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Abstract

In this thesis, I present novel, sophisticated simulation and visualization techniques

for the realization of a computational steering environment for preoperative implant

planning in orthopedics. In particular, I present real-time techniques for the physics-

based simulation of deformable objects, for the visualization of stress tensor fields in

elastic bodies, and for the visualization of the spatial distances between two objects.

The presented methods are specifically designed to be executed on the GPU to exploit

the GPU’s massive computing power and memory bandwidth. In addition, this thesis

addresses the efficient simulation of cuts in deformable objects.

First, I present a novel real-time multigrid finite element method for the physics-

based simulation of deformable objects that is realized entirely on the GPU. This method

is based on linear elasticity and the corotational formulation of strain. The governing

system of partial differential equations is discretized by using hexahedral finite ele-

ments aligned on a uniform Cartesian grid and the implicit Newmark time integration

scheme. To efficiently solve the arising linear system of equations, a geometric multi-

grid method is employed. I present a specific restructuring of the multigrid scheme

that enables an efficient GPU implementation using the CUDA computing API. Com-

pared to an optimized and parallelized CPU implementation, significant speed-ups are

demonstrated.

Second, I present a novel approach for the simulation of cuts in deformable objects

that is based on a geometric multigrid solver to achieve high computational efficiency.

This approach is built upon an octree discretization of the simulation domain. Finite

elements that are cut are regularly subdivided, until a finest level is reached. At the

finest level, face adjacent elements are disconnected. I present a novel strategy to embed

complex topology changes induced by cuts into the multigrid hierarchy, and I give a

detailed analysis to demonstrate the superior performance of the proposed solver in

comparison to alternative numerical solution methods.

Third, I present novel methods for the visualization of stress tensor fields arising in

elasticity simulations. In particular, I present a method for the visualization of principal
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stresses, and a comparative visualization method that shows the differences between

two stress tensor fields. Both methods are based on combining volume rendering and

the rendering of semi-transparent lines to visualize stress magnitudes and stress direc-

tions, and are realized entirely on the GPU to enable the visualization of dynamically

changing stress tensor fields at interactive frame rates.

Fourth, I present novel methods for the visualization of the spatial distances between

two objects that support precise object positioning in interactive scenarios. These meth-

ods are based on introducing additional geometric structures into the visualization. In

the first approach cylindrical glyphs are used, which smoothly adapt their shape and

color to changing distances. In the second approach, a set of parallel slices is added,

and color coding on surfaces is used to depict distances. To evaluate the effectiveness

of the proposed methods, a user study has been performed.

Fifth, I demonstrate the use of the developed simulation and visualization tech-

niques for the realization of the first computational steering environment for preop-

erative implant planning in orthopedics. This environment allows the surgeon to in-

teractively determine the optimal implant shape, size, and position according to the

prediction of the stress distribution in the patient-specific bone after insertion of the

implant. The selected implant should replicate the preoperative stress distribution in

order to avoid the degeneration of bone tissue, which can lead to the fracturing of the

bone or the loosening of the implant.



Zusammenfassung

In dieser Arbeit stelle ich neuartige, hochentwickelte Simulations- und Visualisierungs-

techniken für die Realisierung einer Computational-Steering-Umgebung für die prä-

operative Implantatplanung in der Orthopädie vor. Insbesondere präsentiere ich Echt-

zeittechniken für die physikbasierte Simulation von deformierbaren Objekten, für die

Visualisierung von Spannungstensorfeldern in elastischen Körpern, und für die Visuali-

sierung der räumlichen Abstände zwischen zwei Objekten. Die vorgestellten Methoden

sind speziell dafür entwickelt auf der GPU ausgeführt zu werden, um die massive Re-

chenleistung und Speicherbandbreite der GPU auszunutzen. Zusätzlich behandelt diese

Arbeit die effiziente Simulation von Schnitten in deformierbaren Objekten.

Erstens stelle ich eine neuartige Echtzeit-Mehrgitter-Finite-Elemente-Methode für

die physikbasierte Simulation von deformierbaren Objekten vor, die vollständig auf

der GPU realisiert ist. Diese Methode basiert auf linearer Elastizität und der coro-

tierten Formulierung der Dehnung. Das bestimmende System von partiellen Diffe-

rentialgleichungen wird durch Verwendung von hexaedrischen, an einem uniformen

kartesischen Gitter ausgerichteten, finiten Elementen und dem impliziten Newmark-

Zeitintegrationsschema diskretisiert. Um effizient das auftretende lineare Gleichungs-

system zu lösen, wird eine geometrische Mehrgittermethode verwendet. Ich stelle eine

spezielle Restrukturierung des Mehrgitterschemas vor, die eine effiziente GPU-Imple-

mentierung unter Verwendung des CUDA Computing APIs ermöglicht. Verglichen mit

einer optimierten und parallelisierten CPU-Implementierung werden signifikante Ge-

schwindigkeitssteigerungen demonstriert.

Zweitens stelle ich einen neuartigen Ansatz für die Simulation von Schnitten in de-

formierbaren Objekten vor, der auf einem geometrischen Mehrgitterlöser basiert, um

hohe Berechnungseffizienz zu erreichen. Dieser Ansatz basiert auf einer Octree-Dis-

kretisierung der Simulationsdomäne. Finite Elemente die geschnitten werden, werden

regulär unterteilt, bis ein feinstes Level erreicht ist. Auf dem feinsten Level werden

flächenadjazente Elemente getrennt. Ich stelle eine neuartige Strategie vor, um durch

Schnitte induzierte, komplexe Topologieänderungen in die Mehrgitterhierarchie einzu-
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betten, und ich liefere eine detaillierte Analyse, um die höhere Leistung des vorgeschla-

genen Lösers im Vergleich zu alternativen numerischen Lösungsmethoden zu zeigen.

Drittens stelle ich neuartige Methoden für die Visualisierung von Spannungsten-

sorfeldern vor, die in Elastizitätssimulationen auftreten. Insbesondere stelle ich eine

Methode für die Visualisierung von Hauptspannungen vor, und eine vergleichende

Visualisierungsmethode, die die Unterschiede zwischen zwei Spannungstensorfeldern

zeigt. Beide Methoden basieren auf dem Kombinieren von Volume Rendering und dem

Rendern von semi-transparenten Linien, um Spannungsbeträge und Spannungsrich-

tungen darzustellen, und sind komplett auf der GPU realisiert, um die Visualisierung

von sich dynamisch ändernden Spannungstensorfeldern bei interaktiven Frameraten zu

ermöglichen.

Viertens stelle ich neuartige Methoden für die Visualisierung der räumlichen Ab-

stände zwischen zwei Objekten vor, die eine präzise Objektpositionierung in interakti-

ven Szenarien unterstützen. Diese Methoden basieren auf dem Einführen von zusätz-

lichen geometrischen Strukturen in die Visualisierung. Im ersten Ansatz werden zy-

lindrische Glyphen verwendet, die gleichmäßig ihre Form und Farbe an sich ändernde

Abstände anpassen. Im zweiten Ansatz wird eine Menge von parallelen Schnitten hin-

zugefügt und Farbkodierung auf Oberflächen verwendet, um Abstände darzustellen.

Um die Effektivität der vorgeschlagenen Methoden zu evaluieren, wurde eine Benut-

zerstudie durchgeführt.

Fünftens demonstriere ich die Verwendung der entwickelten Simulations- und Vi-

sualisierungstechniken zur Realisierung der ersten Computational-Steering-Umgebung

für die präoperative Implantatplanung in der Orthopädie. Diese Umgebung ermöglicht

dem Chirurgen interaktiv die optimale Implantatform, -größe und -position gemäß der

Vorhersage der Spannungsverteilung im patientenspezifischen Knochen nach Einsetzen

des Implantats zu bestimmen. Das ausgewählte Implantat sollte die präoperative Span-

nungsverteilung nachbilden, um die Rückbildung von Knochengewebe zu vermeiden,

was zum Bruch des Knochens oder zur Lockerung des Implantats führen kann.
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Chapter 1

Introduction

Scientific computing and scientific visualization are complementary disciplines, which

are today widely used in sciences, engineering, and medicine.

Scientific computing is concerned with the numerical simulation of complex pro-

cesses and phenomena, used for example to analyze the aerodynamic resistance of air-

crafts and vehicles, to verify the structural integrity of machines and buildings, or to

study protein folding or the formation of stars and galaxies.

