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The most incomprehensible thing about the world is that it
is comprehensible.

Albert Einstein (1879 — 1955)



ABSTRACT

In recent years it has become clear that water has a much more significant function in
biological processes on the nano scale than it was assumed previously. Especially hy-
drophobic effects play an important role in aggregation processes and protein folding.
It is the goal of this work to gain a thorough understanding of the behavior of water
near curved interfaces by the use of molecular dynamics simulation methods. As a
prerequisite, in a first step, structural correlations in bulk water are investigated. By
studying solvation processes and fluctuations of air/water interfaces we succeed in fur-
ther clarifying the role of the hydrophobic effect in protein folding and develop a con-
sistent description of hydrophobic solvation over several length scales. Furthermore,
we describe the dynamics of water molecules near interfaces by means of stochastic
methods.

In den letzten Jahren hat sich die Erkenntnis durchgesetzt, dass Wasser eine sehr viel
bedeutendere Funktion in biologischen Prozessen auf der Nanoskala hat, als bisher
angenommen. Vor allem hydrophobe Effekte spielen eine entscheidende Rolle fiir Ag-
gregationsvorgange und die Proteinfaltung. Das Ziel dieser Arbeit ist es, durch den Ein-
satz von Molekulardynamik Simulationen, ein umfassendes Verstdndnis des Verhaltens
von Wasser an gekriimmten Grenzflachen zu erlangen. Als Grundlage dafiir werden in
einem ersten Schritt strukturelle Korrelationen in purem Wasser untersucht. Durch
das Studium von Solvationsprozessen und der Fluktuationen an Luft/Wasser Grenz-
flachen, gelingt es die Rolle des hydrophoben Effekts fiir die Proteinfaltung weiter zu
klaren und eine skaleniibergreifende Beschreibung hydrophober Solvation zu entwi-
ckeln. Des weiteren wird die Dynamik von Wassermolekiilen an Grenzflichen mittels
stochastischer Methoden beschrieben.
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CHAPTER 1

INTRODUCTION AND OUTLINE

Water was the matrix of the world and of all its
creatures ... Just as the noblest and most del-
icate colors arise from this black, foul earth,
so various creatures sprang forth from the pri-
mordial substance that was only formless filth
in the beginning. Behold the element of water
in its undifferentiated state! And then see how
all the metals, all the stones, all the glittering
rubies, shining carbuncles, crystals, gold, and
silver are derived from it; who could have re-
cognized all these things in water ?

Paracelsus (1493 — 1541)

Water is without doubt the most essential liquid on earth. More than 70% of our
planet’s surface is covered by oceans. Deep sea currents and water vapour in the
athmosphere determine our climate. The hydrological cycle provides the land with
rain. Rivers and glaciers shape the surface of the earth.

But most importantly, water is the "matrix" of life [10, 11]. Although it is debated
if water is unique in its function as the "universal solvent of life" or if it is just one of
many possible candidates, happening to be abundant on earth, it is doubtless essential
for life as we know it. On average 60% of the body weight of a human are due
to water [12], and most life sustaining processes require its presence. Water is not
only the solvent, in which most biochemical processes take place, but also plays an
important role in many metabolic reactions in the body [10].

The importance of water for all aspects of our life has also had its impact on our
culture and society. Aristotle named water one of his four elements beside earth,
fire and air and in all major religions water plays a key role in ceremonial rituals,
symbolizing purification and rebirth. Not surprisingly, water is also one of the most



1. Introduction and Outline

Figure 1.1.: Illustration of the geometry of (a) the water molecule and (b) the hydrogen bond.

studied liquids, the web of science lists more than 300 000 publications containing the
key word water only in 2010. Still, many of its properties are not yet well understood.

Although the necessity of the presence of water for biological life has been recog-
nized a long time ago, our understanding of its role has changed drastically in the last
decades. While water was long considered merely as the background in front of which
the biomolecular machinery worked, even computer simulations of biomolecules used
to be performed in vacuum rather than in water, it becomes more and more clear that
water has a more significant and active part in these processes [13]. Understanding of
the role that water plays in biomolecular processes is therefore one of the prerequisites
to understanding these processes themselves.

Water is not only the most important, but also one of the most extraordinary liquids
known. Water is the only inorganic substance that appears naturally in its liquid form
and also the only substance on earth that is naturally found in its solid, liquid and
gaseous state. Furthermore, water shows anomalies in almost all of its thermodynamic
and transport properties, most prominent among these the anomaly in the density,
showing a maximum at a temperature of 4° C [14] in contrast to the monotonous
increase of density with decreasing temperature that most liquids exhibit.

All these extraordinary properties of water can be traced back to its molecular struc-
ture and with it its ability to form hydrogen bonds (see Fig. 1.1). The water molecule
is formed by two hydrogen atoms that are both bound to one oxygen atom forming
an angle of about Z(HOH) ~ 104°, close to the tetrahedral angle, while the OH bond
length is roughly 1 A [15]. Since the oxygen atom has a much higher electronegativity
than the hydrogen atoms, it tends to draw their electron density towards itself, leav-
ing the hydrogen atoms with a positive and the oxygen atom with a negative partial
charge. Together with the small size of the water molecule, this allows for a very strong
interaction between the hydrogen atom of one water molecule and the oxygen atom
of an adjacent molecule, which is commonly referred to as a hydrogen bond (HB).
The binding energy of a HB is roughly 25 kJ/mol which equals ~ 10 kzT at ambient
temperatures [16], much stronger than other intermolecular interactions, but it is also
highly directional, losing much of its strength if the angle between the OH bond of the
donor molecule with the line connecting the oxygen atoms becomes larger than ~ 30°.
It is these two properties, that largely account for the structural properties of water.
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Figure 1.2.: Illustration of the hydrogen bond network (a) in hexagonal ice, (b) in liquid water
and (c) around a hydrophobic solute. Hydrogen bonds are indicated by dashed blue lines.

In ice!, each water molecule is surrounded by four other molecules at the edges
of a regular tetrahedron forming the maximally possible four hydrogen bonds (see
Fig. 1.2 a). Although in liquid water the structure is much more irregular and no
long-range order is present, the local tetrahedral coordination is preserved to a high
degree [17, 18] and at ambient conditions, on average ~ 3.5 out of the four possible
hydrogen bonds are maintained [19] (see Fig. 1.2 b). This hydrogen bonding network
is at the origin of most of the anomalous properties of water and also the key to their
understanding.

But there are still many open questions. Recently, it has been suggested, that the
water structure at ambient conditions is governed by a competition of two distinct
water species differing in the degree of tetrahedral ordering and density, which form
clusters with a size of ~ 1 nm [20]. This idea goes back to the hypothesis of water
possessing a second critical point marking the end of a first order phase transition
between one more and one less ordered liquid species [21] as a possible explanation
for its thermodynamic anomalies. Although this suggestion has been controversially
discussed in the literature [22, 23], it raises the question how strong correlations in
the degree of tetrahedral ordering in liquid water are, and how far they persist. This
question is especially relevant in light of the discussion about a structuring effect of
small solutes as discussed below. We address this question in the first part of our work
by determining spatial self- and cross-correlation functions of the density and several
structural order parameters in water at ambient conditions.

1.1. Water at interfaces: Hydrophobicity and curvature
effects

As in the bulk phase, the behavior of water near aqueous interfaces is largely domi-
nated by its tendency to form hydrogen bonds or rather by the constraints the intro-

to be precise, the four-coordinated tetrahedral structure is found in ice Ih, the hexagonal state of ice
which forms at ambient pressures [10]
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duction of a surface puts on the formation of a hydrogen bond network. This depends
of course on the chemical nature of the substrate.

The interactions between a hydrophobic surface and water are non-specific and
much weaker than the water-water interaction, so that the water attempts to min-
imize the contact area by forming a large contact angle [24-26]. Also, the water
molecules in the layers adjacent to the surface orient themselves in a way reminiscent
of the orientational structure in hexagonal ice in order to minimize the number of hy-
drogen bonds that are broken [9, 27]. This effect should, however, not be taken as
evidence for the formation of an ’ice-like’ layer near the surface, since the total entropy
increases when a hydrophobic interface is created, which is evident from the decrease
of the interfacial tension with increasing temperature [15]. Further characteristics of
a hydrophobic surface are the formation of a depletion layer [6, 28-32] and the oc-
currence of slip in hydrodynamic flows [33, 34] as will be discussed in more detail
below. It shall be noted, that in this sense an air/water interface should be viewed
as a perfectly hydrophobic interface, i. e., the limiting case for completely vanishing
surface water interaction.

At hydrophilic surfaces, that possess polar groups with which the water can form
hydrogen bonds, the water structure is still perturbed by the presence of the interface
but wholly different phenomena occur. For instance, two hydrophilic surfaces repel
each other [35-37], the so called phenomenon of hydration repulsion, while two hy-
drophobic surfaces are drawn together [38, 39].

The situation changes completely if we go from extended surfaces to the solvation
of small solutes, that confront the aqueous phase with a highly curved interface. While
the hydrogen bond network has to be broken at an extended hydrophobic interface,
small hydrophobic molecules can be accommodated without breaking hydrogen bonds
at the cost of a slight rearrangement of the network (see Fig. 1.2 c). This manifests
itself in a crossover from a large scale solvation or extended interface regime to a
small scale solvation regime that can be seen in many characteristic properties[40, 41].
While the cost of the creation of an extended interface or the solvation of a large solute
scales with its surface area, the solvation free energy for smaller solutes scales with the
solute’s volume [42]. At ambient temperatures the solvation entropy of small solutes is
negative, while for large solutes and extended surfaces it is positive [43, 44]. In short,
on the nano scale most interfacial properties attain a distinctive curvature dependence.
Furthermore, hydrophobic solutes tend to aggregate in water, the mechanism of which
is still debated but supposedly also depends on the involved length scales [40, 45].

All these phenomena taken together make up the famous "hydrophobic effect" [46],
which is at the bottom of many aggregation and solvation processes spanning a wide
range of length scales from the solubility of rare gas solutes [47-49], over molecu-
lar recognition [50, 51] and amphiphilic aggregation processes [52] to protein fold-
ing [53] and misfolding [54, 55]. Since Kauzmann [56] first suggested that the burial
of hydrophobic residues in the protein interior away from the water could be a driv-
ing force for protein folding, the hydrophobic effect is believed to play a dominant
role in protein structure and stability, for reviews see e. g. [45, 53]. On the other



1.1. Water at interfaces: Hydrophobicity and curvature effects

hand misfolding and the subsequent aggregation of globular proteins to form amyloid
structures is at the origin of many diseases such as Alzheimer’s and Parkinson’s [54].

Despite the importance of the hydrophobic effect its mechanism is still debated and
a consistent description over the different regimes is missing. Frank and Evans [57]
explained the negative entropy and enthalpy of solvation of small hydrophobes in their
'ice-berg’ model by the formation of a layer of structured water with enhanced hydro-
gen bonds around the solute, reminiscent of the crystalline clathrate hydrates that can
form under high pressures [58]. Building on this, Kauzmann [56] suggested, that the
aggregation of two hydrophobes is facilitated by the release of the structured water
in between the solutes which is accompanied by an increase of entropy. Stillinger on
the other hand attributed the hydrophobic aggregation to the clumping tendency of
ordered structures and draws an analogy to the thermodynamic anomalies in super-
cooled water [16, 59]. Although the ’ice-berg’ view has been adopted by many authors,
the character of the water in the solvation shell is a matter of debate. Blokzijl and Eng-
berts [45] argue, that the assumption of a crystalline-like structure with enhanced hy-
drogen bonding is not necessary to explain the favorable enthalpy of solvation, which
they attribute to van der Waals interaction between water and solutes. The structure
of the hydrogen bonding network around the solutes is merely maintained tolerating
the orientational constrains put up by the solute, while the aggregation of solutes is a
consequence of the limited capacity to accommodate hydrophobic solutes.

It has been argued, that the hydrophobic effect should rather be defined by its un-
usual temperature dependence [46, 60] and any explanation of its mechanism must
account for it instead of the solvation entropy at ambient temperature. Indeed, the
solvation entropy of hydrophobic solutes increases rapidly with increasing tempera-
ture and even changes its sign due to the large and positive heat capacity change
upon solvation. Extrapolating the solvation entropies and enthalpies for several small
hydrophobic solutes, it has been noted that they converge at a universal tempera-
tures [61], which seems to indicate that hydrophobic solvation is dominated by uni-
versal water features and not so much by solute specifics [62, 63]. The reported con-
vergence of the denaturing entropy of a group of different proteins at roughly the same
temperature as hydrophobic solutes [64, 65] was consequently argued to indicate that
the denaturing entropy of proteins is dominated by the hydrophobic effect and used
to estimate the hydrophobic contribution to protein stability [66-68]. However, this
appealing picture was subsequently questioned since the initially claimed universal
convergence of denaturing entropies holds only for a small subset of proteins, for a
larger data collection no convergence is seen [69], which can still not be satisfactorily
explained. We argue, based on the study of solvation of small hydrophobic solutes
with varying solute water interactions, that the differences induced by variations in
the residue-water interactions are sufficient to explain these effects.

Besides its temperature dependence, the size dependence is maybe the most striking
characteristic of hydrophobic solvation. The crossover between the small scale and the
large scale solvation regime, happens on a length scale on the order of ~ 0.5 nm [41],
which makes it especially relevant for protein folding and molecular aggregation [70].
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Theoretical descriptions based on the assumption of Gaussian density fluctuations on
small length scales give a reasonable description of the small solute regime [71-75],
while interfacial thermodynamics are employed to account for large solutes [76]. But
even for solutes smaller than 0.5 nm, proportionality of the solvation free energy and
the solvent accessible surface of the solute with varying effective proportionality con-
stants is often reported, see e. g. Ref. [77], a common misconception which has its
origin in the fact that for molecules made up from similar building blocks, like alkane
chains, due to additivity the solutes surface area as well as its volume are proportional
to the chain length [41, 78].

A description spanning both regimes might be obtained by the introduction of a
curvature dependent surface tension, a concept which has been first proposed by Tol-
man [79] in 1949 in the context of liquid droplets. However, not even for simple
liquids a consensus has been reached about the sign of the coefficient to the first order
curvature correction, usually termed the Tolman length, see e. g. [80, 81] and refer-
ences therein. Scaled particle theories try to bridge the gap between the two regimes
by constructing a sophisticated interpolation function including curvature correction
terms [43, 82-85]. While most of the studies mentioned so far deal with spherical
solutes, there is evidence that hydrophobic hydration is not only sensitive to the size
but to the shape of a solute as well [86-88].

This could be taken into account by a more general description of the surface free
energetics in terms of a curvature based free energy functional like the one proposed
by Helfrich [89]. Such a description involves additional parameters, whose determina-
tion provides a formidable challenge, see [90-92] and references therein. We demon-
strate that progress can be made by studying simultaneously the solvation of spherical
and cylindrical solutes, which allows for the extraction of the elastic properties of the
aqueous interface.

Instead of studying water interfaces curved due to the presence of a solute, one
can also take a complementary approach and study the shape fluctuations of a free lig-
uid/vapor interface, where curvature corrections manifest themselves in a wave vector
dependent effective surface tension [92-94]. Experimentally interfacial fluctuations
can be studied by small angle X-ray scattering techniques [95-97]. Restrictions in the
accessible wave vector range and accuracy and the entanglement of interfacial and
bulk fluctuations make the interpretation of such experiments difficult [91, 98-100].
The complete configurational knowledge in a computer simulation, on the other hand,
allows for the disentanglement of these effects and leads to a consistent description of
the surface energetics, as we demonstrate in this work.

1.2. Water dynamics: The hydrogen bond dance
As well as the static properties, also the dynamic properties of many processes in

aqueous solution are closely related to the dynamics of the water itself. Examples
include the kinetics of protein folding [101, 102], ion pair dissociation [103] or the
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water permeation through membrane channels [104]. Also the boundary conditions
of hydrodynamic flows are determined by the dynamics of the interfacial water [105,
106] with important implications for microfluidic devices [107].

The water dynamics in turn is governed by the fluctuations and rearrangements
of the hydrogen bonding network through the breakage and formation of individual
hydrogen bonds. Stillinger [16] suggested, that the dominant process is what he called
switching-of-allegiance, that is the substitution of one hydrogen bond acceptor with
another near at hand, a view which is supported by the work of Csajka and Chandler
[108]. Laage and Hynes [109, 110] note that this switching occurs in a rather abrupt
manner including angular jumps of the hydrogen bond donor. The non-exponential
kinetics of the hydrogen bond relaxation [111, 112] is attributed to a coupling with
diffusion by Luzar and Chandler [113].

Near interfaces, the dynamics of the water are influenced by the chemical charac-
ter of the surface. At hydrophobic surfaces the lateral motion of the water is not so
strongly perturbed by the weak substrate water interactions, which leads to the phe-
nomenon of surface slip [105, 106], that is in hydrodynamic flows the water keeps a
finite velocity relative to the substrate, an effect which is closely linked to the occur-
rence of a depletion layer [33, 34]. Near hydrophilic surfaces on the other hand the
well known no-slip boundary condition holds, that is the water layers adjacent to the
surface do not show a relative velocity.

Simulation studies report a slowing down of water diffusion both at hydropho-
bic [34, 114, 115] and hydrophilic surfaces [34, 114, 116], which is much stronger at
hydrophilic surfaces. Some studies of water in thin films on hydrophilic surfaces [117,
118] and in confinement by hydrophilic walls at nanometer separation [119-121]
even report the formation of ’ice-like’ layers in conjunction with a viscosity increase
of several orders of magnitude, while others find a moderate increase of the viscosity
by a factor on the order of 4 [34]. A quantitative comparison is difficult, however,
since most of the methods used to determine the dynamics involve an averaging over
a certain distance from the surface that might obscure fast variations [34, 117]. Also
the entanglement of effects due to the free energy profile imposed by the substrate and
the diffusivity require a more careful analysis, as has been recently demonstrated for a
system of hard spheres in confinement [122]. In this work we apply a similar method
to the dynamics of water near hydrophobic and hydrophilic walls and solutes.

1.3. Outline of this work

It is the goal of this work to gain a thorough understanding and a consistent description
of the thermodynamics and dynamics of water near curved and planar interfaces by
the use of molecular dynamics simulation methods.

In chapter 2 we describe the computational and analysis methods used in this work
as far as relevant for the overall work. More specific analysis tools are described in
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the individual chapters if it is necessary. We also discuss the general properties of the
water models employed and the modeling of surfaces and solutes.

In chapter 3 we investigate several structural properties of bulk water. As a stringent
test of the quality of the water models used, we determine the low wave vector region
of the static structure factor and compare the results with experimental data. It turns
out, that all investigated water models can reproduce the experimental data reason-
ably well, including subtle features such as the slight minimum observed around wave
vectors of ¢ ~# 4nm™! [23, 123, 124] and are consequently well suited to investigate
water structure. Subsequently, we calculate spatial self- and cross correlation functions
of the density and structural order parameters such as the hydrogen bond number and
the tetrahedrality parameter introduced by Errington and Debenedetti [125] and show
that there is no strong coupling between density and structural fluctuations.

In chapters 4 and 5 we turn to the description of hydrophobic solvation effects.
While chapter 4 is mainly concerned with the solvation of small scale solutes and
its dependence on the solute water interaction, chapter 5 deals with the crossover
between the small scale and large scale solvation regime and a consistent description
based on a local surface free energy functional.

By determining the thermodynamic solvation properties for idealized hydrophobic
solutes with varying solute water interactions over a wide range of temperatures, we
show in chapter 4 that the temperature at which entropy and enthalpy converge de-
pends sensitively on the specific features of the interaction potentials. We further
explain the differences in the solvation thermodynamics for different water models
and the discrepancies with previous studies [72] using hard sphere models. Finally,
we discuss the implications for the interpretation of the hydrophobic contribution to
protein stability.

In chapter 5 we investigate, how the Helfrich [89] free energy functional can give
a consistent description of the free energy of a curved water interface. In the first
part (Sec. 5.2) we extract the bending rigidity by analyzing fluctuation spectra of the
free air/water interface. For this purpose we introduce a method to separate bulk
and interfacial fluctuations without any fitting parameters. We also determine the
intrinsic density profile and discuss implications for the interpretation of scattering ex-
periments. In the second part (Sec. 5.3) we study the solvation of hydrophobic spheres
and cylinders with radii up to 2 nm. We determine solvation free energies, entropies
and enthalpies which enables us to identify the relevant crossover length scales and
discuss implications for hydrophobic aggregation. Applying the Helfrich functional
simultaneously to the solvation free energies of solutes with different geometries al-
lows us to extract the surface elastic constants, including the coefficient of the first
order correction, i. e., the Tolman length, which is not accessible by analyzing surface
fluctuations.

In chapter 6 we apply a Fokker-Planck based stochastic formalism to describe the
dynamics of single water molecules near hydrophobic and hydrophilic solutes and in-
terfaces. This formalism allows us to disentangle the free energy and diffusivity profiles
of the dynamic processes. We find that the diffusivity profiles show strong variations
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including a dramatic drop near the hydrophilic surface as well as near another water
molecule, whereas the drop near hydrophobic surface and solute is rather moderate.

Finally, we give a summary of our results and discuss implications and possible
starting points for future work.
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CHAPTER 2

COMPUTATIONAL METHODS AND MODELING

Since the relevant length scales we are interested in are in the nanometer regime, a
naive application of the concepts from continuum theories is bound to fail at some
point. Rather, modeling on the molecular scale is necessary. On the one hand this
gives direct access to structural properties on the atomistic scale, on the other hand it
is the basis for a description on a meso- or macroscopic scale, e. g. by the introduction
of suitable corrections to continuum theories.

In principle, statistical mechanics provides the framework to derive physical observ-
ables from the microscopic properties of a system, that is its Hamiltonian. In practice,
however, exact solutions exist only for few special cases and in general approximations
have to be made. Density functional and integral equation theories yield good results
for simple liquids, that is atomic liquids with pairwise additive interactions. The com-
plex structure of the water molecule and the coexistence of long and short ranged
interactions make an analytical treatment of liquid water very difficult.

That is where numerical simulations techniques like Monte Carlo and Molecular
Dynamics can step in. Based on the interaction model put in, a simulation yields ex-
act results, their statistical accuracy, however, limited by the computational resources
available. Simulations therefore serve a twofold purpose. On the one hand they can
be used to verify theoretical results, on the other hand, they can tackle problems elud-
ing theoretical treatment altogether, provided the underlying models have been thor-
oughly tested. In that way, simulations can also give input to higher level theories,
whose parameters are hard to derive from a more fundamental treatment.

2.1. Molecular dynamics simulations

For the present study, we chose to employ the molecular dynamics (MD) method,
since, in contrast to Monte Carlo simulations, it is suitable for the investigation of
dynamic as well as static properties [126, 127]. In MD simulations one numerically
integrates Newton’s equations of motion for a system of interest in order to obtain a

11
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trajectory of the system. Such a trajectory does not follow the exact time evolution
of the system for the given starting conditions over the time scales of the simulation
but there is much evidence that the generated trajectory is always close to a true
trajectory for a time scale that is much longer than the time the Lyapunov instability
takes to develop [128, 129]. Since one is usually only interested in statistical averages
over an ensemble of trajectories, or equivalently a time average over a long trajectory,
the results obtained from an MD simulation are representative of a true trajectory in
phase space.

At the center of any molecular dynamics technique is of course the question of how
to describe the interatomic interactions that enter into the equations of motion. Since
we are dealing with molecular systems, these interactions are of quantum mechanical
nature. However, even approximate quantum mechanical treatments [130] as e. g.
in the Car-Parinello MD method [131] are computationally expensive and the system
sizes and time scales that can be reached with reasonable effort are still to small for
many applications. In classical MD simulations, as we will employ throughout this
work, one therefore uses effective pairwise interaction potentials, whose parameters
and functional forms are either derived from first principles methods or are optimized
to reproduce experimental observables. Bonded interactions are typically modeled
by harmonic bond and angle potentials and empirical torsion potentials to yield the
correct molecular geometry, while non-bonded interactions include electrostatic forces
due to partial charges on polar molecules and dispersion interactions described by
Lennard-Jones potentials. Since these are only effective interaction potentials much
care has to be taken to validate their performance in each specific situation. A detailed
description of the force fields used in this work is given below.

All MD simulations throughout this work are performed using the Gromacs sim-
ulation package [132, 133], which is well tested and optimized for computational
efficiency. The equations of motion are integrated via a leap frog integrator with a
time step of At =2 fs.

While the integration of Newton’s equation produces trajectories with constant to-
tal energy and therefore corresponds to a micro-canonical ensemble (NVE), it is often
more suitable to use a canonical (NVT) or isobaric-isothermal ensemble (NPT) in or-
der to compare to experimental situations or theoretical calculations. This can be
accomplished by using a thermostat or barostat algorithm to keep the temperature
or the pressure constant during a simulation [126]. Unless noted otherwise, we use a
Berendsen weak coupling thermostat and barostat [134] for temperature and pressure
control. The relaxation times are usually set to T = 1.0 ps in production runs.

