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Abstract

This study deals with the determination of a global model of the Earth’s gravity
field from the measurements of the Gravity field and steady-state Ocearta@oou
Explorer (GOCE) mission. GOCE is the first satellite mission with a gravitational
gradiometer on-board. It measures the elements of the gravitational igréetisor
(GGT). The orbit measurements by GPS are sensitive to the long wave s ibf

the gravity field, the gradiometer measurements are used for the determirfatien o
short wavelength part with very high accuracy. Both observation tgpestudied
and analyzed in this work.

The integral equation approach is applied to the kinematic orbits. It is modified in
several ways. First, continuous transition of successive shortisaregalized in our
computation. Second, empirical accelerations are introduced in ordestobatine
non-gravitational accelerations and mis-modeling errors. The resulinettavith

this approach is compared to a very precise GRACE model, resulting in aastand
deviation of 7.3 cm up to degree and order 70, based on only two month®GEG
kinematic orbit data.

The gradients obtained from the GOCE gradiometer are analyzed in vaspasts,
namely in the time domain, in the frequency domain, and in the geographica spac
domain. The gradiometer exhibits very good performance. Tectonic ésatue
found in the data directly, before a spherical harmonic analysis (SHApigal. With

a bandpass filter, the gradiometer data are used for SHA. The resufténfdividual
components are obtained.

The combination of GOCE SST and SGG is realized by taking the weighted sum of
the corresponding parts of the normal matrices as well as of their riglt $ides.

The reciprocals of the variances of each individual observation tgpe |s relative
weights for their combination. A gravitational field model is obtained purelgtas

on GOCE data, together with a constraint in the polar areas for stabilizatiba. T
model is then compared to other recently developed models. It shows gedy g
consistency with them. Validation experiments of our model show a good temsys

to external data, namely “GPS leveling” data in several regions. Contritsutd
individual components are obtained by means of resolution matrices. Tiayses
demonstrates that thg, component is very strong and contributes up to 32.7% of the



total solution. The constraint in the polar areas as applied in our solutidrilnges
mainly to the zonal and near-zonal coefficients with a percentage of 0.2%.

Apart from the GOCE only solution, also a combined gravitational field moaieled
GOGRAOL1s is obtained by the combination of GOCE with GRACE. This model is
very accurate in the long wavelength part (due to GRACE) and shoslesgth part
(due to GOCE). The contribution of GRACE in this model is 30.06%, whered®th
GOCE is 69.9%.

The gravity field model derived from GOCE-only measurements is analpzedns
of degree RMS and degree cumulative error, formal error in terms aitlgesight
propagated from the variance-covariance matrix, as well as validationexfénnal
data. It shows that the GOCE-only model reaches an accuracy of 4noi terms
of geoid height. It is quite close to the objective of the mission.



Zusammenfassung

Es soll gezeigt werden, wie ein Schwerefeldmodell aus Messungebadiellitenmission GOCE
hergeleitet wird. GOCE ist die erste Satellitenmission, die mit einem Gravitatedlisgneter aus-
gestattet ist. Satellitengravitationsgradiometrie (SGG) ist die Messung déeavibleitungen
des Gravitationspotential. Es werden die Komponenten des GravitationstéG§5T) gemessen.
Die Bahnbestimmung dient haupthlich dazu, die langen Wellénigen des Erdschwerefeldes zu
detektieren, withrend die Gradiometermessungandie Bestimmung derilczeren Wellerdngen
des Schwerefeldes verwendet werden. Beide Arten von Messsajen in dieser Arbeit unter-
sucht und analysiert werden.

Die kinematischen Bahnen des GOCE Satelliten sind das Ergebnis des “stdediitiilite
tracking (SST)”. Sie sind die Grundlage des Schwerefeldmodellierung emitltegralgle-
ichungsmethode. Hierbei wurden einige Neuerungen eifgefErstens ist die Nahtstelle zweier
benachbarter Kurzigen durchgngig, d.h. stetig. Zweitens werden empirische Beschleunigun-
gen eingdiihrt, um nicht-gravitative Anteile in den Beschleunigungen sowie Fehkbhazu eli-
minieren. Das Resultat dieses Ansatzes ist in seiner Quaétgleichbar mit einem hoctiarisen
GRACE Modell. Es wurde eine Standardabweichung von 7.3 cm erraitéit Ulerwendung einer
Kugelfunktionsentwicklung bis Grad und Ordnung 70 und basierendwef Monaten kinema-
tischer GOCE-Bahn.

Die durch das GOCE Gradiometer ermittelten Gravitationsgradienten werdeneau
schiedene Arten analysiertamlich im Zeitraum, im Frequenzraum und in ihréumlichen
Verteilung. Die gemessenen und gefilterten Gradiometerdaten sind vorQuabgt. Tektonis-
che Anteile werden in den Daten direkt sichtbar, noch bevor eingrsah-harmonische Analyse
(SHA) erfolgt ist. Fir die SHA wurden die Gradiometerdaten mit einem Bandpassfilter gefiltert.
Jede einzelne Komponente weist eigene Charakteristiken auf.

Die Kombination von SST und SGG erfolgt durch eine gewichtete Summe dee-kor
spondierenden Elemente der Normalmatrix sowie der rechten Seiten desdit@airchungssys-
tems. Die Reziproken der Varianzen jedes einzelnen Beobachtungsyps dls Relativgewichte
fur die Kombination. Zu Testzwecken wurde ein Schwerefeldmodell nurGDEE-Daten
abgeleitet, mit einer Stabiliserung in den beiden Polgegenden in denen katee @rliegen.
Anschlieend wurde das Modell mit anderdir&ich erschienenen Modellen verglichen. Das
GOCE-Modell zeigt sehr gutdbereinstimmung zu den anderen Modellen. Die Validierung un-
seres Modell weist eine sehr gutkbereinstimmung auf zu externen Datemnrich zu GPS-
Nivellementdaten in mehreren Regionen dieser Erde. Der Informatioalsgeh einzelnen Kom-
ponenten wurde durch die Berechnung einer daifhgsmatrix ermittelt. Es zeigt sich, dass die
V-Komponente einen starken Einfluss von 32,7% auf die Gedaomtfj hat. Die Regularisierung

in den polaren Regionen, die wir in unserdysung verwenden, hat hau@thlich einen Einfluss

Vii



auf die zonalen und beinahe zonalen Koeffizienten. Dieser Einflusshsigchtig, betagt aber
nur 0,2% der Gesanftsung.

Neben einem reinen GOCE Modell wurde ein kombiniertes Schwerefeldihrenge einer
Kombination von GOCE und GRACE berechnet, genannt GOGRAOQO1s. DtmilAder GRACE-
Daten in diesem Modell betgt 30,06% und der von GOCE 69,9%.

Das Gravitationsfeldmodell nur basierend auf Messugen von GOCEewwurtersucht mit
Hilfe von Gradvarianzen, dem kumulativen Fehler pro Grad, dem formizdbler der Geoidbhen
auf der Kugel und abgeleitet aus Varianz-Kovarianz-Fehlerfortpflag und durch eine Vali-
dierung mit unabéingigen Daten. Es zeigt sich, dass der Geoidfehler des GOCE-Modals 4
6 cm betagt.

viii
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Introduction

1.1 Motivation

Since the first satellite, Sputnik I, was launched on October 4th, 195%htistéehave benefited
tremendously from satellites in their understanding of the evolution and dysarhibe Earth.
Since then, many satellite missions have dealt with Earth science. Geodetic sh#ddlitgs, in

general, to one of the four following categori€ufmmel 1992Sneeuw 2000

i. they serve as a geometric target for point positioning, such as LAGEDS8-LAGEOS-II,
ii. as a measurement platform equipped with cameras, SAR or altimetry such as
TOPEX/Poseidon, ERS-1 & 2,
iii. as a proof mass in free fall in the Earth’s gravitational field for gravitidfidetermination,
e.g., CHAMP, GRACE and GOCE, or
iv. the gyroscopic motion of the orbit plane is used for Earth rotation detetinim relative to
an inertial reference frame, e.g., again LAGEOS-I and LAGEOS-II.

The knowledge of the Earth’s gravitational field (EGF) always needs tmproved in terms of
accuracy and resolution. Within reasonable time, substantial improvementsiyabe achieved
by exploiting new approaches based on satellite gravitational observatibnasg-reeden et al.
2008. The observations from satellites can be divided essentially into two maigocags: ge-
ometrical and physical. Since satellites orbit the Earth under the influertbe &arth’s gravita-
tional field, almost all the observations can be related to the EGF and aséoitesfiunctionals of it.
In turn, the EGF can be recovered either from the satellite motion itself, fremethtive motion
of two or several satellites (satellite-to-satellite tracking (SST)), or fromasigpetric payload,
such as a gravitational gradiometer (SGG). In Geodesy attempts are mattatd the maximum
information from these data for the purpose of determining the EGF. Ngwadre and more
data are becoming available, resulting in better and better knowledge ofavigydield. The ob-

servations collected by satellites are more homogeneous than terrestealations, not only in
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space, but also in time. This gives us the possibility to explore also the timaxgaravitational
field (Wahr et al. 2001

This dissertation is dedicated to the investigation of the methodologies of SSTG&Gdas
well as to actual gravity modeling from SST and SGG data from the GOCE misSSIDEE is the
first satellite mission with a gravitational gradiometer. Despite many investigatidesq et al.
2003 Rumme| 1996 Rummel and van Geldereh992), there are still many aspects to be learned
from the actual GOCE mission, concerning subjects such as the perfmgroathe payload, the
characteristics of each individual component, their combination, etc.

The dissertation will address three themes related to gravity field analysisG@CE. The
first of the three topics is SST. Since the GOCE orbit can be computed fil@g1data, similar
to the case of CHAMP, i.e. by the high-low SST concept, one can recovdt@t based on the
kinematic orbits of GOCE. The advantages of GOCE over CHAMP are théielower altitude,
which results in a better spatial resolution; second, the higher samplingfr&®©E, which
also increases resolution and precision; and third, the air drag in fligittidin of GOCE to be
compensated by ion thrusting, which reduces the effect of mis-modelirigdrieg. The integral
equation approach will be used for gravitational field recovery fronC&@rbits in this study.

The second topic is SGG. The basic observables are accelerationdatasigns inside the
spacecraft. The gravitational gradients are derived from the diffeeof the measured accelera-
tions, by removing the contribution of angular motion. From the mathematical pbui¢w, the
concept of SGG is the use of the second derivatives of the gravitapoteitial for the estimation
of the spherical harmonic (SH) coefficients. With the test masses veg/tdesch other, the SGG
measurements are very sensitive to high-frequency variations, bigdastive to low-frequency
ones. The gradiometer measurements contain colored noise, of whichwbegmectrum density
(PSD) at lower frequency is larger than at higher frequencies. leigtbre an important aspect
to extract the gravitational information in the presence of the colored noise.

The third topic is the optimal combination of SST and SGG. The performanc&ofis
better than that of SGG for lower degree coefficients; it is the other waydréor higher degree
coefficients. The gravitational information content of SST and SGG shmubtmbined correctly,
otherwise the results will be not optimal or even biased. The variance fa@o important index
in such an analysis. It represents the information content of the olisertigpes and can therefore
be used for weighting of the various contributions.

Earth science is dedicated to the study of the Earth as a static and/or dynateim syhich
is composed of the solid Earth, ice, oceans and atmosphere. The grawitfitthof the Earth is
related to the spatial distribution of matter, and its temporal variation. Determircititve EGF
and its fine structure as well as its temporal variations is not only one of gie bbjectives of
geodesy, but also provides important information for the understanditing &carth as a system.
It is therefore desirable to obtain the Earth’s gravitational field with higlolagi®n and high
accuracy, both globally and regionally.
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In geodesy, EGF with a high precision and global consistency is cewirahé establish-
ment of a global unified height datum, and a long-distance height contralill lalso provide
a height constraint between land and sea, ocean and islands. With aduigtacy and high-
resolution geoid, it is possible to replace expensive first- and seauled-eveling networks by
“GPS-leveling”. The geoid is the most appropriate reference surfaca §lobal height datum.
Because of the unknown offsets between various datums, there exeiales among maps from
different countries or institutions. Many applications need a very detaitednhgghly accurate
global-scale geoid, see Fif).1
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% a (G/S) coordinates Regional height,
= & | l _ gravity and
(¢ X, Geoid —» GPS/Leveling —* i .
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Figure 1.1: applications of Earth’s gravitational field

This work is dedicated to the methodology and realization of how to obtain therisph
harmonic coefficients from satellite gravity data. Many applications, as iltestia Fig.1.1, will
hopefully benefit from the spherical harmonic coefficients obtained aitbllge gravity data in
this study.

1.2 Overview of Satellite Gravitational Missions

With the development of dedicated satellite gravimetry, in particular with the three mis
sions, CHAllenging Minisatellite Payload (CHAMP), Gravity Recovery and Clexiaxperiment
(GRACE), Gravity field and steady-state Ocean Circulation Explorer (5Q@ur knowledge of
the Earth’s gravitational field and its temporal component has been andewitiffiroved signifi-
cantly. These missions are based on different innovative measureomaeipts.

CHAMP, in operation from 2000 till 2010, utilized the measurement concegpatellite-to-
satellite tracking in high-low mode (SST-hl). The low Earth orbiting (LEO) sateliltAMP,
initially at 450 km altitude, was continuously tracked by the high GPS satellites agbelerom-
eter on board CHAMP measured three-dimensionally non-gravitationalesations acting on
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the spacecraft along the orbit. This principle can be considered aguirdstermination of 3-D
positions. It allows accurate determination of the long-wavelength paredjridwitational field.
Among others the polar regions were covered, which were difficult tesscprior to CHAMP.

Launched on March 17th, 2002, the GRACE mission is based on the darfcegiellite-to-
satellite tracking in a low-low mode (SST-Il). With two satellites in the same LEO orbitya
400 km altitude) and approximately 200 km apart, the biased ranges betrarerare measured
with a very accurate K-Band ranging system, with an accuracy of dewaeometers. The range
rate and range accelerations are derived by numerical differentiationthe biased ranging mea-
surements. The satellite positions are determined by GPS tracking. Thes rargstrongly
influenced by gravitational field variations. Therefore, the gravitatifietd can be recovered
accurately. Additionally, micro-accelerometers are located very close toethier of mass of
each satellite. They measure the non-gravitational accelerations acting sateflites and caused
in particular by air drag and solar radiation pressure. GRACE providepdsal gravity varia-
tions, such as monthly changes in the gravitational field, as well as a glolialimeesolution
gravitational field of the Earth with high accuracy. Many representativéetscssuch as AlUB-
GRACEOQ1S {aggi et al, 20103 and ITG-2010sKurtenbach et al.2009 derived from GRACE
show very good accuracy in the lower degree coefficients. The timessHritbe EGF solutions
shows the temporal changes of the gravity field. Many important findirggstaained from them.

With the SST technique of current accuracy, it is difficult to achieve am dnigher spatial
resolution. A new technology with high sensitivity in higher frequencies isefoee desirable.
At the beginning of the 20th century, the Hungarian physicisés (1848-1919) developed an
instrument for measuring gravity gradients. This instrument is the so-cattEdidalancel{oop
1993. Instead of one proof mass as used in a gravimeter, a torsion balamgists®f two point
masses, (asymmetrically) suspended to the arm of a balance. The gradigngs produce a
torque on the beam of the balance, resulting in a rotation of the beam. Ty goaque is coun-
terbalanced by a restoring torque exerted by the fiber with which the beauspended. The
restoring torque is a measure of the gravity gradientdvds achieved with his instrument a pre-
cision of 1 E (1 E = | Btvds unit = 10° s~2). In general, instruments which measure gravity gra-
dients are called gradiometers, and the measurement technique is callietngtag (measuring
the gradients of the components of the gravity vector), analogously to tteegravimetry (mea-
suring gravity). The idea of satellite gradiometry was pursued soon aftautttessful launch of
the first satellite in 1957. In the late 1980s and early 1990s, ESA supxitdis of a mission
called Aristoteles, which was later succeeded by the concept of the GOGBmMmis

Launched on March 17th, 2009, GOCE is the first satellite mission with a gtiavigh gra-
diometer. The mission objectives of GOCE, as formulated in 1#8dpean Space Agency
1999 Johannessen et g22003, are the determination of the global field of geoid heights with an
accuracy of 1 to 2 cm and of gravity anomalies with an accuracy of 1 mGaltcaachieve this
with a spatial resolution of a 100 km half-wavelength, which corresptmttse degree and order
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of 200 in terms of spherical harmonics (SH) of a gravity field model. With the-lgagelength

ered.

signal recovered with high-low SST and short-wavelength signal with thiecard gradiometer,
see Fig.l.2 a gravity field model with high resolution and high accuracy is expected tedwo-
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Figure 1.2: Satellite gravity gradiometry (credited by ESA)

GOCE is a scientific drag-free mission, a requirement necessary fpetinaination, but also

for the maintenance of the low altitude of the satellite: without drag compenstit@wery low al-
titude of the mission would lead to its loss in the atmosphere within a few weeks tifibsheric
drag compensation in the direction of motion is done by a pair of ion thrustergvagortional

thrust control. In order to provide enough power for the thrustersothé is designed to be

sun-synchronous to continuously absorb solar radiation with its solaipé&r power supply.

An inclination of 96.7 is chosen for such an orbit. A complete coverage of the Earth with orbit
trajectories is obtained in a 61-day repeat cycle.

Figure 1.3 shows the GOCE orbit coverage in an Earth-centered Earth-fixed ffa@EF)
based on the actual orbits in 10 days (left) and 61 days (right), regelgctit can be seen that

there are gaps in the polar areas due to the orbit inclination of 9&ar coverage of the polar
gaps, other data such as those from GRACE or terrestrial measureraeat®tbe used.
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(a) 10 days (b) 61 days

Figure 1.3: GOCE orbit coverage viewed in ECEF frame, over 10 days (eft) 61 days (right)

1.3 Outline of this Work

The primary objective of this work is to study gravity field modeling based oratheal gradio-
metric measurements of GOCE as well as their combination with SST.

We start with a representation of the Earth’s gravitational potential in Chapt&he inter-
action between SH coefficients and a satellite orbit is formulated with the relagiovebn the
acceleration of the satellite and SH coefficients. The various sourcestofipation of the orbit
are discussed. Using orbit integration, a case study is presented fbustmation of the GOCE
orbit perturbation. Chapter 2 provides the basic theory and is followdHdégctual computation
in Chapters 4 and 5.

Chapter 3 presents the ideas of a large least squares problem as eppliestudy. Sequential
least squares is discussed for the case of GOCE. Due to the existehespoliar gap, the zonal
and near-zonal coefficients are correlated in the resulted gravity riodelurther constraint was
applied. It is worthwhile to apply some regularization to the least squarénsysr overcoming
this problem. An idea of polar constraint is used in this study. The principleoofribution
analysis is formulated based on the normal matrices. The relationship bemgeagTt matrix and
filtering is derived. The designed filter is then used for the actual datgsima

Chapter 4 presents the SST part. The observation model is construststidrathe integral
equation approach. Empirical accelerations are applied along the orkabsorption of not-
well-enough-modeled perturbation forces, as well as non-gravitatamealerations. A GOCE
SST-only solution is derived. The effect of polar constraint on the &8y solution is analyzed.

Chapter 5 introduces the concept of GOCE satellite gravity gradiometry (SB&gradiome-
ter data are analyzed in the frequency, time and space domain. Theailsemodel is derived
in the Gradiometer Reference Frame (GRF), to avoid the rotation of gradiorneimponents.
Spherical harmonic analyses are applied to each of the four accuraf@noents. Intermediate
results from the SGG data are obtained and studied.
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1.3 Ouitline of this Work

Chapter 6 deals with the combination of SST and SGG. The final combined soisifiwe-
sented in this chapter. The results are analyzed in terms of error peedétgngular form of the
coefficient set, comparison of various gravity field models, and contribdit@om various obser-
vation types. In addition, a combination of GOCE and GRACE is presented.

Last but not least, Chapter 7 draws conclusions and offers sonmgegéves.
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Theory about Orbit Perturbations and
Case Study

This chapter presents the fundamental theory, specifically about thesespation of the gravi-
tational field and of satellite orbits. The representation of the gravitatioridliigh spherical
harmonic series is discussed. The perturbations of satellite orbits duedcsfaach as the non-
spherical part of the gravitational force, air drag and solar radiatiesspire, etc. are presented.
Although the GOCE satellite is a drag-free mission in flight direction, it is necg$s remove the
effect of non-gravitational forces either by using the accelerometerataby modelling it with
some empirical parameters.

The gravitational field and geoid are discussed in section 2.1; the reldapopstween the
gravity coefficients and the specific patterns of the geoid are outlined ireiti®s. Section 2.2 is
dedicated to the force model of satellite orbits. Section 2.3 presents variamqraions. Section
2.4 is dedicated to the numerical integration strategies. Simulations for the fc@@QE are
presented in section 2.5. Section 2.6 finally gives the summary of this chapter.

2.1 Gravitational Field and Geoid

Based on Newtonian mechanics, the Earth gravitational potential candeseaped as the follow-
ing spherical harmonic seriellgfmann-Wellenhof and Moritz 2006

max n+1 n
V(@A,r) = %DNZ (Rr@> ’ zoﬁnm@nfp) (ComCOSMA) + Smsin(mA)),  (2.1)

whereGMg is the product of the gravitational constant and the mass of the Hstls the ref-
erence radius of the gravitational field; ¢, A ) is the spherical coordinate triplet of a point in the
Earth-fixed frame where we want to compute the potenBgk(sing) are the fully normalized
associated Legendre polynomials &f degree and f order;C,m and S, are the fully normal-
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ized spherical harmonic (SH) coefficients to be estimated. The maximumabsoblegredNmax,
corresponds approximately to the spatial resolution of D = 200Q0/half-wavelength in kilo-
meters. The second summation runs from zero ondlep to actual degree which means that
m < n. The higher the d/o, the more detail of the gravitational field is represented.

Radial-symmetric of the mass distribution is a good approximation resulting in d@acons
gravity. However, there are small temporal variations, too. The corenaartle convection,
plate tectonics, glacial isostatic adjustment, ice melting, sea-level rise, aeebstribution, the
global water cycle, atmospheric dynamics, all of these are changingdkigagional field. Thus
the coefficients of the gravitational field become functions of time. Since GiSCEsigned to
determine the static gravitational field, we will not investigate the recoveryngbdeal variations
in this study.

Let us assume that the SH coefficieBts, andS,y, are known. Then the gravitational potential
V can be computed by EQR.(). This is referred to as spherical harmonic synthesis (SHS). Gravity
quantities other thaW can be derived by small modifications of this equation, such as taking
derivatives. Such derived gravity functions include geoid heiyhf; meters above the adopted
reference ellipsoid), gravity anomalidg (in mGal, where 1 mGal = I® m/s?) as well as the
second order derivatives of the gravitational potential with respecktthtiee spatial directions,
also known as gravitational gradients (itis, where 1 Btvos Unit= 1 E = 10°s72).

The geoid height can be computed with spherical approximation as

Nmax n+l n
N(@,A,r) =Ry Z)( ) nr;)I5r,rn(sinc;3) (AChmcogmMA) + ASymsin(mA ) ) (2.2)

where the coefficientAC, andAS,, are gravity field coefficients, subtracted the corresponding
coefficients of adopted ellipsoidal normal field, du{Sa and Pichal977).

If V(@,A,r) is continuously given on a closed sphere, the SH coefficients can ediéy
integral formulae:

_ w2 2m

Cm | Re / / - cosmA '

S }_4nGM@ / V(@,A,r)Pam(sing) cosm) cosp-dAdo. (2.3)
@=—1/2A=0

The signal strength per degree can be represented with degree Raot 8¢uare (RMS)
values evaluated as

on= \/2n+1 Z ( ”m+§m>' 24)

Our subiject is spherical harmonic analysis (SHA). In this case, théiceats up to degree
and ordemMNn, of the spherical harmonic series are the fundamental gravity unkndwovs.the
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left-hand side of Eq.4.1) or its functionals is assumed to be observed. In satellite geodesy, the
determination of the coefficients is based on satellite measurements, e.qg., diith@fsatellites
or gravitational gradient along the orbits.

The observations collected from satellite are, in general, discrete and miighrfumber, it is
necessary to make use of least squares approach for the determiridliersél coefficients. The
maximum of the degree and order represents the spatial resolution o&thational field we can
achieve. With the set of coefficients, the geoid of the Earth can be determitiea well-defined
resolution.

It is convenient to represent the SH coefficients in the form of a triaaglshown in Fig2.1,
where the vertical axis of the triangle represents the degehe SH coefficients (or the cor-
responding spatial resolutidd). The horizontal axis refers to the order< n with the cosine
coefficientsCny, on the right and the sine coefficierfs,, on the left side. Coefficients of order
zero are called zonal harmonics, those of the same degree andsdarsectorial harmonics,
and all other coefficients tesseral harmonics.

COO

Si1 || Cio || Cia

S || 1 || Cao || Co1 || Ca2

Ss3 || Ss2 || Ss1 || Cs0 || Caa || Cs2 || Cas

e . : : : : : . L

Sectorial Tesseral Zonal Tesseral Sectorial

Figure 2.1: Triangular representation of SH coefficients

For programming, the SH coefficients are in general saved in a matrixpagsh Fig.2.2. It
is more compact to store the coefficients in this way. There are other possbditieh as in the
Bernese software, where the cosine terms and sine terms are saved iectoisy One can see
in Fig. 2.2 that the total number of coefficients (Blmax+ 1) for a gravitational field model up
to degree and ordéMnhax. One may decide only estimate the coefficients of degrees Iftgmto
Nmax In case olNnmin = 2, a common choice is to fix the degree zero to a constant and degree one
to zero. The latter choice implies that the geocenter coincides with the prediefilgin of the
coordinate system in which the measurements are derived. Then the totanto be estimated
is (Nmax+ 1)2 — (Nmin)?.

10
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With the gravitational field as presented in ER.1§, plus the centrifugal potential due to the
rotation of the Earth, the geoid of the Earth is defined as an equipotentiateaf mean sea level,
i.e. W=V +Z =W = const, wher& is the centrifugal potential due to Earth rotation. Thus, the
geoid is an equipotential surface which coincides (approximately) with the wezan surface.
According to C.F. Gauss, it is the “mathematical figure of the Earth”, in fddheogravity field.
Because the centrifugal potential can be easily obtained from the angtéaof the Earth, the
term gravity field model in this dissertation has the same meaning as gravitatelddahbdel.

The geoid of the Earth is de-
fined by the set of gravity co-

efficients and a set of additional Coo || Sz || S || ;e

auxiliary parameters. We distin- — — — —
Cio || Cu1 || S22 || S32

guish three types of SH coeffi-

cient: zonal, tesseral and secto- Coo || Cor || Cop || Se3

rial, compare again Fi2.1 The

type of coefficient describes a par- Cso || Ca1 || Cs2 || Ca3

ticular pattern of the SH functions.

Figure2.3shows the different pat-

terns of SH functions to the differ-
ent types of coefficients. Figure 2.2: Matrix representation of SH coefficients
One can see that zonal coeffi-
cients in Fig2.3acorrespond to a pattern only changing in north-south direction. Theseh&s
represent bands of latitude, invariant to longitude. The tesseralaentf correspond to a pattern
represented as “tesserae” of the Earth, rather than bands, s€e3gigrhe sectorial coefficients
correspond to a geoid representing bands of longitude. These bidipdgitude divide the Earth
into 2m (for a harmonic of degree and ordermf) "orange-slice” sectors, as shown in F&3c

The sum of the three Figures is displayed in Rgd

2.2 Satellite Orbit and Perturbation

A satellite orbiting the Earth will experience several kinds of perturbatiocefm Thus, the six
Keplerian elements are functions of time. The types of perturbation forckeslmthe Earth’s non-
spherical gravitation, third body attraction (in particular the moon and thg salid Earth tides,
ocean tides, pole tides, atmosphere drag, solar radiation, Earth radagievell as other non-
gravitational perturbations. The most dominant perturbation force is th&'&aon-spherical
gravitational field. Any perturbation will make the actual satellite orbit deviatmfa two-body

orbit, a Kepler ellipse, so we need to model the perturbation forces asaselguas possible, in

11
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(€) Ca0,20 andS020 (d) sum of the previous three

Figure 2.3: Characteristic patterns of spherical harmonic functi@esial, tesseral, sectorial and their
sum
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order to arrive at a precise orbit. The acceleration of the satellite caxpbessed as

' = eg+ ?et‘f‘aot‘f‘anb‘i‘ 8dragt srp+ 8erp+ 8ge+ Aother (2.5)
=f(t,r,f,p) +fstc,

whereagq is the force (per unit mass) due to Earth’s static gravitational fieldaghis the force
due to the solid Earth tides; th®; is the ocean tides; tha,, is the third body attraction (in
particular the moon and the sun); th@ag is the air drag; thes, is the solar radiation pressure;
theaerp is the Earth radiation pressure (albedo); #heis the effect of general relativity; th@ner
represents the forces which are not modeled or not known to us. Tdeedan be decomposed into
f(t,r,r,p) described with an analytical force model which one uses for perturbatimputation,
andfsic the so-called stochastic forces, introduced to absorb mis-modeled anddateshéorces.

An overview of the forces from different sources is displayed in Eig.

Sun Earth radiation
pre‘ssure |
Attraction of the Attraction of the
Moon
Sut
Ay drag
Attraction of the Solar radiation
Earth pressure

Figure 2.4: Some of the forces experienced by Earth-orbiting satellite

In addition to the disturbing forces mentioned above, short-term mass vasatidhe at-
mosphere and in the ocean must be removed, since these mass changasisdsiime-variant
gravitational field forces acting on the orbiting satellites, $deghtner 2007). This type of per-
turbation will be discussed in Chapters 4 and Chapter 5.