Scientific visualization provides methods to transform the numerical data obtained

from computer simulations or real-world measurements into visual representations.

Considering the human’s ability to assimilate information and recognize structures and

coherences much better and faster from a visual than a numerical representation, sci-

entific visualization facilitates gaining deep insight into the data and the underlying

processes. In particular, interactive visualization techniques enable the user to visually

explore and analyze large and complex data sets by interactively changing the view

point, the data selection, and other visualization parameters.

In the traditional simulation and visualization scenario, simulation and visualization

are separated processes. The simulation typically runs for several minutes or hours as

an offline process, possibly on a supercomputer. The results are stored on disk and

are later analyzed in an interactive visualization session. If the analysis reveals that

the simulation parameters have to be adapted, the simulation must be run again. In

particular, if the goal is to optimize the simulation parameters according to certain

specific criteria, a large number of iterations might be required, leading to a rather

non-intuitive and time-consuming process.

In contrast, in a computational steering or interactive steering scenario, simulation

and visualization are running simultaneously and tightly coupled. Based on the vi-

sualization of the simulation results, the user can interactively change the simulation

1



2 CHAPTER 1. INTRODUCTION

parameters, and new simulation results reflecting these changes are provided on-the-

fly. This enables the user to visually explore the impact of the simulation parameters

on the simulation results, and to visually guide the simulation parameters into the right

direction.

To enable the interactive steering of a simulation, new simulation results reflecting

changes of the simulation parameters must be provided in a very short time interval,

ideally in a fraction of a second. This strict requirement limits the considered problem

sizes and grid resolutions, depending on the complexity of the simulation, the efficiency

of the underlying algorithms, and the performance of the employed hardware. Due

to this reason, today for most applications the traditional simulation and visualization

scenario is used, whereas computational steering is only employed for a small number

of selected applications [SM99].

1.1 Goals

The primary goal of this thesis is the development of a computational steering envi-

ronment for preoperative implant planning in orthopedics, with a focus on total hip

joint replacement. The purpose of this environment is to enable the surgeon to inter-

actively determine a patient-specific optimal implant according to the geometrical and

biomechanical properties of the patient-specific bone and the implants.

Besides the geometrical properties, which restrict the implant’s shape, size, and

position for example by the requirements that the implant has to fit into the cortical

bone shell and that the joint rotation center has to be preserved, the consideration of the

biomechanical properties during implant selection is important due to the physiological

reaction of bone tissue to changes in the bone stress distribution. Following a natural

optimization principle to provide high mechanical stability at low weight, an increase

or decrease of bone stresses leads to bone formation or resorption, respectively. The

insertion of an implant changes the stress distribution in that stresses are bypassed by

the implant, leading to a reduction of the stresses in certain regions of the bone (stress

shielding). As a consequence of the bone’s adaptation to changes in the stress patterns,

a significant reduction of bone stresses leads to cortical thinning and increased poros-

ity of the bone, which can finally lead to bone fracture or loosening of the implant.

Therefore, during preoperative planning an implant should be selected that minimizes

stress shielding, i.e., that leads to a stress distribution that is close to the preoperative,

physiological stress distribution.

Existing implant planning systems, as well as the clinical state-of-the-art approach
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of using 2D X-rays and transparent template sheets with the outlines of the implants

are purely geometry-based, such that the surgeon has to consider the biomechanical

properties according to his own subjective medical experience.

The goal of this thesis is to address this limitation by developing an implant planning

system that allows the surgeon to interactively investigate the effect of different implant

shapes, sizes, and positions on the stress distribution in the bone. This system shall

provide a virtual 3D environment for interactive implant selection and positioning, and

shall quasi instantaneously compute and visualize the stress distribution resulting from

the current implant configuration. In this way, the system shall allow for an interactive,

visually guided selection of a patient-specific optimal implant that minimizes stress

shielding. The system shall run on a standard desktop PC or workstation. This platform

is particularly attractive due to its virtually unlimited availability.

The realization of the described computational steering environment requires real-

time techniques for the physically accurate simulation of the internal stresses in the

bone, and for the visualization of these stresses in such a way as to allow for a clear

rating of an implant with respect to stress shielding. Furthermore, to enable an intuitive

navigation and precise placement of the implant, visualization methods that allow for

a quick and intuitive perception of the spatial relationships, i.e., the distances between

bone and implant, are required. The specific challenges in developing these techniques

result from the very high computational complexity of the simulation in combination

with the strict time requirements, from the difficulty of considering a movable implant

with specific mechanical properties in the simulation, and from the complexity of the

information to be visualized. In particular, we have to deal with nested, dynamically

changing surface and volume structures, leading to the problems of occlusion, visual

cluttering, and limited perception of spatial relationships.

From a more general point of view, the goal of this thesis also is to demonstrate

to what extent real-time simulation and computational steering are possible on today’s

desktop PCs and workstations, taking into account recent advances in hardware and

numerics.

First, the introduction of multi-core CPUs and well as the utilization of graphics

processing units (GPUs) for serious general purpose computing have led to the advent

of parallel computing on desktop PC hardware. Initially dedicated solely to interactive

3D graphics rendering, the increased programmability and in particular the support of

double precision floating point arithmetic with recent GPU generations enable using the

GPU as a general purpose many-core processor, which exhibits a tremendous floating

point performance and memory bandwidth.
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Second, geometric multigrid solvers have proven to be very efficient solvers for the

particular type of large, sparse linear systems of equations arising from the discretiza-

tion of partial differential equations in continuum mechanics. Based on the observation

that standard iterative solvers like Gauss-Seidel or Jacobi relaxation typically stall after

a few iteration steps, the basic idea of multigrid is to couple multiple scales by employ-

ing a hierarchy of successively coarser grids to achieve improved convergence, resulting

in a solver that exhibits asymptotically linear complexity in the number of unknowns.

In particular, multigrid solvers typically exhibit a significantly better convergence rate

than other iterative solvers, which makes them very attractive for computational steer-

ing and real-time simulation as they can provide a fast, approximate solution in a given,

limited time interval.

1.2 Contributions

Real-time elasticity simulation using CUDA. Building upon previous work on geo-

metric multigrid solvers for the real-time, physics-based simulation of deformable bod-

ies on the CPU [GW06], we present the first multigrid approach for deformable body

simulation that is realized entirely on the GPU. Our method is based on linear elas-

ticity combined with the corotational formulation of strain, and the governing system

of partial differential equations is discretized by using finite elements and the implicit

Newmark time integration scheme. We propose a specific algorithmic restructuring of

the multigrid scheme to expose a sufficient amount of fine-grained parallelism and thus

to effectively exploit the GPU’s massively parallel architecture via the CUDA comput-

ing API. Key to our approach is a regular hexahedral discretization of the simulation

domain, which leads to a numerical stencil of the same shape at each vertex, and thus

facilitates parallel processing of data elements using the same execution paths as well

as coalescing of memory accesses into larger memory transactions. In comparison to

an optimized parallel implementation on the CPU, we demonstrate performance gains

of a factor of 27 with respect to a single CPU core and 4 with respect to 8 CPU cores.

Our approach thus enables the real-time, physics-based simulation of deformable bod-

ies at unprecedented simulation update rates and grid resolutions on standard desktop

PC hardware.

Stress tensor field visualization. To allow for a clear rating of an implant configu-

ration with respect to stress shielding, we have developed novel visualization methods

for 3D stress tensor fields. In particular, we present a visualization method for the

principal stresses, and a comparative visualization method that shows the differences
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between two stress tensor fields. The latter approach particularly supports the sur-

geon in finding an implant configuration that minimizes stress shielding, in that this

method can directly show the differences between the physiological stress distribution

and the stress distribution resulting from a certain implant configuration. Our visual-

ization techniques are based on combining volume rendering for the visualization of

stress magnitudes with the rendering of line segments for the visualization of stress

directions. To allow for a detailed stress analysis in certain regions of interest while

preserving spatial context information, we have integrated a focus+contex approach.

We have realized our methods on the GPU to enable the interactive visualization of

dynamically changing data within a computational steering environment.

Distance visualization. To enable a precise positioning of the implant, quick and

intuitive perception of the spatial relationships between bone and implant is mandatory.

