mac performance at standard
frequencies employed in current mobile communications.

II. System under Consideration

Consider the system shown schematically in Figure 1, display-
ing two independent transmitters (Tx1 and Tx2), and a re-
ceiver which uses N = 4 antennas (labeled 1, 2, 3, and 4), po-
sitioned uniformly on a circle with the diameter d. The trans-
mitters have the same distance to the center of the receiver
array and are located in the direction of the azimuthal angles
ϕ0, and ϕ0 + π/2, such that the line segments which connect
the transmitters with the center of the array form a right angle.
We assume that all antennas are isotropic radiators and re-
side within otherwise empty space. Similar results are obtained
with Hertzian dipoles [2].
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Figure 1: MAC formed by two independent transmitters (Tx1,
Tx2), and a compact 4-antenna receiver in empty space.
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III. The Capacity Region

From an information theory perspective, the system from Fig-
ure 1 is a mac described by (1). For the sake of simplicity, we
assume in the following that the same transmit power PT is
used by the two independent transmitters, such that:

[ x1 x2 ] ∼ CN(0, PT I). (2)

When the noise is Gaussian and white with variance σ 2
n , the

capacity region of this Gaussian mac is completely speci�ed
by the following three inequalities [1]:

0 ≤ Rk ≤ log2 (1 + PT

σ 2
n

∣∣hk ∣∣22) , k ∈ {1, 2}, (3)

R1 + R2 ≤ log2 det(I + PT

σ 2
n

HHH) , H = [ h1 h2 ] . (3a)

Note that (3a) can also be expressed as:

R1 + R2 ≤ log2 (1 + PT

σ 2
n

∣∣h1∣∣22) +

+ log2

⎛⎜⎝1 +
PT

σ 2
n

∣∣h2 ∣∣22 − (PT

σ 2
n

)
2 ∣hH

2 h1∣2
1 + PT

σ 2
n
∣∣h1∣∣22

⎞⎟⎠ .
(4)

From (4) it is clear that only in the case that h
H
2 h1 = 0, the

inequality (3a) is redundant, for it is ful�lled whenever (3) are
ful�lled. Thus, if and only if the channel vectors are orthogo-
nal, the capacity region has the shape of a rectangle, de�ned
by (3). To compute the capacity region for the system from
Figure 1, we have to determine the channel vectors h1 and h2 .

A. Ignoring the Mutual Coupling

The standard way of determining the channel vectors h1 and
h2 ignores electromagnetic interaction between antennas and
the electromagnetic �eld. Following this standard approach [1],
the channel vectors are described by the array steering vectors,
which are found for the geometry from Figure 1 as:

a(ϕ) =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

exp (jπ(d/λ) sin ϕ)
exp (−jπ(d/λ) cos ϕ)
exp (−jπ(d/λ) sin ϕ)
exp (jπ(d/λ) cos ϕ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5)

with the array center taken as phase reference. Herein, λ is the
wavelength, and ϕ the azimuthal angle of an impinging planar
wavefront (see Figure 1). Ignoring mutual antenna coupling,
the channel vectors become (see [1], page 297):

h1 = αa(ϕ0), h2 = αa(ϕ0 + π/2), (6)

where α is a complex valued constant. Because of

h
H
2 h1 = ∣α∣2e jγ (1 + e j2π

d
λ cos ϕ0)(1 + e j2π

d
λ sin ϕ0) , (7)

where γ = −π d
λ
(cos(ϕ0) + sin ϕ0), it is clear that:

d/λ < 1

2
Ô⇒ ¬∃ϕ0 ∶ hH

2 h1 = 0. (8)

That is, when the diameter d of the receiver array becomes
smaller than half a wavelength, the two channel vectors can-
not be orthogonal anymore. This means that for too small a
size of the receiver array, the capacity region cannot have the
desirable rectangular shape anymore. Now, there is:

∣∣h1∣∣22 = ∣∣h2∣∣22 = 4∣α∣2 , (9)

independent of d/λ and ϕ0. Moreover,

lim
d/λ→0

h
H
2 h1 = 4∣α∣2 . (10)

Fixing the transmit power to the value:

PT = σ 2
n

4∣α∣2 , (11)

one then obtains with the help of (3) and (4) that the capacity
region of the point-array is given by:

d/λ → 0 Ð→ 0 ≤ R1,2 ≤ 1, R1 + R2 ≤ log2 3. (12)

Recall that these results are based on the assumption that there
is no mutual coupling between the very closely spaced anten-
nas. This is, of course, not consistent with the electromagnetic
theory. Hence, the result (12) makes no sense from a physics
perspective. Let us now see what actually happens.

