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Abstract

This study deals with the determination of a global model of the Earth’s gravity

field from the measurements of the Gravity field and steady-state Ocean Circulation

Explorer (GOCE) mission. GOCE is the first satellite mission with a gravitational

gradiometer on-board. It measures the elements of the gravitational gradient tensor

(GGT). The orbit measurements by GPS are sensitive to the long wavelengthpart of

the gravity field, the gradiometer measurements are used for the determination of the

short wavelength part with very high accuracy. Both observation typesare studied

and analyzed in this work.

The integral equation approach is applied to the kinematic orbits. It is modified in

several ways. First, continuous transition of successive short arcsis realized in our

computation. Second, empirical accelerations are introduced in order to absorb the

non-gravitational accelerations and mis-modeling errors. The result obtained with

this approach is compared to a very precise GRACE model, resulting in a standard

deviation of 7.3 cm up to degree and order 70, based on only two months of GOCE

kinematic orbit data.

The gradients obtained from the GOCE gradiometer are analyzed in variousaspects,

namely in the time domain, in the frequency domain, and in the geographical space

domain. The gradiometer exhibits very good performance. Tectonic features are

found in the data directly, before a spherical harmonic analysis (SHA) is applied. With

a bandpass filter, the gradiometer data are used for SHA. The results from individual

components are obtained.

The combination of GOCE SST and SGG is realized by taking the weighted sum of

the corresponding parts of the normal matrices as well as of their right hand sides.

The reciprocals of the variances of each individual observation type serve as relative

weights for their combination. A gravitational field model is obtained purely based

on GOCE data, together with a constraint in the polar areas for stabilization. The

model is then compared to other recently developed models. It shows very good

consistency with them. Validation experiments of our model show a good consistency

to external data, namely “GPS leveling” data in several regions. Contributions of

individual components are obtained by means of resolution matrices. Their analysis

demonstrates that theVzz component is very strong and contributes up to 32.7% of the



total solution. The constraint in the polar areas as applied in our solution contributes

mainly to the zonal and near-zonal coefficients with a percentage of 0.2%.

Apart from the GOCE only solution, also a combined gravitational field model named

GOGRA01s is obtained by the combination of GOCE with GRACE. This model is

very accurate in the long wavelength part (due to GRACE) and short wavelength part

(due to GOCE). The contribution of GRACE in this model is 30.06%, whereas that of

GOCE is 69.9%.

The gravity field model derived from GOCE-only measurements is analyzedin terms

of degree RMS and degree cumulative error, formal error in terms of geoid height

propagated from the variance-covariance matrix, as well as validation withexternal

data. It shows that the GOCE-only model reaches an accuracy of 4 to 6 cm in terms

of geoid height. It is quite close to the objective of the mission.



Zusammenfassung

Es soll gezeigt werden, wie ein Schwerefeldmodell aus Messungen derSatellitenmission GOCE

hergeleitet wird. GOCE ist die erste Satellitenmission, die mit einem Gravitationsgradiometer aus-

gestattet ist. Satellitengravitationsgradiometrie (SGG) ist die Messung der zweiten Ableitungen

des Gravitationspotential. Es werden die Komponenten des Gravitationstensors (GGT) gemessen.

Die Bahnbestimmung dient hauptsächlich dazu, die langen Wellenlängen des Erdschwerefeldes zu

detektieren, ẅahrend die Gradiometermessungen für die Bestimmung der k̈urzeren Wellenl̈angen

des Schwerefeldes verwendet werden. Beide Arten von Messungensollen in dieser Arbeit unter-

sucht und analysiert werden.

Die kinematischen Bahnen des GOCE Satelliten sind das Ergebnis des “satellite-to-satellite

tracking (SST)”. Sie sind die Grundlage des Schwerefeldmodellierung mit der Integralgle-

ichungsmethode. Hierbei wurden einige Neuerungen eingeführt. Erstens ist die Nahtstelle zweier

benachbarter Kurzb̈ogen durchg̈angig, d.h. stetig. Zweitens werden empirische Beschleunigun-

gen eingef̈uhrt, um nicht-gravitative Anteile in den Beschleunigungen sowie Fehleranteile zu eli-

minieren. Das Resultat dieses Ansatzes ist in seiner Qualität vergleichbar mit einem hochpräzisen

GRACE Modell. Es wurde eine Standardabweichung von 7.3 cm erreicht unter Verwendung einer

Kugelfunktionsentwicklung bis Grad und Ordnung 70 und basierend aufzwei Monaten kinema-

tischer GOCE-Bahn.

Die durch das GOCE Gradiometer ermittelten Gravitationsgradienten werden auf ver-

schiedene Arten analysiert, nämlich im Zeitraum, im Frequenzraum und in ihrer räumlichen

Verteilung. Die gemessenen und gefilterten Gradiometerdaten sind von guterQualiẗat. Tektonis-

che Anteile werden in den Daten direkt sichtbar, noch bevor eine sphärisch-harmonische Analyse

(SHA) erfolgt ist. F̈ur die SHA wurden die Gradiometerdaten mit einem Bandpassfilter gefiltert.

Jede einzelne Komponente weist eigene Charakteristiken auf.

Die Kombination von SST und SGG erfolgt durch eine gewichtete Summe der korre-

spondierenden Elemente der Normalmatrix sowie der rechten Seiten des linearen Gleichungssys-

tems. Die Reziproken der Varianzen jedes einzelnen Beobachtungstyps dienen als Relativgewichte

für die Kombination. Zu Testzwecken wurde ein Schwerefeldmodell nur ausGOCE-Daten

abgeleitet, mit einer Stabiliserung in den beiden Polgegenden in denen keine Daten vorliegen.

Anschließend wurde das Modell mit anderen kürzlich erschienenen Modellen verglichen. Das

GOCE-Modell zeigt sehr gutëUbereinstimmung zu den anderen Modellen. Die Validierung un-

seres Modell weist eine sehr guteÜbereinstimmung auf zu externen Daten, nämlich zu GPS-

Nivellementdaten in mehreren Regionen dieser Erde. Der Informationsgehalt der einzelnen Kom-

ponenten wurde durch die Berechnung einer Auflösungsmatrix ermittelt. Es zeigt sich, dass die

Vzz-Komponente einen starken Einfluss von 32,7% auf die Gesamtlösung hat. Die Regularisierung

in den polaren Regionen, die wir in unserer Lösung verwenden, hat hauptsächlich einen Einfluss
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auf die zonalen und beinahe zonalen Koeffizienten. Dieser Einfluss ist sehr wichtig, betr̈agt aber

nur 0,2% der Gesamtlösung.

Neben einem reinen GOCE Modell wurde ein kombiniertes Schwerefeldmodell aus einer

Kombination von GOCE und GRACE berechnet, genannt GOGRA01s. Der Anteil der GRACE-

Daten in diesem Modell beträgt 30,06% und der von GOCE 69,9%.

Das Gravitationsfeldmodell nur basierend auf Messugen von GOCE wurde untersucht mit

Hilfe von Gradvarianzen, dem kumulativen Fehler pro Grad, dem formalen Fehler der Geoidḧohen

auf der Kugel und abgeleitet aus Varianz-Kovarianz-Fehlerfortpflanzung und durch eine Vali-

dierung mit unabḧangigen Daten. Es zeigt sich, dass der Geoidfehler des GOCE-Modells 4bis

6 cm betr̈agt.
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Introduction

1.1 Motivation

Since the first satellite, Sputnik I, was launched on October 4th, 1957, scientists have benefited

tremendously from satellites in their understanding of the evolution and dynamics of the Earth.

Since then, many satellite missions have dealt with Earth science. Geodetic satellitebelongs, in

general, to one of the four following categories (Rummel 1992; Sneeuw 2000):

i. they serve as a geometric target for point positioning, such as LAGEOS-I and LAGEOS-II,

ii. as a measurement platform equipped with cameras, SAR or altimetry such as

TOPEX/Poseidon, ERS-1 & 2,

iii. as a proof mass in free fall in the Earth’s gravitational field for gravity field determination,

e.g., CHAMP, GRACE and GOCE, or

iv. the gyroscopic motion of the orbit plane is used for Earth rotation determination, relative to

an inertial reference frame, e.g., again LAGEOS-I and LAGEOS-II.

The knowledge of the Earth’s gravitational field (EGF) always needs to be improved in terms of

accuracy and resolution. Within reasonable time, substantial improvements can only be achieved

by exploiting new approaches based on satellite gravitational observation methods (Freeden et al.

2008). The observations from satellites can be divided essentially into two main categories: ge-

ometrical and physical. Since satellites orbit the Earth under the influence ofthe Earth’s gravita-

tional field, almost all the observations can be related to the EGF and are therefore functionals of it.

In turn, the EGF can be recovered either from the satellite motion itself, from the relative motion

of two or several satellites (satellite-to-satellite tracking (SST)), or from a gravimetric payload,

such as a gravitational gradiometer (SGG). In Geodesy attempts are made to extract the maximum

information from these data for the purpose of determining the EGF. Nowadays, more and more

data are becoming available, resulting in better and better knowledge of the gravity field. The ob-

servations collected by satellites are more homogeneous than terrestrial observations, not only in
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1. INTRODUCTION

space, but also in time. This gives us the possibility to explore also the time-varying gravitational

field (Wahr et al. 2004).

This dissertation is dedicated to the investigation of the methodologies of SST andSGG as

well as to actual gravity modeling from SST and SGG data from the GOCE mission. GOCE is the

first satellite mission with a gravitational gradiometer. Despite many investigations (Klees et al.,

2003; Rummel, 1996; Rummel and van Gelderen, 1992), there are still many aspects to be learned

from the actual GOCE mission, concerning subjects such as the performance of the payload, the

characteristics of each individual component, their combination, etc.

The dissertation will address three themes related to gravity field analysis from GOCE. The

first of the three topics is SST. Since the GOCE orbit can be computed from GPS data, similar

to the case of CHAMP, i.e. by the high-low SST concept, one can recover the EGF based on the

kinematic orbits of GOCE. The advantages of GOCE over CHAMP are thereby its lower altitude,

which results in a better spatial resolution; second, the higher sampling rate of GOCE, which

also increases resolution and precision; and third, the air drag in flight direction of GOCE to be

compensated by ion thrusting, which reduces the effect of mis-modeling of air drag. The integral

equation approach will be used for gravitational field recovery from GOCE orbits in this study.

The second topic is SGG. The basic observables are accelerations at sixlocations inside the

spacecraft. The gravitational gradients are derived from the differences of the measured accelera-

tions, by removing the contribution of angular motion. From the mathematical pointof view, the

concept of SGG is the use of the second derivatives of the gravitationalpotential for the estimation

of the spherical harmonic (SH) coefficients. With the test masses very close to each other, the SGG

measurements are very sensitive to high-frequency variations, but lesssensitive to low-frequency

ones. The gradiometer measurements contain colored noise, of which the power-spectrum density

(PSD) at lower frequency is larger than at higher frequencies. It is therefore an important aspect

to extract the gravitational information in the presence of the colored noise.

The third topic is the optimal combination of SST and SGG. The performance of SST is

better than that of SGG for lower degree coefficients; it is the other way round for higher degree

coefficients. The gravitational information content of SST and SGG shouldbe combined correctly,

otherwise the results will be not optimal or even biased. The variance factor is an important index

in such an analysis. It represents the information content of the observation types and can therefore

be used for weighting of the various contributions.

Earth science is dedicated to the study of the Earth as a static and/or dynamic system which

is composed of the solid Earth, ice, oceans and atmosphere. The gravitational field of the Earth is

related to the spatial distribution of matter, and its temporal variation. Determinationof the EGF

and its fine structure as well as its temporal variations is not only one of the basic objectives of

geodesy, but also provides important information for the understanding of the Earth as a system.

It is therefore desirable to obtain the Earth’s gravitational field with high resolution and high

accuracy, both globally and regionally.

2



1.2 Overview of Satellite Gravitational Missions

In geodesy, EGF with a high precision and global consistency is central for the establish-

ment of a global unified height datum, and a long-distance height control. It will also provide

a height constraint between land and sea, ocean and islands. With a high-accuracy and high-

resolution geoid, it is possible to replace expensive first- and second-order leveling networks by

“GPS-leveling”. The geoid is the most appropriate reference surface for a global height datum.

Because of the unknown offsets between various datums, there exist deviations among maps from

different countries or institutions. Many applications need a very detailed and highly accurate

global-scale geoid, see Fig.1.1.

Figure 1.1: applications of Earth’s gravitational field

This work is dedicated to the methodology and realization of how to obtain the spherical

harmonic coefficients from satellite gravity data. Many applications, as illustrated in Fig.1.1, will

hopefully benefit from the spherical harmonic coefficients obtained with satellite gravity data in

this study.

1.2 Overview of Satellite Gravitational Missions

With the development of dedicated satellite gravimetry, in particular with the three mis-

sions, CHAllenging Minisatellite Payload (CHAMP), Gravity Recovery and Climate Experiment

(GRACE), Gravity field and steady-state Ocean Circulation Explorer (GOCE), our knowledge of

the Earth’s gravitational field and its temporal component has been and will be improved signifi-

cantly. These missions are based on different innovative measurement concepts.

CHAMP, in operation from 2000 till 2010, utilized the measurement concept of satellite-to-

satellite tracking in high-low mode (SST-hl). The low Earth orbiting (LEO) satelliteCHAMP,

initially at 450 km altitude, was continuously tracked by the high GPS satellites. The accelerom-

eter on board CHAMP measured three-dimensionally non-gravitational accelerations acting on

3
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the spacecraft along the orbit. This principle can be considered as ‘in-situ’ determination of 3-D

positions. It allows accurate determination of the long-wavelength part of the gravitational field.

Among others the polar regions were covered, which were difficult to access prior to CHAMP.

Launched on March 17th, 2002, the GRACE mission is based on the concept of satellite-to-

satellite tracking in a low-low mode (SST-ll). With two satellites in the same LEO orbit (about

400 km altitude) and approximately 200 km apart, the biased ranges betweenthem are measured

with a very accurate K-Band ranging system, with an accuracy of several micrometers. The range

rate and range accelerations are derived by numerical differentiation from the biased ranging mea-

surements. The satellite positions are determined by GPS tracking. The ranges are strongly

influenced by gravitational field variations. Therefore, the gravitationalfield can be recovered

accurately. Additionally, micro-accelerometers are located very close to thecenter of mass of

each satellite. They measure the non-gravitational accelerations acting on the satellites and caused

in particular by air drag and solar radiation pressure. GRACE provides temporal gravity varia-

tions, such as monthly changes in the gravitational field, as well as a global medium-resolution

gravitational field of the Earth with high accuracy. Many representative models such as AIUB-

GRACE01S (Jäggi et al., 2010a) and ITG-2010s (Kurtenbach et al., 2009) derived from GRACE

show very good accuracy in the lower degree coefficients. The time series of the EGF solutions

shows the temporal changes of the gravity field. Many important findings are obtained from them.

With the SST technique of current accuracy, it is difficult to achieve an even higher spatial

resolution. A new technology with high sensitivity in higher frequencies is therefore desirable.

At the beginning of the 20th century, the Hungarian physicist Eötvös (1848-1919) developed an

instrument for measuring gravity gradients. This instrument is the so-called torsion balance (Koop

1993). Instead of one proof mass as used in a gravimeter, a torsion balance consists of two point

masses, (asymmetrically) suspended to the arm of a balance. The gravity gradients produce a

torque on the beam of the balance, resulting in a rotation of the beam. The gravity torque is coun-

terbalanced by a restoring torque exerted by the fiber with which the beam issuspended. The

restoring torque is a measure of the gravity gradients. Eötvös achieved with his instrument a pre-

cision of 1 E (1 E = l Ëotvös unit = 10−9 s−2). In general, instruments which measure gravity gra-

dients are called gradiometers, and the measurement technique is called gradiometry (measuring

the gradients of the components of the gravity vector), analogously to the word gravimetry (mea-

suring gravity). The idea of satellite gradiometry was pursued soon after the successful launch of

the first satellite in 1957. In the late 1980s and early 1990s, ESA supportedstudies of a mission

called Aristoteles, which was later succeeded by the concept of the GOCE mission.

Launched on March 17th, 2009, GOCE is the first satellite mission with a gravitational gra-

diometer. The mission objectives of GOCE, as formulated in 1998 (European Space Agency,

1999; Johannessen et al., 2003), are the determination of the global field of geoid heights with an

accuracy of 1 to 2 cm and of gravity anomalies with an accuracy of 1 mGal, and to achieve this

with a spatial resolution of a 100 km half-wavelength, which correspondsto the degree and order
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of 200 in terms of spherical harmonics (SH) of a gravity field model. With the long-wavelength

signal recovered with high-low SST and short-wavelength signal with the on-board gradiometer,

see Fig.1.2, a gravity field model with high resolution and high accuracy is expected to berecov-

ered.

Figure 1.2: Satellite gravity gradiometry (credited by ESA)

GOCE is a scientific drag-free mission, a requirement necessary for drag elimination, but also

for the maintenance of the low altitude of the satellite: without drag compensation,the very low al-

titude of the mission would lead to its loss in the atmosphere within a few weeks. The atmospheric

drag compensation in the direction of motion is done by a pair of ion thrusters withproportional

thrust control. In order to provide enough power for the thrusters, theorbit is designed to be

sun-synchronous to continuously absorb solar radiation with its solar panels for power supply.

An inclination of 96.7◦ is chosen for such an orbit. A complete coverage of the Earth with orbit

trajectories is obtained in a 61-day repeat cycle.

Figure1.3 shows the GOCE orbit coverage in an Earth-centered Earth-fixed frame(ECEF)

based on the actual orbits in 10 days (left) and 61 days (right), respectively. It can be seen that

there are gaps in the polar areas due to the orbit inclination of 96.7◦. For coverage of the polar

gaps, other data such as those from GRACE or terrestrial measurements have to be used.

5
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(a) 10 days (b) 61 days

Figure 1.3: GOCE orbit coverage viewed in ECEF frame, over 10 days (left)and 61 days (right)

1.3 Outline of this Work

The primary objective of this work is to study gravity field modeling based on theactual gradio-

metric measurements of GOCE as well as their combination with SST.

We start with a representation of the Earth’s gravitational potential in Chapter 2. The inter-

action between SH coefficients and a satellite orbit is formulated with the relation between the

acceleration of the satellite and SH coefficients. The various sources of perturbation of the orbit

are discussed. Using orbit integration, a case study is presented for theillustration of the GOCE

orbit perturbation. Chapter 2 provides the basic theory and is followed bythe actual computation

in Chapters 4 and 5.

Chapter 3 presents the ideas of a large least squares problem as appliedin our study. Sequential

least squares is discussed for the case of GOCE. Due to the existence ofthe polar gap, the zonal

and near-zonal coefficients are correlated in the resulted gravity modelif no further constraint was

applied. It is worthwhile to apply some regularization to the least squares system for overcoming

this problem. An idea of polar constraint is used in this study. The principle ofcontribution

analysis is formulated based on the normal matrices. The relationship betweenweight matrix and

filtering is derived. The designed filter is then used for the actual data analysis.

Chapter 4 presents the SST part. The observation model is constructed based on the integral

equation approach. Empirical accelerations are applied along the orbit for absorption of not-

well-enough-modeled perturbation forces, as well as non-gravitationalaccelerations. A GOCE

SST-only solution is derived. The effect of polar constraint on the SSTonly solution is analyzed.

Chapter 5 introduces the concept of GOCE satellite gravity gradiometry (SGG). The gradiome-

ter data are analyzed in the frequency, time and space domain. The observation model is derived

in the Gradiometer Reference Frame (GRF), to avoid the rotation of gradiometric components.

Spherical harmonic analyses are applied to each of the four accurate components. Intermediate

results from the SGG data are obtained and studied.

6
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1.3 Outline of this Work

Chapter 6 deals with the combination of SST and SGG. The final combined solution is pre-

sented in this chapter. The results are analyzed in terms of error per degree, triangular form of the

coefficient set, comparison of various gravity field models, and contribution from various obser-

vation types. In addition, a combination of GOCE and GRACE is presented.

Last but not least, Chapter 7 draws conclusions and offers some perspectives.
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2

Theory about Orbit Perturbations and

Case Study

This chapter presents the fundamental theory, specifically about the representation of the gravi-

tational field and of satellite orbits. The representation of the gravitational field with spherical

harmonic series is discussed. The perturbations of satellite orbits due to factors such as the non-

spherical part of the gravitational force, air drag and solar radiation pressure, etc. are presented.

Although the GOCE satellite is a drag-free mission in flight direction, it is necessary to remove the

effect of non-gravitational forces either by using the accelerometer data or by modelling it with

some empirical parameters.

The gravitational field and geoid are discussed in section 2.1; the relationship between the

gravity coefficients and the specific patterns of the geoid are outlined in this section. Section 2.2 is

dedicated to the force model of satellite orbits. Section 2.3 presents variational equations. Section

2.4 is dedicated to the numerical integration strategies. Simulations for the case of GOCE are

presented in section 2.5. Section 2.6 finally gives the summary of this chapter.

2.1 Gravitational Field and Geoid

Based on Newtonian mechanics, the Earth gravitational potential can be represented as the follow-

ing spherical harmonic series (Hofmann-Wellenhof and Moritz 2006):

V (φ ,λ ,r) =
GM⊕
R⊕

Nmax

∑
n=0

(

R⊕
r

)n+1 n

∑
m=0

Pnm (sinφ)
(

Cnm cos(mλ )+Snm sin(mλ )
)

, (2.1)

whereGM⊕ is the product of the gravitational constant and the mass of the Earth;R⊕ is the ref-

erence radius of the gravitational field;(r,φ ,λ ) is the spherical coordinate triplet of a point in the

Earth-fixed frame where we want to compute the potential;Pnm(sinφ) are the fully normalized

associated Legendre polynomials of nth degree and mth order;Cnm andSnm are the fully normal-

8



2.1 Gravitational Field and Geoid

ized spherical harmonic (SH) coefficients to be estimated. The maximum resolvable degree,Nmax,

corresponds approximately to the spatial resolution of D = 20000/Nmax half-wavelength in kilo-

meters. The second summation runs from zero orderm up to actual degreen which means that

m ≤ n. The higher the d/o, the more detail of the gravitational field is represented.

Radial-symmetric of the mass distribution is a good approximation resulting in a constant

gravity. However, there are small temporal variations, too. The core andmantle convection,

plate tectonics, glacial isostatic adjustment, ice melting, sea-level rise, ocean re-distribution, the

global water cycle, atmospheric dynamics, all of these are changing the gravitational field. Thus

the coefficients of the gravitational field become functions of time. Since GOCEis designed to

determine the static gravitational field, we will not investigate the recovery of temporal variations

in this study.

Let us assume that the SH coefficientsCnm andSnm are known. Then the gravitational potential

V can be computed by Eq. (2.1). This is referred to as spherical harmonic synthesis (SHS). Gravity

quantities other thanV can be derived by small modifications of this equation, such as taking

derivatives. Such derived gravity functions include geoid heightsN (in meters above the adopted

reference ellipsoid), gravity anomalies∆g (in mGal, where 1 mGal = 10−5 m/s2) as well as the

second order derivatives of the gravitational potential with respect to the three spatial directions,

also known as gravitational gradients (in Eötvös, where 1 Ëotvös Unit= 1 E = 10−9s−2).

The geoid height can be computed with spherical approximation as

N(φ ,λ ,r) = R⊕
Nmax

∑
n=0

(

R⊕
r

)n+1 n

∑
m=0

Pnm (sinφ)
(

∆Cnm cos(mλ )+∆Snm sin(mλ )
)

, (2.2)

where the coefficients∆Cnm and∆Snm are gravity field coefficients, subtracted the corresponding

coefficients of adopted ellipsoidal normal field, cf. (Burša and Picha, 1971).

If V (φ ,λ ,r) is continuously given on a closed sphere, the SH coefficients can be derived by

integral formulae:

Cnm

Snm

}

=
R⊕

4πGM⊕

π/2
∫

φ=−π/2

2π
∫

λ=0

V (φ ,λ ,r)Pnm(sinφ)
{

cosmλ
cosmλ

}

cosφ ·dλdφ . (2.3)

The signal strength per degree can be represented with degree Root Mean Square (RMS)

values evaluated as

σn =

√

1
2n+1

n

∑
m=0

(

C
2
nm +S

2
nm

)

. (2.4)

Our subject is spherical harmonic analysis (SHA). In this case, the coefficients up to degree

and orderNmax of the spherical harmonic series are the fundamental gravity unknowns.Now the
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left-hand side of Eq. (2.1) or its functionals is assumed to be observed. In satellite geodesy, the

determination of the coefficients is based on satellite measurements, e.g., of the orbits of satellites

or gravitational gradient along the orbits.

The observations collected from satellite are, in general, discrete and with finite number, it is

necessary to make use of least squares approach for the determination of the SH coefficients. The

maximum of the degree and order represents the spatial resolution of the gravitational field we can

achieve. With the set of coefficients, the geoid of the Earth can be determined with a well-defined

resolution.

It is convenient to represent the SH coefficients in the form of a triangle,as shown in Fig.2.1,

where the vertical axis of the triangle represents the degreen of the SH coefficients (or the cor-

responding spatial resolutionD). The horizontal axis refers to the orderm ≤ n with the cosine

coefficientsCnm on the right and the sine coefficientsSnm on the left side. Coefficients of order

zero are called zonal harmonics, those of the same degree and orderm = n sectorial harmonics,

and all other coefficients tesseral harmonics.

C00

C10

C20

C30

...

S11 C11

S21S22 C21 C22

S31S32S33 C31 C32 C33

...
...

...
...

...
...

...
...

Sectorial SectorialZonalTesseral Tesseral

Figure 2.1: Triangular representation of SH coefficients

For programming, the SH coefficients are in general saved in a matrix, as shown in Fig.2.2. It

is more compact to store the coefficients in this way. There are other possibilities, such as in the

Bernese software, where the cosine terms and sine terms are saved in two vectors. One can see

in Fig. 2.2 that the total number of coefficients is(Nmax+1)2 for a gravitational field model up

to degree and orderNmax. One may decide only estimate the coefficients of degrees fromNmin to

Nmax. In case ofNmin = 2, a common choice is to fix the degree zero to a constant and degree one

to zero. The latter choice implies that the geocenter coincides with the pre-defined origin of the

coordinate system in which the measurements are derived. Then the total number to be estimated

is (Nmax+1)2− (Nmin)
2.
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With the gravitational field as presented in Eq. (2.1), plus the centrifugal potential due to the

rotation of the Earth, the geoid of the Earth is defined as an equipotential surface at mean sea level,

i.e. W =V +Z =W0 = const, whereZ is the centrifugal potential due to Earth rotation. Thus, the

geoid is an equipotential surface which coincides (approximately) with the mean ocean surface.

According to C.F. Gauss, it is the “mathematical figure of the Earth”, in fact, of the gravity field.

Because the centrifugal potential can be easily obtained from the angularrate of the Earth, the

term gravity field model in this dissertation has the same meaning as gravitational field model.

C00

C10

C20

C30

...

S11

C11

S21

S22

C21 C22

C31 C32 C33

S31

S32

S33

...
...

...
. . .

· · ·

· · ·

· · ·

. . .

Figure 2.2: Matrix representation of SH coefficients

The geoid of the Earth is de-

fined by the set of gravity co-

efficients and a set of additional

auxiliary parameters. We distin-

guish three types of SH coeffi-

cient: zonal, tesseral and secto-

rial, compare again Fig.2.1. The

type of coefficient describes a par-

ticular pattern of the SH functions.

Figure2.3shows the different pat-

terns of SH functions to the differ-

ent types of coefficients.

One can see that zonal coeffi-

cients in Fig.2.3acorrespond to a pattern only changing in north-south direction. These harmonics

represent bands of latitude, invariant to longitude. The tesseral coefficients correspond to a pattern

represented as “tesserae” of the Earth, rather than bands, see Fig.2.3b. The sectorial coefficients

correspond to a geoid representing bands of longitude. These bands of longitude divide the Earth

into 2m (for a harmonic of degree and order ofm ) ”orange-slice” sectors, as shown in Fig.2.3c.

The sum of the three Figures is displayed in Fig.2.3d.

2.2 Satellite Orbit and Perturbation

A satellite orbiting the Earth will experience several kinds of perturbation forces. Thus, the six

Keplerian elements are functions of time. The types of perturbation forces include the Earth’s non-

spherical gravitation, third body attraction (in particular the moon and the sun), solid Earth tides,

ocean tides, pole tides, atmosphere drag, solar radiation, Earth radiation,as well as other non-

gravitational perturbations. The most dominant perturbation force is the Earth’s non-spherical

gravitational field. Any perturbation will make the actual satellite orbit deviate from a two-body

orbit, a Kepler ellipse, so we need to model the perturbation forces as accurately as possible, in

11



2. THEORY ABOUT ORBIT PERTURBATIONS AND CASE STUDY

(a) C20,0 (b) C20,10 andS20,10

(c) C20,20 andS20,20 (d) sum of the previous three

Figure 2.3: Characteristic patterns of spherical harmonic functions:zonal, tesseral, sectorial and their
sum
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2.2 Satellite Orbit and Perturbation

order to arrive at a precise orbit. The acceleration of the satellite can be expressed as

r̈ = aeg+aet+aot+anb+adrag+asrp+aerp+age+aother

= f(t, r , ṙ ,p)+ fstc,
(2.5)

whereaeg is the force (per unit mass) due to Earth’s static gravitational field; theaet is the force

due to the solid Earth tides; theaot is the ocean tides; theanb is the third body attraction (in

particular the moon and the sun); theadrag is the air drag; theasrp is the solar radiation pressure;

theaerp is the Earth radiation pressure (albedo); theage is the effect of general relativity; theaother

represents the forces which are not modeled or not known to us. The force can be decomposed into

f(t, r , ṙ ,p) described with an analytical force model which one uses for perturbationcomputation,

andfstc the so-called stochastic forces, introduced to absorb mis-modeled and un-modeled forces.

An overview of the forces from different sources is displayed in Fig.2.4.

Figure 2.4: Some of the forces experienced by Earth-orbiting satellite

In addition to the disturbing forces mentioned above, short-term mass variations in the at-

mosphere and in the ocean must be removed, since these mass changes alsocause time-variant

gravitational field forces acting on the orbiting satellites, see (Flechtner, 2007). This type of per-

turbation will be discussed in Chapters 4 and Chapter 5.

2.2.1 Earth’s Gravitational Acceleration

The largest contribution of all the forces experienced by orbiting satellitesis from the Earth itself.

The Earth’s gravitational field is neither spherical nor ellipsoidal, as the mass distribution of the

13
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2. THEORY ABOUT ORBIT PERTURBATIONS AND CASE STUDY

Earth is inhomogeneous. Thus, there are non-spherical perturbations. The potential presented in

Eq. (2.1) can be rewritten as

V =
GM⊕
R⊕

Nmax

∑
n=0

n

∑
m=0

(

CnmV nm +SnmW nm
)

, (2.6)

where

V nm =

(

R⊕
r

)n+1

·Pnm (sinφ)cosmλ and W nm =

(

R⊕
r

)n+1

·Pnm (sinφ)sinmλ . (2.7)

There are several approaches to derive the gravitational acceleration from the potential for-

mula: the traditional formulation in terms of associated Legendre functions in spherical coor-

dinates; a variant of the first method based on the Clenshaw summation formula(Casotto and

Fantino, 2007); the non-singular method of Pines; and the algorithm developed by Cunningham

and extended byMétris et al.(1999). For this study, the Cunningham approach is chosen for

spherical harmonic computations. In some references such as (Montenbruck and Gill, 2000), the

formulas are given with unnormalized quantities. This would lead to overflow and underflow for

the coefficients of high degree and order in our case. The normalized version of the formulas is

derived here and used for our spherical harmonic analysis.

The normalization factor for conversion between normalized and unnormalized quantities is

Nnm =

√

(2−δ0m)(2n+1)(n−m)!
(n+m)!