Simulation systems are contained in cubic or rectangular boxes. To avoid finite size
and undesired surface effects at the box edges periodic boundary conditions are ap-
plied in all three dimensions. To reduce the computational cost, short-ranged, e. g.
Lennard-Jones, interactions are truncated at a cutoff radius r. = 0.9 nm, unless noted
otherwise. Since the interaction potential decays oc 7~° such a simple cutoff suffices
and its effects on the systems dynamics are negligible, except for very rare cases as
demonstrated in [135]. The effects on the pressure tensor can be significant, how-
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ever, which can lead to errors in NPT simulations. In homogeneous systems one can
correct for these cutoff effects by an analytical correction applied to both energy and
pressure [127]. The treatment of electrostatic forces requires more elaborate meth-
ods, since the Coulomb potential decays only as o< r~! and a simple cutoff scheme
would lead to severe artifacts. We use a variant of the Ewald summation technique,
where the interaction is split up into a quickly varying short-ranged part and a slowly
varying long-ranged part. While the short-ranged part can be calculated in real space
by using a simple cutoff as for the Lennard-Jones interaction with a cutoff radius of
r. = 0.9nm, the contribution of the long-ranged part is calculated by a Fourier sum-
mation in reciprocal space. In the so-called particle mesh Ewald variant [136, 137],
that we use in our simulations, the partial charges are spread on a grid in order to
be able to use the fast Fourier transform method for the summation. We apply tinfoil
boundary conditions in all simulations.

Furthermore, all bonds involving hydrogen atoms are constrained using the LINCS
[138] algorithm (in the substrates) or the analytic SETTLE algorithm [139] (in the
water molecules). Due to these constraints high frequency modes are removed and a
longer integration time step can be used.

2.2. Force fields and modeling

As discussed above the force fields, that define the interatomic interactions in a MD
simulation, are of utmost importance and have to be chosen carefully. In the following
section we describe in detail the interaction potentials and the solvent, solute and
substrate models that are used in this work.

2.2.1. Water models

Since the first computer simulations of liquid water by Barker and Watts [140] and
Rahman and Stillinger [141] a great number of water models has been proposed (for
a review see e.g. [142, 143]). The majority of these models treats the interactions
between two molecules by electrostatic and dispersion interactions and an electronic
repulsion. The charge distribution of the molecule is usually modeled by point charges
located at the positions of the oxygen and hydrogen atoms or on additional virtual
sites. The electronic repulsion is typically modeled by an r~'2-term which is combined
with the r~°-dispersion term in a Lennard-Jones potential centered on the oxygen
atom. In most cases the interaction parameters, that is the partial charges and the
Lennard-Jones interaction parameters, are optimized in such a way that a certain set
of experimental observables, e. g. the heat of vaporization, density, etc. at ambient
conditions is reproduced. The geometry of the molecule is either rigid or flexible, in
which case the intramolecular forces are treated by harmonic bond and angle poten-
tials. Further refinements include the introduction of atomic polarizability to describe
multi-body interactions [144].
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2. Computational Methods and Modeling

However, with increasing complexity of the models also the computational cost in-
creases and a thorough optimization in the high-dimensional parameter space is of-
ten not possible any more. Therefore, in this work we restrict ourselves to several
simple rigid water models, that nonetheless haven proven to perform well in various
situations. A detailed discussion of the relevant model properties and corresponding
references is given in the individual chapters.

The SPC [145], SPC/E [146], TIP4P/2005 [147] and TIPSP [148] water models all
have a rigid geometry with fixed point charges and a varying number of interaction
sites. All of them have two positively charged hydrogen atoms and an oxygen atom on
which the Lennard-Jones interaction is centered. They differ mainly in the placement
of the negative charge. In the SPC and SPC/E water model the negative charge is
placed on the oxygen atom, while in the TIP4P/2005 water model the negative charge
is placed on an additional virtual site on the bisector of the HOH angle. In the TIP5P
model the negative charge is placed on two virtual sites located on the edges of a
slightly distorted tetrahedron, formed by the hydrogen atoms and two virtual sites.

While the geometry of the SPC water model was set to an OH bond length of
OH = 0.1 nm and a bond angle equal to the tetrahedral angle Z(HOH) = 109.47°,
the partial charge of the hydrogen atom gy = 0.41 e and the coefficient of the repul-
sive Lennard-Jones term were optimized to reproduce the heat of vaporization and
the density of water at T = 300 K. Here, e denotes the unit charge. The SPC/E water
model is a reparameterization of the SPC model with the same objectives but includ-
ing a correction for the polarization self-energy of the water dipole which leads to a
different hydrogen partial charge of q;; = 0.4238 e. Despite its simplicity, the SPC/E
water models yields good results and has become one of the most widely used water
models [142, 143]. It represents a good compromise between accuracy and computa-
tional efficiency and due to its widespread use it allows easy comparison of our results
with the literature. We therefore use it in most parts of this work. Simulations with
the SPC water model are only included for comparison with previous works.

As two examples of more refined water models we also use the TIP4P/2005 and the
TIP5P models. In addition to the density and heat of vaporization at ambient condi-
tions, the TIP4P/2005 parameters were fit to reproduce the temperature of the density
maximum at ambient pressure, the density of ice II at 123 K and 0 MPa and of ice V at
223 K and 530 MPa, and the range of stability temperatures of ice III at 300 MPa [147].
The TIP4P/2005 model gives a very good description of the temperature dependence
of several thermodynamic properties of water, including the density, isothermal com-
pressibilty and isobaric heat capacity [149]. The TIP5P model was developed with the
goal of reproducing the water density over a wide range of temperatures and pres-
sures while simultaneously recovering the water structure at ambient conditions by
introducing an additional interactions site with respect to the TIP4P model [148].
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2.2.2. Solutes

One objective of this work is to study the influence of solute size, shape and interaction
potential on hydrophobic hydration. We therefore use a model of idealized, spherical
hydrophobic particles interacting with the water by a very general interaction poten-
tial, which gives us the freedom to study the influence of potential features such as
the stiffness of the repulsion and the role of attractive interactions on the solvation
properties and vary its size independently. A suitable choice is the Buckingham double
exponential potential of the form

Uspry—ow(r) = Ae BU—R) _ ¢ ¢=PUr—R), 2.1)

where r is the distance between solute center and water oxygen, R is the size of the
solute, B and D are the inverse decay lengths of the repulsive and attractive parts
of the potential, respectively, and A and C are constants chosen as follows: In the
case of a purely repulsive solute C = 0 and A = kz T, with T, = 300K. This defines
the radius of the particle as the separation, where the interaction potential equals
kg Ty, that is, Ugpy_ow(R) = kgTy. The decay length of the repulsive part is varied in
the range 1/B = 0.005nm — 0.03 nm with an increment of 0.001 nm. The upper limit
0.03 nm corresponds to the decay length used in the parameterization of a Buckingham
exponential-6 potential of a water oxygen atom [150] and should therefore give a
realistic estimate for the stiffness of an interatomic potential. This value is therefore
used in our study of the size dependence, where only the size R is varied and the other
parameters are kept fixed.
In the limit of vanishing decay length, 1/B — 0, one obtains a hard core potential,

oo, forr <R

Uspir—ow(r) = { 0 (2.2)

forr >R’

which we also study as a limiting case.

To obtain an attractive solute the constants A and C are chosen in such a way that
(1) Uspp—ow(R) = kgT, and (ii) min(Ugpy_ow(r)) = —€q, where €, is the depth of the
potential. We vary both the range of the attractive part, 1/D = 0.05,0.1 and 0.2nm,
and the depth of the potential, ¢, = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 1.3 kJ/mol.
An illustration of the shape of the potential for various different parameters is given
in Fig. 2.1. The advantage of such a double exponential potential over the more com-
monly used Lennard-Jones 12-6 potential is that the solute size R, the decay lengths
of the repulsive and attractive parts 1/B and 1/D and the potential depth ¢, can be
varied independently, whereas in a Lennard-Jones potential there are only two free
parameter and it is therefore not shape-invariant with increasing solute size. Another
characteristic feature of the exponential potential is its finite value for r — 0, which
allows very small solutes to overlap with the water molecules. We show below that
this effect is only significant for very small solutes, and is therefore no serious limita-
tion for our purposes. We note that the radius R of the solute is an exclusion radius,
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Figure 2.1.: Illustration of the 9

0.3 0.
solute-water interaction poten- a)

4+
=]
(9]
(=]
=)}

0.7 0.8 0.9

—_

&

=3
)
o)
=)
)
3
e
[\=)
(o)
=)
)
NS
o
(95)

decay lengths 1/B = 0.005,
0.01, 0.015, 0.02, 0.025 and
0.03nm. (b) Attractive poten-
tials with 1/B = 0.02nm, at- p) -l
traction decay length 1/D =
0.05nm and varying potential
depth ¢, = 0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7 and 0.8kJ/mol. (c)
Attractive potentials with 1/B =
0.02nm, ¢, = 0.8kJ/mol and
varying range 1/D = 0.05,0.1
and 0.2nm. Vertical lines indi-
cate the radius R of the solute,
defined by Ugpy_ow(R) = kgT
with T, = 300K. The insets in
(a) and (b) show enlarged views
of the potential.

tial Ugpy_ow(r) (see Eq. 2.1) 4 ERl= ‘ Tt E
for a spherical solute of radius E _i = 3 E ]
R = 0.28nm and various po- S 3 2 f ] =
tential shapes. (a) Purely re- E ’ §2§ = E
pulsive potential with varying z 5 NS 3 ]
: E

=) 3

\H\HH‘HH‘HH‘HH‘HHi\)

LI ‘ T T 1T ‘ T T 1T
USPH_OW(r) [kJ/mol]
111 | ‘ I | ‘ I |

027 028 029 03

USPH_OW(r) [kJ/mol]

o
~

USPH_Ow(r) [kJ/mol]

1
0.2 03 04 05 0.6 0.7 0.8 09
r [nm]

—_

that is, it is the radius around the center of the solute from which the center of the
water oxygen atom is effectively excluded by the repulsion. We neglect all interactions
between the solute and the water hydrogens.

Cylindrical solutes are modeled as a string of spheres aligned along the z-axis, with
an axial separation of Az. The cylinder has the same length as the box size in z-
direction, so that by the use of periodic boundary conditions, it has an infinite length
and edge effects are excluded. The interaction potential of the cylindrical solutes with
the water oxygen is therefore given by

N
~ _ 2 —g.
Vor—ow(rj,z) =AY e PVTITE=F, 2.3)
i=1

where N is the number of spheres, r|| = 4/ x2 + y? is the distance from the cylinder
axis and z; = iAz, 1 =1,...,N, are the z-positions of the spheres that form the cylin-
der. Note that in Eq. 2.3 we have absorbed the term exp(—BR) into the prefactor A.
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Figure 2.2.: Side view of the simulation box in the interfacial geometry and top views of the
different hydrophobic and hydrophilic substrates.

To obtain a rather smooth cylinder, we choose the spacing between the spheres as
Az = 0.025nm, which ensures that the corrugation of the potential along the z-axis is
negligible and we have

00
- dz _g /
VCYL_ow(rII) A Af _A e B r‘2‘+zz
Z
-0
2Ar”K(B ) (2.4)
= ), .
Ay 1 Il

where K; is the first order modified Bessel function of the second kind. Analogously
to the spherical solutes we choose 1/B = 0.03nm and determine the constant A
by the condition Vey;_ow(R) = kgT,. From that definition it follows, that A(R) =
AzkpTy/ foy(B,R), with foy, (B,R) = 2RK;(BR).

For comparison we also calculate solvation free energies for solutes interacting via
the repulsive part of a Lennard-Jones potential,

LJ E
Vepr—soL(r) = iz (2.5)

The solute radii R are defined analogously to the Buckingham potential by Vs[iJJH—SOL(R) =
kp Ty, yielding E = kp ToR'2.

As an example of a hydrophobic solute with optimized force field parameters we
also study a methane molecule modeled in a united atom representation as a single
Lennard-Jones sphere using the OPLS [151] force field parameters.

2.2.3. Planar interfaces

For the study of water near planar interfaces, we use a slab geometry, where a simula-
tion box is only partially filled by water in the z-direction, the remaining part is either
empty, thereby forming a setup with two planar air/water interfaces parallel to the
xy-plane (see Fig. 5.1 and Fig. 5.3), or filled by a solid substrate (see Fig. 2.2). Due
to the periodic boundary conditions, this setup corresponds to a water slab confined
between two solid surfaces.
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As a model for a nonpolar surface we use hydrogen-terminated diamond, to ob-
tain polar surfaces a certain fraction of the terminal hydrogen atoms is replaced by
hydroxyl groups. The diamond surface is modeled by the well known double face-
centered-cubic lattice (lattice constant a = 3.567 A) of carbon atoms with the (100)
direction parallel to the z-axis. A slab of finite thickness is cut out of the lattice with
its two surfaces perpendicular to the z-axis, and the surface layer is reconstructed and
terminated by hydrogen atoms. The atoms of the diamond interact with each other
via harmonic bond and angle potentials as well as a torsion potential. The interac-
tion between a surface atom and a water oxygen atom is given by a Lennard-Jones
potential.

For the hydrophilic diamond, a variable fraction (12% or 25%) of the terminal
hydrogen atoms is replaced by hydroxyl groups with partial charges q; = 0.266 e,
go = —0.674 e and qy = 0.408 e (see Fig. 2.2). The force constants and Lennard-
Jones interaction parameters are taken from the GROMOS96 force field [152].

The contact angle of SPC/E water on the hydrophobic diamond was found to be
© =101° [9], while the hydrophilic substrates exhibit complete wetting.

2.3. Free energy simulations

The key quantity characterizing the solvation of a solute is its solvation free energy
AF, that is, the free energy necessary to bring the solute from the pure ideal gas phase
into aqueous solution. The solvation free energy per solute is equal to the solutes
excess chemical potential AF = u,, in the solution. From the temperature derivative
of the solvation free energy one obtains the solvation entropy AS per solute,

o= JAF 2.6)
- aT . .

and the solvation enthalpy,

AH = AF +TAS. 2.7)

We use different methods to determine the solvation free energy, based mainly on the
size of the solute. While the Widom particle insertion method [153] is very efficient, it
is only applicable for small solutes. We use it to determine the solvation free energies
of small solutes with varying interaction parameters, where a wide range of different
parameters is scanned. The thermodynamic integration method [126], on the other
hand, can be used for arbitrary solute sizes, but demands much more computational
effort. It is therefore used to determine solvation free energies for the large spherical
and cylindrical solutes.
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Figure 2.3.: Running average of the excess chemical potential calculated by the particle in-
sertion method according to Eq. 2.8 for a purely repulsive solute of radius R = 0.345 nm with
a potential stiffness of 1/B = 0.03nm (black curve) and for a hard core solute of the same
size (red line), where the average (.),, is taken over all saved configurations with t < t,. The
insertions are done in a box containing 895 SPC/E water molecules simulated at T = 300K.
In each configuration of the trajectory n;,; = 107 insertions are performed for the finite poten-
tial stiffness and n;,; = 2-10° for the hard core solutes. It is seen, that the excess chemical
potential is well converged after 10ns.

2.3.1. Particle insertion method

We determine the excess chemical potential of small solutes with varying interaction
parameters by the Widom particle insertion method [153]. In the case of an isobaric-
isothermal ensemble it is given by [154]

< Ve BAU >)

<V > (28)

Uex = —kgT In (
where AU is the potential energy of the interaction between the solute and the solvent,
V is the volume of the system, § = 1/(kgT) and the angle brackets denote an isobaric-
isothermal average over configurations of the system without the solute.

For each saved configuration n;,, = 107 insertions are performed in the case of a
finite potential stiffness and n;,; = 2- 10° in the case of hard sphere solutes. Figure 2.3
shows the running average, that is an average including only configurations up to a
certain time ¢, of the excess potential (Eq. 2.8) for a purely repulsive solute of radius
R = 0.345nm with a potential stiffness of 1/B = 0.03nm (black curve) and a hard
core solute of the same size (red curve) in SPC/E water at T = 300K. It is seen that
the excess potential is well converged after 10ns.

2.3.2. Thermodynamic integration method

To determine the solvation free energies of large spherical and cylindrical solutes AF,
the method of thermodynamic integration is used, which relates the free energy dif-
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ference AF between two states I and II of a thermodynamic system, characterized by
two potential energy functions U' and UY, to the averaged derivative (3 U(1)/dA) of
an intermediate potential energy U(A), that connects the two states by a virtual path,
i.e, UA=0)=U"and U(A =1)=U", where A =0...1 is a path variable. The free
energy difference F between the two states is then given by the integral

UML)
R

1
AF = f dA( )2 (2.9)
0

where the average (.); has to be taken for a system interacting via U(A). To obtain
the solvation free energy of a solute, the initial state I is chosen such that the so-
lute does not interact with the solvent, while in the final state II, the full interaction
with the solvent is switched on. That is, the potential energy function U' contains no
solute-solvent interactions, while U contains the full interaction. For simulations in
an isobaric-isothermal ensemble the solvation free energy contains an additional term
due to the volume change [155],

II
AF =AF+kBTln(W), (2.10)

where V! and V! are the system volumes in state I and state II, respectively. This
term accounts for the difference in the ideal gas entropy in the initial and final state
of the thermodynamic integration. For the solvation of a nonpolar solute, this volume
change is mainly due to the solute’s volume AV, since the water can be considered
incompressible to a good approximation. If the volume of the simulation box V is
much larger than the volume of the solute, the correction term is small.

For large solutes it is convenient to break the thermodynamic integration into several
steps with varying system sizes, going from an initial size R' to a final size R in each
step, where R! = 0 for the first step and R equals the desired solute size in the last
step. In this way, smaller simulation boxes can be used for small solutes, reducing the
computational cost.

We perform linear scaling between the states, that is the potential energy function
of the intermediate states is defined by

UR=R () = (1 — A)UR + AUR", (2.11)

Since the repulsive Buckingham potential has no divergence at small distances, linear
scaling is possible even for the first step, where the solute is completely decoupled in
the initial state, without getting a diverging (2 URI_’RH(A) /2 2), as for a Lennard-Jones
potential [156].

Since the radius of the solute depends only on the prefactor of the interaction po-
tential, the potential URI_’RH(k) at each intermediate A-value corresponds to a solute
of intermediate radius R(A). Conversely, the A-values can be chosen in such a way,
that they correspond to equidistant values of the solute radius. For the integration
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step from R! to R" the intermediate A-value corresponding to a solute of radius R
(R'<R<RY is

_ fX(ByR) - fX(BJRI)
fx(B,R") — fx(B,RY)’
for the case of a spherical (X=SPH) and cylindrical (X=CYL) solute, respectively, where

fspu(B,R) = exp(BR) and fqy1.(B,R) is defined above (see text after Eq. 2.4). The
solvation free energy for a solute of radius R is then given by

A(R) (2.12)

AF(R) — F(R) dMaURI_’RH(X)
o oA

V(R)

V(R

)

)+ F(RY, (2.13)

+kB T ln(

with R < R < R, In order to ensure proper equilibration, we calculate the average
(0 URI_’RH(A) /9 A) for a discrete set of A-values corresponding to a radius increment of
AR = 0.0125 nm. The solvation free energy is subsequently obtained by integrating a
quadratic spline interpolation of the resulting data set, thereby reducing the integra-
tion error significantly. We use the TI method to calculate solvation free energies of
Buckingham spheres and cylinders for radii up to R = 2.0 nm. We carefully check the
accuracy of the procedure as explained in detail in App. B.
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CHAPTER 3

CORRELATIONS OF DENSITY AND STRUCTURAL
FLUCTUATIONS IN BULK WATER

3.1. Introduction

3.1.1. Motivation

Understanding the water structure in the pure bulk liquid is the prerequisite for un-
derstanding its behaviour in more complex situations. But even the bulk behaviour
of water is surprisingly difficult to understand, partly due to anomalous behaviour in
almost all thermodynamic observables [15]. The best-known example is certainly the
anomaly in the water density, which shows a maximum at 4° C, at which temperature
the thermal expansion coefficient ap = 1/V (0V /3 T)p changes sign. But also other
thermodynamic properties like the isothermal compressibility k = —1/V (dV /9 P)y
and the isobaric heat capacity Cp, = (0H/JT)p exhibit anomalies: At atmospheric
pressure x has a minimum at 46°C and Cp has a minimum at 35°C [14, 157-159].
This stands in marked contrast to the behaviour of simple liquids, whose thermody-
namic properties vary monotonously with temperature.

Despite intense efforts for many years, there is still no complete and simple explana-
tion for these anomalies. Several hypotheses have been proposed [160-162], among
which the liquid-liquid critical point (LLCP) scenario has received much support in the
recent literature. According to the LLCP scenario, water possesses a metastable critical
point at very low temperatures which marks the endpoint of a first order phase tran-
sition between a high density (HDL) and a low density (LDL) liquid phase. The LDL
phase is associated with tetrahedral-like local structure, while the HDL phase corre-
sponds to a local structure with distorted hydrogen bonds [21, 163]. The anomalous
temperature dependence of the thermodynamic response functions then follows nat-
urally, since they are expected to diverge at the transition line or exhibit maxima or
minima at the continuation of the transition line into the one phase region [163].
However, conclusive experimental evidence for this scenario is still missing and the
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connection between anomalous water properties and the existence of low-temperature
singularities is controversially discussed [163, 164].

Recently, it has been suggested that remnants of these phases persist even at higher
temperatures and that extended clusters of HDL and LDL are present at ambient con-
ditions [20]. These conclusions were partly based on the well-known experimental
observation that the structure factor S(q), obtained from SAXS or neutron scattering,
shows an enhancement at very low wave vectors q [23, 123, 124, 165]. In conjunc-
tion with X-ray adsorption, Rahman and Emission spectroscopy it was argued that the
density fluctuations manifest in S(q) originate from concentration fluctuations of two
structurally distinct liquid species differing in density [20]. From an Ornstein-Zernike
(OZ) analysis of the scattering data the typical size of these clusters was estimated to
be on the order of ~ 1 nm. It was also stated that standard three-point water models
such as SPC/E are not able to reproduce the minimum in the structure factor [20],
from which it was concluded that the local water structure is ill-reproduced by current
classical simulation models for water.

The relationship between the density and structure of water has been much dis-
cussed in recent literature [23, 166-168], partly because this relation is crucial for
understanding the water density anomaly. Using an analysis of structural water clus-
ters in SPC/E water simulations, Errington et al. [166] have found a decrease in the
density of water clusters both with increasing tetrahedrality and increasing cluster
size at temperatures of T = 220 K and T = 240 K. This suggests that the formation
of tetrahedrally ordered low-density water is cooperative. Moore and Molinero [167]
used the monatomic mW [169] water model for an extensive study of the water struc-
ture in the temperature range from 100 K to 350 K. They found an increase in the
average tetrahedrality and the fraction and cluster size of four-coordinated molecules
upon cooling. However, they did not observe a low-g enhancement of the structure
factor, which they attributed to the lack of density difference between differently co-
ordinated water molecules in the mW model [167]. Only when they restricted the
calculation of the structure factor to four-coordinated water molecules, they saw an
increase for low g from which they infer correlation lengths that grow with decreas-
ing temperature, using an OZ analysis. Matsumoto [168] showed that the change in
the average composition of differently coordinated water molecules upon cooling is
not correlated with the mean density of the liquid. He could accurately explain the
temperature dependence of the density by taking into account the interplay of the av-
erage bond length, which decreases upon cooling and therefore tends to increase the
density, and the distortion of the tetrahedral bonding network, which decreases upon
cooling and thereby decreases the density. Very recently, Soper et al. [22] and Clark
et al. [23] argued that an enhancement in the low-q region of the structure factor is
consistent with normal particle number fluctuations and not necessarily indicates the
presence of two structural water species with different densities. Furthermore, it was
shown that the OZ analysis applied in Ref. 20 used to infer a spatial scale of regions
with correlated densities is not very meaningful far away from a critical point. Clark
et al. [23] very convincingly demonstrated the absence of pronounced density inho-
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mogeneities on lengthscales ranging from 0.6 nm to 6 nm based on the unimodality
of density histograms obtained by simulations of TIP4P-Ew water [23], thus casting
additional doubt on the interpretation of S(q) data as a sign of the coexistence of two
different local structural motifs in liquid water [20].

While the relation between spatially averaged structural properties and the mean
density of water seems well understood, the question of the existence and spatial
size of structurally correlated regions in liquid water is less clear. In particular, the
discussion in Ref. 20 raised the question to what degree the spatial extent of density
correlations (as directly inferred from SAXS experiments via the structure factor) is
related to the size of structurally correlated water patches (which can only indirectly
be inferred from experiments).

3.1.2. Outline

Instead of using clustering algorithms to define the size of regions with high structural
order [166-168], we determine spatial two-point correlation functions involving the
local density and different local structural order parameters, namely the tetrahedral-
ity order parameter [125, 170, 171], v, and the number of hydrogen bonds a water
molecule forms with its neighbours, nyg. By using the exact same mathematical form
for assessing the presence of spatial correlations of density and structural fluctuations,
we are able to make a simple and meaningful comparison between density-density
correlations (expressed in terms of the well-known radial distribution function) and
density-structure and structure-structure correlations. Except for the density-density
correlation function, we find only weak correlations that decay to zero within a few A.
This means that although water is a highly structured fluid, the structure shows only
weak spatial correlation and that the coupling between density and structural fluctu-
ations is also quite weak when compared with the degree to which density-density
correlations are present.