B. Taking Mutual Coupling into Account

To regain consistency with the governing physics, one has to
take the mutual antenna coupling fully into account. In the
next Section we will do just that, thereby showing:

lim
d/λ→0

∣∣h1∣∣22 = lim
d/λ→0

∣∣h2∣∣22 = ∣α∣2
47 + 15 cos 4ϕ0

8
. (13)

In contrast to (9), the squared Euclidean norm of the channel
vectors does depend on the angle ϕ0 (see Figure 1). The largest
norm occurs when ϕ0 is an integer multiple of 90○. Its value
of 7.75 ∣α∣2 is also signi�cantly larger than the prediction from
(9) which did not take mutual coupling into account. What is
even more remarkable, however, is that:

lim
d/λ→0

h
H
2 h1 = − ∣α∣2 7 + 15 cos 4ϕ0

8
. (14)

Therefore, the channel vectors actually can be orthogonal. E.g.,

ϕ0 = 1⁄4 arccos −7
15
≈ 30○ Ð→ lim

d/λ→0
h
H
2 h1 = 0. (15)

Using this value for ϕ0 in (13) it follows with the help of (15),
(11), (3) and (4), that the actual capacity region for the point
array is given by:

d/λ→ 0, ϕ0 = 1⁄4 arccos −7
15

Ð→ 0 ≤ R1,2 ≤ log2
9

4
. (16)

That is, the capacity region of a mac with an arbitrarily small
array can indeed be rectangular. Comparing (16) with (12), the
actual capacity region is larger than predicted without taking
mutual antenna coupling into account. Figure 2 shows a graph-
ical representation of the mac capacity regions for the point
array, which result either from considering the mutual cou-
pling (see (16)), or from ignoring mutual coupling (see (12)).
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Figure 2: Capacity region for the MAC from Figure 1 using
a point-array (d/λ → 0), for the cases where mutual antenna
coupling is either considered [(16)], or ignored [(12)].

Note that taking the mutual antenna coupling into account
not only makes the result consistent with electromagnetic the-
ory, but also reveals that the performance of the point-array
is better than predicted from ignoring mutual coupling.

IV. Dealing withMutual Antenna Coupling

In the following, we show how to obtain the results (13) and
(14) claimed in the previous Section. To do this, we need to
�nd a way how to take the mutual antenna coupling into ac-
count. In general, this can be done using multiport theory [3]–
[5]. Hereby, the receiver’s array of four antennas is modeled as
a linear electric four-port. Each port is characterized by two
physical quantities: namely a port voltage and a port current.
Due to linearity, the relationships among these eight port vari-
ables are completely described by the array’s impedance matrix
ZA ∈ CC

4×4
⋅Ω, and the help of one voltage source in series at

each port, such that the vector uA = [uA,1 uA,2 uA,3 uA,4]T of
the antenna port voltages can be written as:

uA = ZA iA + uS + ũN , (17)

wherein uS = [uS,1 uS,2 uS,3 uS,4]T is the vector of the voltages
which appear at the open-circuited ports as a result of the im-
pinging wavefronts which originate from the two transmitters.
The vector ũN = [ũN,1 ũN,2 ũN,3 ũN,4]T is the vector of open-
circuit noise voltages received by the antenna, while the vector
iA = [iA,1 iA,2 iA,3 iA,4]T contains the antenna port currents.
When the background noise impinges on the antenna array
isotropically, it can be shown [6] that the noise voltage vector

ũN ∼ CN (0, 4kTA∆f Re{ZA}) , (18)

where k is the Boltzmann constant, TA is the noise temperature
[7] of the antennas, and ∆f is the bandwidth. As is shown in
Figure 3, the noisy antenna ports are connected to the inputs
of a matching network, which operation shall be described by:

[ uB

uA
] = ZM [ iB

−iA
] . (19)

ZA ZM

uS,1+ũN,1

uA,1

uS,4+ũN,4

uA,4

iA,1

iA,4
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uB,4 R

R
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iB,4

noisy
antenna array

lossless matching
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receive ampli�ers

iN,1

uN,1

u1

iN,4

uN,4

u4

Figure 3: Multiport model of a noisy antenna array connected
to noisy receive ampli�ers via a lossless matching multiport.
The observable outputs are the voltages u1, . . . , u4.

Here, uB = [uB,1 uB,2 uB,3 uB,4]T and iB = [iB,1 iB,2 iB,3 iB,4]T
are the vectors of the port voltages and port currents at the
matching networks’ output. Elementary analysis of the circuit
in Figure 3 shows that choosing the impedance matrix

ZM =
⎡⎢⎢⎢⎢⎣
j Im{Zout} I j

√
Re{Zout}Re{ZA}1/2

j
√
Re{Zout}Re{ZA}1/2 −jIm{ZA}

⎤⎥⎥⎥⎥⎦ ,
(20)

ensures that the output ports of the matching network become
electrically decoupled and present to the receive ampli�ers the
output impedance Zout. Note that (20) de�nes a purely imagi-
nary symmetric matrix. This means that the matching network
is a lossless and reciprocal multiport [3]. The noisy receive am-
pli�ers are modeled in the usual way [8] by representing them
by their input resistance R, a noise voltage source uN, j , and a
noise current source iN, j , with j ∈ {1, . . . , 4}. Because the four
receive ampli�ers are independent devices, it is reasonable to
assume that the noise contributions of di�erent ampli�ers are
uncorrelated. The system’s output is collected into the vector
u = [u1 u2 u3 u4]T of the noisy observable voltages shown on
the right-most end of Figure 3. From circuit analysis follows

u = jR
√
Re{Zout}

R + Zout

Re{ZA}−1/2 uS + n, (21)

where n ∈ CC4×1
⋅V is the total noise voltage vector with

n ∼ CN (0, σ 2
n I) . (22)