, (2.8)

which is used to derive normalized formulas based on unnormalized ones.

With x
r
= cosφ cosλ

y
r
= cosφ sinλ

z
r
= sinφ ,

the recursive computations for spherical harmonic functions are

V 00 =
R⊕
r

and W 00 = 0, (2.9)

V mm
n=m
=

Nmm

Nm−1,m−1
(2m−1)

{

xR⊕
r2 V m−1,m−1−

yR⊕
r2 W m−1,m−1

}

=







√

2m+1
m

{

xR⊕
r2 V m−1,m−1− yR⊕

r2 W m−1,m−1

}

m = 1
√

2m+1
2m

{

xR⊕
r2 V m−1,m−1− yR⊕

r2 W m−1,m−1

}

m > 1

(2.10)
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2.2 Satellite Orbit and Perturbation

W mm
n=m
=

Nmm

Nm−1,m−1
(2m−1)

{

xR⊕
r2 V m−1,m−1+

yR⊕
r2 W m−1,m−1

}

=







√

2m+1
m

{

xR⊕
r2 V m−1,m−1+

yR⊕
r2 W m−1,m−1

}

m = 1
√

2m+1
2m

{

xR⊕
r2 V m−1,m−1+

yR⊕
r2 W m−1,m−1

}

m > 1 ,

(2.11)

V nm
m<n
= Nn,m

{

(

2n−1
n−m

)

1
Nn−1,m

zR⊕
r2 V n−1,m −

(

n+m−1
n−m

)

1
Nn−2,m

R2
⊕

r2 V n−2,m

}

=

√

(2n+1)
(n+m)(n−m)

{

√

(2n−1)
zR⊕
r2 V n−1,m −

√

(n−m−1)(n+m−1)
(2n−3)

R2
⊕

r2 V n−2,m

}

,

(2.12)

W nm
m<n
= Nn,m

{

(

2n−1
n−m

)

1
Nn−1,m

zR⊕
r2 W n−1,m −

(

n+m−1
n−m

)

1
Nn−2,m

R2
⊕

r2 W n−2,m

}

=

√

(2n+1)
(n+m)(n−m)

{

√

(2n−1)
zR⊕
r2 W n−1,m −

√

(n−m−1)(n+m−1)
(2n−3)

R2
⊕

r2 W n−2,m

}

.

(2.13)

Suppose
(

x y z
)T

= r is the position vector in the Earth-centered Earth-fixed frame

(ECEF), and
(

ẍ ÿ z̈
)T

= aeg is the corresponding acceleration vector due to the attraction

of the Earth. Then the acceleration vector can be evaluated in Cartesian representation as:

aeg= ∇V = ∑
n,m

r̈ nm = ∑
n,m

(

ẍnm ÿnm z̈nm
)T

ẍn0 =
GM⊕
R2
⊕

·
{

−Cn0V n+1,1
}

√

(2n+1)(n+2)(n+1)
2(2n+3)

ẍnm
m=1
= GM⊕

R2
⊕

· 1
2

{√

(2n+1)(n+3)(n+2)
(2n+3)

(

−CnmV n+1,m+1−SnmW n+1,m+1
)

+
√

2(2n+1)
(2n+3)(n+1)n

(

CnmV n+1,m−1+SnmW n+1,m−1
)

}

ẍnm
m>1
= GM⊕

R2
⊕

· 1
2

{√

(2n+1)(n+m+2)(n+m+1)
(2n+3)

(

−CnmV n+1,m+1−SnmW n+1,m+1
)

+
√

(2n+1)
(2n+3)(n−m+2)(n−m+1)

(

CnmV n+1,m−1+SnmW n+1,m−1
)

}

ÿn0 =
GM⊕
R2
⊕

·
{

−Cn0W n+1,1
}

√

(2n+1)(n+2)(n+1)
2(2n+3)

ÿnm
m=1
= GM⊕

R2
⊕

· 1
2

{√

(2n+1)(n+3)(n+2)
(2n+3)

(

−CnmW n+1,m+1+SnmV n+1,m+1
)

+
√

2(2n+1)
(2n+3)(n+1)n

(

−CnmW n+1,m−1+SnmV n+1,m−1
)

}

ÿnm
m>1
= GM⊕

R2
⊕

· 1
2

{√

(2n+1)(n+m+2)(n+m+1)
(2n+3)

(

−CnmW n+1,m+1+SnmV n+1,m+1
)

+
√

(2n+1)
(2n+3)(n−m+2)(n−m+1)

(

−CnmW n+1,m−1+SnmV n+1,m−1
)

}

z̈nm = GM⊕
R2
⊕

·
{√

(2n+1)(n+m+1)(n−m+1)
(2n+3)

(

−CnmV n+1,m −SnmW n+1,m
)

}

.

(2.14)

The partial derivatives of the acceleration with respect to the normalized coefficientsCnm and

15
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Snm are

∂ ẍn0

∂Cn0
=−

√

(2n+1)(n+2)(n+1)
2(2n+3)

GM⊕
R2
⊕

V n+1,1

∂ ẍnm

∂Cnm

m=1
= GM⊕

R2
⊕

· 1
2

√

(2n+1)
(2n+3)

(

−
√

(n+3)(n+2)V n+1,m+1+
√

2
(n+1)nV n+1,m−1

)

∂ ẍnm

∂Cnm

m>1
= GM⊕

R2
⊕

· 1
2

√

(2n+1)
(2n+3)

(

−
√

(n+m+2)(n+m+1)V n+1,m+1

+
√

1
(n−m+2)(n−m+1)V n+1,m−1

)

∂ ẍnm

∂Snm

m=1
= GM⊕

R2
⊕

· 1
2

√

(2n+1)
(2n+3)

(

−
√

(n+3)(n+2)W n+1,m+1+
√

2
(n+1)nW n+1,m−1

)

∂ ẍnm

∂Snm

m>1
= GM⊕

R2
⊕

· 1
2

√

(2n+1)
(2n+3)

(

−
√

(n+m+2)(n+m+1)W n+1,m+1

+
√

1
(n−m+2)(n−m+1)W n+1,m−1

)

∂ ÿn0

∂Cn0
=−

√

(2n+1)(n+2)(n+1)
2(2n+3)

GM⊕
R2
⊕

W n+1,1

∂ ÿnm

∂Cnm

m=1
= GM⊕

R2
⊕

· 1
2

√

(2n+1)
(2n+3)

(

−
√

(n+3)(n+2)W n+1,m+1−
√

2
(n+1)nW n+1,m−1

)

∂ ÿnm

∂Cnm

m>1
= GM⊕

R2
⊕

· 1
2

√

(2n+1)
(2n+3)

(

−
√

(n+m+2)(n+m+1)W n+1,m+1

−
√

1
(n−m+2)(n−m+1)W n+1,m−1

)

∂ ÿnm

∂Snm

m=1
= GM⊕

R2
⊕

· 1
2

√

(2n+1)
(2n+3)

(

√

(n+3)(n+2)V n+1,m+1+
√

2
(n+1)nV n+1,m−1

)

∂ ÿnm

∂Snm

m>1
= GM⊕

R2
⊕

· 1
2

√

(2n+1)
(2n+3)

(

√

(n+m+2)(n+m+1)V n+1,m+1

+
√

1
(n−m+2)(n−m+1)V n+1,m−1

)

∂ z̈nm

∂Cnm
=−GM⊕

R2
⊕

√

(2n+1)(n+m+1)(n−m+1)
(2n+3) V n+1,m

∂ z̈nm

∂Snm
=−GM⊕

R2
⊕

√

(2n+1)(n+m+1)(n−m+1)
(2n+3) W n+1,m .

(2.15)

The partial derivatives of the unnormalized coefficients w.r.t. normalized coefficients can be

obtained as

∂Cnm
∂Cnm
∂Snm
∂Snm

}

=
1

Nnm
=

√

(n+m)!
(2−δ0m)(2n+1)(n−m)!

δ0m =

{

0 m 6= 0
1 m = 0

.

The derivatives of the gravitational acceleration w.r.t. the position vector are needed in pertur-

bation theory for solving the variational equations. Their derivation will bepresented in Chapter

5. Since the gravitational acceleration is independent of velocity, its derivative w.r.t. velocity is

zero.

2.2.2 N-Body Perturbation (Direct Tide)

The acceleration due to the attraction of celestial bodies relative to the Earth’s center of mass can

be represented as

anb =
N

∑
i=1

GMi

(

− r − r i

|r − r i|3
− r i

r3
i

)

, (2.16)

whereN is the total number of the perturbation bodies;Mi is the mass of theith body; G is the
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2.2 Satellite Orbit and Perturbation

Newtonian gravitational constant, its nominal value is 6.67428× 10−11 m3kg−1s−2, see (Petit

and Luzum, 2010); r andr i are the position vectors of the satellite and theith perturbation body,

respectively.

The partial derivative of the acceleration w.r.t. the position vector of the satellite is

∂anb

∂ r
=

N

∑
i=1

GMi

(

− 1

|r − r i|3
I3×3+3

(r − r i)(r − r i)
T

|r − r i|5

)

, (2.17)

where(r − r i)(r − r i)
T is the dyadic product of the two vectors(r − r i) and(r − r i)

T . I3×3 repre-

sents the 3-by-3 unit matrix.

2.2.3 Solid Earth Tides

Because the Earth is not a rigid body, the attraction of third bodies (in particular moon and sun)

deforms the solid Earth. As a result the gravitational field of the Earth slightly changes, which has

an effect on the motion of the satellite.

The acceleration due to the second degree solid Earth tides is written as (Montenbruck and

Gill , 2000)

aet =
k2

2 ∑
j=s,m

GM j

r3
j

R5
⊕

r4







3−15

(

r j · r
∣

∣r j
∣

∣ |r |

)2




r
|r | +6

(

r j · r
∣

∣r j
∣

∣ |r |

)

r j
∣

∣r j
∣

∣



 . (2.18)

wheres andm in the summation symbolj denote the sun and moon,r is the distance from the

satellite to the geocenter,R⊕ is the radius of the Earth,k2 is the Love number (≈ 0.3; it can be

estimated as a parameter ), andr j is the distance of the third body from the geocenter.

This second degree approximation is sufficient in many cases. If a more precise model is

necessary, the variation of the gravitational coefficients of the Earth dueto solid Earth tides can be

presented as (Montenbruck and Gill, 2000; Tapley, 1989)

{

∆C
j
n,m

∆S
j
n,m

}

= 4kn

(

GM j

GM⊕

)(

R⊕
r j

)n+1
√

(n+2) ·
[

(n−m)!
(n+m)!

]3

Pnm(sinφ j)

{

cos(mλ j)
sin(mλ j)

}

,

(2.19)

wherekn are the Love numbers of degreen; M j andr j are the mass and geocentric distance of the

tide-generating body, in particular the moon and sun, and some other planetsas well;φ j andλ j

are Earth-fixed latitude and longitude of the disturbing bodies. The disturbing accelerations due to

solid tides can be computed with Eq. (2.14) by substituting the disturbing gravitational coefficients

of Eq. (2.19).
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2. THEORY ABOUT ORBIT PERTURBATIONS AND CASE STUDY

2.2.4 Ocean Tides

The ocean tides are the rise and fall of sea level caused by the combined effects of the gravitational

forces exerted by the moon and sun and the rotation of the Earth. This redistribution of the mass

in the ocean changes the gravitational field. Similar to solid tides, ocean tides can be represented

by gravitational coefficient corrections (variations), which are expressed as (McCarthy and Petit

2004; Montenbruck and Gill 2000; Tapley 1989)

{

∆Cn,m

∆Sn,m

}

=
4πGR2

⊕ρw

NnmGM⊕

1+ k′n
2n+1











∑
s(n,m)

(C+
snm +C−

snm)cosθs +(S+snm +S−snm)sinθs

∑
s(n,m)

(S+snm −S−snm)cosθs − (C+
snm −C−

snm)sinθs











, (2.20)

whereρw is the density of the seawater;k′n are the load-deformation coefficients;C±
snm andS±snm

are the ocean tide coefficients in meters for the tide constituentss; θs is the weighted combination

of the six Doodson variables. Doodson variables denote the fundamentalarguments of the sun’s

and moon’s orbits, being closely related to the arguments of the nutation series.

The coefficientsk′n, C±
snm andS±snm come from a background model, such as CSR4.0 (Eanes,

2002), FES2004 (Lyard et al., 2006) and EOT08a (Savcenko and Bosch, 2008). With the coeffi-

cients, analogously to the solid Earth tides, the acceleration can be computed with Eq. (2.14).

A small motion caused by the Chandler wobble in the Earth’s axis of rotation relative to the

Earth’s surface, generates a very small tide, known as a pole tide. This isalso applied in our

computation, for more details we refer toMcCarthy and Petit(2004, chap. 8).

2.2.5 General Relativistic Effects

According to the general theory of relativity, Newtonian theory of gravitation is just an approxi-

mation. Thus, for high precision the motion of the satellite should be formulated in accordance

with the theory of general relativity. The acceleration of the satellite can be corrected by a post-

Newtonian term, which is (compare alsoPetit and Luzum, 2010, pg. 155)

age=−GM⊕
r2

((

4
GM⊕
c2r

− v2

c2

)

er +4
v2

c2(er ·ev)ev

)

, (2.21)

whereer andev denote the unit position and velocity vector. For a circular orbit, withv2 = GM⊕
r

and the velocity perpendicular to the radius vector, the relativistic correction of the acceleration

age =−GM⊕
r2

(

3
v2

c2

)

, (2.22)

is equal to the product of the Newtonian acceleration and a factor of 3v2

c2 , which is about 3×10−10

for a medium Earth orbiting (MEO) satellite velocity of about 3 km/s. For a LEO satellite, such
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2.2 Satellite Orbit and Perturbation

as GOCE, not only the velocity is large (up to 7.7 km/s), but the semi-major axis ofthe satel-

lite orbit is small to about 6749.431 km (corresponding to an altitude of 371 km,by subtracting

the semi-major of the Earth ellipsoid from the semi-major of the orbit). Thus, the correction is

approximately 2×10−8 m/s2.

2.2.6 Air drag

The most difficult effect to be modeled is air drag. Fortunately, the GOCE satellite orbits the Earth

in drag-free motion, although only in flight direction. The model described inthis section is not

applied for data processing, but only for simulations.

The satellite will experience air drag due to the residual atmosphere. It can be modeled as

adrag=−0.5·Cd ·
(

A
M

)

ρ |vrel|vrel , (2.23)

wherevrel is the velocity vector of the satellite relative to the atmosphere;Cd is the drag coefficient

of the satellite;A andM are the cross area and the mass of the satellite, respectively;ρ is the

density of the atmosphere, which can be taken from atmosphere models such as Harris-Priester or

Jacchia-Roberts, compare (Montenbruck and Gill 2000), see also (Beutler, 2004; Frommknecht,

2008).

The atmospheric relative velocity of the satellite, i.e.vrel, can be evaluated as

vrel = v−ωωω × r , (2.24)

where the angular velocity of the Earth rotation isωωω =
[

0 0 ωe
]T

, with the nominal value of

ωe = 7.2921151467×10−5 rad/s.

Air drag is the largest non-gravitational perturbation for LEO satellites. But the physical

characteristics of the atmosphere especially at altitudes higher than 180 km are not known in much

detail. Furthermore, the interaction between the neutral and ionized atmosphere and the surface

of satellites still needs some investigation. Thus, it is difficult to model the air dynamics with

mathematical models very accurately. In Eq. (2.23) the drag coefficient depends on the shape and

the material of the satellite surface, and it changes with time due to the changes of the satellite’s

attitude w.r.t. the direction ofvrel. Its value varies from 1.5 to 3.0. In general, it is estimated during

the orbit determination procedure, in order to compensate the overall atmosphere model error.

The derivatives of the acceleration w.r.t. the drag coefficient can be written as

dadrag

dCd
=−0.5·

(

A
M

)

ρ |vrel|vrel . (2.25)

The partial derivatives of the acceleration w.r.t. the drag coefficient can be evaluated explicitly.

However, the partial derivatives of the position vector and velocity vector with respect to the drag
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coefficient can only be computed by numerical integration of Eq. (2.25). Based on Eq. (2.23), the

partial derivatives of the air drag acceleration w.r.t. the position vector can be formulated as

∂adrag

∂ r
=−0.5·Cd ·

(

A
M

)

|vrel|vrel
∂ρ
∂ r

+0.5·Cd ·
(

A
M

)

ρ
(

vrelvT
rel

|vrel|
+ |vrel| I3×3

)

Ω ,

(2.26)

where

Ω =





0 −ωe 0
ωe 0 0
0 0 0



 .

The density of the upper atmosphere changes very smoothly and slow with respect to the

position vector. Due to the complexity of the atmospheric models, the computation of the partial

derivatives of the density w.r.t. the position vector cannot be formulated analytically. In general,

one can compute them by numerical differentiation, compare (Bae, 2006; Montenbruck and Gill,

2000).

The partial derivatives of the acceleration with respect to the velocity canbe derived as

∂adrag

∂v
= 0.5·Cd ·

(

A
M

)

ρ
(

vrelvT
rel

|vrel|
+ |vrel| I3×3

)

. (2.27)

2.2.7 Solar radiation

The power supply on GOCE satellite comes from solar radiation. Due to the radiation of the sun,

the satellite will experience an acceleration, which is modeled as

asrp=Cr

(

A
M

)

P0R2
0

r − r s

|r − r s|3
, (2.28)

whereCr is the radiation coefficient; theA andM are the area and the mass of the satellite, re-

spectively; theR0 is the length of one astronomical unit (AU), which is the mean distance between

the Earth and the sun, i.e. 149597870 km (IAU 1976); theP0 is solar radiation pressure constant

at 1 AU, which is 4.5605E-6 Nm−2 (IERS 1996); ther s is the position vector of the sun; ther is

the position vector of the satellite.

The partial derivatives of the solar radiation pressure acceleration is approximated from

Eq. (2.28) as

dasrp

dCr
=

(

A
M

)

P0R2
0

r − r s

|r − r s|3
. (2.29)
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2.2 Satellite Orbit and Perturbation

The gradientdasrp

dr is evaluated as

dasrp

dr
=Cr

(

A
M

)

P0R2
0

(

I3×3

|r − r s|3
−3

(r − r s)(r − r s)
T

|r − r s|5

)

, (2.30)

which is very small and negligible.

2.2.8 Earth Radiation Pressure (Albedo)

An Earth-orbiting satellite will experience a force caused by the back-radiation of the Earth. It is

smaller than the direct solar radiation for GOCE satellite and therefore not applied in SHA. It is

just presented for completeness. Earth back radiation has two components: the short-wavelength

optical radiation and the long-wavelength infrared radiation. In both cases, the force on the satel-

lite decreases with increasing altitude, following the inverse square law of theemitted radiation

pressure. The amplitude of the typical albedo force for low-Earth satellitesis 10% to 35% of the

force due to direct solar radiation pressure (Knocke et al. 1988).

The complexity of Earth radiation pressure is due to the diversity of the reflectivity of the

Earth’s surface. The Earth’s surface and troposphere have different characteristics of reflection

and emission. In order to calculate the Earth’s radiation pressure, the Earth’s surface is divided

into elements; each element can be considered as a particular radiation source. By superposition

the total force due to Earth radiation pressure can be computed as

aerp=
N

∑
j=1

Cr

(

a jv j cosθ E
j +

1
4

ξ j

)

P0
A
m

cosθ s
j

dA j

π · r2
j

ej , (2.31)

wherev j denotes the Earth element shadow functions andθ E
j and θ s

j are the angles of the

Earth’s surface or satellite surface normal, respectively to the incident radiation. The unit vector

ej points from the Earth surface element to the satellite, while the distance isr j. The average

emissivityξ j is approximately 0.68. It is reduced by a factor of 4 due to the ratio of the irradiated

Earth cross-sectionπR2
⊕ to the total radiating Earth surface 4πR2

⊕.

The radiation pressure of the Earth acting on GPS satellites is less than 2% of the pressure of

the sun. For the GOCE satellite, this effect becomes larger by about 10% to 35% comparing to

the direction radiation of the sun, since it is closer to the Earth. The force due to albedo can be

approximated as

aerp= vPeCr
A
m

R2
⊕

r3 r , (2.32)

where the variables are the same as in Eq. (2.31), exceptPe which is now an Earth surface radiation

pressure constant, which is equal toξ P0/4.
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2.2.9 Empirical Accelerations

For a LEO satellite such as GOCE, the perturbation forces to be consideredare the Earth’s non-

spherical gravitation, direct tide due to the moon and the sun, solid Earth tides and ocean tides,

atmosphere drag, solar radiation and Earth radiation as well as relativistic effects. The consid-

ered non-gravitational forces are not modelled with their explicit force models, but by introducing

some empirical parameters. Model errors limit the dynamic strategies. They result in system-

atic errors growing with the arc length. Introducing empirical parameters, e.g., 1-cpr parameters

or stochastic pulses, in the parameter estimation process allows to minimize these errors and to

absorb the non-gravitational forces. This is the key element of the reduced-dynamic strategies.

Empirical parameters reduce the influence of possible deficiencies of the dynamical models on

the estimated orbit. Lower orbits require more empirical parameters than higherones because it

is virtually impossible to apply adequate models for the atmospheric drag and forthe complete

Earth’s gravitational field (at least initially).

Based on a highly precise force model, small unmodelled forces may be accounted for by

using the concept of empirical accelerations. Much of the mis-modelling occurs at a frequency of

once per revolution (1-cpr). Accordingly, constant and 1-cpr empirical forces

f = E(a0+a1sinv+a2cosv) , (2.33)

are employed to accommodate the effect. Here,a0 is a constant acceleration bias vector, while

a1 anda2 are the 1-cpr coefficient vectors andv is the true anomaly (for a near-circular orbit, one

can use the mean anomaly for simplicity). A linear term is also sometimes applied. Thevector

of empirical acceleration is commonly specified in the local orbital frame, with axes in the along-

track (S), cross-track (T), and approximately radial (W) direction, which is then transformed to

the inertial system by a transformation matrixE. In order to provide an optimum compensation

of unmodelled forces, the empirical acceleration coefficients have to be adjusted along with other

parameters during orbit determination (seeMontenbruck and Gill, 2000).

For a given state vector, i.e. position vectorr and velocity vectorv , the matrixE can be

determined by three unit vectors (which are column vectors here), i.e.

eS =
v
|v|

eT = r×v
|r×v|

eW = eS×eT .

(2.34)

TheE matrix is then written as

E =
[

eS eT eW
]

. (2.35)

However, the mis-modelling error or unmodelled effects may change rapidly;therefore, the

empirical parameters hold only for a short period, somewhere from 10 to 30 minutes. The nine
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parameters in Eq. (2.33), i.e. vectorsa0, a1 anda2 are estimated based on the measurements inside

this short interval. For the next time period, another set of empirical parameters is introduced, in

order to absorb the time-varying behavior of the mis-modelling error there. One will find that

these parameters are time dependent (depending on the measurements in the short interval).

2.3 Variational Equations

In order to formulate the observation equations for SST measurements, the partial derivatives of

the satellite orbits with respect to dynamic force parameters such as gravity coefficients have to be

evaluated. These partial derivatives are computed by solving variational equations.

When the vector of position and velocity representing the state of the orbit, it isreferred to as

state vector. Variational equations are ordinary differential equations ofthe partial derivatives of

the state vector of the satellite w.r.t. the dynamic force coefficients to be estimated.They can be

solved by orbit integration.

Suppose

βββ =
[

C00 C10 C11 S11 C20 C21 S21 · · ·
]T

, (2.36)

is the vector of coefficients, then the partial derivatives of accelerationw.r.t. βββ , i.e. ∂ r̈
∂βββ , can be

evaluated using Eq. (2.15). The partial derivatives of the orbit w.r.t. other parameters such as drag

coefficients and/or radiation coefficients is computed from corresponding formulas given in the

previous sections.

The partial derivatives∂ r̈
∂βββ evaluated in Eq. (2.14) have to be transformed to the inertial coor-

dinate system, i.e.

∂ r̈ i

∂βββ
=

∂
(

Ci
er̈ e
)

∂βββ
= Ci

e
∂ r̈ e

∂βββ
, (2.37)

in which ∂ r̈ e
∂βββ is what we obtain from Eq. (2.14), andCi

e is the rotation matrix from the Earth-

fixed frame to the space-fixed frame;∂ r̈ i
∂βββ are the partial derivatives in the inertial frame; they are

integrated with a numerical integrator.

In order to formulate variational equations, we introduceS, denoting the sensitivity matrix

S=







∂ r
∂βββ

∂ ṙ
∂βββ






. (2.38)

Then the time derivative of the sensitivity matrix is

Ṡ= F ·S+





0

∂ r̈
∂βββ



 , (2.39)
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whereF =





0 I3×3

∂ r̈
∂ r

∂ r̈
∂ ṙ



 , with initial valueS0 = 0.

The partial derivatives of position and velocity w.r.t. the initial state vector are used to estimate

the orbit by means of dynamical orbit determination. They can be presentedin the form of a state

transition matrix

ΦΦΦ(t, t0) =

(

∂ r
∂ r0

∂ r
∂ ṙ0

∂ ṙ
∂ r0

∂ ṙ
∂ ṙ0

)

. (2.40)

It is computed by solving the following differential equation:

Φ̇ΦΦ(t, t0) = F ·ΦΦΦ(t, t0) . (2.41)

where dotted symbolṡΦΦΦ denote derivatives with respect to timet.

Thereby the initial value of the transition matrix isΦΦΦ(t0, t0) = I6×6, with I6×6 a 6-by-6 unit

matrix.

Equations (2.39) and (2.41) are called variational equations. By solving these differential

equations, the partial derivatives of the state vector w.r.t. the dynamic coefficients are obtained.

Thus the derivatives of the geometric measurements such as range or range rate w.r.t. the dynamic

coefficients to be estimated are derived. The variational equation can be solved by either numerical

integration (Montenbruck and Gill, 2000) or a variational of constants approach (Beutler, 2004).

2.4 Orbit Integration

A highly accurate satellite orbit can only be obtained by means of numerical integration of the

equations of motion. A variety of methods has been developed for the numerical integration of

ordinary differential equations and many of them have successfully been applied in the field of

celestial mechanics. The most frequently used approaches are firstly Runge-Kutta methods that

are particularly easy to use and may be applied to a wide range of problems, and can be easily

implemented due to their simplicity. But the evaluations of the functions are expensive. The

Runge-Kutta method is usually time-consuming. The second one is the multistep methods, which

provide a high efficiency but requires a storage of past data points.

The multistep method is used in our computation. The n-dimensional differential equation to

be solved is in general

ẏ = f(t,y) y, ẏ, f ∈ ℜn , (2.42)

where dotted symbolṡy denote derivatives with respect to timet. The equation of satellite motion
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2.4 Orbit Integration

is often written as

r̈ = a(t, r , ṙ) . (2.43)

The state vector of the satellite is composed of the position vectorr and velocity vectoṙr , thus

we have

y =

(

r
ṙ

)

, (2.44)

to satisfy

ẏ = f(t,y) =
(

ṙ
r̈

)

. (2.45)

Suppose the approximate value of the solutiony(t j) is obtained and represented byη j at

equidistant timest j = t0+ j ·h for j = 0,1, · · · , i. Integrating both sides of the differential equation

with respect tot from ti to ti+1, the equivalent expression is

y(ti+1) = y(ti)+

ti+1
∫

ti

f(t,y)dt . (2.46)

The integral cannot be evaluated explicitly, since it depends on the unknown solutiony(t) of

the differential equation. The function is therefore replaced by interpolation using a polynomial

p(t) through the values

f j = f(t j,ηηη j) , (2.47)

at previous timest j that are already known according to the initial assumption. This results in

ηηη i+1 = ηηη i +

ti+h
∫

ti

p(t)dt . (2.48)

The increment function of a multistep method is therefore given by

ΨΨΨ =
1
h

ti+h
∫

ti

p(t)dt , (2.49)

whereh = ti+1− ti is the stepsize, and we arrive at the approximate solution

ηηη i+1 = ηηη i +hΨΨΨ . (2.50)

With m points(ti−m+1, f i−m+1), · · · , (ti, f i), we can use Newton’s formula to formulate a poly-
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2. THEORY ABOUT ORBIT PERTURBATIONS AND CASE STUDY

nomial of orderm−1 with equidistant nodesti. The polynomial is given by the compact expression

pi
m(t) = pi

m(ti +σh) =
m−1

∑
j=0

(−1) j
(

−σ
j

)

∇ jfi , (2.51)

where the binomial coefficient is

(

−σ
j

)

=
(−σ)(−σ −1) · · ·(−σ − j+1)

j!
, (2.52)

for j > 0 and is equal to 1 for j=0. The backward differences off i are recursively computed from

∇0fi = fi

∇1fi = fi − fi−1

∇nfi = ∇n−1fi −∇n−1fi−1 .
(2.53)

With the above notation the increment function of themth-order Adams-Bashforth multistep

method can be denoted as

ΨΨΨABm =
1
h

ti+h
∫

ti

pi
m(t)dt =

m−1

∑
j=0

γ j∇ jfi , (2.54)

with stepsize-independent coefficients from a recursive relation (Shampine and Gordon, 1975)

γ j = 1−
j−1

∑
k=0

1
j+1− k

γk . (2.55)

Inserting the definition of backward differences into Eq. (2.54), the increment function may

also be written in terms of the function valuesf j :

ΨΨΨABm = βm1fi−m+1+βm2fi−m+2+ · · ·+βmmfi =
m

∑
j=1

βm jfi−m+ j . (2.56)

The coefficientsβm j, which now depend on the orderm, are computed from the following

relation

βm j = (−1)m− j
m−1

∑
l=m− j

γ j

(

l
m− j

)

, (2.57)

for j = 1, · · · ,m.

In themth-order Adams-Bashforth method the polynomialp(t) is defined bym function values

up to and includingf i at timeti. However, the integration is performed over the subsequent interval

ti ... ti+1 where the approximation is less accurate due to the low accuracy of extrapolation.

Another type of multistep method, known as the Adams-Moulton method, therefore uses the
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polynomialpi+1
m (t) which interpolatesm function values at time stepsti−m+2 andti+1:

pi+1
m (t) = pi+1

m (ti +σh) =
m−1

∑
j=0

(−1) j
(

−σ +1
j

)

∇ jfi+1 . (2.58)

The Adams-Moulton formula is derived from

ΨΨΨABm =
1
h

ti+h
∫

ti

pi+1
m (t)dt =

m−1

∑
j=0

γ∗
j
·∇ jfi+1 . (2.59)

The coefficientsγ j are evaluated with

γ∗
j
=−

j−1

∑
k=0

1
j+1− k

γ∗k . (2.60)

The local truncation error of the Adams-Moulton method is smaller than that of the Adams-

Bashforth method, seeMontenbruck and Gill(2000).

There is another method named collocation method, which is applied in the Bernese software

(Dach et al., 2007). For more details the reader is referred toBeutler(2004).

2.5 Case Study for GOCE

In order to investigate how the perturbation forces affect the orbit and on the magnitude of the

accelerations due to different perturbations, the orbits are simulated in each perturbation condition

and compared to the Kepler orbit. Also the accelerations are computed along the simulated orbits.

The approach we will apply for SST uses short arcs with a length of 10 to 30 minutes. The preci-

sion of the kinematic orbit is 2 cm (Visser et al., 2010). The simulation can tell us which effect can

disturb the orbits by more than 2 cm within 10 to 30 minutes. Effects with orbit disturbances less

than the precision of the kinematic orbits can be neglected, since they are beyond the sensitivity of

the GPS measurements. In other words, our assumption is that with the precision of the kinematic

orbit, the coefficients which disturb the orbit less than the precision of the orbit in short arcs cannot

be identified.