In order to check how robust the simulated structure factor is with respect to force
field modifications, we compare the SPC/E [146], the TIP4P/2005 [147] and the
TIP5P [148] water models. The SPC/E water model has a density maximum at
T = 235 K [172] and a minimum in ky around T = 270 K [149] and thus differs
considerably from the experimental values. It exhibits the LDA and HDA phases in
the amorphous state [173, 174] and it has been suggested, that it has a LLCP [175].
The TIP5P water model has been parameterized to yield the correct position of the
density maximum at T = 277 K [148] using a reaction field method to account for
electrostatic periodic boundary conditions. Note that in combination with the Particle
Mesh Ewald summation method [136, 137], as used in this work, the density maxi-
mum is shifted slightly to T = 284 K [176]. It has been shown, that the TIP5P water
model shows a LLCP [174, 177] and that its isobaric heat capacity shows a sharp in-
crease for decreasing temperature [174], in accordance with the experimental data.
The isothermal compressibility of the TIP5P water model does not show a minimum
within the range studied so far [149]. The TIP4P/2005 model is a recent reparam-
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3. Correlations of Density and Structural Fluctuations in Bulk Water

eterization of the widely used TIP4P [178] water model. It excellently reproduces
the temperature dependence of the density as well as the isothermal compressibility
at atmospheric pressure, exhibiting a density maximum at T = 278 K [147] and a
minimum in x; at T = 310 K [149]. The TIP4P model has a LLCP [174], so it is
likely that the TIP4P/2005 model has a LLCB too. We find that all three water models
exhibit an enhancement of the structure factor for low g, which is pronounced for the
TIP5P and TIP4P/2005 water models, and still perceptible for the SPC/E water model.
The TIP4P/2005 model almost quantitatively accounts for the experimental structure
factor in the low-q region, while the TIP5P and SPC/E models show various degrees
of deviation. Together with the results of Clark et al. [23], who found a minimum of
S(q) using the TIP4P-Ew water model in very good agreement with experiment, this
shows that the scattering enhancement at low q is a quite robust feature of simple
classical water models and does not point to any subtle structural property of water
that is missed by these models. Clearly, the accurate determination of the low-q re-
gion of the structure factor is a challenging task in simulations, since in a finite system
the minimal accessible wave vector as well as the resolution in reciprocal space are
inversely proportional to the system size. Therefore, large systems are necessary lead-
ing to high computational costs. Furthermore, the method to extract the structure
factor from simulation trajectories has to be chosen with care, since finite size arti-
facts can otherwise obscure the results [179]. Clark et al. [23] managed to reduce
Fourier truncation ripples by performing simulations in the grand canonical ensemble.
We compare several methods to extract the structure factor from simulations in the
canonical ensemble that yield a consistent picture of the low-q region of the structure
factor.

3.2. Structure factor and orientational order parameters

From Molecular Dynamics (MD) simulations we can obtain information about density
and structural correlations of water in the liquid temperature range.

Structure factor. On the two-point level the density correlations of a fluid are charac-
terized by the pair distribution function,

(pP(F 7))

(o) {p(F)’ 3.1)

g7, i) =

where p@(7,7) = Z?fj:l;i# 65(F —7)o(F —7;) and p(F) = Zli\/:1 6(F —7;) are the
two and one particle density operators, N is the number of particles and 7; is the
position of the i-th particle. For a homogenous and isotropic system g(r) = g(7,7’)
is a function of the distance r = |F — 7/| only and called radial distribution function

(RDF). The RDF can be extracted straightforwardly from a MD simulation by generat-
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3.2. Structure factor and orientational order parameters

ing a histogram of inter particle distances and appropriate normalization. Scattering
experiments measure the structure factor S(q), defined as

N
S@) = (= Y, e T ), 3.2)

ij=1

Z| =

For a homogeneous and isotropic system it is a function of ¢ = |g| only and related to
the RDF by a Fourier transformation [180],

S() =1+ 4an P CLOM R, (3.3)

0 q

where p = (p(7)) = N/V is the number density of the fluid. Eq. 3.3 constitutes the
first of the two methods used to calculate the structure factor in this work (FT method)
and is based on the RDFs obtained from MD simulations. Note, that we take only the
oxygen atoms of the water molecules into account, thereby assuming that the electron
density of the water molecule is approximately spherical and centered around the
oxygen atom [181]. Due to the periodic boundary conditions and the minimum image
convention used in the MD simulation the RDF can only be obtained up to a radius
"max = L/2, where L is the length of the periodic box. Therefore, the upper boundary
in the integral in Eq. 3.3 has to be replaced by r,,,, which leads to pronounced "cutoff
ripples" especially for low wave vectors q [179] and effectively restricts the use of
Eq. 3.3 to the range q > quj;l;n = 27 /Trpax- The cubic simulation box we use in this study
has a size of L ~ 10 nm and thus qilTin ~ 1.2 nm!. Due to the r factor in the integrand
of Eq. 3.3 these cutoff artifacts are increased even by minute numerical errors in the
RDF at larger radii, which might be introduced for example by round-off errors. To
enforce that the RDFs correctly converge to 1 for large r, we calculate the average
of the RDF over the interval 3 nm < r < 5 nm and divide the RDF by that average.
Typically, the deviations of the average from 1 before the normalization are on the
order of 107>,

Since the aforementioned subtleties in the application of Eq. 3.3 to calculate the
structure factor prohibit a clear interpretation of S(q), especially in the low-q limit
we are interested in, we also calculate the structure factor directly from the simulation
trajectories by applying the definition, Eq. 3.2. One can rewrite Eq. 3.2 in the following
way,

1 & 1 &
S@ = ([ D sin(@7)]) + {5 [ D cos(@ 7)), (3.4)
i=1 i=1

which is more convenient for evaluation from a simulation trajectory, since it contains
only single sums. Eq. 3.4 constitutes the second method used to calculate the structure
factor in this work (D method). Due to the finite size of our simulation system, S(q)
can only be evaluated for wave vectors § = (n,,n,,n,)27/L, where the n; are integers
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3. Correlations of Density and Structural Fluctuations in Bulk Water

and L is the length of the simulation box, which in our simulations is cubic. The
minimum wave vector that can be sampled is therefore given by qr?lin = 27/L and thus
smaller by a factor of two compared to the FT method, leading to qgﬁ ,~0.6 nm~! for
the box size used in this study.

Additional information on the low g behaviour of the structure factor is available
from thermodynamics. The limiting value S(0) for ¢ — 0 is connected to the isother-
mal compressibility k = —1/V(9V /9 P)¢ by the relation [180],

S(O) = pkBTKT, (35)

which will be used as a stringent test of the data for S(q) at small but finite g.
Isothermal compressibility. The isothermal compressibility is determined by a finite
difference method [182],

1 (ap) _An(p>/p1)

Ky = (3.6)

p\oP)r P—P
To evaluate this expression the system is simulated in a NVT ensemble with the densi-
ties p; 5, = p £0.04 kg/1 and the resulting pressures P; , are sampled. Here p is the
equilibrium density at a pressure of P = 1 bar, as obtained from separate MD simula-
tions (see Tab. 3.1). The resulting compressibilities (see Tab. 3.1) agree very well with
those from previous studies, see e. g. Ref. 149, where k1 was calculated from volume
fluctuations in an isobaric-isothermal ensemble.
Order parameters. To quantify the degree of water structuring we use two different
order parameters. The first one is the tetrahedrality order parameter v [170] with the
normalization used by Errington and Debenedetti [125],

3 o 1)?
1,[1=1—§Z Z (cos(qbij)—l—g) , 3.7)

i=1 j=i+1

where ¢;; is the angle formed by the lines connecting the oxygen atom of a given
water molecule to the oxygen atoms of its i-th and j-th nearest neighbor. Only the four
nearest neighbors are taken into account. In order to investigate spatial correlations,
we define the spatially resolved tetrahedrality density,

N
P(F) =D P 5(F — ), (3.8)
i=1

where 1); and 7; are the tetrahedrality and the position of the i-th water molecule.

As a second measure for the water ordering we use the number of hydrogen bonds
(HB), nyp, a water molecule forms with its neighbors. Two water molecules are
considered to form an HB if the distance between their oxygen atoms is less than
ryg = 0.35 nm and the angle formed by the OH vector of one molecule and the line
connecting the oxygen atoms of both molecules is less than 6,3 = 30°. Analogously to
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Figure 3.1.: (a) Structure factor S(q) obtained by the FT method (see Eq. 3.3) at T = 298 K
and p = 1 bar for the SPC/E (full line), TIP4P/2005 (dotted line) and TIP5P (dashed dotted
line) water models in comparison with the experimental S(q) (dashed line). The experimental
data for the scattering cross-section is taken from an X-Ray scattering experiment [183], and
we calculate the structure factor using the isotropic form factor from quantum chemical cal-
culations [184]. (b) Low-q region of the structure factor for SPC/E water at T = 298 K and
p = 1 bar obtained by the FT method (dashed line, see Eq. 3.3) and by the direct method (filled
circles, see Eq. 3.4). The S(q = 0) value obtained by Eq. 3.5 (cross) is also shown. The full line
is obtained by smoothing the data from the direct method including the S(g = 0) value. Note
that in the smoothing we did not enforce the slope of S(q) to vanish at ¢ = 0. The minimum
wave vector of the FT method, ¢"; ~ 1.2 nm™’, is indicated by an arrow.

the tetrahedrality order parameter we define the spatially resolved HB number density,

N

nyp(7) = Z nyp,i6 (7 = T), (3.9)

i=1

where nyp ; is the number of HBs the i-th water molecule forms with its neighbours.
Note, that with the above definitions (nyg(7)) = (ngg)pe and (Y (7)) = (Y)p.

3.3. Results and discussion

3.3.1. Structure factor

It is a subtle task to extract the low wave vector region of the structure factor S(q) from
computer simulations, since the minimal accessible wave vector and the resolution in
reciprocal space are restricted by the size of the simulated system. To determine S(q)
unambiguously we use two different methods. The first method, to which we will re-
fer in the following as Fourier transform (FT) method, makes use of Eq. 3.3 to obtain
the structure factor from the radial distribution function. The second method (di-
rect method) is to directly calculate S(q) from the simulation trajectories by Eq. 3.4.
Additionally we determine the isothermal compressibility k; to calculate the ¢ — 0
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Figure 3.2.: Running integral of the (a) zero order and (b) normalized second order coefficient
of the Taylor expansion of the structure factor of the SPC/E water model (Eq. 3.11) for different
temperatures T = 278, 298, 320 and 340 K, where o = 3.17 A is the Lennard-Jones length of
SPC/E water. Dashed lines in (a) indicate the S(q = 0) values obtained from the compressibility
data (see Tab. 3.1) by Eq. 3.5.
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Figure 3.3.: Small wave vector region of the structure factor S(q) obtained from MD simula-
tions of the SPC/E, TIP5P and TIP4P/2005 water models and from experimental SAXS data
(taken from Ref. 20). Filled circles are the result of the direct evaluation of Eq. 3.4. The
S(g = 0) values obtained from the compressibility data by Eq. 3.5 are marked by crosses. Full
lines are obtained by smoothing of the data from the direct method including the S(g = 0) val-
ues obtained from the compressibility (not enforcing a vanishing slope at the origin). Different
colors indicate different temperatures as indicated in the graphs. Experimental compressibili-
ties are taken from Ref. 14.
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3.3. Results and discussion

Table 3.1.
Densities, compressibilities and mean structural order parameters for the studied water
models obtained from MD simulations at a pressure of p = 1 bar.

water model | T [K] | o [kg/1] | xr [10711 Pa™1] | S(g=0) | (V) | (nyp)

SPC/E 278 1.008 44.32 0.057 | 0.661 | 3.69
SPC/E 298 0.999 45.50 0.063 0.635 | 3.61
SPC/E 320 0.987 48.23 0.070 | 0.609 | 3.51
SPC/E 340 0.973 51.53 0.079 | 0.588 | 3.41
TIPSP 278 0.986 52.62 0.067 | 0.713 | 3.51
TIPSP 298 0.983 55.30 0.075 0.661 | 3.34
TIPSP 320 0.969 60.80 0.087 | 0.615 | 3.16
TIPSP 340 0.949 69.47 0.103 0.581 | 3.01
TIP4P/2005 | 278 1.001 48.02 0.062 0.700 | 3.75
TIP4P/2005 | 298 0.998 46.11 0.063 0.670 | 3.67
TIP4P/2005 | 320 0.989 45.92 0.067 | 0.640 | 3.57
TIP4P/2005 | 340 0.979 47.32 0.073 0.616 | 3.48

limit of the structure factor, given by S(0) = pkgTk. The results for the compress-
ibility are summarized in Tab. 3.1. We use simulation boxes with a size of roughly
10 x 10 x 10 nm3, containing ~ 30 000 water molecules, yielding minimal wave vec-
tors of qr?lin ~ 0.6 nm~! and qfnTin ~ 1.2 nm™! for the two different methods.

In Fig. 3.1 a we show the structure factor of the SPC/E, the TIP4P/2005 and the
TIP5P water model at T = 298 K and p = 1 bar, obtained by the FT method, over a
large g-range in comparison with experimental results. It can be seen, that all water
models quite accurately reproduce the position of the first three peaks of the experi-
mental structure factor, while they differ slightly in the height of the peaks, in agree-
ment with earlier simulation results [178]. Fig. 3.1 a is mainly shown to stress that
the discussion of the low-q region of S(q) for ¢ < 10nm™" concentrates on a small
part of the full S(q) curve where the scattering intensity is quite small and relatively
featureless.

Fig. 3.1 b shows a close-up view of the low-g region of the structure factor for the
SPC/E water model at T = 298 K, comparing the different methods to extract the
structure factor from the simulations. The dashed line marks the result of the FT
method, filled circles the results of the direct method and the S(q = 0) value obtained
from the compressibility is marked by a cross. The solid line is obtained by applying
a second order Savitzky-Golay smoothing filter [185] with a fixed interval width of
Ag = 2 nm~! to the results from the direct method including the S(q¢ = 0) value
obtained from the compressibility. In the FT method results one clearly observes cutoff
ripples at low g and pronounced deviations from the direct method results and from
the S(q = 0) value inferred from the compressiblilities.
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3. Correlations of Density and Structural Fluctuations in Bulk Water

The reason is the high sensitivity of the FT method in the low-q region to statistical
fluctuations in the RDE This becomes apparent if we look at a Taylor expansion of

S(q),

S(@) = 52 0%, (3.10)
i=0
_ (-D4rmp [ 2i+2 _
$9i =080+ it D) L drret™[g(r)—1]. (3.11)

The function value and the curvature at ¢ = 0 of S(q) are determined by the first two
terms in the expansion and thus by the coefficients s, and s,. Obviously, the slope of
S(q) at ¢ = 0 vanishes. In Fig. 3.2, we plot the running integrals corresponding to s,
(Fig. 3.2 a) and s, (Fig. 3.2 b) obtained from the RDF of the SPC/E water model at
different temperatures of T = 278, 298, 320 and 340 K. Also included in Fig. 3.2 a
are the results for S(q = 0) estimated from Eq. 3.5 (dashed lines). It is obvious from
Fig. 3.2 a, that the statistical fluctuations, amplified by the r2 factor in the integral,
make an accurate determination of s, impossible. The actual s, value obtained from
Eq. 3.11 and therefore also the S(q = 0) value calculated by the FT method is a result
of these random fluctuations. The situation is even worse for s,, since there is a factor
of r* in the integral. This shows, that a meaningful determination of the curvature
of S(q) for ¢ = 0 from the FT method alone is not possible. It also demonstrates that
even very slight numerical inaccuracies in the RDF can result in significant changes of
the low-q behaviour of the structure factor.

Fig. 3.3 shows the low-q region of the structure factor of the SPC/E, the TIP5P and
the TIP4P/2005 water models at different temperatures using the direct method. Also
included for comparison are the experimental curves of Ref. 20 (SAXS). It is seen,
that for the TIP5P and TIP4P/2005 water models there is a pronounced minimum
in the structure factor at wave vectors between ¢ ~ 3 nm™! and ¢ ~ 5 nm™!, in
agreement with previous results for the TIP4P-Ew water model [23]. For the SPC/E
model the minimum is less pronounced but still perceptible. Quantitatively, the results
for the SPC/E and TIP5P water models deviate somewhat from the experimental S(q),
while the TIP4P/2005 model compares excellently with the experiment. So rather than
stressing the differences between different water models, we take as the main message
of this figure that all water models studied by us and also the TIP4P-Ew model [23],
exhibit an S(g) minimum at small g, which means that this is a quite robust feature of
classical water models.

3.3.2. Order parameters

In the following we investigate to what extent the enhancement seen in the low-q
region of the structure factor is related to spatial correlations of the water struc-
ture. To that end we examine two structural order parameters and their self and
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Figure 3.4.: (a) Probability distribution p(nyg) of the number of hydrogen bonds ny and (b)
probability distribution p(1)) of the tetrahedrality order parameter 1 for TIP5E TIP4P/2005
and SPC/E water at temperatures of T = 278 K (black), 298 K (red), 320 K (green) and 340 K
(blue) and at a pressure of p = 1 bar. Arrows indicate the effect of increasing temperature.

cross-correlations with the local density. The geometric aspects of the local water or-
dering can be accurately described by the tetrahedrality order parameter 4, defined
in Eq. 3.7. For a perfect tetrahedral network ¢ = 1, while for randomly oriented
molecules 1 = 0. As a measure for the strength of the hydrogen bonding network
we take the number of hydrogen bonds nyp a water molecule forms with its neigh-
bors. Here, we adopt the commonly used HOO-angle and OO-distance criterium for
the hydrogen bond formation [19]. Fig. 3.4 and Fig. 3.5 show the single and joint
probability distribution of the two order parameters for the studied water models and
varying temperatures. In agreement with previous studies [125], the tetrahedrality
parameter displays a bimodal structure and for increasing temperature the probability
of the high-1y peak decreases while the probability of the low-1 peak increases. Sim-
ilarly, the number of water molecules forming four hydrogen bonds decreases, while
the number of water molecules forming three or less hydrogen bonds increases with
increasing temperature. From the joint probability distribution (Fig. 3.5) it transpires
that the high-y peak corresponds to water molecules forming four hydrogen bonds,
while the low-1 peak corresponds to water molecules forming three or less hydrogen
bonds. The distinctly different ¢ distributions of the sub populations for nyz = 3 and
nyp = 4 explains the bimodality of the 1 distributions in Fig. 3.4.

33



3. Correlations of Density and Structural Fluctuations in Bulk Water

a) SPC/E

1.0

.+ P )

¢) TIP5P

Figure 3.5.: Joint probability distribution p(v), nyp) of the number of hydrogen bonds nyz and
the tetrahedrality order parameter 1 for (a) SPC/E, (b) TIP4P/2005 and (c) TIP5P water at
temperatures of T = 278 K (black), 298 K (red), 320 K (green) and 340 K (blue) and at a
pressure of p =1 bar.
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3.3.3. Correlation functions

To gain information about spatial correlations of the different local water configura-
tions, we define two-point correlation functions of the various local order parameters.
In Fig. 3.6 a we show the normalized self-correlation function for the density

{p(0)p(r))
2

Cop(r)=g(r)= ; (3.12)

and the normalized self-correlation functions
 (@p(0xp(r))

= e @p () (319

and
(ngp(0)nyp(r))
C = , 3.1
) = G 20 ©)p () 314

of the tetrahedrality order parameter and the hydrogen bond numbers for the SPC/E
water model at temperatures of T = 278, 298, 320 and 340 K. All correlation functions
are normalized to unity at large separations. In addition, we normalize the functions
Cyy(r) and C,,(r) by the density density correlation function C,,, () such that in the
absence of variations in the tetrahedrality parameter v or hydrogen bond number ny;
the functions would be constant. In contrast to the density density correlation function
Cpp (1), the self-correlation functions C,,,(r) and C,,(r) are quite featureless and thus
show that there are only weak correlations between structural fluctuations. The weak
correlations that one can discern decay to zero after ~ 6 A. Note that the small jump
seen in the correlation function C,,, (indicated by a vertical arrow) is due to the HB
cutoff radius ryg = 0.35 nm of the hydrogen bond criterium.

In Fig. 3.6 b the self-correlation functions Cy,;,(r) and C,,(r) are compared with the
cross-correlation functions

(Y (0)nyg(r))

Conlr) = i @ () (3.13)
 {pOR(r)
Cou ) = V() (3.16)
and
_ {p(0)nyp(r))
o) = C) (0P (1) G147

Not surprisingly, the self- and cross-correlation functions of the tetrahedrality param-
eter and the hydrogen bond number show similar behaviour, in line with the results
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from Fig. 3.5 which point to a close correspondence between the two order param-
eters. We see that there are only weak spatial correlations between these two mea-
sures of the local water structure, in other words the degree to which a given water
molecule is tetrahedrally ordered or hydrogen-bonded is only very weakly correlated
to the structural ordering of a neighboring water molecule. Note that Fig. 3.5 tells us
that the structural distribution functions are quite broad, so we learn that while struc-
tural fluctuations are pronounced, their spatial correlation is weak. Interestingly, the
cross-correlation functions C,,,, and C,, between the density and the two structural or-
der parameters exhibit even weaker correlations than the other correlation functions.
In disagreement with the arguments brought forward in Ref. 20, we see that there is
very little correlation between density and structural fluctuations, meaning in specific
that features in S(q) data unfortunately tell us very little about the spatial correlations
of water structure. In Fig. 3.7 we show the normalized self- and cross-correlation func-
tions of the density and the structural order parameters for the SPC/E, the TIP4P/2005
and the TIPSP water models for different temperatures. The qualitative behaviour does
not differ much between the different water models. In agreement with previous find-
ings [181], the TIPSP water model is slightly overstructured in comparison with the
TIP4P/2005 and SPC/E water models.

3.4. Conclusion

In this chapter we showed that for several commonly used water models at tempera-
tures above melting, there exist only weak spatial correlations between different struc-
tural order parameters. The typical range of structural correlations in Fig. 3.6 is con-
sistent with a decay length on the order of 1 A as observed in Ref. 167 for a coarse
grained water model. The relation of such a decay length with a correlation length as
inferred from an Ornstein-Zernike analysis of the structure factor is however far from
clear [23]. We furthermore do not observe a pronounced spatial correlation between
structural and density fluctuations, implying that features in the structure factor can
not be interpreted in terms of or associated with structural properties, in contradiction
to the assumptions made in Ref. 20 and in line with the results in Ref. 23. Errington
et al. [166] report a reciprocal coupling between the tetrahedrality and the density in
tetrahedrally ordered clusters in SPC/E water at low temperatures of T = 220 K and
T = 240 K. That we find very weak spatial coupling between the density and the tetra-
hedral ordering in two-point correlation functions suggests that the clustering result
of Errington et al. [166] involves multi-point correlations. At this point it is impor-
tant to stress that the correlations we find between local density and structure are not
totally absent, but they are rather much smaller than the density-density correlations
(see Fig. 3.6). So whether one calls the density-structure correlation small or large de-
pends on which reference one is using for comparison. Our results are consistent with
the findings of Matsumoto [168], who observed no direct relation between the density
anomaly and structural heterogeneities, but rather an interplay of monotonic hydro-
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Figure 3.6.: (a) Self-correlation
functions of density, C,,, tetra-
hedrality order parameter, Cy,,
and the number of hydrogen
bonds, C,,. The inset shows
an enlarged view of the long
range region of the density self-
correlation function. (b) Com-
parison of the self- and cross-
correlation functions of the den-
sity and the structural order pa-
rameters. For clarity some curves
are shifted as indicated in the fig-
ure. All data is obtained by MD
simulations of the SPC/E water
model at temperatures of T =
278 K (black), 298 K (red), 320 K
(green) and 340 K (blue) and at
a pressure of p =1 bar.
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Figure 3.7.: Correlation functions of the density and the structural order parameters for the
TIP5B TIP4P/2005 and SPC/E water models at temperatures of T = 278 K (black), 298 K
(red), 320 K (green) and 340 K (blue) and at a pressure of p = 1 bar. (a) Density density
correlation function Cops (b) correlation function of the tetrahedrality order parameter Cypops
(c) correlation function of the number of hydrogen bonds C,,, (d) cross correlation of the
tetrahedrality order parameter and the hydrogen bond number C,,,, (€) cross correlation of the
tetrahedrality order parameter and the density C,,, and (f) cross correlation of the hydrogen
bond number and the density Con- Arrows in graphs (c), (d) and (f) indicate the cutoff radius
rug = 0.35 nm of the hydrogen bond criterium. For clarity some curves are shifted as indicated

in the graph.
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3.4. Conclusion

gen bond extension and angular distortion in the network (see Fig. 3.4) upon cooling.
While the spatially averaged values of the density and the hydrogen bonding network
distortion are of course related, we show that their fluctuations are not strongly cor-
related in space. The picture of coexisting domains of differently structured water is
not supported by an analysis of the respective two-point correlation functions. Such
correlations might grow as temperature is lowered into the metastable liquid regime
below melting and one approaches the liquid-liquid critical point, which, however, is
not focus of the present work.

We also show that the experimentally well documented minimum in the structure
factor at small wave vector g, which has very recently been seen in simulations of
TIP4P-Ew water [23], is obtained with different simple water models, suggesting that
this is a quite robust feature, which in fact is related to the interplay of attractive
and repulsive forces [22, 186]. Finally, let us stress that we are not claiming that
classical water models can accurately describe all aspects of water structure, however,
the low-q behavior of S(q) does not constitute a serious hurdle for current classical
water models.
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CHAPTER 4

ENTROPY AND ENTHALPY CONVERGENCE BEYOND
THE HARD SPHERE MODEL

4.1. Introduction

4.1.1. Motivation

The question of protein folding and stability is one of the fundamental problems in
biology [187]. Despite intense scientific efforts since Anfinsens pioneering work [188]
it is not yet completely clear what the dominant forces are, that govern protein sta-
bility [53, 189]. The hydrophobic effect has long been suspected to play a major
role [56]. It was therefore seen as a major breakthrough, when the observation of
convergence of the denaturation entropy per residue of a whole class of proteins at a
universal temperature allowed to draw a close analogy with the solvation properties
of simple hydrophobic compounds [66, 67].