To this end, we have developed two novel approaches for the visualization of the spatial

distances between two objects in interactive scenarios. Based on the observation that

we are used to interpret a distance value always with respect to two reference points,

and that exactly these reference points are missing in distance visualization approaches

based on pure color coding on surfaces, we introduce additional geometric structures

into the visualization that bridge the space between the two objects. In particular, we

use cylindrical glyphs that smoothly adapt their shape and color to changing distances,

or a set of parallel slices in combination with color coding on surfaces. To the best

of our knowledge, this is the first time that distances in an interactive scenario are

visualized using a method other than pure color coding. To validate the effectiveness

of the methods, a user study has been performed.

Computational steering in orthopedics. Based on the described simulation and

visualization methods, we have developed a computational steering environment for

preoperative implant planning in orthopedics, which for the first time allows the sur-

geon to interactively investigate the effect of different implant shapes, sizes, and posi-

tions on the stress distribution in the bone. The computation of the stress distribution

is based on a finite element model of the bone and the implant. We first derive a finite

element model of the bone from patient-specific computed tomography (CT) data, and

then incorporate the implant into this model by assigning the material properties of the

implant to the elements that are covered by the implant. To handle a movable implant

in a computational steering environment, we have developed a novel GPU-based vox-

elization algorithm to efficiently detect these elements. Using our GPU-based method

for deformable body simulation (reduced to the simulation of the static behavior of a

linear elastic body) to compute the internal stresses in the bone and implant, we achieve
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simulation rates of more than 2 updates per second at a resolution of one hexahedral

trilinear element per CT voxel (corresponding to 734,000 hexahedral elements).

Simulation of cuts in deformable objects. Separated from the specific application

of computational steering for preoperative implant planning, this thesis also addresses

the efficient simulation of cuts in deformable objects, which is required for example

in virtual surgery simulations. We present the first cutting approach that is based on

a computationally efficient geometric multigrid solver. The challenge in combining

cutting and multigrid is to incorporate cuts into the coarse grids of the multigrid hi-

erarchy, which to the best of our knowledge has not been addressed yet. Due to this

reason, existing cutting approaches resort to less efficient “black box” solvers, such as

conjugate gradient or Cholesky solvers. In contrast to these approaches, our method is

characterized by a close intertwining of the cutting procedure and the numerical solver.

In particular, we use a hexahedral octree finite element discretization that adaptively

refines along cuts and the surface of the object, enabling thin and complicated cuts.

Cuts are modeled by separating elements along cell faces at a certain finest octree level.

The semi-regular hexahedral grid facilitates a fast and robust construction of a nested

multigrid hierarchy, and thus enables to efficiently rebuild this hierarchy when the ob-

ject has been cut. To incorporate complicated topologies into the multigrid hierarchy,

we propose a novel strategy that is based on the duplication of cells on the coarse grids

to represent separated material parts. Another challenge is the incorporation of cuts

into the render surface such that this surface is topologically consistent with the finite

element model. To achieve this, we have adapted the splitting cubes algorithm to re-

construct a smooth render surface directly from the finite element model. We present

a detailed performance analysis of our approach, and demonstrate significant perfor-

mance gains over alternative numerical solution methods.

1.3 Publications and Awards

The research results presented in this thesis have been originally published in the fol-

lowing peer-reviewed conference papers and journal articles (listed in chronological

order):

1. C. Dick, J. Georgii, R. Burgkart, and R. Westermann, Computational steering for

patient-specific implant planning in orthopedics, Proc. Eurographics Workshop

on Visual Computing for Biomedicine, 2008, pp. 83–92 [DGBW08].

2. C. Dick, J. Georgii, R. Burgkart, and R. Westermann, A 3D simulation system for
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hip joint replacement planning, Proc. World Congress on Medical Physics and

Biomedical Engineering, IFMBE Proceedings, vol. 25/IV, 2009, pp. 363–366

[DGBW09a].

3. C. Dick, J. Georgii, R. Burgkart, and R. Westermann, Stress tensor field visual-

ization for implant planning in orthopedics, IEEE Transactions on Visualization

and Computer Graphics 15 (2009), no. 6, 1399–1406 [DGBW09b].

4. C. Dick, J. Georgii, and R. Westermann, A real-time multigrid finite hexahedra

method for elasticity simulation using CUDA, Simulation Modelling Practice and

Theory 19 (2011), no. 2, 801–816 [DGW11b].

5. C. Dick, J. Georgii, and R. Westermann, A hexahedral multigrid approach for

simulating cuts in deformable objects, IEEE Transactions on Visualization and

Computer Graphics 17 (2011), no. 11, 1663–1675 [DGW11a].

6. C. Dick, R. Burgkart, and R. Westermann, Distance visualization for interactive

3D implant planning, IEEE Transactions on Visualization and Computer Graph-

ics 17 (2011), no. 12, 2173–2182 [DBW11].

The paper titled “Computational steering for patient-specific implant planning in

orthopedics” won the Best Paper Award at VCBM 2008. Furthermore, the author of

this thesis was awarded the Karl-Heinz-Höhne MedVis Award 2010 (1. Prize) for the

papers titled “Computational steering for patient-specific implant planning in orthope-

dics” and “Stress tensor field visualization for implant planning in orthopedics”.

1.4 Structure of this Thesis

In the next chapter, we review the fundamentals of elasticity theory, the finite element

method, geometric multigrid, and general purpose GPU computing that are employed

in this thesis. In Chapter 3, we present our GPU multigrid approach for the real-time,

physics-based simulation of deformable objects. Our multigrid approach for the simu-

lation of cuts in deformable objects is discussed in Chapter 4. In Chapter 5, we present

our computational steering environment for implant planning in orthopedics. Note that

in this chapter the scalar von Mises stress norm is used for the visualization of the com-

puted stress distributions. Our advanced stress and distance visualization techniques are

discussed in Chapters 6 and 7, respectively. In Chapter 8, we summarize our results,

and give an outlook on future work.
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Chapter 2

Fundamentals

In this thesis, we consider the physically accurate simulation of deformable bodies

based on the linear theory of elasticity combined with the corotational formulation of

strain. We employ the finite element method and the implicit Newmark time integra-

tion scheme for the spatial and time discretization of the governing system of partial

differential equations, and we employ an efficient geometric multigrid solver to solve

the resulting system of linear equations.

In this chapter, we summarize the fundamentals of elasticity theory (Section 2.1),

finite elements (Section 2.2), and multigrid (Section 2.3), and we introduce the no-

tation that is used throughout this thesis. Since many of the methods presented in

the following chapters use the GPU to achieve interactive simulation and visualization

update rates, we also give a brief introduction to recent NVIDIA GPU architectures

and general purpose computing on GPUs (Section 2.4). For additional information,

we refer the reader to [Sla02], [Cia88] (elasticity theory), [Bat02], [Bra07] (finite el-

ements), [BHM00], [TOS01] (multigrid), as well as [Mic10], [NVI10b] (Direct3D 10

and CUDA manuals).

2.1 Elasticity Theory

The theory of elasticity is the branch of continuum mechanics that describes how elas-

tic objects deform under the influence of external forces. In continuum mechanics, a

material is modeled at all scales as a continuum of material points occupying a certain

domain. The physical quantities are continuously distributed over the domain and thus

are described by a set of piecewise continuous fields: In the theory of elasticity, the

deformation and the displacement vector field describe the positions of the material

points, the strain tensor field describes the material’s local changes of shape, and the

9
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e1

e2
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u x( )

W

Reference Configuration Deformed Configuration

O

Figure 2.1: Reference and deformed configuration of an elastic object. The deformation of

the object is equivalently described by the deformation ϕ or the displacement vector u. (For

simplicity, this and the following figures show the 2D case.)

stress tensor field describes the internal forces acting in the material. The fields are re-

lated by a set of field equations, which lead to a system of partial differential equations

describing the physical behavior of a deformable body.

2.1.1 Deformation and Displacement Vector

We consider an elastic body that occupies the reference configuration Ω in the unde-

formed state, where Ω is the closure of an open set Ω ⊂ R
3, and R

3 identifies the

three-dimensional Euclidean space using a Cartesian coordinate system (O; e1, e2, e3)

(see Figure 2.1). The (static) deformation of the body is described by a vector field

ϕ : Ω→ R
3 that specifies the absolute position ϕ(x) of each material point, identified

by its position x ∈ Ω in the reference configuration. ϕ is referred to as deformation.