The starting elements of the GOCE satellite are

semi-major 6720.495728 km right ascension 277.2480◦

eccentricity 0.014770802 arg. of perigee 95.3014◦

inclination 96.66465◦ mean anomaly 358.8249◦

The mass of the satellite is 1050 kg; the cross-section is 1 m2. The ocean tide model used

in this simulation is EOT08a. The atmospheric density is computed based on the Harris-Priester

Density Model. For Earth rotation, the package of Standards Of Fundamental Astronomy (SOFA)

is used. The SOFA software is a collection of Fortran 77 subprograms thatimplement official IAU

algorithms for fundamental-astronomy computations, (IAU SOFA Board, 2010). The gravitational
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2. THEORY ABOUT ORBIT PERTURBATIONS AND CASE STUDY

field model used in this simulation is EGM2008 (Pavlis et al., 2008). The perturbation due to

disturbing forces are shown in Figs.2.5 to 2.13, with the left panel containing the disturbance of

the orbit, and right panel the disturbing acceleration, respectively, foreach perturbation source.
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Figure 2.5: Time series of the perturbation of the orbit and the acceleration caused by air drag
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Figure 2.6: Time series of the perturbation of the orbit and the acceleration caused by the direct
attraction of sun and moon

The simulation demonstrates that all the perturbations caused by the planets in the solar system

can be neglected; only the perturbations of sun and moon are consideredsince the orbit differences

reach more than 10 cm in about 10 minutes. The solar radiation and albedo disturbance can reach

the 1-cm level in about one and half hours, which is a bit smaller than the orbit accuracy. Moreover,

since empirical parameters given in Eq. (2.33) will be applied, and are able to absorb most of the

disturbing accelerations, these two effects are not modelled in SST with their explicit force model,

but are expected to be taken care of by the empirical accelerations.

The total of 241 coefficients of the Earth’s gravitational field of degree 120 can disturb the

GOCE orbit by less than 1 cm in 60 minutes. This means the influence of the coefficients at

degree 120 of the gravitational field is less than the noise of the kinematic orbit.From this point

of view, one might say degree and order 120 is beyond or at the limit of the capability of GOCE
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Figure 2.7: Time series of the perturbation of the orbit and the acceleration caused by solid Earth tide
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Figure 2.8: Time series of the perturbation of the orbit and the acceleration caused by general relativity
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Figure 2.9: Time series of the perturbation of the orbit and the acceleration caused by ocean tide
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Figure 2.10: Time series of the perturbation of the orbit and the acceleration caused by solar radiation
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Figure 2.11: Time series of the perturbation of the orbit and the acceleration caused by albedo
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Figure 2.12: Time series of the perturbation of the orbit and the acceleration caused by all the planets
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Figure 2.13: Time series of the perturbation of the orbit and the acceleration caused by all the degree
120 coefficients of the gravitational field

orbit sensitivity for parameter estimation. However, the cumulative effect of the gravitational field

coefficients of degrees higher than 120 is higher than the 2 cm in 10 to 30 minutes (see Table2.1);

thus it is suitable to set up the SH coefficient solution even higher than 120. The gravity field

signal is systematic, in principle, whereas the noise is stochastic. With more andmore data used in

parameter estimation, the signal-to-noise ratio (SNR) can be accordingly increased. Nevertheless,

this is only a rough analysis. The highest d/o one can solve for depends on the precision of the

measurements, but also on the word length of the computer, the algorithm usedfor parameter

estimation and the stability of the problem itself, etc. The real performance canonly be found

from the resulting model after an SST solution has been obtained.

In Table2.1, the magnitude of the orbit deviations due to sets of gravitational field coefficients

is given. The disturbance from d/o 120-130 is already larger than the precision of the kinematic

orbits. For all the other d/o in the table the perturbations are smaller than the precision. These

are cumulative effects from a group of gravitational field coefficients. Another important point is

that the magnitude of the signals corresponding to different coefficients varies significantly. It is

cumbersome to reconstruct weak signals which are part of a large strongsignal.

Table 2.1: Orbit perturbations (the length in three directions) caused by different gravitational field
coefficients over different time periods [cm]

d/o 120-130 d/o 130-140 d/o 140-150 d/o 150-181

10 min 2.03 0.53 0.27 0.10
20 min 6.28 0.97 0.71 0.62
30 min 11.42 1.30 1.35 1.06
40 min 15.39 1.99 1.98 1.34

The air drag is the largest non-gravitational source of disturbance. For GOCE, it is com-
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pensated in flight direction by ion thrusting with a magnitude from a level of 10−6 m/s−2 to

10−8 m/s−2, i.e. two to three orders of magnitude of the drag in flight direction are eliminated,

see (Floberghagen et al., 2011). Thus, only the residual of the air drag acceleration and the full

drag in cross-track and radial direction need to be modelled or measured.

The perturbation of radiation pressure and albedo is smaller than 2 cm within 40 minutes.

They are therefore neglected and hopefully compensated with the empiricalaccelerations.

The effects of solid Earth tides, ocean tides together with pole tides, as well as general relativity

are considered for gravity field recovery, since all these effects disturb the orbit by more than 2 cm

in 30 minutes.

2.6 Summary

In this section, the basic theory of the satellite orbit analysis for the case of GOCE is presented.

All computations related to orbit perturbation for SST in Chapter 4, and the correction for the

disturbance in the measured GGT, are based on this part.

The normalized Cunningham approach for spherical harmonic computationhas been derived.

It is given in the Cartesian coordinate system. It has no singularity; therefore, it is chosen for the

computation in this study. For the gravitational gradient analysis, the derivation will be presented

in Chapter 5.

The perturbation forces acting on the GOCE satellite and the resulting orbit perturbation are

discussed. The main effect is due to the gravitational field of the Earth as expressed by a series

of SH coefficients. The results show that the gravitational forces caused by the direct attraction

of the moon and sun, solid Earth tides, ocean tides and general relativity must be included in

the parameter estimation procedure. The direct effect of planets is negligible. The effect of the

so-called pole tides is considered and incorporated in the computation of solidEarth tides. The

perturbation of general relativity is not small; therefore, it has to be considered.

The air drag experienced by GOCE satellite reduces to the level of the precision of the drag-

compensation actuators, i.e. the ion thrusters. The residual acceleration after compensation by the

ion thruster can be either modelled with empirical accelerations, or removed withthe information

from the common mode accelerations. The perturbations due to radiation pressure and albedo are

smaller than the precision of the kinematic orbit within 40 minutes. They are not modelled in the

parameter estimation process explicitly but hopefully compensated by the empirical parameters

implicitly.

Based on our case study (Table2.1), it is reasonable to set up the SH coefficients at least up

to d/o 140 to 150. The cumulative effect of the gravity field coefficients higher than d/o 150 on

GOCE orbits is likely beyond the capability as determined by the kinematic orbit precision.
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3

Least Squares and Data Adjustment for

GOCE Data Processing

In modern geodesy, the amount of observations can reach millions or evenbillions. The handling

of such a large amount of observations with a huge amount of unknown parameters is a challenge.

It is therefore important to discuss some elements of the theory of parameter estimation, which are

then used for SHA in the later chapters for the processing of GOCE measurements.

The large least squares problem is introduced in the first section. The second section presents

the idea of regularization, and emphasizes the concept developed in this study. The third section is

about contribution analysis, i.e. an approach of evaluating the individualcontribution of different

data sources. The fourth section is dedicated to data weighting and decorrelation. The fifth section

presents the concepts of parameter pre-elimination. And, last but not least, the final section gives

the summary of this chapter.

3.1 Least Squares Adjustment and Combination of Different Obser-

vation Types

The method of least squares has been widely used to solve overdeterminedsystems since Gauss

and Legendre developed the fundamentals of the basis for least squares analysis. Least squares

adjustment can be interpreted as a method of fitting a linear model to (stochastic)observations.

The observations are collected under randomly varying conditions. This makes the observations

stochastic. The best fit in the least-squares sense is when the sum of squared residuals between

observations and modelled values attains its least value. It corresponds to the maximum likelihood

criterion if the experimental errors have a normal distribution and can also be derived as a method

of moments estimator, cf.Teunissen(2009).

The observation equation of a parameter model can be represented by

E
{

L̃
}

= F(x) , (3.1)
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where
E {} operator of expectation
L̃ vector of stochastic observations
L expectation or estimate of the observation vector
x parameter vector to be estimated
F mapping function .

The stochastic observations are composed of their expectation (true value) and stochastic error

ṽ with expectation zero (tilde “˜” meaning stochastic), i.e.

L̃ = L + ṽ , (3.2)

with E
{

L̃
}

= L andE {ṽ} = 0. In case of a non-linear model, linearization is needed. After

linearization, Eq. (3.1) is written as

E
{

L̃
}

= F(x01)+
∂F
∂x

∣

∣

∣

∣

x=x01

δx . (3.3)

with δx the correction of the parameter vector w.r.t. the initial or approximate valuesx01. Even in

case of a linear situation, the initial valuesx01 are often used to make the right-hand side smaller

to reduce computer (both round-off and truncation) error.

Let us define

A =
∂F
∂x

∣

∣

∣

∣

x=x0

, and d̃ = L̃ −F(x01) , (3.4)

then we arrive at

ṽ =A ·δx− d̃ , (3.5a)

and D
{

d̃
}

=D
{

L̃
}

= ΣΣΣ = σ2
0P−1 = E

{

ṽṽT} , (3.5b)

where
ṽ n×1 misclosure vector, its estimatev̂ is the residual vector
A n×m design matrix (coefficient matrix)
δx m×1 vector of parameter correction
d̃ n×1 vector of observed minus computed (OMC)
D{} operator of dispersion
ΣΣΣ n×n variance-covariance matrix (VCM) of observations (or misclosures)
σ2

0 variance of unit weight (variance factor or variance component)
P n×n weight matrix

Since the differences betweend̃ andL̃ is a deterministic, i.e. non-stochastic vector (the initial

parameter mapping into the measurement space), their VCMs are the same. We sometimes say

d̃ is observation vector when it does not cause any confusion. Based onthe principle of the least
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squares adjustment, i.e.

ṽT Pṽ = min, (3.6)

we obtain the system of normal equations (NEQs)

AT PAδ x̂ = AT Pd̃, or Nδ x̂ = U (3.7)

and the following solution equations (Teunissen, 2009; Teunissen and Amiri-Simkooei, 2008)

δ x̂ =
(

AT PA
)−1(

AT Pd̃
)

= N−1U , (3.8a)

v̂ = Aδ x̂− d̃ , (3.8b)

σ̂2
0 = v̂T Pv̂/(n−m) , (3.8c)

D{δ x̂}= ΣΣΣx̂ = σ̂2
0

(

AT PA
)−1

, (3.8d)

with n the total number of the observations andm the total number of the unknowns;N =
(

ATPA
)

the normal matrix andU = ATPd̃ the right-hand side which will be used later on. The hat symbol

above variables represents their estimates. For example, the residual vector v̂ is the estimate of the

noise vector̃v. Eq. (3.8a) gives us the estimates of the parameters. With them the estimates of the

residuals can be obtained from Eq. (3.8b). Eqs. (3.8c) and (3.8d) are the estimates of the variance

of unit weight and variance covariance matrix of the estimated parameters, respectively.

In case the amount of the observations is large, e.g., more than one hundred thousand or

even millions, the dimension of the design matrixA will become so large that the memory of the

computer is not sufficient to store it. This problem can be solved using the sequential least squares

adjustment approach, in which the design matrix is removed from computer memory after it is

accumulated to the normal matrix.

Let us suppose the observations can be divided into two stochastic independent parts, i.e.̃d1

andd̃2. This leads to the design matrixA to be divided into two parts, too

[

ṽ1

ṽ2

]

=

[

A1

A2

]

·δx−
[

d̃1

d̃2

]

, D

{

d̃1

d̃2

}

= σ2
0

[

P−1
1 0
0 P−1

2

]

. (3.9)

This holds under the assumption that the observationsd̃1 and d̃2 are independent, i.e., the

correlation between these two observation vectors is zero, as presentedin the variance covariance

matrix of Eq. (3.9).

Based on the principle of least squares, the parameter vector is derivedwith sequential least

squares
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δ x̂ =
(

AT
1 P1A1+AT

2 P2A2
)−1(

AT
1 P1d̃1+AT

2 P2d̃2
)

, (3.10a)

σ̂2
0 =

(

v̂T
1 P1v̂1+ v̂T

2 P2v̂2
)

/(n−m) , (3.10b)

D{δ x̂}= ΣΣΣx̂ = σ̂2
0

(

AT
1 P1A1+AT

2 P2A2
)−1

. (3.10c)

It is seen that the combination of NEQs is by adding the two normal matrices and the two

right-hand sides, respectively, to form a new system of NEQs. The estimate of the parameter

vector can be solved from this new system of normal equations, as one can see in Eq. (3.10a). The

estimates of the variance of unit weight and of the variance-covariance matrix are obtained from

Eq. (3.10b) and (3.10c). With this idea, the large amount of observations can be decomposed into

two or many smaller problems.

In Eq. (3.10), the weights of the two observation groups may not be perfect. Therefore, it is

worthwhile to use the posterior estimate of the variance components, as givenin Eq. (3.8c), to

re-combine the normal equations as (Koch and Kusche, 2002)

(

1

σ̂2
1

AT
1 P1A1+

1

σ̂2
2

AT
2 P2A2

)

δ x̂ =

(

1

σ̂2
1

AT
1 P1d̃1+

1

σ̂2
2

AT
2 P2d̃2

)

, (3.11)

where the variance factorŝσ2
1 andσ̂2

2 are computed according to Eq.3.8c.

It is similar to sequential least squares, see Eq. (3.10), except that the variance factor is intro-

duced in Eq. (3.11) to guarantee the two normal equations to be weighted based on their variance

factors. Also the size (length) and/or the sequence of the parameters in thevector may be different.

One may have to reorder these parameters during the combination.

The a priori estimate of the variance component is useful for weighting the corresponding

observation group in the first combination. It can be determined with OMC values based on a

priori information. The a priori estimate of the variance components for an observation type is

approximated based on theory of statistics

σ̂2(−) =
d̃T Pd̃

n
−
(

1
n

n

∑
k=1

d̃k

√

Pk

)2

, (3.12)

with n the number of the observations andPk the weight of thekth observation.

3.2 Regularization

The system of normal equations in the least squares estimation problem is ill-posed in the case

of GOCE due to several reasons, in particular the existence of polar gaps (non-polar orbits) and

an inhomogeneous data distribution (Metzler, 2007); also one of the observation types may con-

tain less information, e.g., one component of the gradient tensor may not be equally sensitive to
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3.2 Regularization

the whole gravity field; also the downward continuation will contribute to the instability. The

introduced stochastic model of the measurements can be a cause for ill-posed normal equations

(Sneeuw, 2000).

In case of ill-posed normal equations, the condition number (the ratio of the maximum eigen-

value to the minimum eigenvalue) of the normal matrixN is very large. This makes the solution

of the system of normal equations unstable. There are two categories of approaches to solve this

problem, one is to manipulate the eigenvalues by singular value decomposition (SVD), such as

ridge estimation and principal component estimation. The other is to introduce some external or

a-priori information to stabilize the normal equations. Since there is a-prioriinformation of the

gravity field available, the latter type of the regularization is chosen here forthe SHA.

There are several methods of regularization available, such as regularization using Kaula’s rule

of thumb or first- and second-order Tikhonov regularization. These methods add some “informa-

tion” to the diagonal elements of the normal matrix according to some rules and criteria (Kusche,

2002; Kusche and Klees, 2002), based on the criterion of a combined minimization residuals and

of the gravity potential or its functionals on the sphere of the Earth.

The idea of regularization is to find the balance between the minimum norm of the residuals

and that of the vector of unknown parameters relative to some a-priori values. Similar to Eq. (3.6),

we minimize now

ṽT Pṽ+α(x−x0)
T Px0 (x−x0) = min . (3.13)

The first term in Eq. (3.13) causes the model to fit the data, the second term constrains the

parameters to a-priori values. It will stabilize the normal equations. The regularization factorα

plays thereby an important role. It is a tradeoff between observations and a-priori information. Let

us assumeα to be 1 or incorporated inPx0. By taking the derivative on both sides of Eq. (3.13)

and re-arranging, the modified estimator becomes:

δ x̂ =
(

AT PA+Px0

)−1(
AT Pd̃+Px0(x0−x01)

)

. (3.14)

Herex01 is the vector initial values as in Eq. (3.3). It does not necessarily have to be the same

asx0, since one may set up the observation equation with some initial values; later onone may

decide to constrain the parameters to some other a-priori values.

Since the inclination of the GOCE orbit is about 96.7◦, there is no GOCE data in both polar

areas with a radius of about 6.7◦ around the poles, see Fig.1.3. Therefore, a gravity field without

constraint (regularization) over the polar gap will exhibit large oscillationsin the gravity signals

such as geoid heights and/or gravity anomalies in these areas. Since the estimator has no informa-

tion there, it will produce arbitrary values in the polar gap areas, as long as the condition (target

function), i.e. Eq. (3.6), is satisfied. For the North Pole, there are terrestrial data available. One
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may therefore stabilize the problem with these terrestrial data. For the South Pole, not much ter-

restrial data have been collected. Thus, regularization must be applied.Metzler and Pail(2005)

introduced the so-called Spherical Cap Regularization Approach (SCRA), which will reduce the

oscillation of the resulting gravity field signal caused by the polar gaps.

A modified approach is applied in this study. It is to generate pseudo-observations based on

a-priori information in the polar gap areas. This information is used to constrain the geoid of the

gravity field to be estimated to, for example, EGM2008 or any other appropriate prior information.

The assumed precision level is chosen according to a realistic assumption, i.e. a precision of the a-

priori information at the polar areas. With the discrete geoid values to constrain the polar areas for

the stabilization of the solution, this approach of regularization is different tothe SCRA approach,

which applies analytical function on the polar gap to reduce the oscillation behavior in the polar

areas in the resulting gravity field models.

With the idea of pseudo observations on a 1◦ × 1◦ equal angular grid in the polar areas, a

normal matrix is generated as shown in Fig.3.1. The SH coefficients are sorted order-wise (the

order of the gravitational field coefficients increases from 0 to the maximum value from the upper

left to the bottom right), one can see that the lower order coefficients (close to the upper left in the

matrix) are regularized with large values, whereas the high order coefficients (close to the bottom

right) are hardly affected by this regularization.

Figure 3.1: Normal matrix of regularization for polar gap (in m2

and log10 scaled)

The goal of our regularization

is that the final result should not be

affected too much by the applied

method of stabilization. However,

since spherical harmonic coeffi-

cients are base functions with a

global support but data are miss-

ing only at the poles, the esti-

mated coefficients in general get

correlated, see (Boxhammer and

Schuh, 2006). Therefore, the reg-

ularization will definitely affect

the estimated parameters. Thus,

one should make the constraint as

loosely as possible, in order to

make sure that thẽvT Pṽ part in

Eq. (3.13) is dominant. In other words, the actual GOCE observations should be given a weight as

high as possible.
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3.3 Combination and Contribution Analysis

3.3 Combination and Contribution Analysis

The parameter estimation for GOCE is a combination of various components. It isof interest

to know their relative contributions. Let us consider the combination of the orbit and gradiome-

ter observations from the GOCE satellite. It is the combination of the SST and SGG part (the

three diagonal componentsVxx, Vyy andVzz), as well as of the a-priori information for polar gap

stabilization. In accordance with Eq. (3.11), they are combined as

Nδ x̂ =

(

1

σ2
sst

Nsst +
1

σ2
xx

Nxx +
1

σ2
yy

Nyy +
1

σ2
zz

Nzz +
1

σ2
reg

Nreg

)

δ x̂

=
1

σ2
sst

AT
sstPsst d̃sst +

1
σ2

xx
AT

xxPxxd̃xx +
1

σ2
yy

AT
yyPyyd̃yy

+
1

σ2
zz

AT
zzPzzd̃zz +

1
σ2

reg
AT

regPregd̃reg .

(3.15)

In order to analyze the individual contribution from the different data sources (observation

types) and from regularization, we look into the combined normal matrix of Eq.(3.15)

N =
1

σ2
sst

Nsst +
1

σ2
xx

Nxx +
1

σ2
yy

Nyy +
1

σ2
zz

Nzz +
1

σ2
reg

Nreg . (3.16)

With the following definitions

Rsst =
1

σ2
sst

N−1Nsst , Rxx =
1

σ2
xx

N−1Nxx,

Ryy =
1

σ2
yy

N−1Nyy, Rzz =
1

σ2
zz

N−1Nzz,

Rreg =
1

σ2
reg

N−1Nreg ,

(3.17)

we define so-calledresolution matrices. All the resolution matrices in the least squares system

add up to an unit matrix (Sneeuw, 2000), i.e.,

R1+R2+ · · ·+RI = I , (3.18)

with I the unit matrix. WithE
{

d̃i
}

= Aiδx, by taking expectation and multiplyingN−1 on both

sides of Eq.3.15, We find

E {δ x̂}= (Rsst +Rxx +Ryy +Rzz +Rreg)E {δ x̂}= δx . (3.19)

The resolution matrices are a measure of the relative contributions of different observation

types. They behave as filters through which the vectorδx passes to yield the estimatorδ x̂, see

(Bouman, 1998; Sneeuw, 2000). Also the amount of the contribution from a-priori information can

be evaluated. One should note that the resolution matrices are computed from the normal matrices

only, without any information from the measurements or a-priori values themselves. Therefore, it
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is an important and reliable tool to identify how much contribution comes from the included data

sources and a-priori information.

The main diagonal elements of the resolution matrices in Eq. (3.17) give the contribution

measure for individual parameters. For theith parameter, the contributions from the various data

sources are

rssti =[Rsst ]ii, rxxi = [Rxx]ii,

ryyi =[Ryy]ii, rzzi = [Rzz]ii,

rregi =[Rreg]ii .

(3.20)

They are independent of the correlation between the individual parameters.

Theoretically, the value of the relative contributionri(k) is between 0 and 1. In computation,

it can be slightly larger than 1 or smaller than 0, due to the numerical error or instability of a

observation model (e.g. some observation model is of rank deficiency). From Eq.3.19, it can

be found that the parameter vectorδx is the sum of its projection by all the resolution matrices.

Each resolution matrix mapsδx into parameter space. The off-diagonal elements[Ri]k j gives the

contribution of how much information is projected from thekth to jth parameter, or vice versa, in

case that the solution is computed based only on observation typei.

3.4 Data Weighting and Filtering

The VCM of the kinematic orbits (in forms of band matrix) is provided as SSTPSO2I product. It

can be used directly in Eq. (3.5) and (3.8) for parameter estimation. The sequence of gradiometer

observations, however, is highly correlated and their VCM is not available. Therefore, the ob-

servation time series should be decorrelated either by filtering or using the weight matrix derived

from additional information. We apply a filter to both the time series of the observations and the

design matrix due to the efficiency of the method. In some studies the auto-correlation function

of the residual vector is computed from the iteration process during parameter estimation as the

inversion of the weight matrix, seeKoch et al.(2010); Schuh(2002).

The power spectrum density (PSD) of a signalx(t) is defined as

PSD(f) = X(f) ·X∗(f) , (3.21)

whereX( f ) =
+∞
∫

−∞
x(t)w(t)e− j2π f t is the Fourier transform of the signalx(t) andw(t) is a window

function;X∗( f ) is the complex conjugate ofX( f ). For a discrete signalx(n) with data lengthN,

the Discrete Fourier Transform (DFT) is

X(k) =
N−1

∑
n=0

x(n)w(n)e−
j2πkn

N , k = 0, · · · ,N −1, n = 0, · · · ,N −1. (3.22)
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The PSD of the discrete signalx(n) is

PSD(k) = X(k) ·X∗(k) . (3.23)

With matrix notation, the DFT of the noise is

υ̃υυ =
1√
N

Fṽ , (3.24)

where the Fourier Transform matrix element is

{F}kn = e−ikn 2π
N k,n = 0,1, · · · ,N −1 . (3.25)

The PSD of the vector̃v becomes

p =
[

υ0υ̃∗
0 υ1υ̃∗

1 · · · υN−1υ̃∗
N−1

]T
, (3.26)

whereυ̃υυ∗ is the complex conjugate of̃υυυ .

The frequency response of the whitening filter should be the reciprocalof the square root of

the PSD of the noise, i.e.

H =













α√
p0

0 · · · 0

0 α√
p1

0 · · ·
...

...
...

...
0 · · · 0 α√

pN−1













, (3.27)

whereα is the scale factor which is used to make sure that the signal magnitude and physical

dimension is the same before and after filtering. The values ofpi, i = 0, · · · ,N−1 are the elements

of the the PSD of the instruments and provided by industry based on varioustests. The noise can

then be transformed to be white with the information provided in Eq. (3.27) as

ṽ′ =
1
N

F∗HFṽ = Gṽ , (3.28)

where

G =
1
N

F∗HF , (3.29)

is the filter matrix, andF∗ is the complex conjugate transpose ofF. The weight matrix can be

derived from

P=G∗G =
1

N2F∗HFF∗HF

=
1
N

F∗HHF ,

(3.30)

with FF∗ = F∗F = N I .
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The observation equation (3.5) becomes

ṽ′ = A′ ·δx− d̃′ , D
{

d̃′} = ΣΣΣ′ = σ2
0P′−1

. (3.31)

whereA′ =GA andd̃′ =Gd̃. G acts like a filter that transforms the noise to be white. If the matrix

G is capable of perfectly whitening the noise, the weight matrix ofd̃′ (i.e. filteredd̃ ) becomes a

unit matrix, i.e.P′ = I .

The VCM in Eq. (3.5) follows from the PSD of the noise, analogously to Eq. (3.30)

ΣΣΣ =
1
N

F∗H′F , (3.32)

where

H′ =











p0 0 · · · 0
0 p1 0 · · ·
...

...
...

...
0 · · · 0 pN−1











. (3.33)

From the derivations above, one can see the connection between the PSDof the noise and the

VCM. The coefficients of the filter can be derived from the((N +1)/2)th row in the center of the

filter matrixG.

The VCM based on the error PSD as shown in Fig.3.2ais displayed in Fig.3.2b. The smallest

error level of the PSD is achieved in the measurement bandwidth (MBW), which is an ESA jargon

for the frequency range [5 100] mHz (in some literature, measurement band (MB) is also used for

this frequency range). This means the measurements contain the smallest error level in this MB.

One can see thatG is a circulant matrix. The values of diagonal and near-diagonal elements are

large due to the high correlation of the measurement noise, correspondingto the high power in the

low-frequency band in Fig.3.2a.

The filter derived fromG is a finite impulse response (FIR) filter, of which the length needs to

be large to achieve good performance. Therefore, it is time-consuming to filter the observations

and especially the design matrix. It can be approximated, however, by an infinite impulse response

(IIR) filter, significantly reducing the computational load (Pail et al., 2011a; Schuh, 2002). During

the parameter estimation, the filter is applied to the data and the design matrix, insteadof making

use of the full weight matrix.

In this study, FIR and IIR filter are both applied, but for different purposes. A FIR filter is ap-

plied when analyzing the observation for direct applications in the space domain, since the compu-

tational load is not critical for data filtering, and the FIR filter can be designed so as to produce no

phase shift. The IIR filter is used for parameter estimation, in order to reduce the computational

load. In that case since the filter is applied to both the design matrix and the observations, and
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3.5 Parameter Pre-elimination
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Figure 3.2: An example of PSD1/2 and the corresponding variance-covariance matrix

moreover, since

G∗G = |G|2 , (3.34)

is independent of phase when assembling both sides of NEQ. Therefore, the phase shift has no

effect on the final results.

3.5 Parameter Pre-elimination

Some parameters may only be needed at an intermediate stage and not be necessary for the final

solution; they can be pre-eliminated before solving the normal equations. Suppose two sets of

parametersδx1 andδx2 in the following normal equations

[

N11 N12

N21 N22

][

δx1

δx2

]

=

[

U1

U2

]

. (3.35)

One gets

δx1 = N−1
11 (U1−N12δx2) , (3.36)

from the first part of Eq. (3.35). Inserting Eq. (3.36) into the second part of (3.35), yields

(

N22−N21N−1
11 N12

)

δx2 =
(

U2−N21N−1
11 U1

)

. (3.37)

Thus the parametersδx1 are pre-eliminated. The normal equations reduce to that of the size

of N22. The parametersδx2 can be solved with this reduced normal equations, and the results are

still exactly the same.
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3. LEAST SQUARES AND DATA ADJUSTMENT FOR GOCE DATA PROCESSING

The pre-elimination is important and useful for large systems of equations. For example,

the parametersδx1 could be orbit parameters and empirical accelerations described in section4.3,

while theδx2 could be the vector of gravity field coefficients. One refers toδx1 as local parameters

andδx2 as global parameters. In this case the total number of the parametersδx1 is quite large;

they are pre-eliminated in order to reduce the size of the system of the normalequations. Thus, the

normal equations are reduced to only containing gravitational field coefficients. During the data

processing in this study, a system of normal equations is constructed fromeach day’s observations.

The pre-elimination is applied to the normal equations constructed from daily observations, before

the combination of all the desired normal equations is carried out. After the global parametersδx2

are obtained, the local parametersδx1 are reconstructed by back-substitution. Since the local

parameters can be determined with short interval (e.g., less than one day’s) measurements, the

back-substitution is realized with ease.

3.6 Summary

For a large system of equations, parallelization must be applied. In this study, the observations are

separated into daily segments. The normal equations computed from each day’s observations are

stored on computer disk and combined with a subroutine namedCombineNeq.

The reciprocal of the variance of unit weight is used as the relative weight for the combination

of different observation types. The normal equations to be combined aredimensionless after

applying the relative weight.

The regularization is important for SHA based only on GOCE data. Spherical harmonics

are global base functions. Without information in the geographical areasof the polar gap, the

zonal and near-zonal coefficients are highly correlated and less welldetermined. This correlation

causes that the gravitational field signal recovered only from GOCE observation to exhibit large

oscillations in the polar gap areas. Thus, ultimately a constraint in the polar gapareas must be

applied, to decorrelate the zonal and near-zonal coefficients.

The contribution from various observation types can be evaluated with resolution matrices.

Because only the normal matrices are involved in contribution analysis, the contribution of each

individual observation type is explicitly independent of the observations.However, since the rel-

ative weights for combination are dependent on the precision of the observation types, implicitly

the contribution analysis depends on the quality of the observed data.

With Fourier transformation, the relationship between the PSD of the noise andthe VCM of

the observations can be established. The error VCM is the Fourier transform of the PSD of the

noise, both being quadratic forms. The weight matrix can therefore be derived from the reciprocal

of the PSD of the noise. From the reciprocal of the square root of the noise PSD and an appropriate

scale factor, a filter matrix is derived. The coefficients of a FIR filter can be found taken from the

center row of the filter matrix.
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3.6 Summary

Parameter pre-elimination is necessary and appropriate when the number ofunknown param-

eters is very large, and some parameter sets are only “local”. These localparameters, referring

to orbit arcs, are only valid in short periods. They are pre-eliminated in order to reduce the size

of normal equations. After pre-elimination, only gravitational parameters remain to be solved for.

The local parameters are then reconstructed by back-substitution after the global parameters are

obtained.
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4

GOCE Gravity Field Determination

from Satellite-to-satellite Tracking

The idea of the GOCE mission is to combine the SST and SGG techniques for the purpose of

the determination of a high-accuracy and high-resolution gravity field. TheSST observations are

particularly sensitive to long-wavelength gravity field coefficients, and theSGG observations are

sensitive to short-wavelength coefficients. The ideas of the SST approach as we apply it to the

GOCE mission is presented in this section.