Because of the operation of the lossless matching network, the
resulting observed noise is indeed white and Gaussian. It can
be shown that its variance σ 2

n is independent of the diameter
d/λ of the antenna array [5]. What remains to be found is the
signal voltage vector uS, and the real-part of the impedance
matrix ZA. Because the antennas do not disturb the electro-
magnetic �eld in case the port currents are zero [9], the open-
circuit voltage vector uS which results from an impinging pla-
nar wavefront is proportional to the array steering vector (5)
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corresponding to the wavefront’s direction ϕ of arrival. For
the 2 transmitter scenario from Figure 1, this means that:

uS = βa(ϕ0)x1 + βa(ϕ0 + π/2)x2 , (23)

where β is some complex valued scalar constant, and x1 and
x2 are the information carrying transmit signals from (2). Sub-
stituting (23) into (21), we obtain:

u = γRe{ZA}−1/2a(ϕ0)x1 + γRe{ZA}−1/2a(ϕ0 + π/2)x2 + n,
(24)

where γ = jβR
√
Re{Zout}/(R + Zout) is yet another scalar con-

stant. Now for the real-part of the array’s impedance matrix.
For two isotropic radiators spaced a distance s apart, it can be
shown [5], [7], [10] that

N = 2 Ð→ Re{ZA} = Rr [ 1 j0(ks)
j0(ks) 1

] , (25)

where Rr is the radiation resistance [4], and the wavenumber
k = 2π/λ is introduced for notational convenience. Note that
j0(x) is the spherical Bessel function of �rst kind and zero-th
order:

j0(x) = sin x

x
. (26)

In the array shown in Figure 1, there are two possible distances
between antenna pairs, namely d and d/√2. Hence, generaliz-
ing (25) to the N = 4 antenna array from Figure 1, we obtain:

Re{ZA} = RrC , (27)
where

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 j0(kd/√2) j0(kd) j0(kd/√2)
j0(kd/√2) 1 j0(kd/√2) j0(kd)
j0(kd) j0(kd/√2) 1 j0(kd/√2)
j0(kd/√2) j0(kd) j0(kd/√2) 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

(28)

When we identify the output vector y from (1) with the voltage
vector u from (24), it follows with the help of (27) and (28)
that the channel vectors from (1) are given by:

h1 = αC−1/2a(ϕ0), h2 = αC−1/2a(ϕ0 + π/2), (29)

where α = γRr is a scalar constant. Comparing (29) with (6),
it is clear that ignoring mutual antenna coupling corresponds
to setting the matrix C in (29) equal to the identity matrix,
while, in fact, it is given by (28). Note that, as d/λ → 0, the
matrix C approaches the all-ones matrix. Substituting (5) and
(28) into (29) one obtains a�er a lengthy computation:

lim
d/λ→0

h1 = α [ a b a∗ b∗ ]T , lim
d/λ→0

h2 = α [ b∗ a b a∗ ]T ,
(30)

where
a = (2 +√15 cos(2ϕ0) + j2√6 sin ϕ0) /4, (31)

b = (2 −√15 cos(2ϕ0) − j2√6 cos ϕ0) /4. (31a)

The claims (13) and (14) then follow immediately from (30),
(31) and (31a).

In Figure 4, the capacity regions of the mac from Figure 1
are shown for di�erent sizes of the antenna array and di�erent
transmitter positions. They are computed by substituting (5)

0 0.5 1 1.5
0
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1.5

0 0.5 1 1.5 2
0
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1.5
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R1

R2

R1

R2

ϕ0 = 1⁄4 arccos(−7/15) ϕ0 = 0

d/λ → 0

d = λ/4

d = λ/2

d/λ → 0

d = λ/4

d = λ/2

Figure 4: Actual capacity regions for the MAC from Figure 1
when mutual antenna coupling is taken into account, for three
di�erent diameters of the antenna array, and two di�erent user
positions (ϕ0 ∈ {1⁄4 arccos(−7/15), 0}).
and (28) into (29), and the latter into (3) and (3a), while the
transmit power is held constant (see (11)) in all cases. Note that
the mac employing the point-array (d/λ→ 0) o�ers a strictly
larger capacity region than the macs with larger arrays.

V. Conclusion

A compact size of the receiver’s antenna array does not impair
the capacity region of a Gaussian multiple access channel. On
the contrary, it is the smallest arrays (much smaller than half
the wavelength) which o�er the largest capacity region for the
same transmit power. This perhaps counter-intuitive result is a
consequence of the physics of mutual electromagnetic antenna
coupling in conjunction with a properly engineered matching
network. In contrast to folklore belief, compact antenna arrays
make attractive candidates for excellent multiple access perfor-
mance in con�ned-space situations, like in mobile handsets.
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