2.2.1 Earth's Gravitational Acceleration

The largest contribution of all the forces experienced by orbiting sateliesm the Earth itself.
The Earth’s gravitational field is neither spherical nor ellipsoidal, as thes mhiagribution of the

13
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Earth is inhomogeneous. Thus, there are non-spherical perturbalibagotential presented in

Eqg. 2.1 can be rewritten as

_ GM; N 0
; z (Cannm+ Sannm)7 (2.6)
m=0

where

R@ n+1 R@ n+1
V”m:<r> - Pnm (sing) cosmA and an:<r> -Prm(sing) sinmA . (2.7)

There are several approaches to derive the gravitational accetefiaio the potential for-
mula: the traditional formulation in terms of associated Legendre functionshierispl coor-
dinates; a variant of the first method based on the Clenshaw summation fqi@adatto and
Fanting 2007); the non-singular method of Pines; and the algorithm developed by Gytrarim
and extended byétris et al.(1999. For this study, the Cunningham approach is chosen for
spherical harmonic computations. In some references sudi@g€nbruck and Gill2000, the
formulas are given with unnormalized quantities. This would lead to overftmwaderflow for
the coefficients of high degree and order in our case. The normalizebwef the formulas is
derived here and used for our spherical harmonic analysis.

The normalization factor for conversion between normalized and unnoedajizantities is

2—dm)(2n+1)(n—m)!
Npm = \/( ((n+m)!)( , (2.8)

which is used to derive normalized formulas based on unnormalized ones.

With

)F( = COS@PCOoSA
%/ = COS@SINA
Z_ sin

r - (p7

the recursive computations for spherical harmonic functions are

\700:% and WQ():O, (29)

(2m—1){ R@Vm 1m-1— yRZ@Wml,ml}
Nm-1m-1 r

i \/@{ RV 11— BeW 1 1} m=1 (2.10)
VBBV a1 BeWn 11} m>1

2m

V2 n=m Nn-rn
mm —
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_ — N X
mmn:mmm(zm—l){ I:\)@Vm—lm 1+yR@Wm—lm 1}
Nm Im-1

\ 2mrr—:_l { Vm—lm 1+ yRJ)Vi\/m—l m—1 } m=1 (2.11)

2%1{ Vm—lm 1+ 7 Wm—lm— } m>1,

n—1\ 1 _ n+m-1\ 1 R
VnmmjnNnm{< ) ZRGBVn 1im— ( > Vn Zm}

N—m /) Nop_1m r? n—m /] Np 2mr2
B (2n+1) Ry (n—m—1)(n+m-— 1)R2
= (n+m)(n_m){ (2 —1) Vn 1m— \/ (2n—3) r2 Vn Zm} )

(2.12)

— m<n n—-1\ 1 R n+m-1\ 1 R __
Wnm = Nnm{<n m> N Lmrzwn—l,m_( n—m >Nn27mr§Wn—2,m}

B (2n+1) ZR@ (h—-m—1)(n+m-1) R __

(2.13)
Suppose( Xy z )T =r is the position vector in the Earth-centered Earth-fixed frame
(ECEF), and( Xy 2 )T = g is the corresponding acceleration vector due to the attraction

of the Earth. Then the acceleration vector can be evaluated in Cartegiasgrtation as:

-
aeg = DV = nm = Z ( Xnm ynm an )
n,m
~ 7 (2n+1)(n+2)(n+1
= Ri A{=CroVns11} /5 2nn13 (n+1)
W G (2n+1)(n+3)(n+2 -
- %{ - 22::-_3 o2 ( Cann+1 m+1— S1mWn+1,m+1)

+ %(Cnmvn+lm 1+ SmWniim- 1)}

. 1 [
Xnm = % : % {\/(2n+1)(n(+2r:i§§(n+m+1) (—Cann+1,m+1 - S('lm\/\/n-~-1.,m+1)
+\/(2n+3)(n(2r?11%§ nmi1) (Cnmvm-l,m—l +§nmwn+1.,m—l)}

v 2n+1 (n+2)(n+1
Yo = Rz {—CroWhns11} 2n +3 {2 (1)
D

.. =1 R
Ynmng GRl\Zzlj : % { % (—Cann+1,m+1+ Smen+l,m+1)

+ % (—éannJrl,mfl+Swm\7n+l,mfl)}
m>1 GMT 1 {\/(2n+1)(n+m+2)(n+m+l)

(2.14)

2n3) (—Cnmwn-i-l,m-s-l + énm\7n-s-1,m+1)

nm

(2n+1) = I
+\/ 2n+3 n— r‘?‘liz n— m+1) (_Cann+1’m_1+S~|mvn+1’m_1)}

" 2 — — —
Zom = { \/ )0 e (e ) (—CannJrl,m—SqunJrl’m)},

The partial derivatives of the acceleration with respect to the normalzeificientsC,,,, and
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Sm are
%o 2n+1)(n+2)(n+1) GM,
génn% =—/! 2(2n+3) RgF Vn+11

% M=1 G\, (2n4+1) —
2n "2 O 3\ (/NI DV amia + Vi)
2 (-
2

s m>1GM.
= ViFmT2) (s mt DV 1mes

1 -
+ n—m+2)(n— m+1)Vn+1 m—1>

(
%m ™ELGM: 1 /(2n+1) o
0Sm R%O 2V (@2n+3) ( (n+3)(n+2) Wn+1 m+1+ mwm—l,m—l)
%m M™>1GM, 1 /(2n+1
dgm - R 2 E2n+3; ( vV (n+m=+2)(n+m+1)Wp 1 mi1

1 i
+1/ n— m+2)(n m+1)Wn+1,mfl)

5éno 1 (Zn ) (2 15)
Yom M= o - .
g%:r:] = GRl\g+ . % gzig ( (N+3)(N+2)Whi1mi1— ﬁwnvtl,mfl)
y 16M,
o " O 4 SE (—r mt 2) (M DWag e
— #W
(n-m+2)(n-m+1) ' ' n+1m-1
. m=1 R _ -
Zé:: - % ’ % Eggiég ( (n+ 3)(n+ Z)Vn+l,m+1+ (nTzl)nVn"‘Lm—l)
iy M>1 - _
Zérl: - G%G 2 g:ié; (\/(n+m+2)(n+ M+ DViiamea
+ W]an*f’l,m*l)
9%m _ _ GMg /(2n+1)(n+m+1)(n— m+l)V
oCm R (2n+3) n+1m
9%m _ _GMs /(2nt1)(n+mil)(n-mil)jps
0Sm R (2n+3) n+1m-

The partial derivatives of the unnormalized coefficients w.r.t. normalipefficients can be

obtained as

gg::: 1 (n+m)! Sor — 0 m#0
%m [ Nom  \/ (2= &m)(2n+1)(n—m)! m_{l m=0

The derivatives of the gravitational acceleration w.r.t. the position vectaneeded in pertur-

bation theory for solving the variational equations. Their derivation wilpkesented in Chapter
5. Since the gravitational acceleration is independent of velocity, itsatméw.r.t. velocity is

Zero.

2.2.2 N-Body Perturbation (Direct Tide)

The acceleration due to the attraction of celestial bodies relative to the £estiiter of mass can

be represented as
=Y GM —7' =1, 2.16
Anp = Z i ( |I’ o | r|3> ( )
whereN is the total number of the perturbation bodi&4;is the mass of théh body; G is the
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2.2 Satellite Orbit and Perturbation

Newtonian gravitational constant, its nominal value i§7828x 10~ m3kg~1s?, see Petit
and Luzum 2010; r andr; are the position vectors of the satellite and ifigoerturbation bodly,
respectively.

The partial derivative of the acceleration w.r.t. the position vector of ttedlisa is
dagp O 1 (r=ri)(r=r’
9%b _ S GM; | ————l3.3+3 , (2.17)
or i;_ \r=nP r—ri|

where(r —r;)(r —r;)T is the dyadic product of the two vectois—r;) and(r —r;)T. I3 repre-

sents the 3-by-3 unit matrix.

2.2.3 Solid Earth Tides

Because the Earth is not a rigid body, the attraction of third bodies (in plarticwoon and sun)
deforms the solid Earth. As a result the gravitational field of the Earth slighipges, which has
an effect on the motion of the satellite.

The acceleration due to the second degree solid Earth tides is writtdmoasebruck and
Gill, 2000

2
k2 GMJ'R% rj-r r I‘j-r rj
g BMiNe |3 45 46 —1. 2.18
Bet ZjZZSm rj3 r4 (( (}err] Ir| rillrl ) |ri (2.18)

wheres andm in the summation symbgl denote the sun and moonjs the distance from the

satellite to the geocenteR,, is the radius of the Eartlk;, is the Love numbers 0.3; it can be
estimated as a parameter ), ands the distance of the third body from the geocenter.

This second degree approximation is sufficient in many cases. If a mecss@rmodel is
necessary, the variation of the gravitational coefficients of the Eartkockadid Earth tides can be
presented asontenbruck and Gi|l200Q Tapley, 1989

(S oS () o [ e 3802}
(2.19)

wherek, are the Love numbers of degregM; andr; are the mass and geocentric distance of the
tide-generating body, in particular the moon and sun, and some other pianetl; ¢ andA|

are Earth-fixed latitude and longitude of the disturbing bodies. The disgudgicelerations due to
solid tides can be computed with EQ.14) by substituting the disturbing gravitational coefficients
of Eq. 2.19.
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2. THEORY ABOUT ORBIT PERTURBATIONS AND CASE STUDY

2.2.4 Ocean Tides

The ocean tides are the rise and fall of sea level caused by the comffgwtd ef the gravitational
forces exerted by the moon and sun and the rotation of the Earth. Thitilrdien of the mass
in the ocean changes the gravitational field. Similar to solid tides, ocean tiddéscapresented
by gravitational coefficient corrections (variations), which are esged asNicCarthy and Petit
2004 Montenbruck and Gill 2000Tapley 1989

. (2.20)

_ Csm) COSH. siné.
n

wherep,, is the density of the seawates;, are the load-deformation coefficien®s,,, and S,
are the ocean tide coefficients in meters for the tide constitisefi{ss the weighted combination
of the six Doodson variables. Doodson variables denote the fundanaegtethents of the sun’s
and moon’s orbits, being closely related to the arguments of the nutation. series

The coefficientk'n, C&,,, andSt,,, come from a background model, such as CSRE#hés
2002, FES2004 I(yard et al, 200§ and EOT08a%avcenko and Bos¢cR2008. With the coeffi-
cients, analogously to the solid Earth tides, the acceleration can be compttétiw?2.14).

A small motion caused by the Chandler wobble in the Earth’s axis of rotatiotiveeta the
Earth’s surface, generates a very small tide, known as a pole tide. Taisoisapplied in our
computation, for more details we referMrCarthy and Peti(2004 chap. 8).

2.2.5 General Relativistic Effects

According to the general theory of relativity, Newtonian theory of gréitais just an approxi-
mation. Thus, for high precision the motion of the satellite should be formulateccordance
with the theory of general relativity. The acceleration of the satellite carotreated by a post-

Newtonian term, which is (compare alBetit and Luzum201Q pg. 155)

wheree, ande, denote the unit position and velocity vector. For a circular orbit, with- %
and the velocity perpendicular to the radius vector, the relativistic correctithe acceleration

GM
Be=—"7 (362) (2.22)

is equal to the product of the Newtonian acceleration and a facto“ééo\?\&ich is about 3 10710
for a medium Earth orbiting (MEO) satellite velocity of about 3 km/s. For a LE@Iz, such
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2.2 Satellite Orbit and Perturbation

as GOCE, not only the velocity is large (up to 7.7 km/s), but the semi-major atteecfatel-
lite orbit is small to about 6749.431 km (corresponding to an altitude of 371blrsubtracting
the semi-major of the Earth ellipsoid from the semi-major of the orbit). Thus, tirectmon is
approximately 2 1078 m/s?,

2.2.6 Airdrag

The most difficult effect to be modeled is air drag. Fortunately, the GO@Hligaorbits the Earth
in drag-free motion, although only in flight direction. The model describetiisisection is not
applied for data processing, but only for simulations.

The satellite will experience air drag due to the residual atmosphere. lecarobeled as

A
adrag= —0.5-Cy- (M) P |[Vrel| Vrel, (2.23)

wherev,q is the velocity vector of the satellite relative to the atmosph@yés the drag coefficient
of the satellite;A andM are the cross area and the mass of the satellite, respectivétythe
density of the atmosphere, which can be taken from atmosphere modelsddatria-Priester or
Jacchia-Roberts, comparelgntenbruck and Gill 2000 see alsoBeutler, 2004 Frommknecht
2008.

The atmospheric relative velocity of the satellite, ugy, can be evaluated as

Viel=V—@WXT, (2.24)

where the angular velocity of the Earth rotatiormis= [ 0 0 w ]T, with the nominal value of
wWe = 7.292115146% 10-° rad/s.

Air drag is the largest non-gravitational perturbation for LEO satellitest tBe physical
characteristics of the atmosphere especially at altitudes higher than 18@ kwt&nown in much
detail. Furthermore, the interaction between the neutral and ionized atmespitethe surface
of satellites still needs some investigation. Thus, it is difficult to model the aiamiyes with
mathematical models very accurately. In E&2Q) the drag coefficient depends on the shape and
the material of the satellite surface, and it changes with time due to the chdrthessatellite’s
attitude w.r.t. the direction of.g . Its value varies from 1.5 to 3.0. In general, it is estimated during
the orbit determination procedure, in order to compensate the overall dteregpodel error.

The derivatives of the acceleration w.r.t. the drag coefficient can lieewas

dgdC?g =-05- (%) P |Vrel| Vrel - (2.25)

The partial derivatives of the acceleration w.r.t. the drag coefficianbeavaluated explicitly.
However, the partial derivatives of the position vector and velocity vegiih respect to the drag
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2. THEORY ABOUT ORBIT PERTURBATIONS AND CASE STUDY

coefficient can only be computed by numerical integration of E@5j. Based on Eq.4.23), the
partial derivatives of the air drag acceleration w.r.t. the position vectobedormulated as
Oagrag

A d
ar —_0-5'Cd' <|\/|> |VreI|VreI7f

A VeV
+05-Cy- (M)p< r\il r'3|-|-!Vre|||3x3>Q7

‘ reI’

(2.26)

where

0O —w O

Q= w=e 0 O

0O 0 O

The density of the upper atmosphere changes very smoothly and slow wjithcteto the

position vector. Due to the complexity of the atmospheric models, the computatioa péttial

derivatives of the density w.r.t. the position vector cannot be formulatelytcally. In general,

one can compute them by numerical differentiation, compBes (2006 Montenbruck and Gill
2000.

The partial derivatives of the acceleration with respect to the velocitpeaterived as

Oadrag A erwlal
av — 05Cd : M P ‘Vre|| + ’Vrel| |3><3 . (227)

2.2.7 Solar radiation

The power supply on GOCE satellite comes from solar radiation. Due to treicadof the sun,

the satellite will experience an acceleration, which is modeled as

A r—rg
asrp = Cr (M) POF%W’ (2.28)

whereC; is the radiation coefficient; th& andM are the area and the mass of the satellite, re-
spectively; theR, is the length of one astronomical unit (AU), which is the mean distance between
the Earth and the sun, i.e. 149597870 km (IAU 1976);Rhés solar radiation pressure constant
at 1 AU, which is 4.5605E-6 Nt (IERS 1996); the s is the position vector of the sun; théds
the position vector of the satellite.

The partial derivatives of the solar radiation pressure acceleratioppsodimated from
Eq. 2.289 as

dagrp (A) r—re
== |PRRZ———=. 2.29
ac ~ )R (229
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2.2 Satellite Orbit and Perturbation

The gradient:® is evaluated as

.
w-c(y) FbR%( S Ll el ) , (2:30

Ir—rg? Ir—rg

which is very small and negligible.

2.2.8 Earth Radiation Pressure (Albedo)

An Earth-orbiting satellite will experience a force caused by the badietiad of the Earth. Itis
smaller than the direct solar radiation for GOCE satellite and therefore ptedpn SHA. It is
just presented for completeness. Earth back radiation has two compothenstiort-wavelength
optical radiation and the long-wavelength infrared radiation. In bothscaise force on the satel-
lite decreases with increasing altitude, following the inverse square law @fmtlitted radiation
pressure. The amplitude of the typical albedo force for low-Earth sataHite8% to 35% of the
force due to direct solar radiation pressufa¢cke et al. 1988

The complexity of Earth radiation pressure is due to the diversity of thectiefty of the
Earth’s surface. The Earth’s surface and troposphere haveetiffeharacteristics of reflection
and emission. In order to calculate the Earth’s radiation pressure, th@sEaurface is divided
into elements; each element can be considered as a particular radiatioa. Byrsuperposition

the total force due to Earth radiation pressure can be computed as

N e 1 A dA
Qerp = J;Cr <ajVj cosb;™ + 4Ej> Poﬁ cost; Wej , (2.31)
wherev; denotes the Earth element shadow functions aj'?ldand 67 are the angles of the
Earth’s surface or satellite surface normal, respectively to the incideidgtron. The unit vector
g points from the Earth surface element to the satellite, while the distange iBhe average
emissivity¢; is approximately 0.68. It is reduced by a factor of 4 due to the ratio of theiated
Earth cross-sectionR? to the total radiating Earth surfacer®? .
The radiation pressure of the Earth acting on GPS satellites is less than 2&gpwétisure of
the sun. For the GOCE satellite, this effect becomes larger by about 10%84a8mparing to
the direction radiation of the sun, since it is closer to the Earth. The fored¢alalbedo can be

approximated as

A
Berp= VPeCrm%r, (2.32)

where the variables are the same as in E@1), except? which is now an Earth surface radiation

pressure constant, which is equaktiy /4.
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2. THEORY ABOUT ORBIT PERTURBATIONS AND CASE STUDY

2.2.9 Empirical Accelerations

For a LEO satellite such as GOCE, the perturbation forces to be consigeréide Earth’'s non-
spherical gravitation, direct tide due to the moon and the sun, solid Earth tidescean tides,
atmosphere drag, solar radiation and Earth radiation as well as relatiffstitse The consid-
ered non-gravitational forces are not modelled with their explicit forceatsodut by introducing
some empirical parameters. Model errors limit the dynamic strategies. Thelf ire system-
atic errors growing with the arc length. Introducing empirical parametays, cpr parameters
or stochastic pulses, in the parameter estimation process allows to minimize tlugseand to
absorb the non-gravitational forces. This is the key element of the edddynamic strategies.
Empirical parameters reduce the influence of possible deficiencies of/ttzenical models on
the estimated orbit. Lower orbits require more empirical parameters than lighsibecause it
is virtually impossible to apply adequate models for the atmospheric drag atigefaomplete
Earth’s gravitational field (at least initially).

Based on a highly precise force model, small unmodelled forces may berdaeddfor by
using the concept of empirical accelerations. Much of the mis-modelling®eta frequency of
once per revolution (1-cpr). Accordingly, constant and 1-cpr enadifarces

f =E(ap+aisinv+azcosv), (2.33)

are employed to accommodate the effect. Hageis a constant acceleration bias vector, while
a; anday are the 1-cpr coefficient vectors ands the true anomaly (for a near-circular orbit, one
can use the mean anomaly for simplicity). A linear term is also sometimes applied/eCtoe
of empirical acceleration is commonly specified in the local orbital frame, wigls &xthe along-
track (S), cross-track (T), and approximately radial (W) directionictvlis then transformed to
the inertial system by a transformation matéx In order to provide an optimum compensation
of unmodelled forces, the empirical acceleration coefficients have tojbsted along with other
parameters during orbit determination ($éentenbruck and Gi)l2000.

For a given state vector, i.e. position vectoand velocity vector , the matrixE can be
determined by three unit vectors (which are column vectors here), i.e.

|<

€= ]
er= ‘{X' (2.34)
ew =6sXxer
The E matrix is then written as
E=[es er ew]. (2.35)

However, the mis-modelling error or unmodelled effects may change rapidyefore, the
empirical parameters hold only for a short period, somewhere from 10 tiButes. The nine
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parameters in Eq2(33), i.e. vectorsg, a; anday are estimated based on the measurements inside
this short interval. For the next time period, another set of empirical paeasns introduced, in
order to absorb the time-varying behavior of the mis-modelling error theree @l find that
these parameters are time dependent (depending on the measurementsant ingesval).

2.3 \Variational Equations

In order to formulate the observation equations for SST measurementsrtted gerivatives of
the satellite orbits with respect to dynamic force parameters such as gragfficiemts have to be
evaluated. These partial derivatives are computed by solving varibéqnations.

When the vector of position and velocity representing the state of the orbitgefieiged to as
state vector. Variational equations are ordinary differential equatiottseegbartial derivatives of
the state vector of the satellite w.r.t. the dynamic force coefficients to be estindteg.can be
solved by orbit integration.

Suppose

B=[Coo Cio Cuu Su Co0 Cat Su - |, (2.36)
is the vector of coefficients, then the partial derivatives of acceleration B, i.e. %’ can be
evaluated using Eq2(15. The partial derivatives of the orbit w.r.t. other parameters suchaas dr
coefficients and/or radiation coefficients is computed from correspgrfditmulas given in the
previous sections.
The partial derivative% evaluated in Eq.4.14) have to be transformed to the inertial coor-

dinate system, i.e.

at; 9 (Ciie) . Ofe
1 eF _clZ 8 2.37
in which 2 is what we obtain from Eq.2(14), andC\, is the rotation matrix from the Earth-

oB
fixed frame to the space-fixed fram%% are the partial derivatives in the inertial frame; they are

integrated with a numerical integrator.
In order to formulate variational equations, we introd&:eenoting the sensitivity matrix

ar

op
s=| |- (2.38)

i
oB

Then the time derivative of the sensitivity matrix is

S=F-S+ , (2.39)
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2. THEORY ABOUT ORBIT PERTURBATIONS AND CASE STUDY

0 lI3x3

whereF = , with initial valueSy = 0.
oF or
or or

The partial derivatives of position and velocity w.r.t. the initial state vectuaed to estimate
the orbit by means of dynamical orbit determination. They can be presientieel form of a state

transition matrix

o or
D(t,to) = ( oo 90 ) : (2.40)

dro  dfg
It is computed by solving the following differential equation:

®(t,t0) = F- D(t,10). (2.41)

where dotted symbol@ denote derivatives with respect to tirme

Thereby the initial value of the transition matrixdto,to) = lexs, With lg.s @ 6-by-6 unit
matrix.

Equations 2.39 and @.41) are called variational equations. By solving these differential
equations, the partial derivatives of the state vector w.r.t. the dynamificierfs are obtained.
Thus the derivatives of the geometric measurements such as ranggeragaw.r.t. the dynamic
coefficients to be estimated are derived. The variational equation cafviee &y either numerical

integration Montenbruck and Gill2000 or a variational of constants approa@e(tlier, 2004).

2.4 Orbit Integration

A highly accurate satellite orbit can only be obtained by means of numericgratien of the
equations of motion. A variety of methods has been developed for the nanietegration of
ordinary differential equations and many of them have successfully &pplied in the field of
celestial mechanics. The most frequently used approaches are firstiyefRutta methods that
are particularly easy to use and may be applied to a wide range of problechsaa be easily
implemented due to their simplicity. But the evaluations of the functions are eixpenshe
Runge-Kutta method is usually time-consuming. The second one is the multisteps)etimich
provide a high efficiency but requires a storage of past data points.

The multistep method is used in our computation. The n-dimensional differeqtiation to

be solved is in general

y = f(t)y) Y, yvf € Dna (242)

where dotted symbolgdenote derivatives with respect to timeThe equation of satellite motion
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2.4 Orbit Integration

is often written as

F=a(t,r,r). (2.43)

The state vector of the satellite is composed of the position ve@nod velocity vector, thus

(1) (2.4)

we have

to satisfy

i

y=f(t,y) = ( f ) . (2.45)

Suppose the approximate value of the solutydt)) is obtained and represented Ry at
equidistant timeg; =to+ j-hfor j =0,1,--- ,i. Integrating both sides of the differential equation

with respect td fromt; tot;. 1, the equivalent expression is
tit1

V(i) =y(0) + [ fty)dt. (2.46)

t
The integral cannot be evaluated explicitly, since it depends on the wnksalutiony(t) of
the differential equation. The function is therefore replaced by intetipalasing a polynomial

p(t) through the values

fj =ft;,n;), (2.47)
at previous times; that are already known according to the initial assumption. This results in

ti+h

Mia=m+ [ Pt (2.48)
ti

The increment function of a multistep method is therefore given by

ti+h
w—= [ pd, (2.49)

whereh =t 1 —t; is the stepsize, and we arrive at the approximate solution

Niy, =N +h¥. (2.50)

With mpoints(ti—m+1,fi—m+1), -+, (ti,fi), we can use Newton’s formula to formulate a poly-
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2. THEORY ABOUT ORBIT PERTURBATIONS AND CASE STUDY

nomial of ordem— 1 with equidistant nodds The polynomial is given by the compact expression

m-1
) =p (+oh =75 (-1 ( ~2 \oif, (2.51)
O=phis+on) =3 >( J)

where the binomial coefficient is

_ —o)(-0—-1)---(—w0—j+1
( _a>:<a><a )(-o—j+1) (252)
J !
for j > 0 and is equal to 1 for j=0. The backward difference$ aire recursively computed from
0% = f;
O =fi —fi_1 (2.53)

ani = anlfi — anlfifl.
With the above notation the increment function of thi-order Adams-Bashforth multistep

method can be denoted as

ti+h

1 ) m-1 )
Wiom=p. [ Ptk =3 y0t, (254
ti 1=
with stepsize-independent coefficients from a recursive relaBbarfipine and Gordea979

j-1 1
yj:l_kzonrl—kM( : (2.55)

Inserting the definition of backward differences into E&5¢), the increment function may

also be written in terms of the function valuigs

m
Wagm = Brafi-mi1+ Brefi-miz+ -+ Bromfi = 5 Brnjfimej - (2.56)
=1

The coefficientsBy;, which now depend on the order, are computed from the following

relation

i m-1 |
Bmj = (1) JI ;ﬁjyj ( M| ) (2.57)

forj=1,---,m.
In themth-order Adams-Bashforth method the polynonpigtl) is defined bymfunction values

up to and includingd; at timet;. However, the integration is performed over the subsequent interval

t ... t.1 where the approximation is less accurate due to the low accuracy of datiapo

Another type of multistep method, known as the Adams-Moulton method, there$as the
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polynomialp'+1(t) which interpolatesn function values at time steis m, 2 andt; 1:

i i mt i —o+1 -
P (t) = Pt (ti + oh) = Z) (-1)’ ( : ) Ofiyq. (2.58)
= J
The Adams-Moulton formula is derived from

ti+h

1 . m-1 .

Wagm = / piL(t)dt = Z);/J_*-leiﬂ. (2.59)

j=
5

The coefficienteyj are evaluated with

j-1 1
yj*:—k;jJrl_kyﬁ. (2.60)
The local truncation error of the Adams-Moulton method is smaller than thaeoAdams-
Bashforth method, sedontenbruck and Gil(2000.
There is another method named collocation method, which is applied in the Bexwibsare
(Dach et al.2007). For more details the reader is referredtutler(2004).

2.5 Case Study for GOCE

In order to investigate how the perturbation forces affect the orbit anthe magnitude of the
accelerations due to different perturbations, the orbits are simulatedrirpegarbation condition
and compared to the Kepler orbit. Also the accelerations are computed atosigntlated orbits.
The approach we will apply for SST uses short arcs with a length of 10 toiButes. The preci-
sion of the kinematic orbit is 2 cmV/(sser et al,2010. The simulation can tell us which effect can
disturb the orbits by more than 2 cm within 10 to 30 minutes. Effects with orbit thahaes less
than the precision of the kinematic orbits can be neglected, since they amedaye sensitivity of
the GPS measurements. In other words, our assumption is that with the predidie kinematic
orbit, the coefficients which disturb the orbit less than the precision of thieinishort arcs cannot
be identified.

The starting elements of the GOCE satellite are

semi-major| 6720.495728 km| right ascension 277.2480
eccentricity| 0.014770802 || arg. of perigee| 95.3014
inclination 96.66468 mean anomaly| 358.8249

The mass of the satellite is 1050 kg; the cross-section i€.1 The ocean tide model used
in this simulation is EOT08a. The atmospheric density is computed based on tte Ptéster
Density Model. For Earth rotation, the package of Standards Of Fundametitanomy (SOFA)
is used. The SOFA software is a collection of Fortran 77 subprogramsritpletment official 1AU
algorithms for fundamental-astronomy computatioh®J(SOFA Board 2010. The gravitational
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2. THEORY ABOUT ORBIT PERTURBATIONS AND CASE STUDY

field model used in this simulation is EGM200Bavlis et al. 2008. The perturbation due to
disturbing forces are shown in Figd5to 2.13 with the left panel containing the disturbance of
the orbit, and right panel the disturbing acceleration, respectivelgdadn perturbation source.
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Figure 2.5: Time series of the perturbation of the orbit and the accéteraaused by air drag
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Figure 2.6: Time series of the perturbation of the orbit and the accetracaused by the direct
attraction of sun and moon

The simulation demonstrates that all the perturbations caused by the planetsatettsystem
can be neglected; only the perturbations of sun and moon are conssilecedhe orbit differences
reach more than 10 cm in about 10 minutes. The solar radiation and albé&atibaise can reach
the 1-cm level in about one and half hours, which is a bit smaller than tliteaoduracy. Moreover,
since empirical parameters given in EB.33 will be applied, and are able to absorb most of the
disturbing accelerations, these two effects are not modelled in SST with xipéoieforce model,
but are expected to be taken care of by the empirical accelerations.