Possible approaches which can be used for gravity field recovery based on GOCE orbit mea-

surements are primarily the following:

i. Semi-analytical method (Sneeuw, 2000), which applies Hill theory, by rotating the spherical

harmonic expansion to the orbit plane; the orbit is represented as the superposition of peri-

odical functions. Thus, the observation model can be formulated with ease. But due to the

assumptions underlying this approach, in particular that of a circular orbit,without preces-

sion, it is only an approximate. It is useful however for pre-mission analysis or quick-look

solutions;

ii. Energy balance method (Gerlach et al., 2003; Han, 2003), is based on the idea of conserva-

tion of energy. It assumes the kinetic energy, derived from the velocities, and the potential

energy, which is a function of the position and the gravity field coefficients,to be constant. In

this approach, a 3D-observation is projected to a scalar quantity (potential)per observation

epoch. This leads to somewhat degradation of the resulted gravity field model. Moreover,

this method needs the velocities of the satellite as observables. The velocities are derived

by numerical differentiation of the positions of the satellite orbit. Therefore,the precision

of the velocities is somewhat degraded;

iii. Celestial mechanics approach (seeJäggi et al., 2010a), which evaluates the partial deriva-

tives of the orbit w.r.t. the force parameters (gravity field coefficients) bysolving the varia-

tional equations. This method does not need to use velocities, but it is rathertime-consuming
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to solve the variational equations if the number of the dynamic (e.g., gravitational field co-

efficients) parameters is very large. The underlying model of this approach is nonlinear.

One may question whether iteration should be applied. This approach is veryflexible and

applicable to any observation type, such as SLR and Doppler measurements, which usually

may not have equally sampled observations;

iv. Integral equation approach (Eicker et al., 2006; Mayer-G̈urr, 2006). Based on Newton’s

equation of motion, the orbit of the satellite can be formulated as a boundary value problem

in the form of a Fredholm-type integral equation. This method is linear and doesnot need

to solve variational equations. It can be faster than the celestial mechanicsapproach;

v. Acceleration approach (Liu, 2008; Reubelt, 2009). By differentiating twice the position

vector derived from GPS measurements, the acceleration of the satellite canbe computed

and used as a measurement to formulate observation equations.

The idea of the integral equation approach has been proposed as a general method for or-

bit determination bySchneider(1968) and modified for gravity field determination bySchneider

(1969). LaterIlk and Klose(1984) applied this method for simulation of satellite-to-satellite track-

ing analysis. More recently Mayer-Gürr used this method to process the real data from CHAMP

(Eicker et al., 2006; Mayer-G̈urr, 2006), which was the first and very successful real data applica-

tion of this method, and since 2006 he has applied it to GRACE, which resulted inone of the most

precise gravitational field models from satellite only data. Solutions are the gravity model ITG-

Grace03s (Mayer-G̈urr, 2007) and later ITG-Grace2010s (Mayer-G̈urr et al., 2010). The idea of

this method is to divide the orbit into short arcs, and parameterize gravity fieldcoefficients as well

as the boundary parameters of each arc. The boundary parameters can be pre-eliminated before

the formation of the normal matrix.

The advantages of the integral equation approach are the following: First, it is linear, thus

the a-priori information has almost no effect on the recovered field; second, it is directly based

on the (kinematic) orbit positions; this avoids any numerical error due to differentiation. Last,

but not least, the variation can be solved in parallel for the all orbit components, i.e. the three

elements of the position vector in the variational equations are computed independently of each

other. This increases the speed of the computation. Because of these advantages, the integral

equation approach is here used for spherical harmonic analysis.

In order to show the functionality of the method, in the computations and analyses of this

chapter, we use the kinematic orbit from November 1st to December 31st in 2009. This gives us a

full coverage of the Earth with a 61-day repeat orbit. For the combination with SGG in Chapter 6,

observations of kinematic orbits of longer period, from November 1st 2009 to April 30th in 2011,

will be used for gravity field determination.
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4. GOCE GRAVITY FIELD DETERMINATION FROM SATELLITE-TO-SATELLITE
TRACKING

4.1 Observation model

The acceleration of a satellite can be represented as

r̈(t) = f(t, r , ṙ ,βββ ,βββ ′′′) , (4.1)

with t time andr , ṙ position and velocity vectors, respectively,βββ the vector of parameters to be

estimated as defined in section 2.1, andβββ ′′′ empirical accelerations as described in Eq. (2.34).

As shown in Fig.4.1, the satellite passes pointA and pointB at timestA andtB, respectively.

The dots are the orbit position vectors derived by GPS.

Figure 4.1: The trajectory of the satellite over an arc
AB

We define

τ =
t − tA

T
and τ ′ =

t ′− tA
T

(4.2)

which are the normalized times ranging

from 0 to 1, whereT = tB − tA.

Now the goal is to formulate the rela-

tionship between the position vector inside

the arc and the position vectors at the bound-

ary points, i.e. r(tA) = rA and r(tB) = rB,

as well as the parameters of the force model

to be estimated, such as gravity field coeffi-

cients or the air drag coefficient. Therefore, we define three categories of parameters. With the

short arc in Fig.4.1 as an example, they are orbit parameters, i.e., the position vectorrA and

rB, empirical parameters (such as empirical accelerations in our study, sometimes perhaps some

other parameters such as drag coefficients, radiation coefficients) as presented in subsection2.2.9

for compensating the mis-modelled or unmodelled accelerations, and the gravitational field co-

efficientsCnm andSnm. A second concept of classification is dividing the parameters into local

parameters (or nuisance parameters as described byDitmar and Klees(2002); they are orbit pa-

rameters and empirical parameters which are valid only for a short period)and global parameters

(e.g., gravitational field coefficients). A third concept of definition is geometric (orbit) parameters

and dynamic parameters (e.g., empirical accelerations, gravitational field coefficients and air drag

coefficients, etc., which are incorporated in some force models).

After integrating Eq. (4.1) twice, the position vector can be written as

r(t) = r(tA)+ ṙ(tA) · (t − tA)+

t
∫

tA

t ′
∫

tA

f(t ′′, r , ṙ ,βββ ,βββ ′′′)dt ′′dt ′ . (4.3)
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4.1 Observation model

With the rule of integration by parts, Eq. (4.3) becomes

r(t) = r(tA)+ ṙ(tA) · (t − tA)+

t
∫

tA

(t − t ′)f(t ′, r , ṙ ,βββ ,βββ ′′′)dt ′ (4.4)

Introducing normalized time as given in Eq. (4.2), Eq. (4.3) can be rewritten as

r(τ) = rA + ṙAT τ +T 2

τ
∫

0

(τ − τ ′)f(τ ′, r , ṙ ,βββ ,βββ ′′′)dτ ′ , (4.5)

and we obtain the position at time epochtB as

rB = r(1) = rA + ṙAT +T 2

1
∫

0

(1− τ ′)f(τ ′, r , ṙ ,βββ ,βββ ′′′)dτ ′ . (4.6)

Combination of Eq. (4.5) and (4.6), yields

r(τ) =rA +



rB − rA −T 2

1
∫

0

(1− τ ′)f(τ ′, r , ṙ ,βββ ,βββ ′′′)dτ ′



τ +T 2

τ
∫

0

(τ − τ ′)f(τ ′, r , ṙ ,βββ ,βββ ′′′)dτ ′

=rA(1− τ)+ rBτ −T 2τ
1
∫

0

(1− τ ′)f(τ ′, r , ṙ ,βββ ,βββ ′′′)dτ ′+T 2

τ
∫

0

(τ − τ ′)f(τ ′, r , ṙ ,βββ ,βββ ′′′)dτ ′

=rA(1− τ)+ rBτ −T 2

1
∫

0

K(τ ,τ ′)f(τ ′, r , ṙ ,βββ ,βββ ′′′)dτ ′ ,

(4.7)

where the integral kernel function is

K(τ ,τ ′) =

{

τ ′(1− τ) τ ′ < τ
τ(1− τ ′) τ < τ ′ .

The velocity of the satellite can be computed by differentiation of Eq. (4.7)

ṙ(τ) =
rB − rA

T
−T

1
∫

0

∂K(τ ,τ ′)
∂τ

f(τ ′, r , ṙ ,βββ ,βββ ′′′)dτ ′ . (4.8)

The integrals in Eq. (4.7) and (4.8) are convolutions of the acceleration vector with the kernel

functions. They can be converted to a matrix multiplication. For details refer to (Mayer-G̈urr,

2006; Yi , 2007).

After the kernel matrixK is evaluated, the observation model can be written as

r(τ) = rA(1− τ)+ rBτ +Kf (τ , r , ṙ ,βββ ,βββ ′′′) . (4.9)
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4. GOCE GRAVITY FIELD DETERMINATION FROM SATELLITE-TO-SATELLITE
TRACKING

The velocity vector yields

ṙ(τ) =
rB − rA

T
+ K̇f (τ , r , ṙ ,βββ ,βββ ′′′) , (4.10)

whereK = −T 2
1
∫

0
K(τ ,τ ′) ·dτ ′ and K̇ = −T

1
∫

0

∂K(τ,τ ′)
∂τ ·dτ ′, are the matrices converted from the

convolution with the two different kernel functions. The symbol· in the integrals means the

operation to any function. The matrix-vector multiplication in Eq.4.9 and 4.10 is realized by

multiplying each component of the force vectorf which is a time series inside a short arc for three

directions.

The structure of the matricesK andK̇ is shown in Fig.4.2. In the matricesK andK̇ , each row

corresponds to the time epoch of a value to be computed, i.e.,τ, while each column corresponds

to the integral variableτ ′. The maximum values of every row in the matrixK appear along the

diagonal, and the value of the diagonal reaches its maximum at the center of the matrix, see

Fig. 4.2a. This is due to the fact that the maximum deviation of the orbit from the line of sight

between the two boundary points happens at the middle of the arc. There is aboundary between

the upper triangle and lower triangle in the matrixK̇ . The values in the upper triangle are positive

and in the lower triangle they are negative, see Fig.4.2b.
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Figure 4.2: An overview of the matrixK andK̇

The acceleration due to the Earth’s gravity field and empirical parameters can be evaluated

using Eq. (2.5). It is a linear function of the gravity field coefficients and empirical parameters.

For example, at epochi of the arc, it is

f(τi, r i, ṙ i,βββ ,βββ ′′′) =





ẍi

ÿi

z̈i





= Giβββ +G′
iβββ ′′′ =





Gxi

Gyi

Gzi



βββ +





G′
xi

G′
yi

G′
zi



βββ ′′′ ,

(4.11)
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4.1 Observation model

whereGi contains the partials of the acceleration w.r.t. the gravitational field coefficients at

epochi, andG′
i the partials of the acceleration w.r.t. the empirical accelerations. Thus, the partials

of Gi for the whole arc can be written as

Gx =













∂ ẍ0
∂β0

∂ ẍ0
∂β1

· · · ∂ ẍ0
∂βM−1

∂ ẍ1
∂β0

∂ ẍ1
∂β1

· · · ∂ ẍ1
∂βM−1

...
...

. . .
...

∂ ẍN−1
∂β0

∂ ẍN−1
∂β1

· · · ∂ ẍN−1
∂βM−1













, Gy =













∂ ÿ0
∂β0

∂ ÿ0
∂β1

· · · ∂ ÿ0
∂βM−1

∂ ÿ1
∂β0

∂ ÿ1
∂β1

· · · ∂ ÿ1
∂βM−1

...
...

.. .
...

∂ ÿN−1
∂β0

∂ ÿN−1
∂β1

· · · ∂ ÿN−1
∂βM−1













,

Gz =













∂ z̈0
∂β0

∂ z̈0
∂β1

· · · ∂ z̈0
∂βM−1

∂ z̈1
∂β0

∂ z̈1
∂β1

· · · ∂ z̈1
∂βM−1

...
...

. . .
...

∂ z̈N−1
∂β0

∂ z̈N−1
∂β1

· · · ∂ z̈N−1
∂βM−1













.

(4.12)

Similarly to Eq. (2.37), the partial derivatives of the accelerations w.r.t. dynamic parameters

are transformed to the inertial frame before multiplication with the kernel matrix, since the inte-

gration can be carried out easily in the inertial frame.

The partialsG′
i are transform matrices like Eq. (2.35), multiplied with the constant terms and

1 cpr. They are

G′
x =













E(1,:)
0 E(1,:)

0 s0 E(1,:)
0 c0

E(1,:)
1 E(1,:)

1 s1 E(1,:)
1 c1

...
...

...

E(1,:)
(N−1) E(1,:)

(N−1)sN−1 E(1,:)
(N−1)cN−1













,G′
y =













E(2,:)
0 E(2,:)

0 s0 E(2,:)
0 c0

E(2,:)
1 E(2,:)

1 s1 E(2,:)
1 c1

...
...

...

E(2,:)
(N−1) E(2,:)

(N−1)sN−1 E(2,:)
(N−1)cN−1













,

G′
z =













E(3,:)
0 E(3,:)

0 s0 E(3,:)
0 c0

E(3,:)
1 E(3,:)

1 s1 E(3,:)
1 c1

...
...

...

E(3,:)
(N−1) E(3,:)

(N−1)sN−1 E(3,:)
(N−1)cN−1













,

(4.13)

whereE( j,:)
i means thejth row of the matrixE derived with Eq. (2.35) at epochi. si andci are

sinvi and cosvi, respectively, withvi the true anomaly at epochi.

To evaluate the partials of the position vector w.r.t. the dynamic parameters in inertial frame,

the convolution of Eqs. (4.7) is performed by multiplying the kernel matrixK with the partials in

Eq. (4.12), i.e.

Hx = KG x, Hy = KG y, Hz = KG z . (4.14)

The matricesHx, Hy andHz are now establishing the link between satellite position and po-
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4. GOCE GRAVITY FIELD DETERMINATION FROM SATELLITE-TO-SATELLITE
TRACKING

tential coefficients:

Hx =













∂x0
∂β0

∂x0
∂β1

· · · ∂x0
∂βM−1

∂x1
∂β0

∂x1
∂β1

· · · ∂x1
∂βM−1

...
...

.. .
...

∂xN−1
∂β0

∂xN−1
∂β1

· · · ∂xN−1
∂βM−1













, Hy =













∂y0
∂β0

∂y0
∂β1

· · · ∂y0
∂βM−1

∂y1
∂β0

∂y1
∂β1

· · · ∂y1
∂βM−1

...
...

. . .
...

∂yN−1
∂β0

∂yN−1
∂β1

· · · ∂yN−1
∂βM−1













,

Hz =













∂ z0
∂β0

∂ z0
∂β1

· · · ∂ z0
∂βM−1

∂ z1
∂β0

∂ z1
∂β1

· · · ∂ z1
∂βM−1

...
...

. ..
...

∂ zN−1
∂β0

∂ zN−1
∂β1

· · · ∂ zN−1
∂βM−1













.

(4.15)

Similarly to Eq.(4.14), the partials of the position vector w.r.t. the empirical accelerationsH′
z,

H′
y andH′

z are derived by multiplying the kernel matrixK with G′
x, G′

y andG′
z, respectively.

We see that the variational equations are solved by this matrix multiplication. Theyare im-

plemented in parallel since the three components in Eq. (4.14) are independent. This improves

computation speed. TheOpen Multi-Processing (OpenMP) interface is used for this kind of par-

allelization.

Back to Eq. (4.9), the observation equations for epochi in the arc are formulated as





1− τi 0 0 τi 0 0
0 1− τi 0 0 τi 0
0 0 1− τi 0 0 τi





















xA

yA

zA

xB

yB

zB

















+





H′
xi

H′
yi

H′
zi



δβ ′+





Hxi

Hyi

Hzi



δβ

=





x̃i

ỹi

z̃i



−





x0i

y0i

z0i



 ,

(4.16)

where ˜xi, ỹi z̃i are the position elements of the kinematic orbit in the inertial frame at epochi.

The elementsx0i, y0i and z0i are reference values derived from initial conditions. The a-priori

information is introduced only for the purpose of reducing the numerical error, making the right-

hand side smaller in order to reduce computer (both round-off and truncation) error. It has no effect

on the final results since the observation model is linear. As a demonstration serves Fig.4.3, which

shows the geoid differences of two models recovered, one based on EGM2008 and one based on

EGM96 (Lemoine et al., 1998), with the same other conditions. The comparison includes the

polar gap areas. The maximum value of the differences is 5.3×10−3 cm, and the STD value is

5.5×10−4 cm. Both values are very small and negligible.
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Figure 4.3: Geoid difference with EGM2008 and EGM96 as a-priori values

4.2 Reduction of the forces

As stated in Chapter 2, the forces can be divided into two categories: gravitational and non-

gravitational forces. Besides the gravitational acceleration from the Earth, they include third-

body attraction, solid Earth tides, ocean tides, and non-tidal variations of the gravitational field

due to atmosphere and ocean. Non-gravitational accelerations include air drag or residual of air

drag, solar radiation pressure and albedo. In this work the non-gravitational accelerations are not

modelled with their explicit functions, but with empirical acceleration parameters.

4.2.1 Gravitational forces

All the models of gravitational forces have been presented in section2.2 except the short-term

variations due to atmosphere and oceans (A&O). In the geodetic literature they are referred to as

atmosphere and ocean de-aliasing (AOD), see (Flechtner, 2007). Since the atmosphere and ocean

are fluids, they change rapidly with changes in solar radiation, pressure, temperature, etc. This

leads to mass redistribution and therefore tiny variations of the Earth’s gravitational field. The

numerical models for these variations of the gravitational field are derivedbased on the data from

weather services and barotropic ocean models, again see (Flechtner, 2007). The SH coefficients

of the variations are provided every six hours and the products, which are named atmosphere and

ocean de-aliasing level 1B data (AOD1B), are available to the users. Thevariations at any time

epoch are obtained by interpolating between two neighboring epochs. Theacceleration due to

AOD is then computed with Eq. (2.14).
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As an example, Fig.4.4 shows the magnitude of different gravitational accelerations using

the orbit of GOCE on November 1st, 2009. The direct attraction of the moon is the largest. The

magnitude of the attraction of the sun is at the same level as the Earth tides. The effects of ocean

tides are smaller than those of the Earth tides, but much more irregular. The acceleration due to

AOD is the smallest, with a magnitude of about 10−8 m/s2.
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Figure 4.4: Magnitude of time varying gravitational accelerations

These accelerations are

modelled and the perturba-

tion of the orbit due to them

is removed from the observa-

tions in Eq. (4.16), i.e., the

reference valuesx0i, y0i and

z0i are computed by taking

these accelerations into ac-

count. Although these ac-

celerations can be computed

with well-known models, the

error of the models or mis-

modeling, such as of ocean

tides, inaccurate Love num-

ber, etc., can cause small deviations from the true orbit. The effect of thebackground model

is therefore worthwhile to be investigated.

4.2.2 Non-gravitational accelerations measured by GOCE accelerometers

Non-gravitational accelerations are accelerations caused by forces acting on the surface of the

satellite. They are therefore calledsurface or skin forces.

As stated in Chapter 2, the largest part of the non-gravitational acceleration is due to air drag.

In the case of GOCE the air drag is compensated in flight direction by the ion thrusters. The resid-

uals after this compensation are quite small and can be measured as common modeaccelerations

(CMA) by the accelerometers. The drag-free compensation started on September 14th, 2009. In

Fig. 4.5, the left panel shows the CMA sensed by the three accelerometer pairs when no drag-free

compensation is applied, see Fig.4.5a. The right panel is the CMA output from the accelerom-

eters in drag free motion, see Fig.4.5b. Since thex-direction is approximately pointing in the

along-track direction, the largest part of the air drag would be measuredby the accelerometers in

this component. When the satellite is not in drag-free motion, the magnitude of the accelerom-

eter output in thex-direction can reach 3000 nm/s2, and the RMS value is approximately 600 to

700 nm/s2. When the drag free compensation is applied, these values decrease to 200 nm/s2 (with-

out correction of the constant offset) and 2 nm/s2, respectively. After drag-free compensation,
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4.2 Reduction of the forces

both the RMS values of the accelerometer data in thex- andy-direction decrease, but the RMS

value in thex-direction (approximately pointing to the Earth’s center) increases from 8.9nm/s2 to

22.7 nm/s2. This is likely due to some forces from the ion thrusters projected into thez-direction.
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Figure 4.5: Accelerations in common mode sensed by the accelerometers

The CMA in thex-direction in drag free mode is presented as a global map in Fig.4.6, based

on the EGGCCD 2C product in November 2009. It is shown for both ascending and descending

tracks and gives primarily the effect of orbit altitude and atmospheric composition.

(a) Ascending (b) Descending

Figure 4.6: CMA shown geographically in November 2009 when drag free compensation was applied

The accelerometer data can be used to correct for surface forces in the process of orbit determi-

nation and gravity field reconstruction. Since the measurements contain colored noise, they need

to be filtered and calibrated, cf. (Visser, 2009). Another option is to try to absorb non-gravitational

accelerations by empirical parameters, see (Jäggi et al., 2010a).

Since all of the time during the operation phase of the mission the satellite is in drag-free

motion, we use empirical parameters to determine the unmodelled or mis-modelled effects as well

as the residuals of the air drag and other non-gravitational accelerations. The CMA data are not

used for gravitational field determination. After the gravity field model is obtained, the empirical
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accelerations are reconstructed and compared to the measured common modeaccelerations.

4.3 Spherical harmonic analysis from the kinematic orbit

Level-2 orbit products are provided in the context of the Level-2 processing of the HPF by the

AIUB Bern and DEOS Delft (Bock et al., 2011; GOCE HPF, 2009). The so-called Rapid Science

Orbit (RSO) is computed in Delft using Geodyn (Putney et al., 1990; Rowlands et al., 1995) and

GHOST software (Montenbruck et al., 2005a,b) with a latency of 1 day. The Precise Science

Orbit (PSO) is computed in Bern with the Bernese software (Dach et al., 2007), with a latency of

1 week. Both kinds of products consist of kinematic orbits and reduced dynamic orbits, as well as

variance-covariance matrices and rotation matrices.

With the available orbits, one can choose between the reduced dynamic orbitsand kinematic

orbits as measurements for gravitational field determination. Unlike the reduced dynamic orbits

which make use of a-priori models, the kinematic orbits are derived purely geometrically, without

information from any a-priori gravitational field models. Therefore, we use the kinematic orbits

as input.

4.3.1 Outlier detection

In Fig. 4.7, the differences between the kinematic orbits and reduced dynamic orbits are presented

as global maps and histogram, for all three components, based on the data of November and

December, 2009. As shown in Fig.4.7c, 4.7f and4.7i, the standard deviations (STD) of these

differences in all the three components are less than 1.1 cm. We choose 6 cmas the threshold

value for outlier detection. The differences between the kinematic orbits andreduced dynamic

orbit larger than 6 cm are considered as outliers. These data are not used for parameter estimation.

As one can see from both ascending and descending tracks, large differences can be found in

areas close to the North and South Poles. This can be due to the fact that theobservation geometry

between GPS satellites and GOCE satellite is poor at high latitudes or it may be caused by an

ionosphere effect linked to the Earth’s magnetic field. Therefore, the kinematic orbits in these

locations are less accurate than at low latitudes. The precision of the recovered gravitational field

model at these latitudes is expected to be degraded.

The precision of the kinematic orbit is supposed to be better than 2 cm, cf. (Visser et al., 2010).

The weight of an observation is computed with

P(∆) =











1, |∆| ≤ β
(

α−|∆|
α−β

)4
, β ≤ |∆| ≤ α

0, α ≤ |∆|
, (4.17)

where∆ is the difference between the kinematic orbit and the reduced dynamic orbit.α andβ are

6 cm and 3 cm, respectively. For observations with∆ value inside[β ,α ], the computed weight
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Figure 4.7: differences between kinematic orbit and reduced dynamic orbit, with the data in November and December 2009, 16,212,480observations for all the three
components
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decreases with increasing∆. The curve of the weight function is presented in Fig.4.8. As the

curve shows, if∆ is larger than 3 cm, the observation is weighted down, based on Eq. (4.17).
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Figure 4.8: Weight function of the kinematic orbit

Based on this idea, with the data over November and December 2009, 23,056out of

16,212,480 observations are detected as containing outliers, which is about 0.1422% of the to-

tal amount of observations. Most of the outliers are located in the areas close to the North Pole

and even more to the South Pole, see the global maps of Fig.4.7.

4.3.2 Arc length and parameterization

The approach applied in this study requires the orbit to be sampled without interruption. Whenever

a data gap appears the arc will be terminated and a new arc will be started after this gap. As shown

in Fig. 4.9, the neighboring short arcs are distinguished with colors blue and red, and they are

connected to the same node point which is the end of one short arc and the beginning of the next

one. The node points are marked with black triangles in the figure. Since the two neighboring

arcs share the same node point, the orbit is continuous but not smooth (i.e. itstime derivative is

not continuous at the node points). The position vectors at the node pointsare set up as unknown

parameters (namely the orbit parameters,rA andrB in Eq. (4.9)), and estimated after the gravity

field model is obtained. Since the continuity of the orbit is guaranteed, this approach is slightly

different from the short arc approach as applied byMayer-G̈urr (2006) or Eicker et al.(2006),

nevertheless the principle is the same.

The long arc in this study is defined as a continuous orbit without data gap orclock jump of

the GPS receiver on board. It can be as long as 1 day and as short asminimally three short arcs.

The short arc is the orbit segment of which two boundary positions are estimated together with the
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Figure 4.9: 20 minutes segments of short arcs

other parameters such as gravity field coefficients. It is 20 minutes long in thisstudy. The whole

curve in blue and red in Fig.4.9is a long arc. Long arcs are plotted between two circle dots, since

there is no data gap. In the figure, the black dots represent a data gap ora clock jump; after these

black dots a new long arc starts with the initial point marked with a black circle, asone can see the

new arc in magenta and cyan. The short arc is the orbit between two trianglemarks, or a triangle

mark and a circle.

As mentioned in section4.1, the parameters for SST can be divided into three categories:orbit

parameters, empirical parameters andglobal parameters. The orbit parameters are the corrections

of the positions of the node points. For a long arc, the total number of the orbit parameters is 3·
(narc+1), with narc the number of short arcs. The empirical parameters are the 1 cpr accelerations

for the whole long arc, and constant values for each short arc. The total number of the empirical

parameters per long arc is 6+3 ·narc. These two kinds of parameters are calledlocal parameters

since they are arc-dependent. Global parameters are gravity coefficients; they are independent of

the arcs.

Once the observation equations of long arc are obtained, they can be accumulated to the normal

equations, following Eqs. (3.9) and (3.10). The position vectors at the boundary location and

the gravity field coefficients are estimated together with the empirical accelerations, as stated

in subsection2.2.9, by simply applying the convolution to the partials computed according to

Eq. (2.33). As an example, in Fig.4.10the normal matrix is shown from seven continuous short

arcs. There are 24 orbit parameters, 27 parameters for empirical accelerations, and gravitational

field coefficients. The correlation between the local parameters and the global parameters can be

found in the off-diagonal parts in the inverse of the normal matrix.
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Figure 4.10: Normal matrix with orbit parameters, empirical accelerations and gravitational coeffi-
cients for seven consequentive arcs (in m2 and log10 scaled)

The number of the local parameters can be very large, even much higher than the number of

the gravitational field coefficients. For instance, there are more than 20 thousand local parameters

for two months of observations. The longer the time period of data used for parameter estimation,

the more local parameters have to be taken into account. Therefore, the size of the whole normal

equations will become very large for years of observation data. Since these local parameters are arc

dependent, they can be pre-eliminated before combination of the normal equations as discussed

in section3.5. After the global parameters, i.e. the gravitational field coefficients, are solved

for from the combined normal equations, the local parameters are reconstructed arc by arc by

re-substitution.

4.3.3 Results and analysis

We use the kinematic orbit from the PSO product of the period of November 1st to December 31st

in 2009. A gravity field model up to d/o 150 is recovered. More observationsare processed and

combined with SGG for GOCE gravity field solutions presented in Chapter 6.

The estimated coefficients can be compared to the reference values in terms of degree RMS,

similar to Eq. (2.4), computed as

σn =

√

1
2n+1

n

∑
m=0

(

Cnm −C
re f
nm

)2
+
(

Snm −S
re f
nm

)2
, (4.18)
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for degreen. TheCnm andSnm are the estimated coefficients, whereasC
re f
nm andS

re f
nm are the ref-

erence values of degreen orderm. One can also compare two fields in terms of degree median,

which is obtained from the median value for each degree.

The degree RMS values of the estimated gravitational field models with various arc lengths

compared to ITG-Grace2010s are presented in Fig.4.11. Based on our experiments, the short arc

with a length of 20 minutes is chosen for SHA, due to its good trade-off between smoothness of

the orbit and adequate description of the actual variation of the unmodelled (non-gravitational)

accelerations with the empirical parameters.
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Figure 4.11: The degree RMS of the results estimated with different arc length.

Figure4.12shows the degree RMS and degree median. The gravitational field model ITG-

Grace2010s is used as a reference for comparison. TUMYGSST is defined as the result without

constraint in the polar gap; TUMYGSSTpgr means the result with constraining the geoid height

in the polar gap to be consistent to that of EGM2008 with an STD of 20 cm. We use a 1◦×1◦

grid over the polar gap defined at latitudes [-90◦ -83◦] and [83◦ 90◦]. These are the areas the

satellite orbit does not reach due to its inclination of 96.7◦. The solid curves in red and in blue

are the differences of the ITG-Grace2010s to the unconstrained solution and constrained solution,

respectively. The dashed curves in red and in blue are formal errorsof the unconstrained and

constrained solutions, respectively. The zig-zag behavior in the degree RMS of unconstrained

results is due to the polar gap. After the constraint is applied, this behavior disappears. The degree

medians of both the unconstrained and constrained solution are similarly closeto ITG-Grace2010s.

The shape of the formal error shows good consistency of the difference of the coefficients to the

reference model. The signal-to-noise ratio (SNR) is one at approximately degree 105. This is

the upper limit one can achieve with only two months of orbit data. The analysis inChapter 2

about the maximum d/o to be recovered, which states that the degree up to 120was beyond the

sensitivity of GOCE SST, is therefore confirmed by the real data analysis.

The daily variation of atmosphere and ocean in terms of SH coefficients is alsoincluded (in

magenta). This contribution is modelled and subtracted from the observations. In the degree

median in Fig.4.12bone can see the deviations of the estimated coefficients from the reference
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Figure 4.12: Degree RMS and degree median of the models

model, ITG-Grace2010s. They are smaller than or at same level of magnitude as the AOD signal,

up to degree 8. This shows that the AOD correction should be applied during the parameter

estimation.

The coefficient differences of the SST solution w.r.t. ITG-Grace2010sand formal errors of

the solutions are presented in Fig.4.13, with the arrangement of the coefficients as in Fig.2.1.

The coefficients of higher order and less than degree 100 are estimated with good accuracy. This

can be seen from the coefficient differences and formal error for both the unconstrained case and

constrained case. The zonal and near-zonal coefficients are determined with less accuracy due to

the polar gap. After the constraint is applied, the zonal and near-zonalcoefficients are determined

with the a similar level of accuracy as the other coefficients, compare Fig.4.13cand4.13dto

Fig. 4.13aand4.13b.

The geoid height can be computed from the estimated SH coefficients using Eq. (2.2). The dif-

ferences between two models represent their spatial deviations. In Fig.4.14the geoid differences

in the latitude range [-83◦ 83◦] between unconstrained solution and ITG-Grace2010s and between

constrained solution and ITG-Grace2010s are displayed on a 0.25◦×0.25◦ grid. The latitude band

is restricted in order to eliminate the polar areas where no data is collected by GOCE.

In Fig. 4.14a, the geoid differences between the unconstrained solution and ITG-Grace2010s

up to d/o 100 display large values in the high-latitude areas. The STD value (11.14 m) is even

larger than that of the geoid differences for the case of up to d/o 150 (4.25 cm), see Fig.4.14b.

This is the truncation effect due to the correlation of the zonal and near zonal coefficients, and this

coefficient correlation is due to the existence of the polar gap. Due to this correlation, the high

degree coefficients contain information of the long-wavelength signal of the gravity field. If one

truncates the model at a certain degree and order, some long-wavelengthsignal is removed from

the model and large differences appear in its differences to the reference gravity field model.