The deformed body occupies the deformed configuration {ϕ(x)|x ∈ Ω}. Equiva-

lently, the deformation of the body is described by the vector field u : Ω → R
3,

u(x) = ϕ(x) − x, which specifies the relative positions of the material points with

respect to the reference configuration. u is referred to as displacement vector.

The physical relationships can equivalently be formulated over the reference con-

figuration (Lagrangian formulation) or over the deformed configuration (Eulerian for-

mulation). In the following, the Lagrangian formulation is used.
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Reference Configuration Deformed Configuration

dx1

dx2

dj1

dj2

Figure 2.2: The deformation of the body changes the lengths of the differential material line

elements radially emanating from each material point, as well as the angles between initially

perpendicular differential material line elements.

2.1.2 Strain Tensor

Locally, the change of shape of the object is described by the concept of strain. Con-

sider a particular material point of the object, as well as the differential material line

elements radially emanating from that point (see Figure 2.2). The deformation of the

object leads to a relative change of the lengths of the differential material line elements

(normal strains), as well as to a change of the angles between initially perpendicular

differential material line elements (shear strains).

Consider a particular differential material line element dx, which occupies the dif-

ferential line element dϕ = Fdx in the deformed configuration, where F = ∇ϕ =

∇u+ 13 is the deformation gradient (13 denotes the identity 3 × 3-matrix). Then,

‖dϕ‖22 = dxTF TFdx. (2.1)

Let n = dx/‖dx‖2 be the unit vector in the direction of dx. Rearranging terms leads

to
‖dϕ‖22 − ‖dx‖22
‖dx‖22

= nT (F TF − 13)n = nT2En, (2.2)

with

E =
1

2
(F TF − 13) =

1

2

(
∇u+ (∇u)T + (∇u)T∇u

)
(2.3)

being a symmetric second order tensor, which is called the Green-St. Venant strain ten-

sor. The relative change of the length of the differential material line element in the
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Reference Configuration Deformed Configuration

dx dA

dF

dF

dF

dF

x x

Figure 2.3: The external body and surface forces are described as force densities dF /dx and

dF /dA, respectively. Note that volume and area are measured with respect to the reference

configuration of the deformable body.

direction of n is then determined by

‖dϕ‖2 − ‖dx‖2
‖dx‖2

=
√

nT2En+ 1− 1. (2.4)

A positive sign indicates stretching, a negative sign indicates compression.

Now consider two orthogonal differential material line elements dx1 and dx2,

which occupy the differential line elements dϕ1 = Fdx1 and dϕ2 = Fdx2 in the

deformed configuration, respectively, and let ni = dxi/‖dxi‖2 be the unit vector in

the direction of dxi. Then,

dϕ1 · dϕ2 = dxT
1F

TFdx2. (2.5)

Rearranging terms and using dx1 · dx2 = 0 leads to

cos∠(dϕ1,dϕ2) =
(n1)

T2En2√
nT

1 2En1 + 1
√

nT
2 2En2 + 1

= sin γ, (2.6)

where γ = π
2
− ∠(dϕ1,dϕ2) denotes the change of the angle between the initially

perpendicular differential material line elements.

The strain tensor thus entirely describes the state of strain at the considered material

point, in that it specifies the material’s relative change of length (normal strain) for each

direction, as well as the material’s change of angle (shear strain) between each pair of

perpendicular directions. However, the state of strain at a considered material point is
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Figure 2.4: Definition of the nominal stress vector t(x,n) = dF /dA as surface force density

on an imaginary cutting surface.

already fully specified by the normal and shear strains for three mutually perpendicular

directions. In particular, the entries of the strain tensor E are closely related to the

normal and shear strains for the three directions e1, e2, e3 corresponding to the axes of

the Cartesian coordinate system. Let εi denote the normal strain in the direction of ei,

and γij denote the shear strain between the directions ei and ej . Then

εi =
√
2Eii + 1− 1 and sin γij =

2Eij√
2Eii + 1

√
2Ejj + 1

. (2.7)

2.1.3 Body and Surface Forces

We consider the mechanical deformation of an object due the application of external

forces. These external forces can be classified into two types: Body forces, resulting

from force fields such as gravity, and surface forces, resulting from the physical contact

with another body. The body forces fB are described as a force density (force per unit

volume) fB(x) = dF
dx

, where dF denotes the differential force vector that is exerted

on the differential material volume element dx around the material point x (see Figure

2.3). Analogously, the surface forces fS are described as a force density (force per unit

area) fS(x) =
dF
dA

, where dF denotes the differential force vector that is exerted on the

differential material surface element dA around the material point x.

2.1.4 Stress Tensor

When external forces are applied to a deformable body, internal forces are induced in

this body. These internal forces are described by the concept of stress. Consider a

material point x, and an imaginary decomposition of the object into two parts A and

B such that the imaginary cutting surface is passing through x (see Figure 2.4). The

internal forces that part B exerts on part A are described as a force density (force per

unit area) on the imaginary cutting surface: The nominal stress vector t(x,n) is defined
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Figure 2.5: Quantities used in the derivation of t(x,−n) = −t(x,n).

as

t(x,n) =
dF

dA
, (2.8)

where dF is the differential force vector that is exerted on the differential material

surface element dA around x with unit outer normal n.

For any subvolume V ⊂ Ω, the sum of the forces acting on this subvolume must

vanish (balance of forces), i.e.,

∫

∂V

t(.,n) dA+

∫

V

fB dx = 0, (2.9)

where n is the unit outer normal on ∂V .

Consider a material point x, and let V1, V2 ⊂ Ω be two disjoint subvolumes of the

deformable body such that x ∈ ∂V1 ∩ ∂V2 (see Figure 2.5). Applying the balance of

forces to V1, V2, and V1 ∪ V2 leads to

∫

∂V1∩∂V2

t(.,n) dA+

∫

∂V1∩∂V2

t(.,−n) dA = 0, (2.10)

and since V1 and V2 are chosen arbitrarily, it follows that

t(x,−n) = −t(x,n), (2.11)

which is a generalization of Newton’s third law.

The state of stress at a specific material point consists of the stress vectors for all

orientations of the virtual cutting surface, specified by the unit outer normal n. How-

ever, the state of stress is already fully specified by the stress vectors for three mutually

orthogonal orientations of the surface. Consider the tetrahedral subvolume V ⊂ Ω
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Figure 2.6: Cauchy tetrahedron used for the derivation of the stress tensor.

shown in Figure 2.6. Applying the balance of forces to this subvolume leads to

A1〈t(.,−e1)〉A1 + A2〈t(.,−e2)〉A2 + A3〈t(.,−e3)〉A3 + A〈t(.,n)〉A
+ V 〈fB〉V = 0. (2.12)

Here, 〈.〉. denotes the average in the respective subsurface or subvolume. Using Ai =

(ei · n)A = ni A and V = 1
3
Ah leads to

n1〈t(.,−e1)〉A1 + n2〈t(.,−e2)〉A2 + n3〈t(.,−e3)〉A3 + 〈t(.,n)〉A

+
1

3
h〈fB〉V = 0, (2.13)

and by taking the limit h→ 0 we obtain

t(x,n) = n1t(x, e1) + n2t(x, e2) + n3t(x, e3). (2.14)

This relationship can be written as

t(x,n) = S(x)Tn, (2.15)

using the matrix

S(x) =
(
t(x, e1), t(x, e2), t(x, e3)

)T
. (2.16)

S is a second order tensor, which is referred to as first Piola-Kirchhoff stress tensor. In

addition, the definition

S̃ = SF−T (2.17)
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yields a second order tensor S̃, which is referred to as second Piola-Kirchhoff stress

tensor.

2.1.5 Material Models

The relationship between strain and stress is described by a material model. We con-

sider two material models: Elastic and hyperelastic materials.

Elastic materials are idealized materials for which the state of stress at each material

point depends solely on the current deformation at this point. In particular, the stress is

independent of the deformation rate or deformation history. For elastic materials, the

stress thus is a function of the strain, i.e., S̃ = S̃(E).