The total of 241 coefficients of the Earth’s gravitational field of degr2@ dan disturb the
GOCE orbit by less than 1 cm in 60 minutes. This means the influence of thitcog at
degree 120 of the gravitational field is less than the noise of the kinematic Brbin this point
of view, one might say degree and order 120 is beyond or at the limit ofapability of GOCE
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2.5 Case Study for GOCE
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Figure 2.7: Time series of the perturbation of the orbit and the accater@aused by solid Earth tide
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Figure 2.8: Time series of the perturbation of the orbit and the accetaraaused by general relativity
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Figure 2.9: Time series of the perturbation of the orbit and the acctteraaused by ocean tide
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Figure 2.10: Time series of the perturbation of the orbit and the accter@aused by solar radiation
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Figure 2.11: Time series of the perturbation of the orbit and the acctteraaused by albedo
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Figure 2.12: Time series of the perturbation of the orbit and the acce@®@raaused by all the planets
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Figure 2.13: Time series of the perturbation of the orbit and the accttaraaused by all the degree
120 coefficients of the gravitational field

orbit sensitivity for parameter estimation. However, the cumulative effatieogravitational field
coefficients of degrees higher than 120 is higher than the 2 cm in 10 to 3@evifaee Tabla.1);
thus it is suitable to set up the SH coefficient solution even higher than 1B6.giavity field
signal is systematic, in principle, whereas the noise is stochastic. With morea@edlata used in
parameter estimation, the signal-to-noise ratio (SNR) can be accordinghagert. Nevertheless,
this is only a rough analysis. The highest d/o one can solve for depente @recision of the
measurements, but also on the word length of the computer, the algorithnfougearameter
estimation and the stability of the problem itself, etc. The real performancerdsrbe found
from the resulting model after an SST solution has been obtained.

In Table2.1, the magnitude of the orbit deviations due to sets of gravitational field ciesffic
is given. The disturbance from d/o 120-130 is already larger than twspon of the kinematic
orbits. For all the other d/o in the table the perturbations are smaller than ttisipne These
are cumulative effects from a group of gravitational field coefficientsotAer important point is
that the magnitude of the signals corresponding to different coefficianimsvsignificantly. It is
cumbersome to reconstruct weak signals which are part of a large sigrag.

Table 2.1: Orbit perturbations (the length in three directions) cause different gravitational field
coefficients over different time periods [cm]

| d/o 120-130/ d/o 130-140| d/o 140-150| d/o 150-181

10 min 2.03 0.53 0.27 0.10
20 min 6.28 0.97 0.71 0.62
30 min 11.42 1.30 1.35 1.06
40 min 15.39 1.99 1.98 1.34

The air drag is the largest non-gravitational source of disturbance.GEXCE, it is com-
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2. THEORY ABOUT ORBIT PERTURBATIONS AND CASE STUDY

pensated in flight direction by ion thrusting with a magnitude from a level 01616/3’2 to
1078 m/s‘z, i.e. two to three orders of magnitude of the drag in flight direction are elimipated
see Floberghagen et al2011). Thus, only the residual of the air drag acceleration and the full
drag in cross-track and radial direction need to be modelled or measured.

The perturbation of radiation pressure and albedo is smaller than 2 cm wihinirlites.
They are therefore neglected and hopefully compensated with the empoaérations.

The effects of solid Earth tides, ocean tides together with pole tides, assigedharal relativity
are considered for gravity field recovery, since all these effectsrtittte orbit by more than 2 cm
in 30 minutes.

2.6 Summary

In this section, the basic theory of the satellite orbit analysis for the cas©afEIs presented.
All computations related to orbit perturbation for SST in Chapter 4, and thead®n for the
disturbance in the measured GGT, are based on this part.

The normalized Cunningham approach for spherical harmonic computetgbeen derived.
It is given in the Cartesian coordinate system. It has no singularity; tivexgf is chosen for the
computation in this study. For the gravitational gradient analysis, the tierivaill be presented
in Chapter 5.

The perturbation forces acting on the GOCE satellite and the resulting orhitlpegtion are
discussed. The main effect is due to the gravitational field of the Earthpeessed by a series
of SH coefficients. The results show that the gravitational forces damgéhe direct attraction
of the moon and sun, solid Earth tides, ocean tides and general relativityb@uscluded in
the parameter estimation procedure. The direct effect of planets is némlidibe effect of the
so-called pole tides is considered and incorporated in the computation ofEsutid tides. The
perturbation of general relativity is not small; therefore, it has to beidered.

The air drag experienced by GOCE satellite reduces to the level of thisipreof the drag-
compensation actuators, i.e. the ion thrusters. The residual accelefgiocompensation by the
ion thruster can be either modelled with empirical accelerations, or removethsithformation
from the common mode accelerations. The perturbations due to radiatiGumesd albedo are
smaller than the precision of the kinematic orbit within 40 minutes. They are natlieddn the
parameter estimation process explicitly but hopefully compensated by the eahpaiameters
implicitly.

Based on our case study (Tal@d), it is reasonable to set up the SH coefficients at least up
to d/o 140 to 150. The cumulative effect of the gravity field coefficientsdrighan d/o 150 on
GOCE orbits is likely beyond the capability as determined by the kinematic orluispre.
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3

Least Squares and Data Adjustment for
GOCE Data Processing

In modern geodesy, the amount of observations can reach millions obihens. The handling
of such a large amount of observations with a huge amount of unknorameters is a challenge.
It is therefore important to discuss some elements of the theory of pararsttesaton, which are
then used for SHA in the later chapters for the processing of GOCE nezasnts.

The large least squares problem is introduced in the first section. Thadeection presents
the idea of regularization, and emphasizes the concept developed in thisEbe third section is
about contribution analysis, i.e. an approach of evaluating the indivatudtibution of different
data sources. The fourth section is dedicated to data weighting andelatiorr. The fifth section
presents the concepts of parameter pre-elimination. And, last but ngttleainal section gives

the summary of this chapter.

3.1 Least Squares Adjustment and Combination of Different Obser-
vation Types

The method of least squares has been widely used to solve overdetesystehs since Gauss
and Legendre developed the fundamentals of the basis for least squealgsis. Least squares
adjustment can be interpreted as a method of fitting a linear model to (stocludost@)ations.
The observations are collected under randomly varying conditions. Thiegiihe observations
stochastic. The best fit in the least-squares sense is when the sumacddsgesiduals between
observations and modelled values attains its least value. It correspondsttiaximum likelihood
criterion if the experimental errors have a normal distribution and can alsetived as a method
of moments estimator, cfeunisser(2009.
The observation equation of a parameter model can be represented by

E{L} =F(x), (3.1)
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3. LEAST SQUARES AND DATA ADJUSTMENT FOR GOCE DATA PROCESSING

where
E{} operator of expectation
L vector of stochastic observations
L expectation or estimate of the observation vector
X parameter vector to be estimated
F mapping function .

The stochastic observations are composed of their expectation (trug aatlstochastic error

¥ with expectation zero (tilde “~” meaning stochastic), i.e.

C=L+7, (3.2)

with E{I:} =L andE{V} = 0. In case of a non-linear model, linearization is needed. After
linearization, Eq. $.1) is written as

E{I:}:F(Xol)—i-(;i OX. (3.3)

X=Xo1
with dx the correction of the parameter vector w.r.t. the initial or approximate valjjegven in
case of a linear situation, the initial valueg are often used to make the right-hand side smaller
to reduce computer (both round-off and truncation) error.

Let us define

oF ~
A=— , and d=L —F(xe1) , (3.4)
OX y—x,
then we arrive at
V=A-0x—d, (3.5a)
and D{d}=D{L}=Z=0fP *=E{W'}, (3.5b)
where
v nx 1 misclosure vector, its estimaids the residual vector
A n x mdesign matrix (coefficient matrix)
§x mx 1 vector of parameter correction
d nx 1 vector of observed minus computed (OMC)
D{} operator of dispersion
z n x nvariance-covariance matrix (VCM) of observations (or misclosures)
o¢ variance of unit weight (variance factor or variance component)

P n x nweight matrix

Since the differences betwedrandL is a deterministic, i.e. non-stochastic vector (the initial
parameter mapping into the measurement space), their VCMs are the samem@eres say

d is observation vector when it does not cause any confusion. Bast gminciple of the least
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3.1 Least Squares Adjustment and Combination of Different Obseration Types

squares adjustment, i.e.

TPV = min, (3.6)

we obtain the system of normal equations (NEQS)

ATPASX =ATPd, or Ndx=U (3.7)

and the following solution equation$gunissen2009 Teunissen and Amiri-Simkoog2009

5% = (ATPA) *(ATPd) =N-1U, (3.8a)
U=Ad%—d, (3.8b)
62 =V0"PU/(n—m), (3.8¢c)
D{88%} = Zx = 63(ATPA) ', (3.8d)

with nthe total number of the observations anthe total number of the unknownls;= (ATPA)

the normal matrix antl) = ATPd the right-hand side which will be used later on. The hat symbol
above variables represents their estimates. For example, the residoalhisthe estimate of the
noise vecto. Eq. (3.89 gives us the estimates of the parameters. With them the estimates of the
residuals can be obtained from Eg.8b). Egs. 3.89 and (3.8d are the estimates of the variance

of unit weight and variance covariance matrix of the estimated paramegspgatively.

In case the amount of the observations is large, e.g., more than one thuhdusand or
even millions, the dimension of the design mathixvill become so large that the memory of the
computer is not sufficient to store it. This problem can be solved using tluessgal least squares
adjustment approach, in which the design matrix is removed from computer yetfter it is
accumulated to the normal matrix.

Let us suppose the observations can be divided into two stochastic imtéepiearts, i.ed;

andd,. This leads to the design matixto be divided into two parts, too

V1 A1 al al Pl 0
2] (3] ol3) <% ] o

This holds under the assumption that the observatu'ﬁnand oTz are independent, i.e., the
correlation between these two observation vectors is zero, as pregetited/ariance covariance
matrix of Eq. B.9).

Based on the principle of least squares, the parameter vector is destbegequential least

squares
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3. LEAST SQUARES AND DATA ADJUSTMENT FOR GOCE DATA PROCESSING

O% = (A[P1A1 +AJP2A,) -t (ATP1d1+ATPods) | (3.10a)
5’5 (V-{ P11+ \7'2I' P2\72> /(n — m) , (3.10b)
D{38%} = 2z = 63 (AIP1A; + ATP2A,) . (3.10¢)

It is seen that the combination of NEQs is by adding the two normal matrices artavth
right-hand sides, respectively, to form a new system of NEQs. The dstiofidhe parameter
vector can be solved from this new system of normal equations, as nrseedn Eq.3.109. The
estimates of the variance of unit weight and of the variance-covariant&rage obtained from
Eq. 3.100 and @.109. With this idea, the large amount of observations can be decomposed into
two or many smaller problems.

In Eg. 3.10), the weights of the two observation groups may not be perfect. Therafas
worthwhile to use the posterior estimate of the variance components, asigizen (3.89, to
re-combine the normal equations & ¢h and Kuschg2002

1 1 . 1 - 1 -
< Al PAL+ = A2 P2A2> O% = (azA{ P,d; + ?AE P2d2> , (3.11)
1 2

where the variance facto& and 62 are computed according to E88c

It is similar to sequential least squares, see Bd.{), except that the variance factor is intro-
duced in Eqg. 8.11) to guarantee the two normal equations to be weighted based on their earianc
factors. Also the size (length) and/or the sequence of the parametervattbemay be different.
One may have to reorder these parameters during the combination.

The a priori estimate of the variance component is useful for weighting dhresponding
observation group in the first combination. It can be determined with OMGegdbased on a
priori information. The a priori estimate of the variance components forbsereation type is
approximated based on theory of statistics

2
dT Pd 12

52(-) — =

o <n E: ) (3.12)

with nthe number of the observations aRdhe weight of the&k™ observation.

3.2 Regularization

The system of normal equations in the least squares estimation problem isetl-pothe case
of GOCE due to several reasons, in particular the existence of polar(gap-polar orbits) and
an inhomogeneous data distributiavigtzler, 2007); also one of the observation types may con-
tain less information, e.g., one component of the gradient tensor may nqub#yesensitive to

36



3.2 Regularization

the whole gravity field; also the downward continuation will contribute to the lnista The
introduced stochastic model of the measurements can be a cause for dlyprseal equations
(Sneeuw2000.

In case of ill-posed normal equations, the condition number (the ratio of tkemmm eigen-
value to the minimum eigenvalue) of the normal maiixs very large. This makes the solution
of the system of normal equations unstable. There are two categoripprof@hes to solve this
problem, one is to manipulate the eigenvalues by singular value decomposM), (&ich as
ridge estimation and principal component estimation. The other is to introduce external or
a-priori information to stabilize the normal equations. Since there is a-pnimimation of the
gravity field available, the latter type of the regularization is chosen heta@dédsHA.

There are several methods of regularization available, such as liegtitar using Kaula’s rule
of thumb or first- and second-order Tikhonov regularization. Theseadsthdd some “informa-
tion” to the diagonal elements of the normal matrix according to some rules gedacKusche
2002 Kusche and Klee2002, based on the criterion of a combined minimization residuals and
of the gravity potential or its functionals on the sphere of the Earth.

The idea of regularization is to find the balance between the minimum norm oéditals
and that of the vector of unknown parameters relative to some a-priagsiaSimilar to Eq.%.6),

we minimize now

VTPV + a(x—Xo) " Px, (X—Xo) = min.. (3.13)

The first term in Eq. .13 causes the model to fit the data, the second term constrains the
parameters to a-priori values. It will stabilize the normal equations. Tidagzation factorr
plays thereby an important role. Itis a tradeoff between observatiaha-gniori information. Let
us assume to be 1 or incorporated iRy,. By taking the derivative on both sides of E§.13
and re-arranging, the modified estimator becomes:

5% = (ATPA+Py;)  (ATPA + Py (X0 — Xo1)) - (3.14)

Herexo; is the vector initial values as in EG3.Q). It does not necessarily have to be the same
asXo, since one may set up the observation equation with some initial values; latereomay
decide to constrain the parameters to some other a-priori values.

Since the inclination of the GOCE orbit is about 4 there is no GOCE data in both polar
areas with a radius of about/ around the poles, see Fif.3. Therefore, a gravity field without
constraint (regularization) over the polar gap will exhibit large oscillationthe gravity signals
such as geoid heights and/or gravity anomalies in these areas. Since théoestanano informa-
tion there, it will produce arbitrary values in the polar gap areas, as Istigeacondition (target
function), i.e. Eq. 8.6), is satisfied. For the North Pole, there are terrestrial data available. One

37



3. LEAST SQUARES AND DATA ADJUSTMENT FOR GOCE DATA PROCESSING

may therefore stabilize the problem with these terrestrial data. For the Solgthnet much ter-
restrial data have been collected. Thus, regularization must be apMietdler and Pai(2005
introduced the so-called Spherical Cap Regularization Approach ($G##Ach will reduce the
oscillation of the resulting gravity field signal caused by the polar gaps.

A modified approach is applied in this study. It is to generate pseudoatsers based on
a-priori information in the polar gap areas. This information is used to aindtre geoid of the
gravity field to be estimated to, for example, EGM2008 or any other apptegmigor information.
The assumed precision level is chosen according to a realistic assumptiarpriegision of the a-
priori information at the polar areas. With the discrete geoid values to eamsitie polar areas for
the stabilization of the solution, this approach of regularization is differettet& CRA approach,
which applies analytical function on the polar gap to reduce the oscillaticaviehn the polar
areas in the resulting gravity field models.

With the idea of pseudo observations on‘ax11® equal angular grid in the polar areas, a
normal matrix is generated as shown in RgL The SH coefficients are sorted order-wise (the
order of the gravitational field coefficients increases from 0 to the maxinalune\from the upper
left to the bottom right), one can see that the lower order coefficientse(tbafie upper left in the
matrix) are regularized with large values, whereas the high order deeffiqclose to the bottom
right) are hardly affected by this regularization.

The goal of our regularization
is that the final result should not be
affected too much by the applied
method of stabilization. However,
since spherical harmonic coeffi-
cients are base functions with a
global support but data are miss-

ing only at the poles, the esti-

mated coefficients in general get
correlated, seeBoxhammer and
Schuh 2009. Therefore, the reg-

ularization will definitely affect

2000 4000 6000 8000 10000

the estimated parameters. Thus,
Figure 3.1: Normal matrix of regularization for polar gap (ir‘m

and log10 scaled) one should make the constraint as

loosely as possible, in order to
make sure that th&"PV part in
Eqg. 3.13 is dominant. In other words, the actual GOCE observations should be giweight as

high as possible.
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3.3 Combination and Contribution Analysis

3.3 Combination and Contribution Analysis

The parameter estimation for GOCE is a combination of various componentsoflirigerest
to know their relative contributions. Let us consider the combination of thi and gradiome-
ter observations from the GOCE satellite. It is the combination of the SST a@l @& (the
three diagonal componenty, V,y andV,,), as well as of the a-priori information for polar gap
stabilization. In accordance with E@.{L1), they are combined as

1 1 1 1 1
NoXx = —-N —N —N —N ——N oX
<asg STz e oz oy fe@’)
1 1 1
AT Pstdsq += AT Pxxdxx+ — Ay Py dyy (3.15)

W

1 1
+ AT Pzzdzz + AregPregdreg
eg

In order to analyze the individual contribution from the different datarses (observation
types) and from regularization, we look into the combined normal matrix o Ef5)

1 1 1 1 1
N = —N Nyx + —N —N ——Nygy - 3.16
o SSH_GXX +ay2y W+0222 Zz+orzeg reg (3.16)

With the following definitions

1

Re =—N~IN Ry = —N"IN

st 0'523 s XX O-)%X XX 3
1.4 1.4

RW_?N Nyy, Rzz:?N Nz, (3.17)
yy yr4
1

Rreg =—N"Neq,

reg Urz@ reg

we define so-calledesolution matrices. All the resolution matrices in the least squares system
add up to an unit matrix3neeuw2000, i.e.,

R1+R2+--~—|—R|=|, (318)

with | the unit matrix. WithE {d; } = A;dx, by taking expectation and multiplyifg~—* on both
sides of Eq3.15 We find

E{3%} = (Rst + Rxx+ Ryy+ Rz + Rreg) E{3%} = X. (3.19)

The resolution matrices are a measure of the relative contributions ofediffebservation
types. They behave as filters through which the vedtopasses to yield the estimatdg, see
(Bouman 1998 Sneeuw2000. Also the amount of the contribution from a-priori information can
be evaluated. One should note that the resolution matrices are computeddroarrtial matrices
only, without any information from the measurements or a-priori values thlees Therefore, it
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3. LEAST SQUARES AND DATA ADJUSTMENT FOR GOCE DATA PROCESSING

is an important and reliable tool to identify how much contribution comes from tieded data
sources and a-priori information.

The main diagonal elements of the resolution matrices in Bd.7( give the contribution
measure for individual parameters. For tHeparameter, the contributions from the various data

sources are

lsst; :[Rsst]iiy My = [Rxx}ih
ryy =[Rylii, Tz = [Ralii, (3.20)
lreg =(Rreglii -

They are independent of the correlation between the individual paresnete

Theoretically, the value of the relative contributigp, is between 0 and 1. In computation,
it can be slightly larger than 1 or smaller than 0, due to the numerical error tability of a
observation model (e.g. some observation model is of rank deficiencgn Eqg.3.19 it can
be found that the parameter vectx is the sum of its projection by all the resolution matrices.
Each resolution matrix maps into parameter space. The off-diagonal eleméR{k; gives the
contribution of how much information is projected from & to j!" parameter, or vice versa, in

case that the solution is computed based only on observation.type

3.4 Data Weighting and Filtering

The VCM of the kinematic orbits (in forms of band matrix) is provided as S 2| product. It
can be used directly in Eg3 () and (3.8) for parameter estimation. The sequence of gradiometer
observations, however, is highly correlated and their VCM is not availablerefore, the ob-
servation time series should be decorrelated either by filtering or using igatweatrix derived
from additional information. We apply a filter to both the time series of the obiens and the
design matrix due to the efficiency of the method. In some studies the autatiom function
of the residual vector is computed from the iteration process during psgaestimation as the
inversion of the weight matrix, sd€ch et al.(2010; Schuh(2002.

The power spectrum density (PSD) of a sigx@) is defined as

PSD(f) = X (f) - X*(), (3.21)

+00 .
whereX(f) = [ x(t)w(t)e 127t s the Fourier transform of the signelt) andw(t) is a window

function; X*(f) is the complex conjugate of(f). For a discrete signad(n) with data length\,

the Discrete Fourier Transform (DFT) is

_ j2rkn

N-1
X(k) = Zox(n)w(n)e N, k=0,---,N—1, n=0,---,N—1. (3.22)
n=
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3.4 Data Weighting and Filtering

The PSD of the discrete signeln) is

PSDK) = X (k) - X*(K). (3.23)

With matrix notation, the DFT of the noise is

- 1
b= _——F%, 3.24
N (3-24)

where the Fourier Transform matrix element is
(Fl,=e®%¥ kn=01, ,N—1. (3.25)

The PSD of the vector becomes

~ ~ ~ T
p=1[ vo0 010 -+ Un-10{_, | , (3.26)

whered* is the complex conjugate af.
The frequency response of the whitening filter should be the recipabthE square root of
the PSD of the noise, i.e.

a
i S 0
0O -2 0
H— . {PT . _ , (3.27)
O --- 0 a

VPN1
wherea is the scale factor which is used to make sure that the signal magnitude asidgbhy
dimension is the same before and after filtering. The valuggs 0&=0,--- ,N — 1 are the elements
of the the PSD of the instruments and provided by industry based on vaemtss The noise can
then be transformed to be white with the information provided in BQ 7 as

1
4 :NF*HF\”/: GV, (3.28)
where
1
G= NF*HF, (3.29)

is the filter matrix, and~* is the complex conjugate transposeFof The weight matrix can be
derived from

1

P=G'G = ;F'HFF'HF
L (3.30)
== F*HHF
N 9y

with FF* = F*F = N1
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3. LEAST SQUARES AND DATA ADJUSTMENT FOR GOCE DATA PROCESSING

The observation equatio.6) becomes

V=A.0x-d , D{d} =% =a¢P " (3.31)

whereA’ = GA andd’ = Gd. G acts like a filter that transforms the noise to be white. If the matrix
G is capable of perfectly whitening the noise, the weight matrig'di.e. filteredd ) becomes a
unit matrix, i.e.P’ =1.

The VCM in Eq. @.5) follows from the PSD of the noise, analogously to E2130)

p - %F*H’F, (3.32)
where
0 0
| o o (3.33)
0 -+ 0 pu1

From the derivations above, one can see the connection between thaf Behoise and the
VCM. The coefficients of the filter can be derived from ttidl + 1) /2)th row in the center of the
filter matrix G.

The VCM based on the error PSD as shown in Bigais displayed in Fig3.2h The smallest
error level of the PSD is achieved in the measurement bandwidth (MBWghigan ESA jargon
for the frequency range [5 100] mHz (in some literature, measuremedt(b&B) is also used for
this frequency range). This means the measurements contain the smatietveirin this MB.
One can see th#& is a circulant matrix. The values of diagonal and near-diagonal elements a
large due to the high correlation of the measurement noise, correspaadiveghigh power in the
low-frequency band in Fig3.2a

The filter derived fronG is a finite impulse response (FIR) filter, of which the length needs to
be large to achieve good performance. Therefore, it is time-consuminigetaitie observations
and especially the design matrix. It can be approximated, however, bfiriteirmpulse response
(IIR) filter, significantly reducing the computational lode(l et al, 2011a Schuh 2002. During
the parameter estimation, the filter is applied to the data and the design matrix, infsteaking
use of the full weight matrix.

In this study, FIR and IIR filter are both applied, but for different psgs. A FIR filter is ap-
plied when analyzing the observation for direct applications in the spamaidpsince the compu-
tational load is not critical for data filtering, and the FIR filter can be desigoeas to produce no
phase shift. The IIR filter is used for parameter estimation, in order to eetthéccomputational

load. In that case since the filter is applied to both the design matrix and the/atiwes, and
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3.5 Parameter Pre-elimination
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Figure 3.2: An example of PSB2 and the corresponding variance-covariance matrix
moreover, since

G*G=|G|?, (3.34)

is independent of phase when assembling both sides of NEQ. Thert#ferghase shift has no
effect on the final results.

3.5 Parameter Pre-elimination

Some parameters may only be needed at an intermediate stage and notdsanyeice the final
solution; they can be pre-eliminated before solving the normal equationsoSe two sets of
parameter®x; anddx; in the following normal equations

N11 N2 0X1 ] [ U1 ]
= . 3.35
[ N21 N2 ] [ 0X2 U (3.35)
One gets
8x1 = Nit (U1 — N120x2) , (3.36)

from the first part of Eq.3.35. Inserting Eq. 8.36) into the second part 0B(35), yields

(N22—N21N77'N12) 0%z = (U2 — NagNp Uy ) (3.37)

Thus the parameteidx; are pre-eliminated. The normal equations reduce to that of the size
of Ny,. The parameterdx, can be solved with this reduced normal equations, and the results are

still exactly the same.
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3. LEAST SQUARES AND DATA ADJUSTMENT FOR GOCE DATA PROCESSING

The pre-elimination is important and useful for large systems of equations.example,
the parameterdx; could be orbit parameters and empirical accelerations described in sé&ion
while thedx, could be the vector of gravity field coefficients. One referdxpas local parameters
anddx», as global parameters. In this case the total number of the paramateis quite large;
they are pre-eliminated in order to reduce the size of the system of the regioetions. Thus, the
normal equations are reduced to only containing gravitational field cieeffic During the data
processing in this study, a system of normal equations is constructe@&cimday’s observations.
The pre-elimination is applied to the normal equations constructed from da&gnedtions, before
the combination of all the desired normal equations is carried out. After thalgbarameterdx,
are obtained, the local paramet&rs, are reconstructed by back-substitution. Since the local
parameters can be determined with short interval (e.g., less than ong m@gsurements, the
back-substitution is realized with ease.

3.6 Summary

For a large system of equations, parallelization must be applied. In this ghedybservations are
separated into daily segments. The normal equations computed from gexblaservations are
stored on computer disk and combined with a subroutine naboatbineNeq

The reciprocal of the variance of unit weight is used as the relativehagthe combination
of different observation types. The normal equations to be combinediarensionless after
applying the relative weight.

The regularization is important for SHA based only on GOCE data. Splhérceonics
are global base functions. Without information in the geographical akts polar gap, the
zonal and near-zonal coefficients are highly correlated and lessletelimined. This correlation
causes that the gravitational field signal recovered only from GOCEradson to exhibit large
oscillations in the polar gap areas. Thus, ultimately a constraint in the polaargap must be
applied, to decorrelate the zonal and near-zonal coefficients.

The contribution from various observation types can be evaluated withutiEs matrices.
Because only the normal matrices are involved in contribution analysis, thgldion of each
individual observation type is explicitly independent of the observatiblsvever, since the rel-
ative weights for combination are dependent on the precision of thewathiger types, implicitly
the contribution analysis depends on the quality of the observed data.

With Fourier transformation, the relationship between the PSD of the noisthandCM of
the observations can be established. The error VCM is the Fourierdramsf the PSD of the
noise, both being quadratic forms. The weight matrix can therefore beeddérom the reciprocal
of the PSD of the noise. From the reciprocal of the square root of ise R&D and an appropriate
scale factor, a filter matrix is derived. The coefficients of a FIR filter cafolond taken from the
center row of the filter matrix.
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3.6 Summary

Parameter pre-elimination is necessary and appropriate when the nunuimdmnofvn param-
eters is very large, and some parameter sets are only “local’. Thesepkreatheters, referring
to orbit arcs, are only valid in short periods. They are pre-eliminatedderdo reduce the size
of normal equations. After pre-elimination, only gravitational parametensireto be solved for.
The local parameters are then reconstructed by back-substitution &ftglothal parameters are

obtained.
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4

GOCE Gravity Field Determination
from Satellite-to-satellite Tracking

The idea of the GOCE mission is to combine the SST and SGG techniques forrpas@uwf
the determination of a high-accuracy and high-resolution gravity field.SSiE observations are

particularly sensitive to long-wavelength gravity field coefficients, andSB8& observations are

sensitive to short-wavelength coefficients. The ideas of the SST agpesawe apply it to the

GOCE mission is presented in this section.

Possible approaches which can be used for gravity field recoveeg lmasGOCE orbit mea-

surements are primarily the following:

i. Semi-analytical methodsheeuw?2000, which applies Hill theory, by rotating the spherical

harmonic expansion to the orbit plane; the orbit is represented as thgssipen of peri-
odical functions. Thus, the observation model can be formulated with 8agelue to the
assumptions underlying this approach, in particular that of a circular erititput preces-
sion, it is only an approximate. It is useful however for pre-mission aiglyr quick-look

solutions;

. Energy balance methodberlach et a].2003 Han, 2003, is based on the idea of conserva-

tion of energy. It assumes the kinetic energy, derived from the velocitiesthe potential
energy, which is a function of the position and the gravity field coefficiéntse constant. In
this approach, a 3D-observation is projected to a scalar quantity (potgraiadpservation
epoch. This leads to somewhat degradation of the resulted gravity field.mMdeeover,

this method needs the velocities of the satellite as observables. The velo@tigsrized
by numerical differentiation of the positions of the satellite orbit. Therefitre precision
of the velocities is somewhat degraded;

iii. Celestial mechanics approach (s&gi et al, 20103, which evaluates the partial deriva-
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tives of the orbit w.r.t. the force parameters (gravity field coefficientsgdlying the varia-
tional equations. This method does not need to use velocities, but it is tiatkeconsuming



to solve the variational equations if the number of the dynamic (e.g., gravithfieluaco-
efficients) parameters is very large. The underlying model of this apprianonlinear.
One may question whether iteration should be applied. This approach iflexdbte and
applicable to any observation type, such as SLR and Doppler measurewigicts usually

may not have equally sampled observations;

iv. Integral equation approaclkicker et al, 2006 Mayer-Qirr, 200§. Based on Newton’'s
equation of motion, the orbit of the satellite can be formulated as a boundag/p@blem
in the form of a Fredholm-type integral equation. This method is linear andrddeseed
to solve variational equations. It can be faster than the celestial meclagpicsach;

v. Acceleration approachLiu, 2008 Reubelt 2009. By differentiating twice the position
vector derived from GPS measurements, the acceleration of the satellite caamputed

and used as a measurement to formulate observation equations.