It was first observed by Privalov and Khechinashvili [64, 65], that the entropies and
enthalpies of denaturation per residue for a number of proteins, if extrapolated to high
temperatures, converge to a common value at a temperature near TS* ~ T;‘I ~ 110°C.
Baldwin [61] noticed, that at roughly the same temperature the entropy of dissolu-
tion of several liquid hydrocarbons [190] extrapolates to zero (while the convergence
temperature of the solvation enthalpy is much lower). A similar convergence has
been observed [66, 67] for the dissolution of saturated hydrocarbon gases [47, 191-
194], noble gases [47-49], cyclic dipeptides [62, 195] and gaseous alcohols [196].
These observations stirred an intense discussion about the interpretation and im-
plications of these findings for the role of the hydrophobic effect in protein fold-
ing [62, 63, 67, 68, 196-198], which we will summarize briefly further below.

Theoretically, the temperature dependence of hydrophobic hydration has been stud-
ied by various methods [43, 71-73, 75, 199-208], mostly focussing on the solvation of
simple model solutes such as hard spheres [43, 72, 73, 75, 200-202, 204] or Lennard-
Jones particles [71, 199, 203, 206, 208]. Using a Gaussian model for particle number
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4. Entropy and Enthalpy Convergence beyond the Hard Sphere Model

fluctuations in atomic-scale cavities in conjunction with simulated water radial distri-
bution functions, convergence temperatures of about T¢ ~ 400 K for small hard-sphere
solutes of different radii, close to the experimental results, were obtained [72, 73, 75].
The model allowed a simple interpretation of this phenomenon in terms of particle
number fluctuations, water density variation, and to a limited extent the isothermal
compressibility of water [72, 73]. Results from the revised scaled-particle theory [43]
show, that the convergence temperature Tg for larger sphere radii starts to depend on
the size of the solutes, but for typical solute radii around 3 A convergence temperatures
in the range ~ 370 — 400 K are observed.

Despite this seemingly good agreement of the entropy convergence temperatures ob-
tained from theoretical models for hard-sphere solvation with the experimental results
for both proteins and simple hydrophobic compounds, a few open questions remain:

i) For simple hydrophobic compounds, the convergence temperatures of solvation
entropy and enthalpy widely differ, the latter being lower by typically 100°, while
the putative entropy and enthalpy convergence temperatures for proteins are the
same [61, 67]. To account for this, it is assumed that the solvation of hydrophilic
groups contributes to the enthalpy but not to the entropy, so that the solvation en-
tropies of proteins and hydrophobic compounds are similar but not the enthalpies [68].
In contradiction to this assumption and not surprisingly, we find a continuous change
of the solvation entropy as one goes from hydrophobic to hydrophilic solutes and in
all cases the solvation entropy does not strictly vanish.

ii) The theoretically predicted convergence of hard-sphere solvation entropies at
about 400 K was obtained based on simulation results for SPC water simulated at
the experimental liquid-vapor coexistence density [72]. As we show in this work,
at ambient pressure of 1 bar, which seems the relevant condition when comparing
to protein data, the entropy convergence temperature for hard-sphere solvation goes
down to 340 K, in disagreement with both protein and simple hydrocarbon data.

iii) Perhaps most strikingly, Robertson and Murphy [69] showed, that for a larger
set of proteins neither entropy nor enthalpy convergence is observed (see Fig. 4.1,
circles), although the polar and non-polar surface areas per residue, that are buried
upon folding, show the same trends as for the smaller set of proteins originally studied
(denoted by triangles) [67].

4.1.2. Outline

In this chapter we do not directly consider protein denaturation thermodynamics, but
rather investigate the solvation of a more general class of spherical solutes. It has been
shown, that attractive solute-water interactions have a pronounced influence on the
solvation thermodynamics [71, 75, 202, 203, 207]. We therefore systematically study
the dependence of the entropy and enthalpy convergence temperature for spherical
solutes on the solute-water interaction potential. We use a Buckingham double expo-
nential potential with four free parameters to vary the stiffness of the repulsive part,
the range and strength of the attractive part of the interaction as well as the solute
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4.2. Thermodynamics of convergence

radius independently. Solvation free energies are obtained from molecular dynamics
(MD) simulations by the particle insertion method. We mainly use the popular ex-
tended simple point charge (SPC/E) water model, but also compare our results with
the simple point charge (SPC) and the TIP5P parameters to check the influence of the
water model [206, 208] on the solvation properties.

In Sec. 4.2, we review basic notions of thermodynamic convergence of solvation and
protein denaturation, in Sec. 4.3, we introduce the main concepts using the example
of hard-sphere solutes. In Sec. 4.4, we discuss the dependence of the entropy and
enthalpy convergence on the solute-water interaction details and the water model
employed. In Sec. 4.5, we summarize and conclude.

4.2. Thermodynamics of convergence

Assuming a temperature independent heat capacity change ACp upon solvation of a
solute or denaturation of a protein, from TOAS/JT = AC, and IAH/JT = AC,, the
entropy and enthalpy changes follow as [209]

AS(T) = AS(Ty) + AC, In (Tl) , (4.1)
0

and
AH(T)= AH(T,) + AC, (T —Tp), (4.2)

where T, is an arbitrary reference temperature. We will show, that this assumption is
approximately true for the systems studied by us. If entropy convergence occurs at a
temperature denoted by Tg for a group of species, then a plot of AS(T) versus AC; ata
fixed temperature T yields a straight line, whose slope In(T /Ty ) is determined by the
convergence temperature Ty and whose intercept AS(Tg) gives the entropy change
at the convergence temperature [67]. Similarly, a plot of AH versus AC, yields a
straight line with the slope T — T}; and intercept AH”, if enthalpy convergence is
observed. Note that such a plot allows to extract the convergence temperature and the
convergence entropy or enthalpy based on the assumption of a constant heat capacity
in a straightforward manner (but it does not allow to check wether the heat capacity is
actually constant). In Fig. 4.1 we show such a plot for the original set of proteins [66]
used in the analysis of Murphy et al. [67] (open triangles) including a linear fit to the
data. The data indicated by the filled triangle, corresponding to the denaturing of the
protein parvalbumin, was listed in Ref. 66 (see Table I of Ref. 66) but neither included
in the data fitting nor in the graph of Ref. 67. Note that the data in this plot has been
extrapolated from the denaturing temperature by assuming the relations Egs. 4.1 and
4.2 to hold, an assumption which for proteins is in general difficult to validate since
the denaturing temperature can only be varied by adding denaturant or pH change
(and thus possibly causing side effects) in a restricted range.
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Figure 4.1.: (a) Entropy change AS plotted against the change in isobaric heat capacity AC,
upon denaturation per residue extrapolated to 25° C for different sets of proteins. The small set
(triangles) is taken from Ref. 66. Open triangles denote the proteins, that have been used in the
analysis of Ref. 67 to argue for the occurrence of entropy convergence in protein denaturation.
The data point for parvalbumin (filled triangle) was included in the data set of Ref. 66 (see
Table I of Ref. 66) but not shown in the graph and not considered in the data fitting of Ref. 67.
The data for the larger set of proteins (circles) is taken from Ref. 69. This set is separated into
proteins with denaturation temperatures T,, in the interval 55°C < T, < 65°C (open circles)
and T, outside this interval (filled circles). The black line is a linear fit to the data set of
Ref. 69, the dashed line to the open triangles. (b) Deviation AAS of the unfolding entropy per
residue from the linear fit for the small set (dashed line in (a)) as a function of the number of
residues N, of the proteins. No systematic trend as a function of the protein size is seen. Also,
there is no qualitative difference between the set of proteins with a denaturation temperature
close to 60° C (open circles) and far away from 60° C (filled circles).
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4.2. Thermodynamics of convergence

Murphy and Gill [62, 63] and Lee [68] showed that convergence of some ther-
modynamic observable, e. g. the entropy of denaturation of a set of proteins or the
entropy of dissolution AS within a homologous series of compounds, can generally be
expected if that observable is linearly dependent on the variable X (e.g. the number of
hydrophobic groups in a homologous series of hydrocarbons) which distinguishes the
elements of the series,

AS(T) = ASR(T) + X ASx(T), (4.3)

where ASx(T) is the entropy change associated with the variable X and ASy is the
residual entropy change due to the molecular parts that are common within the series.
From the relation C, = TdS/JT we obtain a linear dependence of the heat capacity
change on X,

AC, = ACg + X ACx 4.4)

where we assume all heat capacity contributions to be independent of temperature.
Then, by eliminating X from Egs. 4.3 and 4.4, we obtain

ASx(T)

AS(T) = ASg(T) + (AC, — ACg) AC,

, (4.5)

i. e., a linear dependence of AS(T) on AC,. A sufficient condition for both Eqs. 4.3
and 4.4 is the linear dependence of the free energy change AF on X [68]. The ar-
gument presented above is equivalent to the earlier observation of Sturtevant [210],
that the ratio of entropy change and heat capacity change upon dissolution of sev-
eral hydrophobic compounds is constant. Comparison with Eq. 4.1 shows, that the
convergence temperature, given by the slope,

In (1) = ASX(T), (4.6)
Tg ACy

depends solely on quantities associated with the variable X. Equation 4.5 further
implies, that the entropy at convergence is equal to the residual entropy, AS(Tg) =
ASR(Tg). Therein lies the importance of convergence phenomena, since they enable
one to separate different contributions to the observable under study.

In the case of protein denaturation it is not a priori clear, what the distinguishing
variable X is and therefore how the observed convergence should be interpreted [62,
63, 67, 68, 196]. Murphy et al. [63, 67, 211] argue, that for globular proteins the
polar surface area per residue that is exposed to water upon unfolding is constant,
while the non-polar surface area per residue varies and thus is taken proportional to
X [211, 212]. This implies, that the contribution of the non-polar protein surface
vanishes at Tg, while the residual entropy is due to solvation of polar groups and
configurational entropy, and corroborates the analogy with the dissolution of other
hydrophobic compounds [61, 67]. Accordingly, the similar convergence temperature
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4. Entropy and Enthalpy Convergence beyond the Hard Sphere Model

for the different compounds is taken as an universal feature of hydrophobic hydra-
tion [63, 67, 196]. Lee [68] originally suggested a slightly different assignment, nor-
malizing the unfolding entropy by the buried surface area instead of the number of
residues and taking the fraction of non-polar surface area exposed upon unfolding as
the variable X. In that case the convergence is observed at the temperature, at which
the polar and non-polar contributions to the entropy are equal. Both approaches es-
sentially can be viewed as different definitions of the hydrophobic contribution to
denaturation [211].

One notes that the mechanism for entropy convergence discussed in Egs. 4.3 - 4.6
obviously rests on the assumption of additivity of the contributions of individual chem-
ical groups to the total solvation entropy and enthalpy, an assumption which has been
independently verified [191, 213, 214]. The other, more serious, assumption is that
it is sufficient to sort the solvation contributions of all chemical groups into just two
groups, hydrophilic and hydrophobic, characterized by the variable X, an assump-
tion which we show not to be entirely true in this work. In fact, the concept of en-
tropy convergence treated theoretically by the information theory approach and re-
vised scaled particle theory in some sense goes beyond the additivity concept outlined
above [62, 63, 68], since here it is shown that the entropy of solvation of hard spheres
converges to a universal value at one temperature for a whole range of different sphere
radii. The importance of this observation lies in the fact that the hydrophobic groups
that are solvated when a protein denatures in general have different radii. However,
the convergence entropy is non-zero for hard-sphere solvation, so that according to
the assignment of Lee [68] one will in general not find a unique temperature where
the hydrophobic contributions to the solvation entropy cancel the polar contributions
for different proteins. Even more importantly, individual amino acids differ in more
properties than just their radii, since details of the solute-water potential are expected
to vary between different species, which adds additional variation to the expected
convergence temperatures. Again, all these reservations serve to explain that entropy
convergence for protein denaturation is not really expected, in accord with actual ex-
perimental observations (see the complete set of protein data in Fig. 4.1) [69].

The convergence of solvation entropies and enthalpies of liquid hydrocarbons (e.g.
alkanes) simply reflects the additivity of solvation of individual linked methyl groups
and thus is not really related to the main point of this work. An additional complica-
tion comes in because transfer studies from liquid hydrocarbons to aqueous solution
(as well as protein denaturation studies) involve the liquid (or protein core) reference
state, which is difficult to treat theoretically. Such complications are obviously absent
for solvation studies with noble or hydrocarbon gases, which are more closely related
to our calculations. In this respect it is important to realize that the entropy conver-
gence of noble gases is far from perfect [43], a fact that is very much in line with our
findings.
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Figure 4.2.: (a) Excess chemical
potential ., (b) entropy AS,
(c) enthalpy AH and (d) iso-
baric heat capacity AC, of dif-
ferently sized hard core solutes
in SPC/E water as a function of
the temperature. The solutes
have radii of 0.28nm (circles,
black lines), 0.31nm (squares,
red lines), 0.33nm (diamonds,
green lines) and 0.345nm (tri-
angles, blue lines), correspond-
ing roughly to the size of neon,
argon, methane and xenon. Ex-
cess chemical potentials are de-
termined by test particle inser-
tion (symbols). Solid lines are
obtained by full fits of u., accord-
ing to Eq. 4.7 and using Egs. 4.8-
4.10. Dotted lines are fits of ey
under the constraint of constant
AC,, that is ¢ = 0. Dashed
lines are obtained by extrapola-
tion, using Egs. 4.1 and 4.2, from
the reference temperature T, =
300 K with AS(T,), AH(T,) and
AC,(T,) taken from the full fit.
The trajectories for the particle
insertion are obtained from MD
simulations of 895 SPC/E water
molecules at constant pressure
p = lbar.
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Figure 4.3.: (a) Solvation en- a)
tropy AS(T) and (b) solvation
enthalpy AH(T) of hard core so-
lutes of varying size as a func-
tion of the heat capacity change
AC,(T) for different reference
temperatures T = 300, 320,
340, 360 and 380 K. Data for
entropies, enthalpies and heat
capacity changes are obtained
from fits to the particle inser-
tion data according to Egs. 4.7-
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4.3. Hard-core solutes

In this work we determine the solvation free energy AF = u., as a function of the
temperature for solutes with four different radii R = 0.28, 0.31, 0.33 and 0.345nm, as
used by Garde et al. [72] to model solvation of neon, argon, methane and xenon, and
various potential shapes (see Eq. 2.1 and the following text). Figure 4.2 a shows the
solvation free energies obtained by particle insertion (symbols) for hard core solutes in
SPC/E water. In qualitative agreement with previous results [72], ue; has a maximum
around 380K. We fit the data by the form,

Uer(T)=a+bT—cT?—d Tln(T), 4.7)
leading to the solvation entropy, AS = =0 /9T,

AS(T)=d —b+2c T+dIn(T), (4.8)
the solvation enthalpy, AH = g, + TAS,

AH(T)=a+d T +cT? (4.9)
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4.3. Hard-core solutes

Table 4.1.: Convergence temperatures Tq and T;, entropies AS™ and enthalpies AH" obtained
from the plots shown in Fig. 4.3 for different reference temperatures T.

T[K] T [K] AS*[J/(molK)] T; [K] AH" [kJ/mol]

300 347.2 -17.8 205.0 -3.1
320 3474 -17.1 204.7 -3.8
340  347.5 -16.8 204.5 -4.5
360 347.5 -16.8 204.2 -5.4
380  347.5 -17.1 204.0 -6.4

and a linearly varying heat capacity increment
AC,=d+2cT, (4.10)

see Fig. 4.2. To estimate how relevant the temperature dependence of the heat capacity
is, we compare in Fig. 4.2 fit results using the full expression (shown by solid lines)
with constrained fits where the heat capacity is forced to be constant and thus ¢ = 0
(dotted lines in Fig. 4.2). We find the fits with ¢ = 0 to be of acceptable quality,
which is in line with the fact that the actual heat capacity variation with temperature
is small. This is quite important in light of the common assumption of a constant heat
capacity used for extrapolating experimental solvation data. To check this procedure
explicitly, we extrapolate u.(T), AS(T) and AH(T), using Egs. 4.1 and 4.2 with a
reference temperature T, = 300 K, where we extract values for AS(T,), AH(T,) and
ACP(TO) from the full fit. The resulting extrapolated curves (dashed lines) differ from
the full fits for high temperatures, but otherwise the accuracy seems acceptable. The
entropy shows convergence at a temperature around Ty ~ 350 K, regardless of the
method used to fit the data, which is gratifying as most experimental convergence
temperatures are obtained via extrapolation. The value for Tg is significantly lower
than the convergence temperature of about Tg &~ 400 K found previously for hard-
spheres in SPC water [72]. We will discuss the origin of this discrepancy in detail
further below but briefly mention here that it has to do with the different densities
at which the simulations in [72] have been performed. The enthalpy convergence
temperature lies outside the studied temperature range and occurs at roughly T;; ~
205 K. The difference in convergence temperature of about T¢ — T}, ~ 140 K is in
rough agreement with experiments for simple liquid hydrocarbons, which give Tg ~
380 K and Tj; ~ 290 K, but there is a significant shift and we note that convergence
in hydrocarbons occurs at vanishing entropy and enthalpy [61]. This is due to the
fact that for homologous alkanes, convergence is mostly a consequence of additivity.
For noble gases the entropy converges also around Ty ~ 380K, but the convergence
entropy is non-zero. We will come back to this issue further below.
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In Fig. 4.3 we plot the solvation entropy AS(T) and the solvation enthalpy AH(T)
as a function of the heat capacity change AC,(T) for several different reference tem-
peratures T = 300, 320, 340, 360 and 380 K. The convergence temperatures T and
T;; and the entropies AS* and enthalpies AH* at convergence are summarized in
Tab. 4.1. For the entropy, the resultant numbers do not depend significantly on the
reference temperature T and agree very well with what one directly reads off from
Fig. 4.2. For the enthalpy, the individual linear fits in Fig. 4.3 are excellent, but the
resulting convergence temperatures Tj; and convergence enthalpies AH(T) depend
quite a bit on the reference temperature chosen. This is in line with the fact that the
enthalpy data show less pronounced convergence when compared to the entropy, see
Fig. 4.2. This shows clearly that a plot of AS(T) or AH(T) versus AC,(T) can be
quite misleading, since if the heat capacity change is not independent of the temper-
ature the values for the convergence temperature and convergence thermodynamic
quantity depend considerably on the reference temperature chosen.

In all what follows we use the full expression Eq. 4.7 with a temperature dependent
heat capacity change to fit the particle insertion data. As a simple definition for the
convergence temperature T we take the temperature at which the entropies of solutes
with radii R = 0.28 nm and R = 0.345 nm intersect, that is

The enthalpy convergence temperature T}, is defined analogously. We note that the
convergence temperature depends systematically on the solute sizes that are com-
pared [43], so our definition only makes sense for the restricted range of radii actually
considered by us.

4.4. Influence of the solute-water interaction

4.4.1. Stiffness of the repulsion

We first investigate the effect of the stiffness of the repulsive part of the potential,
which is determined by the decay length 1/B. For this purpose, we study purely re-
pulsive solutes (i.e. C = 0 in Eq. 2.1) with repulsion decay lengths in the range of
1/B = 0.005 — 0.03nm and compare with hard core solutes. Figure 4.4 a shows the
excess chemical potential of a solute of radius R = 0.33 nm for different values of the
decay length 1/B (circles, full lines) and for a hard core potential (squares, dashed
line). This radius roughly corresponds to a methane molecule and is - because of the
additivity of solvation properties - also relevant for alkane chains. It is seen that the
solvation free energy curves are systematically shifted downwards for increasing po-
tential stiffness, the stiffer the potential the less unfavorable the solvation process. This
effect is more pronounced at small temperatures, leading to a shift of the free energy
maxima to higher temperatures as indicated by the dashed-dotted line. The corre-
sponding solvation entropies are shown in Fig. 4.4 b. For increasing potential stiffness

50



4.4. Influence of the solute-water interaction

a) 32 C b N P P T T 1 Figure 4.4.: (a) Excess chemical
C ] potential, (b) solvation entropy
30 ] and (c) heat capacity change
= 4 upon solvation of purely repul-
E 28 — sive spherical solutes of radius
= 7 1 R = 0.33nm for varying repul-
3 26 ] sion decay length 1/B = 0.005,
F 1 0.01, 0.015, 0.02, 0.025 and
4 £ 0.03nm (circles, full lines) and a
N hard core solute of the same ra-
b) 60 R‘—‘() ‘33‘ PrrTT dius (squares, dashed lines) as a
R function of the temperature. The
401 symbols are results from parti-
z 20; B (stiffness) | cle insertion. Lines are fits to
R | the data according to Egs. 4.7 -
S o0 4.10. The crosses in (a) mark
g9 r ] 4 the positions of the maxima of
20 — — the chemical potentials and the
» 1 dashed-dotted line is a quadratic
-40 “| fit. The trajectories for the parti-
c) 0.26 i | cle insertion are obtained by MD
0.24 —| simulations of the SPC/E water
— 1 model at a constant pressure of
¥ 022 p = 1bar.
g
= 02
=]
U708
<
0.16 B (stiffness)
014 L1 L1 L1 L
300 350 400 450 500
T [K]

they are shifted towards higher temperatures, while the temperature dependence of
the heat capacity in Fig. 4.4 ¢ becomes more pronounced with increasing potential
stiffness. One notes, that there is no crossing of the curves, i. e., for solutes character-
ized by same radii but different stiffness one does not find entropy convergence. The
entropy shifts have a pronounced influence on the convergence temperature, as shown
in Fig. 4.5. For increasing stiffness the convergence is shifted to higher temperatures,
reaching a value of T; = 347K for the limiting case of a hard core solute already
shown in Fig. 4.2. Actual interaction potentials between solutes and water are far
from the hard-core limit. For a realistic value of 1/B = 0.03 nm the convergence tem-
perature is T; = 314 K. This temperature is even farther away from the experimentally
observed value of T ~ 385K for noble gases and proteins [67]. In essence, we see
that a certain softness of the repulsive part of the solute-water interaction is relevant
as it significantly shifts the convergence temperature to lower temperatures, but this
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Figure 4.5.: Solvation entropies for purely repulsive solutes of varying size R = 0.28 nm
(black), 0.31nm (red), 0.33nm (green) and 0.345nm (blue) and varying potential stiffness
1/B = 0.03nm (solid lines), 0.015nm (dashed lines), 0.005nm (dashed-dotted lines) and
hard core (dotted lines) in SPC/E water at constant pressure p = 1bar. Circles indicate the
intersection of the entropies of solutes with radii R = 0.28 nm and R = 0.345 nm for the same
values of the potential stiffness as shown in Fig. 4.4 (not all entropy curves are shown). In the
inset the convergence temperature defined by Eq. 4.11 is shown as a function of the repulsion
decay length 1/B.

realistic feature does not improve the comparison with the experimental convergence
temperature. We will later see that an attractive component to the interaction will
bring the convergence temperature up again.

4.4.2. Water models

Here, we investigate the origin of the discrepancies of our particle insertion simulation
results, obtained with SPC/E water so far, with previous theoretical results, based on
information theory in conjunction with simulations for SPC water [72]. Figures 4.6 a
and b show the solvation free energies and entropies for hard core solutes of varying
size in SPC/E, SPC and TIP5P water including the information theory results of Ref. 72.
Our data for the three different water models indicated by solid lines are all obtained
by particle insertion simulations at ambient pressure of p = 1 bar. While the excess
chemical potentials agree rather well for temperatures around 300K, they differ sig-
nificantly at higher temperatures, which leads to a considerable spread in the resulting
entropy convergence temperatures by about 30 K in Fig. 4.6 b. The data from Ref. 72,
shown by the orange dashed lines, was obtained by the information theory approach
based on SPC simulations at densities corresponding to the experimental vapor-liquid
coexistence curve of water. The deviations from all the other data at p = 1 bar is
significant. To understand the reason for this deviation, we resimulated SPC water
at densities that match the experimental liquid-vapour coexistence densities and used
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Figure 4.6.: (a) Excess chemical potentials u., and (b) solvation entropies of hard core solutes
of varying size R = 0.28, 0.31, 0.33 and 0.345 nm for different water models. Symbols show
the data obtained from particle insertion for the SPC/E (circles, black), the SPC (squares,
magenta) and the TIP5P (triangles, cyan) water model, solid lines are obtained by fits to the
particle insertion data according to Eq. 4.7 and 4.8. All simulations are performed at a constant
pressure of p = 1bar. For comparison the information theory (IT) results of Garde et al.
[72] (orange dashed lines) and our own IT results for SPC water simulated at the densities
of the experimental saturation curve (purple stars and double-dotted dashed lines) are also
included. (c¢) Comparison of the chemical potential obtained by the information theory model
(see Eq. 4.12) including (circles and full lines) and neglecting (squares and dashed lines) the
logarithmic term, the compressibility approximation (Eq. 4.15) (diamonds and dashed-dotted
lines) and the results from the particle insertion (triangles and dotted lines) for SPC/E water
at a constant pressure of p = 1bar. Lines are fits to the data points. The inset in (d) shows
the fits to u., on a larger scale. (d) Comparison of the solvation entropies obtained by the
temperature derivative of the fits to the chemical potentials shown in (c). Line styles have the
same meaning as in (c).
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Table 4.2.: Isothermal compressibility k; of the SPC/E water model at a pressure of p =
1 bar for varying temperature. The compressibilities are obtained from MD simulations by a
numerical derivative according to Eq. 3.6. Error estimates are obtained by a block averaging
algorithm.