In particular, hyperelastic materials are idealized materials for which the strain-

stress relationship can be derived from a strain energy density (strain energy per unit

volume) function W = W (E) via

S̃ = S̃(E) =
∂W (E)

∂E
. (2.18)

This model thus describes idealized materials that store the work performed by the

external forces as strain energy (potential energy) under deformation, and release this

energy when returning to the undeformed state. The hyperelasticity model thus pro-

hibits closed deformation cycles that release unlimited energy. An elastic material is

hyperelastic, iff

∂S̃ij

∂Ekl

=
∂S̃kl

∂Eij

. (2.19)

Physical reasons require W (E) to be positive definite, i.e., W (E) ≥ 0 and W (E) =

0⇔ E = 0. The strain energy density then can be obtained via1

W (E) =

E∫

0

S̃(E′) : dE′. (2.20)

In the following, we tacitly assume that the considered materials are hyperelastic

with positive definite strain energy density functions.

1The contraction A : B of two second order tensors A and B is defined as A : B =

3
∑

i,j=1

AijBji.



2.1. ELASTICITY THEORY 17

2.1.6 Equations of Equilibrium

For any subvolume V ⊂ Ω of the deformable body, the sum of the forces acting on this

subvolume must vanish (balance of forces), i.e.,

∫

∂V

t(.,n) dA+

∫

V

fB dx = 0. (2.21)

Using t(.,n) = STn, applying the divergence theorem, and considering that the equa-

tion is satisfied for any subvolume V ⊂ Ω leads to2

divST + fB = 0 in Ω. (2.22)

In addition, for any subvolume V ⊂ Ω of the deformable body, the sum of the moments

acting on this subvolume must vanish (balance of moments), i.e.,

∫

∂V

ϕ× t(.,n) dA+

∫

V

ϕ× fB dx = 0 (2.23)

(the moments are computed around the origin). Using t(.,n) = STn, divST + fB =

0, applying the divergence theorem, and considering that the equation is satisfied for

any subvolume V ⊂ Ω leads to

FS = STF T in Ω, (2.24)

which is equivalent to

S̃ = S̃T in Ω, (2.25)

i.e., the second Piola-Kirchhoff stress tensor is required to be symmetric.

The static elasticity problem can then be formulated as a boundary value problem:

Find u : Ω→ R
3 such that

− div
(
F (u)S̃(E(u))

)
= fB in Ω, (2.26a)

u = u0 on ΓD, (2.26b)

F (u)S̃(E(u))n = fS on ΓN . (2.26c)

Equation (2.26a) is a system of elliptic partial differential equations. The boundary

2The divergence divA of a second order tensor A is defined as divA =

(

3
∑

j=1

∂A1j

∂xj
, . . . ,

3
∑

j=1

∂A3j

∂xj

)T

.
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conditions on the boundary ∂Ω = ΓD

.
∪ ΓN consist of Dirichlet boundary conditions

(2.26b), which prescribe the displacement u0 on ΓD, and Neumann boundary condi-

tions (2.26c), which prescribe external surface forces fS on ΓN . n is the unit outer

normal on ∂Ω. Note that F (u) = ∇u + 13, E(u) = 1
2
(∇u + (∇u)T + (∇u)T∇u),

and that S̃ and E are related by the material model S̃ = S̃(E), which must ensure the

symmetry of S̃ (Equation (2.25)).

For the simulation of the motion of a deformable body over a time interval I =

[0, tend], inertial forces have to be additionally considered. This is achieved by replacing

fB with fB−ρü, where ρ is the material’s density, and ü denotes the second derivative

of u with respect to time (i.e., the acceleration).

The dynamic elasticity problem can then be formulated as an initial boundary value

problem: Find u : Ω× I → R
3 such that

ρü− div
(
F (u)S̃(E(u))

)
= fB in Ω× I, (2.27a)

u = u0 on ΓD × I, (2.27b)

F (u)S̃(E(u))n = fS on ΓN × I, (2.27c)

u = u0 in Ω× {0}, (2.27d)

u̇ = u̇0 in Ω× {0}. (2.27e)

Here, Equation (2.27a) is a system of hyperbolic partial differential equations. The

additional initial conditions (2.27d) and (2.27e) prescribe the displacement u0 and the

velocity u̇0 of the deformable body at time t = 0.

2.1.7 Linear Elasticity Theory

In this thesis, we employ the linear theory of elasticity, which deals with deformations

that exhibit small strains and small rotations. More precisely, in the linear theory it is

assumed that the displacement gradient∇u is small, i.e., ‖∇u‖ � 1. This assumption

allows for certain linearizations. In particular, the linear theory is based on a linear

strain tensor (geometrical linearity) and a linear material model (physical linearity).

The advantage of the linear theory is that the discretization of the (initial) boundary

value problem leads to a linear system of equations, which can be solved very effi-

ciently. By using a corotational formulation of strain, the linear theory can also be

applied accurately to deformations that exhibit large rotations (but small strains).
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Geometrical Linearization

In the linear elasticity theory, the linear infinitesimal strain tensor

ε =
1

2

(
∇u+ (∇u)T

)
(2.28)

is employed, which is derived from the non-linear Green-St. Venant strain tensor E by

neglecting second order terms. If the displacement gradient is small, i.e., ‖∇u‖ � 1,

it is E ≈ ε. In contrast to the Green-St. Venant strain tensor, the infinitesimal strain

tensor is not invariant under rotations, i.e., rotations are interpreted by the infinitesimal

strain tensor as strains, which introduces artificial stresses.

Furthermore, if ‖∇u‖ � 1, it is F ≈ 13, S ≈ ST, and S ≈ S̃. Therefore,

the first and the second Piola-Kirchhoff stress tensor can be approximated by a single,

symmetric stress tensor σ.

Using these approximations, the constitutive equations for elastic and hyperelastic

materials become σ = σ(ε) and σ = σ(ε) = ∂W (ε)
∂ε

, respectively.

The static elasticity problem (2.26) becomes: Find u : Ω→ R
3 such that

− divσ(ε(u)) = fB in Ω, (2.29a)

u = u0 on ΓD, (2.29b)

σ(ε(u))n = fS on ΓN . (2.29c)

The dynamic elasticity problem (2.27) becomes: Find u : Ω× I → R
3 such that

ρü− divσ(ε(u)) = fB in Ω× I, (2.30a)

u = u0 on ΓD × I, (2.30b)

σ(ε(u))n = fS on ΓN × I, (2.30c)

u = u0 in Ω× {0}, (2.30d)

u̇ = u̇0 in Ω× {0}. (2.30e)

Physical Linearization

The linear elasticity theory is limited to linear elastic materials, which are characterized

by a linear relationship between stress and strain, i.e.,

σ = C : ε. (2.31)
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This relationship is referred to as generalized Hooke’s law. C is a fourth order tensor,

which is referred to as elasticity tensor. A linear relationship between stress and strain

is a reasonable approximation for many real-world materials in case of small strains.

A fourth order tensor has 81 scalar components. However, the symmetry of σ

requires Cijk` = Cjik`, and due to the symmetry of ε the skew symmetric part of C =(
1
2
(Cijk` + Cij`k) +

1
2
(Cijk` − Cij`k)

)
with respect to the third and fourth index can

be assumed to be zero without loss of generality (since
3∑

k,`=1

1
2
(Cijk` − Cij`k) εk` = 0),

leading to Cijk` = Cij`k. These two symmetries reduce the number of independent

scalar components of the elasticity tensor to 36.

By defining

σ = (σ11, σ22, σ33, σ12, σ13, σ23)
T , (2.32)

ε = (ε11, ε22, ε33, 2ε12, 2ε13, 2ε23)
T , (2.33)

and C =




C1111 C1122 C1133 C1112 C1113 C1123

C2211 C2222 C2233 C2212 C2213 C2223

C3311 C3322 C3333 C3312 C3313 C3323

C1211 C1222 C1233 C1212 C1213 C1223

C1311 C1322 C1333 C1312 C1313 C1323

C2311 C2322 C2333 C2312 C2313 C2323




, (2.34)

it is

σ = C : ε ⇔ σ = C ε, (2.35)

and

σ : ε = σTε, (2.36)

i.e., the contraction can be written as a matrix-vector product or a scalar product, re-

spectively (so-called engineering notation).

According to Equation (2.19), a linear elastic material is hyperelastic, iff

Cijk` =
∂σij

∂εk`
=

∂σk`

∂εij
= Ck`ij. (2.37)

This further reduces the number of independent scalar components of the elasticity

tensor to 21. In particular, a linear elastic material is hyperelastic, iff C is symmetric.