The idea of the integral equation approach has been proposed agralgeethod for or-
bit determination byschneide(1968 and modified for gravity field determination I8chneider
(1969. Laterllk and Klose(1984) applied this method for simulation of satellite-to-satellite track-
ing analysis. More recently Mayerit@® used this method to process the real data from CHAMP
(Eicker et al, 2006 Mayer-Qirr, 2006, which was the first and very successful real data applica-
tion of this method, and since 2006 he has applied it to GRACE, which resulteekiof the most
precise gravitational field models from satellite only data. Solutions are théygnaodel ITG-
Grace03slayer-Airr, 2007 and later ITG-Grace20108/ayer-Qirr et al, 2010. The idea of
this method is to divide the orbit into short arcs, and parameterize gravitycbelicients as well
as the boundary parameters of each arc. The boundary parametdrs pee-eliminated before
the formation of the normal matrix.

The advantages of the integral equation approach are the following; iEiis linear, thus
the a-priori information has almost no effect on the recovered field;mekdbis directly based
on the (kinematic) orbit positions; this avoids any numerical error due terdiftiation. Last,
but not least, the variation can be solved in parallel for the all orbit commtsni.e. the three
elements of the position vector in the variational equations are computed iyl of each
other. This increases the speed of the computation. Because of thesdaads, the integral
eqguation approach is here used for spherical harmonic analysis.

In order to show the functionality of the method, in the computations and asabfshis
chapter, we use the kinematic orbit from Novemb®&td December 3%in 2009. This gives us a
full coverage of the Earth with a 61-day repeat orbit. For the combinatith®6GG in Chapter 6,
observations of kinematic orbits of longer period, from Novemt5€2009 to April 3¢" in 2011,

will be used for gravity field determination.
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4. GOCE GRAVITY FIELD DETERMINATION FROM SATELLITE-TO-SATELLITE
TRACKING

4.1 Observation model

The acceleration of a satellite can be represented as

F(t) =f(t,r,i,B,8), (4.1)

with t time andr, r position and velocity vectors, respectivef/the vector of parameters to be
estimated as defined in section 2.1, @lempirical accelerations as described in E434).

As shown in Fig4.1, the satellite passes poiAtand pointB at timesta andtg, respectively.
The dots are the orbit position vectors derived by GPS.

We define

t—1ta t' —ta
- and T = 4.2
T T (4.2)

which are the normalized times ranging

from O to 1, wherel = tg —ta.

Now the goal is to formulate the rela-
tionship between the position vector inside
the arc and the position vectors at the bound-
ary points, i.e.r(ta) =ra andr(ts) =rs,  Figure 4.1: The trajectory of the satellite over an arc
as well as the parameters of the force model”B
to be estimated, such as gravity field coeffi-
cients or the air drag coefficient. Therefore, we define three catsgofrigarameters. With the
short arc in Fig4.1 as an example, they are orbit parameters, i.e., the position vect@and
rs, empirical parameters (such as empirical accelerations in our study, sos\@@r@aps some
other parameters such as drag coefficients, radiation coefficientgsenped in subsectidh2.9
for compensating the mis-modelled or unmodelled accelerations, and the Gaeitdield co-
efficientsCnm andSym. A second concept of classification is dividing the parameters into local
parameters (or nuisance parameters as describ&itimar and Kleeg2002); they are orbit pa-
rameters and empirical parameters which are valid only for a short penmtylobal parameters
(e.g., gravitational field coefficients). A third concept of definition is geiméorbit) parameters
and dynamic parameters (e.g., empirical accelerations, gravitational fefftt@nts and air drag
coefficients, etc., which are incorporated in some force models).

After integrating Eqg.4.1) twice, the position vector can be written as

r(t) =r(ta) +1(ta)- (t—ta) +// t” r.t,B,B")dt"dt’. (4.3)

ta ta
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4.1 Observation model

With the rule of integration by parts, Eql.) becomes

t

F(t) = r(tA)+f(tA)-(t—tA)+/ (t—tf(E.r.i,B,B")dt (4.4)

ta

Introducing normalized time as given in E4.%), Eqg. @.3) can be rewritten as

T
% :rA+fATr+T2/(r—r’)f(r’,r,f,ﬁ,ﬁ')dr’, (4.5)
0

and we obtain the position at time epdglas

1
r=r(1) = ra+iaT +T2/(1— T,r ., B, B)dT . (4.6)
0

Combination of Eg.4.5 and @.6), yields

1 T
r(t) =ra+ (rBrATz/(lr’)f(r’,r,f,B,B')dT’) T+T2/(r—r’)f(r’,r,f,B,B')dT’

0 0
1 T
:rA(l—r)+rBr—T2r/(1—r’)f(r',r,r,g,ﬁ')dr’+T2/(r—r’)f(r’,r,r,p,p’)dr'
0 0

1
:rA(l—r)+rBT—T2/K(T,T’)f(r’,r,f,B,B')dr/,
0

4.7)
where the integral kernel function is
K(t,T') :{ TT(/gl—_r’T)) rT/<<r’T.
The velocity of the satellite can be computed by differentiation of Eq) (
) rg—ra 10"K(r,r’) ;. o)
JORL —T/Tf(r,r,r,ﬁ,ﬁ)dr. (4.8)
0

The integrals in Eq.4.7) and @.8) are convolutions of the acceleration vector with the kernel
functions. They can be converted to a matrix multiplication. For details refaviaydr-Qirr,
2008 Yi, 20079).

After the kernel matriX is evaluated, the observation model can be written as

r(1) =ra(l—1)+rar+Kf(1,r,i,B,8). (4.9)
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4. GOCE GRAVITY FIELD DETERMINATION FROM SATELLITE-TO-SATELLITE
TRACKING

The velocity vector yields

(1) = rB;rHKf(r,r,nﬁ,ﬁ’), (4.10)

dKTT

1 .
whereK = —TZfK(r 7')-d7t’ andK = Tf -dt’, are the matrices converted from the

convolution Wlth the two different kernel functlons The symbdh the integrals means the

operation to any function. The matrix-vector multiplication in B and4.10is realized by
multiplying each component of the force vectarhich is a time series inside a short arc for three
directions.

The structure of the matricés andK is shown in Fig4.2 In the matrice& andK, each row
corresponds to the time epoch of a value to be computedrj.ehile each column corresponds
to the integral variableg’. The maximum values of every row in the matixappear along the
diagonal, and the value of the diagonal reaches its maximum at the cente¥ ofatinix, see
Fig. 4.2a This is due to the fact that the maximum deviation of the orbit from the line ot sigh
between the two boundary points happens at the middle of the arc. Thebeimdary between
the upper triangle and lower triangle in the matix The values in the upper triangle are positive

and in the lower triangle they are negative, see &igh
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Figure 4.2: An overview of the matrix andK

The acceleration due to the Earth’s gravity field and empirical parametersecavaluated
using Eqg. 2.5). Itis a linear function of the gravity field coefficients and empirical paranse

For example, at epodlof the arc, it is

f(i,ri, i, B,8") = | Vi
4 , (4.11)
, GXI Gxi ,
=GB+GB=| Gy |B+]| Gy |B,
Gz G5
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4.1 Observation model

where G; contains the partials of the acceleration w.r.t. the gravitational field coetfcagn
epochi, andG’; the partials of the acceleration w.r.t. the empirical accelerations. Thus, riepa

of G; for the whole arc can be written as

roo% % ... _0% N BN .. %
B B 0PBv-1 B B OPm-1
9% 9% 0% M M oY1
G, — IPo B 0fBm-1 G, — Bo 0B 0Bv-1
X — . . . . ) y — . . . . )
3:;123;1 0:’;?{1 o géN—l On-1 OYn-1 . O¥n-a
L 1 M1 Bo B O0fBm-1
- 0w on o (4.12)
9Bo 0B OBv-1
94 9% 7
aJ aJ IBv_
G, = Bo Fl Bv-1
O O . O
L [ o 0Bv-1

Similarly to Eq. @.37), the partial derivatives of the accelerations w.r.t. dynamic parameters
are transformed to the inertial frame before multiplication with the kernel matriggghe inte-
gration can be carried out easily in the inertial frame.

The partialsG’; are transform matrices like EQR.G5), multiplied with the constant terms and

1 cpr. They are

_ E(()L.) E((Jl)so E(Ol)co T E(()27> E((JZ )SO E(OZ,:)CO
o EY EMs EfMg o EX  EPs  EPg
X — . . ) y — : ’
L) ) (1) 2) =@ (2.)
! E(f(v?;)m E(N(El))SN—l E(N(fgl))CN—l ] EnCy EncySv-1 BEpnigCna
= Ep 'S0 Ep “Co
G/ - Eg-S.,:) EEL&':)Sl E(ls,:)Cl
zZ— . . . 9
) G 3
| Eniy EnCpSn-r BZgOn- |
(4.13)

whereEi“’:) means thg'" row of the matrixE derived with Eq. 2.35 at epochi. s andc; are
sinv; and cog;, respectively, withy; the true anomaly at epoch

To evaluate the partials of the position vector w.r.t. the dynamic parametersfialifiemme,
the convolution of Egs4(.7) is performed by multiplying the kernel matrik with the partials in

Eq. @.12, i.e.

HX:KG)(, Hy:I<Gy7 HZ:KGz. (414)

The matricedHy, Hy andH; are now establishing the link between satellite position and po-
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4. GOCE GRAVITY FIELD DETERMINATION FROM SATELLITE-TO-SATELLITE
TRACKING

tential coefficients:

9% 0 9% D N ...
9PBo JpB: IBu-1 9Po 9p IBm-1
o o 0 L )
H, — 9pBo I IBu-1 Hy — 9Bo I IBm-1
X . . . . ’ y — . . . . )
5;1\[;;1 5;1}1371 L gngl OYn-1  OYn-1 .. OYn-1
L 1 M-—1 dBo op 0Pv-
r 92  dn 9% ' o (4.15)
IBo B OBu-1
9z dn .. 0z
H, — 9Bo B IBm-1
z— . . . .
Ozy1 Ozv1 . O
L B B 0Bw-1

Similarly to Eq.@.14), the partials of the position vector w.r.t. the empirical acceleratitips
H’y andH’; are derived by multiplying the kernel matrik with G'y, G’y andG';, respectively.

We see that the variational equations are solved by this matrix multiplication. areeiyn-
plemented in parallel since the three components in £E44)( are independent. This improves
computation speed. Thepen Multi-Processing (OpenMP) interface is used for this kind of par-
allelization.

Back to Eq. 4.9), the observation equations for epddh the arc are formulated as

XA
1-1 0 0o 1 o 07| H',, Hy
0 1-t 0 01 O )Z(A +| HYy |88+ | Hy | B
0 0 1-1 0 0 71 B H’ Haz
;! (4.16)
L Z8
X Xoi
= yi - in 5
Z 2o

whereX;, Vi Z are the position elements of the kinematic orbit in the inertial frame at epoch
The elementsq;, Yoi andzy are reference values derived from initial conditions. The a-priori
information is introduced only for the purpose of reducing the numericat,enaking the right-
hand side smaller in order to reduce computer (both round-off and tiangarror. It has no effect

on the final results since the observation model is linear. As a demonstrati@s $-ig4.3, which
shows the geoid differences of two models recovered, one based M2EIB and one based on
EGM96 (Lemoine et al. 1998, with the same other conditions. The comparison includes the
polar gap areas. The maximum value of the differences3sc30-3 cm, and the STD value is

5.5x 10~* cm. Both values are very small and negligible.
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4.2 Reduction of the forces
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Figure 4.3: Geoid difference with EGM2008 and EGM96 as a-priori values

4.2 Reduction of the forces

As stated in Chapter 2, the forces can be divided into two categoriesitagi@val and non-
gravitational forces. Besides the gravitational acceleration from theh Edwey include third-
body attraction, solid Earth tides, ocean tides, and non-tidal variationsajrdvitational field
due to atmosphere and ocean. Non-gravitational accelerations includagiordresidual of air
drag, solar radiation pressure and albedo. In this work the non-gramihaccelerations are not
modelled with their explicit functions, but with empirical acceleration parameters.

4.2.1 Gravitational forces

All the models of gravitational forces have been presented in segtibaxcept the short-term
variations due to atmosphere and oceans (A&QO). In the geodetic literatyrartheeferred to as
atmosphere and ocean de-aliasing (AOD), $dechtney 2007). Since the atmosphere and ocean
are fluids, they change rapidly with changes in solar radiation, predsun@erature, etc. This
leads to mass redistribution and therefore tiny variations of the Earth'#aftamal field. The
numerical models for these variations of the gravitational field are deb&sdd on the data from
weather services and barotropic ocean models, agairFssghf{ner 2007). The SH coefficients
of the variations are provided every six hours and the products, whicheamed atmosphere and
ocean de-aliasing level 1B data (AOD1B), are available to the usersyvartaions at any time
epoch are obtained by interpolating between two neighboring epochsactie¢eration due to
AOD is then computed with Eq2(14).
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4. GOCE GRAVITY FIELD DETERMINATION FROM SATELLITE-TO-SATELLITE
TRACKING

As an example, Fig4.4 shows the magnitude of different gravitational accelerations using
the orbit of GOCE on Novemberf1 2009. The direct attraction of the moon is the largest. The
magnitude of the attraction of the sun is at the same level as the Earth tidediféldie & ocean
tides are smaller than those of the Earth tides, but much more irregular. Ghleration due to
AOD is the smallest, with a magnitude of about $0n/s’.

These accelerations are

modelled and the perturba-

Magnitude of gravitational accelerations
T T

800 tion of the orbit due to them

o ] tions in Eq. @.16), i.e., the

Moon
Sun

Earth tides reference valuesg, yoi and

= = = Ocean tides

Atmosphere & ocean Zy are computed by taking

a
o
o

Acceleration [nmlsz]
N
(=
o

these accelerations into ac-
count. Although these ac-

celerations can be computed

time [hour] with well-known models, the

error of the models or mis-

Figure 4.4: Magnitude of time varying gravitational accelerations modeling, such as of ocean
tides, inaccurate Love num-

ber, etc., can cause small deviations from the true orbit. The effect dicblkground model

is therefore worthwhile to be investigated.

4.2.2 Non-gravitational accelerations measured by GOCE aelerometers

Non-gravitational accelerations are accelerations caused by foctiag an the surface of the
satellite. They are therefore calledrface or skin forces.

As stated in Chapter 2, the largest part of the non-gravitational actiefeimdue to air drag.
In the case of GOCE the air drag is compensated in flight direction by the iwstéins. The resid-
uals after this compensation are quite small and can be measured as commaroedeations
(CMA) by the accelerometers. The drag-free compensation startedpdendeer 14th, 2009. In
Fig. 4.5, the left panel shows the CMA sensed by the three accelerometer painsneldrag-free
compensation is applied, see Fgba The right panel is the CMA output from the accelerom-
eters in drag free motion, see Figg5h Since thex-direction is approximately pointing in the
along-track direction, the largest part of the air drag would be measyréte accelerometers in
this component. When the satellite is not in drag-free motion, the magnitude of¢bmm-
eter output in thex-direction can reach 3000 nmi/sand the RMS value is approximately 600 to
700 nm/é. When the drag free compensation is applied, these values decreaSento/Z)(with-
out correction of the constant offset) and 2 nitespectively. After drag-free compensation,
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4.2 Reduction of the forces

both the RMS values of the accelerometer data inthendy-direction decrease, but the RMS
value in thex-direction (approximately pointing to the Earth’s center) increases fromr@/§ to
22.7 nm/é. This is likely due to some forces from the ion thrusters projected inte-theection.
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Figure 4.5: Accelerations in common mode sensed by the accelerometers

The CMA in thex-direction in drag free mode is presented as a global map iMFgbased
on the EGGCCD_2C product in November 2009. It is shown for both ascending ancedegty
tracks and gives primarily the effect of orbit altitude and atmospheric ceitipo.

common mode acceleration ( a ), in ascending passes common mode acceleration ( a ), in descending passes
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Figure 4.6: CMA shown geographically in November 2009 when drag freeemsation was applied

The accelerometer data can be used to correct for surface forcegarottess of orbit determi-
nation and gravity field reconstruction. Since the measurements contaieaoloise, they need
to be filtered and calibrated, cWigser, 2009. Another option is to try to absorb non-gravitational
accelerations by empirical parameters, skgdi et al, 20103.

Since all of the time during the operation phase of the mission the satellite is irfrdeag-
motion, we use empirical parameters to determine the unmodelled or mis-modediets af well
as the residuals of the air drag and other non-gravitational accelerafibesCMA data are not
used for gravitational field determination. After the gravity field model is obthittee empirical
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accelerations are reconstructed and compared to the measured commaacoeldeations.

4.3 Spherical harmonic analysis from the kinematic orbit

Level-2 orbit products are provided in the context of the Level-2 msiog of the HPF by the
AIUB Bern and DEOS DelftBock et al, 2011, GOCE HPF2009. The so-called Rapid Science
Orbit (RSO) is computed in Delft using GeodyAutney et al.1990 Rowlands et a).1995 and
GHOST software Nlontenbruck et aJ.2005ab) with a latency of 1 day. The Precise Science
Orbit (PSO) is computed in Bern with the Bernese softw@xach et al. 2007), with a latency of
1 week. Both kinds of products consist of kinematic orbits and reducedrdig¢ orbits, as well as
variance-covariance matrices and rotation matrices.

With the available orbits, one can choose between the reduced dynamicamwbikinematic
orbits as measurements for gravitational field determination. Unlike the reédlycemic orbits
which make use of a-priori models, the kinematic orbits are derived puesisngtrically, without
information from any a-priori gravitational field models. Therefore, we the kinematic orbits
as input.

4.3.1 Outlier detection

In Fig. 4.7, the differences between the kinematic orbits and reduced dynamic osbjisessented
as global maps and histogram, for all three components, based on thef dédaember and
December, 2009. As shown in Fid.7¢ 4.7f and4.7i, the standard deviations (STD) of these
differences in all the three components are less than 1.1 cm. We choosa$ ttm threshold
value for outlier detection. The differences between the kinematic orbitsezhated dynamic
orbit larger than 6 cm are considered as outliers. These data areadbuparameter estimation.

As one can see from both ascending and descending tracks, lagreniiffs can be found in
areas close to the North and South Poles. This can be due to the fact thiaséneation geometry
between GPS satellites and GOCE satellite is poor at high latitudes or it may el dauan
ionosphere effect linked to the Earth’s magnetic field. Therefore, theniatic orbits in these
locations are less accurate than at low latitudes. The precision of theeredayravitational field
model at these latitudes is expected to be degraded.

The precision of the kinematic orbit is supposed to be better than 2 crivjsdef et al.2010.
The weight of an observation is computed with

1, A< B
P(A) = o\ o al< (4.17)
=1 (54", B<mi<a . -
0, a <A

whereA is the difference between the kinematic orbit and the reduced dynamic @réitd3 are
6 cm and 3 cm, respectively. For observations vlithalue inside[S, a], the computed weight
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Figure 4.7: differences between kinematic orbit and reduced dynantit,avith the data in November and December 2009, 16,2120#8@rvations for all the three
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decreases with increasidy The curve of the weight function is presented in F¢B. As the
curve shows, ifA is larger than 3 cm, the observation is weighted down, based ortEQ).(

Weight function
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Figure 4.8: Weight function of the kinematic orbit

Based on this idea, with the data over November and December 2009, 23056
16,212,480 observations are detected as containing outliers, which is@ahd22% of the to-
tal amount of observations. Most of the outliers are located in the arese tdhe North Pole
and even more to the South Pole, see the global maps od Fig.

4.3.2 Arc length and parameterization

The approach applied in this study requires the orbit to be sampled withautiptien. Whenever
a data gap appears the arc will be terminated and a new arc will be startetthiaftgp. As shown
in Fig. 4.9, the neighboring short arcs are distinguished with colors blue and neldthay are
connected to the same node point which is the end of one short arc anegihaibg of the next
one. The node points are marked with black triangles in the figure. Since theeighboring
arcs share the same node point, the orbit is continuous but not smooth (timeitderivative is
not continuous at the node points). The position vectors at the node poéget up as unknown
parameters (namely the orbit parametegsandrg in Eq. @.9), and estimated after the gravity
field model is obtained. Since the continuity of the orbit is guaranteed, thieagpis slightly
different from the short arc approach as appliedMbgyer-Qirr (2006 or Eicker et al.(2006),
nevertheless the principle is the same.

The long arc in this study is defined as a continuous orbit without data gelpak jump of
the GPS receiver on board. It can be as long as 1 day and as shairtially three short arcs.
The short arc is the orbit segment of which two boundary positions &ireasd together with the
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Figure 4.9: 20 minutes segments of short arcs

other parameters such as gravity field coefficients. It is 20 minutes long isttldg. The whole
curve in blue and red in Figt.9is a long arc. Long arcs are plotted between two circle dots, since
there is no data gap. In the figure, the black dots represent a data gagbook jump; after these
black dots a new long arc starts with the initial point marked with a black circlepagan see the
new arc in magenta and cyan. The short arc is the orbit between two trizagks, or a triangle
mark and a circle.

As mentioned in sectiof.1, the parameters for SST can be divided into three categarnibi:
parameters, empirical parametersandglobal parameters. The orbit parameters are the corrections
of the positions of the node points. For a long arc, the total number of thigparameters is 3
(Narc + 1), with ngc the number of short arcs. The empirical parameters are the 1 cpr atieisr
for the whole long arc, and constant values for each short arc. Talentamber of the empirical
parameters per long arc ist63- ny¢c. These two kinds of parameters are callechl parameters
since they are arc-dependent. Global parameters are gravity cogffidizey are independent of
the arcs.

Once the observation equations of long arc are obtained, they canyewated to the normal
equations, following Eqs.3(9) and @.10. The position vectors at the boundary location and
the gravity field coefficients are estimated together with the empirical accelesats stated
in subsectior2.2.9 by simply applying the convolution to the partials computed according to
Eqg. 2.33. As an example, in Figd.10the normal matrix is shown from seven continuous short
arcs. There are 24 orbit parameters, 27 parameters for empiricéi@timmns, and gravitational
field coefficients. The correlation between the local parameters and thal glarameters can be

found in the off-diagonal parts in the inverse of the normal matrix.
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Figure 4.10: Normal matrix with orbit parameters, empirical accelemasi and gravitational coeffi-
cients for seven consequentive arcs (fhand log10 scaled)

The number of the local parameters can be very large, even much higinethihnumber of
the gravitational field coefficients. For instance, there are more than 88ahd local parameters
for two months of observations. The longer the time period of data use@fameter estimation,
the more local parameters have to be taken into account. Therefore,dtwf #ie whole normal
equations will become very large for years of observation data. Sinse kbeal parameters are arc
dependent, they can be pre-eliminated before combination of the normatiatias discussed
in section3.5. After the global parameters, i.e. the gravitational field coefficients, alied
for from the combined normal equations, the local parameters are taoces arc by arc by

re-substitution.

4.3.3 Results and analysis

We use the kinematic orbit from the PSO product of the period of Noventbtr December 3%
in 2009. A gravity field model up to d/o 150 is recovered. More observatoaprocessed and
combined with SGG for GOCE gravity field solutions presented in Chapter 6.

The estimated coefficients can be compared to the reference values in fateggae RMS,

similar to Eq. 2.4), computed as

_ 1 o= _ qref 2 o _ def 2
an_\/ mZo<Cnm cnm> +(snm sLm) : (4.18)

2n+1
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4.3 Spherical harmonic analysis from the kinematic orbit

for degreen. TheC,,m andS,y, are the estimated coefficients, wher@;f\%: ande:, are the ref-
erence values of degreeorderm. One can also compare two fields in terms of degree median,
which is obtained from the median value for each degree.

The degree RMS values of the estimated gravitational field models with variolsraths
compared to ITG-Grace2010s are presented in&igl. Based on our experiments, the short arc
with a length of 20 minutes is chosen for SHA, due to its good trade-off betsewothness of
the orbit and adequate description of the actual variation of the unmodalbedgfavitational)
accelerations with the empirical parameters.

. degree RMS
10 T T T T
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=
(=}

ITG-Grace
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0O 10 20 30 40 50 60 70 80 90 100 110
degree n

Figure 4.11: The degree RMS of the results estimated with different argtte

Figure4.12 shows the degree RMS and degree median. The gravitational field mda@el IT
Grace2010s is used as a reference for comparison. TUMYGSST medefs the result without
constraint in the polar gap; TUMYGSSTpgr means the result with constgathingeoid height
in the polar gap to be consistent to that of EGM2008 with an STD of 20 cm. Weaausx 1°
grid over the polar gap defined at latitudes [-983°] and [83 90°]. These are the areas the
satellite orbit does not reach due to its inclination of @6 The solid curves in red and in blue
are the differences of the ITG-Grace2010s to the unconstrained sputébconstrained solution,
respectively. The dashed curves in red and in blue are formal esfdlge unconstrained and
constrained solutions, respectively. The zig-zag behavior in the eld&S of unconstrained
results is due to the polar gap. After the constraint is applied, this behasapmkars. The degree
medians of both the unconstrained and constrained solution are similarlyeldsge-Grace2010s.
The shape of the formal error shows good consistency of the differefithe coefficients to the
reference model. The signal-to-noise ratio (SNR) is one at approximatghee 105. This is
the upper limit one can achieve with only two months of orbit data. The analySihapter 2
about the maximum d/o to be recovered, which states that the degree up wag2&yond the
sensitivity of GOCE SST, is therefore confirmed by the real data analysis.

The daily variation of atmosphere and ocean in terms of SH coefficients isnalsided (in
magenta). This contribution is modelled and subtracted from the observatiorthe degree
median in Fig4.12bone can see the deviations of the estimated coefficients from the reference
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Figure 4.12: Degree RMS and degree median of the models

model, ITG-Grace2010s. They are smaller than or at same level of magaisuitie AOD signal,
up to degree 8. This shows that the AOD correction should be appliedgdtivenparameter
estimation.

The coefficient differences of the SST solution w.r.t. ITG-Grace2@it@sformal errors of
the solutions are presented in Fi§13 with the arrangement of the coefficients as in FAdL
The coefficients of higher order and less than degree 100 are estimigttegbed accuracy. This
can be seen from the coefficient differences and formal errordtir the unconstrained case and
constrained case. The zonal and near-zonal coefficients arendletdrwith less accuracy due to
the polar gap. After the constraint is applied, the zonal and near-zogéicients are determined
with the a similar level of accuracy as the other coefficients, comparedFi§cand4.13dto
Fig. 4.13aand4.13h

The geoid height can be computed from the estimated SH coefficients usi(@ &qThe dif-
ferences between two models represent their spatial deviations. .Efghe geoid differences
in the latitude range [-8383°] between unconstrained solution and ITG-Grace2010s and between
constrained solution and ITG-Grace2010s are displayed d26a € 0.25° grid. The latitude band
is restricted in order to eliminate the polar areas where no data is collected B GO

In Fig. 4.1443 the geoid differences between the unconstrained solution and ITGEIA0s
up to d/o 100 display large values in the high-latitude areas. The STD valub4(in) is even
larger than that of the geoid differences for the case of up to d/o 158 ¢, see Fig4.14h
This is the truncation effect due to the correlation of the zonal and neat zoefficients, and this
coefficient correlation is due to the existence of the polar gap. Due to thislaion, the high
degree coefficients contain information of the long-wavelength signaleofjthvity field. If one
truncates the model at a certain degree and order, some long-wavedeggrgihis removed from
the model and large differences appear in its differences to the reéegeavity field model.

The geoid differences between the constrained solution and ITG-BYa@s are displayed in
Fig. 4.14cand4.14d for the situations of up to d/o 100 and 150, respectively. After the cainstr
over the polar gap is applied, this truncation effect disappears. This&ibe the correlation in
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Figure 4.13: coefficient differences of SST solution w.r.t. ITG-Gracg@® and formal error of the
solution (log10 scale)
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Figure 4.14: Geoid differences of SST solution w.r.t. ITG-Grace201@staud/o 100 and 150
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the zonal and near-zonal coefficients due to the polar gap is largely ¢ake of by the introduced
polar gap constraint (regularization).

Since the orbit of GOCE is lower than that of CHAMP, its sensitivity to the grawital field
is higher than that of CHAMP. As shown in Fig.15 two months of GOCE data can provide
a result more close to ITG-Grace2010s than that with one year of CHAM®. d'he CHAMP
solution is from the model AIUB-CHAMPO1S}4ggi et al, 2011) up to d/o 70. It was computed
based on the CHAMP orbits over the period from March 2002 througlcMa003. The STD
values of the geoid differences between ITG-Grace2010s and trstraimed solution with 61
days of GOCE orbit (model TUMYGSSTpgr) are 4.09 cm and 7.34 cm fiaiowd/o 50 and 70,
respectively. However, the STD values of the geoid differences leetwEG-Grace2010s and
AIUB-CHAMPO1S are 7.3 cm and 28 cm, for up to d/o 50 and 70, respsgtitnuch higher than
the comparison between TUMYGSSTpgr and ITG-Grace2010s. TheQ@nage2010s is very
accurate at long and medium wavelength. It is a precise model to be usddrance model. This
indicates that two months of GOCE data can provide a result which is moreatetan that with
one year of CHAMP data.
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Figure 4.15: Geoid differences of SST solution w.r.t. ITG-Grace201@staid/o 50 and 70

The geoid differences for both CHAMP and GOCE w.r.t. ITG-GRACE2041@ not normally
distributed. Large values in high latitudes are likely due to the fact that theawcof the GOCE
orbits is not globally homogeneous, compare Fig. As a resultCyo and other low degree
coefficients are affected by this kind of behavior. Two options can lentiakovercome this issue,
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one is fixingC»g and other low degree coefficients to some a-priori information, disravgpeshy
correlation with other coefficients, the other one is combining GOCE SST witr ottservation
types such as K-band ranging of GRACE and/or satellite laser rangirig) (8LLAGEOS, which

are more sensitive 10,0 and other low degree coefficients than GOCE.