The geoid differences between the constrained solution and ITG-Grace2010s are displayed in

Fig. 4.14cand4.14d, for the situations of up to d/o 100 and 150, respectively. After the constraint

over the polar gap is applied, this truncation effect disappears. This is because the correlation in
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(a) Coefficient differences, unconstrained at polar gap (b) Formal error, unconstrained at polar gap

(c) Coefficient differences, constrained at polar gap (d) Formal error, constrained at polar gap

Figure 4.13: coefficient differences of SST solution w.r.t. ITG-Grace2010s and formal error of the
solution (log10 scale)

(a) Unconstrained at polar gap, d/o 100 (b) Unconstrained at polar gap, d/o 150

(c) Constrained at polar gap, up to d/o 100 (d) Constrained at polar gap, up to d/o 150

Figure 4.14: Geoid differences of SST solution w.r.t. ITG-Grace2010s, up to d/o 100 and 150
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the zonal and near-zonal coefficients due to the polar gap is largely taken care of by the introduced

polar gap constraint (regularization).

Since the orbit of GOCE is lower than that of CHAMP, its sensitivity to the gravitational field

is higher than that of CHAMP. As shown in Fig.4.15, two months of GOCE data can provide

a result more close to ITG-Grace2010s than that with one year of CHAMP data. The CHAMP

solution is from the model AIUB-CHAMP01S (Jäggi et al., 2011) up to d/o 70. It was computed

based on the CHAMP orbits over the period from March 2002 through March 2003. The STD

values of the geoid differences between ITG-Grace2010s and the constrained solution with 61

days of GOCE orbit (model TUMYGSSTpgr) are 4.09 cm and 7.34 cm for up to d/o 50 and 70,

respectively. However, the STD values of the geoid differences between ITG-Grace2010s and

AIUB-CHAMP01S are 7.3 cm and 28 cm, for up to d/o 50 and 70, respectively, much higher than

the comparison between TUMYGSSTpgr and ITG-Grace2010s. The ITG-Grace2010s is very

accurate at long and medium wavelength. It is a precise model to be used asreference model. This

indicates that two months of GOCE data can provide a result which is more accurate than that with

one year of CHAMP data.

(a) Result from 1 year CHAMP, d/o 50 (b) Result from 1 year CHAMP, d/o 70

(c) Result from 2 months GOCE, d/o 50 (d) Result from 2 months GOCE, d/o 70

Figure 4.15: Geoid differences of SST solution w.r.t. ITG-Grace2010s, up to d/o 50 and 70

The geoid differences for both CHAMP and GOCE w.r.t. ITG-GRACE2010s are not normally

distributed. Large values in high latitudes are likely due to the fact that the accuracy of the GOCE

orbits is not globally homogeneous, compare Fig.4.7. As a resultC20 and other low degree

coefficients are affected by this kind of behavior. Two options can be taken to overcome this issue,
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4.3 Spherical harmonic analysis from the kinematic orbit

one is fixingC20 and other low degree coefficients to some a-priori information, disregarding any

correlation with other coefficients, the other one is combining GOCE SST with other observation

types such as K-band ranging of GRACE and/or satellite laser ranging (SLR) to LAGEOS, which

are more sensitive toC20 and other low degree coefficients than GOCE.

4.3.4 Contribution of Regularization

The contribution of observations (GOCE kinematic orbit) and pseudo-observations (the grid values

for the constraint (stabilization) in the polar gap) can be computed with their normal matrices based

on the theory presented in section3.3. As shown in Fig.4.16, the contribution from regularization

is less than one percent, if the geoid of the polar gap is constrained at a 20-cm level to an a-priori

model, such as in our case EGM2008. The upper right and lower left panels in Figs.4.16aand

4.16adisplay the contribution per degree and per order, respectively. The contribution analysis of

the regularization is explicitly independent of the chosen a-priori model, because it is computed

from the normal matrices only, without “knowledge” of the observations and the a-priori values.

(a) From kinematic orbits (b) From regularization

Figure 4.16: Contribution from SST observations and pseudo-observations in polar gaps

From the contribution analysis, one can find that zonal and near-zonalcoefficients get in-

formation from the regularization (constraint), and the higher the degree,the more contribution

comes from the a-priori information. The average value of the contributionthe polar stabilization

is as small as 0.415%. This means the information of the a-priori field for regularization is very

small. However, it is important for GOCE, since it largely de-correlates the zonal and near-zonal

coefficients caused by the existence of the polar gap, and it stabilizes the solution.

There is a dilemma when regularization is applied. On the one hand, it is hoped toobtain

results without regularization in order to avoid any dependency on the applied a-priori informa-

tion. On the other hand, it is hoped to combine the good available a-priori information with the

observations to get an optimal solution. With the contribution analysis, insight isgained into how

much information comes from the actual observations, and how much from regularization.
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4. GOCE GRAVITY FIELD DETERMINATION FROM SATELLITE-TO-SATELLITE
TRACKING

4.3.5 Reconstructed Accelerations

Apart from the quality of the global parameters, we look into that of the localparameters. The

empirical accelerations can be reconstructed after the global parametersare solved. As shown in

Fig. 4.17, the full normal equations (FNEQ) are constructed from observations of each day. By

applying pre-elimination as described in section3.5, all orbit parameters and empirical accelera-

tions can be pre-eliminated, and the system of full normal equations reduces to the so-called re-

duced normal equations (RDNEQ). As the parameters in the RDNEQ are onlygravitational field

coefficients, they can be combined applying the appropriate weighting. Thegravitational field

coefficients are obtained by solving the combined normal equations. Introducing the estimated

coefficients into the observation equations, which contain now only orbit parameters and empir-

ical parameters, for each arc the local parameters can be obtained by solving these observation

equations by least squares estimation.

Figure 4.17: Diagram of SST data processing

The reconstructed accelerations are shown in Fig.4.18during the transition time period from

non-drag-free to drag-free motion. The values over the period of November and December 2009

are presented in Fig.4.19. In the upper panel of Fig.4.18, from 00:00 to about 14:40 the magni-

tude in the along-track direction is larger than the other two. This shows that the air drag is not

compensated by ion thrusting. After 14:40 both the reconstructed and the observed accelerations

decrease significantly. The reconstructed accelerations follow the observed ones but are not the

same as the observed ones. On the one hand, there are offsets and scale factors in the observed

values; on the other hand, the reconstructed values contain not only non-gravitational forces, but

some model errors from the gravitational forces.
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4.3 Spherical harmonic analysis from the kinematic orbit
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Figure 4.18: Empirical accelerations vs. observed accelerations on May7th, 2009; at about 14:41
GOCE transits from non-drag-free to drag-free mode, a similar behavior can be found in (Jäggi et al.,
2010b)

The reconstructed accelerations in the cross-track direction are more consistent with the mea-

sured accelerations than the other two components. In radial direction, thedifferences between the

reconstructed and the observed accelerations are larger than those in along- and cross-track direc-

tions. The possible reason is that the unmodelled and/or mis-modelling effects inradial direction

are larger than in the other two directions, and/or some information from along-track direction

might be absorbed by the radial direction due to the theoretical coupling between along-track and

radial directions (Sneeuw, 2000).

This comparison holds only approximately, since the reconstructed accelerations are given in

the local orbital reference frame (LORF), whereas the measured values are given in the gradiome-

ter reference frame (GRF), (seeGruber, 2010). If the empirical parameters were modelled in the

GRF, this information could be used to estimate the biases and scale factors of the six individual

accelerometers, as done in (Visser, 2009).

In Fig. 4.19some correlation can be found when comparing the reconstructed accelerations

and the differences between the kinematic orbits and reduced dynamic orbitspresented in Fig.4.7.

The magnitude of the reconstructed accelerations in the along-track direction is smaller than those

in the cross-track and radial directions, due to the drag-free compensation in flight direction. Cor-

relation can be found between the reconstructed cross-track acceleration and the yaw angle of the

transformation between GRF to LORF, if one compares Fig.4.19to the attitude angles between the

GRF and LORF presented in Fig.5.6 in the next chapter. The differences between theσ values in
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4. GOCE GRAVITY FIELD DETERMINATION FROM SATELLITE-TO-SATELLITE
TRACKING

Fig. 4.19and in4.5bis large, the reasons are first, the scale differences between the measured and

reconstructed accelerations exist, as shown in Fig.4.18; second, these two types of accelerations

are defined in two slightly different coordinate systems; and third, the reconstructed accelerations

contain not only the non-gravitational accelerations, but also some mis-model error.

(a) along-track, ascending (b) along-track, descending

(c) cross-track, ascending (d) cross-track, descending

(e) radial, ascending (f) radial, descending

Figure 4.19: Reconstructed acceleration over the period of November andDecember 2009

4.3.6 Reconstructed Orbits and Residual Analysis

Using Eq. (4.9), the orbits can be reconstructed from the resulting gravitational field together with

the solved boundary positionrA , rB and the empirical accelerations. The reconstructed orbits are

reduced dynamic orbits, since the empirical accelerations are introduced during the parameter es-
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4.4 Summary

timation. As we used the kinematic orbits as observations, the differences between the kinematic

orbits and the reconstructed orbits are the residuals. In Fig.4.20the residuals are presented ge-

ographically. Large values of the residuals can be found at high latitudes. As pointed out earlier

the kinematic orbits in these regions are less accurate, compare Fig.4.7. Compared to the reduced

dynamic orbits in SSTPRD 2I sub-products computed at AIUB, the reconstructed orbits in this

study are closer to the kinematic orbit, since a gravitational field model derivedfrom the kinematic

orbits is used to reconstruct the orbits, cf. the right column of Fig.4.20. Since the precision of

orbits at high latitudes is poorer than that at lower latitudes, the recovered gravitational field model

is expected also to be less accurate towards the poles. This can be found inFig.4.15by comparing

our results to ITG-Grace2010s. However, the formal errors of the geoid of the estimated model

at high latitudes are smaller than at low latitudes, due to the fact that the number of the obser-

vations is much higher towards the poles. With more and more observations used for parameter

estimation, the high latitude areas will result better precision, benefited from the high density of

the measurements there.

The standard deviations of the differences between the reconstructed orbits to the kinematic

orbits are smaller than those of the difference between the kinematic orbits to thereduced dynamic

orbits, compare the right column of Fig.4.20 and4.7. One can see that the residuals satisfy a

Gaussian distribution (with 95% confidence based on a Kolmogorov-Smirnovtest, see (Massey,

1951)). This proves that the estimated parameters are really well adjusted to the kinematic orbits.

4.4 Summary

Based on the integral equation approach, a gravitational field model up to d/o150 is recovered

from the observations in November and December 2009. The signal-to-noise ratio (SNR) is close

to one at about d/o 105. Due to the linearity of the method, the results show hardly any correlation

with the applied a-priori gravitational field (initial values).

The disturbances from solid Earth tides, ocean tides, direct attraction from the moon and the

sun, the effect of general relativity as well as mass redistribution due to the variation of atmosphere

and ocean are modelled and removed from the orbit. Since these accelerations can be modelled

reasonably well, a potential mis-modelling error of gravitational forces should be quite small.

However, if there are some errors in the models, such as uncertainties of the ocean tide model, or

atmosphere/ocean, it can lead to deviations. The empirical parameters are useful to compensate

for such mis-modelling.

The non-gravitational forces are modelled by introducing empirical parameters, which are 1-

cpr sine/cosine parameters for a whole continuous long arc, and constant accelerations for each

short arc, all in all three directions. They are modelled in the LORF, as discussed in subsec-

tion 2.2.9. Comparing the reconstructed empirical accelerations to the CMA measured by the

accelerometers on board shows clear similarities. The gravitational field signal does not have the
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4.4 Summary

behavior of a constant (in the time period of a short arc) and 1-cpr, theoretically the empirical

parameters are expected to absorb little signal of the gravitational field.

The reconstructed orbits are very close to the kinematic orbits, compared to the differences

between the reduced dynamic orbits and the kinematic orbits from the SSTPSO2I product. This

indicates that the recovered gravitational field fits the kinematic orbit more thanthe a-priori field

used for deriving the reduced dynamic orbit in the SSTPSO2I product. The radial direction is

slightly less accurate than the other two components obviously due to the observing geometry

between GPS satellites and GOCE satellite, as expected.

The recovered gravitational field from GOCE kinematic orbits based on two months of data

seems to fit better to the very accurate gravity field model ITG-Grace2010sthan that based on

one year of CHAMP data. This is due to the low altitude of GOCE orbits, which makes them

more sensitive to the higher end of the long-wavelength part of the Earth’sgravitational field. The

geoid heights derived from the gravity field model recovered with GOCE kinematic orbits have an

accuracy of 7.34 cm RMS up to d/o 70, when compared to ITG-Grace2010s. The coefficientsC20

and some other low degree ones are less accurately determined, due to the fact that GOCE’s orbits

in this two-month period are less accurate at high latitudes.

Pseudo-observations in the polar areas are used to stabilize the computationand de-correlate

the zonal and near-zonal coefficients. Their contribution is very small, but important. As one can

see in Fig.4.14, after the pseudo-observations are applied, the truncation effect is reduced, or even

disappears.

71



5

GOCE Gravitational Gradiometry and

Spherical Harmonic Analysis

GOCE is the first mission with a gradiometer on board. The gradiometer measures some compo-

nents of the gravitational gradients, which are the second derivatives of the gravitational potential.

The gravitational gradients serve as the primary observations for gravityfield determination. This

chapter focuses on the analysis of the gradiometer data, and the spherical harmonic analysis based

on these data. The introduction of the gravitational gradiometry and the derivation of the GGT are

discussed in section 5.1. The observation model is presented in section 5.2.Section 5.3 presents

an analysis of the gradiometer data regarding various aspects. Section 5.4focuses on spherical

harmonic analysis. Section 5.5 summarizes the methodology and results.

5.1 GOCE gravitational gradiometry

The gradiometer is made of three orthogonally arranged one-axis gradiometers. Each of them

consists of two ultra-sensitive three-dimensional accelerometers mounted at the end points of a

half-meter baseline. Each accelerometer contains a test mass of Rhodium-Platinum, weight 320 g

and 4× 4× 1 cm3 in size. The test mass is kept levitated by an electrostatic feedback system

inside a chamber with eight pairs of electrodes. The center of the three gradiometer axes coincides

closely with the satellite’s center of mass, compare Fig.5.1. Thus, the components of the gravita-

tional gradient tensor are approximated by the finite acceleration difference over the corresponding

baseline (Rummel et al., 2011).

Because functional testing of the accelerometers is done in the laboratory on ground and re-

quires levitation of the test mass under the influence of gravity, this leads to each accelerometer

being ultra-precise along two orthogonal directions but much less sensitive along its third axis, see

alsoFloberghagen et al.(2011); Rummel et al.(2011). Thus the ultimate sensitivity can only be

attained along two axes, while the third is made less sensitive. The configurationshown in Fig.5.2

was decided for the GOCE gradiometer.
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5.1 GOCE gravitational gradiometry

Figure 5.1: GOCE gravitational gradiometer consisting of three orthogonal one-axis gradiometers,
each 50 cm long and with two accelerometers; technical drawing (left) and actual instrument (right)
(source: ESA)

The difference between accelerations measured by each set of two accelerometers (which are

about 50 cm apart, see Fig.5.2), i.e., the so-called differential mode acceleration (DMA), in the

direction joining them contains the basic gradiometric information. After removing the angular

motion from the DMA, the gravitational gradients (GG) are derived in the gradiometer reference

frame (GRF), see (European Space Agency, 2006; Gruber, 2010; van Hees et al., 2008; Rummel,

1986).

Gravitational gradiometry is the measurement of the second derivatives ofthe gravitational

potentialV . It is referred to as gradiometry because the gradients of the componentsof the gravita-

tional acceleration vectoraaa are measured. The gravitational gradients form a second-order tensor

field with 3× 3 components, the so-called gravitational gradient tensor (GGT) (Rummel et al.,

2011). The tensor is denoted asVVV . In an arbitrarily chosen local Cartesian coordinate system at

locationO, it is defined as

VVV (O) = ∇⊗aaa =





Vxx Vxy Vxz

Vyx Vyy Vyz

Vzx Vzy Vzz



 . (5.1)

The acceleration at location of accelerometeri is

a(i) = a(O)+VVV ∆r i +
(

o2) , (5.2)

with ∆rrri = rrri − rrrO . The omitted quadratic and higher order terms contain the third-, fourth- and

higher-order derivative tensors ofV . We assume the components ofaaa to be measured by an
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5. GOCE GRAVITATIONAL GRADIOMETRY AND SPHERICAL HARMONIC
ANALYSIS

Figure 5.2: Location of the 6 accelerometers, denotedAi, i = 1,2, · · · ,6 in the gradiometer reference
frame (GRF). Thesolid arrows at each of the accelerometer triads show the ultra-sensitive axes, the
dashed arrows the less sensitive axes.

accelerometer ati and a second device at a pointj exactly symmetric toi relative toO. Then the

acceleration difference betweeni and j gives

aaa( j)−aaa(i) =VVV (O)∆rrri j +
(

o3) , (5.3)

where∆rrri j = rrr j − rrri.

The even terms drop out because of the symmetry of the Taylor series. Thecubic and all

higher-degree terms are negligibly small, at least for gradiometers of laboratory size. Thus, the

nine components ofVVV are derived from measured acceleration differences over baseline lengths,

e.g., the componentVxy is derived from the difference of the x-components of the two accelerom-

eters of the y-axis, divided by the baseline length∆y:

VVV =





Vxx Vxy Vxz

Vyx Vyy Vyz

Vzx Vzy Vzz



=







∆a1,4,x
∆x

∆a2,5,x
∆y

∆a3,6,x
∆z

∆a1,4,y

∆x
∆a2,5,y

∆y
∆a3,6,y

∆z
∆a1,4,z

∆x
∆a2,5,z

∆y
∆a3,6,z

∆z






+
(

o3)

= DDD+
(

o3) ,

(5.4)

where∆x, ∆y and∆z are the distance between the accelerometer pairs 1-4, 2-5 and 3-6, respec-

tively. ∆ai, j,x = ai,x − a j,x is the x-component of the difference between the accelerations at the

centers of accelerometersi and j.

The gradiometer rigidly mounted into the spacecraft rotates in space with the mainangular

velocity about the y-axis. Thus, in the GRF the accelerometers pick up any rotational motion, in
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5.1 GOCE gravitational gradiometry

addition to the gravitational signal

aaa′(i) = aaa(i)+ΩΩΩ ΩΩΩ∆rrri + Ω̇ΩΩ∆rrri , (5.5)

with aaa′ the accelerations measured in the rotating GRF, and with the well-known expressions for

centrifugal and Euler accelerations, where

ΩΩΩ =





0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0



 and (5.6a)

Ω̇ΩΩ =





0 −ω̇z ω̇y

ω̇z 0 −ω̇x

−ω̇y ω̇x 0



 . (5.6b)

Thereby it is assumed that the test masses of all six accelerometers are kept “still” and levitated.

The differential accelerations in the rotating frame become

DDD =





Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz



=





Vxx Vxy Vxz

Vyx Vyy Vyz

Vzx Vzy Vzz





+





−(ω2
y +ω2

z ) ωxωy ωxωz

ωyωx −(ω2
z +ω2

x ) ωyωz

ωzωx ωzωy −(ω2
x +ω2

y )





+





0 −ω̇z ω̇y

ω̇z 0 −ω̇x

−ω̇y ω̇x 0





=VVV +ΩΩΩ ΩΩΩ+ Ω̇ΩΩ .

(5.7)

In Eq. (5.7), the left-hand side contains the measured acceleration differences perbaseline

length with, e.g.,Dxy =
∆a2,5,x

∆y , Dyx =
∆a1,4,y

∆x , compare Eq. (5.4). The right-hand side is the sum

of gravitational gradients and centrifugal terms with angular velocity products as well as a matrix

containing angular accelerations. Symmetry ofVVV andΩΩΩ ΩΩΩ versus skew-symmetry oḟΩΩΩ allows

separation and therefore “isolation” of the angular accelerations:

Ω̇ΩΩ =
1
2

(

DDD−DDDT ) , (5.8a)

VVV +ΩΩΩ ΩΩΩ =
1
2

(

DDD+DDDT ) . (5.8b)

Angular velocities are obtained by integration of the angular accelerations;with the elements

of ΩΩΩ ΩΩΩ known, the gravitational gradients inVVV can be determined. In fact, the angular velocities

are derived from an optimized combination of these angular accelerations and angular rates derived

from the star tracker (Rummel et al., 2011; Stummer et al., 2011).
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It is unavoidable to use some less accurate components for the separation of GGT and angular

motion. With the configuration of Fig.5.2, the GGT is derived based on Eq. (5.7) as





Vxx Ṽxy Vxz

Ṽyx Vyy Ṽyz

Vzx Ṽzy Vzz



=





Dxx Dxy Dxz

D̃yx Dyy D̃yz

Dzx D̃zy Dzz





−





−(ω2
y + ω̃2

z ) ω̃xωy ω̃xω̃z

ωyω̃x −(ω̃2
z + ω̃2

x ) ωyω̃z

ω̃zω̃x ω̃zωy −(ω̃2
x +ω2

y )





−





0 − ˜̇ωz ω̇y
˜̇ωz 0 − ˜̇ωx

−ω̇y ˜̇ωx 0



 .

(5.9)

The less sensitive elements are indicated with tilde above the variables. This choice ensures

that ω̇y can be determined with high precision, and after integrationωy as well. This is impor-

tant when determining the angular rates, because it holdsωy ≫ ωx or ωz. Essentially the four

gradiometer componentsVxx, Vyy, Vzz, andVxz are resolvable with high precision.

The observations from GOCE gradiometer are in general correlated, i.e.statistically not in-

dependent. The PSD of their noise is frequency dependent. This kind ofnoise is called colored

noise. A very powerful test of the performance of the gradiometer is the Laplace condition, which

says that the sum of the three diagonal components of the GGT, i.e. its trace,is theoretically zero.

For the output of the gradiometer, the trace of the measured GGT is the noise of the measurement.

As shown in Fig.5.3 based on (Cesare, 2008), the requirements of square root of the GGT trace

error PSD in the MB is displayed in blue. The expected square root of the trace error PSD in the

low-frequency band (LFB) is in dashed black and in the higher-frequency band (HFB) is given in

red. The requirements of the square root of the GGT trace error PSD are approximately the noise

PSD of the measurements, which are frequency dependent as shown in Fig. 5.3. In the MB from

5 to 100 mHz, the noise level is smaller than that at the frequencies outside of this range, and

at 5 mHz it increases with 1/ f towards the lower frequencies. The higher noise outside of this

frequency range (especially the frequencies lower than 5 mHz, i.e. LFB)can either be filtered out

or modelled with empirical parameters before data analysis.
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Figure 5.3: Square-root of the power spectrum density of the GGT trace
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5.2 Observation model

With the GGT measurements, the following approaches can be applied to gradiometer data for

SHA:

i. Semi-analytical approach based on Hill’s theory, (Sneeuw, 2000). The time series of the

gradiometer observations are transformed to the spectral domain, the observation equations

are formulated in the spectral domain as well. From the assumption of circular orbit, the

normal matrix can be reduced to be block diagonal. Therefore, it can be computed very fast

and with a rather small computer memory;

ii. Direct approach (DIR): Analysis based on the information inside the measurement band

(MB) only. The information outside of the MB is bandpass filtered. Gradiometry is in-

troduced directly as new type of observable into the existing GINS software(Marty et al.,

2005). GINS has been used for the series of EIGEN models produced by GFZand GRGS;

iii. Time-wise approach (TIM): Data decorrelated over the entire spectrum(Pail et al., 2011a;

Schuh, 2002). The residuals for the observations are analyzed and a filter is constructed

based on the residuals. The idea is, after the residuals pass the dedicatedfilter as inputs, the

output behaves like white noise. The essence is: the data are treated as a timeseries along

the orbit;

iv. Space-wise approach (SPW): Collocation approach after applyingWiener filter (Migliaccio

et al., 2004; Tscherning, 1993). By exploiting the spatial correlation of the Earth gravity

field, a gravitational field model can be estimated from the measurements gridded at mean

satellite altitude. The essence is: the data are treated as observations in the space domain on

a sphere.

In addition, there is a quick look solution. Similar to semi-analytical approach, itis computed

based on the approximations that the orbit must be circular, and without precession. It is useful

for quality check and data cleaning (Pail et al., 2007). Recently, a few models, such as TIM1,

DIR1, SPW1 (Pail et al., 2011a) and TIM2 (Pail et al., 2011b), DIR2 (Bruinsma et al., 2010),

SPW2(Migliaccio et al., 2011), have been published based on DIR, TIM and SPW approaches.

The method for SGG data processing in this study is similar to a time-wise approach. Applying a

filter at both sides of the observation equations, the colored noise outside of the MB is transformed

to a white noise situation and the information inside the MB is preserved and extracted by SHA.

5.2 Observation model

The GGT measured by GOCE gradiometer is given in GRF, as seen in Eq. (5.9). The gravity field

is, in general, computed in the Earth fixed frame. The GGT computed from the gravity field model
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is given in the ECEF frame as

VECEF =





Vxx Vxy Vxz

Vyx Vyy Vyz

Vzx Vzy Vzz





ECEF

, (5.10)

whereVi j =
Nmax

∑
n=0

n
∑

n=0
V nm

i j , andi, j = x,y,z. V nm
i j are computed with Eqs. (5.11) to (5.16). Starting

with Eqs. (2.1) or (2.6), the second derivatives of the gravitational potential are computed referring

to ECEF frame. They are gradient of the gravitational accelerations, which are computed with

Eq. (2.14). The derivation can be found inMétris et al.(1999); Montenbruck and Gill(2000).

Here we modify the formulas into fully normalized form, again, in order to avoid the overflow

and/or underflow which can happen in unnormalized cases. With the notationgiven in Eq.2.7 in

page14, the elements of gravitational gradient matrix in terms of spherical harmonics are

V n0
xx =

∂ ẍn0

∂x
=

GM⊕
R3
⊕

· 1
2

{
√

(2n+1)
(2n+5)

(
√

(n+4)!
2n!

V n+2,2−
(n+2)!

n!
V n+2,0

)

Cn0

}

V n1
xx =

∂ ẍn1

∂x
=

GM⊕
R3
⊕

· 1
4

{
√

(2n+1)(n+5)!
(2n+5)(n+1)!

(

Cn1V n+2,3+Sn1W n+2,3
)

+

√

(2n+1)(n+3)(n+2)
(2n+5)

(

−3Cn1V n+2,1−Sn1W n+2,1
)

}

V n2
xx =

∂ ẍn2

∂x
=

GM⊕
R3
⊕

· 1
4

{
√

(2n+1)(n+6)!
(2n+5)(n+2)!

(

Cn2V n+2,4+Sn2W n+2,4
)

+2

√

(2n+1)(n+4)!n!
(2n+5)(n+2)!(n−2)!

(

−Cn2V n+2,2−Sn2W n+2,2
)

+

√

2(2n+1)(n+2)!
(2n+5)(n−2)!

(

Cn2V n+2,0+Sn2W n+2,0
)

}

V nm
xx

m>2
=

∂ ẍnm

∂x
=

GM⊕
R3
⊕

· 1
4

{
√

(2n+1)(n+m+4)!
(2n+5)(n+m)!

(

CnmV n+2,m+2+SnmW n+2,m+2
)

+2

√

(2n+1)(n+m+2)! (n−m+2)!
(2n+5)(n+m)! (n−m)!

(

−CnmV n+2,m −SnmW n+2,m
)

+

√

(2n+1)(n−m+4)!
(2n+5)(n−m)!

(

CnmV n+2,m−2+SnmW n+2,m−2
)

}

,

(5.11)
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V n0
xy =

∂ ẍn0

∂y
=

GM⊕
R3
⊕

· 1
2

{

(

Cn0W n+2,2
)

√

(2n+1)(n+4)!
2(2n+5)n!

}

V n1
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∂ ẍn1

∂y
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GM⊕
R3
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· 1
4

{
√

(2n+1)(n+5)!
(2n+5)(n+1)!

(

Cn1W n+2,3−Sn1V n+2,3
)

+
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(n−1)!

√

(2n+1)(n+3)!
(2n+5)(n+1)!

(

−Cn1W n+2,1−Sn1V n+2,1
)

}

V n2
xy =

∂ ẍn2

∂y
=

GM⊕
R3
⊕

· 1
4

{
√

(2n+1)(n+6)!
(2n+5)(n+2)!

(

Cn2W n+2,4−Sn2V n+2,4
)

+

√

(2n+1)(n+2)!
(2n+5)(n−2)!

(

−Cn2W n+2,0+Sn2V n+2,0
)

}

V nm
xy

m>2
=

∂ ẍnm

∂y
=

GM⊕
R3
⊕

· 1
4

{
√

(2n+1)(n+m+4)!
(2n+5)(n+m)!

(

CnmW n+2,m+2−SnmV n+2,m+2
)

+

√

2(2n+1)(n−m+4)!
(2n+5)(n−m)!

(

−CnmW n+2,m−2+SnmV n+2,m−2
)

}

,

(5.12)

V n0
xz =

∂ ẍn0

∂ z
=

GM⊕
R3
⊕

·
{

(n+1)

√

(2n+1)(n+3)(n+2)
2(2n+5)

(

Cn0V n+2,1
)

}
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∂ ẍn1
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R3
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·
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√
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√
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−Cn1V n+2,0−Sn1W n+2,0
)

}

V n1
xz

m>1
=

∂ ẍn1

∂ z
=

GM⊕
R3
⊕

·
{

1
2

√

(2n+1)(n−m+1)(n+m+3)!
(2n+5)(n+m)!

(
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+
1
2

√

(2n+1)(n+m+1)(n−m+3)!
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)

}

,

(5.13)
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V n0
yy =

∂ ÿn0

∂y
=

GM⊕
R3
⊕

· 1
2

{
√

(2n+1)
(2n+5)
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√
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)
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}

V n1
yy =

∂ ÿn1

∂y
=

GM⊕
R3
⊕

· 1
4

{
√

(2n+1)(n+5)!
(2n+5)(n+1)!

(

−Cn1V n+2,3−Sn1W n+2,3
)

+
(n+1)!
(n−1)!

√

(2n+1)(n+3)(n+2)
(2n+5)(n+1)n

(

−Cn1V n+2,1−3Sn1W n+2,1
)

}

V n2
yy =

∂ ÿn2
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√
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)

}
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=

GM⊕
R3
⊕

· 1
4

{
√

(2n+1)(n+m+4)!
(2n+5)(n+m)!

(
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)
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)

+

√
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(
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)

}
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(5.14)

V n0
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∂ ÿn0
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GM⊕
R3
⊕

· 1
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√
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)
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√
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(2n+5)(n−1)!

(
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)

}
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=
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∂ z
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⊕

·
{
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2

√

(2n+1)(n−m+1)(n+m+3)!
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+
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(2n+5)(n−m)!
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)

}

(5.15)

V nm
zz =

∂ z̈nm

∂ z
=

GM⊕
R3
⊕

·
{
√

(2n+1)(n+m+2)! (n−m+2)!
(2n+5)(n+m)! (n−m)!

(

CnmV n+2,m +SnmW n+2,m
)

}

.

(5.16)

Similar to Eq. (2.15), the partial derivatives of the gradients w.r.t. the gravitational field coef-
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ficients are obtained based on Eqs. (5.11) to (5.16) and are represented as

∂VECEF

∂βββ
=









∂Vxx
∂βββ

∂Vxy

∂βββ
∂Vxz
∂βββ

∂Vyx

∂βββ
∂Vyy

∂βββ
∂Vyz

∂βββ
∂Vzx
∂βββ

∂Vzy

∂βββ
∂Vzz
∂βββ









ECEF

. (5.17)

Since the measurements of theVxy andVyz components are less accurate, the measured GGT

from the GOCE gradiometer is an incomplete tensor. It must be avoided to transform the incom-

plete GGT from the GRF to ECEF or any other Earth-fixed frame, otherwise the highly accurate

components will be degraded by the less accurate ones. Moreover, the rotation of the measure-

ments will lead to a correlation between different components. Therefore,the observation equa-

tions are directly formulated in the GRF. This means, the partial derivatives of the GGT to each

individual coefficient and the reference values of the GGT computed from a-priori model are ro-

tated into the GRF. The rotation is done by

VGRF= Ci
GRFC

e
i VECEF

(

Ci
GRFC

e
i

)T

⇒ ∂VGRF

∂βββ
= Ci

GRFC
e
i
∂VECEF

∂βββ
(

Ci
GRFC

e
i

)T
,

(5.18)

whereCe
i is the rotation matrix from the ECEF to the inertial frame, andCi

GRF is the rotation matrix

from the inertial frame to the GRF. TheCe
i can be evaluated using the SSTPRM 2I sub-product

or using IERS conventions (McCarthy and Petit, 2004) with a dedicated software package, such

as SOFA, (seeIAU SOFA Board, 2010). TheCi
GRF is obtained from the EGGIAQ 2C product.