According to Equation (2.20), for linear hyperelastic materials the strain energy density



2.1. ELASTICITY THEORY 21

is

W (ε) =
1

2
ε : C : ε. (2.38)

The deformation behavior of an isotropic material is independent of the material’s

spatial orientation. It can be shown that this leaves only two independent scalar com-

ponents of the elasticity tensor, and that the strain-stress relationship can be written in

the form

σ = 2µ ε+ λ tr(ε) I, (2.39)

with two scalar material parameters λ and µ, which are referred to as the Lamé con-

stants. In engineering notation, Equation (2.39) is written as




σ11

σ22

σ33

σ12

σ13

σ23




=




2µ+ λ λ λ

λ 2µ+ λ λ

λ λ 2µ+ λ

µ

µ

µ







ε11

ε22

ε33

2ε12

2ε13

2ε23




. (2.40)

An isotropic material is always hyperelastic.

By considering the special case of uniaxial stress, i.e., σ11 = σ and σ22 = σ33 =

σ12 = σ13 = σ23 = 0, two more intuitive material parameters can be defined. Due

to Equation (2.40) it is ε12 = ε13 = ε23 = 0 and ε22 = ε33. The Young’s modulus

E is defined as the ratio of the longitudinal stress and the longitudinal strain, and the

Poisson’s ratio ν is defined as the negative ratio of the transversal and the longitudinal

strain, i.e.,

E =
σ

ε11
, (2.41)

ν = −ε22
ε11

= −ε33
ε11

. (2.42)

The Poisson’s ratio describes the fact that most materials contract transversally when

they are stretched longitudinally. A perfectly incompressible material exhibits a Pois-

son’s ratio of 0.5. For most materials, the Poisson’s ratio is between 0 and 0.5.

The Young’s modulus and the Poisson’s ratio are related to the Lamé constants by

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
. (2.43)
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2.2 The Finite Element Method

In this thesis, we employ the finite element method for the spatial discretization of the

(initial) boundary value problem (2.29) or (2.30). The solutions of the (initial) bound-

ary value problem reside in an infinite dimensional function space. The basic idea

underlying the finite element method is to replace this infinite dimensional function

space by a finite dimensional space that is constructed by decomposing the simulation

domain into a set of finite elements and by defining for each element a set of shape

functions spanning a local function space. An approximate solution is then obtained by

formulating the (initial) boundary value problem as a variational problem, and by con-

sidering this variational problem over the finite dimensional function space (Galerkin

approach). For the static case, this directly leads to a linear system of equations. For the

dynamic case, this leads to an initial value problem, consisting of a system of ordinary

differential equations with initial conditions. In this thesis, the initial value problem is

discretized in time by applying the implicit Newmark time integration scheme, which

finally leads to a linear system of equations for each time step. In the following, we

consider the spatial discretization for the dynamic case. The static case can be directly

derived from the dynamic case by neglecting inertia and damping.

2.2.1 Weak Formulation of the Initial Boundary Value Problem

The initial boundary value problem (2.30) is defined over the function space V =

(C2(Ω))3, i.e., a solution u must be a twice continuously differentiable function Ω →
R

3 for each point in time. Let V0 = {v ∈ V | v = 0 on ΓD} denote the subspace of V
containing all functions that vanish on ΓD.

By multiplying Equation (2.30a) with an arbitrary test function v ∈ V0 and integrat-

ing over the domain Ω, an equivalent formulation of the initial boundary value problem

(2.30) is obtained (we omit the initial conditions (2.30d) and (2.30e) in the following):

∫

Ω

v · (ρü− divσ(ε(u))− fB) dx = 0 ∀v ∈ V0, (2.44a)

u = u0 on ΓD, (2.44b)

σ(ε(u))n = fS on ΓN . (2.44c)



2.2. THE FINITE ELEMENT METHOD 23

Applying the divergence theorem (integration by parts)

∫

Ω

v · divσ dx =

∫

∂Ω

v · (σn) dA−
∫

Ω

∇v : σ dx, (2.45)

and using

v = 0 on ΓD,

σ(ε(u))n = fS on ΓN ,

∇v : σ =
1

2

(
∇v + (∇v)T

)
: σ = ε(v) : σ,

leads to the variational problem

∫

Ω

ρv · ü dx+

∫

Ω

ε(v) : σ(ε(u)) dx−
∫

Ω

v · fB dx−
∫

ΓN

v · fS dA = 0 ∀v ∈ V0,

(2.46a)

u = u0 on ΓD.

(2.46b)

Note that the Neumann boundary conditions can be recovered from Equation (2.46a)

and thus are not explicitly included (natural boundary conditions), in contrast to the

Dirichlet boundary conditions, which have to be explicitly enforced (essential boundary

conditions). In structural mechanics, the variational formulation (2.46) is referred to as

principle of virtual displacements or principle of virtual work.

Since the variational problem (2.46) does not contain second spatial derivatives,

it can be considered over a function space V that exhibits weaker differentiability re-

quirements than (C2(Ω))3. The finite element method is based on using V = (H1(Ω))3,

where H1(Ω) denotes the Sobolev space of square-integrable and weakly differentiable

functions Ω→ R. In particular, all continuous, piecewise infinitely differentiable func-

tions Ω→ R are in H1(Ω).

The variational problem is referred to as weak formulation of the initial boundary

value problem, and the respective solutions are called weak solutions—weak in the

sense that these solutions do in general not satisfy the differentiability requirements

imposed by the initial boundary value problem (the strong formulation).
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2.2.2 Finite Element Discretization

The basic idea of the finite element method is to compute an approximate solution of

the variational problem by considering this problem over a finite dimensional function

space Vh ⊂ V . This finite dimensional function space is constructed piecewise by

dividing the domain Ω into a finite number of subdomains, called finite elements. Typ-

ically, triangles or quadrilaterals are used in 2D, and tetrahedra or hexahedra are used

in 3D. For each element, a local finite dimensional function space is spanned by a set

of shape functions. Typically, this local function space is constructed by specifying a

set of discrete locations, which are referred to as the element’s nodes, as well as a cer-

tain interpolation scheme that interpolates the values (here: displacements) given at the

nodes within the element. The local function space then consists of the interpolation

functions. For simple elements, the nodes coincide with the vertices of the element.

Since nodes are shared between adjacent elements, the piecewise constructed functions

are continuous over the entire domain Ω.

In this thesis, we use a decomposition of the deformable object based on a uni-

form Cartesian grid or an adaptive octree grid. We use axis-aligned hexahedral finite

elements with trilinear shape functions, i.e., each element has eight nodes that coin-

cide with the element’s vertices, and the values at the nodes are trilinearly interpolated

within the element. Using a (semi-)regular hexahedral grid has several advantages:

First, the grid can be generated from a surface mesh in a robust way by using a vox-

elization algorithm, including a multigrid hierarchy, which is essential for a geometric

multigrid solver. Second, the regularity of the grid leads to a regular shape of the

numerical stencil, enabling an efficient parallelization of computations and memory

accesses on GPUs. Third, since all elements have the same shape, the element matrices

can be directly derived from the element matrices of a single, generic element, which

significantly reduces computational work for element integration as well as memory

requirements.

In the following, we assume that the vertices of the finite element grid are enu-

merated from 1 to Nv, where Nv denotes the number of vertices of the finite element

grid. The sharing of vertices between adjacent elements is modeled by a mapping s

that specifies the global index s(e, i) ∈ {1, . . . , Nv} of each element vertex, identified

by the element e and the element-local vertex index i ∈ {1, . . . , 8}.
The interpolation function is uniquely determined by the values at the vertices

of the finite element grid. For a variable identifier ∗, we use the notations ∗h, ∗k,

∗ =
(
∗
T
1 , . . . ,∗

T
Nv

)T
, and ∗

e =
(
∗
T
s(e,1), . . . ,∗

T
s(e,8)

)T
to mutually refer to the interpola-

tion function, the displacement at vertex k, the linearization of the displacements at all
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vertices, and the linearization of the displacements at the vertices of element e.