4.3.4 Contribution of Regularization

The contribution of observations (GOCE kinematic orbit) and pseudoradifEns (the grid values
for the constraint (stabilization) in the polar gap) can be computed with theiraionatrices based
on the theory presented in secti®3. As shown in Fig4.16 the contribution from regularization
is less than one percent, if the geoid of the polar gap is constrained atra B8l to an a-priori

model, such as in our case EGM2008. The upper right and lower leipanFigs.4.16aand

4.16adisplay the contribution per degree and per order, respectively. diteilsution analysis of
the regularization is explicitly independent of the chosen a-priori modehuse it is computed

from the normal matrices only, without “knowledge” of the observatiortsthe a-priori values.
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Figure 4.16: Contribution from SST observations and pseudo-obsemnsiimpolar gaps

From the contribution analysis, one can find that zonal and near-roefficients get in-
formation from the regularization (constraint), and the higher the detieenore contribution
comes from the a-priori information. The average value of the contribthiepolar stabilization
is as small as 0.415%. This means the information of the a-priori field fotaegation is very
small. However, it is important for GOCE, since it largely de-correlates tinalzand near-zonal
coefficients caused by the existence of the polar gap, and it stabilizesltties.

There is a dilemma when regularization is applied. On the one hand, it is hopxlaio
results without regularization in order to avoid any dependency on thedmapriori informa-
tion. On the other hand, it is hoped to combine the good available a-priorimaton with the
observations to get an optimal solution. With the contribution analysis, insighained into how

much information comes from the actual observations, and how much figuirarezation.
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4. GOCE GRAVITY FIELD DETERMINATION FROM SATELLITE-TO-SATELLITE
TRACKING

4.3.5 Reconstructed Accelerations

Apart from the quality of the global parameters, we look into that of the Ipaghmeters. The
empirical accelerations can be reconstructed after the global parameterslved. As shown in
Fig. 4.17, the full normal equations (FNEQ) are constructed from observatibeaah day. By
applying pre-elimination as described in sect®h all orbit parameters and empirical accelera-
tions can be pre-eliminated, and the system of full normal equations retlutiee so-called re-
duced normal equations (RDNEQ). As the parameters in the RDNEQ arg@vigational field
coefficients, they can be combined applying the appropriate weighting.gwiational field
coefficients are obtained by solving the combined normal equations. Utirggthe estimated
coefficients into the observation equations, which contain now only orbéginpeters and empir-
ical parameters, for each arc the local parameters can be obtainedving tbese observation
eqguations by least squares estimation.

Full normal Full normal Full normal
Equation 1 (FNEQ), |Equation 2 (FNEQ) Equation n (FNEQ)
Reduced normal Reduced normal Reduced normal

Equation 1{RDNEQ) | Equation 2(RDNEQ) Equation n (RDNEQ)

l l i i
l

Combine RDNEQ
I

Solve gravitational field, using it as input for
estimation of empirical and orbit parameters
.

Recreate obs. equation for only
emp. accel. and orbit parameters

'
Solve these obs. equations, obtain
emp. accel. and orbits

Figure 4.17: Diagram of SST data processing

The reconstructed accelerations are shown in&ig8during the transition time period from
non-drag-free to drag-free motion. The values over the period oéMber and December 2009
are presented in Figt.19 In the upper panel of Figl.18 from 00:00 to about 14:40 the magni-
tude in the along-track direction is larger than the other two. This shows thatithirag is not
compensated by ion thrusting. After 14:40 both the reconstructed and ¢keveld accelerations
decrease significantly. The reconstructed accelerations follow theveblsenes but are not the
same as the observed ones. On the one hand, there are offsetslarfdctoss in the observed
values; on the other hand, the reconstructed values contain not onlyraaitational forces, but
some model errors from the gravitational forces.
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4.3 Spherical harmonic analysis from the kinematic orbit
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Figure 4.18: Empirical accelerations vs. observed accelerations on Kilay2009; at about 14:41
GOCE transits from non-drag-free to drag-free mode, a ambi¢éhavior can be found idgggi et al,
2010h

The reconstructed accelerations in the cross-track direction are mwistemt with the mea-
sured accelerations than the other two components. In radial directiatiffdfrences between the
reconstructed and the observed accelerations are larger than thémegineand cross-track direc-
tions. The possible reason is that the unmodelled and/or mis-modelling effeattiahdirection
are larger than in the other two directions, and/or some information from -&fenk direction
might be absorbed by the radial direction due to the theoretical couplinggbrtalong-track and
radial directions $neeuw?2000.

This comparison holds only approximately, since the reconstructed eai@hsrare given in
the local orbital reference frame (LORF), whereas the measuredsvalegiven in the gradiome-
ter reference frame (GRF), (s€&uber 2010. If the empirical parameters were modelled in the
GREF, this information could be used to estimate the biases and scale factoessof thdividual
accelerometers, as done Wigser, 2009.

In Fig. 4.19 some correlation can be found when comparing the reconstructed aticsler
and the differences between the kinematic orbits and reduced dynamiquésiented in Figd.7.
The magnitude of the reconstructed accelerations in the along-track directimaller than those
in the cross-track and radial directions, due to the drag-free comjpmmgaflight direction. Cor-
relation can be found between the reconstructed cross-track aticglenad the yaw angle of the
transformation between GRF to LORF, if one compares£itpto the attitude angles between the
GRF and LORF presented in Fig.6in the next chapter. The differences betweendhalues in
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4. GOCE GRAVITY FIELD DETERMINATION FROM SATELLITE-TO-SATELLITE
TRACKING

Fig.4.19and in4.5bis large, the reasons are first, the scale differences between the attasdr
reconstructed accelerations exist, as shown in&itg second, these two types of accelerations
are defined in two slightly different coordinate systems; and third, thensteected accelerations

contain not only the non-gravitational accelerations, but also some misterode

Reconstructed acc. ascending (along track =42.3520 nm/sz) Reconstructed acc. descending (along track 6=44.1883 nm/sz)

-200 -150 -100 -50 o 50 100 150 200
-221.558 « [nm/s?] — 287.689 -265.5386<« [Nm/s”] —>240.7956
(a) along-track, ascending (b) along-track, descending

Reconstructed acc. ascending (cross track o=131.8981nm/s?) Reconstructed acc. descending (cross track c=103.0063nm/s?)

-400 -300 -200 -100 o 100 200 300 400 -400 -300 -200 -100 o 100 200 300 400
-701.6128 «— [nm/s2] —437.3985 -530.5136 «— [nm/sz] —292.0947
(c) cross-track, ascending (d) cross-track, descending

structed acc. descending (radial 0=112.0209 nm/s?)

-300 -200 -100 o] 100 200 300 -300 -200 -100 0o 100 200 300
-471.9268 < [nm/s?] — 493.6923 -688.9761 « [nm/s?] — 524.2701
(e)radial, ascending (f) radial, descending

Figure 4.19: Reconstructed acceleration over the period of NovembebDeawgmber 2009

4.3.6 Reconstructed Orbits and Residual Analysis

Using Eq. @.9), the orbits can be reconstructed from the resulting gravitational fieldhegeith
the solved boundary positiany, rg and the empirical accelerations. The reconstructed orbits are
reduced dynamic orbits, since the empirical accelerations are introducied the parameter es-
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4.4 Summary

timation. As we used the kinematic orbits as observations, the differencesdretiie kinematic
orbits and the reconstructed orbits are the residuals. IndEfthe residuals are presented ge-
ographically. Large values of the residuals can be found at high latitgepointed out earlier
the kinematic orbits in these regions are less accurate, compare FiGompared to the reduced
dynamic orbits in SSTPRD_21 sub-products computed at AIUB, the reconstructed orbits in this
study are closer to the kinematic orbit, since a gravitational field model ddrimethe kinematic
orbits is used to reconstruct the orbits, cf. the right column of #ig0 Since the precision of
orbits at high latitudes is poorer than that at lower latitudes, the recoveaeitizgional field model

is expected also to be less accurate towards the poles. This can be féugdlii5by comparing
our results to ITG-Grace2010s. However, the formal errors of tloedge the estimated model
at high latitudes are smaller than at low latitudes, due to the fact that the nurinther abser-
vations is much higher towards the poles. With more and more observatich$onggmrameter
estimation, the high latitude areas will result better precision, benefited frermigh density of
the measurements there.

The standard deviations of the differences between the reconstrutiedto the kinematic
orbits are smaller than those of the difference between the kinematic orbitsegltieed dynamic
orbits, compare the right column of Fig.20and4.7. One can see that the residuals satisfy a
Gaussian distribution (with 95% confidence based on a Kolmogorov-Smiestvsee flassey
1951). This proves that the estimated parameters are really well adjusted to #madkin orbits.

4.4 Summary

Based on the integral equation approach, a gravitational field model up b8/ recovered
from the observations in November and December 2009. The signalige-atio (SNR) is close
to one at about d/o 105. Due to the linearity of the method, the results shdly hay correlation
with the applied a-priori gravitational field (initial values).

The disturbances from solid Earth tides, ocean tides, direct attractiontfr® moon and the
sun, the effect of general relativity as well as mass redistribution due teatiation of atmosphere
and ocean are modelled and removed from the orbit. Since these accakecaiobe modelled
reasonably well, a potential mis-modelling error of gravitational forcesllshbe quite small.
However, if there are some errors in the models, such as uncertaintiesafehn tide model, or
atmosphere/ocean, it can lead to deviations. The empirical parameterseéubta compensate
for such mis-modelling.

The non-gravitational forces are modelled by introducing empirical pass)evhich are 1-
cpr sine/cosine parameters for a whole continuous long arc, and cbastaterations for each
short arc, all in all three directions. They are modelled in the LORF, asisksd in subsec-
tion 2.2.9 Comparing the reconstructed empirical accelerations to the CMA measwyréxd b
accelerometers on board shows clear similarities. The gravitational fielal sigas not have the
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4.4 Summary

behavior of a constant (in the time period of a short arc) and 1-cprrdahieally the empirical
parameters are expected to absorb little signal of the gravitational field.

The reconstructed orbits are very close to the kinematic orbits, compared tliffdérences
between the reduced dynamic orbits and the kinematic orbits from thePS®&X2I product. This
indicates that the recovered gravitational field fits the kinematic orbit morettigaa-priori field
used for deriving the reduced dynamic orbit in the 3302 product. The radial direction is
slightly less accurate than the other two components obviously due to theviogsgeometry
between GPS satellites and GOCE satellite, as expected.

The recovered gravitational field from GOCE kinematic orbits based on twidhmmf data
seems to fit better to the very accurate gravity field model ITG-Grace2badsthat based on
one year of CHAMP data. This is due to the low altitude of GOCE orbits, whichesiéiikem
more sensitive to the higher end of the long-wavelength part of the Egrdvgational field. The
geoid heights derived from the gravity field model recovered with GOCErkatic orbits have an
accuracy of 7.34 cm RMS up to d/o 70, when compared to ITG-Gracs2@h@ coefficient€,
and some other low degree ones are less accurately determined, dueattd thatf GOCE's orbits
in this two-month period are less accurate at high latitudes.

Pseudo-observations in the polar areas are used to stabilize the compaiatide-correlate
the zonal and near-zonal coefficients. Their contribution is very smalintportant. As one can
see in Fig4.14 after the pseudo-observations are applied, the truncation effeduisad, or even

disappears.
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5

GOCE Gravitational Gradiometry and
Spherical Harmonic Analysis

GOCE is the first mission with a gradiometer on board. The gradiometer measume compo-
nents of the gravitational gradients, which are the second derivafitiee gravitational potential.
The gravitational gradients serve as the primary observations for gfmldydetermination. This
chapter focuses on the analysis of the gradiometer data, and the shimmicanic analysis based
on these data. The introduction of the gravitational gradiometry and theatien of the GGT are
discussed in section 5.1. The observation model is presented in sectid®ebtibn 5.3 presents
an analysis of the gradiometer data regarding various aspects. Sectifmtisés on spherical
harmonic analysis. Section 5.5 summarizes the methodology and results.

5.1 GOCE gravitational gradiometry

The gradiometer is made of three orthogonally arranged one-axis gradismésach of them
consists of two ultra-sensitive three-dimensional accelerometers mouritesl end points of a
half-meter baseline. Each accelerometer contains a test mass of RhodiumrRjaveight 320 g
and 4x 4 x 1 cn? in size. The test mass is kept levitated by an electrostatic feedback system
inside a chamber with eight pairs of electrodes. The center of the thréieg@ter axes coincides
closely with the satellite’s center of mass, compare bify. Thus, the components of the gravita-
tional gradient tensor are approximated by the finite acceleration diffei@rer the corresponding
baseline Rummel et al.2017).

Because functional testing of the accelerometers is done in the laboratgnpond and re-
quires levitation of the test mass under the influence of gravity, this leadshoaeaelerometer
being ultra-precise along two orthogonal directions but much less seraitiag its third axis, see
alsoFloberghagen et a{2011); Rummel et al(2011). Thus the ultimate sensitivity can only be
attained along two axes, while the third is made less sensitive. The configusiatiom in Fig.5.2
was decided for the GOCE gradiometer.
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5.1 GOCE gravitational gradiometry

Figure 5.1: GOCE gravitational gradiometer consisting of three ortnaj one-axis gradiometers,
each 50 cm long and with two accelerometers; technical dignffeft) and actual instrument (right)
(source: ESA)

The difference between accelerations measured by each set of teleracaceters (which are
about 50 cm apart, see Fi§.2), i.e., the so-called differential mode acceleration (DMA), in the
direction joining them contains the basic gradiometric information. After removiegtigular
motion from the DMA, the gravitational gradients (GG) are derived in thdigraeter reference
frame (GRF), seeHuropean Space Agen006 Gruber 2010 van Hees et 812008 Rumme]
1986.

Gravitational gradiometry is the measurement of the second derivativibe gfravitational
potentialV. Itis referred to as gradiometry because the gradients of the compafdmsyravita-
tional acceleration vect@ are measured. The gravitational gradients form a second-order tenso
field with 3x 3 components, the so-called gravitational gradient tensor (G&lilnMmel et al.
2011). The tensor is denoted & In an arbitrarily chosen local Cartesian coordinate system at
locationOQ, it is defined as

Vi Vi Vi
Vo Vy Vi

The acceleration at location of acceleromeéier

a(i) = a(0) +Var; + (0?) , (5.2)

with Ar, =r, —r,. The omitted quadratic and higher order terms contain the third-, fourth- and
higher-order derivative tensors bf. We assume the components @to be measured by an
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5. GOCE GRAVITATIONAL GRADIOMETRY AND SPHERICAL HARMONIC
ANALYSIS

XGre

X4

Figure 5.2: Location of the 6 accelerometers, denofedi = 1,2, --- ,6 in the gradiometer reference
frame (GRF). Thesolid arrows at each of the accelerometer triads show the ultra-seasies, the
dashed arrows the less sensitive axes.

accelerometer atand a second device at a poin¢xactly symmetric ta relative toO. Then the

acceleration difference betweeand | gives

a(j)—a(i) =V (0)ar; + (0%, (5.3)

whereArij =r; —r;.

The even terms drop out because of the symmetry of the Taylor seriescubieand all
higher-degree terms are negligibly small, at least for gradiometers ofdimivgrsize. Thus, the
nine components of are derived from measured acceleration differences over basetigise
e.g., the componeM,y is derived from the difference of the x-components of the two accelerom-
eters of the y-axis, divided by the baseline lengyih

Naysx Dapsy Aaggx

Vix ny Vie AAx AAy AAz
_ _ 1,4y 2,5y Az 6y 3
V= Vyx Vyy Vyz - AX Ay Az + (O ) (5 4)
Vax Vy Vg Aagg, Days; Dagg, .
AXx Ay Az
=D+ (0%,

whereAx, Ay andAz are the distance between the accelerometer pairs 1-4, 2-5 and 3-&;-resp
tively. Aa; jx = @ x — ajx is the x-component of the difference between the accelerations at the
centers of accelerometdrand .

The gradiometer rigidly mounted into the spacecraft rotates in space with theamgithar
velocity about the y-axis. Thus, in the GRF the accelerometers pick upotatjonal motion, in
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5.1 GOCE gravitational gradiometry

addition to the gravitational signal

a(i)=a(i)+Q QAr, + QAr, (5.5)

with & the accelerations measured in the rotating GRF, and with the well-knownssique for

centrifugal and Euler accelerations, where

0 —w w
Q=| w 0 - and (5.6a)
[0 e gy
o= & o —a . (5.6b)
—@y, @y O

Thereby itis assumed that the test masses of all six accelerometerstastiteand levitated.

The differential accelerations in the rotating frame become

Dxx ny sz VXX VXy VXZ

—(f+wf) wwy WXy

+ ok  —(F+af) 5 7
i Wy (e + ) (5.7)
0 —d

+| @ 0 -
—@, @ O

=V+QQ+Q.

In Eq. (6.7), the left-hand side contains the measured acceleration differencémgaine
length with, e.g.Dyy = AaAZ;’X, Dyx = AaAl;:"y, compare Eqg. §.4). The right-hand side is the sum
of gravitational gradients and centrifugal terms with angular velocity ptsdas well as a matrix

containing angular accelerations. Symmetr\oand Q Q versus skew-symmetry @ allows

separation and therefore “isolation” of the angular accelerations:

Q=>-(D-D"), (5.8a)

NI RN

V+QQ=Z>(D+D"). (5.8b)

Angular velocities are obtained by integration of the angular acceleratigtisthe elements
of Q Q known, the gravitational gradients Yhcan be determined. In fact, the angular velocities
are derived from an optimized combination of these angular acceleratidragular rates derived
from the star trackelummel et al.2011, Stummer et a).2011).
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It is unavoidable to use some less accurate components for the sepaf&iGi and angular
motion. With the configuration of Fich.2, the GGT is derived based on E§.7) as

—(f+@2) By (G
- Wiy () Wy (5.9)
(TR ey ()
0 b g
o A
—O.%/ Wy 0

The less sensitive elements are indicated with tilde above the variables. Diis elmsures
that ¢y, can be determined with high precision, and after integratipms well. This is impor-
tant when determining the angular rates, because it hojds- wy or w,. Essentially the four
gradiometer componenty, iy, V, andVy, are resolvable with high precision.

The observations from GOCE gradiometer are in general correlatedtatstically not in-
dependent. The PSD of their noise is frequency dependent. This kimois# is called colored
noise. A very powerful test of the performance of the gradiometer is épéalce condition, which
says that the sum of the three diagonal components of the GGT, i.e. itsisrteepretically zero.
For the output of the gradiometer, the trace of the measured GGT is the hthigeneeasurement.
As shown in Fig5.3 based onCesare2008, the requirements of square root of the GGT trace
error PSD in the MB is displayed in blue. The expected square root ofahe &rror PSD in the
low-frequency band (LFB) is in dashed black and in the higher-frequband (HFB) is given in
red. The requirements of the square root of the GGT trace error RS&8paroximately the noise
PSD of the measurements, which are frequency dependent as shoign5t3FIin the MB from
5 to 100 mHz, the noise level is smaller than that at the frequencies outsidis oatige, and
at 5 mHz it increases with/if towards the lower frequencies. The higher noise outside of this
frequency range (especially the frequencies lower than 5 mHz, i.e. t&Begither be filtered out
or modelled with empirical parameters before data analysis.

10°

107k

GGT trace error PSDY2 [mE/sart(Hz)]

1

10 L

10° 10 10 10°
Frequency [mHz]

Figure 5.3: Square-root of the power spectrum density of the GGT trace
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5.2 Observation model

With the GGT measurements, the following approaches can be applied torgeadialata for
SHA:

i. Semi-analytical approach based on Hill's theoiynéeuw 2000. The time series of the
gradiometer observations are transformed to the spectral domain, theailiseequations
are formulated in the spectral domain as well. From the assumption of cirabli&rthe
normal matrix can be reduced to be block diagonal. Therefore, it caarbputed very fast
and with a rather small computer memory;

ii. Direct approach (DIR): Analysis based on the information inside the oreasent band
(MB) only. The information outside of the MB is bandpass filtered. Gradiomistin-
troduced directly as new type of observable into the existing GINS soft{iaety et al,
2005. GINS has been used for the series of EIGEN models produced bya@®#FBGRGS;

iii. Time-wise approach (TIM): Data decorrelated over the entire spec{Rait et al, 20113
Schuh 2002. The residuals for the observations are analyzed and a filter is cotestru
based on the residuals. The idea is, after the residuals pass the defiliieatad inputs, the
output behaves like white noise. The essence is: the data are treated aseartes@long
the orbit;

iv. Space-wise approach (SPW): Collocation approach after applyiager filter Migliaccio
et al, 2004 Tscherning1993. By exploiting the spatial correlation of the Earth gravity
field, a gravitational field model can be estimated from the measurementsdyetidesan
satellite altitude. The essence is: the data are treated as observations ecthd@main on

a sphere.

In addition, there is a quick look solution. Similar to semi-analytical approadhk,dgbmputed
based on the approximations that the orbit must be circular, and withczgg®ien. It is useful

for quality check and data cleaning4il et al, 2007). Recently, a few models, such as TIM1,
DIR1, SPW1 Pail et al, 20113 and TIM2 (Pail et al, 2011h, DIR2 (Bruinsma et al.2010,
SPW2Migliaccio et al, 2011), have been published based on DIR, TIM and SPW approaches.
The method for SGG data processing in this study is similar to a time-wise appwaglying a

filter at both sides of the observation equations, the colored noise outsiteMB is transformed

to a white noise situation and the information inside the MB is preserved andtextiay SHA.

5.2 Observation model

The GGT measured by GOCE gradiometer is given in GRF, as seen iB.Bq.The gravity field
is, in general, computed in the Earth fixed frame. The GGT computed fronmdkiiygfield model
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is given in the ECEF frame as

Vxx ny VXZ:|
Voo Vy Vz | gcer

whereV;j = nz nz V™, andi, j = x,y,z. i are computed with Eqs5(1]) to (5.16). Starting
with Egs. @.1) or (2.6), the second derivatives of the gravitational potential are computerdiref
to ECEF frame. They are gradient of the gravitational accelerations hvane computed with
Eq. 2.14. The derivation can be found Meétris et al.(1999; Montenbruck and Gil(2000.
Here we modify the formulas into fully normalized form, again, in order to avogaberflow

and/or underflow which can happen in unnormalized cases. With the nogatemin Eq.2.7in

pagel4, the elements of gravitational gradient matrix in terms of spherical harmorgcs a

Vno:dx'noiGM@ 1 (2n+1) n+4 V _(n+2)l c
XX dX R% 2n+5 n+2,2 n+20 n0

= Y Mo 1 N vt 3 :_*j‘, (Conszs + Sz
+\/(2n+ 12;:12) (n+2) ( CmVni21—SuWni21) }
=2 O B e Sl
i 2\/ (Zn(i"sj (ﬁi”;) !‘(‘fj'“ 357 (~CrVinsz2—Sallniz2) (5.11)
\/2((22nn—:_ 5])-)((:j 22))!! (énzvm_zp + éhzWm—z,o) }

2 0¥%n GMs; 1 2n+1)(n+m+4)! — _
Vg 2 {\/ @+ 1)( ! CoVneomez + SeiWnszmiz)

x x R 4 (2n+5) (n+m)!
\/(2n+1)(n+m+2)!(n—m+2)!

(2n+5) (n+m)! (n—m)! (=ComVns2m — SimWn-2m)

(2n+1)(n—m+4)!
(2n+5)(n—m)!

(Cnmvn+2,m72 + énm\TanrZ,mfZ) } ’
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5.2 Observation model
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Similar to Eq. .15, the partial derivatives of the gradients w.r.t. the gravitational field-coef
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5.3 Reductions of the Gravitational Gradient

ficients are obtained based on Eds1() to (5.16 and are represented as

WV My Vg

B  JB IB

OVECEF | oV vy OV (5.17)

0B | B B B ' '
0Vy Ny Vg

0B OB OB lEceF
Since the measurements of g andVy, components are less accurate, the measured GGT

from the GOCE gradiometer is an incomplete tensor. It must be avoided téomarthe incom-
plete GGT from the GRF to ECEF or any other Earth-fixed frame, otherwéshithly accurate
components will be degraded by the less accurate ones. Moreovegt#tienm of the measure-
ments will lead to a correlation between different components. Therdf@ebservation equa-
tions are directly formulated in the GRF. This means, the partial derivativiee GGT to each
individual coefficient and the reference values of the GGT computed &-priori model are ro-
tated into the GRF. The rotation is done by

VGRF= CERFC?VECEF(CERFC?)T
ov - oV : T
azRF = CGRreCr OEEEF( GreCE)

whereC8 s the rotation matrix from the ECEF to the inertial frame, &g is the rotation matrix

(5.18)

from the inertial frame to the GRF. TH&f can be evaluated using the SERM_2| sub-product
or using IERS conventiond/cCarthy and Petjt2004 with a dedicated software package, such
as SOFA, (seéAU SOFA Board 2010. TheCl g is obtained from the EGEAQ 2C product.

With the above derivations, the observation equations become:

OVGRF
B

with Vgrr the measured GGT arul . the reference values from an a-priori model. Compared to

V= 5B — (Vere—V2re) (5.19)

Eq. 3.9, VGRF—V%RF: d is the observed minus computed part; the parameters in vBatan

be therefore estimated based on E8fwith appropriate weighting, as described in secBoh

5.3 Reductions of the Gravitational Gradient

Like the orbit perturbations, compare set®, also the output from the gradiometer onboard the
satellite contains a contribution from the gravitational gradients due to thetattrat the moon
and sun, Earth solid tides and ocean tides as well as short-term variatbtomghfe atmosphere
and ocean. The gradients due to the direct attraction of the moon andegomaputed with
Eq. 2.17), and those due to solid Earth tides, ocean tides and atmosphere and receamputed

from Egs. 6.11) to (5.16 using the corresponding coefficients of these models.
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The GGT has nine elements, and is symmetric. Thus, disregarding Lapladgi@o, there
are six independent components. We define the signal magnitude of a {>& ddements

VI = NVEAVG+HVRHVEHVR+VE (5.20)

In Fig. 5.4, the magnitude of the computed values from models is shown on the left anldPSD
on the right. From the magnitude shown in Figdawith u representing mean values, the largest
effect is due to solid Earth tides, different from Fg4 where the direct tidal attraction of the
moon is the largest effect. This can be explained by the fact that the magnittite acceleration
due to the direct attraction of the moon and the sun is larger than that due tarthdiltes, but its
variation (gradient) is smaller than that due to the Earth tides and ocean tides.

disturbances to GGT start at epoch 20091101004930 , PSD™2 of disturbance to GGT
T T T 10 T T T

—Sun
1.2 Moon
Solid tide

— Ocean tide
1|—A8O

0.8 Hsoinae=0-2102

magnitude of the disturbance [mE]

; ; ;
10" 107° 107 10" 10°
Frequency [Hz]

(a) magnitude (b) PSD+/2

time [h]

Figure 5.4: Magnitude (left) and PSB? (right) of the corrections to GGT

In Fig. 5.4k the specified requirements represent the expected noise level of {GE G@-
diometer. They are shown as black dashed line. In the MB and below, theitodes of all the
time-varying signals are significantly below the requirements. This may explaritve GOCE
gradiometer cannot really sense the time-varying signal in the GGT. Neles#) since models
are available for the time-varying signals, and since in some regions thd stggregth could
be higher, they are removed from the measurements. Gradiometer instrunitarésem higher
performance may be able to measure these time-varying signals.

Of all the above effects, ocean tide models are the least accurate. Théststtheir non-linear
behavior, in particular in shelf waters. As shown in Fgth the ocean tides vary rapidly and may
have large values in some coastal regions. In order to look more closethéait@ffect, the mod-
elled gradient values for the time span November and December 2009 apeteul along the orbit
and interpolated onto a 2@ 20 grid, as presented in Fi§.5. In Fig. 5.5athe values computed
with model EOT2008a are presented. The largest effects can be ifogpdstal areas. However,
they are still smaller than ¥1/3 ;‘—HEZ with 11 mE the requirement value of the trace in the MB
and /3 expressing the average contribution of each individual componehedahree diagonal
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5.4 Data Analysis before Spherical Harmonic Analysis

elements to the trace of the tensor, according to the rule of error propagdtie differences
between EOT2008a and a second ocean tide model Fes2004 arequtanerig.5.5h Large
discrepancies exist in some coastal areas such as Cape of Goodldbpmjor Sea and Hudson
Bay, etc. The EOT2008a model is derived from only satellite altimetry dataregls Fes2004
model was computed from the assimilation of altimetry into a hydrodynamic oceaalmod

diff. between EotO8A and Fes2004 in {zz} component

-0.3 -0.2 -0.1 0 011
-0.94345 « [ME] ->1.2169

0.2 0.3

(a) V computed using ocean tide model Eot2008a (b) Differences between Eot2008a and Fes2004,n

Figure 5.5: V computed from the ocean tide model EOTO8A (left) and theediffices between the
values computed from Eot2008a and Fes2004

With the above computation, we can say that the valuas,afomputed using an ocean tide
model are smaller than the sensitivity level of the gradiometer. The magnitude signal oV,
from an ocean tide model (Fi§.59 is high in coastal areas. The uncertainty (see the differences
between two models in Fidgh.5b shows that the two ocean models are not perfectly consistent
with each other in shelf waters (coastal areas), but these differancesen lower than the model
values themselves.