T[K] «gp [107 Pa!]
278 4432+ 0.17
298 45.50 + 0.17
320 48.23 £ 0.19
340 51.53 + 0.20
360 55.91 + 0.25
380 61.61 + 0.28
400 69.10 & 0.44
420 78.66 £ 0.96

the same information theory approach, the results are shown by purple stars and lines.
The agreement with the previous IT approach is perfect, yet, the disagreement with
the other simulations still needs to be explained.

To that end, let us briefly reconsider the information theory model for the solvation
of hard core solutes [72-74]. It relates the excess chemical potential u., of a hard-core
solute to the solvent particle number fluctuations inside a cavity of the size and shape
of the solute, assuming Gaussian fluctuations. Using a continuous Gaussian approxi-
mation for the particle number distribution, the excess chemical potential follows as

ull = kg Tp2v?/2(6n%) + kg T In(27(5n?)) /2, (4.12)

where p is the number density of the solvent, v is the volume of the cavity, on = n—(n),
and n is the number of solvent particles inside the randomly placed cavity. The second
moment of the particle number fluctuations, (§n2), is related to a double integral over
the oxygen-oxygen radial distribution function goo(r) by

(n(n—1)) = pZJ dgrf d*r'goo (IF=F1), (4.13)

which thus yields a straightforward way to evaluate the expression Eq. 4.12 based on
simulation results for the distribution function goo(r). In the thermodynamic limit,
i.e. for infinite cavity volume v, the relation

) =pkBTKT (4.14)
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connects particle number fluctuations with the isothermal compressibility k. Ne-
glecting the logarithmic term in Eq. 4.12 and using the compressibility, one obtains
the drastically simplified expression

., Y

Moy & or (4.15)
Figure 4.6 c and d show the excess chemical potentials and entropies as obtained from
Eq. 4.12 including (circles, full lines) and neglecting (squares, dashed lines) the loga-
rithmic term and also the predictions from Eq. 4.15 (diamonds, dashed-dotted lines)
in comparison with the particle insertion results (triangles, dotted lines) for the SPC/E
water model. Compressibilities for the SPC/E water model are obtained by a numer-
ical derivative (see Eq. 3.6) and are summarized in Tab. 4.2. While Eq. 4.12 agrees
well with the particle insertion results for small solutes and low temperatures, it differs
considerably for larger solutes and high temperatures. This indicates a breakdown of
the Gaussian approximation so that non-Gaussian contributions to the particle number
fluctuations become important [216]. The logarithmic term is not very important for
the entropies, as has been noted before [72]. The results from the simplified com-
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pressibility expression in Eq. 4.15 are completely off the particle insertion results (see
inset of Fig. 4.6), showing that Eq. 4.14 is not valid on the nano scale.

To explain the different results for the different water models and the discrepancy
with the data of Ref. 72 we rearrange Eq. 4.12 without the logarithmic term in the
following way,

kT [ (n(n—1)) 1\7!
b ()

(n)? vp
where we used the relation (n) = vp. We show p and (n(n—1))/(n)? for the different
water models and pressures as obtained from simulations in Fig. 4.7. As noted be-
fore [72], (n(n—1))/(n)? shows only a weak dependence on temperature or pressure
and does not differ much between the different water models (see Fig. 4.7 b). The
density p on the other hand shows a pronounced temperature dependence, differs
appreciably between the water models and also shows deviations from the experi-
mental data. Comparing with Eq. 4.16 and noting that the neglect of the logarithmic
term in Eq. 4.12 is not very serious, as shown in Figure 4.6 c and d, one concludes
that it is mostly the variation in p that causes the differences in the solvation free
energy [72, 206, 208], as seen in Fig. 4.6 a and b. Note that the compressibility
obtained for SPC/E, shown in the inset of Fig. 4.7 a, shows considerable dependence
on temperature and agrees overall quite well with experimental data. But, as shown
above, its temperature dependence cannot be used as a simple explanation of the en-
tropy convergence phenomena since Eq. 4.14 is too inaccurate to describe solvation of
small solutes.

In summary, two different factors contribute to the shift of the entropy convergence
temperature between our simulated particle insertion data and the published informa-
tion theory results: Firstly, the temperature dependence of the experimental coexis-
tence density is quite different from the simulated density at ambient pressure (and
as a side remark, this deviation is more pronounced with SPC than with SPC/E), see
Fig. 4.7 a, while the experimental densities at ambient and saturation pressures are
very close. Secondly, there is a systematic shift of the entropy convergence to higher
temperatures for the information theory results as compared to straight particle inser-
tion results, see Figure 4.6 c and d. Finally, we note that the coexistence densities of
the SPC water model are significantly lower than the experimental ones [217], sim-
ulating the SPC water model at experimental saturation densities therefore leads to
unrealistically high pressures, e.g. 880 bar at T = 500 K compared to the experimen-
tal saturation pressure of 26.4 bar [215]. It is not clear what the significance of such
high pressure is, but it might significantly change the water properties and therefore
lead to unrealistic results.

(4.16)

4.4.3. Attractive interactions

We next investigate the solvation of non-polar solutes whose interaction with water
also has an attractive part, according to Eq. 2.1. For a fixed decay length 1/B =
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Figure 4.8.: Excess chemical potential for a spherical solute with radius R = 0.33nm (a) for
1/B = 0.02nm, 1/D = 0.05nm and varying potential depth ¢, = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7 and 0.8kJ/mol and (e) for 1/B = 0.02nm, ¢, = 0.7 kJ/mol and varying range of the
attractive part of the potential 1/D = 0.05, 0.1 and 0.2 nm. Circles show the data obtained
by test particle insertion, lines are fits to the particle insertion data. The dashed line marks
a purely repulsive solute (¢, = 0), while the solid lines correspond to the attractive solutes.
Crosses indicate the position of the maxima of the free energy curves and the dashed-dotted
line is a fit to the maxima. [(b), (f)] Solvation entropies, [(c), (g)] enthalpies and [(d), (h)]
heat capacity changes obtained from derivatives of the fits to the free energies shown in (a)
and (e). The trajectories for particle insertion are obtained by MD simulation of the SPC/E
water model at p = 1bar.
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Figure 4.9.: (a) Solvation entropies for solutes with radii R = 0.28 nm (black), 0.31 nm (red),
0.33nm (green) and 0.345nm (blue) for 1/B = 0.02nm, 1/D = 0.05nm and varying po-
tential depth e, = 0 (solid lines), 0.3kJ/mol (dashed lines) and 0.8 kJ/mol (dashed-dotted
lines). The symbols show the intersection of the curves for solutes of size R = 0.28nm
and R = 0.345nm for an attraction range 1/D = 0.05nm (circles), 1/D = 0.1nm (squares,
entropy curves not shown) and 1/D = 0.2nm (triangles, entropy curves not shown) and
1/B = 0.02nm. The dashed curves are linear fits to the intersection points. The inset shows
the convergence temperature defined by Eq. 4.11 for 1/D = 0.05nm (circles), 1/D = 0.1nm
(squares) and 1/D = 0.2nm (triangles) and 1/B = 0.02nm. Solid curves show linear fits to
the data. (b) Analogous results for the solvation enthalpy. [(c), (d)] Solvation entropy and
enthalpy for the stiffer repulsive potential characterized by 1/B = 0.005 nm for varying poten-
tial depth €, = 0 (solid lines), 0.3kJ/mol (dashed lines), 0.8 kJ/mol (dashed-dotted lines) and
1.3kJ/mol (dotted lines) and for only one attractive range 1/D = 0.05nm.
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Figure 4.10.: (a) Convergence temperature for spherical solutes with 1/B = 0.02nm, 1/D =
0.05 nm (circles), 0.1 nm (squares) and 0.2 nm (triangles) and varying depth (e, = 0.0 - 0.8
kJ/mol) as a function of the effective stiffness (1/B).g, defined in Eq. 4.17. Lines are quadratic
fits to the data. Also shown for reference is the convergence temperature for purely repulsive
solutes (crosses) including a linear fit to the data. (b) Convergence temperature T, corrected
for the varying effective stiffness as a function of the potential depth €,. The inset shows the
effective stiffness of the attractive potentials as a function of the potential depth. Symbols have
the same meaning as in (a). All data is obtained by particle insertion in SPC/E water at p =1
bar.

0.02 nm of the repulsive part of the potential, we vary the range of the attractive
interaction (1/D = 0.05,0.1 and 0.2nm) as well as the potential depth (¢, = 0.0,
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 and 0.8kJ/mol). In Fig. 4.8 a and b we show the
resulting solvation free energies and entropies for a solute of radius R = 0.33nm and
for 1/B = 0.02nm and 1/D = 0.05nm for different values of the potential depth €;
in Fig. 4.8 e and f we show solvation free energies and entropies for 1/B = 0.02nm
and €, = 0.7kJ/mol for varying potential range 1/D. It can be seen from Fig. 4.8 a
and e, that for increasing potential depth and range the solvation free energies are
shifted downwards, as expected due to the more favorable enthalpic contribution of
the attraction (see Fig. 4.8 ¢ and g). For the largest range studied, 1/D = 0.2 nm, the
solvation free energy energy approaches zero, meaning that we are almost describing
hydrophilic (yet non-polar) solutes. At the same time the position of the maximum
of the free energy curve is shifted towards higher temperatures. Accordingly, also
the solvation entropy curves are shifted towards higher temperatures with increasing
potential depth and range (see Fig. 4.8 b and f). Interestingly, for increasing attraction,
that is as one goes from very hydrophobic solutes to less hydrophobic solutes, the
solvation entropies become more negative while the heat capacities in Figs. 4.8 d and h
stay roughly the same. This stands in contrast to the common view according to which
the solvation of hydrophilic solutes is purely enthalpic and characterized by vanishing
heat capacity [63, 68]. We note, that the solvation free energies for a Lennard-Jones
parameterization of methane [208] are well within the spread observed in Fig. 4.8
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e. For example at T = 300 K Ashbaugh et al. [208] find a solvation free energy of
9.3 kJ/mol for OPLS-methane in SPC/E water, while for a methane size solute with
€o = 0.7 kJ/mol and 1/B = 0.02 nm we obtain 15.2 kJ/mol for 1/D = 0.1 nm and
3.2 kJ/mol for 1/D = 0.2 nm.

The effect of increasing potential depth and range on the convergence tempera-
ture is shown in Fig. 4.9, where we plot the solvation entropies and enthalpies for
solutes of varying radii and different values of the potential depth €, and range 1/D
as a function of the temperature. For the less stiff repulsive potential characterized
by 1/B = 0.02 nm we show in Figs. 4.9 a and b the intersection points of the en-
tropy and enthalpy curves for solutes with radii R = 0.28 nm and R = 0.345nm for
attractive potential ranges of 1/D = 0.05nm (circles), 1/D = 0.1nm (squares) and
1/D = 0.2nm (triangles). For the latter two the entropy curves are not shown. In
Figs. 4.9 c and d we show data for 1/D = 0.05nm and the stiffer repulsive potential
1/B = 0.005 nm. It can be seen, that the convergence for increasing potential depth
is shifted to higher temperatures, while the convergence entropies and enthalpies be-
come more negative. This effect is more pronounced for more long-ranged attraction.
In the insets of Fig. 4.9 we plot the convergence temperatures, defined by Eq. 4.11,
as a function of the potential depth for varying potential ranges. Surprisingly, the
convergence temperatures show very little dependence on the range of the attractive
potential. It is apparent from Fig. 2.1 b, that a changing attractive potential depth
also modifies the repulsive flank of the potential and thereby increases the apparent
stiffness of the potential slightly. To understand the reason for the insensitivity of the
entropy convergence temperature on the attractive range, we first have to disentangle
the effects due to the repulsive and attractive parts of the potential. As a measure
of the actual stiffness of the repulsive flank of the potential we define the effective
stiffness 1/B.g of the potential (Eq. 2.1) as

1 % To : (4.17)

Beg 9 Uspy—ow(r)/0r,=r
For a purely repulsive solute (C = 0), this reduces to the usual decay length of the
potential, 1/B.s = 1/B. The effective stiffness for attractive potentials with varying
range 1/D = 0.05, 0.1 and 0.2 nm is plotted in the inset of Fig. 4.10 b as a function
of the potential depth €,. The increase in the effective stiffness with potential depth
is smaller for the longer ranged potentials in accordance with Fig. 2.1. We assume,
that the convergence temperature is an analytic function of the effective stiffness B,
the potential depth €, and range D, that is Tg = T4 (B, €9, D). Since with increasing
the potential depth € also the effective stiffness B¢ increases, it is a priori not clear
which of the two causes the change in the convergence temperature. In Fig. 4.10 a, we
plot the convergence temperature for the attractive solutes as a function of 1/B.g and
compare it to the results for the purely repulsive solutes. It is seen, that the conver-
gence temperature for the attractive solutes rises much faster with increasing effective
stiffness than for the purely repulsive solutes, so the change in effective stiffness alone
cannot explain the shift in the convergence temperature; it is rather a combined effect
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of both factors. In order to disentangle the effects of the attractive interactions and
the effective stiffness of the repulsive part of the potential, we expand T (B, €o, D)
for fixed D in a Taylor series with respect to €, and B,

T;(Beff: EO)D) ~ Ty (Befp 60>D)
T (B, €0, D)

Bes — B® 4.18

aBeff ( eff eff) ( )
oT% (Beff, eO,D) e 0y,
860 0

Adding and subtracting Ty (Beff, eo, D) one can rearrange Eq. 4.18 to yield

T;(Beff) €o> D) ~ T (Beff: 60: D) + T (Beffa €0, D)
— THBY, €0, D). (4.19)

If we choose 1/B = 0.02 nm and 60 = 0, then T (B, eO,D) and Tg (B° off? eO,D) are
given by the results for purely repulsive solutes and we can calculate T*(B o> €0> D)
by solving Eq. 4.19. We plot Tg (Beff’ €9, D) for 1/Be = 0.02 nm in Fig. 4.10 b as
a function of the potential depth €, for the three different ranges studied. Still a
strong dependence on €, can be observed, while there is almost no change with the
range of the attractive part of the potential. We conclude that the entropy convergence
temperature shows no dependence on the range of the attractive part of the potential
and only depends on the attractive strength and repulsive stiffness. This suggests,
that the main contribution to the temperature dependence of the solvation free energy
comes from the first solvation shell around the solute and is therefore determined by
the short range structure of the hydrogen bonding network.

4.5. Conclusion

We performed an analysis of the solvation properties of small spherical solutes for a
broad class of solute-water potentials. In all cases the free energies show a maximum
at a temperature that depends quite sensitively on details of the potential, below that
temperature the solvation entropy is negative (i.e. the solute orders the water), above
that temperature the entropy is positive (i.e. the solute increases the water disor-
der). The heat capacity is invariably positive. These are the common signatures of hy-
drophobic solvation of small solutes. No convergence is found for solutes of the same
size characterized by different 1/B and €, but restricted convergence is observed for
the same 1/B and ¢ and different radii of the solutes. The entropy convergence tem-
perature, at which the solvation entropies of solutes of different radii are the same,
depends also on potential details in the following fashion: The less stiff the short-
ranged repulsive part of the potential, the lower the convergence temperature, the
deeper the attractive part, the higher the convergence temperature. The range of the
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attractive part does not influence the convergence properties, which suggests that it is
only the first water shell that plays a role for convergence. Nevertheless, these results
mean for the case of protein denaturation, where different amino acids plausibly are
characterized by different effective water-amino acid potentials, entropy or enthalpy
convergence cannot be expected in the general case. This is in agreement with a re-
cent analysis of a large unbiased set of protein data [69]. It has been suggested that
the spread in the protein convergence properties in Fig. 4.1 can be related to the size
of the proteins [200]. However, when we plot the deviation from a straight-line fit
as a function of the number of residues (see Fig. 4.1 b) we seem not to obtain any
systematic trend. Likewise, although we show that the extrapolation procedure which
is used to obtain thermodynamic data at one temperature, which basically rests on the
assumption of a constant heat capacity, is fine for the solvation of non-polar solutes
(see our analysis in Figs. 4.2 and 4.3), there could be extrapolation artifacts in the
protein denaturation data. However, when we separate data from proteins that dena-
ture around 60° C (shown by open circles) from proteins that denature further away
from 60° C (filled circles) we do not see a systematic difference in the two data sets,
ruling out problems with the extrapolation method as a possible cause of the absence
of entropy convergence. Taken together all evidence, entropy convergence of protein
denaturation does not seem to be evidenced by the experimental data.

Although strictly speaking we cannot conclude that the breakdown of convergence
in protein denaturation data is caused by the variations of the interactions of indi-
vidual amino acids with water as we have studied in this work, we note that these
variations are sufficient to give rise to a breakdown of convergence. Other factors that
would work in the same direction are specificities in the folded state, which we did
not address.

Most directly our results are applicable to the solvation of gaseous particles in water,
since here specifics of the reference state (which is the liquid state for liquid hydro-
carbons or the protein core for folded proteins) are absent. We stress again a subtle
point mentioned already in the previous sections: For liquid hydrocarbons which form
a homologous series, entropy convergence is foremost a consequence of the additivity
of solvation properties of individual methyl and methylene groups and yields a van-
ishing entropy at the convergence temperature. In contrast, convergence for different
noble gases is not connected to the additivity hypothesis but rather to an insensitivity
of solvation thermodynamics to variations in the solute-water interaction and leads in
general to a non-vanishing entropy at convergence.

We see that the entropy convergence of noble gases, which experimentally occurs
around 380 K, is quite well reproduced for sensible values of the attractive strength
and range around 1/B = 0.005 nm and €, = 1.3 kJ/mol. Experimentally, the conver-
gence is far from perfect, since e. g. the entropies of Ne, Ar and Xe do not cross at one
temperature. The actual value of the entropy at convergence comes also out quite well
from our simulation results. As seen in Fig. 2 of Ref. 43, Ar and Xe cross at an entropy
of AS ~ —4 cal/molK ~ —17 J/molK, which is in line with typical convergence en-
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tropies we obtain for a wide range of values of the attractive depth between ¢, = 0.3
and 1.3 kJ/mol, see Fig. 4.9 c.

Note that the model potential considered by us should be viewed as realistic for the
solvation of hydrophobic particles which cannot form hydrogen bonds with the water.
In the future, it will be interesting to study polar solutes as well and to check whether
robust and significant differences to the solvation of unpolar solutes are obtained.

As a word of caution, we note that convergence properties depend sensitively on
the water parameters used, which simply reflects the fact that one is dealing with
higher-order derivatives of the free energy. Thus, they are very sensitive to small force-
field variations and imperfections. The actual numbers quoted by us should thus be
considered with care. Likewise, we only study small radii, for which more complicated
effects associated with the crossover to the solvation of planar interfaces is not yet
reached [42].
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CHAPTER 5

SURFACE FUNCTIONAL DESCRIPTION OF
HyDROPHOBIC HYDRATION

5.1. Introduction

5.1.1. Motivation

As noted above, the hydrophobic effect is the dominant driving force for self-assembly
in the aqueous environment and spans many length scales, ranging from protein
folding over macromolecular aggregation and membrane formation to macroscopic
phase separation [52]. The solvation of hydrophobic objects displays a characteris-
tic crossover at a length scale of R* ~ 0.5 nm [40, 41, 43] which can be associated
with the discreteness of water: While small hydrophobic solutes can be readily ac-
commodated within the water hydrogen bonding network, mostly reducing the water
configurational freedom, large solutes lead to a reduction of hydrogen bonds and the
formation of a liquid-vapour like interface. It has been a long standing question how
hydrophobic solvation on the nanoscale can be described by an interface model in
terms of suitably defined geometrical measures.

In 1949, Tolman [79] proposed an asymptotic curvature correction for the surface
tension of a spherical cavity, obtained from purely thermodynamic considerations,

26
Yspu=7Yo|1— FUE (5.1)

where 7, is the surface tension of a planar interface, R is the cavity radius and 6 is
the Tolman length, which corresponds to the shift between the Gibbs dividing surface
(GDS) Rgps and the surface of tension Rg in the planar limit [218],

5 == hm RGDS —Rs. (5.2)
R—00

With the convention that the radius of a cavity (or bubble) is taken as positive (note
that all cited results are adapted to this sign convention), a negative Tolman length
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means that a droplet is preferred over a cavity, i.e. the surface of tension is shifted
towards the liquid water side of the GDS.

A more general description of the free energy of an interface is given by Helfrich’s
phenomenological curvature expansion [89],

AF = J dA[f+2x( —co)* +&K], (5.3)

where J = (1/Ry + 1/R,)/2, K = 1/(RyR,) and ¢, are the mean, Gaussian and spon-
taneous curvatures, R, 5 are the local principal radii of curvature and k and k are the
normal and Gaussian bending rigidities. The planar surface tension is given by the
constant term in Eq. 5.3, yg = )7+2ch. Expressions like Egs. 5.1 and 5.3 give a simple
description of hydrophobic solvation and are at the core of advanced implicit solvation
models [219].

However, the determination of the coefficients is for several reasons not straight-
forward: i) While the magnitude of 6 is generally agreed to be on the order of the
molecular size, not even for simple Lennard-Jones (LJ) liquids a consensus is reached
about its sign, see [80, 81] and references therein. ii) The aforementioned crossover
between small-scale and large-scale solvation, caused by the water discreteness, occurs
at roughly the same scale as the Tolman length, i.e. R* ~ §, and it is not straightfor-
ward to disentangle these two lengths. iii) Furthermore, it is not clear how the Tolman
length for water in contact with a hard solute compares with that of a liquid droplet
or a bubble, where one has a liquid-vapor interface [220-224]. Using a combination
of simulations and scaled particle theory, a Tolman length of the order of 1 A was
predicted for water at ambient temperature [83, 85]. Ashbaugh and Pratt [43] find
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5 ~ 0.6 A at T = 300 K which decreases with increasing temperature and changes
sign at T ~ 350 K. Huang et al. [42] deduce 6 = 0.9 A at T = 298 K for SPC/E
water from simulated solvation free energies of hydrophobic spheres. Yamamoto and
Ohnishi [225] on the other hand find a maximum in the surface tension of helium
bubbles in water as a function of bubble radius, corresponding to a negative Tolman
length.

Not surprisingly, the sign and magnitude of the second order curvature correction
is much debated as well. Square-gradient theory yields a negative bending rigidity for
the "equilibrium route" [90], that is by considering an interface that is curved due to
an external potential, while van Giessen and Blokhuis [226] obtained a positive x and
negative K by applying a virial expression to computer simulations of a Lennard-Jones
liquid forming spherical and cylindrical droplets.

Instead of bending the water surface by external forces, represented by a solute, one
can also obtain information on the interfacial elastic properties by studying the equi-
librium fluctuations of a free liquid/vapour interface, i. e. thermally induced capillary
waves, which has been termed "fluctuation route" [90]. Standard capillary wave (CW)
theory can be extended to incorporate the effects of higher order curvature corrections
as described by Eq. 5.3, which results in a wave vector dependent effective surface ten-
sion Yeg(q) = 7o + kq> [93]. Note, that odd curvature terms vanish due to symmetry
reasons.

Since a few years grazing-incidence X-ray scattering from liquid surfaces yields in-
formation on lateral density correlations in the interfacial region. The obtained scat-
tering signal combines effects due to bulk-like density fluctuations close to the in-
terface, dominant at large wavevectors [97], and effects due to shape fluctuations
of the interface, dominant at small wavevectors [95, 96]. Disentangling these two
contributions in the experimentally accessible intermediate range of wavevectors and
extracting the capillary wave spectrum of the liquid-vapor surface is by no means
straightforward [91, 98-100]. Experimental scattering spectra span the wave vector
range of ¢~! ~ 0.1 — 10nm, posing a dilemma: for q values small enough that CW
theory is valid, the deviations from the trivial limit y.4(q) = y are small and accuracy
becomes the limiting factor.

In theoretical work, the extended capillary wave theory has been applied to the lig-
uid vapor interface in a Lennard-Jones fluid by Stecki [93, 94], who found evidence
for a negative bending rigidity. Chacén and Tarazona [92] on the other hand found a
positive bending rigidity, using a different definition of the surface, where a minimum
area surface is pinned to a set of pivot atoms. To complicate matters, it has been sug-
gested by Blokhuis et al. [90], that the bending rigidities obtained by this "fluctuation
route" might differ from those obtained by the "equilibrium route". Furthermore it has
been argued, that for interaction potentials decaying o r~—® a curvature expansion of
the surface tension fails beyond the linear term [91, 227, 228], a problem which can
be circumvented if the retardation to a r~/ dependence is taken into account.
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Figure 5.2.: Simulation snapshots of [(a),(b)] spherical and [(d),(e)] cylindrical hydrophobic
solutes in water with different radii. Dashed lines indicate water hydrogen bonds. [(c),(f)]
Radial distribution functions gspy_ow(7) and geyi—ow(r) between solutes and water oxygen
atoms for solute radii in the range R = 0.05 — 2.0 nm. Vertical dotted lines indicate the solute
radii for R > 0.75 nm. All simulation data for SPC/E water at T = 300K and p = 1 bar.

Capillary waves also have a broadening effect on liquid surfaces, adding to the in-
trinsic width of the interface with important consequences for scattering experiments
probing the structure normal to the interface. Recent scattering experiments [229]
suggest that the contribution of the intrinsic roughness is greater and consequently
the length scale at which capillary wave theory breaks down is larger than it was pre-
viously assumed [230-233].

5.1.2. Outline

In this work we use large scale MD simulations to gain a thorough understanding of
the curvature dependence of the interfacial free energy of water.