The trilinear interpolation scheme is defined on each hexahedral finite element e

with domain Ωe = [xe
1, x

e
1 + ae1]× [xe

2, x
e
2 + ae2]× [xe

3, x
e
3 + ae3] by

vh

∣∣
Ωe(x) =

8∑

i=1

vs(e,i)φ
e
i (x), (2.47)

using the element shape functions φe
i , which are defined by

φe
i (x) = Ni (J

e(x)) , (2.48)

J e(x) =

(
x1 − xe

1

ae1
,
x2 − xe

2

ae2
,
x3 − xe

3

ae3

)T

, (2.49)

and

N1(x) = (1− x1)(1− x2)(1− x3), (2.50a)

N2(x) = x1(1− x2)(1− x3), (2.50b)

N3(x) = (1− x1)x2(1− x3), (2.50c)

N4(x) = x1x2(1− x3), (2.50d)

N5(x) = (1− x1)(1− x2)x3, (2.50e)

N6(x) = x1(1− x2)x3, (2.50f)

N7(x) = (1− x1)x2x3, (2.50g)

N8(x) = x1x2x3. (2.50h)

In the following, we first consider a finite element discretization based on a uniform

hexahedral grid. The handling of hanging vertices in an adaptive octree grid will be

explained in Section 2.2.4.

Based on the described finite element discretization, the variational problem (2.46)

is considered over the finite dimensional function space

Vh =

{
vh : Ω→ R

3,vh

∣∣
Ωe(x) =

8∑

i=1

vs(e,i)φ
e
i (x)

∣∣∣∣ v ∈ (R3)Nv

}
. (2.51)

Let uh denote the spatially discretized displacement field, and let uk, u, and ue be

defined as described above. We incorporate Dirichlet boundary conditions by prescrib-

ing displacements uk = u0
k at a subset of the vertices. Without loss of generality, let

{1, . . . , Nf} and {Nf + 1, . . . , Nv} be the indices of the ‘free’ and the ‘fixed’ vertices,
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respectively. Then,

Vh,0 =
{
vh

∣∣∣∣ v ∈ (R3)Nf × {0}Nv−Nf

}
. (2.52)

For the sake of simplicity, external surface forces are not considered in the following

(fS = 0). By applying the linear material law σ = C : ε we obtain

∫

Ω

ρvh · üh dx+

∫

Ω

ε(vh) : C : ε(uh) dx−
∫

Ω

vh · fB dx = 0 ∀vh ∈ Vh,0,

(2.53a)

uk = u0
k for k = Nf + 1, . . . , Nv.

(2.53b)

For each element e, we define the element shape matrix Φ
e(x) and the element

strain matrix Be(x) as

Φ
e(x) =




φe
1(x)

φe
1(x)

φe
1(x)

· · ·
φe
8(x)

φe
8(x)

φe
8(x)


 , (2.54)

Be(x) =




∂φe
1(x)

∂x1
∂φe

1(x)

∂x2
∂φe

1(x)

∂x3
∂φe

1(x)

∂x2

∂φe
1(x)

∂x1
∂φe

1(x)

∂x3

∂φe
1(x)

∂x1
∂φe

1(x)

∂x3

∂φe
1(x)

∂x2

· · ·

∂φe
8(x)

∂x1
∂φe

8(x)

∂x2
∂φe

8(x)

∂x3
∂φe

8(x)

∂x2

∂φe
8(x)

∂x1
∂φe

8(x)

∂x3

∂φe
8(x)

∂x1
∂φe

8(x)

∂x3

∂φe
8(x)

∂x2




. (2.55)

Then,

uh

∣∣
Ωe(x) = Φ

e(x)ue, (2.56)

üh

∣∣
Ωe(x) = Φ

e(x)üe, (2.57)

and

ε(uh)
∣∣
Ωe(x) = Be(x)ue. (2.58)
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Using Equations (2.56) to (2.58), we obtain

∫

Ωe

ρvh · üh dx =

∫

Ωe

ρ(ve)T(Φe)TΦeüe dx = (ve)T
∫

Ωe

ρ(Φe)TΦe dx

︸ ︷︷ ︸
=Me

üe,

(2.59)
∫

Ωe

ε(vh) : C : ε(uh) dx =

∫

Ωe

(ve)T(Be)TCBeue dx = (ve)T
∫

Ωe

(Be)TCBe dx

︸ ︷︷ ︸
=Ke

ue,

(2.60)
∫

Ωe

vh · fB dx =

∫

Ωe

(ve)T(Φe)TfB dx = (ve)T
∫

Ωe

(Φe)TfB dx

︸ ︷︷ ︸
=fe

. (2.61)

For each element e, we define the element mass matrix M e, the element stiffness matrix

Ke, and the element load vector f e as

M e =

∫

Ωe

ρ(Φe)TΦe dx, (2.62)

Ke =

∫

Ωe

(Be)TCBe dx, (2.63)

f e =

∫

Ωe

(Φe)TfB dx. (2.64)

Considering the decomposition of the domain Ω into finite elements and substituting

Equations (2.59) to (2.61) into (2.53a) leads to

∑

e

(ve)T
(
M eüe +Keue − f e

)
= 0 ∀v ∈ (R3)Nf × {0}Nv−Nf . (2.65)

This can be written as

vT
(
Mü+Ku− f

)
= 0 ∀v ∈ (R3)Nf × {0}Nv−Nf , (2.66)

using the (global) mass matrix M , the (global) stiffness matrix K, and the (global)

load vector f , which are assembled from the individual element matrices and element
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load vectors by considering that adjacent elements share vertices:

M[k`] =
∑

e,i,j
k=s(e,i)
`=s(e,j)

M e
[ij] k, ` = 1, . . . , Nv, (2.67)

f
[k]

=
∑

e,i
k=s(e,i)

f e

[i]
k = 1, . . . , Nv. (2.68)

K is defined analogously to M . The notation A[k`] for a matrix A denotes entry (k, `)

when considering A as consisting of 3× 3-matrix entries (i.e., A[k`] is a 3× 3-matrix).

Analogously, the notation b[k] for a vector b denotes entry k when considering b as

consisting of 3-vector entries (i.e., b[k] is a 3-vector).

The spatially discretized dynamic elasticity problem can finally be written as

[Mü+Ku = f ][k] for k = 1, . . . , Nf , (2.69a)

uk = u0
k for k = Nf + 1, . . . , Nv, (2.69b)

where the notation [. = .][k] is used as a simplified notation for [.][k] = [.][k]. The

dynamic elasticity problem is thus represented by Nv vector-valued equations. We

associate equation k with vertex k, and therefore refer to this equation as per-vertex

equation of vertex k.

In the following, we also consider for each element e the formal equations

[M eüe +Keue = f e][i] for i = 1, . . . , 8, (2.70)

which we refer to as per-element equations of element e. The assembly of the per-

vertex equations (2.69) from the per-element equations (2.70) according to Equations

(2.67) and (2.68) can be interpreted as maintaining the balance of forces at each vertex

of the finite element grid.

We apply velocity-dependent Rayleigh damping by replacing f with f−Du̇, which

leads to

[Mü+Du̇+Ku = f ][k] for k = 1, . . . , Nf , (2.71a)

uk = u0
k for k = Nf + 1, . . . , Nv, (2.71b)

where the (global) damping matrix D is defined as D = α1M + α2K. α1, α2 ≥ 0 are

the mass and stiffness proportional damping parameters.
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The respective per-element equations are

[M eüe +Deu̇e +Keue = f e][i] for i = 1, . . . , 8, (2.72)

where De = α1M
e + α2K

e is the element damping matrix of element e.

For the static case, inertia and damping are neglected. This leads to the per-vertex

equations

[Ku = f ][k] for k = 1, . . . , Nf , (2.73a)

uk = u0
k for k = Nf + 1, . . . , Nv, (2.73b)

and to the per-element equations

[Keue = f e][i] for i = 1, . . . , 8. (2.74)

2.2.3 Computation of the Element Matrices and the Load Vector

In this thesis, we employ uniform Cartesian and adaptive octree finite element grids.

Therefore, all finite elements have the same regular shape. Assuming that the density

and the Young’s modulus are specified on a per-element basis, and that the Poisson’s

ratio is constant over the entire object, all element matrices can be derived from the

element matrices of a single, generic element.

Consider a generic element e0 with density ρe0 , Young’s modulus Ee0 , and domain

Ωe0 = [xe0
1 , xe0

1 + ae01 ] × [xe0
2 , xe0

2 + ae02 ] × [xe0
3 , xe0

3 + ae03 ]. Furthermore, consider an

arbitrary element e with density ρe = ρρe0 , Young’s modulus Ee = EEe0 , and domain

Ωe = [xe
1, x

e
1 + aae01 ]× [xe

2, x
e
2 + aae02 ]× [xe

3, x
e
3 + aae03 ], where ρ, E, and a denote the

relative density, Young’s modulus, and size of the element with respect to the generic

element.