5.4 Data Analysis before Spherical Harmonic Analysis

In order to understand the behavior of the data, we analyze the orientétiom satellite and the
quality of the gradiometer data before SHA. This is part of the pre-pstogsand is important
for the assessment of the data. Some findings are useful for SHA.

5.4.1 Attitude Data Analysis

Apart from the gradiometer there are three star trackers on boardstdhgackers measure the
orientation of the satellite in inertial space. Their output is combined with theéagreder data,
resulting in a product named EGIBQ _2C, in which precise orientation data of the satellite are
given (European Space Agen006 Stummer et a).2017).

We analyze the angular motion of the satellite w.r.t. the LORF. This gives us alruit
how well the GRF can follow the LORF. As stated Bgchi et al.2006, the requirements of the
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angular motion control between GRF and LORF are in roll and yaw less tehad in pitch
less than 3.5.

The x-direction of LORF is the same as the direction of the velocity vectorzitigection
is approximately upwards from the Earth center; andytidérection of LORF is in the direction
of the angular momentum vector of the orbit, forming a right-handed systera.diféction of
the z-axis of GRF approximately points downwards to the Earth’s center; ang-diection is
in the opposite direction of angular momentum vector. Therefore, thergisxdmately a 180
difference in the directions of the andz-axes of GRF and LORF by definition. We define a new
system LORF with its x-direction the same as that of LORF, but with §reandz-axes in the
opposite direction of those of LORF.

Slightly different from Eq. 2.34), one gets the following unit vectors with the position and

velocity vectors given in the inertial frame:

&=
\'
e = ‘;zg‘ (5.21)
gy = —€ex €.
Then similar to Eq.Z%.35 we have
clstal = e & €. " (5.22)

The transformation matrix from the GRF to the inertial frame is computed with theioians
of the EGGIAQ_2C product as

- B+E—B—3 2(qu0e—0sdo)  2(0i03+ d200)
Cheria = | 2(ch02+03do) 05—0f+05—05  2(0203—01do)
2(0103 —20o)  2(GeOs+010o) G — 92 — 03 + 03,

wheredqo, g1, g2 andgs are the elements of the quaternion wighbeing the scalar part. Suppose

(5.23)

the rotation matrix is defined by the three Euler angles, i.e., roll apgfgtch angled, and yaw
Y, then we find

CESRFP = Rz(w)Ry(e)Rx(d’)
{ cosfcosy cospsing+singsinfcosy  singsing — cospsinBcosy ]

—cosfsiny cospcogp — singsindsing  singcogp-+cospsindsing
sin@ —singcoH cospcod
(5.24)

By multiplying the two matrices in Eq5(22) and 6.23), the transformation matrix from GRF
to LORF is obtained as

CEAE, = ClISEcsRr,, 5.25)

Inertial
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The three rotation angles can therefore be computed from the rotation nratrixepresented
in Fig. 5.6. ltis

CGRF-LORF
¢ = arctan _ %2
- CGRF-LORF
3,3
ngiamLORF'
0 = arctan ’

(5.26)

GRF—LORF?2 GRF—LORF?2
\/Cs,z +C33

CGRF-LORF
() = arctan _CGRF—>LORP
11

with e.g.CSRFLORF the element in the second row and first column of the rotation mafig..

As one can see, the pitch angles correlate strongly with the magnetic equdtoae some
large oscillation when the satellite passes close to these areas. This is duéatd that attitude
control is done by magnetic torquing. This also implies that orientation with cespehe field
lines of the magnetic field leaves undetermined one degree of freedommabament. The ampli-
tude of the yaw angle, which is the largest of all the three Euler anglesoig 8ldegree, which
tells us that GRF is close to LORF

Correlation can be found between the yaw angles in Figand the reconstructed acceler-
ations in the cross-track direction, see Figsl9cand4.19d The actual propulsion of the ion
thrusters is given in the-direction in GRF. Its projection in the direction of the velocity vector has
to be kept the same as the actual air drag experienced by the satellite in ttiediof the velocity
vector, for the purpose of drag free motion. However, due to the Entges not being zero, the
magnitude of the actual propulsion of the ion thrusters has to be higher iameignitude of the
actual air drag, in order to fulfill this purpose. Some part of air drag @sgtion projects to
the cross-track direction and is visible in the reconstructed empirical aatieles. The pitch and
roll angles are small compared to yaw; therefore the correlation of theguiitholl angles to the
reconstructed acceleration is smaller than that of the yaw angles.

5.4.2 Gradiometer Data Analysis

The gradiometer data are the primary observations of the GOCE mission fdetinination

of the short-wavelength part of the gravity field. It is therefore very irtgod to understand their
characteristics and performance. We conduct an analysis of the dag¢atiméhdomain, frequency
domain and space domain. In this subsection, the observations in the perrotlbvember and
December 2009 are analyzed.

5.4.2.1 Outlier Detection

Outlier detection is one of the most important steps of the pre-processitiig. dlitliers were not
identified and removed from the data, they might contaminate the parametersdiirbated. The
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Figure 5.6: Global map of variations of attitude angles roll, pitch aravyof ascending (left) and
descending (right) tracks in November and December, 2009
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5.4 Data Analysis before Spherical Harmonic Analysis

outliers can be identified based on the measurements themselves, befatadhdata analysis, or
can be removed iteratively based on the residuals of the least squarsisreht. The advantage
of outlier detection based on the residuals is that the results are more seteitiutliers. The
disadvantage is time-consuming due to iteration. In this study, we do not applyatefor outlier
detection.

In our data processing, a method is presented for outlier detection thatildokhe standard
deviation of short and long series of OMC (observed minus computedhandace of the GGT.
In the presence of outliers, special attention has to be paid to the rolsiatmebthe efficiency of
the algorithm. The principle of our approach is to compute the standard devaiteEach short
segment (e.g., 30 seconds) of the time series; if it is larger than a threstiol] the segment of
data are assumed to contain outliers.

An exact definition of an outlier often depends on assumptions regardrgridom behavior
of the noise in the data and the applied detection methtzivkins (1980 defined an outlier as
an observation that deviates so much from other observations as to arsesticion that it was
generated by a different mechanisBarnett and Lewi$1994) said that an outlying observation,
or outlier, is one that appears to deviate markedly from other members ofrtipdesin which it
occurs, similarlyJohnson and Wicher(2001) defined an outlier as an observation in a data set
which appears to be inconsistent with the remainder of that set of data. &l] these definitions
are similar. In the case of the GOCE gradiometer data, since the gradiometdrctignges with
time, we define as outlier that the OMC value deviates markedly from the adjadé@s, with
the computed values are obtained from the EGM2@08/(is et al. 2008 up to degree and order
215. In addition, since the noise in the gradiometer data is not white, i.e., deparfrequency,
we introduce two criteria, long-period outlier and short-period outlier. Ajtperriod outlier is the
one detected with the data longer than or equal to half an orbit revolutiohoA-period outlier
is detected locally, with data of about 31 seconds.

We use two quantities for outlier detection, one is the OMC value, another dhe tsace
of the GGT with zero expectation. If the value of either of them deviates freimn mean value
greater than a threshold value (e.g., 3 times the STD), the observation gidbfsie assumed an
outlier.

With the GGT trace as an example, the long-period outliers are identified byacmgphe
difference of the trace minus its mean value to tlee ®@hereo is the standard deviation of the

trace andu the mean value oy +Vyy +Vy, i.€.

> 30 outlier

<30 not outlier, (5.27)

whereu and o are computed based on the measurements. This criterion is also applied to the
OMC values.
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Theoretically the OMC value and the trace should change slowly. But somegimestlier
occurs inside the range ob3 It cannot be detected with the algorithm as described in&g87).

We introduce therefore a second kind of outlier detector. Similar to the terngina@bmoving
average, a moving standard deviation is used to find the short-period datlissmputing the
standard deviation of every short interval of the trace and OMC (in age ¢he length is 31
seconds). If it is larger than the threshold value (e.g., 60 mE, considixéngoise level of the
trace in the MB to be about 20 mE), the measurements in this interval are astummeutain
outliers.

In Fig. 5.7, the long period outliers are presented in the left panel and the sharboaé the
right panel. In the upper panel of Fi§.7g at epoch between hour 0 to 1 on the horizontal axis,
the values of the trace deviate from the mean value of the whole day large3dah#herefore, the
measurements in this interval are assumed to contain outliers, based on thencatehe long
period outlier detection. In Figh.7h at epoch 1.5 hours there are large oscillations. However, the
magnitude of the oscillations is inside the range aféhd cannot be detected by E§.Z7). In
the lower panel of Figs.7h the moving STD at about hour 1.5 is larger than the threshold value
(60 mE in this example), which means the anomalous behavior at hour 1.5 ooribental axis
is detected with our second criterion. Therefore, the two strategies amgl@mentary. Both the
long-period outliers and the short-period outliers are identified with thisozgapr.

Trace of GGT from GOCE (start T0 =20091108044805) Trace of GGT from GOCE (start T0 =20091112235721)

-1057

-1058

o\ A A\ /\
NIV

mean=-1066.4389 mean = -1059.142
-1061 c =0.67434

trace [E]
Trace [E]

-1070 ’ 0=1.1149 J | trace | > 30

-1062

|trace|>30

Moving‘standard de%/ialion of traace (start Toi 20091 112535721)
|

0.05 I 1
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(a) long-period outlier (b) short-period outlier

moving std [E]

time [h]

Figure 5.7: Outlier in long-period (left) and short-period (right) gtltwo criteria are complementary

Once the outliers are identified, they are removed from the measurement®tansied for
parameter estimation. The outliers detected for the data from November 1 ¢éonbec31, 2009
are shown in Fig5.8. The long-period outliers in this period are plotted in red, with 603 epochs.
The short-period outliers are given in blue, with 152 epochs.

5.4.2.2 Gradiometer Data in the Time Domain

The gradiometer data can be presented as a time series in the time domain aggFigwmn9. In
Figs.5.9aand5.9ba gradiometeric profile of is shown for a time span of two orbit revolutions.
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5.4 Data Analysis before Spherical Harmonic Analysis
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Figure 5.8: Outliers detected for the data from November 1 to December28@9; Long-period
outliers are given in red and short-period ones are giveituia b

For comparison also the reference values from EGM2008 are included.
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Figure 5.9: Time series covering two orbit revolutions of the GOCE geatlicomponen¥,, and of
the corresponding values computed from EGM2008; unfiltéieft) and filtered (right); also included
is the correlation between the two profiles; the lower pahels the topographic profile along the
ground track and the ellipsoidal height of the orbit (smaonthve)

The lower panel in Figs.9 shows the topographic profile along this track and a smooth curve
with the ellipsoidal height of the orbit. In Fig.9athe unfiltered values are given. There is a
small systematic difference between GOCE and EGM2008 which is caustt: lgyadiometer
drift or the so-called colored noise. One can also recognize the sigr@ttine Himalayas. The
overall trend of both curves is anti-correlated with orbit altitude. Thesetation between them is
r =0.9942. In order to show the detailed signal in the MB, the data is filtered witmdpaess
FIR filter. The coefficients of the filter are obtained from &l + 1) /2)th row of a matrixG
in Eq. 3.29, with N the length of the filter (in our case it is 5383). In order to suppress the
noise at the low-frequency band, thgpsd(f;) outside the MB is kept zero, while inside the
MB the values are set to 1. A Hanning window with length 10 is applieq/josd(fi), before
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the computation of5, in order to make the transition band of the filter short. In Eigbthe
analysis is repeated for filtered values. Now strong signal oscillationdeabserved both in
the measured and computed gradients and a correlatior=d3.9882 between them. A higher
correlation can be found with the topographic features underneathb&havior is also found in
the other gradiometeric components.

The correlation between measured values and computed values from @8MBows that
the signal contains information of the Earth’s gravitational field. The diffees between them,
namely observed minus computed values, are expected to contain the impntseh&OCE
above EGM2008.

5.4.2.3 Gradiometer Data in the Frequency Domain

In order to quantify the signal content in a chosen frequency rargeffem f; to f,, the signal
ratio (SR) is defined in our study as

INf,)
© /PDK
k=[Nt

3 v

with |« | the operator of rounding to the nearest integers towards minus infinity.

SR(fy, fo) = (5.28)

The behavior of the signal in the frequency domain is important for us takimoFig. 5.10
the PSDs of the three diagonal gravitational gradients are shown togétheheir trace, based
on the data from November 1st to December 31st, 2009. The MB and enigimeequirements
are included as well. As shown in Fi§.10athe white noise level is approximately 15%% for
Vix andVyy and Zoy—HEZ for V. It is visible for frequencies above approximately 3102 Hz.
We see the strong gradiometric signal power in the range fromi H2 to 3- 102 Hz, towards
the low frequencies more and more superimposed by ttidristrument noise, and more signif-
icantly, by orbit- and attitude-induced periodic distortions at one cpr and radtqf one cpr. A
very powerful test of the instrument performance is the Laplace conditien the trace of the
GGT theoretically to be zero. As shown in Figl0cthe trace of the GGT is generated from
the computed values at the same location and orientation based on EGM2098/0p360. It
is theoretically zero and actually at the level of computer round-off anttation error. In the
measured GGT it shows the noise level of the sum of the measured diagem@htional gra-
dients. The engineering requirement of the trace, based on a prdilanatysis of the sensor
performance, is 1\71% in the upper part of the MB; the actual trace is about\%% mainly due to
the higher noise level &f,, see Fig5.10a It also shows the Af increase and periodic distortions
at frequencies below 5 mHz. In Fi§.10¢ the signal ratios of the reference values are computed
and shown. They are divided into three frequency ranges: 0 to 5 mtézZ1 @0 mHz, and 100 to
1000 mHz, denoted LFB, MB, and HFB together with the SR values outside Binlvked text,
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and inside MB in black or green. With the period of the orbit being 5384rsdx;ahe upper limit

of the signal content of a coefficient of degiden frequency isN/5384. Most of the signal is
concentrated in the LFB, as the SRs of the four components in the LFB gez than 96%. By
comparing the measured and observed values in the frequency doneakigse.10d it can be
found that noise dominates the signal at abo8t 30-2 Hz. This corresponds to a maximum d/o
of a spherical harmonic expansion of about 205. However, this does not mean GOCE can only
achieve d/o 205. Since the gravity field coefficients of high d/o contain teguiency signal as
well, high degree coefficients can be recovered with GOCE measurenyemizking use of their

information at frequencies below& 102 Hz.

PSD'2 of GGT measurements (Nov. and Dec. 2009)
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Figure 5.10: PSD"2s from 2 months of data of GGT components and the trace valui® GGT;
also shown is the engineering requirement for the traceMBeand the once-per-revolution (cpr)
frequency.

As an example to show the SR of individual SH coefficients, in BigJ, the PSD/2s of
the signals from some selected individual coefficients are presenteslvalhes are computed
along the orbit and rotated to GRF. The superimposition of the contributiol gfavitational
field coefficients results in the gravitational signals as shown in %i0c In addition to the
upper limit corresponding to each individual coefficient, three factseafound: Firstly, there is
low-frequency signal coming from the high d/o coefficients. But it is diffito use because of
the complicated colored noise structure at the LFB. Secondly, the magnittitke signals from
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individual d/o coefficients is much smaller than the noise requirement, whiclughty the same
as the actual noise level of the gradiometer. Thirdly, as example, the Siedoze 155 and 215 in
the MB is greater than that outside of the MB; for degree 25 the SR is cvateshin the LFB. As
expected, the signal of lower degree coefficients is concentrated et fmguencies and outside
the MB of the gradiometer.
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Figure 5.11: PSDY2s computed from the modelled values with signal of individsid coefficients

5.4.2.4 Gradiometer Data in the Space Domain

In order to look into the data geographically, they need to be geo-locatkdlatted on a global
map. Due to the presence of the noise outside the MB, the data has to be fikdéoeel geo-
location. The same filter is applied to all the data as the one used for dataiqilife time
domain described in sectidn4.2.2 In Figs.5.12to 5.17all the measured components are shown
on global maps.

Each map shows the values on a global grid with a resolution ‘ot 15, interpolated from
filtered gradients based on triangle-based linear interpolaiitson 1992. The left- and right-
hand side of the figures is based on the measurements of the ascenditesesdding passes, re-
spectively. FoNyy andV,y one can see significant differences between ascending and diegzend
due to the large difference in orientation between ascending and desgéraatks, see Figh.12
and5.13 In the case of/,, the maps of ascending and descending tracks almost coincide, because
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the orientation of the z-axis is not so different for the two cases, se&Hig.V,y andVy, are the
weak components. However, after removing the outliers still some chdsgictgradient values
show up in mountainous regions, as shown in big5and5.17. TheVi,-component (Fig5.16) is
the only accurate off-diagonal component. High correlation with tectomittfes appears in the
gradient maps. Figure.18displays the difference betwe¥®p, goce) measured by the GOCE gra-
diometer and/,,egmos) cOmputed from the gravity model EGM2008 up to degree and order 215
for comparison. EGM2008 is a so-called combined gravity field model. It coeshiime GRACE
gravity field model ITG-GRACEOQ3S up to degree and order 180 with ndye$elected world-
wide terrestrial and altimetric data sets. The global root-mean-square)(BiMt®&se differences
is 6.56 mE. Six regions are marked. Three are known to have good tirgetvity data (North
America, Europe, Australia), and the RMS values for these regions agrbavith the global
RMS. Three other regions are known to have partly poor or inconsidétat The RMS values in
these regions are between 8.98 and 12.57 mE at satellite altitude. The saromehen can be
found in the other components.

,(Ascending passes) ,(escending passes)

Vix(GOCE

Vix(GOCE

I L L L L L L L
-400 -300 -200 -100 0 100 200 300 400 -400 -300 -200 -100 0 100 200 300 400
-714.9342 « [mE] — 955.408 -864.6481 « [mE] — 1071.8061

(a) Ascending (b) Descending

Figure 5.12: Global map of the gradient compon@fi coce): Ascending tracks (left) and descending
tracks (right); significant differences are visible duette different orientation of the x-axis of the GRF
for ascending and descending tracks

A check of the Laplace condition is shown in Fig19 The sum of the three diagonal gradients
is taken in every point of the global grid. The values show no larger myte effects and a
standard deviation of about 14 mE.

From the presented results, one can see that GOCE provides gravityatian in the MB
with good quality. The trace in the MB is globally homogeneous, except fmmaitous areas over
the North and South Magnetic Poles, as shown in 5igQ

This anomalous behavior is due to Mg component$tummer et a).2011). It is caused by
the strong cross wind4.(ihr et al, 2007 over the Magnetic Poles, especially for the ascending
tracks. As shown in Figh.21, the Earth rotates from the west to the east and the ascending tracks
always correspond to local time at about 6 p.m. The atmosphere and i@mespove from the hot
hemisphere with high solar radiation (day) to the cold hemisphere with no soliation (night).
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,(Ascenaing passes) ,(Descending passes)
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Figure 5.13: Global map of the gradient compon&fycoce): Ascending tracks (left) and descending
tracks (right); again significant differences are visibledo the different orientation of the y-axis of
the GRF for ascending and descending tracks
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Figure 5.14: Global map of the almost vertical gradient componéftoce): Ascending tracks (left)
and descending tracks (right) agree well
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Figure 5.15: Global map of the weak componev,coce) for ascending (left) and descending (right)
tracks; after the removal of outliers signal structuresobee visible
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(Ascending passes) (Descenaing passes)
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Figure 5.16: Global map of the accurate off-diagonal componégizoce): Ascending tracks (left)
and descending tracks (right)
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Figure 5.17: Global map of the weak off-diagonal compon®pcoce): Ascending tracks (left) and
descending tracks (right), after removal of outliers sigtiaictures become visible
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Figure 5.18: Global map of the differences betwe¥ngoce) andVzeemos) for ascending (left) and
descending (right) tracks. Also included are 3 areas witidgerrestrial gravity and 3 areas with poor
terrestrial gravity as well as their RMS differences.
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Figure 5.19: Global map of trace of the measured GGT
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Figure 5.20: Anomalous observation i, components over North (a) and South Magnetic Poles (b)
for ascending tracks, over the period of November and Deee2®09.

96


5/figures/Trace_goce_asc1.eps
5/figures/Trace_goce_desc1.eps
5/figures/Vyy_omc_EGM08_do250_north_mag_pole.eps
5/figures/Vyy_omc_EGM08_do250_south_mag_pole.eps

5.4 Data Analysis before Spherical Harmonic Analysis

At the Magnetic Poles the activity of the ionosphere is quite strong, whicls leastrong cross
winds at these locations. The descending tracks correspond to théheealt about 6 a.m., when
the ionosphere rotates from the cold side to the hot side. There theieffantller. In case the
gradiometer is not perfectly calibrated (not perfectly scaled), the comeuaiaaation on the two
accelerometers forming thg, component is not perfectly eliminated when taking the difference.
The effect onvyy is higher because this axis points in the direction of the cross winds. A more

detailed discussion can be found feterseim et gl2011).

Figure 5.21: Geometry of the GOCE orbit and the sun

5.4.2.5 Modeling the Lower-Frequency Errors

We are now analyzing the gradiometric error behavior at lower freqegnice. below the MB.
The noise of the gradiometer comes from, in principle, two categories, teteammeter noise and
the noise from the uncertainties of orientation, angular velocities and arapdalerations. The
accelerometers exhibit a typical fL error behavior, also denoted flicker noise in the literature.
In the time domain this Af-behavior is observed as accelerometer drift. The drift behavior is
different for each accelerometer. Thus it is not (perfectly) removieeinitaking the gradiometric
difference. The effect of angular motion is required to be precisely vethrom the DMA in
the MB. However at the LFB, the angular motion (especially the angular itgloccentrifugal
part) is not guaranteed to be reconstructed with high accuracy. Fordataits about the angular
velocity of the GOCE accelerometer measurements, we refé@umel et al.2011;, Stummer
etal, 2011).
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As shown in Fig.5.22 the observed gradients minus computed values at the same location
in the same orientation vary with 1-cpr frequency, modulated by some multipteatamce per
day (1-cpd) and multiples of 1-cpd as well. Possible explanations for thsvile are either the
modulation due to cyclic orbit and attitude effects of the low-frequency syaie error behavior
of each of the gradiometer components and the imperfect removal of thréadion of the angular
rates. It is shown irStummer et al(2017) that a significant part is produced by the latter effect.
One can see that the variatiorMg andV,,, which are derived by removing the rather high angular
motion about the y-axis from the DMA in thixx} and {zz} components, are larger than the
variation ofVyy, which does not contain high contribution of the angular motion about thesy-a
This gives us a hint that the angular motion, especially the angular vela@tgoa determined as
precisely in the LFB as in the MB. The low-frequency error contains tbez¢he lower-frequency
noise of the gradiometer as well as the residual of the angular motion whiddh ot be removed
from the differential mode accelerations. It is a crucial hint of how todteathe lower-frequency

error. It can be either filtered or modelled.
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Figure 5.22: observed minus computed values in October 31st, 2009

Two approaches can be applied to model the low frequency error. Gméhis time domain,
e.g., with piecewise polynomials applied to short segments (e.g., 1 minute to 10 rioutEs
the frequency domain by modelling the low-frequency error by Fouripaesion.

To model the low frequency error with polynomials, the OMC values arenpeterized in
such a way that for the whole data span, the empirical parameters 1-gpdl, 2-cpr and 2-
cpr are introduced, and for each short time interval, in addition a corestana linear term. The
criterion of the lower frequency modelling is that the information in the MB shaolde affected
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by the modelling parameters. As shown in F523 the PSD/2 of the original OMC values and

of the values after removing a piecewise polynomial of varying lengths thenoriginal OMC
demonstrates that a polynomial with a time interval of 60 seconds absorbsirsmmmaation in

the MB; with an interval of 180 seconds the result is reasonable, whicksponds to 1180~

5.5 mHz, and is more or less at the lower limit of the MB; with longer time intervals the low-
frequency part cannot be modelled well enough. When comparing tBé/P8f the original
OMC and the PSB? of the residual OMC after removing the modelled signal of a time interval
of 300 seconds, 450 and 600 seconds, some distortions can be fatedigure. One must apply
some constraint for the smoothness at the boundary epochs for a leefeenmance.
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Figure 5.23: PSD"2 of the OMC of\,, after removing the low frequency error with piecewise polyn
mial modelling, different time periods for a polynomial afder 1 are applied. The unit of the number
in legend is second

An alternative to the polynomial is Fourier expansion for the low-frequemmr modelling.
At least two advantages of the Fourier function for this issue are (1yath&nuity of the measure-
ments is maintained and (2) the signal in the MB can be well preserved, bygsattiparameter
at the frequencies in the MB. In Fi§.24 on the left hand side (Fig.243 the PSDB/? of the
original OMC ofV,, is shown in red, and after removing the lower-frequency part in blug, an
the parameters (in gray cross dot) corresponding to the magnitude of tia isigre-defined fre-
quencies together with the P$B of the time series reconstructed from the parameters (in cyan);
on the upper panel of the right-hand side (FR4b the original OMCs are displayed in red
and after modelling as a time series in the time domain they are expressed in blskowisin
Fig. 5.2443 the frequencies chosen for this purpose are 1-cpd and multiples jud, 1tecpr and
multiples of 1-cpr, as well as some frequencies close to multiples of 1-eptheeyray cross-dots
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in the figure. By comparing the curves in blue and red, one can see thafltrence of the LFB
part is removed. The cyan dashed line is the square root of PSD of thdledbldev frequency
part. It can be found that it does not absorb any information at theidémxes higher than about
600 mHz. The STD values before and after modelling are 822.2 mE and 13:1@spEctively, cf.
Fig.5.24h Because this procedure is linear, this modelling can be applied directly tbseeved
and computed values. The lower panel in F@4bshows the differences. As one can see, the
differences are less than&10~ mE. We can therefore conclude that the modelling works with
very good accuracy.
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Figure 5.24: Modeling of low-frequency error presented in the frequeany in the time domain,
based on the values {fzz} component of one day

After removing the low-frequency part with the Fourier expansion shiowfig. 5.24 the
short wavelengths of the gravity field signals are pronounced in theegitad As an example,
theV, component is shown in Fich.25 with ascending tracks on the left (Fi§.259 and de-
scending tracks on the right (Fi§.258. The maximum and minimum values are 1006.96 mE and
-1262.9 mE, respectively. The gravity features are very close to thestoetin Fig.5.14.

From the experiments above, one can see that modelling the lower-fyqoin of the data
behaves as filtering. The ideal case would be that the mis-behavior ofviHieelquency part is
eliminated completely, and that the signal in the MB is not affected by this modeltirggsécond
step, the eliminated part can now be analyzed and interpreted. Howearerjshalso some noise
in the HFB. This higher-frequency part is difficult to model with this idea. denot pursue this
idea of modelling but instead we apply filtering in the context of the SHA.

5.5 Spherical Harmonic Analysis from SGG Data

From the analysis of the previous sections, we know already that theogreigr data do contain
gravity field signal. In this section, SHA is applied to the individual gradiomederponents and
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Figure 5.25: Global map of component,,coce): Ascending tracks (left) and descending tracks

(right); after removing the low-frequency error by modeadjiwith Fourier functions, the similarity can

be found by comparing to Fi.14
their combination. The data of the four precise components are used forl&ihg only individ-
ual components and only the gradiometer data, and in the presence ofahggm some parts of
the coefficients cannot be well recovered. With the intermediate resultdiefdnal components,
we will analyze degree medians, coefficient differences and formaisan triangular form in this
section. The complete analysis of the solution will be given after combinationS@ihand after
applying some constraint over polar areas in Chapter 6.

We want to see the information content and characteristics of each gradiornenponent.
The different components in the GGT map the gravity field under differegiea. With SHA, the
behavior of each component will appear.

Instead of 61 days of data used in the previous section, the measurerret$our precise
components over the period from Novembé&r2D09 to April 38" 2011 are used in this section
as input for SHA. The data sampling is one second. The experiment is to Esgna&itational
field models up to d/o 215 using a bandpass filter for data de-correlaticachfad the accurate

gradiometer components and their combination.

5.5.1 Filters used for SHA

If the weight matrix in Eqg. 8.5 can be determined precisely, the observations can be decorrelated
and an optimal solution be obtained. However, for the present leastesqoieblem, the dimen-
sion of the weight matrix is so large that not only the computation cost wouleéhehigh, but

also the memory space for saving this matrix is not sufficient even with supergers. In prin-
ciple, the weight matrix is not a full matrix, but a band matrix, for a stationamyrdrehavior, see
Fig.3.2h Thus, a filter with limited length, either finite impulse response (FIR) or infinite Isgu
response (lIR), can be applied to the data. As described in s&dpfor filtering the design ma-

trix during parameter estimation, it is desirable to use an IIR filter due to its low atatipn load,

by using not only input values, but also filtered values of the past (in tefrastoregressive).
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The filter used in this study for SHA is a bandpass filter, with length 9 for bathragressive
and moving average parts, i.e., an ARMA(9,9) model, and with warming-up tif@ &konds. In
Fig.5.26 the frequency and phase respon&gspenheim and Schaf@009 of the bandpass filter
are displayed. The bandpass filter extracts the signal inside the MB, witiegisency response
shown in the figure. The decibel (dB) is given by

Lap = 10log;o(H(f)), (5.29)

with H(f) the frequency response of the filter. From the upper panel of =&f it can be
seen that the filter suppresses not only the lower-frequency noisd@ofghe MB, but also the
higher-frequency part. The phase response is almost linear foetipedincies from 5 to 100 mHz,
as shown in the lower panel of the figure.

MB -

Magnitude [dB]

107" 107° 107° 10"
Frequency [Hz]
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-400+
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—-800 I I I I
(0] 0.1 0.2 0.3 0.4 0.5
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Figure 5.26: Frequency and phase response of the highpass filter appti&HfA.