With the above derivations, the observation equations become:

ṽ =
∂VGRF

∂βββ
δβββ −

(

ṼGRF−V0
GRF

)

, (5.19)

with ṼGRF the measured GGT andV0
GRF the reference values from an a-priori model. Compared to

Eq. (3.5), ṼGRF−V0
GRF= d̃ is the observed minus computed part; the parameters in vectorβββ can

be therefore estimated based on Eq. (3.8) with appropriate weighting, as described in section3.4.

5.3 Reductions of the Gravitational Gradient

Like the orbit perturbations, compare sect.4.2, also the output from the gradiometer onboard the

satellite contains a contribution from the gravitational gradients due to the attraction of the moon

and sun, Earth solid tides and ocean tides as well as short-term variations from the atmosphere

and ocean. The gradients due to the direct attraction of the moon and sun are computed with

Eq. (2.17), and those due to solid Earth tides, ocean tides and atmosphere and ocean are computed

from Eqs. (5.11) to (5.16) using the corresponding coefficients of these models.
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The GGT has nine elements, and is symmetric. Thus, disregarding Laplace condition, there

are six independent components. We define the signal magnitude of a GGT by six elements

|V|=
√

V 2
xx +V 2

yy +V 2
zz +V 2

xy +V 2
xz +V 2

yz . (5.20)

In Fig.5.4, the magnitude of the computed values from models is shown on the left and PSD1/2

on the right. From the magnitude shown in Fig.5.4awith µ representing mean values, the largest

effect is due to solid Earth tides, different from Fig.4.4 where the direct tidal attraction of the

moon is the largest effect. This can be explained by the fact that the magnitude of the acceleration

due to the direct attraction of the moon and the sun is larger than that due to the Earth tides, but its

variation (gradient) is smaller than that due to the Earth tides and ocean tides.
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Figure 5.4: Magnitude (left) and PSD1/2 (right) of the corrections to GGT

In Fig. 5.4b, the specified requirements represent the expected noise level of the GOCE gra-

diometer. They are shown as black dashed line. In the MB and below, the magnitudes of all the

time-varying signals are significantly below the requirements. This may explain why the GOCE

gradiometer cannot really sense the time-varying signal in the GGT. Nevertheless, since models

are available for the time-varying signals, and since in some regions the signal strength could

be higher, they are removed from the measurements. Gradiometer instruments with even higher

performance may be able to measure these time-varying signals.

Of all the above effects, ocean tide models are the least accurate. This is due to their non-linear

behavior, in particular in shelf waters. As shown in Fig.5.4b, the ocean tides vary rapidly and may

have large values in some coastal regions. In order to look more closely intotheir effect, the mod-

elled gradient values for the time span November and December 2009 are computed along the orbit

and interpolated onto a 20′×20′ grid, as presented in Fig.5.5. In Fig. 5.5athe values computed

with model EOT2008a are presented. The largest effects can be foundin coastal areas. However,

they are still smaller than 11/
√

3 mE√
Hz

, with 11 mE the requirement value of the trace in the MB

and
√

3 expressing the average contribution of each individual component ofthe three diagonal
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elements to the trace of the tensor, according to the rule of error propagation. The differences

between EOT2008a and a second ocean tide model Fes2004 are presented in Fig.5.5b. Large

discrepancies exist in some coastal areas such as Cape of Good Hope,Labrador Sea and Hudson

Bay, etc. The EOT2008a model is derived from only satellite altimetry data, whereas Fes2004

model was computed from the assimilation of altimetry into a hydrodynamic ocean model.

(a) Vzz computed using ocean tide model Eot2008a (b) Differences between Eot2008a and Fes2004 inVzz

Figure 5.5: Vzz computed from the ocean tide model EOT08A (left) and the differences between the
values computed from Eot2008a and Fes2004

With the above computation, we can say that the values ofVzz computed using an ocean tide

model are smaller than the sensitivity level of the gradiometer. The magnitude ofthe signal ofVzz

from an ocean tide model (Fig.5.5a) is high in coastal areas. The uncertainty (see the differences

between two models in Fig.5.5b) shows that the two ocean models are not perfectly consistent

with each other in shelf waters (coastal areas), but these differencesare even lower than the model

values themselves.

5.4 Data Analysis before Spherical Harmonic Analysis

In order to understand the behavior of the data, we analyze the orientationof the satellite and the

quality of the gradiometer data before SHA. This is part of the pre-processing, and is important

for the assessment of the data. Some findings are useful for SHA.

5.4.1 Attitude Data Analysis

Apart from the gradiometer there are three star trackers on board. Thestar trackers measure the

orientation of the satellite in inertial space. Their output is combined with the gradiometer data,

resulting in a product named EGGIAQ 2C, in which precise orientation data of the satellite are

given (European Space Agency, 2006; Stummer et al., 2011).

We analyze the angular motion of the satellite w.r.t. the LORF. This gives us a hintabout

how well the GRF can follow the LORF. As stated in (Sechi et al., 2006), the requirements of the
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angular motion control between GRF and LORF are in roll and yaw less than 8.6 ◦ and in pitch

less than 3.5◦.

The x-direction of LORF is the same as the direction of the velocity vector; thez-direction

is approximately upwards from the Earth center; and they-direction of LORF is in the direction

of the angular momentum vector of the orbit, forming a right-handed system. The direction of

the z-axis of GRF approximately points downwards to the Earth’s center; and they-direction is

in the opposite direction of angular momentum vector. Therefore, there is approximately a 180◦

difference in the directions of they- andz-axes of GRF and LORF by definition. We define a new

system LORF′, with its x-direction the same as that of LORF, but with they- andz-axes in the

opposite direction of those of LORF.

Slightly different from Eq. (2.34), one gets the following unit vectors with the position and

velocity vectors given in the inertial frame:

e′S =
v
|v|

e′T =− r×v
|r×v|

e′W =−e′S×e′T .
(5.21)

Then similar to Eq. (2.35) we have

CInertial
LORF′ =

[

e′S e′T e′W .
]T

(5.22)

The transformation matrix from the GRF to the inertial frame is computed with the quaternions

of the EGGIAQ 2C product as

CGRF
Inertial =





q2
0+q2

1−q2
2−q2

3 2(q1q2−q3q0) 2(q1q3+q2q0)
2(q1q2+q3q0) q2

0−q2
1+q2

2−q2
3 2(q2q3−q1q0)

2(q1q3−q2q0) 2(q2q3+q1q0) q2
0−q2

1−q2
2+q2

3 ,



 (5.23)

whereq0, q1, q2 andq3 are the elements of the quaternion withq0 being the scalar part. Suppose

the rotation matrix is defined by the three Euler angles, i.e., roll angleϕ , pitch angleθ , and yaw

ψ , then we find

CGRF
LORF′ = Rz(ψ)Ry(θ)Rx(ϕ)

=





cosθ cosψ cosϕsinψ+sinϕsinθcosψ sinϕsinψ −cosϕsinθcosψ
−cosθ sinψ cosϕcosψ −sinϕsinθsinψ sinϕcosψ+cosϕsinθsinψ

sinθ −sinϕcosθ cosϕcosθ





.

(5.24)

By multiplying the two matrices in Eq. (5.22) and (5.23), the transformation matrix from GRF

to LORF′ is obtained as

CGRF
LORF′ = CInertial

LORF′ C
GRF
Inertial. (5.25)
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The three rotation angles can therefore be computed from the rotation matrix and are presented

in Fig. 5.6. It is

ϕ = arctan

(

−
CGRF→LORF′

3,2

CGRF→LORF′
3,3

)

θ = arctan





CGRF→LORF′
3,1

√

CGRF→LORF′
3,2

2
+CGRF→LORF′

3,3
2





ψ = arctan

(

−
CGRF→LORF′

2,1

CGRF→LORF′
1,1

)

, (5.26)

with e.g.CGRF→LORF′
2,1 the element in the second row and first column of the rotation matrixCGRF

LORF′ .

As one can see, the pitch angles correlate strongly with the magnetic equator and have some

large oscillation when the satellite passes close to these areas. This is due to thefact that attitude

control is done by magnetic torquing. This also implies that orientation with respect to the field

lines of the magnetic field leaves undetermined one degree of freedom at any moment. The ampli-

tude of the yaw angle, which is the largest of all the three Euler angles, is about 3 degree, which

tells us that GRF is close to LORF′.

Correlation can be found between the yaw angles in Fig.5.6 and the reconstructed acceler-

ations in the cross-track direction, see Figs.4.19cand4.19d. The actual propulsion of the ion

thrusters is given in thex-direction in GRF. Its projection in the direction of the velocity vector has

to be kept the same as the actual air drag experienced by the satellite in the direction of the velocity

vector, for the purpose of drag free motion. However, due to the Euler angles not being zero, the

magnitude of the actual propulsion of the ion thrusters has to be higher than the magnitude of the

actual air drag, in order to fulfill this purpose. Some part of air drag compensation projects to

the cross-track direction and is visible in the reconstructed empirical accelerations. The pitch and

roll angles are small compared to yaw; therefore the correlation of the pitchand roll angles to the

reconstructed acceleration is smaller than that of the yaw angles.

5.4.2 Gradiometer Data Analysis

The gradiometer data are the primary observations of the GOCE mission for thedetermination

of the short-wavelength part of the gravity field. It is therefore very important to understand their

characteristics and performance. We conduct an analysis of the data in the time domain, frequency

domain and space domain. In this subsection, the observations in the period from November and

December 2009 are analyzed.

5.4.2.1 Outlier Detection

Outlier detection is one of the most important steps of the pre-processing. Ifthe outliers were not

identified and removed from the data, they might contaminate the parameters to beestimated. The
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(a) Ascending (b) Descending

(c) Ascending (d) Descending

(e)Ascending (f) Descending

Figure 5.6: Global map of variations of attitude angles roll, pitch and yaw of ascending (left) and
descending (right) tracks in November and December, 2009
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outliers can be identified based on the measurements themselves, before the actual data analysis, or

can be removed iteratively based on the residuals of the least squares adjustment. The advantage

of outlier detection based on the residuals is that the results are more sensitive to outliers. The

disadvantage is time-consuming due to iteration. In this study, we do not apply iteration for outlier

detection.

In our data processing, a method is presented for outlier detection that looks into the standard

deviation of short and long series of OMC (observed minus computed) andthe trace of the GGT.

In the presence of outliers, special attention has to be paid to the robustness and the efficiency of

the algorithm. The principle of our approach is to compute the standard deviation of each short

segment (e.g., 30 seconds) of the time series; if it is larger than a threshold value, the segment of

data are assumed to contain outliers.

An exact definition of an outlier often depends on assumptions regarding the random behavior

of the noise in the data and the applied detection method.Hawkins(1980) defined an outlier as

an observation that deviates so much from other observations as to arise the suspicion that it was

generated by a different mechanism.Barnett and Lewis(1994) said that an outlying observation,

or outlier, is one that appears to deviate markedly from other members of the sample in which it

occurs, similarly,Johnson and Wichern(2001) defined an outlier as an observation in a data set

which appears to be inconsistent with the remainder of that set of data. All inall, these definitions

are similar. In the case of the GOCE gradiometer data, since the gradiometer signal changes with

time, we define as outlier that the OMC value deviates markedly from the adjacent OMCs, with

the computed values are obtained from the EGM2008 (Pavlis et al., 2008) up to degree and order

215. In addition, since the noise in the gradiometer data is not white, i.e., depends on frequency,

we introduce two criteria, long-period outlier and short-period outlier. A long-period outlier is the

one detected with the data longer than or equal to half an orbit revolution. A short-period outlier

is detected locally, with data of about 31 seconds.

We use two quantities for outlier detection, one is the OMC value, another one isthe trace

of the GGT with zero expectation. If the value of either of them deviates fromtheir mean value

greater than a threshold value (e.g., 3 times the STD), the observation at this epoch is assumed an

outlier.

With the GGT trace as an example, the long-period outliers are identified by comparing the

difference of the trace minus its mean value to the 3σ , whereσ is the standard deviation of the

trace andµ the mean value ofVxx +Vyy +Vzz, i.e.

|Vxx +Vyy +Vzz −µ|=
{

> 3σ outlier
≤ 3σ not outlier,

(5.27)

whereµ andσ are computed based on the measurements. This criterion is also applied to the

OMC values.
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Theoretically the OMC value and the trace should change slowly. But sometimesan outlier

occurs inside the range of 3σ . It cannot be detected with the algorithm as described in Eq. (5.27).

We introduce therefore a second kind of outlier detector. Similar to the terminology of moving

average, a moving standard deviation is used to find the short-period outlierby computing the

standard deviation of every short interval of the trace and OMC (in our case the length is 31

seconds). If it is larger than the threshold value (e.g., 60 mE, consideringthe noise level of the

trace in the MB to be about 20 mE), the measurements in this interval are assumedto contain

outliers.

In Fig. 5.7, the long period outliers are presented in the left panel and the short ones are in the

right panel. In the upper panel of Fig.5.7a, at epoch between hour 0 to 1 on the horizontal axis,

the values of the trace deviate from the mean value of the whole day larger than 3σ ; therefore, the

measurements in this interval are assumed to contain outliers, based on the criterion of the long

period outlier detection. In Fig.5.7b, at epoch 1.5 hours there are large oscillations. However, the

magnitude of the oscillations is inside the range of 3σ and cannot be detected by Eq. (5.27). In

the lower panel of Fig.5.7b, the moving STD at about hour 1.5 is larger than the threshold value

(60 mE in this example), which means the anomalous behavior at hour 1.5 on the horizontal axis

is detected with our second criterion. Therefore, the two strategies are complementary. Both the

long-period outliers and the short-period outliers are identified with this approach.
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Figure 5.7: Outlier in long-period (left) and short-period (right); the two criteria are complementary

Once the outliers are identified, they are removed from the measurements andnot used for

parameter estimation. The outliers detected for the data from November 1 to December 31, 2009

are shown in Fig.5.8. The long-period outliers in this period are plotted in red, with 603 epochs.

The short-period outliers are given in blue, with 152 epochs.

5.4.2.2 Gradiometer Data in the Time Domain

The gradiometer data can be presented as a time series in the time domain as shownin Fig. 5.9. In

Figs.5.9aand5.9ba gradiometeric profile ofVzz is shown for a time span of two orbit revolutions.
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Figure 5.8: Outliers detected for the data from November 1 to December 31, 2009; Long-period
outliers are given in red and short-period ones are given in blue

For comparison also the reference values from EGM2008 are included.
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Figure 5.9: Time series covering two orbit revolutions of the GOCE gradient componentVzz and of
the corresponding values computed from EGM2008; unfiltered(left) and filtered (right); also included
is the correlation between the two profiles; the lower panel shows the topographic profile along the
ground track and the ellipsoidal height of the orbit (smoothcurve)

The lower panel in Fig.5.9shows the topographic profile along this track and a smooth curve

with the ellipsoidal height of the orbit. In Fig.5.9athe unfiltered values are given. There is a

small systematic difference between GOCE and EGM2008 which is caused bythe gradiometer

drift or the so-called colored noise. One can also recognize the signature of the Himalayas. The

overall trend of both curves is anti-correlated with orbit altitude. The correlation between them is

r = 0.9942. In order to show the detailed signal in the MB, the data is filtered with a bandpass

FIR filter. The coefficients of the filter are obtained from the((N +1)/2)th row of a matrixG

in Eq. (3.29), with N the length of the filter (in our case it is 5383). In order to suppress the

noise at the low-frequency band, the
√

psd( fi) outside the MB is kept zero, while inside the

MB the values are set to 1. A Hanning window with length 10 is applied to
√

psd( fi), before
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the computation ofG, in order to make the transition band of the filter short. In Fig.5.9b the

analysis is repeated for filtered values. Now strong signal oscillations canbe observed both in

the measured and computed gradients and a correlation ofr = 0.9882 between them. A higher

correlation can be found with the topographic features underneath. Thisbehavior is also found in

the other gradiometeric components.

The correlation between measured values and computed values from EGM2008 shows that

the signal contains information of the Earth’s gravitational field. The differences between them,

namely observed minus computed values, are expected to contain the improvements of GOCE

above EGM2008.

5.4.2.3 Gradiometer Data in the Frequency Domain

In order to quantify the signal content in a chosen frequency range, say from f1 to f2, the signal

ratio (SR) is defined in our study as

SR( f1, f2) =

⌊N f2⌋
∑

k=⌊N f1⌋

√

PSD(k)

N−1
∑

k=0

√

PSD(k)
(5.28)

with ⌊∗⌋ the operator of rounding to the nearest integers towards minus infinity.

The behavior of the signal in the frequency domain is important for us to know. In Fig. 5.10

the PSDs of the three diagonal gravitational gradients are shown togetherwith their trace, based

on the data from November 1st to December 31st, 2009. The MB and engineering requirements

are included as well. As shown in Fig.5.10athe white noise level is approximately 10mE√
Hz

for

Vxx andVyy and 20 mE√
Hz

for Vzz. It is visible for frequencies above approximately 3.8 · 10−2 Hz.

We see the strong gradiometric signal power in the range from 10−3 Hz to 3·10−2 Hz, towards

the low frequencies more and more superimposed by the 1/ f -instrument noise, and more signif-

icantly, by orbit- and attitude-induced periodic distortions at one cpr and multiples of one cpr. A

very powerful test of the instrument performance is the Laplace condition, i.e., the trace of the

GGT theoretically to be zero. As shown in Fig.5.10cthe trace of the GGT is generated from

the computed values at the same location and orientation based on EGM2008 upto d/o 360. It

is theoretically zero and actually at the level of computer round-off and truncation error. In the

measured GGT it shows the noise level of the sum of the measured diagonalgravitational gra-

dients. The engineering requirement of the trace, based on a pre-launch analysis of the sensor

performance, is 11mE√
Hz

in the upper part of the MB; the actual trace is about 20mE√
Hz

mainly due to

the higher noise level ofVzz, see Fig.5.10a. It also shows the 1/ f increase and periodic distortions

at frequencies below 5 mHz. In Fig.5.10c, the signal ratios of the reference values are computed

and shown. They are divided into three frequency ranges: 0 to 5 mHz, 5to 100 mHz, and 100 to

1000 mHz, denoted LFB, MB, and HFB together with the SR values outside the MB in red text,
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and inside MB in black or green. With the period of the orbit being 5384 seconds, the upper limit

of the signal content of a coefficient of degreeN in frequency isN/5384. Most of the signal is

concentrated in the LFB, as the SRs of the four components in the LFB are larger than 96%. By

comparing the measured and observed values in the frequency domain, see Fig.5.10d, it can be

found that noise dominates the signal at about 3.8 ·10−2 Hz. This corresponds to a maximum d/o

of a spherical harmonic expansion of aboutn ≈ 205. However, this does not mean GOCE can only

achieve d/o 205. Since the gravity field coefficients of high d/o contain low-frequency signal as

well, high degree coefficients can be recovered with GOCE measurements by making use of their

information at frequencies below 3.8·10−2 Hz.
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Figure 5.10: PSD1/2s from 2 months of data of GGT components and the trace values of the GGT;
also shown is the engineering requirement for the trace, theMB and the once-per-revolution (cpr)
frequency.

As an example to show the SR of individual SH coefficients, in Fig.5.11, the PSD1/2s of

the signals from some selected individual coefficients are presented. The values are computed

along the orbit and rotated to GRF. The superimposition of the contribution of all gravitational

field coefficients results in the gravitational signals as shown in Fig.5.10c. In addition to the

upper limit corresponding to each individual coefficient, three facts canbe found: Firstly, there is

low-frequency signal coming from the high d/o coefficients. But it is difficult to use because of

the complicated colored noise structure at the LFB. Secondly, the magnitude of the signals from
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individual d/o coefficients is much smaller than the noise requirement, which is roughly the same

as the actual noise level of the gradiometer. Thirdly, as example, the SR fordegree 155 and 215 in

the MB is greater than that outside of the MB; for degree 25 the SR is concentrated in the LFB. As

expected, the signal of lower degree coefficients is concentrated at lower frequencies and outside

the MB of the gradiometer.
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(b) C155,155 andS155,155
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(c) C25,0
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Figure 5.11: PSD1/2s computed from the modelled values with signal of individual SH coefficients

5.4.2.4 Gradiometer Data in the Space Domain

In order to look into the data geographically, they need to be geo-located and plotted on a global

map. Due to the presence of the noise outside the MB, the data has to be filteredbefore geo-

location. The same filter is applied to all the data as the one used for data analysis in the time

domain described in section5.4.2.2. In Figs.5.12to 5.17all the measured components are shown

on global maps.

Each map shows the values on a global grid with a resolution of 15′×15′, interpolated from

filtered gradients based on triangle-based linear interpolation (Watson, 1992). The left- and right-

hand side of the figures is based on the measurements of the ascending anddescending passes, re-

spectively. ForVxx andVyy one can see significant differences between ascending and descending,

due to the large difference in orientation between ascending and descending tracks, see Fig.5.12

and5.13. In the case ofVzz the maps of ascending and descending tracks almost coincide, because
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the orientation of the z-axis is not so different for the two cases, see Fig.5.14. Vxy andVyz are the

weak components. However, after removing the outliers still some characteristic gradient values

show up in mountainous regions, as shown in Fig.5.15and5.17. TheVxz-component (Fig.5.16) is

the only accurate off-diagonal component. High correlation with tectonic features appears in the

gradient maps. Figure5.18displays the difference betweenVzz(GOCE) measured by the GOCE gra-

diometer andVzz(EGM08) computed from the gravity model EGM2008 up to degree and order 215

for comparison. EGM2008 is a so-called combined gravity field model. It combines the GRACE

gravity field model ITG-GRACE03S up to degree and order 180 with carefully selected world-

wide terrestrial and altimetric data sets. The global root-mean-square (RMS) of these differences

is 6.56 mE. Six regions are marked. Three are known to have good terrestrial gravity data (North

America, Europe, Australia), and the RMS values for these regions agreewell with the global

RMS. Three other regions are known to have partly poor or inconsistentdata. The RMS values in

these regions are between 8.98 and 12.57 mE at satellite altitude. The same phenomenon can be

found in the other components.

(a) Ascending (b) Descending

Figure 5.12: Global map of the gradient componentVxx(GOCE): Ascending tracks (left) and descending
tracks (right); significant differences are visible due to the different orientation of the x-axis of the GRF
for ascending and descending tracks

A check of the Laplace condition is shown in Fig.5.19. The sum of the three diagonal gradients

is taken in every point of the global grid. The values show no larger systematic effects and a

standard deviation of about 14 mE.

From the presented results, one can see that GOCE provides gravity information in the MB

with good quality. The trace in the MB is globally homogeneous, except for anomalous areas over

the North and South Magnetic Poles, as shown in Fig.5.20.

This anomalous behavior is due to theVyy component (Stummer et al., 2011). It is caused by

the strong cross winds (Lühr et al., 2007) over the Magnetic Poles, especially for the ascending

tracks. As shown in Fig.5.21, the Earth rotates from the west to the east and the ascending tracks

always correspond to local time at about 6 p.m. The atmosphere and ionosphere move from the hot

hemisphere with high solar radiation (day) to the cold hemisphere with no solar radiation (night).
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(a) Ascending (b) Descending

Figure 5.13: Global map of the gradient componentVyy(GOCE): Ascending tracks (left) and descending
tracks (right); again significant differences are visible due to the different orientation of the y-axis of
the GRF for ascending and descending tracks

(a) Ascending (b) Descending

Figure 5.14: Global map of the almost vertical gradient componentVzz(GOCE): Ascending tracks (left)
and descending tracks (right) agree well

(a) ascending (b) descending

Figure 5.15: Global map of the weak componentVxy(GOCE) for ascending (left) and descending (right)
tracks; after the removal of outliers signal structures become visible
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(a) ascending (b) Descending

Figure 5.16: Global map of the accurate off-diagonal componentVxz(GOCE): Ascending tracks (left)
and descending tracks (right)

(a) ascending (b) Descending

Figure 5.17: Global map of the weak off-diagonal componentVyz(GOCE): Ascending tracks (left) and
descending tracks (right), after removal of outliers signal structures become visible

(a) ascending (b) descending

Figure 5.18: Global map of the differences betweenVzz(GOCE) andVzz(EGM08) for ascending (left) and
descending (right) tracks. Also included are 3 areas with good terrestrial gravity and 3 areas with poor
terrestrial gravity as well as their RMS differences.
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(a) ascending (b) Descending

Figure 5.19: Global map of trace of the measured GGT

(a) North Magnetic Pole (85◦N 132◦W) (b) South Magnetic Pole (64◦S 137◦E)

Figure 5.20: Anomalous observation inVyy components over North (a) and South Magnetic Poles (b)
for ascending tracks, over the period of November and December 2009.
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5.4 Data Analysis before Spherical Harmonic Analysis

At the Magnetic Poles the activity of the ionosphere is quite strong, which leads to strong cross

winds at these locations. The descending tracks correspond to the localtime at about 6 a.m., when

the ionosphere rotates from the cold side to the hot side. There the effectis smaller. In case the

gradiometer is not perfectly calibrated (not perfectly scaled), the common acceleration on the two

accelerometers forming theVyy component is not perfectly eliminated when taking the difference.

The effect onVyy is higher because this axis points in the direction of the cross winds. A more

detailed discussion can be found in (Peterseim et al., 2011).

Figure 5.21: Geometry of the GOCE orbit and the sun

5.4.2.5 Modeling the Lower-Frequency Errors

We are now analyzing the gradiometric error behavior at lower frequencies, i.e. below the MB.

The noise of the gradiometer comes from, in principle, two categories, the accelerometer noise and

the noise from the uncertainties of orientation, angular velocities and angular accelerations. The

accelerometers exhibit a typical 1/ f error behavior, also denoted flicker noise in the literature.

In the time domain this 1/ f -behavior is observed as accelerometer drift. The drift behavior is

different for each accelerometer. Thus it is not (perfectly) removed when taking the gradiometric

difference. The effect of angular motion is required to be precisely removed from the DMA in

the MB. However at the LFB, the angular motion (especially the angular velocity or centrifugal

part) is not guaranteed to be reconstructed with high accuracy. For moredetails about the angular

velocity of the GOCE accelerometer measurements, we refer to (Rummel et al., 2011; Stummer

et al., 2011).
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As shown in Fig.5.22, the observed gradients minus computed values at the same location

in the same orientation vary with 1-cpr frequency, modulated by some multiples and at once per

day (1-cpd) and multiples of 1-cpd as well. Possible explanations for this behavior are either the

modulation due to cyclic orbit and attitude effects of the low-frequency systematic error behavior

of each of the gradiometer components and the imperfect removal of the contribution of the angular

rates. It is shown inStummer et al.(2011) that a significant part is produced by the latter effect.

One can see that the variation inVxx andVzz, which are derived by removing the rather high angular

motion about the y-axis from the DMA in the{xx} and{zz} components, are larger than the

variation ofVyy, which does not contain high contribution of the angular motion about the y-axis.

This gives us a hint that the angular motion, especially the angular velocity, are not determined as

precisely in the LFB as in the MB. The low-frequency error contains therefore the lower-frequency

noise of the gradiometer as well as the residual of the angular motion which could not be removed

from the differential mode accelerations. It is a crucial hint of how to handle the lower-frequency

error. It can be either filtered or modelled.
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Figure 5.22: observed minus computed values in October 31st, 2009

Two approaches can be applied to model the low frequency error. One isin the time domain,

e.g., with piecewise polynomials applied to short segments (e.g., 1 minute to 10 minutes), or in

the frequency domain by modelling the low-frequency error by Fourier expansion.

To model the low frequency error with polynomials, the OMC values are parameterized in

such a way that for the whole data span, the empirical parameters 1-cpd, 2-cpd, 1-cpr and 2-

cpr are introduced, and for each short time interval, in addition a constantand a linear term. The

criterion of the lower frequency modelling is that the information in the MB shouldnot be affected
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by the modelling parameters. As shown in Fig.5.23, the PSD1/2 of the original OMC values and

of the values after removing a piecewise polynomial of varying lengths fromthe original OMC

demonstrates that a polynomial with a time interval of 60 seconds absorbs someinformation in

the MB; with an interval of 180 seconds the result is reasonable, which corresponds to 1/180≈
5.5 mHz, and is more or less at the lower limit of the MB; with longer time intervals the low-

frequency part cannot be modelled well enough. When comparing the PSD1/2 of the original

OMC and the PSD1/2 of the residual OMC after removing the modelled signal of a time interval

of 300 seconds, 450 and 600 seconds, some distortions can be found inthe figure. One must apply

some constraint for the smoothness at the boundary epochs for a better performance.

10
−4

10
−3

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

Frequency [Hz]

PS
D1/

2  [m
E/

sq
rt(

Hz
)]

←  → MBW 

← 1cpr

 

 

60
180
300
450
600
omc
requirements

Figure 5.23: PSD1/2 of the OMC ofVzz after removing the low frequency error with piecewise polyno-
mial modelling, different time periods for a polynomial of order 1 are applied. The unit of the number
in legend is second

An alternative to the polynomial is Fourier expansion for the low-frequency error modelling.

At least two advantages of the Fourier function for this issue are (1), thecontinuity of the measure-

ments is maintained and (2) the signal in the MB can be well preserved, by setting no parameter

at the frequencies in the MB. In Fig.5.24, on the left hand side (Fig.5.24a) the PSD1/2 of the

original OMC ofVzz is shown in red, and after removing the lower-frequency part in blue, and

the parameters (in gray cross dot) corresponding to the magnitude of the signal in pre-defined fre-

quencies together with the PSD1/2 of the time series reconstructed from the parameters (in cyan);

on the upper panel of the right-hand side (Fig.5.24b) the original OMCs are displayed in red

and after modelling as a time series in the time domain they are expressed in blue. Asshown in

Fig. 5.24a, the frequencies chosen for this purpose are 1-cpd and multiples of 1-cpd, 1-cpr and

multiples of 1-cpr, as well as some frequencies close to multiples of 1-cpr, see the gray cross-dots
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in the figure. By comparing the curves in blue and red, one can see that theinfluence of the LFB

part is removed. The cyan dashed line is the square root of PSD of the modelled low frequency

part. It can be found that it does not absorb any information at the frequencies higher than about

600 mHz. The STD values before and after modelling are 822.2 mE and 13.9 mE,respectively, cf.

Fig. 5.24b. Because this procedure is linear, this modelling can be applied directly to the observed

and computed values. The lower panel in Fig.5.24bshows the differences. As one can see, the

differences are less than 5×10−7 mE. We can therefore conclude that the modelling works with

very good accuracy.
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Figure 5.24: Modeling of low-frequency error presented in the frequencyand in the time domain,
based on the values in{zz} component of one day

After removing the low-frequency part with the Fourier expansion shownin Fig. 5.24, the

short wavelengths of the gravity field signals are pronounced in the gradients. As an example,

theVzz component is shown in Fig.5.25, with ascending tracks on the left (Fig.5.25a) and de-

scending tracks on the right (Fig.5.25b). The maximum and minimum values are 1006.96 mE and

-1262.9 mE, respectively. The gravity features are very close to the behavior in Fig.5.14.

From the experiments above, one can see that modelling the lower-frequency part of the data

behaves as filtering. The ideal case would be that the mis-behavior of the low-frequency part is

eliminated completely, and that the signal in the MB is not affected by this modelling. In a second

step, the eliminated part can now be analyzed and interpreted. However, there is also some noise

in the HFB. This higher-frequency part is difficult to model with this idea. Wedo not pursue this

idea of modelling but instead we apply filtering in the context of the SHA.