In Sec. 5.2 we follow the "fluctuation route", that is we investigate interfacial shape
fluctuations present in large-scale atomistic simulations of the water-vapor interface
(see Fig. 5.1). Simulating up to N = 115000 molecules in a rectangular box such
that a water slab with two planar interfaces spontaneously forms, we can probe lateral
length scales up to 24 nm and thus are in a similar wave vector range as scattering ex-
periments; however, complete configurational knowledge allows us to gain structural
insight beyond the pair correlation level. We introduce a method to separate bulk-like
and interfacial shape fluctuations without any fitting parameters, which allows us to
extract an estimate for the bending rigidity x by comparison with capillary wave the-
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5.2. Capillary waves at the air/water interface

ory. We further reconstruct the intrinsic density profile at the air/water interface by
deconvolution and discuss the contribution of capillary waves to the total interfacial
width.

In Sec. 5.3 we use a complementary approach. We determine solvation free ener-
gies of hydrophobic spherical and cylindrical solutes of radii up to R = 2 nm in water
(see Fig. 5.2). By considering the full radius range from zero to R = 2 nm, we cover
the crossover between the regimes where the solvation free energy scales as the cavity
volume (for R < R*) and where it scales as the surface area (for R > R*). Simultane-
ously considering spherical and cylindrical geometries allows us to reliably extract the
Tolman length, which is shown to be negative, and to obtain estimates for the other
elastic constants of the Helfrich formula (Eq. 5.3). By comparing the solvation free
energies of spheres and cylinders, we also estimate the free energy for aggregation of
spheres into cylindrical objects.

5.2. Capillary waves at the air/water interface

5.2.1. Capillary wave theory

We have come a long way since the pioneering work of van der Waals (VDW) [218],
who described the density profile across the interface on the mean field level (neglect-
ing fluctuations of the interface shape) in the form

p1t+py  Ap

2z
+ — tanh(—), (5.4
w

p(z)= 2 2

where p), are the bulk liquid and vapour densities, Ap = p; — p, and w is a measure
of the interfacial width. On the other hand, in capillary wave theory [234], the density
profile is assumed to be kink-like while the interface position h(7}) is a smooth function
of the lateral coordinate 7| = (x, y). For Gaussian fluctuations, the CW spectrum is

) kpTL?
<Ih(QI" >= 57—, (5.5)
a7 err(q)
where L is the lateral system size,
h(@) = f h(7))ed Tid?r, (5.6)

is the Fourier transform of h(7)), and y.¢(q) is the wave vector dependent effective sur-
face tension. In the original CW theory [234] v.¢(q) = yo where v, is the macroscopic
surface tension of the planar interface. Including the coupling between the intrinsic
density profile and interface shape fluctuations [90, 235], additional terms in the CW
spectrum appear and in a low-momentum expansion one finds y.¢(q) = yo + kg2 in
accordance with Helfrich’s formula (Eq. 5.3).
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Figure 5.3.: a) Perspective view
of the simulation system for the
investigation of the air/water in-
terface. The periodic box, indi-
cated by the black frame, has a
size of 24 x 24 x 12 nm® and con-
tains ~ 115000 water molecules.
The simulation is done at T =
300 K. b),c) Illustration of the in-
terfacial profile i,(x, y) obtained
by the block averaging proce-
dure from the simulation system
shown in panel a for a = 3 and
block factors of b) n=8 and c¢)
n=16.
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5.2. Capillary waves at the air/water interface
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Figure 5.4.: a) Schematic illustration of the definition of the Gibbs-dividing-surface. The posi-
tion z is defined in such a way, that the shaded regions A and B have equal area. b) Illustration
of the prisms used in the local GDS method to extract the interface profile.

5.2.2. Interface extraction

Figure 5.3 a shows a perspective view of the simulation system. From the atomic coor-
dinates, the interface profile is determined by the local Gibbs-dividing-surface (GDS)
method [236] (see Fig. 5.4). The GDS is a measure for the interface position defined
as the boundary zg, for which the surface excess of the water vanishes,

J [p(z)—p1] dz +J [p(z)—py]dz=0. (5.7)

Here, p) are the bulk liquid and vapour densities. In Fig. 5.4 a this is schematically
shown. Equation 5.7 enforces that the two shaded regions denoted by A and B have
equal area.

To determine the interface profile the simulation box is divided into n X n prisms
with quadratic base area of edge length AL = L/n, as shown in Fig. 5.4 b. The
interface height fzn(FH) at the lateral coordinates 7|, is then defined as the position of
the local GDS within the prism centered around 7, that is by Eq. 5.7 with z replaced
by fln(f*’n) and p(z) replaced by the density profile er(z) within the corresponding

prism. Thus, iln(F'”) is defined only on the grid formed by the prisms footprints. To
separate the two interfaces present in the simulation box and to control the influence
of the bulk fluctuations the prisms are further restricted to an interval [z_,z,] in z
direction, where z, = z5 & aw, 2 is the global GDS, w is the interfacial width and o
is an adjustable parameter. With these substitutions Eq. 5.7 reads

Z+

Jhnm) [pr”(Z) - pl] dz + J [pr”(Z) - pv] dz =0. (5.8)

hy (7))
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Multiplying both sides with (AL)? and rearranging Eq. 5.8 we find

M, i
(AL)?*Ap Ap

ha (7)) = (5.9

where Ap = p; — p, and M, = (AL)? f:+ pr”(z)dz is the number of molecules in the

prism centered around 7. The advantage of this method is, that it does not involve
fitting of the density profile in a single prism and is therefore still applicable for large
n, where the average number of molecules in a prism is very small. The height pro-
file obtained by this method is denoted by fln(?H), in contrast to the height function
h(7) that appears in capillary wave theory, since it depends on the block factor n,
which specifies the lateral resolution AL = L/n, a, the prism height, and also contains
contributions from bulk-like density fluctuations. Figure 5.3 b and c show the height
profile obtained from the same configuration for different values of the block factor n.

The coarse-grained profile fzn(FH) is related to the infinite-resolution limit E(FH) =
lim,_, fln(?ﬂ) by the convolution

ha (7)) = f dr{\ga(F) — ) DR(F), (5.10)

with the coarse-graining function g, (7)) = 1/(AL)? for —AL/2 < x,y < AL/2 and
gn(7)) = 0 otherwise. The connection with the height function h(#) that appears in
the CW theory in Eq. (5.5) will be discussed below.

5.2.3. Interfacial broadening

The total width of the interfacial density profile is due to the width of the intrinsic
density profile, which is the density profile in absence of capillary waves, and the
broadening due to fluctuations of the surface shape. Having determined the profile
of the surface shape, the intrinsic density profile can be reconstructed by shifting the
molecular positions by the position of the local GDS,

N
Pinen(z) = D6z — 2; + hy (7 D)) /L2, (5.11)
i=1

where 7)|; and z; are the coordinates of the water molecules. In Fig. 5.5 we show
Pintn(z) for n = 1 and n = 30. The inset shows that for a given a a value of the
lateral resolution AL = L/n exists for which the width w of p;, ,(2) is minimal. For
a = 3 we find a minimal w for AL* = L /30 = 0.8 nm, which agrees with the roughness
length scale found by visual inspection of the snapshots (see Fig. 5.1). It also coincides
more or less with the cross-over radius R* in the solvation of hydrophobic spheres [41]
(as discussed below), supporting the view that this is the length scale of the intrinsic
roughness due to the restructuring of the H-bonding network in water. For smaller n
capillary waves broaden the interface, for larger n nano-scale roughness increases the
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Figure 5.5.: Intrinsic density profiles p;,, ,(2) for @ = 3 and block factor n = 30 (circles)
and n = 1 (squares, corresponding to the global laterally averaged density profile) with fits

Pincn(2) = (01 + py)/2 + (Ap/2) tanh(2z/w) (solid lines). The inset shows the width w as a
function of n for a = 2,3,4. Here L = 24 nm.
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Figure 5.6.: Squared total interfacial width A% as a function of the lateral system size L ob-
tained either from a hyperbolic tangent (circles) or an error function (squares) fit to the aver-

aged density profile across the air/water interface. The lines are linear fits to the data. Note
the logarithmic scale of the abscissa.
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width of the intrinsic density profile. The slight a dependence of the minimum is due
to bulk-like density fluctuations as discussed below.

Similarly, for increasing system size L, the density profiles in Fig. 5.1 ¢ exhibit in-
creasing widths due to the increasing effects of capillary waves. In the convolution
approximation [237] the interfacial width is given by

ke T L
A2=A24 2 p(2 5.12
0+2”Y0n(b)’ ( )

where A is the intrinsic width and the second term describes the contribution of capil-
lary waves. It depends logarithmically on the lateral system size L and the length scale
b associated with the short-wavelength cut-off of the capillary wave modes. We extract
the total width from the simulation trajectory by fitting the averaged density profile
normal to the interface either with the mean field hyperbolic tangent (see Eq. 5.4) or
an error function,

A
p2)= M+—perf(\/]fz) . (5.13)

2 2

The squared width A2, which is defined as the variance of the derivative p’(z), is then
given by A2 = (nw)?/48 for the hyperbolic tangent and by A2 = w?/(2n) for the
error function [237]. In Fig. 5.6 we plot the squared total width A? as a function of
the lateral system size L for both the hyperbolic tangent and the error function fit. It
is seen that the total width indeed scales with the logarithm of the lateral system size,
as predicted by capillary wave theory. From the slope of a linear fit to the data, we
calculate the planar surface tension y, yielding y, = 45.6 mN/m for the hyperbolic
tangent fit and y, = 51.3 mN/m for the error function fit. The result from the error
function fit agrees very well with the surface tension obtained independently from the
anisotropy of the pressure tensor (y}, o = 52.9 mN/m) in agreement with the findings
of Ismail et al. [237]. Note, that the simulations in this section are done with a slightly
smaller Lennard-Jones cutoff r. = 0.8 nm, leading to a slightly smaller surface tension
in comparison with the results presented in Sec. 5.3.

The intrinsic width A can be inferred from the width of the intrinsic density profile
(see Fig. 5.5). Since the intrinsic width depends on the block factor n but only slightly
on the parameter a with which the height profile is determined, we take the minimal
width for @ = 3 as an estimate of the intrinsic width, yielding A, = 1.6 A. Using
Eq. 5.12 we can obtain the short-wavelength cut-off b from the fit to the simulation
data. We find b = 4.8 nm for the hyperbolic tangent fit and b = 6.1 nm for the error
function fit, in agreement with recent X-ray reflectivity experiments [229]. These
findings support the view that capillary wave theory breaks down at length scales
larger than the molecular size of the liquid, in considerable contrast to the assumption
in previous works [231].
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Figure 5.7.: a) Capillary wave
spectra (|h,(q)|?) for n = 1024
and a ranging from 1 to 5
(from bottom to top, full lines).
For comparison S |l|7 (@), the lateral
bulk structure factor for a slab
thickness 5w, scaled by an ar-
bitrary factor, (dashed line) and
the CWT result with yq = 1y,
(dash-dotted line) are included.
b) Bare capillary wave spectra
(0q)*(Ih(q)1?) (upper data set,
left scale) and (oq)?(|h,(q)|?) ac-
cording to Eq. 5.20 (lower data
set, right scale) for n = 64
and varying a. The dashed
straight lines show the surface
tension contribution determined
independently. c¢) Rescaled effec-
tive surface tension y.g ,/¥1y,0 for
a = 3 and varying n. Full squares
for n = 30 correspond to a LJ cut-
off r. = 1.6nm, all other data are
for r. = 0.8 nm. Dashed lines are
fits of the form yog,/yo = 1+
Kn/Y1w,09° In all plots L = 24nm
and q is rescaled by the water LJ
diameter o = 3.166 A.
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5.2.4. Lateral correlations

The lateral structure factor is defined as

d3rd3r’ N ige (7 —7') ) Ar = A INNC
5|(Q)=J N fE@)f (e (PP ), (5.14)

with the microscopic density p(7) = Zflzl 6(7 —7;), the weight function f(z) and the
normalization factor

Nj = J d°rf2@)(p(P)). (5.15)

S)/(q) is obtained from grazing angle X-ray diffraction below the critical angle for total
reflection, in which case the weight function is f(z) = exp(—|z|/(21)) and [ is the
penetration depth, which depends on the wave vector transfer normal to the surface
q,. We write the microscopic density as

p() = pO(h(T) — 2) + p,0(z — h(F)) + 55 (7), (5.16)

where 6 accounts for all density fluctuations not captured by the sharp-kink approx-
imation and 0(z) =1 for z > 0 and zero otherwise. Equation (5.14) leads to

Si(@) = (Ap)*(|R(QI) /N + AS) (q), (5.17)

where the contribution due to density fluctuations is

AS)(q) = f d*rd®r f(2)f (2)e T TITI(55(7)6p (7). (5.18)
In the limit n — oo, the relation
Tim ([, (9)) = (R(Q)P) = NS (9)/(Ap)? (5.19)

between the power spectrum of the local GDS and the lateral structure factor with a
rectangular weight function f(z) = 6(z; —2)0(z — z_) holds, where N, = prawlL?,
which is formally proven in App. A. Figure 5.7 a shows (|,(q)|?) obtained by Fourier-
transforming simulation data for fln(F’”) for different values of a and n = 1024. Com-
parison with the bulk structure factor for a slab (broken line) shows that bulk-like den-
sity fluctuations dominate at high wave vectors and are proportional to a. To extract
the bare height spectrum (|h(q)|?) one has to subtract AS|, ideally in an experimen-
tally reproducible fashion. A meaningful subtraction is possible by using the structure
factor SIII) (q) calculated analogously to Eq. (5.14) in a slab located in the bulk of the

liquid. Note that Sﬁ(q) can be calculated for an arbitrary weight function f (z) from the
experimentally accessible 3D bulk structure factor, as shown in App. A. In our simula-
tions we calculate Sﬁ(q) with the same block factor n for an interval of size aw centered

76



5.2. Capillary waves at the air/water interface

around the middle of a water slab. We furthermore use S| (q) = (Ap)z(lfln(q)lz)/N||
even for finite n and make the association AS)(q) = Slll) (q). These simplifications can
be viewed as a definition of the interface profile h(7)). Using Eq. (5.17) we thus obtain

(Iha(@)?) = (Ra(@12) = NySE(@)/(Ap Y. (5.20)

Writing the effective surface tension for the spectrum (|f1,(¢)|?) in analogy to Eq. 5.5
as

Yeff,n(q) =Yo+ knqz + O(q4) (5.21)
and defining the isothermal compressibility k|| of a slab,

Sp(@) = ks T pyxr, +O(g?), (5.22)
we obtain in the low-q limit the relation

K,=K,+ }’SOLWKT’H. (5.23)

This shows that correct subtraction of the bulk-like fluctuations is the key to extracting
the correct interfacial bending rigidity x,,.

In Fig. 5.7 b we show the spectra ¢(|h,(¢q)|?) ~ 7=+ (q) (upper data points) and

-1
eff,n
(|, ()?) ~ y;f}n(q) (lower data points) for fixed n = 64 and different a. In contrast
to a similar data analysis of colloid-polymer interfaces [99], we subtract the bulk struc-

ture factor Sﬁ of a corresponding slab of thickness aw without any fitting parameter.
This is an important detail, since the functional form of Slll’ (q) strongly depends on a

(see App. A). As seen in Fig. 5.7 b, all data for q?(|h,,(q)|?) collapse onto a single curve,
which shows that i) the parameter a does not influence the final result for x,, and ii)
our method for subtracting bulk-like density fluctuations is consistent. Not surpris-
ingly, for a =1 (circles) the data slightly deviate, indicating that this prism size is too
small to entirely capture the interface fluctuations. The dashed lines in Fig. 5.7 b show
the limiting behavior ¥ ,,(q — 0) = Yegr (@ — 0) = yo With yo = 15y 0 = 52.91mN/m
determined independently from the anisotropy of the pressure tensor [237]. In Fig. 5.7
c we plot Y ,(q)/Y1y,0 as a function of q? for fixed a = 3 and various n and compare
with straight line fits of the form Y ,(q)/Y1v,0 = 1 + Knq?/Y1v,0-

The resulting n-dependence of the «,, values is introduced by the coarse-graining of
the local GDS method. From Eq. (5.10) we obtain

(I (@) = g @*(R@I, (5.24)
where

ALqy ALq,

sin( 2 ) sin( 5 ) (5.25)

&= (AL)?q.q,
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Figure 5.8.: Bending rigidity «, from fits in Fig. 5.7 c as a function of the inverse squared
block factor 1/n? for different a. The line denotes a fit of Eq. (5.26) to the data fora =2 -5
yielding a value of k = 0.04 kgT as n — oo. The inset shows the temperature dependence
of k (circles), the simulated surface tension (squares, including a tail correction) and the
experimental surface tension (triangles, [237]).

is the Fourier transform of the rectangular coarse-graining function g, (). For small
q we have g,(§) ~ 1 — (AL)?q?/24. Combining this with Eq. 5.5 we obtain Yeffn =
Yo + kq% + voL?q?/(12n?), where we have used that AL = L/n. The asymptotic
bending rigidity x is thus related to x,, as

K, =K +71oL%/(12n?). (5.26)

In Fig. 5.8 we show «,, for different a as a function of 1/n?. Except for a = 1, the data
for different slabthickness aw collapse, reinforcing our earlier statement that we have
separated density and interface fluctuations in a consistent way. From Eq. (5.26),
shown by the solid line, the bending rigidity follows by extrapolation to n — oo as
k = (0.04 £0.02) kgT at T = 300 K for a Lennard-Jones cut-off r, = 0.8 nm. The
temperature dependence of k (inset in Fig. 5.8, circles) is similar to that of the surface
tension from simulations (squares) or experiments (triangles). As a consequence, the
cross-over length scale between bending and tension, 1/ /Y, is of the order of about

0.5 A and rather independent of temperature.

Our results, yielding a monotonously increasing effective surface tension, i.e., a
positive bending rigidity, on first glance conflict with previous calculations including
the long-ranged VDW tail that predict a negative slope of y.4(q) for small ¢ [91]. In
MD simulations, however, the VDW interaction is truncated at a finite cutoff length
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5.3. Solvation of spheres and cylinders

r.. The contribution of an attractive intermolecular interaction w(r) to the bending
rigidity is given in the sharp-kink approximation by [91]
rC

Kapr = E(Ap)2 drriw(r) (5.27)
attr 32 . .

o

For the attractive part of the Lennard-Jones potential in the simulations, w(r) =
—4¢e(o/r)® with € = 0.65kJ/mol and o = 0.317nm, we obtain for the upper cut-
offs r. = 0.8nm and 1.6nm the contributions «,; = —0.11kgT and —0.19kgT at
T = 300K, yielding a difference of —0.08 ki T. In the limit r. = co Eq. 5.27 predicts a
divergent contribution. In reality, retardation effects change the VDW distance depen-
dence from 1/r% to 1/r” at a cross-over length on the order of r,,, = 100nm [238].
Using w(r) = —4e(o/r)® for r < r,. and matching continuously a function w(r) ~
—1/r7 for r > r, we obtain K, = —0.67kgT. Assuming simple additivity of the
long-ranged contribution k., to the simulation result would result in a negative value
Kk =(—0.63+0.02) kg T. In fact, the same analysis as in Fig. 5.8 for simulations with a
cut-off r. = 1.6 nm yields a slightly smaller bending rigidity of k = (0.03 £0.02) kT,
so it seems plausible that in the infinite cut-off limit k becomes negative.

5.3. Solvation of spheres and cylinders

5.3.1. Curvature expansion of free energies

In this section we determine the elastic constants of the water surface by considering
the solvation of spherical and cylindrical hydrophobic solutes. For a sphere with radius
R one obtains from Eq. 5.3

4Kcg 1
AFgpy/A=17vo — R +(2x + K)R_’ (5.28)

with yo = 7+ 2Kc§. Comparison of the leading terms in Egs. 5.1 and 5.28 shows
that the Tolman length is given by 6 = 2kcy/y,. For a cylinder of radius R Helfrich’s
curvature expansion yields

AFgn/A=yo— 2x0 K1 (5.29)
cyL/A=7Yo R 9 R2’ .
and therefore the equivalent of Eq. 5.1 is
o
Yen=Yo(1=-% |- (5.30)

By considering the full radius range from zero to R = 2 nm, we cover the crossover
between the regimes where the solvation free energy scales as the cavity volume (for
R < R*) and where it scales as the surface area (for R > R*). Simultaneously consider-
ing spherical and cylindrical geometries allows an additional consistency check on Egs.
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5. Surface Functional Description of Hydrophobic Hydration

5.1 and 5.30 (which is essential in light of the pronounced crossover effects present,
as will be shown below) and to reliably extract the Tolman length.

The range of applicability of Egs. 5.28 and 5.29 can be extended by including higher
order terms. If we include terms up to third order in the curvature, the Helfrich free
energy is given by

) 171 1 2 1
AF= | dA[y+2;< =4 =] =-c| +&
2\R; R, RiR,

1 1 (1 1
+ N (R—?+R—%) +n (RlR% +R%R2) ], (5.31)
where we have introduced the moduli 1 and 7. For a spherical solute Eq. 5.31 yields,
AFgpy/A=7yy— ﬂ+(2K+f<)i—|—2(’r)+7_))i, (5.32)
R R? R3
for a cylindrical solute,
AFcn/A=Yo—ﬁ+5i+ni. (5.33)
R 2 R? R3

Unless specified otherwise, the radius of the solutes, R, is defined as the distance where
the interaction is kg Ty, Vsor—ow(R) = kgTy, where ky is the Boltzmann constant and
Ty = 300K, alternative radius definitions lead to minor modifications, as is discussed
below.

5.3.2. Small scale solvation regime and crossover

The radial distribution functions in Fig. 5.2 ¢ and f and the solvation entropy AS in
Fig. 5.9 clearly display the gradual crossover from small-scale solvation (negative sol-
vation entropy, strong density peak in the first solvation shell) to large-scale solvation
characterized by a monotonic density distribution around the solute, positive AS and
constant free energy per area AF /A. Depending on the observable one looks at, this
crossover occurs around R* ~ 0.5 — 1.0 nm and at a significantly smaller radius for a
cylinder compared to a sphere (which makes cylinders particularly suited for determin-
ing the Tolman length, as shown later on). Note that AF /A does not quite reach the
independently determined planar liquid vapour surface tension yy, o, dotted horizontal
line in Fig. 5.9 a, as will be discussed below.

For small radii the solvation free energy of hard-sphere solutes scales proportional
to the volume [40, 41], whereas our Buckingham solutes exhibit for very small R a
divergence in AF/V. This is due to the finite r — O limit of the Buckingham potential.
It vanishes for a potential shape, that diverges with r — 0, as is seen in Fig. 5.10,
where we plot the solvation free energy for spherical solutes that interact with the
water oxygen atoms via a purely repulsive Lennard-Jones (LJ) potential of the form

L E
Vepn—son(r) = Tz (5.34)
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5. Surface Functional Description of Hydrophobic Hydration

Solute radii R are defined analogously to the Buckingham potential by VSLgH_SOL(R) =
kgTy. The solvation free energy of the LJ-spheres are obtained by the test particle
insertion method. They are shown in Fig. 5.10 together with solvation free energies
for Buckingham spheres obtained by both TI and TPI. The solvation free energy per
unit area of the LJ-spheres smoothly goes to 0 for R — 0, while it converges with the
solvation free energy of the Buckingham-spheres for radii R > 0.2nm. The TPI data for
the Buckingham-spheres agree perfectly with the Buckingham TI data for small radii.
Deviations from the TI data for R > 0.4nm are due to insufficient sampling, which
shows that the TPI method is not applicable for solutes of too large size. We note that
the solvation free energy AF of the Buckingham solutes of course goes to zero for
R — 0, only slower than the area A.

The difference between AF/V for spheres and cylinders in Fig. 5.9 b gives the free
energy change per volume upon an aggregation of spheres into a cylinder with the
same radius, which is an idealized model for linear hydrophobic aggregation. Surpris-
ingly, only for R > 0.3 nm is this aggregation favored (red shaded region), for smaller
R the cylindrical free energy per volume is higher than the spherical one (black shaded
region). This transition is driven by complex crossovers in the enthalpic and entropic
differences [44], which change sign at R ~ 0.5 nm and R ~ 1.0 nm, respectively, as
indicated by filled circles: For R > 1.0 nm cylinders are enthalpically favored (and
entropically disfavored), while for R < 0.5 nm cylinders are entropically favored (and
enthalpically disfavored).

5.3.3. Large scale solvation regime

To extract the Tolman length, in Fig. 5.11 a we plot AF /A for T = 300 K as a function
of the inverse radius 1/R as solid lines. The data are strongly curved and fits according
to Egs. 5.1 and 5.30 are obviously impossible: The slopes for cylinders and spheres
at 1/R = 0.5 nm™! have opposite signs, so extrapolation to the limit 1/R — 0 and
extraction of the Tolman length (which is the slope in this plot) is not obvious. The
situation for higher temperature T = 360 K in Fig. 5.11 b is more favorable, since here
crossovers are shifted to smaller radii [44]. Indeed, now a maximum in AF /A s clearly
resolved in both data sets, although a linear fit according to Egs. 5.1 and 5.30 is still not
feasible. The dashed-dotted lines in Fig. 5.11 a and b show a simultaneous fit to both
spherical and cylindrical data according to Egs. 5.32 and 5.33 with y,, 6, k, k, n and
7] as free parameters (fits are performed on the interval 0.5 nm™! < 1/R < 1.4 nm™).
The influence of the cubic term and the dependence on the fitting range is discussed
below.