5.5.2 Result Analysis of SHA

With the available SGG data, based on the observation model, i.e.5H®§) éand filtering the
design matrix and the observations as well as the reference valueiatipaal field models are
computed for different components of the gradiometer by solving the lgaate problem. After
filtering four additional parameters are used to remove the constant, diffisar trend and 1-cpr
behaviors from the observation equations for each component peindaynciple, these features
of signals or errors are removed by filtering. This consideration sewesback-up for the case
that the filter does not completely remove these behaviors. In our resudis plagameters are
indeed very small and negligible. These four parameters for each cemipare pre-eliminated
before the normal equations are stored and solved. With this considematidche measurements
of the four accurate components, .8y, Vyy, V7 andVy,, four gravitational field models are
obtained.
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5.5 Spherical Harmonic Analysis from SGG Data

The flow chart of the SHA for one day of GGT data is shown in Big.7. The geo-location is
realized by time synchronization between PBRD_2| and EGGGGT_2C, the partials of GGT to
gravitational field coefficients are computed in the ECEF and then rotated @RReaccording
to Eg. 6.18. Overlapping segments of 5400 seconds are applied for warming-the dilter,
in order to ensure the continuity of filtering. The observation equationghareconstructed in
the GRF and both the design matrix and the measurements together with thecefeakres
are filtered into the desired frequency range with the same bandpasscfiltdfjg 5.26 The
normal equations, i.e. Eq3(/), are computed and saved according to our defined format. By
accumulating (or combining) more than one day’s normal equations, mommaredinformation
is added to the system and the results are obtained by solving the accumolaiad equations.

PSQPRD.2I EGGGGT2C EGGIAQ_2C

|

{ geo-location & }

synchronization

rotate partials to GRF

obs. equation & filtering

1

{ computeN = ATPA

& ATPd, save

Figure 5.27: Flow chart of SHA with SGG data

The coefficient differences between gravitational field models reedviEom the measure-
ments of each individual of the accurate components and EGM2008emered in Figs.28up
to d/o 215. Correlations can be seen in the coefficients of order 16 and lemiktip16, which
is the number of revolutions of the GOCE orbit per day. Less precisiofbedound in the low
degree coefficients due to the lower sensitivity of the gradiometer thaténdine zonal and near
zonal coefficients due to the polar gap. From the coefficient differeaad the formal error, one
can observe that the lower order coefficients (close to zonal) estimatedheith, component
are more accurate than the higher order ones; the coefficients of lnigler(close to sectorial)
estimated with/,, component are more accurate than the lower order ones.VijiasdVyy are
complementary, and their combination will result in the same behavior (i.e. horeibgeasV,
due to the fact thatyx +Vyy = —Vz. The result of th&/,, component is more homogeneous than
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those ofVi andVyy. Due to its z-component/y, is more isotropic thaiyy, but due to its x-
component less homogeneous than For a more detailed description of isotropic combinations,
it is referred to Sneeuw2000).

The formal errors of the recovered gravity models in Big9show the characteristics of the
individual components. The errors of the lower degree coefficiertsjaite large, which means
gradiometer data are not capable of determining the long wavelength graatynation. The
zonal and near-zonal coefficients are not determined with high amcdree to the existence of
the polar gap. This behavior is shown up in FB28 too. The homogeneity &f,, and the char-
acteristics of the other three components are similar to the coefficients ddfesravith EGM2008
shown in Fig.5.28

coefficient difference
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150 -100 -50 0 50 150 -100 -50 0 50 100 150 200
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(a) Vxx (b) Vyy
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150 100 -50 0 50
S <« order(m) — C S <« order(m) — C

(©)Vz (d) Vie

Figure 5.28: Coefficient differences between EGM2008 and recovered hadden individual com-
ponents up to d/o 215 (log10 scale)

The degree median valueSr(eeuw2000 of these models compared to EGM2008 with each
individual component estimated separately are presented i Big.One can find that the com-
ponentV is the most consistent to EGM2008, its formal errors and the deviation feMZD08
of the coefficients are smaller than those of the other components. At hdgheses the coef-
ficients recovered frorvy are closer to EGM2008 than those from ¥g andV,,, whereas at
lower degrees (lower than d/o about 34) is the poorest. The SGG-combined solution (SGG
in the figure marked in black) is much closer to EGM2008, and its formal &r@s expected,
smaller than that of each of the individual components .
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5.5 Spherical Harmonic Analysis from SGG Data
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Figure 5.29: Formal errors of the recovered models from individual congras up to d/o 215 (log10
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The accuracy of the terrestrial data used for determination of EGM2Q@& isomogeneous,
which leads to some systematic differences when comparing our models to EBNMES shown
in the coefficients of d/o about from 70 to 150 in F|§3Q In Fig. 5.31, the degree medians
of our solutions are compared to ITG-Grace2010s. Again they show goesistency between
our solution from d/o about 40 to 150. The large differences in the lowegsgshow the poor
performance of SGG at lower degrees. It can be taken care of byigmmhvith SST. At degrees
above 150 GOCE exhibits a lower error level than GRACE by comparing [dek land cyan
dashed lines in Figs.31 It should be mentioned that in these comparison, the external gravity
field (EGM2008 or ITG-GRACE2010s) may be better or worse than GOCE.
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Figure 5.31: Degree median of the models compared to ITG-Grace2010sdaghed line the formal
errors

The intermediate results are obtained from each individual component ih GQ{&y are not
accurate at lower degrees. Apart from that, the polar gaps make theamhnear-zonal coeffi-
cients highly correlated. It is therefore not meaningful to analyze theskelsion terms of geoid
height differences.

5.6 Summary

The observation equations of the measured gravity gradients used fetutlisare formulated
in the GRF. They are connected to the SH expansion in the ECEF by rotatidigshgn matrix
and the right hand-side to the GRF based on the B&® 2C product and the SOFA package.
This avoids rotation of the measurement tensor components and therefmantpes that the
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5.6 Summary

less sensitive components do not degrade the results. Furthermoregssiblp to analyze each
individual component independently.

The magnitude of the time varying signal in gravitational gradients at the loagittbe GOCE
satellite, from large to small, are solid tides, the direct tidal attraction of the noocean tides, the
direct tidal attraction of the sun, and short variations of atmosphere@ahpbased on the mean
values of these gradients caused by these effects computed alongithd bebocean tides and
A&O have highest power in the MB, but still much smaller than the requiremergsdeffects
are taken care of by models. In general, the time-varying effects are sthaltethe sensitivity of
the gradients as measured by GOCE.

The outliers are detected based on two strategies. One is based on thienewhthe trace
values and of the OMCs from their mean value. If these deviations are ewfsildree sigma, they
are assumed to be outliers. The second strategy is the computation of the B®idraj the trace
and the OMC. If they are larger than the defined threshold values, wenashe measurements
involved in the moving STD-computation to contain outliers.

From the PSBs of the signals corresponding to individual d/o coefficients, we shdhed
high degree coefficients to contain low frequency signal, but no sigrthbarequencies higher
than the product of degree and orbit frequency (1/5384, with 538drthieperiod).

High correlations are found between the measurements and the modellesl eafoputed
along the GOCE orbit and based on a reference gravitational field modri(case EGM2008).
High signal variations are found in areas of rough topographic clsantrethe frequency do-
main, the ¥f behavior of the measurements appears in the PS@lues at frequencies less
than 500 mHz down to zero. The signal-to-noise ratio (SNR) equals on&rexjueency of about
3.102 Hz, which corresponds to degree and order of a spherical harmepémsion of about
n= 205.

The contributions in the frequency domain varies from component to compomke noise
level of the measured,, component in the MB is 20 mE, higher than thos®&gfandV,y (10 mE).
However, due to its high signal conteW; is still the best component, as one can find by compar-
ing the reconstructed models with, and the other components.

Two filters are applied to the data. A FIR filter with length 5383 is used to filter theesored
gradients to the MB in order to present them in global maps, since FIR filterde designed
without phase shift. For SHA, since it is very time-consuming to filter the dasigtnix, an IIR
filter is applied to both sides of the observation equations, due to the fachthHR filters can
achieve good performance with small order, and therefore the compulatifiort can be kept
small.

The filtered measurements displayed on global maps show the informatiotineahita the
gravitational gradients. Since the orientation of the satellite and therefarefa®BRF varies, the
measurements are plotted in global maps separately for ascending aaddiegdracks. Gravi-
tational signal variations can be found even in the weak components. Georpts EGM2008
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shows large differences between GOCE and EGM2008 in areas sHiimakaya, South America
and South Africa.

A gravitational field model is obtained from each of the four precise compisn The coef-
ficients of order 16 and multiples of 16 are correlated due to the effeatbitfresonance. Each
component has its specific error behavior, e.g. Mhecomponent is sensitive to low order coef-
ficients,Vyy to high order ones, and,, is more homogeneous than the other components. The
results of the combined solution become better than those of each of the uradivides. This
shows that their complementarity is helpful to estimate a combined solution.
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6

Combination of SST and SGG

In order to estimate a complete gravitational field model from GOCE orbits aendtagional
gradients, the normal equations of SST and SGG are to be combined inraprige way. The
performance of the measured gradients is poorer at long wavelendtis ST performs better
there. Therefore, gravity field modelling in the case of GOCE is based oméaination of the
SST contribution for the low-wavelength part and on gravitational gradignier the spatial
details. SST and SGG are two independent techniques. Thus one cessdaleecking as done
in (Visser, 2007, 2009 with this two kinds of observation types. As presented in the previous
chapters, SST can only resolve SH coefficients for lower degree i, avhereas SGG can
reach much higher, but performs poorly at degrees from 0 to aboesp@cially for higher order
coefficients. Therefore, these two methodologies are complementary. \&fitlctimbination the
advantages of SST and SGG are preserved, and their disadvanegesaved or reduced.

The GOCE observations of both SST and SGG used for the combination irhdpsec are
from November 2009 to April 36" 2011. Considering the outage of the satellite and special
events, it is less than one and a half years. After data cleaning, the totahaofayradiometer
data of the four accurate components is 127,573,301, and of the diimesvaf the SST part is
95,678,985. The gravity field coefficients are set up from degree 28d&lhe SGG part and
150 for the SST part.

Section 6.1 discusses the methodology of combination. Section 6.2 is dedicat@de®en-
tation of the combined solution. Section 6.4 presents the results of a combina@MCE and
GRACE. A summary is given in section 6.4.

6.1 Methodology

If the dimensions of the normal equations to be combined are equal andayitatjonal field
coefficients are sorted in the same way, the combination can be realized séthasaexplained
in Eq. 3.11). However, this is not always the case, since the normal equationsToa&Snot
necessarily set up to the same high degree and order as those of tiemigrtaBor example, the
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coefficients of d/o higher than about 120 are beyond the sensitivity afutrent GOCE SST so-
lution; and the variational equations are expensive to compute if the amip@taoneters is very
large. Thus, in the case of the SST part of GOCE, the gravitational figfficients are set up
here to d/o not higher than 150. This is higher than the sensitivity of the G&¥JEpart, in order
to ensure a smooth transition from coefficients contributed from both S&5&G to those from
SGG only. However, the SGG part can achieve good accuracy up to détham 200. It is there-
fore an important point of how to optimally combine normal equations with difffedl@nensions
and different locations of the same parameters in the system of nhormaicegual he procedure
of combination can be found in Fi§.1 The daily normal equations from an observation group
(type) are combined into one normal equation. Then the combined norneticrgifrom differ-
ent observation groups are combined to one single system of normalogguan this step the
variance component (VC, the variance of the unit weight of an observiype) for each obser-
vation group is estimated and combined with the newly estimated VC. The consfrtietpolar
gaps are introduced with normal equations which are added to the comlmnadlrequations.
The final solution is then obtained by solving the final combined system ofiadcgquations by
Cholesky decomposition.

SST NEQ, | |[SSTNEQ;|| . . | |SST NEQ, SGG NEQ, | |SGG NEQ,|| . .. ||SGG NEQ,,
t v v it t v v it
! !
SST NEQ SGG NEQ
t !

<Eglar 935>

n

NEQ for polar gap

constraint |+ Combined NEQ

!

Solve the combined
NEQ

Obtain final results
end

Figure 6.1: Diagram of combination of SST and SGG (The SGG part consfstseofour accurate
components)

Taking into account that the gravitational coefficients (as parameterspated differently for
the SST and SGG part, the two normal equations can be combined by addcarbsponding
elements on both the left- and right-hand side according their weight. Tiamgas of unit weight
62 and 63299 are estimated first with E@.12and then iteratively with Eq.3(89. Their inverses
serve as weights for the combination. Here, we only give the SST and S@G example. In
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6.2 Analysis of the Solution Derived by Combination of GOCE SST and SGG

real data processing, the SGG part contains the four precise gradiaroetponents. Suppose
the total number of the parameters of the SST pal,iand the SGG part iS1. In addition, we
suppose thé" parameter in the normal equations of the SST part corresponds to areSidieat
which is thek" parameter in the SGG part, and similar for fffeand thel™, then the combined
values corresponding to the two above-mentioned parameters can beedlasin

M qSSt sst Sst] r~S99 Sgg SOgT
Ny Ny - - NN Ny N REREEEI | M
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Osst | : Osgg :
sst S99
UN Up
The combined elememfoMPinedin the new normal matrix is computed as
|
combined__ 1 sst 1 Sgg

sst sgg
The right-hand side is combined in an analogous way.

Since all the local parameters, of both SST and SGG, are pre-eliminatee lsefmbination,
the only parameters left in the normal equations are the gravitational fidficea®s. This is very
convenient for speeding up the combination since the number of the laeethpters can be very
large.

All the four accurate components from gradiometry are combined for thksiotutions. They
are assumed to be independent. One can therefore applg.EB. o combine the normal equa-
tions computed from SGG data. In principle, the gradiometric components magrisdated
due to the angular reconstruction applied in the same way to all the GGT contpof@énce the
magnitude of the angular motion is smaller than that of GGT and differentialegiation in the
measurement band (s€&mmel et al.2011)), it is reasonable to assume the components of the
measured GGT to be independent.

6.2 Analysis of the Solution Derived by Combination of GOCE SST
and SGG

In the following a complete GOCE SST and SGG spherical harmonic analystsdsilded. All
preprocessing steps and filtering have been applied as described iretiup chapters. With
the integral equation approach on orbit data and the bandpass filtercafmplieadiometer data,
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the final GOCE solution is obtained after the combination of SST and SGG pgethty with
the constraint in the polar areas realized by the pseudo-observati@a® onl® resolution grid

in terms of geoid heights of an assumed STD 20 cm close to that of EGM2008.reBult is
expected to be consistent with the other recently developed GOCE only medeltsas TIM2
(Pail et al, 2011H or DIR2 (Bruinsma et al.2010. The analysis of the solution is conducted
in various forms: as errors per degree, coefficient errors in trianform, geoid differences and
gravity anomaly differences w.r.t. other considered models, varianaiaace matrix and error
propagation, as well as individual contribution of the three parts, i.e. 8lefart and the SGG
part together with the polar constraint. The contribution of the four atewamponents in the
SGG part are also analyzed.

The square root of the variance of the unit weight (variance comppfardifferent obser-
vation types are given in Tabf1 The a prior6(~) computed with Eq.3.12) and the posteriori
values with Eq. 8.89. The posteriori values of the of the GGT data are smaller than their a
priori values. This means they are underweighted with a p&iori during the combination, and
is updated with the posteriori values. The kinematic orbit of SST is the otheroumd. It is
overweighted during the combination with a priori value of its STD of unit weighd is updated
with the posterior value for a better estimate of the data quality. The postetioraés of the
orbit accuracy is 1.8 cm, which is satisfied with the accuracy requiremei@®CE orbit, i.e.

2 cm. The values ofy, Vyy andV,, are 3.6, 3.6 and 5.9 mE, respectively. Thevalue ofVy,
component is larger than those\g§, Vyy, due to the high noise in the MB, se@ymmel et al.
2011). The posterioo value of theVy, component is 7.0 mE, which is the largest among all the
four sensitive components. The large STD values of the compadfgig due to its high noise
level in the MB, see agairRummel et al.2011). The polar areas are constrained with a STD
of 20 cm to EGM2008 for combination, based on the fact that the format efrEGM2008 in
terms of cumulative geoid height is 7.2 cnmo(ilup to d/o 200. In our computation, we hope our
solution is close to EGM2008 in the polar areas for the values dnxall grid with 3g, which is
approximately 20 cm.

Table 6.1: o of different observation types

Obs. types a priori 6%7) posteriorg;
Vix [ME] 3.7 3.6

Vyy [ME] 3.8 3.6

Vz [ME] 6.2 5.9

Vie [ME] 7.1 7.0

SST kin. orbit [cm] 1.76 1.85

Polar stabilization (in terms of geoid) [cm]20 20
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6.2.1 Analysis in terms of per Degree Error

In Fig. 6.2the degree RMS compared to EIGEN-6®1(ste et al.2011) of the SGG only solution
is shown in red, the SST only solution in green, the combined solution in blutharmbmbined
solution with additional constraint in the polar areas in magenta. The moddENEES is a
satellite-only gravity field model computed from GRACE from the time span 1 088 2ll 30
June 2009 and 6.5 years of LAGEOS (SLR) as well as GOCE (satellitéognatty) data from
the time span 1 Nov 2009 till 30 June 2010. We assume that EIGEN-6S is angmabel being
chosen as a reference for comparison and analysis.

Eigen6S
SGG-Eigen6Ss
SST-Eigen6S

degree RMS

w

10 - SST+SGG-Eigen6S
SST+SGG+Constraint—Eigen6S
\
2 Y
—= 10" | E
1=
£
—
=
2 3
q) |
<
=
o
5 3
O

O 20 40 60 80 100 120 140 160 180 200 220
degree n

Figure 6.2: The degree RMS comparing to EIGEN-6S. The formal errors éehesolution are given
in the dashed line with the same color.

The degree RMS of both SGG and SST only solutions oscillate due to the glarThe
degree RMS is dominated by the large errors of the zonals and neds-zAftar the combination
of SST and SGG, the degree RMS (in blue) becomes smaller compared to@ar8icST only
solution. However, due to the polar gap, the zonal and near-zonfiictergts in the combined
solution are still correlated and not well determined. After applying thetcains in the polar
areas in latitudes [-90-83°] and [83 90°] on a I x 1° grid with geoid heights from EGM2008
and an assumed STD of 20 cm, the final result is obtained and its degreasR¥i8wyn by the
magenta curves. The degree RMS of the combined and constrained sadutimnsmallest of
all solutions. Under the assumption that the model EIGEN-6S is a goo@neferthe combined
solution is seen to be improved and therefore better than any individudilcsolThis shows the
correctness of the combination. The degree RMS is smaller than the sigrmajteteven at d/o
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215, as shown by the comparison of the magenta curves (both solid aneldjias the signal
degree RMS in solid cyan. This means that even higher d/o coefficientsecestimated with the
data and methodology of this processing scenario.

In order to analyze the quality of our result, we compare our model with TIMR2 and
ITG-Grace2010s all referred to EIGEN-6S. The TIM2 model is estimatigd the time-wise
approach. It uses the observations in the time span from Noverft20d9 to July 0%, 2010.
Kaula regularization is applied in TIM2 to the coefficients starting from de@gl up to 250. In
addition, spherical cap regularization for stabilization of the system is aplige DIR2 model is
derived with the direct approach with the observations in the time span fawarhber % 2009 to
June 38, 2010. It takes the ITG-Grace2010s as a reference model folaregation. Both TIM2
and DIR2 use diagonal components of the GOCE GGT for the SGG partmQsigkeep in mind
that the data period for the computation of our model is longer than thosd R2 &nd TIM2.

In Fig. 6.3, the degree RMS and cumulative error in terms of geoid height comparedeo o
gravity field models are shown on the left and right panels, respectigBystands for the gravity
field model ITG-Grace2010s, which is included here to study the perforendifferences between
GOCE and GRACE. Our gravity field model is named TUMYGSTGpgr in the éiglthe solid
lines express the differences between the various compared modelsdtetieace model EIGEN-
6S, and the dashed lines denote the formal errors of the compared médetsg the GOCE
only models, the DIR2 solution is the closest one to EIGEN-6s, simply bet¢hadelGEN-6S
model is estimated based on the combination of the DIR2 solution and LAGEOSRACE.

It is fair to say that the constraint in the polar gap plays an important rolehfercomparison.
The constraint used in TIM2 for the polar gap is less strict, resulting laifferehces in the
low to medium degrees. TIM2 in non-polar areas is very accurate as tealidaGruber et al.
2011, Pail et al, 20118. In Fig. 6.3a our solution is closer to EIGEN-6S than TIM2 at degrees
from 0O to about 130. Between degree 130 to 180 TUMYGSTGpgr and2TdMow more or less
the same degree RMS. For degrees higher than 180 the degree RMBIdfisTless than that
of TUMYGSTGpgr, very likely because TIM2 solution applies Kaula regaédion starting at
degree 180. At degrees higher than about 205, the degree RMS diffdrences between DIR2
and EIGEN-6S is significantly smaller than the others. The reason is th&NEES adopted
a large amount of information from the DIR2 solution in this degree rangecomparison to
GRACE, the ITG-GRACE model is better than a GOCE model approximately fegnee 0O to
100, above this GOCE shows better accuracy, according to the forroes ef ITG-Grace2010s
and TUMYGSTGpgr.

The cumulative geoid error is shown in F&3h Compared to the reference field EIGEN-6S,
the geoid differences of TUMYGSTGpgr can reach 8 cm up to d/o 21@reas those of TIM2
model are about 10 cm. The formal error of TUMYGSTGpgr seems quiienggtic, less than
3 cm up to d/o 200. It is the smallest of all the considered GOCE models. Thes#ibe more
data is used for model TUMYGSTGpgr.
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Figure 6.3: degree RMS and cumulative geoid in terms of geoid height erro

From the degree error analysis, one can conclude that TUMYGSTSpgnsistent with
TIM2 and DIR2. However, the degree error per degree cannetigfermation about how accurate

individual coefficients are.

6.2.2 Analysis of Coefficient Error in terms of Spherical Harmonic coefficients
(Triangular Representation)

The error behavior of TUMYGSTGpgr is displayed in triangular form in.Big. The differences
between TUMYGSTGpgr and EIGEN-6S in Fig4ashow that these two models are more con-
sistent with each other at lower degrees than at higher ones. Hove¢wdggrees 10 to 20 the
consistency between the two models is not as good as at degrees froml@@. thlo large sys-
tematic distortion is found between TUMYGSTGpgr and EIGEN-6S. The foeral shown in
Fig. 6.4bshows a similar behavior as the coefficient differences in &da The coefficients of
TUMYGSTGpgr from degree 30 to 120, excluding the zonal and nesalzoefficients are esti-
mated with high precision. The effect of the polar gap shows up in both #fécent differences
and the formal errors.

The models TUMYGSTGpgr and EIGEN-6S are quite close to each othereffbr structure
shows that the higher degree coefficients are less precise than thelkyvee ones, and zonal and
near-zonal coefficients are less precise than the higher order ©nesnight therefore probably

introduce an even stronger constraint in the polar gap areas.

6.2.3 Analysis in terms of Geoid and Gravity Anomaly Differences

There are gravity field models based on measurements from satellite-odlgoarbined mod-
els which are based on satellite and terrestrial data. Both kinds of modatsrapared to our

solutions in this subsection.
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Figure 6.4: coefficient differences between TUMYGSTGpgr to EIGEN-68 #re formal error of SH
coefficients of TUMYGSTGpgr

6.2.3.1 Comparison to Satellite-only Models

From the most recent satellite-only gravity field models we choose EIGEBRGISGOCO02s
(Goiginger et al.2012; Pail et al, 2010 to compare them with TUMYGSTGpgr. GOCOO02s is
derived by the combination of 8 months of GOCE SGG data, 7 years of GRI®EGE 8 years of
CHAMP data and 5 years of SLR data (5 satellites). A Kaula regularizatioppkea starting
at degree/order 180. Similar to EIGEN-06S it is therefore very precisetim long- and short-
wavelength parts.

The geoid and gravity anomaly differences are important quantities feitgféeld model
analysis. The error behavior in the space domain can be presentedpjgicglly as shown in
Fig. 6.5 for the areas from latitude -830 83, with the geoid differences on the upper panel
and the gravity anomaly differences on the lower panel. The STD valugead differences
between TUMYGSTGpgr and EIGEN-6S and those between TUMYGST@pd GOCO02s
are 8.2 cm and 7.5 cm, respectively; on the lower panel, the STD valuesagfyganomaly
differences are 2.42 mgal and 2.27 mgal, respectively. Based on thegmidsons, it seems as
if TUMYGSTGpgr is closer to GOCOO02s than to EIGEN-6s, at least forngramsion up to d/o
215.

The STD values of geoid differences between various models arenpedsie Table.6.2,
again for the areas from latitude 88 83". When comparing up to d/o 215, TUMYGSTGpgr
deviates from the other models due to its larger STD values. There areasanfor this. Firstly
TUMYGSTGnpgr is estimated only up to d/o 215. Some information higher than &ié&ats into
the coefficients close to degree 215 due to an aliasing effect. Secamdiy}JMYGSTGpgr and
DIR2 only a polar gap regularization is applied, whereas for TIM2 padgr @nd to high degrees
Kaula regularization is used.

If these models are compared only up to d/o 200, TUMYGSTGpgr is at the saoreevel
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Figure 6.5: geoid differences and gravity anomaly differences betviddiY GSTGpgr and EIGEN-
6S, and between TUMYGSTGpgr and GOCOO02s

Table 6.2: Comparison of various models up to d/o 215, in terms of the 83lDes of geoid differ-
ences in centimeters (in latitudes [<8® 83’])

TUMYGSTGpgr 0 739 | 8.04 819 7.46
TIM2 0 | 564 578 2.00
DIR2 0 3.03 5.82

EIGEN-6S 0 5.82
GOCO02s 0
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as the other models, see Tabl&. Since GOCOO02s has partially adopted TIM2, these two models
are close to each other, and the same is the case for EIGEN-6S and OiiR2nay notice that
the STD value between DIR2 and EIGEN-6S up to d/o 200 is larger thanphatdio 215. This
phenomenon also happens in the case of TIM2 and GOCOO02s. It indicatdise zonal and near-
zonal coefficients are not ideally decorrelated, since in principle the\&li of geoid difference
should be smaller up to lower degrees than up to higher ones. This phenodmesnot exist in
the case of TUMYGSTGpgr for this comparison.

Table 6.3: Comparison of various models up to d/o 200, in terms of the 8dlDes of geoid differ-
ences in centimeters (in latitudes [<8® 83°])

TUMYGSTGpgr| TIM2 | DIR2 | EIGEN-6S| GOCO02s
TUMYGSTGpgr 0 4.84 | 5.87 5.88 4.86
TIM2 0 | 4.69 4.87 2.14
DIR2 0 3.36 4.99
EIGEN-6S 0 4.94
GOCO02s 0

The comparison in terms of geoid differences and gravity anomaly diffeeeshows that the
TUMYGSTGpgr is as good as the other recently developed models, si¢hMasDIR2, EIGEN-
6S and GOCEO02s, and is closer to TIM2 and GOCEO02s than to DIR2 antaNEES.

6.2.3.2 Comparison to Combined Models

Similar to the comparison with satellite only models, the model TUMYGSTGpgr is cadpar
EGM2008 and EIGEN-6CHprste et al.2011), both of them so-called combined gravity field
models with terrestrial data included. In F&6, the geoid differences between TUMYGSTGpgr
and EGM2008 and between TUMYGSTGpgr and EIGEN-6C are displagdte left and right,
respectively. Large differences in terms of geoid height between TGBIYGpgr and EGM2008
are found in Himalaya, Africa, New Guinea, South America and Antarctibarevterrestrial data
as used in EGM2008 is less accurate, see@=&a This is also known from the measured gradient
analysis, see Figh.18 The STD value between the geoids of TUMYGSTGpgr and EGM2008 is
13.4 cm, up to d/o 215. The comparison with EIGEN-6C shows better consystetin a smaller
STD value of 8 cm, see Fi¢.6h

These comparisons show a certain inhomogeneity of the combined modest(iatrdata
included) relative to TUMYGSTGpgr. Terrestrial data is very usefdliamportant for gravity field
modelling, but it is still an open question as to how to optimally combine satellite measote
with terrestrial (surface) data. The terrestrial data are collected whderving conditions which
vary from region to region in terms of precision and density; thereforaaitisallenge to combine
them with optimal weighting.
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Figure 6.6: geoid differences between TUMYGSTGpgr and EGM2008 and éetil UMYGSTGpgr
and EIGEN-6C up to d/o 215

The STD values of the geoid differences between TUMYGSTGpgr andwbecombined
models are given in Tabe4. Based on the STD values, TUMYGSTGpgr seems more consistent
with EIGEN-6C than with EGM2008 for a global comparison.

Table 6.4: STD values of the geoid differences between TUMYGSTGpgrEeBi#2008 and between
TUMYGSTGpgr and EIGEN-6C in centimeters (in latitudes 288 83°])

uptod/o | 215 | 200 | 180 | 150
EGM2008 | 13.43| 11.60| 9.90| 7.73
EIGEN-6C| 8.01 | 5.39 | 3.54| 2.20

As shown in Fig.6.7, more north-south stripes are found in the geoid differences between
TUMYGSTGpgr and EIGEN-6C (Fig6.7b than between TUMYGSTGpgr and EGM2008
(Fig. 6.79. The north-south stripes are the typical error behavior of GRAGEditates that most
of the information in EIGEN-6C up to d/o 150 comes from GRACE, which leadsdominance
of GRACE error characteristics in the geoid differences. Since thesteededata contributes to
EIGEN-6C starting at d/o 160~0rste et al.2011), this can explain these differences between
Figs6.7aand6.7h

A global map of geoid height differences between TUMYGSTGpgr antME@8 up to d/o
200 is shown in Fig6.8. Three regions marked with dark lines in F&8are chosen for compar-
ison. They are in rectangular areas of the given lower left and ujglgrcoordinates [(-120V
30°N); (-80°W 50°N)] for USA, [(5°E 45°N); (15°E, 55°'N)] for Germany and [(12(E -20°S);
(145°E -35°S)] for Australia. In these three regions accurate terrestrial data ispioaied in
EGM2008.