5.5 Spherical Harmonic Analysis from SGG Data

From the analysis of the previous sections, we know already that the gradiometer data do contain

gravity field signal. In this section, SHA is applied to the individual gradiometercomponents and
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5.5 Spherical Harmonic Analysis from SGG Data

(a) Ascending (b) Descending

Figure 5.25: Global map of componentVzz(GOCE): Ascending tracks (left) and descending tracks
(right); after removing the low-frequency error by modelling with Fourier functions, the similarity can
be found by comparing to Fig.5.14

their combination. The data of the four precise components are used for SHA. Using only individ-

ual components and only the gradiometer data, and in the presence of the polar gap, some parts of

the coefficients cannot be well recovered. With the intermediate results of individual components,

we will analyze degree medians, coefficient differences and formal errors in triangular form in this

section. The complete analysis of the solution will be given after combination withSST and after

applying some constraint over polar areas in Chapter 6.

We want to see the information content and characteristics of each gradiometer component.

The different components in the GGT map the gravity field under different angles. With SHA, the

behavior of each component will appear.

Instead of 61 days of data used in the previous section, the measurements of the four precise

components over the period from November 1st 2009 to April 30th 2011 are used in this section

as input for SHA. The data sampling is one second. The experiment is to estimate gravitational

field models up to d/o 215 using a bandpass filter for data de-correlation of each of the accurate

gradiometer components and their combination.

5.5.1 Filters used for SHA

If the weight matrix in Eq. (3.5) can be determined precisely, the observations can be decorrelated

and an optimal solution be obtained. However, for the present least squares problem, the dimen-

sion of the weight matrix is so large that not only the computation cost would be very high, but

also the memory space for saving this matrix is not sufficient even with supercomputers. In prin-

ciple, the weight matrix is not a full matrix, but a band matrix, for a stationary error behavior, see

Fig.3.2b. Thus, a filter with limited length, either finite impulse response (FIR) or infinite impulse

response (IIR), can be applied to the data. As described in section3.4, for filtering the design ma-

trix during parameter estimation, it is desirable to use an IIR filter due to its low computation load,

by using not only input values, but also filtered values of the past (in termsof autoregressive).
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The filter used in this study for SHA is a bandpass filter, with length 9 for both autoregressive

and moving average parts, i.e., an ARMA(9,9) model, and with warming-up time 5400 seconds. In

Fig.5.26, the frequency and phase responses (Oppenheim and Schafer, 2009) of the bandpass filter

are displayed. The bandpass filter extracts the signal inside the MB, with its frequency response

shown in the figure. The decibel (dB) is given by

Ldb = 10log10(H( f )) , (5.29)

with H( f ) the frequency response of the filter. From the upper panel of Fig.5.26, it can be

seen that the filter suppresses not only the lower-frequency noise outside of the MB, but also the

higher-frequency part. The phase response is almost linear for the frequencies from 5 to 100 mHz,

as shown in the lower panel of the figure.
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Figure 5.26: Frequency and phase response of the highpass filter applied for SHA.

5.5.2 Result Analysis of SHA

With the available SGG data, based on the observation model, i.e. Eq. (5.19) and filtering the

design matrix and the observations as well as the reference values, gravitational field models are

computed for different components of the gradiometer by solving the least square problem. After

filtering four additional parameters are used to remove the constant offset, linear trend and 1-cpr

behaviors from the observation equations for each component per day. In principle, these features

of signals or errors are removed by filtering. This consideration servesas a back-up for the case

that the filter does not completely remove these behaviors. In our results these parameters are

indeed very small and negligible. These four parameters for each component are pre-eliminated

before the normal equations are stored and solved. With this considerationand the measurements

of the four accurate components, i.e.,Vxx, Vyy, Vzz andVxz, four gravitational field models are

obtained.
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5.5 Spherical Harmonic Analysis from SGG Data

The flow chart of the SHA for one day of GGT data is shown in Fig.5.27. The geo-location is

realized by time synchronization between PSOPRD 2I and EGGGGT 2C, the partials of GGT to

gravitational field coefficients are computed in the ECEF and then rotated to theGRF, according

to Eq. (5.18). Overlapping segments of 5400 seconds are applied for warming-up ofthe filter,

in order to ensure the continuity of filtering. The observation equations arethen constructed in

the GRF and both the design matrix and the measurements together with the reference values

are filtered into the desired frequency range with the same bandpass filter,cf. Fig 5.26. The

normal equations, i.e. Eq. (3.7), are computed and saved according to our defined format. By

accumulating (or combining) more than one day’s normal equations, more andmore information

is added to the system and the results are obtained by solving the accumulated normal equations.

PSOPRD 2I EGG GGT 2C EGG IAQ 2C

geo-location &
synchronization

rotate partials to GRF

obs. equation & filtering

computeN = ATPA
& ATPd, save

Figure 5.27: Flow chart of SHA with SGG data

The coefficient differences between gravitational field models recovered from the measure-

ments of each individual of the accurate components and EGM2008 are presented in Fig.5.28up

to d/o 215. Correlations can be seen in the coefficients of order 16 and multiples of 16, which

is the number of revolutions of the GOCE orbit per day. Less precision canbe found in the low

degree coefficients due to the lower sensitivity of the gradiometer there, and in the zonal and near

zonal coefficients due to the polar gap. From the coefficient differences and the formal error, one

can observe that the lower order coefficients (close to zonal) estimated withtheVxx component

are more accurate than the higher order ones; the coefficients of higherorder (close to sectorial)

estimated withVyy component are more accurate than the lower order ones. ThusVxx andVyy are

complementary, and their combination will result in the same behavior (i.e. homogeneity) asVzz

due to the fact thatVxx +Vyy = −Vzz. The result of theVzz component is more homogeneous than
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those ofVxx andVyy. Due to its z-component,Vxz is more isotropic thanVxx, but due to its x-

component less homogeneous thanVzz. For a more detailed description of isotropic combinations,

it is referred to (Sneeuw, 2000).

The formal errors of the recovered gravity models in Fig.5.29show the characteristics of the

individual components. The errors of the lower degree coefficients are quite large, which means

gradiometer data are not capable of determining the long wavelength gravity information. The

zonal and near-zonal coefficients are not determined with high accuracy due to the existence of

the polar gap. This behavior is shown up in Fig.5.28, too. The homogeneity ofVzz and the char-

acteristics of the other three components are similar to the coefficients differences with EGM2008

shown in Fig.5.28.

(a) Vxx (b) Vyy

(c) Vzz (d) Vxz

Figure 5.28: Coefficient differences between EGM2008 and recovered models from individual com-
ponents up to d/o 215 (log10 scale)

The degree median values (Sneeuw, 2000) of these models compared to EGM2008 with each

individual component estimated separately are presented in Fig.5.30. One can find that the com-

ponentVzz is the most consistent to EGM2008, its formal errors and the deviation from EGM2008

of the coefficients are smaller than those of the other components. At higherdegrees the coef-

ficients recovered fromVyy are closer to EGM2008 than those from theVxx andVxz, whereas at

lower degrees (lower than d/o about 50)Vyy is the poorest. The SGG-combined solution (SGG

in the figure marked in black) is much closer to EGM2008, and its formal erroris, as expected,

smaller than that of each of the individual components .
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(a) Vxx (b) Vyy

(c) Vzz (d) Vxz

Figure 5.29: Formal errors of the recovered models from individual components up to d/o 215 (log10
scale)
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Figure 5.30: Degree median of the models compared to EGM2008, with dashedline the formal errors
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The accuracy of the terrestrial data used for determination of EGM2008 isnot homogeneous,

which leads to some systematic differences when comparing our models to EGM2008, as shown

in the coefficients of d/o about from 70 to 150 in Fig.5.30. In Fig. 5.31, the degree medians

of our solutions are compared to ITG-Grace2010s. Again they show good consistency between

our solution from d/o about 40 to 150. The large differences in the low degrees show the poor

performance of SGG at lower degrees. It can be taken care of by combining with SST. At degrees

above 150 GOCE exhibits a lower error level than GRACE by comparing the black and cyan

dashed lines in Fig.5.31. It should be mentioned that in these comparison, the external gravity

field (EGM2008 or ITG-GRACE2010s) may be better or worse than GOCE.
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Figure 5.31: Degree median of the models compared to ITG-Grace2010s, with dashed line the formal
errors

The intermediate results are obtained from each individual component in GGT. They are not

accurate at lower degrees. Apart from that, the polar gaps make the zonal and near-zonal coeffi-

cients highly correlated. It is therefore not meaningful to analyze these models in terms of geoid

height differences.

5.6 Summary

The observation equations of the measured gravity gradients used for thisstudy are formulated

in the GRF. They are connected to the SH expansion in the ECEF by rotating thedesign matrix

and the right hand-side to the GRF based on the EGGIAQ 2C product and the SOFA package.

This avoids rotation of the measurement tensor components and therefore guarantees that the
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5.6 Summary

less sensitive components do not degrade the results. Furthermore, it is possible to analyze each

individual component independently.

The magnitude of the time varying signal in gravitational gradients at the locationof the GOCE

satellite, from large to small, are solid tides, the direct tidal attraction of the moon,ocean tides, the

direct tidal attraction of the sun, and short variations of atmosphere and ocean, based on the mean

values of these gradients caused by these effects computed along the orbit. The ocean tides and

A&O have highest power in the MB, but still much smaller than the requirement. These effects

are taken care of by models. In general, the time-varying effects are smaller than the sensitivity of

the gradients as measured by GOCE.

The outliers are detected based on two strategies. One is based on the deviations of the trace

values and of the OMCs from their mean value. If these deviations are outside of three sigma, they

are assumed to be outliers. The second strategy is the computation of the movingSTD of the trace

and the OMC. If they are larger than the defined threshold values, we assume the measurements

involved in the moving STD-computation to contain outliers.

From the PSD1/2s of the signals corresponding to individual d/o coefficients, we showedthe

high degree coefficients to contain low frequency signal, but no signal at the frequencies higher

than the product of degree and orbit frequency (1/5384, with 5384 theorbit period).

High correlations are found between the measurements and the modelled values computed

along the GOCE orbit and based on a reference gravitational field model (in our case EGM2008).

High signal variations are found in areas of rough topographic changes. In the frequency do-

main, the 1/ f behavior of the measurements appears in the PSD1/2 values at frequencies less

than 500 mHz down to zero. The signal-to-noise ratio (SNR) equals one at afrequency of about

3 ·10−2 Hz, which corresponds to degree and order of a spherical harmonic expansion of about

n ≈ 205.

The contributions in the frequency domain varies from component to component. The noise

level of the measuredVzz component in the MB is 20 mE, higher than those ofVxx andVyy (10 mE).

However, due to its high signal content,Vzz is still the best component, as one can find by compar-

ing the reconstructed models withVzz and the other components.

Two filters are applied to the data. A FIR filter with length 5383 is used to filter the measured

gradients to the MB in order to present them in global maps, since FIR filters can be designed

without phase shift. For SHA, since it is very time-consuming to filter the designmatrix, an IIR

filter is applied to both sides of the observation equations, due to the fact thatthe IIR filters can

achieve good performance with small order, and therefore the computational effort can be kept

small.

The filtered measurements displayed on global maps show the information contained in the

gravitational gradients. Since the orientation of the satellite and therefore also of GRF varies, the

measurements are plotted in global maps separately for ascending and descending tracks. Gravi-

tational signal variations can be found even in the weak components. Comparison to EGM2008
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shows large differences between GOCE and EGM2008 in areas such asHimalaya, South America

and South Africa.

A gravitational field model is obtained from each of the four precise components. The coef-

ficients of order 16 and multiples of 16 are correlated due to the effect of orbit resonance. Each

component has its specific error behavior, e.g., theVxx component is sensitive to low order coef-

ficients,Vyy to high order ones, andVzz is more homogeneous than the other components. The

results of the combined solution become better than those of each of the individual ones. This

shows that their complementarity is helpful to estimate a combined solution.
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6

Combination of SST and SGG

In order to estimate a complete gravitational field model from GOCE orbits and gravitational

gradients, the normal equations of SST and SGG are to be combined in an appropriate way. The

performance of the measured gradients is poorer at long wavelengths, while SST performs better

there. Therefore, gravity field modelling in the case of GOCE is based on a combination of the

SST contribution for the low-wavelength part and on gravitational gradiometry for the spatial

details. SST and SGG are two independent techniques. Thus one can do cross checking as done

in (Visser, 2007, 2009) with this two kinds of observation types. As presented in the previous

chapters, SST can only resolve SH coefficients for lower degree and order, whereas SGG can

reach much higher, but performs poorly at degrees from 0 to about 30, especially for higher order

coefficients. Therefore, these two methodologies are complementary. With their combination the

advantages of SST and SGG are preserved, and their disadvantages are removed or reduced.

The GOCE observations of both SST and SGG used for the combination in this chapter are

from November 1st 2009 to April 30th 2011. Considering the outage of the satellite and special

events, it is less than one and a half years. After data cleaning, the total amount of gradiometer

data of the four accurate components is 127,573,301, and of the observations of the SST part is

95,678,985. The gravity field coefficients are set up from degree 2 to 215 for the SGG part and

150 for the SST part.

Section 6.1 discusses the methodology of combination. Section 6.2 is dedicated toa presen-

tation of the combined solution. Section 6.4 presents the results of a combination of GOCE and

GRACE. A summary is given in section 6.4.

6.1 Methodology

If the dimensions of the normal equations to be combined are equal and the gravitational field

coefficients are sorted in the same way, the combination can be realized with ease, as explained

in Eq. (3.11). However, this is not always the case, since the normal equations of SST are not

necessarily set up to the same high degree and order as those of the gradients. For example, the

109



6. COMBINATION OF SST AND SGG

coefficients of d/o higher than about 120 are beyond the sensitivity of thecurrent GOCE SST so-

lution; and the variational equations are expensive to compute if the amount of parameters is very

large. Thus, in the case of the SST part of GOCE, the gravitational field coefficients are set up

here to d/o not higher than 150. This is higher than the sensitivity of the GOCESST part, in order

to ensure a smooth transition from coefficients contributed from both SST and SGG to those from

SGG only. However, the SGG part can achieve good accuracy up to d/o more than 200. It is there-

fore an important point of how to optimally combine normal equations with different dimensions

and different locations of the same parameters in the system of normal equations. The procedure

of combination can be found in Fig.6.1. The daily normal equations from an observation group

(type) are combined into one normal equation. Then the combined normal equations from differ-

ent observation groups are combined to one single system of normal equations. In this step the

variance component (VC, the variance of the unit weight of an observation type) for each obser-

vation group is estimated and combined with the newly estimated VC. The constraintof the polar

gaps are introduced with normal equations which are added to the combined normal equations.

The final solution is then obtained by solving the final combined system of normal equations by

Cholesky decomposition.

Figure 6.1: Diagram of combination of SST and SGG (The SGG part consists of the four accurate
components)

Taking into account that the gravitational coefficients (as parameters) are sorted differently for

the SST and SGG part, the two normal equations can be combined by adding thecorresponding

elements on both the left- and right-hand side according their weight. The variances of unit weight

σ̂2
sst andσ̂2

sgg are estimated first with Eq.3.12and then iteratively with Eq. (3.8c). Their inverses

serve as weights for the combination. Here, we only give the SST and SGG as an example. In
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6.2 Analysis of the Solution Derived by Combination of GOCE SST and SGG

real data processing, the SGG part contains the four precise gradiometer components. Suppose

the total number of the parameters of the SST part isN, and the SGG part isM. In addition, we

suppose theith parameter in the normal equations of the SST part corresponds to an SH coefficient

which is thekth parameter in the SGG part, and similar for thejth and thelth, then the combined

values corresponding to the two above-mentioned parameters can be obtained as
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The combined elementncombined
k′l′ in the new normal matrix is computed as

ncombined
k′l′ =

1

σ̂2
sst

nsst
i j +

1
σ̂2

sgg
nsgg

kl . (6.2)

The right-hand side is combined in an analogous way.

Since all the local parameters, of both SST and SGG, are pre-eliminated before combination,

the only parameters left in the normal equations are the gravitational field coefficients. This is very

convenient for speeding up the combination since the number of the local parameters can be very

large.

All the four accurate components from gradiometry are combined for the final solutions. They

are assumed to be independent. One can therefore apply Eq. (3.15) to combine the normal equa-

tions computed from SGG data. In principle, the gradiometric components may becorrelated

due to the angular reconstruction applied in the same way to all the GGT components. Since the

magnitude of the angular motion is smaller than that of GGT and differential acceleration in the

measurement band (seeRummel et al., 2011), it is reasonable to assume the components of the

measured GGT to be independent.

6.2 Analysis of the Solution Derived by Combination of GOCE SST

and SGG

In the following a complete GOCE SST and SGG spherical harmonic analysis is described. All

preprocessing steps and filtering have been applied as described in the previous chapters. With

the integral equation approach on orbit data and the bandpass filter applied to gradiometer data,

111



6. COMBINATION OF SST AND SGG

the final GOCE solution is obtained after the combination of SST and SGG part, together with

the constraint in the polar areas realized by the pseudo-observations ona 1◦×1◦ resolution grid

in terms of geoid heights of an assumed STD 20 cm close to that of EGM2008. The result is

expected to be consistent with the other recently developed GOCE only models,such as TIM2

(Pail et al., 2011b) or DIR2 (Bruinsma et al., 2010). The analysis of the solution is conducted

in various forms: as errors per degree, coefficient errors in triangular form, geoid differences and

gravity anomaly differences w.r.t. other considered models, variance-covariance matrix and error

propagation, as well as individual contribution of the three parts, i.e. the SST part and the SGG

part together with the polar constraint. The contribution of the four accurate components in the

SGG part are also analyzed.

The square root of the variance of the unit weight (variance component) for different obser-

vation types are given in Table6.1. The a priorσ̂ (−) computed with Eq. (3.12) and the posteriori

values with Eq. (3.8c). The posteriori values of theσ of the GGT data are smaller than their a

priori values. This means they are underweighted with a prioriσ̂ (−) during the combination, and

is updated with the posteriori values. The kinematic orbit of SST is the other way round. It is

overweighted during the combination with a priori value of its STD of unit weight, and is updated

with the posterior value for a better estimate of the data quality. The posterior estimate of the

orbit accuracy is 1.8 cm, which is satisfied with the accuracy requirement for GOCE orbit, i.e.

2 cm. The values ofVxx, Vyy andVzz are 3.6, 3.6 and 5.9 mE, respectively. Theσ̂ value ofVzz

component is larger than those ofVxx, Vyy, due to the high noise in the MB, see (Rummel et al.,

2011). The posteriorσ value of theVxz component is 7.0 mE, which is the largest among all the

four sensitive components. The large STD values of the componentVxz is due to its high noise

level in the MB, see again (Rummel et al., 2011). The polar areas are constrained with a STD

of 20 cm to EGM2008 for combination, based on the fact that the formal error of EGM2008 in

terms of cumulative geoid height is 7.2 cm (1σ ) up to d/o 200. In our computation, we hope our

solution is close to EGM2008 in the polar areas for the values on a 1◦×1◦ grid with 3σ , which is

approximately 20 cm.

Table 6.1: σ of different observation types

Obs. types a priori σ̂ (−)
j posteriorσ̂ j

Vxx [mE] 3.7 3.6
Vyy [mE] 3.8 3.6
Vzz [mE] 6.2 5.9
Vxz [mE] 7.1 7.0
SST kin. orbit [cm] 1.76 1.85
Polar stabilization (in terms of geoid) [cm]20 20

112



6.2 Analysis of the Solution Derived by Combination of GOCE SST and SGG

6.2.1 Analysis in terms of per Degree Error

In Fig. 6.2the degree RMS compared to EIGEN-6S (Förste et al., 2011) of the SGG only solution

is shown in red, the SST only solution in green, the combined solution in blue andthe combined

solution with additional constraint in the polar areas in magenta. The model EIGEN-6S is a

satellite-only gravity field model computed from GRACE from the time span 1 Jan 2003 till 30

June 2009 and 6.5 years of LAGEOS (SLR) as well as GOCE (satellite gradiometry) data from

the time span 1 Nov 2009 till 30 June 2010. We assume that EIGEN-6S is a goodmodel being

chosen as a reference for comparison and analysis.
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Figure 6.2: The degree RMS comparing to EIGEN-6S. The formal errors for each solution are given
in the dashed line with the same color.

The degree RMS of both SGG and SST only solutions oscillate due to the polar gap. The

degree RMS is dominated by the large errors of the zonals and near-zonals. After the combination

of SST and SGG, the degree RMS (in blue) becomes smaller compared to the SGG and SST only

solution. However, due to the polar gap, the zonal and near-zonal coefficients in the combined

solution are still correlated and not well determined. After applying the constraint in the polar

areas in latitudes [-90◦ -83◦] and [83◦ 90◦] on a 1◦×1◦ grid with geoid heights from EGM2008

and an assumed STD of 20 cm, the final result is obtained and its degree RMSis shown by the

magenta curves. The degree RMS of the combined and constrained solutionis the smallest of

all solutions. Under the assumption that the model EIGEN-6S is a good reference, the combined

solution is seen to be improved and therefore better than any individual solution. This shows the

correctness of the combination. The degree RMS is smaller than the signal strength even at d/o
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6. COMBINATION OF SST AND SGG

215, as shown by the comparison of the magenta curves (both solid and dashed) to the signal

degree RMS in solid cyan. This means that even higher d/o coefficients canbe estimated with the

data and methodology of this processing scenario.

In order to analyze the quality of our result, we compare our model with TIM2, DIR2 and

ITG-Grace2010s all referred to EIGEN-6S. The TIM2 model is estimatedwith the time-wise

approach. It uses the observations in the time span from November 1st 2009 to July 05th, 2010.

Kaula regularization is applied in TIM2 to the coefficients starting from degree 181 up to 250. In

addition, spherical cap regularization for stabilization of the system is applied. The DIR2 model is

derived with the direct approach with the observations in the time span from November 1st 2009 to

June 30th, 2010. It takes the ITG-Grace2010s as a reference model for regularization. Both TIM2

and DIR2 use diagonal components of the GOCE GGT for the SGG part. Onemust keep in mind

that the data period for the computation of our model is longer than those for DIR2 and TIM2.

In Fig. 6.3, the degree RMS and cumulative error in terms of geoid height compared to other

gravity field models are shown on the left and right panels, respectively.ITG stands for the gravity

field model ITG-Grace2010s, which is included here to study the performance differences between

GOCE and GRACE. Our gravity field model is named TUMYGSTGpgr in the figure. The solid

lines express the differences between the various compared models to the reference model EIGEN-

6S, and the dashed lines denote the formal errors of the compared models.Among the GOCE

only models, the DIR2 solution is the closest one to EIGEN-6s, simply becausethe EIGEN-6S

model is estimated based on the combination of the DIR2 solution and LAGEOS andGRACE.

It is fair to say that the constraint in the polar gap plays an important role forthis comparison.

The constraint used in TIM2 for the polar gap is less strict, resulting large differences in the

low to medium degrees. TIM2 in non-polar areas is very accurate as validated in (Gruber et al.,

2011; Pail et al., 2011b). In Fig. 6.3a, our solution is closer to EIGEN-6S than TIM2 at degrees

from 0 to about 130. Between degree 130 to 180 TUMYGSTGpgr and TIM2 show more or less

the same degree RMS. For degrees higher than 180 the degree RMS of TIM2 is less than that

of TUMYGSTGpgr, very likely because TIM2 solution applies Kaula regularization starting at

degree 180. At degrees higher than about 205, the degree RMS of thedifferences between DIR2

and EIGEN-6S is significantly smaller than the others. The reason is that EIGEN-6S adopted

a large amount of information from the DIR2 solution in this degree range. Incomparison to

GRACE, the ITG-GRACE model is better than a GOCE model approximately fromdegree 0 to

100, above this GOCE shows better accuracy, according to the formal errors of ITG-Grace2010s

and TUMYGSTGpgr.

The cumulative geoid error is shown in Fig.6.3b. Compared to the reference field EIGEN-6S,

the geoid differences of TUMYGSTGpgr can reach 8 cm up to d/o 210, whereas those of TIM2

model are about 10 cm. The formal error of TUMYGSTGpgr seems quite optimistic, less than

3 cm up to d/o 200. It is the smallest of all the considered GOCE models. This is because more

data is used for model TUMYGSTGpgr.
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Figure 6.3: degree RMS and cumulative geoid in terms of geoid height error

From the degree error analysis, one can conclude that TUMYGSTGpgris consistent with

TIM2 and DIR2. However, the degree error per degree cannot give information about how accurate

individual coefficients are.

6.2.2 Analysis of Coefficient Error in terms of Spherical Harmonic coefficients
(Triangular Representation)

The error behavior of TUMYGSTGpgr is displayed in triangular form in Fig. 6.4. The differences

between TUMYGSTGpgr and EIGEN-6S in Fig.6.4ashow that these two models are more con-

sistent with each other at lower degrees than at higher ones. However,at degrees 10 to 20 the

consistency between the two models is not as good as at degrees from 40 to100. No large sys-

tematic distortion is found between TUMYGSTGpgr and EIGEN-6S. The formalerror shown in

Fig. 6.4bshows a similar behavior as the coefficient differences in Fig.6.4a. The coefficients of

TUMYGSTGpgr from degree 30 to 120, excluding the zonal and near zonal coefficients are esti-

mated with high precision. The effect of the polar gap shows up in both the coefficient differences

and the formal errors.

The models TUMYGSTGpgr and EIGEN-6S are quite close to each other. The error structure

shows that the higher degree coefficients are less precise than the lowerdegree ones, and zonal and

near-zonal coefficients are less precise than the higher order ones.One might therefore probably

introduce an even stronger constraint in the polar gap areas.

6.2.3 Analysis in terms of Geoid and Gravity Anomaly Differences

There are gravity field models based on measurements from satellite-only, and combined mod-

els which are based on satellite and terrestrial data. Both kinds of models arecompared to our

solutions in this subsection.
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6. COMBINATION OF SST AND SGG

(a) coeff. differences (log10 scale) (b) formal error (log10 scale)

Figure 6.4: coefficient differences between TUMYGSTGpgr to EIGEN-6S and the formal error of SH
coefficients of TUMYGSTGpgr

6.2.3.1 Comparison to Satellite-only Models

From the most recent satellite-only gravity field models we choose EIGEN-6Sand GOCO02s

(Goiginger et al., 2011; Pail et al., 2010) to compare them with TUMYGSTGpgr. GOCO02s is

derived by the combination of 8 months of GOCE SGG data, 7 years of GRACEdata, 8 years of

CHAMP data and 5 years of SLR data (5 satellites). A Kaula regularization is applied starting

at degree/order 180. Similar to EIGEN-06S it is therefore very precise inboth long- and short-

wavelength parts.

The geoid and gravity anomaly differences are important quantities for gravity field model

analysis. The error behavior in the space domain can be presented geographically as shown in

Fig. 6.5 for the areas from latitude -83◦ to 83◦, with the geoid differences on the upper panel

and the gravity anomaly differences on the lower panel. The STD values ofgeoid differences

between TUMYGSTGpgr and EIGEN-6S and those between TUMYGSTGpgr and GOCO02s

are 8.2 cm and 7.5 cm, respectively; on the lower panel, the STD values of gravity anomaly

differences are 2.42 mgal and 2.27 mgal, respectively. Based on these comparisons, it seems as

if TUMYGSTGpgr is closer to GOCO02s than to EIGEN-6s, at least for an expansion up to d/o

215.

The STD values of geoid differences between various models are presented in Table.6.2,

again for the areas from latitude -83◦ to 83◦. When comparing up to d/o 215, TUMYGSTGpgr

deviates from the other models due to its larger STD values. There are two reasons for this. Firstly

TUMYGSTGpgr is estimated only up to d/o 215. Some information higher than 215 projects into

the coefficients close to degree 215 due to an aliasing effect. Secondly, for TUMYGSTGpgr and

DIR2 only a polar gap regularization is applied, whereas for TIM2 polar gap and to high degrees

Kaula regularization is used.

If these models are compared only up to d/o 200, TUMYGSTGpgr is at the sameerror level
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6.2 Analysis of the Solution Derived by Combination of GOCE SST and SGG

(a) geoid differences to EIGEN-6S (b) geoid differences to GOCO02s

(c) gravity anomaly differences to EIGEN-6S (d) gravity anomaly differences to GOCO02s

Figure 6.5: geoid differences and gravity anomaly differences betweenTUMYGSTGpgr and EIGEN-
6S, and between TUMYGSTGpgr and GOCO02s

Table 6.2: Comparison of various models up to d/o 215, in terms of the STDvalues of geoid differ-
ences in centimeters (in latitudes [-83◦ to 83◦])

TUMYGSTGpgr TIM2 DIR2 EIGEN-6S GOCO02s
TUMYGSTGpgr 0 7.39 8.04 8.19 7.46

TIM2 0 5.64 5.78 2.00
DIR2 0 3.03 5.82

EIGEN-6S 0 5.82
GOCO02s 0
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as the other models, see Table6.3. Since GOCO02s has partially adopted TIM2, these two models

are close to each other, and the same is the case for EIGEN-6S and DIR2.One may notice that

the STD value between DIR2 and EIGEN-6S up to d/o 200 is larger than that up to d/o 215. This

phenomenon also happens in the case of TIM2 and GOCO02s. It indicatesthat the zonal and near-

zonal coefficients are not ideally decorrelated, since in principle the STDvalue of geoid difference

should be smaller up to lower degrees than up to higher ones. This phenomenon does not exist in

the case of TUMYGSTGpgr for this comparison.

Table 6.3: Comparison of various models up to d/o 200, in terms of the STDvalues of geoid differ-
ences in centimeters (in latitudes [-83◦ to 83◦])

TUMYGSTGpgr TIM2 DIR2 EIGEN-6S GOCO02s
TUMYGSTGpgr 0 4.84 5.87 5.88 4.86

TIM2 0 4.69 4.87 2.14
DIR2 0 3.36 4.99

EIGEN-6S 0 4.94
GOCO02s 0

The comparison in terms of geoid differences and gravity anomaly differences shows that the

TUMYGSTGpgr is as good as the other recently developed models, such asTIM2, DIR2, EIGEN-

6S and GOCE02s, and is closer to TIM2 and GOCE02s than to DIR2 and EIGEN-6S.

6.2.3.2 Comparison to Combined Models

Similar to the comparison with satellite only models, the model TUMYGSTGpgr is compared to

EGM2008 and EIGEN-6C (Förste et al., 2011), both of them so-called combined gravity field

models with terrestrial data included. In Fig.6.6, the geoid differences between TUMYGSTGpgr

and EGM2008 and between TUMYGSTGpgr and EIGEN-6C are displayedon the left and right,

respectively. Large differences in terms of geoid height between TUMYGSTGpgr and EGM2008

are found in Himalaya, Africa, New Guinea, South America and Antarctica, where terrestrial data

as used in EGM2008 is less accurate, see Fig.6.6a. This is also known from the measured gradient

analysis, see Fig.5.18. The STD value between the geoids of TUMYGSTGpgr and EGM2008 is

13.4 cm, up to d/o 215. The comparison with EIGEN-6C shows better consistency with a smaller

STD value of 8 cm, see Fig.6.6b.

These comparisons show a certain inhomogeneity of the combined model (terrestrial data

included) relative to TUMYGSTGpgr. Terrestrial data is very useful and important for gravity field

modelling, but it is still an open question as to how to optimally combine satellite measurements

with terrestrial (surface) data. The terrestrial data are collected underobserving conditions which

vary from region to region in terms of precision and density; therefore it isa challenge to combine

them with optimal weighting.
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(a) geoid differences to EGM2008 (b) geoid differences to EIGEN-6C

Figure 6.6: geoid differences between TUMYGSTGpgr and EGM2008 and between TUMYGSTGpgr
and EIGEN-6C up to d/o 215

The STD values of the geoid differences between TUMYGSTGpgr and thetwo combined

models are given in Table6.4. Based on the STD values, TUMYGSTGpgr seems more consistent

with EIGEN-6C than with EGM2008 for a global comparison.