The fit parameters are summarized in Tab. 5.1. The resulting Tolman length is
negative, on the order of § ~ —1 A and decreasing with temperature, implying that the
spontaneous curvature is such that water favors droplets over cavities. The maximum
of AF /A for spheres occurs at 1/R,,, ~ 0.7 nm™! for T = 360 K and extrapolated
at 1/Ry.x =~ 0.5 nm™! for T = 300 K, consistent with previous simulations [42] for
spheres and for 1/R > 1 nm™! that were interpreted in terms of a positive Tolman
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Figure 5.11.: Solvation free energies AF (full lines) per unit area of spherical (black) and cylin-
drical (red lines) solutes as a function of the inverse radius 1/R at temperatures (a) T = 300 K
and (b) T = 360 K. Dashed-dotted lines are cubic fits in the range 0.5nm™! < 1/R< 1.4nm™},
where Egs. 5.32 and 5.33 are fit simultaneously to the data for spherical and cylindrical so-
lutes. The resulting best-fit parameters are listed in Tab. 5.1. [(c),(d)] Same data as in (a)
and (b) but for a larger range of 1/R. Linear fits in the region 1.5 nm™! < 1/R < 3 nm™! for
spheres and 3 nm~! < 1/R < 5 nm™! for cylinders (dashed-dotted lines) with the constraint of
an equal surface tension are included.
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5. Surface Functional Description of Hydrophobic Hydration

Table 5.1.: Best fit parameters y,, K, K, ¢y, 0, n and 71 obtained from fitting Eqgs. 5.32 and
5.33 to the spherical and cylindrical data in Fig. 5.11 a and b. The independently determined
planar surface tension of the free water/vapour interface, yy,, is included for comparison.

T [K] | Yivo [mN/m] | yo [mN/m] | ¢o[nm™] | & [nm]
280 58.1 59.7 0.41 -0.092
300 54.7 56.8 0.50 -0.10
320 52.0 53.8 0.53 -0.12
360 455 47.4 0.69 -0.16

T [K] | «[1072'J] | ®[107*'J] | n[107**Jm] | # [10~*2Jm]
280 -6.7 2.4 0.018 3.2
300 -5.8 2.8 -0.23 3.0
320 -6.2 2.3 -0.23 3.2
360 -5.4 -2.5 -0.35 3.3

length. The increased radius range up to R = 2 nm in conjunction with the cylindrical
data, that show the crossover at considerably smaller radii, allows to clearly resolve
the maximum in AF /A and thus to reliably extract the Tolman length. The best-fit
values for y( are slightly larger than the surface tension y},, of the planar liquid/
vapour interface. Similar behaviour for a Lennard-Jones liquid [80] was rationalized
by suppressed interfacial fluctuations near a hard wall [239], as we will show in the
following this can also be interpreted as a finite-size crossover.

Figure 5.12 shows fits according to Egs. 5.32 and 5.33 including (dashed-dotted
lines) and neglecting (dotted lines) the cubic term. The fitting is performed over the
interval 0.5 nm™! < 1/R < (1/R)ypper> where (1/R)ypper = 0.6 and 1.4 nm~!. The
dependence of the fitted surface tension and Tolman length on the fitting range is
shown in Fig. 5.13.

As can be seen from Fig. 5.12, for small curvature 1/R the deviations between the
quadratic and cubic fit are quite small. For larger curvature the cubic function fits
the data better than the quadratic one, since higher order corrections become more
important in this region. The planar surface tension and the Tolman length obtained
from the fits show only a slight dependence on the fitting range (see Fig. 5.13). The
planar surface tension y, decreases with decreasing (1/R)ypper, Suggesting that the
discrepancy between the v, obtained from the fit and the surface tension obtained
from simulations of a planar air/water interface y},, can be explained by the finite
minimal curvature that is accessible by these simulations. Indeed, if we extrapolate y,
to (1/R)ypper = O it agrees within the statistical errors with yy, o which is indicated by
a dotted horizontal line.

For the bending rigidities we find negative values on the order of x,k ~ —1 to
—10 kT with only small dependencies on the LJ cutoff length (see App. B), consistent
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Figure 5.12.: Solvation free en-
ergies per area for spherical and
cylindrical solutes at T = 360 K
and p = 1 bar, simultaneously
fit by Egs. 5.32 and 5.33 ei-
ther neglecting (dashed lines) or
including (dashed-dotted lines)
the cubic term. The fit is re-
stricted to the range 0.5 nm™! <
1/R < (1/R)ypper» where (a)
(1/R)ypper = 0.6 nm™" and (b)
(1/R)ypper = 1.4 nm™".

Figure 5.13.: Dependence of the
best fit parameters of the fits to
the solvation free energies per
area of spherical and cylindrical
solutes at T = 360 K and p =
1 bar for a quadratic (black cir-
cles) or cubic (red squares) fit-
ting function (see Fig. 5.12) on
the fitting range 0.5 nm™! <
1/R < (1/R)ypper- Solid lines
are quadratic fits to the data,
the dotted line indicates y,, =
45.5 mN/m.
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with the estimates from the capillary wave fluctuations, that included a long-range LJ
correction.

The elastic coefficients in Egs. 5.3 and 5.31 depend on the definition of the ra-
dius R, for which there are several common choices: (i) the radius R, /,, defined by
gx—ow(R1/2) = 1/2, (ii) the radius Rgpg, defined by the Gibbs dividing surface (GDS),
that is defined by

J d®r [gx—ow(r) — 0(r —Rgps)] =0, (5.35)

where O(x) =1 if x > 0 and 6(x) = 0 if x < 0, in accordance with the interface
definition in Sec. 5.2, and (iii) the radius Ryxx, defined as the first maximum of the
radial distribution function gx_gw(r). In Fig. 5.14 we compare alternative definitions.
It is seen that, except for Ryax, all other radii differ only slightly from R. For radii
R > 0.2nm the curves are well fit by a linear function, if we allow for a non-zero offset.
For small radii R < 0.2 nm, there are deviations from the linear dependence, which are
caused by the finite r — 0 limit of the Buckingham potential as discussed above. Note
that the GDS based radius definition is thermodynamically the most sound definition,
but requires extensive additional simulations for accurate determination. The heuristic
radius definition we use in most parts of Sec. 5.3 is the most practical one, since it does
not require additional simulations; this is the reason why we used it.
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5.4. Conclusion

If we generally assume a linear relationship between an alternative definition of the
solute radius, R/, and R, R =R’(1 + €) + A, then we obtain to linear order in 1/R’ for
a sphere,

26 1
AF = 47TR2Y0 (1 - E + O(E ) = (536)
2(6 — A) 1
_ 12 2 _
= 4nR"y,(1+¢€) (1 Rito) +O(R’2)) .

The Tolman length associated with R’ is therefore given by

65—
 1+4e€’

/

(5.37)

For Rgps and R/, we obtain € = —0.049 and —0.042 and A = 0.040 nm and 0.025 nm,
leading to 6" = —0.14 nm and -0.12 nm at T = 300 K. From a direct fit using
the same fitting procedure as described in the main paper, but taking Rgpg as di-
viding surface, we obtain y, = 52.6 mN/m, ¢, = 2.73 nm™!, k = —0.98 x 1072! J,
Kk =—6.49 x 1072! Jand 6 = —0.10 nm at T = 300 K. While the Tolman length does
not change significantly, the bending rigidities, which constitute higher-order curva-
ture corrections, not surprisingly do. So our results for the bending rigidities should
only be regarded as indicative. The Tolman lengths obtained from the direct fit and
from Eq. 5.37 differ slightly, since the fit range is restricted by the finite minimum
curvature.

Finally, we stress that the expressions in Egs. 5.1 and 5.30 strictly only apply to the
asymptotic small-curvature regime, i.e. to radii R > R,,,,, because otherwise higher-
order curvature terms take over. Curiously, as can be seen in Fig. 5.11 c and d, there is
an intermediate range where AF /A scales linear in 1/R with effective Tolman lengths
SSPH’CYL that are positive and on the order of 1 A (see Tab. 5.2), in rough agreement
with previous estimates [42, 43, 83, 85]. It is clear that such a fit at intermediate radii
is incompatible with a surface free energy functional in terms of local curvatures and
rather illustrates the subtleties of analyzing simulation data.

5.4. Conclusion

We have presented a thorough analysis of the curvature dependence of the free en-
ergy of a water surface, taking into account both, fluctuations of an planar air/water
interface and surfaces forced to curve due to the presence of a solute.

Considering the free air/water interface, we have introduced a method to consis-
tently separate surface and bulk contributions to the interfacial structure factor of
large scale water simulations. It is found that in the limit of small q the effective sur-
face tension is well described by a small but positive bending rigidity on the order
of k = (0.04 £0.02) kgT at T = 300 K. Considering the long-ranged and retarded

87



5. Surface Functional Description of Hydrophobic Hydration

Table 5.2.: Best fit parameters &spy and &y, from Egs. 5.1 and 5.30 in the intermediate radius
range in Fig. 5.11 ¢ and d. The Tolman length 6 as obtained from the fit to the asymptotic
region is also included for comparison (see Tab. 5.1).

T[K] | &6[mm] | &gpulnm] | &gy [nm]
280 -0.092 0.087 0.11
300 -0.10 0.084 0.10
320 -0.12 0.080 0.097
360 -0.16 0.073 0.089

van-der-Waals contribution (which is not fully accounted for in MD simulations) neg-
ative values of k are suggested in agreement with coarse-grained theories [91] and
X-ray scattering experiments [95]. The broadening of the water interface exhibits a
crossover at a lateral length scale of ~ 0.8 nm: On smaller scales the interface is in-
trinsically rough due to surface reconstruction of the hydrogen bonding network, for
larger scales capillary waves are dominant.

We have further found a maximum in the solvation free energy per area, AF /A,
for hydrophobes in water, which implies that both the Tolman length and the bending
rigidities characterizing the water-hydrophobe interface are negative. This maximum
occurs between radii of R,, = 2 nm (for spheres at T = 300 K) and R,,,, = 0.8 nm
(for cylinders at T = 360 K). A simultaneous fit of sphere and cylinder data yields a
negative Tolman length of § = —0.1 nm at T = 300 K for a hydrophobic surface, which
means that droplets are favored over cavities, with important implications for current
coarse-grained modelling [219]. For cylinders in water at room temperature, the Tol-
man length 6 ~ —0.1 nm, the radius R,,, ~ 1 nm where AF /A shows an extremum
(which scales like the inverse spontaneous curvature, Ry, =~ ¢, 1), and the crossover
radius R* ~ 0.5 nm between small-scale (where AF ~ V) and large-scale solvation
(where AF ~ A) are quite similar, which requires a careful numerical analysis. Still,
our results suggest that for curvature radii R > R,,,,, a curvature-based local inter-
face free energy functional is valid for arbitrarily shaped solutes and the linear Tolman
correction is dominant. For smaller radii, corrections have to be accounted for, either
in the form of higher-order curvature terms (involving additional independent elastic
constants) or in terms of effective functionals that correctly account for the crossover
to the small-scale solvation regime.

It appears that the thermodynamic crossover seen in the solvation of hydrophobes
is paralleled by the structural crossover seen at the water surface, which suggests
that both are of the same origin, that is the relatively open structure of the hydrogen
bonding network of water.
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CHAPTER 6

WATER DYNAMICS NEAR HYDROPHOBIC AND
HYDROPHILIC SOLUTES AND INTERFACES

6.1. Introduction

6.1.1. Motivation

In this final chapter we turn to the investigation of the dynamics of single water
molecules near interfaces. Water dynamics is important not only in its own right but
also because it influences the kinetics of many other processes that take place in an
aqueous environment, for example protein folding [102]. The modeling of water dy-
namics in bulk and at surfaces steadily progressed over the least years. A prominent
goal in recent water research has been to relate macroscopic dynamic properties, such
as the viscosity, to microscopic kinetic events and thus to the hydrogen bonding dy-
namics between individual water molecules [16]. Yet, even for the most elementary
kinetic process of breaking a single hydrogen bond between two water molecules that
are embedded in the bulk liquid matrix, no clear picture exists. One particular prob-
lem is to disentangle the influence of the free energy profile and the local friction on
the kinetics of processes that involve water.

6.1.2. Outline

In this chapter we study the dynamics of single water molecules at interfaces and so-
lutes using molecular dynamics simulations. Special attention is paid to differences be-
tween hydrophobic and hydrophilic solutes and interfaces. We report recent progress
on the interpretation of simulation data using a Fokker-Planck based formalism that
allows to extract and disentangle the free energy and diffusivity profiles of various dy-
namic processes, an important distinction previously drawn using a similar approach
for systems of hard-spheres [122].
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6. Water Dynamics near Solutes and Interfaces

We first study the water dynamics at planar boundaries and derive water diffusiv-
ity profiles at hydrophilic and hydrophobic surfaces. Here we see a dramatic slowing
down of water diffusion close to a hydrophilic surface that is distinct from the strong
binding of water to such surfaces. We next study the water dynamics in bulk between
two water molecules and close to a non-polar solute which is taken as a methane
molecule. Similar to the surface case, we see substantial slowing down of water diffu-
sion in the first solvation shell of a water-water hydrogen bond, the effect close to the
methane molecule is less pronounced.

This chapter is organized as follows: The diffusional analysis is introduced in Sec. 6.2.
Results for the dynamics of single water molecules at interfaces and close to solutes
are presented and discussed in Sec. 6.3 and Sec. 6.4, respectively. Finally, based on
our results, conclusions are drawn in Sec. 6.5.

6.2. Diffusional dynamics and analysis

In our analysis we assume that the dynamics of water molecules is accurately captured
by an overdamped Fokker-Planck (FP) or Smoluchowski equation

Se¥(@.0= 5 (D@ P2 (91q,06) ), 6.1)
which describes diffusive motion along a general coordinate q. In the FP Eq. 6.1,
where the inverse thermal energy is denoted by 8 = 1/ (kgT), the time evolution
of the probability density ¢ of observing a value q at time t is subject to the free
energy landscape F and the g-dependent diffusivity D. While the free energy F(q) =
—kpT 10g1)¢q (q), the Boltzmann inverse of the equilibrium probability 1.y (q), is a
purely static quantity, dynamic time scales are set by the diffusivity profile D(q).

In the following, free energies and diffusivity profiles are resolved for water dynam-
ics in various contexts: water dynamics parallel (¢ = x, ¥) and perpendicular (g = %)
to a planar interface as well as relative dynamics of pairs of water molecules and pairs
of water and methane molecules, where g = r denotes the radial separation between
both molecules. While translation invariance parallel to an (unstructured) confining

surface ensures a constant free energy F(x) = F(y) = const., the free energy profile in
direction perpendicular to the interface is given (up to arbitrary constant shifts) by

F(z) = —ksT log (p(2)/ pounc), (6.2)

where p denotes the density profile perpendicular to the interface. For the radial case
of relative diffusion of molecule pairs the free energy is

F(r)=—2kgTlogr — kT log g(r), (6.3)

i.e., the ideal entropic free energy is modified by the radial pair correlation function
g(r).
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6.2. Diffusional dynamics and analysis

In the past, different approaches have been taken for determining (spatially vary-
ing) diffusion coefficients in various contexts ranging from simple liquids in confine-
ment [122], dynamics of nano-confined water [115, 116], water dynamics at the air-
water interface [240, 241] and the protein-water interface [242, 243] to protein dy-
namics [244-247]. While the Bayesian approach of Ref. [122] optimizes the diffusivity
profile to maximize the likelihood of the series of transitions at fixed lag time observed
in the simulation, we choose a complementary route which allows to extract the dif-
fusivity based on two dynamic observables: mean square displacements and MFPTs.
The methods used hereafter for characterizing water dynamics in bulk and at solid
interfaces are described in the following.

6.2.1. Variance method

In cases, where both free energy F(q) = const. and diffusivity D(q) = const. are g-
independent, the FP Eq. 6.1 reduces to the simple equation for free diffusion

i ( t)—D82 (g,t) 6.4
a t 1/) Q> - aqz lnb q: s .
which is readily solved in terms of the Green’s function
1 (q — o)
,t)= exp————, 6.5
YP(g,t) 75 " ane (6.5)

specifying the probability of observing q a time t after a given start in gy. In these
cases either the direct comparison of histograms from trajectory data with Eq. 6.5 or
the evaluation of the second central moment or variance

((q—qo)*) =2Dt, (6.6)

allows to determine the value of the diffusion coefficient D. Note, that because of non-
Markovian (ballistic) effects at short time scales, the diffusive description of Eq. 6.1
and thus also the linear temporal scaling of the variance in Eq. 6.6 generally only
applies in the long time limit. This approach, hereafter named “variance method*, is
used for resolving the distance dependence of the water molecule diffusion coefficients
parallel to planar interfaces in Sec. 6.3.2.

6.2.2. Mean first-passage time method

In cases where the Green’s function solution to the FP Eq. 6.1 is not known analytically,
an alternative approach [246] based on the evaluation of mean first-passage times
(MFPTs) proves to be useful. For a diffusive process described by the FP Eq. 6.1, the
MFPT 7y, of first reaching a target value g, when starting off from q [248] is given by

o / e[o’F(q’) q/ 1 —BF(q")
Tp(g,q) = | dgq D(q) dq”e , (6.7)
q Qmin
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6. Water Dynamics near Solutes and Interfaces

where q,,;, denotes the position of a reflective (zero-flux) boundary. Differentiating
Eq. 6.7, one readily obtains [246]

eBF@) d BF()
D(g)=————— dg’e Prla), (6.8)
=@ f 1

9min

Extracting MFPT curves 7y, from simulation trajectories thus allows to determine the
g-dependent diffusivity D(q) governing the dynamics in an arbitrary free energy land-
scape F(q). This approach, named “MFPT method“ below, is used for determining vari-
ous q-dependent diffusivity profiles: results for the dynamics of single water molecules
perpendicular to planar interfaces are presented in Sec. 6.3.1 and relative diffusivity
profiles in bulk are resolved in Sec. 6.4.

6.3. Water dynamics at interfaces

6.3.1. Diffusivity perpendicular to the interface

Diffusivity profiles perpendicular to the wall are resolved by the MFPT method de-
scribed in Sec. 6.2.2. Using a spatial resolution Az = 0.01 nm, all trajectories starting
at a separation within Az/2 from z and crossing z, — Az/2 for the first time a time
tg, later contribute to the MFPT 7, = <tfp>. The derivative 07¢,(z,%.)/0z needed
in Eq. 6.8 is determined by fitting a linear function to the MFPT values 7g, within a
small region of magnitude 6z around z, where 6z = 0.07 nm; this approach allows to
smooth out the statistical noise in the MFPT curves without hiding the relevant fea-
tures of the diffusivity profiles. For the evaluation of the integral in Eq. 6.8, the equi-
librium distribution v, (2) = exp (—BF(2)) is linearly interpolated; results are shown
together with the corresponding free energy profiles and MFPT curves in Fig. 6.1. The
origin of the z axis is set to the Gibbs dividing surface, that is the dividing surface for
which the excess density of the water vanishes.

Near the hydrophobic substrate the diffusivity shows several oscillations and then
converges towards the bulk diffusivity, indicated by a horizontal broken line, for sepa-
rations of z ~ 0.7 nm. Next to the surface the diffusivity drops to about 40% of the bulk
value. Diffusivity minima and maxima are located in between maxima and minima of
the free energy profile. Similar behaviour has been observed for a hard-sphere liquid
in confinement [122], implying that layering effects are the cause for the oscillations.
Note, that the water diffusivity in the "bulk" region of the slab, Dy, o ~ 2.7 nm?/ns,
is slightly larger than the diffusivity obtained from the bulk simulations (see below),
since due to the lack of a long-range correction for the Lennard-Jones interaction in
the interfacial geometry the water density is slightly smaller than in the bulk case.

The diffusivity near the hydrophilic walls (Fig. 6.1 b and ¢) shows a dramatic drop
to roughly 4% and 1% of the bulk value for 12% and 25% OH coverage, respectively.
This drop can be attributed to water molecules forming relatively long-lived hydrogen
bonds with the surface OH groups and is in qualitative agreement with previous results
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6.3. Water dynamics at interfaces

of Sendner et al. [34]. We emphasize that the drop in the diffusivity is not caused by
the deep minimum in the free energy profile, which is also related to the formation
of hydrogen bonds with the surface, since the free energy profile is a strictly static
quantity. In other words, the water molecules near the hydrophilic wall are tightly
bound and slow. However, we cannot rule out that there are other locally varying
static quantities that do correlate with dynamic properties, such as the local available
volume in the case of hard spheres in confinement [122]. The increase towards the
bulk diffusivity, indicated by a horizontal broken line, which is reached at separations
of z ~ 1.1 nm, is modulated by oscillations similar to the hydrophobic surface, but, for
the case of 25% OH coverage, with different phase relations with respect to the free
energy profile. This suggests that the mechanism behind the pronounced diffusivity
profile variations is different at hydrophobic and hydrophilic substrates.

We note that very close to the substrates, the MFPT profiles exhibit a positive slope
due to ballistic (i.e. non-Markovian) effects, and the analysis based on Eq. 6.8 breaks
down.

6.3.2. Diffusivity parallel to the interface

Diffusion coefficients of water molecules parallel to planar interfaces are resolved us-
ing the variance method described in Sec. 6.2.1. Results are shown in the bottom
panels of Fig. 6.1. Solid lines are obtained by determining the variance of the lat-
eral displacement in Eq. 6.6 for an ensemble of water molecules with an initial z-
position in the range [z — Az; 2+ Az] and by fitting the variance over the time interval
[t —&t;t + 6t], where we use Az = 0.01 nm and 6t = 0.5 ps. Dashed lines are
obtained by analyzing a restricted ensemble of water molecules that stay in the slice
[z — Az;z + Az] for the entire time interval ¢t and by solving Eq. 6.6 for D, with
Az = 0.025 nm. The first method allows to study the diffusion on longer time scales,
where linear time scaling is valid, which comes at the price that the diffusivity profile
is smeared out, since water molecules might cross several slices along the z-direction.

Fig. 6.2 shows several variance curves for water molecules starting at different ini-
tial separations from the hydrophilic diamond substrate with 25% OH coverage. On
small time scales t < 1.0 ps the dynamics are dominated by ballistic motions and the
variance scales with t2; on longer time scales the motion becomes diffusive and the
variance assumes a linear time dependence.

The lateral diffusivity profile near the hydrophobic wall in the bottom panel of
Fig. 6.1 a is relatively featureless. There is a slight decrease towards the bulk dif-
fusivity with increasing separation form the wall and one can discern two small peaks
located at the first two minima of the free energy profile. Mittal et al. [122] have ex-
plained this effect by the fact that in inhomogeneous fluids the local available volume
and therefore the diffusivity is higher in regions of higher density.

Near the hydrophilic substrates the lateral diffusivity decreases drastically, see the
bottom panel of Figs. 6.1 b and ¢, however, the lateral diffusivity at the surface is still
much larger than the perpendicular diffusivity. This suggests, that although the water
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6. Water Dynamics near Solutes and Interfaces

Figure 6.1.: From top to bottom: Free en-
ergy profiles, MFPT curves for several tar-
get separations z,, diffusivity profiles for the
motion of water molecules perpendicular to
the surface obtained by the MFPT method
(Eq. 6.8) and distance dependent diffusion
coefficients of single water molecules paral-
lel to the surface obtained by the variance
method (Eq. 6.6) with (solid lines) or with-
out (dashed lines) taking into account water
molecules that cross slices in z-direction dur-
ing the observation time for various kinds of
surfaces: a) hydrophobic wall, b) hydrophilic
wall (12% OH), c¢) hydrophilic wall (25%
OH). Dashed horizontal lines show the bulk
diffusivity, vertical dotted lines indicate local
extrema of the free energy profile.
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6.3. Water dynamics at interfaces

Figure 6.2.: Mean variance of the
lateral diffusion (q=x,y) for wa-

003 L | | ter molecules starting at various
—2z=01nm .
—z=0.3nm separations z = 0.1,0.3,0.5 and
o z=0.5nm 1.5 nm from a hydrophilic di-
E 002r  —z=15nm 7 amond substrate with 25% OH
N | | coverage (solid lines) and for wa-
> ter molecules staying in the inter-
Z 001- . val [z — Az;z + Az] with 6z =
v 0.025 nm (dashed lines).
% ‘ I 4 5

mobility perpendicular to the substrate is strongly reduced, water molecules can still
move laterally to some extent. The fact, that the diffusivity profiles for all but the
smallest analysis duration times t more or less coincide near the surface, shows again
that the residence time of the water molecules is quite long [34], that is on average the
water molecules do not cross the boundary of their initial bin during the observation
interval t.

In a previous study Feng et al. [249] used the variance method to determine the
parallel and perpendicular water diffusivity profiles at a substrate made of acetylated
aminosilane linkers grafted on a silica surface. They also found a strongly oscillating
perpendicular diffusivity with a decrease towards the surface but whose oscillations
are in antiphase with the density profile. The shift in the phase relation might be
caused by the use of the variance method in a situation with a non-uniform free energy
profile, where the entanglement of free energetic and diffusivity effects requires a
stochastic approach as used in this work; in fact, we observe a similar shift when
employing the variance method instead of the MFPT method (data not shown). The
parallel diffusivity profiles found by Feng et al. [249] are in qualitative agreement with
our results.