The short wavelength part of EGM2008 in land areas is based ontte&argsavimetry data.
The three marked in black regions are known to have terrestrial data whrab@uracy. As pre-
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Figure 6.7: geoid differences between TUMYGSTGpgr and EGM2008 and éetil UMYGSTGpgr
and EIGEN-6C up to d/o 150

min=—-295.471, max=346.579, mean=0.00250191, RMS=11.6486

Figure 6.8: geoid differences between TUMYGSTGpgr and EGM2008 to d® 20
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sented in Gruber et al.2011), in these three black marked regions, EGM2008 is very consistent
with the GPS-leveling. Therefore, we can just compare the GOCE-basdelsito EGM2008 in
these regions. This comparison can be considered as assessmerafutaey of the GOCE-
based models with terrestrial gravity anomalies. The advantage of this deompirthat the high
frequency part of the terrestrial data which is used for the determinatiBM2008 is filtered

out by truncating EGM2008 at any desired degree.

In order to show the improvement of GOCE to EGM2008, four regions withkeregravity
data are selected for comparison. They are marked in white rectangles th&igth the lower
left and upper right coordinates [(-8% -30°S); (-40W 0°N)] for South America, [(OE -20°S);
(40°E 30°N)] for Africa, [(65°E 20°N); (100°E 40°N)] for Himalaya area, and [(-180V -80°S);
(18C°E -65°S)] for Antarctica. The RMS-values of the geoid differences betwddMYGST-
Gpgr and EGM2008 in the seven regions are given in Talie

Table 6.5: RMS-values of the geoid differences between EGM2008 and YGETGpgr for the

selected areas and global RMS; SA is the South America anlsiEis the Southeast Asia; unit is
centimeter

d/o || Australia Germany USA| SA Africa SE-Asia Antarctica Global RMS
180 3.34 2.45 2.90|| 33.56 2341 3553 11.19 9.90
200 5.34 4.04 4.33|| 36.35 25.09 37.05 15.50 11.64

It can be seen that the RMS-values in the three regions with precisettiairdata used for
EGM2008 are small and those in the other four regions are very large. thiditbomparison of
TUMYGSTGpgr and EGM2008 in the regions where accurate terrestigairgetry data were
used for the determination of EGM2008, it can result accuracy assessimaur GOCE model.
There are at least two advantages with this idea. First, EGM2008 is veuyade in these regions
and can be used as a reference model; second, the omission error istelihipdruncation of
the SH expansion at any desired degree. In this comparison, the Ga@seld-lmodels are shown
to be consistent with EGM2008 with RMS-values of 4 to 6 cm, for the case médtion at degree
200. The comparison in regions where terrestrial data of only poocerracy was available for
EGM2008, shows significant improvements from GOCE observations iniige tzetween degree
100 and 200. In Antarctica where only GRACE observations were usetid determination of
EGM2008, the improvements from GOCE are also demonstrated.

6.2.4 Analysis in terms of Formal Error

With Eq. 3.109, the VCM of the parameter vector is obtained, and shown in@=&gafor the first
6 thousand rows and columns. Based on the rule of error propagation, i.e

T =AZAT, (6.3)
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for § = AR, the VCM can be transformed into the VCM of any other linear gravity funetiom
order to look into the error behavior in the space domain, the VCM of the 8Hicients has been
transformed to the formal error of gravity quantities on the Earth spheith. Wés geoid height,
the matrixA is computed according to EG.2, and the formal error in terms of geoid height is
obtained with Eq.§.3) and displayed in Figs.9h The error is latitude dependent, i.e. larger error
at lower latitudes and smaller error at higher latitudes, due to the fact thaitdbed track density
at low latitudes is sparser than at high latitudes. The maximum value of theésB.6rcm in polar
areas, because there is no information from GOCE in these areas ammhtteint from polar
stabilization is rather loose (20 cm prior STD in terms of geoid height).

The first 6000 rows and columns of Var—covariance matrix
T ,‘ o o S S e -22 . .
-‘ B PRl Prrrrrrrrrereers . Formal error of the geoid height

100k -

2000 [SFEE TR ETEw
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L ee o, ";; 1.0793 « [cm] — 4.9952
6000 oo 200 30 400 500 "eooomgld30
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(a) Variance-covariance matrix (b) Formal error propagated to geoid height up to d/o
215

Figure 6.9: Variance-covariance matrix (left) and its propagationeoid heights (right)

The formal error of the coefficients and the geoid will decrease with nateveore data col-
lected. Based on estimation theory, the accuracy of the spherical harooefiicients determined
from the measured gradients, and to a small extent also the spatial resohiliamcrease with

an increasing number of measurements.

6.2.5 Analysis in terms of Contribution Analysis

Since the GOCE-only gravity field model is estimated from a number of comp®sech as SST
and the four accurate gravitational gradient components, it is interestkmpt the contribution
of each individual part. Therefore, we conduct such an analysischan the normal matrices of
each individual component and their combination.

6.2.5.1 Contribution Computed by Means of Resolution Matrices

Based on the normal equations and posteriori variance componentgntinigwtion from all the
involved data types are computed, as shown in Eij0 With mean value in blue and median
in red, the contribution per degree and per order are given in the uvigb¢panel and lower left
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panel, respectively. For each data type the characteristic of its contriligtehown. It can be
seen thaV,, contributes mainly to the lower order coefficients, afgto the higher order ones,
and thatV, is rather homogeneous. The maximum contributions are ¥WgrandV,y, with up
to 32.7% and 28.0%, respectively. A bit less comes figprwith 26.1%, and even less frowy,
with 10.9%. SST contributes mostly to the lower degree coefficients, espénitily range of the
sectorial and near-sectorial coefficients, with 1.9% mean value. Lasibleast, the constraint
in the polar areas is important, even though its contribution is only 0.2%.
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Figure 6.10: Contribution of each individual components (per SH coedfitiand percentage)

The contributions of the GOCE gravity gradient compon&gtsV,y are complementary, and
those oV, are rather homogeneous. Although the noiséjns higher than in the other two, its
information content is still the highest. Thig shows very good consistency to the fully combined
solution, due to its good spatial homogeneity. This property reduces traastiageviation of the
geoid differences between the partially combined solutioviond the fully combined solution
and makes it smaller than those\gf, iy andVi,. Vy, is therefore the most important component.
From the analysis in terms of spherical harmonics, the contributionVWgia the largest, whereas
Vi andVyy have a similar magnitude of contribution. Pseudo-observations in the peks are
used to stabilize the computation and de-correlate the zonal and nehmpeffacients. They
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have, however, less than 1% influence on the final result. SST congitmae information to the

lower degree coefficients and especially to the higher orders of the tmgeee coefficients.

6.2.5.2 Comparison of individual components to the complete combidesolution

The geoid differences between models derived from SST (and psshsidovations in the polar
areas) combined with each of the sensitive components of SGG, individwéliythe fully com-
bined solution of all observations are presented in €ifyl. The STD of the difference between
the partially combine®, component and the fully combined solution is less than that of the other
three components. This is due to the homogeneity oftheeompare Fig6.10c The larger STD

for Vik andVy in Fig. 6.11aand6.11bis because of the non-isotropic error behavior of the coef-
ficients estimated with these two components, as shown irbFi§aand6.10h One can observe

a certain stripe pattern in north-south and east-west direction in the etnavior of the compo-
nentsVy, andVyy, respectively. Sinc¥, contains both aw andz component, its geoid difference
to the fully combined solution also shows the same north-south stripes but withllesSTD as
compared t&y.

The constraint in the polar gap areas is important for decorrelation obtie and near-zonal
coefficients of the estimated gravity field model. Nevertheless, it is tried to keepsmall as
possible. In addition to the contribution analysis based on the resolution niatridifferences of
the coefficients and geoid heights between the polar-constrained matipbks-unconstrained
model are presented in Fig.12 The coefficient differences between these two models are smaller
than 10125 for almost all non-zonal and not near-zonal coefficients, seedl@a This means
the polar constraint applied in TUMYGSTGpgr affects only the zonal aat-aonal coefficients.
The geoid differences in latitudes [-883°] between the constrained and unconstrained models
are shown in Fig6.12h One can find that the geoid differences between the constrained and
unconstrained solutions are quite small, with more than 50% of the geoid diffes@n the global
grid being smaller than 0.5 cm. The STD value of the differences is 1.83 crge ldifferences
are found only at high-latitude areas close to the polar gaps.

With the contributions of polar constraint, together with the comparison betiyeenon-
strained solution and unconstrained solution, we conclude that soméiaissgmiori information

enters into the result, but its contribution is kept quite small.

6.2.6 Analysis in terms of External Validations

The geoid undulations can be obtained either by computing the geoid heighgrafvity field
model relative to an adopted normal ellipsoid, such as WGS8k(d and Boucherl996, or by
taking the difference between orthometric height derived from levelingesing and ellipsoidal
heights derived from GPS. The latter approach is referred to as 18R8Eng". Theoretically the
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6. COMBINATION OF SST AND SGG
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Figure 6.12: comparison between polar-constrained and unconstraoietiens

geoid undulations derived with these two approaches are equivalestefdhe, a comparison of
their values at the same geographical location allows to assess the gaufutteegravity model.

Our model TUMYGSTGpgr has been validated with the benchmark areas $traia,
Canada, Europe, Germany, Japan and USA by Dr. Thomas Grubethd-estimation of the
omission error we make use of the EGM2008 model,Gaéer et al(2011). The RMS-values
of the geoid heights of the four models to be validated differing to “GPS-layeéine shown in
Fig. 6.13 with a truncation up to d/o 180 on the left, and up to d/o 200 on the right. Onfrzhn
that the model TUMYGSTGpgr is slightly but consistently closer to the “GPS8liley” data than
the other 3 models. The reason can be that the model TUMYGSTGpgr id baselonger time
span with GOCE data than the others. The GPS-leveling data in Germany ameshaccurate
among all these data sets used for validation, that is the reason why thev&MS-in this area
is the smallest. All the fields are close to the German GPS-leveling data set with4Bocm
uncertainty. It is difficult to say whether the GPS-leveling data are mongraiecthan the gravity
field models, or vice versa. However, if the gravity field models are so ¢todee most accurate
GPS-leveling data set, it can be assumed that both the “GPS-leveling” dhtuagravity field
models TUMYGSTGpgr have an error level of not larger than 6 cm in tefragaid undulation
up to d/o 200, at least for the area of Germany.

Geoid height/anomaly slope differences are more sensitive to mid- to higheiney varia-
tions of the geoid@Gruber et al.2011). They are the RMS-values of the differences between the
geoid of gravity field model and that derived from GPS-leveling and ifledsaccording to the
distance between all the combinations of any two benchmark point in edoh régcloser inves-
tigation is taken for German and Japanese data sets. I Hig.the relation between the RMS
values of the geoid differences and the distance of the points is givethdaegions of Japan
(left) and Germany (right). The RMS value of TUMYGSTGpgr is smaller thars¢hof all the
other models, for the distance less than 1700 km in the area of Japarmvesmnahech significantly
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6.2 Analysis of the Solution Derived by Combination of GOCE SST and SGG
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Figure 6.13: RMS of the geoid height differences between the “GPS-lagéland gravity field models

smaller in the area of Germany. This shows that TUMYGSTGpgr is betteistenswith the
external validation data, based on this computation in terms of geoid slopeedifes. For the
other data sets similar, but due to the fact that their accuracy is poorepri@sounced results as
presented in Figs.14were obtained. In the tests truncated in other degrees, TUMYGSTGjogr als

shows better consistency with the GPS-leveling data sets.
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Figure 6.14: RMS geoid height differences for the regions of Japan (&ft) Germany (right) classi-

fied by distance (d/o 200)

With this external comparison, we conclude that the gravity field modeletkiivthis study
is at least as good as the other GOCE models considered in this study. Asted; the long data

time span may be essential for the good quality of TUMYGSTGpgr.
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6. COMBINATION OF SST AND SGG

6.3 Analysis of the Solution Derived by Combination of GRACE SST
and GOCE SGG

On the one hand, due to the high sensitivity of GGT in the MB, GOCE has agaay perfor-
mance at higher degrees; on the other hand, GRACE is very accutateeatdegree SH coeffi-
cients. They are complementary with each other. It is advantageous singbieto combine them
for a good solution covering both the lower and higher degree coefficigve combine the normal
equations of the SGG part (up to d/o 215) of model TUMYGSTGpgr with threnabequations
of the GRACE gravity field model ITG-GRACE2010s (up to d/o 180), whicbasputed with 7
years of GRACE data from August 2002 to August 200&yer-Qirr et al, 2010. Even though
GRACE contains information in the polar areas, its resolution is not adequétéyteompen-
sate the instability of the combined normal equations caused by the polar gapefdre, as for
the computation of TUMYGSTGpgr, the constraint in the polar areas is stillepi the linear
system of the GRACE-GOCE combination, with a STD of 20 cm to EGM2008 orithel®
resolution grid. The posteriori estimates of the variance components of IEEGGG part in
Table6.1are used for the combination with GRACE. Based on these consideratioaw, model
named GOGRAO1s has been computed.

The model GOGRAOL1Ls is compared with GOCOO02s, together with the model TRBTY
Gpgr, EIGEN-6S and ITG-Grace2010s. In Figl5the degree RMS and cumulative geoid error
are given on the left and right hand side, respectively. The solid legesent the differences be-
tween the models and the reference model, GOCOO02s. The dashed lirsentphe correspond-
ing formal error. From Fig6.15aone finds that the coefficients of lower degrees are determined
very accurately due to GRACE, and that GOCOO02s is closer to ITG-Ged6s than GOGRAO1s.
This is because different filters are used in GOGRAO01s and GOCO®2xdefficients of degree
from 2 to 60 in GOCOO02s depend more on GRACE than these in GOGRAO0O1$his.makes
that GOCOO02s is closer to GRACE at the lower degree coefficients. Bédout degree 105, the
curves of ITG-GOCO and GOGRAO01s-GOCO are quite close to each oftetegrees higher
than 105 the two curves deviate. This may imply that GOCE improves ITG-GRAOES start-
ing from degree 150. In Figs.15h the cumulative error in terms of geoid height show that the
model TUMYGSTGpgr is less accurate than GOGRAO1s due to the fact thdbwrer degree
coefficients are determined with less accuracy based only on GOCEvatiees. But at higher
degrees its cumulative geoid error is closer and closer to GOGRAO1® ®Bime data is used for
TUMYGSTGpgr and GOGRAO1s than for GOCO02s, the formal errofzotth GOGRAO1s and
TUMYGSTGpgr are smaller than those of GOCOO02s. From the formal poiot of view, up to
degree 200, the cumulative geoid errors of TUMYGSTGpgr and GOQ@RAbe at the level of 2
to 3 cm (1o).

The geoid differences between TUMYGSTGpgr and GOGRAOLs ardaglisgh in Fig.6.16
With 1.45 cm STD value up to d/o 215, they are very close to each othereiLdifferences are
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Figure 6.15: degree RMS and cumulative geoid error per degree

located at higher latitudes. More than 50% of the total (958,265) points gieihiel differences is
smaller than 1 cm, and in about 90% of the total points the difference is smalte2 tra. It can

be seen in upper-right panel that the RMS per latitude at the latitude of Hienedagther large.
Very likely it is due to the differences between GOCE SST solution and GRgdlEion.
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Figure 6.16: Geoid differences between GOGRAOL1s and TUMYGSTGpgr

As done for model TUMYGSTGpgr, the contribution of GOCE, GRACE aathparea con-
straints to GOGRAOL1s is analyzed as well. As shown in Bi@7 the contribution of GOCE is

large for the higher degree coefficients and that of GRACE is large &olathier degree coeffi-

cients. Even though the same constraints in the polar areas are applied &®®GRAO01s and
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6. COMBINATION OF SST AND SGG

TUMYGSTGpgr, the effect is different on them since GRACE contribatase low- and medium-
wavelength information to GOGRAOQ1s. This leads to large differences bat@®GRAO1s and
TUMYGSTGpgr in high-latitude areas, see Fi§l6 The mean contribution of GOCE and
GRACE are 69.9% and 30.06%, respectively. The polar area congtiasna small value of
0.047%. Its contribution starts from about degree 140 to the zonal aarezneal coefficients.
This is different to TUMYGSTGpgr in which all the zonal and near-zar@éfficients get rela-
tively large contribution from the polar constraint. It is reasonable thatdméribution of polar
constraint to GOGRAO1s is smaller than to TUMYGSTGpgr, because belgmeed40 the zonal
and near-zonal coefficients are determined with good accuracy duedoriribution of GRACE.

Contribution of GOCE SGG for GOGRAO1s Contribution of GRACE for GOGRAO1s
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Figure 6.17: Contribution of GOCE SGG (upper left), GRACE (upper rightfigpolar area constraint
(lower center) for GOGRAO1s

The contribution analysis for model GOGRAOL1s demonstrates that GOCIGRACE are
complementary to each other. From the upper right panels of BiiZaand6.173 it is seen
that below degree 60, the information from GRACE is dominant in GOGRA®RIBN degree 60
increasing to 140, the information of GOCE increases from 0 to be domiaknogt 1); Higher
than degree 140, the signal content of GOCE is superior in GOGRARQXke llower left panels
of Figs.6.17aand6.173 the contribution per order of GOCE is almost 1 for the orders higher than
100; GRACE contributes more information to the lower order coefficients tifwamigher order
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6.4 Summary

ones. From the lower left and upper right of F&17¢ we see that the polar constraint inputs
some information only to the coefficients of degree higher than 140 and loettav about 15.

With the above computation and analysis, we can conclude that the combinaB@GE and
GRACE is very useful for an accurate gravity field model in long-, mediund-sbort-wavelength.

6.4 Summary

A satellite-only combined solution was computed using SST and all four aecgravitational
gradiometry components. The combined normal equations are derivediby the weighted
sum of the normal equations of the various observation types. The waiflthe individual
components (observation types) are computed from the inverse of thieineg components.

The contributions of individual components are computed by means diitiesomatrices.
Based on the analysis, it is found that the contribution of\thecomponent is the largest; the
contribution ofVyx component is following; that of th, andVy, components are the third and
fourth, respectively; the SST part is the fifth and its contribution is camnatad on the lower
degree coefficients and especially those of higher orders; last blgast, the constraint in the
polar areas contributes less than 0.3% to the complete solutions. The SGfBmakiutes more
than 97%. The contribution of the SST part is only about 2%, neverthitisssssential.

The advantage of the combination of SST and SGG part is demonstratedanadysis. With
the combination, the error curves of individual parts decrease. By aongpthe degree RMS,
the coefficients and geoid difference maps, it can be seen that our agkitionsistent with other
newly developed models.

From the triangular representation of the coefficient errors, we cdadiiat the estimated
coefficients are most accurate for degrees from about 30 to 120.pdlae gap effect is still
existent, even though the constraint in polar areas has largely reduced it.

The geoid differences between TUMYGSTGpgr and other newly deedigatellite-only
models show that TUMYGSTGpgr agrees better with GOCO02s and TIM2witarDIR2 and
EIGEN-6S. The combined model EIGEN-6C is closer to TUMYGSTGpgr witweer STD value
of geoid differences than EGM2008. Inhomogeneities, probably duetiethestrial ground data,
are found from the geoid differences between TUMYGSTGpgr and agwedbmodels.

The VCM of our solution has been transformed into a global geoid error. nsapce the
ground tracks at high latitudes are denser than that at low latitudes, thalferror in terms of
geoid height at high latitudes is smaller than that close to the equator. The edtimade! is
more precise in the northern hemisphere than in the southern hemisphete tlirierbit altitude
in the northern part being lower than in the southern part of the Earth isTthis effect of the orbit
eccentricity and the orientation of the orbit ellipse.

The constraint in the polar gap areas is important for stabilizing the solutibdeoorrelating
the zonal and near-zonal coefficients. According to the differebedseen the constrained and
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unconstrained solution, we see that the constraint in polar areas affdgtthe zonal and near-
zonal coefficients. From a comparison of the geoid differences batwelkar-constrained and
unconstrained solutions, we conclude that very little information from thetcaint is projected
to the areas outside of the polar gaps.

Based on the validation, we find that TUMYGSTGpgr, together with TIM2RDland
GOCO02s, are close to the “GPS-leveling” data with a precision of about 4gcto d/o 180,
of 6 cm up to d/o 200, in terms of geoid height on Earth sphere (for theodi@armanyy), consid-
ering that the benchmark in Germany is very precise. Smaller RMS-valuegdhly GSTGpgr
to the “GPS-leveling” data than those of the other models are likely due to itsripeged of
observation time.

The combination of GOCE and GRACE is very useful. The accuracy of defficients of
lower degrees is greatly improved by including GRACE. The comparisondegiwhe GOCE-
only model TUMYGSTGpgr and GOGRAOLs shows that they are consisfimeach other with
an STD value of 1.5 cm up to d/o 215. The contribution of GOCE is higher J#@&# that of
GRACE (30%) in the case of model GOGRAOQ1s and is dominant at the deafabove degree
140. The polar area constraint is still important. Since GRACE measurememistaontain
information with a resolution as high as GOCE, it is necessary to apply this potestraint in
order to stabilize the equations and compensate the lack of high-resolut@ymatfon in the
polar areas.
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Concluding Remarks

7.1 Discussion

With the gradiometric measurements collected by the GOCE satellite and the kinerbatcar
gravity field model TUMYGSTGpgr has been derived using the integradeon approach for the
SST part and a bandpass filter applied to the gradiometer data for the SG@gpatated in the
literature and presented in this study, the SST part achieves good @ctorrdhe lower degree
coefficients and the SGG part for the higher degrees and orders.

Based on a forward computation (case study of the GOCE orbit), comgjde cumulative
effect the kinematic GOCE orbits are sensitive to the Earth’s gravity field wad50. The
largest disturbance of the orbit is caused by air drag. Since the aiirdfight direction, which
is its largest components, is compensated by ion thrusters, the residusdgiartd other mis-
modeled and unmodeled perturbation forces are expected to be adedaiedalynto account by
models and by the applied empirical accelerations.

The integral equation approach is efficient for gravity field modeling basedrbit data. It
is fast due to the fact that the variational equations are solved by matrmatapes, instead of
orbit integration. The computation is parallelized with OpenMP interface fothitee orthogonal
spatial components, by making use of their independence in this appmaelcorrelation of the
results with the used a-priori model is proved to be negligible.

Since the altitude of the orbit is low, the reconstructed models recovened@OCE's kine-
matic orbits show good quality when compared to those based on CHAMP.ctheaay of the
resulting gravity field model is not homogeneous because the accurdoy ofbit degrades to-
wards high latitudes. In particular in high latitude and in the areas close to tith 8od North
Magnetic Poles the accuracy of the orbit and of the estimated gravity fieldlnsolde&ver than
at lower-latitude areas. By residual analysis, it can be shown that doeseucted orbits are
more consistent to the kinematic orbits than the reduced dynamic orbits promittesl product
SST.PRD2I.
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The empirical accelerations are derived by re-substitution after thelglab@meters are ob-
tained. Similarities are found between the reconstructed empirical acceberatid the measured
accelerometer data. This shows that the empirical accelerations reallp @ksoge part of the
unmodeled effects. A correlation between the reconstructed accelsratiointhe Euler angles
between GRF and LORF is found in this study. The GRF is kept close to LQRRdgnetic
torquing. Likely some of the ion thrust in the x-direction in the GRF is projecttmthre empiri-
cal parameters modeled in LORF.

Due to the existence of the polar gap, the normal equations have to be sthiyliaeonstraint
of grid values in the two polar areas using an a-priori model. Since théraoriss set quite loose,
the results show that there is little information projected into the areas covgrdte KGOCE
orbits, based on comparison between the constrained and unconssaiagoins. This kind of
constraints is helpful of decorrelating the zonal and near-zondiiciests.

The observation model of the SGG part is derived and formulated in the IBRBtating the
partials of the GGT w.r.t. the SH coefficients from the Earth-fixed frame to.GRIE avoids the
rotation of the measured GGT, therefore the less sensitive componentsiediserements do not
degrade the results.

Apart from digital filtering, tests were carried out to suppress the ndisegradiometer data
in the LFB by modeling either with polynomials or with Fourier expansion. Afterrémoval of
the error in the LFB, the gravity field information can be derived from tlasligmeter data. Ac-
cording to our experiments, due to its properties of continuity and preagama the information
inside the MB, a Fourier expansions is more suitable than polynomials.

The analysis of the GGT data (before SHA) shows the nice performdribe gradiometer.
This can be seen from the trace as well as the noise floor of the indivddogdonents. The major
tectonic features are found directly from the measurements. The noise fiegjuencies below
the MB is larger than that in the MB. In order to suppress this low-frequantse, two filters are
applied to the data. One is a FIR bandpass filter for a global data view intordearantee that
no phase shift occurs due to filtering. The other one is a IIR bandpasddir SHA because of its
lower computation load.

The combination of SGG with SST shows the improvement of the combined soltidins
individual ones. According to the comparisons, our model TUMYGSTG®guite consistent
with other models derived from GOCE measurements. Based on extelidaltiosn, our results
show even better performance likely due to the longer data span useddassur

Despite of its higher noise in the MB, the information conten,gfs the highest, with a value
of 32.7%. The component4y andVy contribute 28.04% and 26.08%, respectively. The contri-
bution of the only accurate off-diagonal componegtis 10.93%, smaller than the three diagonal
components, due to its larger STD value resulting in a smaller weight duringothbication.
V. shall be used in gravity field determination. The SST part contributes &86ub the whole
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7.2 Outlook

solution. The zonal and near-zonal coefficients are de-correlgtéldebpolar constraint, which
contributes very small amount, less than 1%.

The formal error is propagated into geoid height errors on an EartereplBecause of the
denser orbit coverage, the formal error of the geoid height at higtirdes is smaller than at the
lower ones. Furthermore, because the altitude of the satellite is lower in ttieermohemisphere
than in the southern hemisphere, the precision of the geoid heights of thetedtignavity field
in the northern hemisphere is higher than in the southern hemisphere.

The result of the combination of GOCE SGG and GRACE shows the expecteoviempents
compared to the GOCE-only and GRACE-only solution. It takes the advesiaigooth GOCE
and GRACE. Due to the high sensitivity of GGT in the MB, GOCE shows vepdgmerformance
at higher SH degrees and orders. GRACE is very accurate at loweszedand order SH coef-
ficients. The two missions are complementary with each other. In our modelRA30%, the
contribution of GOCE reaches 60.9% and GRACE contributes mainly to lovgeedeoefficients
with an average value of 30.06%. By taking the advantages of both GOLC&RACE, the model
GOGRAO1s shows its high accuracy at both lower and higher degreerdadcoefficients.

Our solution TUMYGSTGpgr achieves an accuracy of about 4 to 6 cm dfot®00, according
to the formal error of the geoid height and the validation based on extdatel With more and
more data available, results of even better accuracy are hopefully abtaine

7.2 Outlook

A certain format of normal equations is defined and applied in this study.ndheal equations
of SST and SGG part are computed from their observation equatiopecte®ly. Each day’s
normal equations are stored on disk with our defined format and themadated. It can be
applied to other observation types such as SLR and terrestrial data, too.

In our result, we find that the intersection of the formal error and the kigadove d/o 215.
This means that from GOCE data one can determine a gravity field model tiigtmethis value.
A new solution up to even higher degree and order is therefore in theipéann

With the software developed in this study, we will process and analyze titsaimg stream
of GOCE data. It is hopefully used also for some future missions.

Long wavelength gravity field signal can be measured by SLR with highracgult is there-
fore desirable to combine GOCE and GRACE with SLR for a better perforenanthe lowest
degree coefficients.

It is important for a GOCE solution to handle the polar gaps of the northetrsanthern
hemispheres. One may use terrestrial or airborne gravity data for tteenoipolar areas. For
the southern polar areas, there is no sufficient terrestrial data availableducing some other
information in these areas for a GOCE solution is therefore unavoidable.
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List of Abbreviations

AlUB
CHAMP

CMA
CPR

DEOS
DIR

DMA
EGF

ESA

FFT
ECEF
GRF
FIR

GINS
GG
GGT
GINS
GOCE
GRACE
GRGS
IAPG

IAU
IERS

IR

LORF
MB
MBW
NEQ
oMC
PSD

136

Astronomisches Institut der UniverattBern
CHAllenging Minisatellite Payload

Common mode acceleration
Cycle per revolution

Delft Institute for Earth-Oriented Space research
Direct approach

Differential mode acceleration
Earth gravitational field

European Space Agency

Fast Fourier Transform
Earth-centered earth-fixed
Gradiometer reference frame
Finite impulse response

Géocksie par Inégrations Nurariques Simultapes
Gravitational gradient

Gravitational gradient tensor

Géocksie par Inégrations Nurariques Simultapes

Gravity field and steady-state Ocean Circulation Explorer
Gravity Recovery And Climate Experiment

Groupe de Recherche de Geodesie Spatiale

Institut fur Astronomische und Physikalische Géeik

International Astronomical Union
International Earth Rotation and reference systems Service

Infinite impulse response

Local orbital reference frame
Measurement band
Measurement bandwidth
Normal equation

Observed minus computed

Power spectral density



GLOSSARY

RMS

PSO
SGG

SH
SHA
SHS
SLR
RSO
SST

STD
SNR

SOFA
SPW
TIM
VCM

Root mean square

Precise science orbit
Satellite gravitational gradiometry

Spherical harmonic
Spherical harmonic analysis
Spherical harmonic synthesis
Satellite laser ranging

Rapid science orbit
Satellite-to-satellite tracking

Standard deviation
Signal-to-Noise Ratio

Package of standards Of fundamental astronomy

Spacewise approach
Timewise approach

Variance-covariance matrix
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