Table 6.4: STD values of the geoid differences between TUMYGSTGpgr andEGM2008 and between
TUMYGSTGpgr and EIGEN-6C in centimeters (in latitudes [-83◦ to 83◦])

up to d/o 215 200 180 150
EGM2008 13.43 11.60 9.90 7.73
EIGEN-6C 8.01 5.39 3.54 2.20

As shown in Fig.6.7, more north-south stripes are found in the geoid differences between

TUMYGSTGpgr and EIGEN-6C (Fig.6.7b) than between TUMYGSTGpgr and EGM2008

(Fig.6.7a). The north-south stripes are the typical error behavior of GRACE. Itindicates that most

of the information in EIGEN-6C up to d/o 150 comes from GRACE, which leads toa dominance

of GRACE error characteristics in the geoid differences. Since the terrestrial data contributes to

EIGEN-6C starting at d/o 160 (Förste et al., 2011), this can explain these differences between

Figs6.7aand6.7b.

A global map of geoid height differences between TUMYGSTGpgr and EGM2008 up to d/o

200 is shown in Fig.6.8. Three regions marked with dark lines in Fig.6.8are chosen for compar-

ison. They are in rectangular areas of the given lower left and upper right coordinates [(-120◦W

30◦N); (-80◦W 50◦N)] for USA, [(5◦E 45◦N); (15◦E, 55◦N)] for Germany and [(120◦E -20◦S);

(145◦E -35◦S)] for Australia. In these three regions accurate terrestrial data is incorporated in

EGM2008.

The short wavelength part of EGM2008 in land areas is based on terrestrial gravimetry data.

The three marked in black regions are known to have terrestrial data with high accuracy. As pre-
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(a) geoid differences to EGM2008 (b) geoid differences to EIGEN-6C

Figure 6.7: geoid differences between TUMYGSTGpgr and EGM2008 and between TUMYGSTGpgr
and EIGEN-6C up to d/o 150
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Figure 6.8: geoid differences between TUMYGSTGpgr and EGM2008 to d/o 200
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sented in (Gruber et al., 2011), in these three black marked regions, EGM2008 is very consistent

with the GPS-leveling. Therefore, we can just compare the GOCE-based models to EGM2008 in

these regions. This comparison can be considered as assessment of theaccuracy of the GOCE-

based models with terrestrial gravity anomalies. The advantage of this comparison is that the high

frequency part of the terrestrial data which is used for the determination of EGM2008 is filtered

out by truncating EGM2008 at any desired degree.

In order to show the improvement of GOCE to EGM2008, four regions with weaker gravity

data are selected for comparison. They are marked in white rectangles in Fig. 6.8 with the lower

left and upper right coordinates [(-80◦W -30◦S); (-40◦W 0◦N)] for South America, [(0◦E -20◦S);

(40◦E 30◦N)] for Africa, [(65◦E 20◦N); (100◦E 40◦N)] for Himalaya area, and [(-180◦W -80◦S);

(180◦E -65◦S)] for Antarctica. The RMS-values of the geoid differences between TUMYGST-

Gpgr and EGM2008 in the seven regions are given in Table6.5.

Table 6.5: RMS-values of the geoid differences between EGM2008 and TUMYGSTGpgr for the
selected areas and global RMS; SA is the South America and SE-Asia is the Southeast Asia; unit is
centimeter

d/o Australia Germany USA SA Africa SE-Asia Antarctica Global RMS
180 3.34 2.45 2.90 33.56 23.41 35.53 11.19 9.90
200 5.34 4.04 4.33 36.35 25.09 37.05 15.50 11.64

It can be seen that the RMS-values in the three regions with precise terrestrial data used for

EGM2008 are small and those in the other four regions are very large. Withthe comparison of

TUMYGSTGpgr and EGM2008 in the regions where accurate terrestrial gravimetry data were

used for the determination of EGM2008, it can result accuracy assessment of our GOCE model.

There are at least two advantages with this idea. First, EGM2008 is very accurate in these regions

and can be used as a reference model; second, the omission error is eliminated by truncation of

the SH expansion at any desired degree. In this comparison, the GOCE-based models are shown

to be consistent with EGM2008 with RMS-values of 4 to 6 cm, for the case of truncation at degree

200. The comparison in regions where terrestrial data of only poorer accuracy was available for

EGM2008, shows significant improvements from GOCE observations in the range between degree

100 and 200. In Antarctica where only GRACE observations were used for the determination of

EGM2008, the improvements from GOCE are also demonstrated.

6.2.4 Analysis in terms of Formal Error

With Eq. (3.10c), the VCM of the parameter vector is obtained, and shown in Fig.6.9afor the first

6 thousand rows and columns. Based on the rule of error propagation, i.e.

Σŷ = AΣx̂AT , (6.3)
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for ŷ = Ax̂, the VCM can be transformed into the VCM of any other linear gravity functional. In

order to look into the error behavior in the space domain, the VCM of the SH coefficients has been

transformed to the formal error of gravity quantities on the Earth sphere. With ŷ as geoid height,

the matrixA is computed according to Eq.2.2, and the formal error in terms of geoid height is

obtained with Eq. (6.3) and displayed in Fig.6.9b. The error is latitude dependent, i.e. larger error

at lower latitudes and smaller error at higher latitudes, due to the fact that theground track density

at low latitudes is sparser than at high latitudes. The maximum value of the erroris 5.0 cm in polar

areas, because there is no information from GOCE in these areas and the constraint from polar

stabilization is rather loose (20 cm prior STD in terms of geoid height).
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215

Figure 6.9: Variance-covariance matrix (left) and its propagation to geoid heights (right)

The formal error of the coefficients and the geoid will decrease with more and more data col-

lected. Based on estimation theory, the accuracy of the spherical harmoniccoefficients determined

from the measured gradients, and to a small extent also the spatial resolution,will increase with

an increasing number of measurements.

6.2.5 Analysis in terms of Contribution Analysis

Since the GOCE-only gravity field model is estimated from a number of components such as SST

and the four accurate gravitational gradient components, it is interesting toknow the contribution

of each individual part. Therefore, we conduct such an analysis based on the normal matrices of

each individual component and their combination.

6.2.5.1 Contribution Computed by Means of Resolution Matrices

Based on the normal equations and posteriori variance components, the contribution from all the

involved data types are computed, as shown in Fig.6.10. With mean value in blue and median

in red, the contribution per degree and per order are given in the upperright panel and lower left
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panel, respectively. For each data type the characteristic of its contribution is shown. It can be

seen thatVxx contributes mainly to the lower order coefficients, andVyy to the higher order ones,

and thatVzz is rather homogeneous. The maximum contributions are fromVzz andVxx, with up

to 32.7% and 28.0%, respectively. A bit less comes fromVyy with 26.1%, and even less fromVxz

with 10.9%. SST contributes mostly to the lower degree coefficients, especiallyin the range of the

sectorial and near-sectorial coefficients, with 1.9% mean value. Last but not least, the constraint

in the polar areas is important, even though its contribution is only 0.2%.

(a) Contribution fromVxx (b) Contribution fromVyy

(c) Contribution fromVzz (d) Contribution fromVxz

(e)Contribution from SST (f) Contribution from pseudo obs.

Figure 6.10: Contribution of each individual components (per SH coefficient and percentage)

The contributions of the GOCE gravity gradient componentsVxx, Vyy are complementary, and

those ofVzz are rather homogeneous. Although the noise inVzz is higher than in the other two, its

information content is still the highest. TheVzz shows very good consistency to the fully combined

solution, due to its good spatial homogeneity. This property reduces the standard deviation of the

geoid differences between the partially combined solution ofVzz and the fully combined solution

and makes it smaller than those ofVxx, Vyy andVxz. Vzz is therefore the most important component.

From the analysis in terms of spherical harmonics, the contribution fromVzz is the largest, whereas

Vxx andVyy have a similar magnitude of contribution. Pseudo-observations in the polar areas are

used to stabilize the computation and de-correlate the zonal and near-zonal coefficients. They
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have, however, less than 1% influence on the final result. SST contributes more information to the

lower degree coefficients and especially to the higher orders of the lowerdegree coefficients.

6.2.5.2 Comparison of individual components to the complete combined solution

The geoid differences between models derived from SST (and pseudo-observations in the polar

areas) combined with each of the sensitive components of SGG, individually, with the fully com-

bined solution of all observations are presented in Fig.6.11. The STD of the difference between

the partially combinedVzz component and the fully combined solution is less than that of the other

three components. This is due to the homogeneity of theVzz, compare Fig.6.10c. The larger STD

for Vxx andVyy in Fig. 6.11aand6.11bis because of the non-isotropic error behavior of the coef-

ficients estimated with these two components, as shown in Fig.6.10aand6.10b. One can observe

a certain stripe pattern in north-south and east-west direction in the error behavior of the compo-

nentsVxx andVyy, respectively. SinceVxz contains both anx andz component, its geoid difference

to the fully combined solution also shows the same north-south stripes but with a smaller STD as

compared toVxx.

The constraint in the polar gap areas is important for decorrelation of the zonal and near-zonal

coefficients of the estimated gravity field model. Nevertheless, it is tried to keepit as small as

possible. In addition to the contribution analysis based on the resolution matrix,the differences of

the coefficients and geoid heights between the polar-constrained model and polar-unconstrained

model are presented in Fig.6.12. The coefficient differences between these two models are smaller

than 10−12.5 for almost all non-zonal and not near-zonal coefficients, see Fig.6.12a. This means

the polar constraint applied in TUMYGSTGpgr affects only the zonal and near-zonal coefficients.

The geoid differences in latitudes [-83◦ 83◦] between the constrained and unconstrained models

are shown in Fig.6.12b. One can find that the geoid differences between the constrained and

unconstrained solutions are quite small, with more than 50% of the geoid differences on the global

grid being smaller than 0.5 cm. The STD value of the differences is 1.83 cm. Large differences

are found only at high-latitude areas close to the polar gaps.

With the contributions of polar constraint, together with the comparison betweenthe con-

strained solution and unconstrained solution, we conclude that some essential a-priori information

enters into the result, but its contribution is kept quite small.

6.2.6 Analysis in terms of External Validations

The geoid undulations can be obtained either by computing the geoid height ofa gravity field

model relative to an adopted normal ellipsoid, such as WGS84 (Sillard and Boucher, 1996), or by

taking the difference between orthometric height derived from leveling surveying and ellipsoidal

heights derived from GPS. The latter approach is referred to as “GPS-leveling”. Theoretically the
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tive to the fully combined solution

(b) Geoid differences between theVyy (with SST and pseudo-obervations) rela-
tive to the fully combined solution

(c) Geoid differences between theVzz (with SST and pseudo-obervations) rela-
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(d) Geoid differences between theVxz (with SST and pseudo-obervations) rela-
tive to the fully combined solution

Figure 6.11: Geoid differences of individual components relative to thefully combined solution
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6. COMBINATION OF SST AND SGG

(a) coefficient differences between polar-constrained
and unconstrained solutions (log10 scale)

(b) geoid differences between polar-constrained and
unconstrained solutions

Figure 6.12: comparison between polar-constrained and unconstrained solutions

geoid undulations derived with these two approaches are equivalent. Therefore, a comparison of

their values at the same geographical location allows to assess the accuracy of the gravity model.

Our model TUMYGSTGpgr has been validated with the benchmark areas in Australia,

Canada, Europe, Germany, Japan and USA by Dr. Thomas Gruber. For the estimation of the

omission error we make use of the EGM2008 model, seeGruber et al.(2011). The RMS-values

of the geoid heights of the four models to be validated differing to “GPS-leveling” are shown in

Fig. 6.13, with a truncation up to d/o 180 on the left, and up to d/o 200 on the right. One canfind

that the model TUMYGSTGpgr is slightly but consistently closer to the “GPS-leveling” data than

the other 3 models. The reason can be that the model TUMYGSTGpgr is based on a longer time

span with GOCE data than the others. The GPS-leveling data in Germany are themost accurate

among all these data sets used for validation, that is the reason why the RMS-values in this area

is the smallest. All the fields are close to the German GPS-leveling data set with about 4-6 cm

uncertainty. It is difficult to say whether the GPS-leveling data are more accurate than the gravity

field models, or vice versa. However, if the gravity field models are so closeto the most accurate

GPS-leveling data set, it can be assumed that both the “GPS-leveling” data and our gravity field

models TUMYGSTGpgr have an error level of not larger than 6 cm in terms of geoid undulation

up to d/o 200, at least for the area of Germany.

Geoid height/anomaly slope differences are more sensitive to mid- to high-frequency varia-

tions of the geoid (Gruber et al., 2011). They are the RMS-values of the differences between the

geoid of gravity field model and that derived from GPS-leveling and classified according to the

distance between all the combinations of any two benchmark point in each region. A closer inves-

tigation is taken for German and Japanese data sets. In Fig.6.14, the relation between the RMS

values of the geoid differences and the distance of the points is given, for the regions of Japan

(left) and Germany (right). The RMS value of TUMYGSTGpgr is smaller than those of all the

other models, for the distance less than 1700 km in the area of Japan, and even much significantly
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Figure 6.13:RMS of the geoid height differences between the “GPS-leveling” and gravity field models

smaller in the area of Germany. This shows that TUMYGSTGpgr is better consistent with the

external validation data, based on this computation in terms of geoid slope differences. For the

other data sets similar, but due to the fact that their accuracy is poorer, less pronounced results as

presented in Fig.6.14were obtained. In the tests truncated in other degrees, TUMYGSTGpgr also

shows better consistency with the GPS-leveling data sets.
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Figure 6.14: RMS geoid height differences for the regions of Japan (left)and Germany (right) classi-
fied by distance (d/o 200)

With this external comparison, we conclude that the gravity field model derived in this study

is at least as good as the other GOCE models considered in this study. As we stated, the long data

time span may be essential for the good quality of TUMYGSTGpgr.
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6. COMBINATION OF SST AND SGG

6.3 Analysis of the Solution Derived by Combination of GRACE SST

and GOCE SGG

On the one hand, due to the high sensitivity of GGT in the MB, GOCE has a verygood perfor-

mance at higher degrees; on the other hand, GRACE is very accurate atlower degree SH coeffi-

cients. They are complementary with each other. It is advantageous and desirable to combine them

for a good solution covering both the lower and higher degree coefficients. We combine the normal

equations of the SGG part (up to d/o 215) of model TUMYGSTGpgr with the normal equations

of the GRACE gravity field model ITG-GRACE2010s (up to d/o 180), which iscomputed with 7

years of GRACE data from August 2002 to August 2009 (Mayer-G̈urr et al., 2010). Even though

GRACE contains information in the polar areas, its resolution is not adequate tofully compen-

sate the instability of the combined normal equations caused by the polar gap. Therefore, as for

the computation of TUMYGSTGpgr, the constraint in the polar areas is still applied to the linear

system of the GRACE-GOCE combination, with a STD of 20 cm to EGM2008 on the1◦ × 1◦

resolution grid. The posteriori estimates of the variance components of the GOCE SGG part in

Table6.1are used for the combination with GRACE. Based on these considerations, anew model

named GOGRA01s has been computed.

The model GOGRA01s is compared with GOCO02s, together with the model TUMYGST-

Gpgr, EIGEN-6S and ITG-Grace2010s. In Fig.6.15the degree RMS and cumulative geoid error

are given on the left and right hand side, respectively. The solid lines represent the differences be-

tween the models and the reference model, GOCO02s. The dashed lines represent the correspond-

ing formal error. From Fig.6.15aone finds that the coefficients of lower degrees are determined

very accurately due to GRACE, and that GOCO02s is closer to ITG-Grace2010s than GOGRA01s.

This is because different filters are used in GOGRA01s and GOCO02s. The coefficients of degree

from 2 to 60 in GOCO02s depend more on GRACE than these in GOGRA01s do.This makes

that GOCO02s is closer to GRACE at the lower degree coefficients. Below about degree 105, the

curves of ITG-GOCO and GOGRA01s-GOCO are quite close to each other. At degrees higher

than 105 the two curves deviate. This may imply that GOCE improves ITG-GRACE2010s start-

ing from degree 150. In Fig.6.15b, the cumulative error in terms of geoid height show that the

model TUMYGSTGpgr is less accurate than GOGRA01s due to the fact that the lower degree

coefficients are determined with less accuracy based only on GOCE observations. But at higher

degrees its cumulative geoid error is closer and closer to GOGRA01s. Since more data is used for

TUMYGSTGpgr and GOGRA01s than for GOCO02s, the formal errors ofboth GOGRA01s and

TUMYGSTGpgr are smaller than those of GOCO02s. From the formal errorpoint of view, up to

degree 200, the cumulative geoid errors of TUMYGSTGpgr and GOGRA01s are at the level of 2

to 3 cm (1σ ).

The geoid differences between TUMYGSTGpgr and GOGRA01s are displayed in Fig.6.16.

With 1.45 cm STD value up to d/o 215, they are very close to each other. Larger differences are
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Figure 6.15: degree RMS and cumulative geoid error per degree

located at higher latitudes. More than 50% of the total (958,265) points of thegeoid differences is

smaller than 1 cm, and in about 90% of the total points the difference is smaller than 2 cm. It can

be seen in upper-right panel that the RMS per latitude at the latitude of Himalaya is rather large.

Very likely it is due to the differences between GOCE SST solution and GRACEsolution.

Figure 6.16: Geoid differences between GOGRA01s and TUMYGSTGpgr

As done for model TUMYGSTGpgr, the contribution of GOCE, GRACE and polar area con-

straints to GOGRA01s is analyzed as well. As shown in Fig.6.17, the contribution of GOCE is

large for the higher degree coefficients and that of GRACE is large for the lower degree coeffi-

cients. Even though the same constraints in the polar areas are applied to bothGOGRA01s and
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6. COMBINATION OF SST AND SGG

TUMYGSTGpgr, the effect is different on them since GRACE contributessome low- and medium-

wavelength information to GOGRA01s. This leads to large differences between GOGRA01s and

TUMYGSTGpgr in high-latitude areas, see Fig.6.16. The mean contribution of GOCE and

GRACE are 69.9% and 30.06%, respectively. The polar area constrainthas a small value of

0.047%. Its contribution starts from about degree 140 to the zonal and near-zonal coefficients.

This is different to TUMYGSTGpgr in which all the zonal and near-zonalcoefficients get rela-

tively large contribution from the polar constraint. It is reasonable that thecontribution of polar

constraint to GOGRA01s is smaller than to TUMYGSTGpgr, because below degree 140 the zonal

and near-zonal coefficients are determined with good accuracy due to the contribution of GRACE.

(a) GOCE SGG (b) GRACE

(c) Polar area constraint

Figure 6.17: Contribution of GOCE SGG (upper left), GRACE (upper right) and polar area constraint
(lower center) for GOGRA01s

The contribution analysis for model GOGRA01s demonstrates that GOCE andGRACE are

complementary to each other. From the upper right panels of Figs.6.17aand6.17a, it is seen

that below degree 60, the information from GRACE is dominant in GOGRA01s;From degree 60

increasing to 140, the information of GOCE increases from 0 to be dominant (almost 1); Higher

than degree 140, the signal content of GOCE is superior in GOGRA01s. In the lower left panels

of Figs.6.17aand6.17a, the contribution per order of GOCE is almost 1 for the orders higher than

100; GRACE contributes more information to the lower order coefficients thanthe higher order
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ones. From the lower left and upper right of Fig.6.17c, we see that the polar constraint inputs

some information only to the coefficients of degree higher than 140 and order below about 15.

With the above computation and analysis, we can conclude that the combination of GOCE and

GRACE is very useful for an accurate gravity field model in long-, medium- and short-wavelength.

6.4 Summary

A satellite-only combined solution was computed using SST and all four accurate gravitational

gradiometry components. The combined normal equations are derived by taking the weighted

sum of the normal equations of the various observation types. The weightsof the individual

components (observation types) are computed from the inverse of their variance components.

The contributions of individual components are computed by means of resolution matrices.

Based on the analysis, it is found that the contribution of theVzz component is the largest; the

contribution ofVxx component is following; that of theVyy andVxz components are the third and

fourth, respectively; the SST part is the fifth and its contribution is concentrated on the lower

degree coefficients and especially those of higher orders; last but not least, the constraint in the

polar areas contributes less than 0.3% to the complete solutions. The SGG partcontributes more

than 97%. The contribution of the SST part is only about 2%, neverthelessit is essential.

The advantage of the combination of SST and SGG part is demonstrated in ouranalysis. With

the combination, the error curves of individual parts decrease. By comparing the degree RMS,

the coefficients and geoid difference maps, it can be seen that our solution is consistent with other

newly developed models.

From the triangular representation of the coefficient errors, we conclude that the estimated

coefficients are most accurate for degrees from about 30 to 120. Thepolar gap effect is still

existent, even though the constraint in polar areas has largely reduced it.

The geoid differences between TUMYGSTGpgr and other newly developed satellite-only

models show that TUMYGSTGpgr agrees better with GOCO02s and TIM2 thanwith DIR2 and

EIGEN-6S. The combined model EIGEN-6C is closer to TUMYGSTGpgr with alower STD value

of geoid differences than EGM2008. Inhomogeneities, probably due to the terrestrial ground data,

are found from the geoid differences between TUMYGSTGpgr and combined models.

The VCM of our solution has been transformed into a global geoid error map. Since the

ground tracks at high latitudes are denser than that at low latitudes, the formal error in terms of

geoid height at high latitudes is smaller than that close to the equator. The estimated model is

more precise in the northern hemisphere than in the southern hemisphere, dueto the orbit altitude

in the northern part being lower than in the southern part of the Earth. Thisis the effect of the orbit

eccentricity and the orientation of the orbit ellipse.

The constraint in the polar gap areas is important for stabilizing the solution and decorrelating

the zonal and near-zonal coefficients. According to the differencesbetween the constrained and
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unconstrained solution, we see that the constraint in polar areas affectsonly the zonal and near-

zonal coefficients. From a comparison of the geoid differences between polar-constrained and

unconstrained solutions, we conclude that very little information from the constraint is projected

to the areas outside of the polar gaps.

Based on the validation, we find that TUMYGSTGpgr, together with TIM2, DIR2 and

GOCO02s, are close to the “GPS-leveling” data with a precision of about 4 cm up to d/o 180,

of 6 cm up to d/o 200, in terms of geoid height on Earth sphere (for the areaof Germany), consid-

ering that the benchmark in Germany is very precise. Smaller RMS-values ofTUMYGSTGpgr

to the “GPS-leveling” data than those of the other models are likely due to its longer period of

observation time.

The combination of GOCE and GRACE is very useful. The accuracy of the coefficients of

lower degrees is greatly improved by including GRACE. The comparison between the GOCE-

only model TUMYGSTGpgr and GOGRA01s shows that they are consistentwith each other with

an STD value of 1.5 cm up to d/o 215. The contribution of GOCE is higher (70%) than that of

GRACE (30%) in the case of model GOGRA01s and is dominant at the coefficients above degree

140. The polar area constraint is still important. Since GRACE measurements do not contain

information with a resolution as high as GOCE, it is necessary to apply this polarconstraint in

order to stabilize the equations and compensate the lack of high-resolution information in the

polar areas.
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7

Concluding Remarks

7.1 Discussion

With the gradiometric measurements collected by the GOCE satellite and the kinematic orbits, a

gravity field model TUMYGSTGpgr has been derived using the integral equation approach for the

SST part and a bandpass filter applied to the gradiometer data for the SGG part. As stated in the

literature and presented in this study, the SST part achieves good accuracy for the lower degree

coefficients and the SGG part for the higher degrees and orders.

Based on a forward computation (case study of the GOCE orbit), considering the cumulative

effect the kinematic GOCE orbits are sensitive to the Earth’s gravity field up tod/o 150. The

largest disturbance of the orbit is caused by air drag. Since the air dragin flight direction, which

is its largest components, is compensated by ion thrusters, the residual air drag and other mis-

modeled and unmodeled perturbation forces are expected to be adequatelytaken into account by

models and by the applied empirical accelerations.

The integral equation approach is efficient for gravity field modeling basedon orbit data. It

is fast due to the fact that the variational equations are solved by matrix operations, instead of

orbit integration. The computation is parallelized with OpenMP interface for thethree orthogonal

spatial components, by making use of their independence in this approach.The correlation of the

results with the used a-priori model is proved to be negligible.

Since the altitude of the orbit is low, the reconstructed models recovered from GOCE’s kine-

matic orbits show good quality when compared to those based on CHAMP. The accuracy of the

resulting gravity field model is not homogeneous because the accuracy ofthe orbit degrades to-

wards high latitudes. In particular in high latitude and in the areas close to the South and North

Magnetic Poles the accuracy of the orbit and of the estimated gravity field model is lower than

at lower-latitude areas. By residual analysis, it can be shown that the reconstructed orbits are

more consistent to the kinematic orbits than the reduced dynamic orbits providedin the product

SSTPRD 2I.
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7. CONCLUDING REMARKS

The empirical accelerations are derived by re-substitution after the global parameters are ob-

tained. Similarities are found between the reconstructed empirical accelerations and the measured

accelerometer data. This shows that the empirical accelerations really absorb a large part of the

unmodeled effects. A correlation between the reconstructed accelerations and the Euler angles

between GRF and LORF is found in this study. The GRF is kept close to LORF by magnetic

torquing. Likely some of the ion thrust in the x-direction in the GRF is projected into the empiri-

cal parameters modeled in LORF.

Due to the existence of the polar gap, the normal equations have to be stabilized by a constraint

of grid values in the two polar areas using an a-priori model. Since the constraint is set quite loose,

the results show that there is little information projected into the areas covered by the GOCE

orbits, based on comparison between the constrained and unconstrainedsolutions. This kind of

constraints is helpful of decorrelating the zonal and near-zonal coefficients.

The observation model of the SGG part is derived and formulated in the GRF, by rotating the

partials of the GGT w.r.t. the SH coefficients from the Earth-fixed frame to GRF. This avoids the

rotation of the measured GGT, therefore the less sensitive components in themeasurements do not

degrade the results.

Apart from digital filtering, tests were carried out to suppress the noise of the gradiometer data

in the LFB by modeling either with polynomials or with Fourier expansion. After theremoval of

the error in the LFB, the gravity field information can be derived from the gradiometer data. Ac-

cording to our experiments, due to its properties of continuity and preservation of the information

inside the MB, a Fourier expansions is more suitable than polynomials.

The analysis of the GGT data (before SHA) shows the nice performance of the gradiometer.

This can be seen from the trace as well as the noise floor of the individualcomponents. The major

tectonic features are found directly from the measurements. The noise in thefrequencies below

the MB is larger than that in the MB. In order to suppress this low-frequency noise, two filters are

applied to the data. One is a FIR bandpass filter for a global data view in order to guarantee that

no phase shift occurs due to filtering. The other one is a IIR bandpass filter for SHA because of its

lower computation load.

The combination of SGG with SST shows the improvement of the combined solutionsto the

individual ones. According to the comparisons, our model TUMYGSTGpgris quite consistent

with other models derived from GOCE measurements. Based on external validation, our results

show even better performance likely due to the longer data span used in ourcase.

Despite of its higher noise in the MB, the information content ofVzz is the highest, with a value

of 32.7%. The componentsVxx andVyy contribute 28.04% and 26.08%, respectively. The contri-

bution of the only accurate off-diagonal componentVxz is 10.93%, smaller than the three diagonal

components, due to its larger STD value resulting in a smaller weight during the combination.

Vxz shall be used in gravity field determination. The SST part contributes about2% to the whole

134



7.2 Outlook

solution. The zonal and near-zonal coefficients are de-correlated by the polar constraint, which

contributes very small amount, less than 1%.

The formal error is propagated into geoid height errors on an Earth sphere. Because of the

denser orbit coverage, the formal error of the geoid height at higherlatitudes is smaller than at the

lower ones. Furthermore, because the altitude of the satellite is lower in the northern hemisphere

than in the southern hemisphere, the precision of the geoid heights of the estimated gravity field

in the northern hemisphere is higher than in the southern hemisphere.

The result of the combination of GOCE SGG and GRACE shows the expected improvements

compared to the GOCE-only and GRACE-only solution. It takes the advantages of both GOCE

and GRACE. Due to the high sensitivity of GGT in the MB, GOCE shows very good performance

at higher SH degrees and orders. GRACE is very accurate at lower degree and order SH coef-

ficients. The two missions are complementary with each other. In our model GOGRA01s, the

contribution of GOCE reaches 60.9% and GRACE contributes mainly to lower degree coefficients

with an average value of 30.06%. By taking the advantages of both GOCE and GRACE, the model

GOGRA01s shows its high accuracy at both lower and higher degree andorder coefficients.

Our solution TUMYGSTGpgr achieves an accuracy of about 4 to 6 cm up tod/o 200, according

to the formal error of the geoid height and the validation based on externaldata. With more and

more data available, results of even better accuracy are hopefully obtained.

7.2 Outlook

A certain format of normal equations is defined and applied in this study. Thenormal equations

of SST and SGG part are computed from their observation equations, respectively. Each day’s

normal equations are stored on disk with our defined format and then accumulated. It can be

applied to other observation types such as SLR and terrestrial data, too.

In our result, we find that the intersection of the formal error and the signal is above d/o 215.

This means that from GOCE data one can determine a gravity field model higherthan this value.

A new solution up to even higher degree and order is therefore in the planning.

With the software developed in this study, we will process and analyze the continuing stream

of GOCE data. It is hopefully used also for some future missions.

Long wavelength gravity field signal can be measured by SLR with high accuracy. It is there-

fore desirable to combine GOCE and GRACE with SLR for a better performance at the lowest

degree coefficients.

It is important for a GOCE solution to handle the polar gaps of the northern and southern

hemispheres. One may use terrestrial or airborne gravity data for the northern polar areas. For

the southern polar areas, there is no sufficient terrestrial data available. Introducing some other

information in these areas for a GOCE solution is therefore unavoidable.
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List of Abbreviations

AIUB Astronomisches Institut der Universität Bern

CHAMP CHAllenging Minisatellite Payload

CMA Common mode acceleration

CPR Cycle per revolution

DEOS Delft Institute for Earth-Oriented Space research

DIR Direct approach

DMA Differential mode acceleration

EGF Earth gravitational field

ESA European Space Agency

FFT Fast Fourier Transform

ECEF Earth-centered earth-fixed

GRF Gradiometer reference frame

FIR Finite impulse response

GINS Géod́esie par Int́egrations Nuḿeriques Simultańees

GG Gravitational gradient

GGT Gravitational gradient tensor

GINS Géod́esie par Int́egrations Nuḿeriques Simultańees

GOCE Gravity field and steady-state Ocean Circulation Explorer

GRACE Gravity Recovery And Climate Experiment

GRGS Groupe de Recherche de Geodesie Spatiale

IAPG Institut für Astronomische und Physikalische Geodäsie

IAU International Astronomical Union

IERS International Earth Rotation and reference systems Service

IIR Infinite impulse response

LORF Local orbital reference frame

MB Measurement band

MBW Measurement bandwidth

NEQ Normal equation

OMC Observed minus computed

PSD Power spectral density
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GLOSSARY

RMS Root mean square

PSO Precise science orbit

SGG Satellite gravitational gradiometry

SH Spherical harmonic

SHA Spherical harmonic analysis

SHS Spherical harmonic synthesis

SLR Satellite laser ranging

RSO Rapid science orbit

SST Satellite-to-satellite tracking

STD Standard deviation

SNR Signal-to-Noise Ratio

SOFA Package of standards Of fundamental astronomy

SPW Spacewise approach

TIM Timewise approach

VCM Variance-covariance matrix
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Migliaccio F, Reguzzoni M, Sansò F (2004) Space-wise approach to satellite gravity field de-
termination in the presence of coloured noise. Journal of Geodesy 78(4-5):304–313, DOI
10.1007/s00190-004-0396-z

141



REFERENCES
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