6.3.3. Water orientation relative to the interface

As is illustrated in Fig. 6.3, the projections of the (unit) dipole vector g and of the unit
vector along a water OH-bond 1)y define two angles

cos(a) =+ 4, cos(B) = 1oy - 2. (6.9)

where £ denotes the unit vector in z-direction pointing into the water (see Fig. 6.3).
Free energy landscapes in the (g, cos a)- and in the (z, cos 8)-plane are shown in the left
column of the Figs. 6.4 and 6.5, taken from Ref. [2]. Near the hydrophobic surface the
water molecules dipole is preferentially oriented parallel to the surface (cos(a) ~ 0),
while one of its OH vectors either points directly towards the surface (cos(ff) ~ —1,
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6. Water Dynamics near Solutes and Interfaces

Figure 6.3.: Definition of angles
a and f3 specifying the orienta-
tion of the water dipole vector
and of the OH-bond with respect
to the z-axis.

around z ~ 0.10 nm) or away from the surface (cos(f) ~ 1, around g ~ 0.16 nm).
Correspondingly, the other OH vector points either slightly away from (cos(f8) Z 0)
or slightly towards (cos(8) < 0) the surface. With such an orientation, which emu-
lates the configuration in hexagonal ice, the water minimizes the number of broken
hydrogen bonds at the surface [9, 27].

Near the hydrophilic substrates the orientational distribution is dominated by the
tendency of the water molecules to form hydrogen bonds with the surface OH groups.
The water molecules can either act as hydrogen bond donors and therefore point one
of their OH bonds towards the surface (cos(ff) ~ —0.75), the other OH bond pointing
consequently away from the surface (cos(ff) ~ 1.0), or as hydrogen bond acceptors in
which case both OH bonds are oriented more or less parallel to the surface (cos(f) ~
0.0).

Whether however orientations towards the wall are relevant for the separation dy-
namics of the binding partners, can not be inferred from these free energy landscapes
alone. Average first-passage times to cross a given separation g, are therefore evalu-
ated in the (z, cos a)- and the (z, cos 8)-plane; results are shown in the right columns
of the Figs. 6.4 and 6.5. The water dynamics perpendicular to the hydrophobic wall is
rather insensitive to the initial orientation of the water relative to the interface, while
a strong dependence on the initial orientation is observed for the hydrophilic walls.
Note, that the above-mentioned non-monotonicity of the MFPT curves in Fig. 6.1 is
reflected in the two-dimensional MFPT landscapes, but more detail is contained in the
MFPT data in the angle-distance plane. Especially on the hydrophilic surfaces, very
long-lived configurational states close to the wall are discerned, which do not seem
to be simply correlated with the free-energy landscape. These long-lived states are
presumably related to the kinetics of hydrogen bonding to polar surface groups and
possibly also collective water hydrogen-bonding effects.
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Figure 6.4.: From top to bottom: hydrophobic wall, hydrophilic wall (12% OH), and hydrophilic
wall (25% OH). Left column: Free energy landscape in the (z, cos a)-plane for water molecules
near planar interfaces. Right column: Average first-passage times to reach the right boundary of
the plots (z, ~ 0.3 nm) for water molecules starting from a distance r and an initial orientation
of the water dipole moment cosa. Colors display average first-passage times, the black lines
denote contour lines of constant free-energy (0.5 kg T per line) as shown in the left column.
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Figure 6.5.: Same as Fig. 6.4, but involving the orientation of the OH-bond cos 8 defined in

Eq. 6.9 and Fig. 6.3.
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6.4. Water dynamics near solutes
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6.4. Water dynamics near solutes
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Figure 6.6.: (a) Radial free en-
ergy profile for pairs of water
molecules (solid blue line) and
ideal free energy (broken black
line). (b) MFPT curves for wa-
ter pair dynamics for several tar-
get separations r,. (c) Relative
diffusivity profiles resulting from
the curves in panel b) (same color
coding) using the MFPT method
(see Eq. 6.8). The dashed hori-
zontal line denotes the value of
the diffusivity at large separa-
tions 2Dy o ~ 5.1 nm*/ns. Verti-
cal lines indicate the positions of
the first local minimum and max-
imum in the free energy profile.

Based on MD simulation trajectories of pure SPC/E bulk water and of a single methane
molecule in SPC/E bulk water, relative separation trajectories between pairs of wa-
ter molecules and water methane pairs are generated. Using a spatial resolution
Ar = 0.005 nm, all paths starting within a distance Ar/2 from r and crossing r,—Ar /2
for the first time a time tg, later contribute to the MFPT 7¢, = <tfp>. Due to the pe-
riodicity of the system we only consider target distances r, < L/2, where L ~ 3 nm
denotes the edge length of the simulation box. The fitting range used to determine
OTgp(r,1)/0r is 6r = 0.06 nm for the water pairs and 6r = 0.1 nm for the water
methane dynamics. For the evaluation of the integral in Eq. 6.8, the equilibrium distri-
bution vy = exp (—BF) is linearly interpolated; the integral is calculated numerically
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4.0
Figure 6.7.: Same as Fig. 6.6, but (a)

for water methane pair dynam-
ics. In the limit r — oo the rel- 3.0
ative diffusivity reaches Dy, + 25
Dcy, ~ 4.85 nm?®/ns (dashed hor- &
izontal line in panel c).
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using reflective boundaries rp;, = 0.235 nm for water pairs and to r;, = 0.28 nm for
water methane pairs.

Free energy profiles for water-water and for water methane pairs are shown in the
panels a of Figs. 6.6 and 6.7, taken from Ref. [2]: While the free energy barrier for
water pairs is &~ 1 kg T, water methane pairs only encounter a barrier < 0.5 kgT.

MFPT curves Ty, are shown in the central panels b of the corresponding figures.
Diffusivity profiles obtained by the MFPT method (see Sec. 6.2.2) are shown in the
panels c of the Figs. 6.6 and 6.7: profiles obtained from MFPT curves belonging to
distinct target separations r, mainly fall on top of each other, clearly demonstrating
the validity of our approach (see Sec. 6.2). Deviations between the profiles obtained
from distinct MFPT curves occur for transitions covering separations r, — r < 0.2 nm
and taking place on time scales on the order of 1 ps: they are caused by ballistic
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(non-Markovian) contributions to the dynamics which can not be captured by our
overdamped description.

For large separations where molecules move independently from each other, the
diffusivity profiles tend towards the values 2Dy, o and Dy, + D¢y, (dashed horizontal
lines in the Figs. 6.6 c and 6.7 c, where these diffusion coefficients obtained from the
long time mean square displacement of single molecules are Dy o &~ 2.55 nm?/ns and
D¢y, ~ 2.3 nm?/ns.

Note that the diffusivities in the first coordination shells show pronounced differ-
ences: while the relative diffusivity for water pairs exhibits a clear drop down to
~ 15 % of the values at large separations, the diffusivity profile for water methane
pair dynamics is rather characterized by smooth oscillations and does not drop be-
low ~ 40%, similar to the empiric results obtained for simple two dimensional flu-
ids [250, 251] and to the diffusivity near the hydrophobic wall. Also the diffusivity pro-
files of methane-water dissociation and of water at the hydrophobic wall both exhibit
a very pronounced second minimum at a separation of r &~ 0.6 nm and z ~ 0.4 nm.

Note, that differences in the dissociation times between the water-water and the
water-methane cases are caused both by differences in the F and D profiles. To be
specific, the dissociation time for the water-water case is distinctly higher, most pro-
nounced for the curve reaching a target separation of r, = 0.6 nm. This is due to
the higher free energy barrier for water-water in Fig. 6.6 a but also due to the low
diffusivity below distances r < 0.3 nm, seen in Fig. 6.6 c. The higher diffusivity of
the methane-water separation coordinate at small separation presumably is related to
the absence of hydrogen bonds between methane and water. The pronounced dip in
D at r = 0.6 nm in Fig. 6.7 c must have to do with water restructuring of the second
solvation shell. Interestingly, while the methane-water diffusion is faster than water-
water at small separation, it becomes slower at large separations. This explains that
the MFPTs with r, = 1.2 nm are rather similar for the two systems. The smaller CHy-
H, O diffusivity at large separations is caused by the larger hydrodynamic radius of the
CH,4 molecule. This behavior reflects that the diffusivity of objects is influenced both
by their bare size but also by their ability to form hydrogen bonds with water.

6.5. Conclusion

Based on the Fokker-Planck description of the diffusion of individual water molecules
subject to a free energy landscape and a spatially dependent diffusivity profile, we
have determined diffusivity profiles at solid surfaces of varying hydrophilicity. We
have also determined diffusivity profiles governing the diffusion of the distance coor-
dinate between two water molecules and between a methane and a water molecule.
The variation in the diffusivity profiles are pronounced, especially at the hydrophilic
surface and for water-water diffusion. We conclude that the neglect of diffusivity pro-
files for predicting water kinetics in these situations can lead to gross inaccuracies.
Our protocol for extracting D profiles is based on mean first passage time profiles, by
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construction our approach thus gets the long-time dynamics right. We note that the
same procedure can in principle be applied to experimental time series data.

In summary, there is no simple or direct relation between the free energy and diffu-
sivity profiles, but both are needed for predicting the kinetics of single water molecules.
On hydrophilic surfaces the water molecules are strongly bound, but in addition they
are also slow, which presumably is due to a coupling between translational and rota-
tional degrees of freedom. The layer where the diffusivity is reduced has a width of
roughly 0.5 to 1 nm and thus matches the width over which the viscosity was found to
be reduced in MD Couette shearing simulations [34].

The same difference is seen when comparing the water dynamics at a non-polar so-
lute (methane in the present case) and a polar "solute" (taken to be a water molecule).
These results point to pronounced and quite universal differences of the dynamics of
individual water molecules close to hydrophobic and hydrophilic objects.
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CHAPTER 7

SUMMARY AND OUTLOOK

In this work the structure and dynamics of water and the solvation of hydrophobic
solutes has been studied by means of extensive molecular dynamics simulations. We
have shown that molecular dynamics simulations in conjunction with current water
models are capable to give an accurate description of water’s properties in various
situations.

In chapter 3 we have presented evidence, that the water models we use in this
work can reproduce the water structure quite well. Even subtle features, such as
the experimentally observed enhancement of the static structure factor at low wave
vectors are not missed. We have further shown that at ambient conditions spatial
correlations between order parameters describing the tetrahedral ordering of water
are rather weak and decay after a few A. That means, that no extended clusters of
highly ordered water exist under these conditions [20]. It also adds to the doubts on
theories that build on the idea of the propagation of structural order in water, like
the structure-making/structure-breaking explanations of Hofmeister [252-254] and
osmolyte [255, 256] effects. We have also seen that correlations between density and
structural fluctuations are rather weak, which tells us that one has to be very careful
to interpret scattering experiments, that probe density fluctuations, in terms of water
order.

In chapter 4 we determined the dependence of the solvation thermodynamics of
small non-polar solutes on the solute water interaction potential and its implications
for the interpretation of entropy convergence. We found that for solutes with similar
interactions but varying size, entropy and enthalpy convergence exists, but that the
convergence temperature changes with changing interaction parameters: For increas-
ing stiffness as well as for increasing depth of the interaction potential the convergence
temperature increases, while it does not change for increasing range of the interaction.
The meaning of this finding is, that there is no universality in the temperature depen-
dence of hydrophobic solvation. As a consequence, for a set of solutes with similar
interactions but differing size, which with restrictions might apply for the rare gases,
as well as for homologous series of solutes, entropy convergence is expected, while for
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proteins in general it is not in accordance with recent experimental findings [69]. It
might be interesting to extend the study of the temperature dependence to the solva-
tion of polar solutes, which could further clarify the denaturation thermodynamics of
proteins. Unfortunately, this comes at the cost of a drastic increase in the computa-
tional effort, since the particle insertion method cannot be used efficiently any more if
the solute carries partial charges.

In chapter 5 we investigated the fluctuations of a free air/water interface on the
one hand and the solvation of spherical and cylindrical hydrophobic solutes on the
other hand and described both phenomena based on a Helfrich type local surface free
energy functional. It could be shown, that after successfully separating bulk-like and
interfacial contributions, the fluctuation spectrum of the air/water interface is well
described by an effective surface tension including a bending term. Using the width of
the intrinsic density profile to disentangle the capillary wave contribution to the total
interfacial width, we find cutoff lengths in agreement with recent experiments [229].

From the comparison of the solvation free energies of spherical and cylindrical so-
lutes we inferred the free energy of the isochoric aggregation of spheres to form a
cylinder, which is unfavourable below a threshold radius of ~ 0.3 nm. It is further
found that the solvation free energies for spheres and cylinders exhibit a maximum
as a function of the inverse radius, which is equivalent with a negative Tolman length
on the order of —0.1 nm at room temperature, meaning that water prefers to form
droplets over cavities. From fitting the solvation free energies of spheres and cylinders
simultaneously we obtain estimates for the elastic constants of the water surface, the
bending rigidity beeing in qualitative agreement with the result form the air/water
interface, if the latter is corrected for the effect of a finite Lennard-Jones cutoff. Al-
though we extended the solute size to radii of 2 nm there is still a dependence of the
fit parameters on the fitting range seen, which means that the asymptotic regime is not
yet sufficiently reached. Increased computational capacities in the future will permit to
reach even larger length scales and to yield more accurate results. Also, the extension
of this study to other solute shapes might give another stringent test on the validity of
the Helfrich description of the water surface. It is notable, that the cross-over length
scale R* ~ 0.5 nm seen in the size dependence of solvation free energies is found to be
similar to the characteristic length of the intrinsic roughness of the air/water interface.
It transpires, that this is the relevant length scale separating a change in the behaviour
of an aqueous interface. Below that scale the discreteness of the hydrogen bonding
network is dominant, while on larger scales the overall shape of the surface prevails.

Finally, in chapter 6 we applied a Fokker-Planck based formalism to the dynam-
ics of single water molecules near hydrophobic and hydrophilic surfaces and solutes.
We found a strongly varying diffusivity profile with a pronounced slow-down of the
dynamics near the hydrophilic surface and near another water molecule. Near the hy-
drophobic surface and a methane solute the drop in the diffusivity is less pronounced.
Nonetheless it should be emphasized, that in order to model the dynamics of water
near a surface or solute, both the diffusivity and the free energy profile needs to be
taken into account.
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APPENDIX A

APPENDIX - LATERAL STRUCTURE FACTOR

In this appendix we derive the relation between the lateral structure factor, defined by
(see Eq. 5.14)

S)(@) = %H J d>rd*r'f(@)f ()N (p(Mp) (A1)
and the 3D structure factor given by

s@= f d*rd®r e (p(F)p(F), (A.2)
where ¢ = (qy,q,) and Q= (Qx,Qy,Q,) are lateral and 3D wave vectors and

N = J d*rf2(2)(p(). (A3)
We also show that the power spectrum of the local GDS profile in the limit of an infinite

block factor, n — o0, is proportional to the lateral structure factor with a rectangular
weight function f(z) = 0(z, —2)0(z —z_).

A.1. Equivalence of the local GDS power spectrum and the
lateral structure factor

To prove the equivalence of the GDS power spectrum and the lateral structure factor,

we start from the definition of the height profile using the local GDS method, given

in Eq. 5.9. The number of molecules in a prism M, can be written in terms of the
microscopic density () as

MrH :f +dz,J‘d2r|/|9(xl—(X—AL/Z))Q((X—FAL/Z)—X/)

x0(y' = (y —AL/2)0((y + AL/2) = y)p(), (A4
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Figure A.1.: Lateral structure factor S Illj (q) for a weight function f(2) = 0(z, —2)60(z —z_) and
for different slab sizes Az = aw, determined from simulations. The slabs are located in the
bulk region of a system of lateral size 24.0 x 24.0nm? containing ~ 115000 water molecules,
simulated at T = 300K. The wave vector q is plotted in units of the Lennard-Jones parameter
o =3.166 A of a SPC/E water molecule.

and the Fourier transform on the finite grid is given by

Ra(@) = (ALY Ry(7))e'®T, (A.5)

ul

where the sum runs over all vectors 7 on the grid. Inserting Egs. 5.9 and A.4 into Eq.
A.5 one obtains in the limit of n — oo,

- 1 T
h@)=—— J d?ryje @) J dzp(7), (A.6)
Ap 5

where we have neglected the constant term. Comparison with Eq. 5.14 immediately
yields

- - N,
(A@R(-7)) = A—gzsn(q). (A7)

A.2. Relation between lateral and bulk structure factor

Next, we derive the relation between the lateral structure factor (Eq. 5.14) and the 3D
structure factor (Eq. A.2). For a general weight function f (z) the lateral structure fac-
tor can only be obtained from the 3D one if the system is homogeneous, because S(Q)
does not contain any information about the absolute position of the density distribu-
tion p(7) in space. Since we are interested in the lateral structure factor of the bulk
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A.2. Relation between lateral and bulk structure factor

region of the simulation, we can safely assume homogeneity. In that case the correla-
tion function depends only on the relative distance, (5(7)p (7)) = (p(0)p (¥ — 7))S,
and we can write it as the inverse Fourier transform of the structure factor

d3qQ

We_ié(?/_ﬂs@), (A.8)

(P07 - =p

where p = N/V is the mean density. Inserting this into Eq. 5.14 and carrying out the
integration over the lateral coordinates yields

1 [d
@ =1 f T FQIF(-Q5@,Q.), (A.9)

where f(Q,) = f dze'%* f(z) is the Fourier transform of the weight function and we

have defined L; = f dzf2(z). We evaluate this first for the special choice of f(z) =
0(z, —2)0(z —z_), we used in our simulations. The Fourier transform is then given
by

sin(QZAz/Z))2
Q) (—Q;) = (— > (A.10)
F@IF-@)=| o
and Ly = Az, with Az =z, —z_. Inserting this into Eq. A.9 yields
o1 (dQ, (sin(Q,Az/2)\* _

S = — S A.11

@@= | 52 (T saen 1D
In the limit of an infinite slab thickness, Az — oo, we have

2sin%(Q,Az/2)
Am W =06(Q,), (A.12)

and the lateral structure factor reduces to S};(q) = S(q, 0) as expected. For a finite slab
thickness Az, however, the lateral structure factor differs from the three dimensional
one. This is illustrated in Fig. A.1, where we plot the lateral structure factor Sﬁ (@)
for slabs of different thickness Az = aw located in the bulk region of the simulation
system. Especially in the low q limit there is a pronounced dependence on the slab
thickness. The corresponding compressibilities, defined by Sﬁ(O) = pkgTkr), are
given in Tab. A.1.

Next, we evaluate Eq. A.9 for the experimentally relevant case of an exponential
weight function f(z) = exp(—|z|/(21)), for z < 0, and f(z) = 0 for z > 0, with a
penetration depth [. The Fourier transform is then found to be

= A2 A.13
fQIfF(—Q,) = WZQZ)Z’ (A.13)
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A. Appendix - Lateral Structure Factor

Table A.1.: Isothermal compressibility k) defined by the limit of the lateral bulk structure
factor Sh’(q) forq — 0, Sﬁ(O) = pkyTKry), for varying slab size Az = aw. The compressibilities
are derived from the data presented in Fig. A.1.

K| [10_11Pa_1]
115.7
78.8
69.3
64.1
60.4
45.5!

Rl s|w|v| =]

! bulk compressibility of SPC/E water at T = 298 K (see Tab. 3.1), in good agreement with the
experimental value of 45.8 x 10~ 'Pa~! [257].

and L; = . With Eq. A.9 we obtain

S(@) = dQ. 2L S(g A.14
(@) = T 1127 d.Q,). (A.14)

Again, in the limit of an infinite penetration depth, [ — oo, we can use the relation

21

1131(30 ;WZQZ)Z =0(Q,), (A.15)

and the lateral structure factor reduces to S (§) = S(q, 0).
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APPENDIX B

APPENDIX - ACCURACY CHECKS FOR SOLVATION
FrREE ENERGY CALCULATIONS

In this appendix we present several checks concerning the accuracy of the solvation
free energy calculations with the thermodynamic integration method. We first show,
that the employed integration procedure and the number of A-points used is sufficient
to yield accurate results. Next, we demonstrate that finite size effects are negligible
and finally we investigate the dependence of the solvation free energy on the Lennard-
Jones cutoff length r..

B.1. Integration error

We first evaluate the integration error, i. e., the error made due to the usage of a fi-
nite number of A-values at which the derivative (2 URI_’RH/ Jd A) is evaluated. For that
purpose, we double the number of A-values, corresponding to a radius increment of
AR = 0.00625 nm, for the integration step R' = 1.75 nm — R = 2.0 nm for the spher-
ical solute at T = 300 K. Figure B.1 a shows a plot of the derivative (2 yR—R" /OA) as
a function of A for the different step sizes including the interpolating function. The
interpolation for the coarser resolution coincides very well with the additional data
points at finer resolution. In Fig. B.1 b we plot the free energy difference obtained
either by simple trapezoidal integration of (2 URI_’RH(A) /@A) (symbols and full lines)
or by using the spline interpolation (dashed lines) for both data sets. It can be seen
that for the trapezoidal integration there is a systematically increasing difference be-
tween the two data sets. This difference is caused by the systematic integration error
due to the concave shape of the integrand. The two curves obtained by integrating
the spline interpolation lie almost perfectly on top of each other indicating that us-
ing the spline interpolation the smaller resolution of AR = 0.0125 nm is sufficient for
obtaining accurate results.
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B. Appendix - Accuracy Checks for Solvation Free Energy Calculations

Figure B.1.: (a) Average of the
derivative (QUR™R'/3) as a
function of A for the integra-
tion step from R' = 1.75nm
to R' = 2.0nm for a spheri-
cal solute at T = 300K. Red
squares and black circles indi-
cate A-values corresponding to
equidistant radii with an incre-
ment of AR = 0.0125nm and
AR = 0.00625nm, respectively.
The black full and red dashed
lines are spline interpolations to
the data sets. (b) Free energy dif-
ference with respect to the initial
state R = 1.75nm obtained by
simple trapezoidal integration of
(BUR=R"/32) for an increment
of AR = 0.0125nm (red cirlces/
full line) and AR = 0.00625nm
(black squares / full line) and by
integrating the spline interpola-
tion of both data sets (red and
black dashed lines).
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B.2. Finite size effects

Figure B.2.: Relative differences

a) ‘ ‘ ‘ ‘ ‘ of the free energies of solvation
0.0041 | (a) for the integration step from
I | R' = 0.25 nm to R" = 0.5 nm
é 0.002 i for a spherical solute for different
g box sizes L = 3.0, 3.5, 4.0 and
3 0 b 4.5 nm and (b) for the integra-
2 A\ / o _ tion step from R' = 0.75 nm to
= 0002 <  L=30mnm 1 R" = 1.0 nm for a cylindrical so-
2 | — ]Iji 28 E$ lute for box sizes of L, = L, , =
-0.004- — L[—45mm - 3.5, 4.0 and 4.5 l'lITl. The differ-
‘ ! ! ‘ ! ‘ ! ‘ ences are taken with respect to
0.25 0.3 035R[ ]04 0.45 0.5 the smallest box. For the case
m of the cylinders the free energy
per unit length is considered. No
b) systematic deviation is observed
with increasing box size. All sim-
0.004- i ulations are done at T = 300 K
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B.2. Finite size effects

We further check the sensitivity of the free energy calculation to finite size effects by
comparing the solvation free energies for the integration step from R' = 0.25 nm to
R" = 0.5 nm for a spherical solute for different box sizes of L ~ 3.0, 3.5, 4.0 and 4.5 nm
and for the integration step from R! = 0.75 nm to R = 1.0 nm for cylindrical solutes
for box sizes of L, ~ L, , ~ 3.5, 4.0 and 4.5 nm. Figure B.2 shows the relative free
energy differences with respect to the smallest box size in each case. No significant
trend is seen with the system size and the relative deviations for all cases are quite
small, which again evidences the high accuracy of the method. Since the simulations
are done at fixed pressure, the box size L (spheres) and L, , (cylinders) vary slightly
during each simulation. The actual box sizes at the final integration step are L' = 2.98,
3.54, 4.06 and 4.54 nm for the spherical solute and Lg’y = 3.48, 4.02 and 4.48 nm for
the cylindrical solute, while L, = 3.5, 4.0 and 4.5 nm is fixed.
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Figure B.3.: (a) Solvation free en- a)

ergy AF per area A of a cylindri- 12F 7 ]
cal solute obtained using a cut- . T=360K —r,=09nm|
off radius of r. = 0.9 nm (red r.=18nm|
curves) and r, = 1.8 nm (green
curves) for the nonbonded wa-
ter water interactions as a func-
tion of the inverse radius R. The
solvation free energies per area
are rescaled by the planar surface
tension yy, o of the free air/wa-
ter interface obtained with the
respective cutoff radii. Simula-
tions are done at a temperature
of T = 360 K and a pressure of
p =1 bar.

AF/(Ay, o) [MN/m]
T
|
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B.3. Cutoff effects

Finally, we discuss the dependence of the solvation free energy on the cutoff length of
the Lennard-Jones interactions, which is set to r, = 0.9 nm in most of our simulations.
Since we only study solutes up to a radius of 2.0 nm, which is on the same order as
1., no strong influence of the finite cutoff length would be expected. We check this
explicitly by determining the solvation free energy of a cylindrical solute at T = 360 K
using a Lennard-Jones cutoff length of r. = 1.8 nm. In Fig. B.3 we show the solvation
free energies for both cutoff lengths rescaled by the planar air/water surface tension,
which is 1}, o = 50.9 mN/m for r. = 1.8 nm and y}, o = 45.5 mN/m for r, = 0.9 nm.
The slight shift, that is seen in Fig. B.3, can be attributed to the statistical uncertainty
of the planar surface tension, which is on the order of 2%. Apart from this small
deviation the shape of both curves is very similar, which in particular means that the
Tolman length extracted from the data does not depend significantly on the Lennard
Jones cutoff length.
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