Using

φe
i (x) = φe0

i (
1

a
(x− xe) + xe0) (2.75)

⇒ Φ
e(x) = Φ

e0(
1

a
(x− xe) + xe0), (2.76)

and the integration by substitution theorem, the element mass matrix M e can be ob-
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tained from the generic element mass matrix M e0 according to

M e =

∫

Ωe

ρe(Φe)TΦe dx

=

∫

Ωe

ρρe0(Φe0(
1

a
(x− xe) + xe0))TΦe(

1

a
(x− xe) + xe0) dx

= ρ

∫

Ωe0

ρe0(Φe0(x))TΦe0(x)a3 dx

= ρa3
∫

Ωe0

ρe0(Φe0)TΦe0 dx

= ρa3M e0 .

(2.77)

According to Equations (2.40) and (2.43), for isotropic materials, the elasticity ten-

sor depends linearly on the Young’s modulus, i.e., Ce = ECe0 . Using

φe
i (x) = φe0

i (
1

a
(x− xe) + xe0) (2.78)

⇒ ∂φe
i (x)

∂xj

=
1

a

∂φe
i (

1
a
(x− xe) + xe0)

∂xj

(2.79)

⇒ Be(x) =
1

a
Be0(

1

a
(x− xe) + xe0), (2.80)

and the integration by substitution theorem, the element stiffness matrix Ke can be

obtained from the generic element stiffness matrix Ke0 according to

Ke =

∫

Ωe

(Be)TC
e
Be dx

=

∫

Ωe

1

a
(Be0(

1

a
(x− xe) + xe0))TEC

e0 1

a
Be0(

1

a
(x− xe) + xe0) dx

= E

∫

Ωe0

1

a
(Be0(x))TC

e0 1

a
Be0(x)a3 dx

= Ea

∫

Ωe0

(Be0)TC
e0
Be0 dx

= EaKe0 .

(2.81)

The assembly of the element mass matrices can be further simplified by assuming
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that the mass of the object is concentrated at the vertices of the finite element grid

(mass lumping). This reduces the element mass matrices to diagonal matrices: M e
[ii] =

1
8
me

13, M e
[ij] = 0 for i 6= j (i, j = 1, . . . , 8), where me denotes the mass of the

respective element.

If the external forces are applied at a set of discrete points {xi}, the computation of

the element load vectors (Equation (2.64)) is simplified to

f e =
∑

i
xi∈Ω

e

(Φe(xi))
Tfi. (2.82)

Here, fi denotes the force vector that is applied at position xi in the reference configu-

ration. For each element e, the sum iterates over those forces which are applied within

the element’s domain, i.e., xi ∈ Ωe. Note that if xi is located on a boundary shared

among multiple elements, the respective force must be assigned to exactly one of these

elements.

If the forces are applied at the vertices of the finite element grid, the load vector can

be directly assembled from these forces according to

f =
(
fT
1 , . . . ,f

T
Nv

)T
, (2.83)

where fk denotes the force vector that is applied at vertex k.

2.2.4 Handling of Hanging Vertices in an Adaptive Octree Grid

In an adaptive octree finite element grid, hanging vertices occur between adjacent ele-

ments of different size. Hanging vertices are lying in the interior of another element’s

edge or face. For a continuous discretization of the displacement field, the displacement

at a hanging vertex must be determined by linear (along edges) or bilinear (on faces)

interpolation of the displacements at the incident vertices of the respective edge or face.

Without loss of generality, let {1, . . . , N ′
v} and {N ′

v+1, . . . , Nv} denote the indices

of the non-hanging and the hanging vertices, respectively. The non-hanging vertices

are further classified into free and fixed vertices with indices {1, . . . , Nf} and {Nf +

1, . . . , N ′
v}, respectively.

We use the notation ∗
′ =

(
∗
T
1 , . . . ,∗

T
N ′

v

)T
to refer to the linearization of the dis-

placements at all non-hanging vertices. Let I be an interpolation matrix such that

v = Iv′. (2.84)
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The variational problem (2.46) is then considered over the function space

V ′
h =

{
vh

∣∣∣∣ v = I v′ , v′ ∈ (R3)N
′

v

}
, (2.85)

which differs from the original function space (Equation (2.51)) in that the displace-

ments at hanging vertices do not represent degrees of freedom, but are determined by

interpolation from non-hanging vertices. It is

V ′
h,0 =

{
vh

∣∣∣∣ v = I v′ , v′ ∈ (R3)Nf × {0}N ′

v−Nf

}
. (2.86)

Proceeding as in Section 2.2.2, Equation (2.66) becomes

v′TIT
(
MIü′ +DIu̇′ +KIu′ − f

)
= 0 ∀v′ ∈ (R3)Nf × {0}N ′

v−Nf , (2.87)

and the spatially discretized dynamic elasticity problem (2.71) becomes

[
IT
(
MIü′ +DIu̇′ +KIu′

)
= ITf

]
[k]

for k = 1, . . . , Nf , (2.88a)

uk = u0
k for k = Nf + 1, . . . , N ′

v. (2.88b)

Note that in this system of equations the displacement vectors uk at hanging vertices

have been eliminated. The system is obtained from the system (2.71) by substituting

the displacements at hanging vertices by interpolation from the displacements at non-

hanging vertices, and ‘distributing’ the equations at hanging vertices to non-hanging

vertices using the same weights as used for interpolation.

2.2.5 Corotational Formulation of Strain

Linear elasticity comes with the drawback that it is accurate only for small strains

and small rotations. It is based on the infinitesimal strain tensor, which is a linear

approximation of the Green-St. Venant strain tensor, i.e., there is a linear relationship

between strains and displacements. Since rotations are interpreted by the infinitesimal

strain tensor as strains, rotations lead to the introduction of artificial stresses, which

can result in a significant volume increase in case of large rotations. To overcome

this limitation, we use the corotational strain formulation [RB86], which in principle

removes the per-element rigid body rotations from the deformation field before the

strain field is computed, and then reapplies the rotations to the resulting stress field.

By using the corotational strain formulation, deformations with large rotations can be
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handled accurately. The efficient integration of the corotational formulation into real-

time approaches has been demonstrated in [MDM+02, HS04, GW08].

The corotation is carried out on the finite element discretization, i.e., a single rota-

tion matrix Re is computed for each finite element e, specifying the rigid body rotation

component of the element’s deformation (i.e., the rotation is from the reference into

the deformed configuration). We obtain the element rotation by computing the polar

decomposition of the element’s average deformation gradient

F e =

∫

Ωe

F dx /

∫

Ωe

1 dx

= 13 +
1

4

8∑

i=1

us(e,i)

(
(−1)i 1

ae1
, (−1)di/2e 1

ae2
, (−1)di/4e 1

ae3

)
,

(2.89)

where ae1, a
e
2, a

e
3 denote the edge lengths of the hexahedral finite element. According

to the polar decomposition theorem, every non-singular matrix F e can be uniquely

decomposed into the product of an orthogonal matrix Re and a symmetric positive def-

inite matrix Se, i.e., F e = ReSe. To approximately compute the polar decomposition,

we perform 5 iterations of the following algorithm (i.e., Re ≈ Re
5) [Hig86]:

Re
0 = F e, (2.90a)

Re
i =

1

2

(
Re

i−1 + (Re
i−1)

−T
)

for i > 0. (2.90b)

Let

R̂e =




Re

. . .

Re

︸ ︷︷ ︸
8 ×


 (2.91)

be a matrix with 8 instances of Re on the diagonal. Furthermore, let xk denote the

position of vertex k in the reference configuration, and let xe =
(
xT
s(e,1), . . . ,x

T
s(e,8)

)T

be the linearization of the positions of the vertices of element e in the reference config-

uration.

The rotations are incorporated into the per-element equations (2.72) (for a uniform

Cartesian finite element discretization) or into the per-element equations correspond-

ing to the per-vertex equations (2.88a) (for an adaptive octree discretization) by re-

placing the term Keue with the term R̂eKe
(
(R̂e)T(xe + ue)− xe

)
. For a uniform
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discretization, this leads to the modified per-element equations

[
M eüe +Deu̇e + R̂eKe(R̂e)T︸ ︷︷ ︸

Âe

ue = f e − R̂eKe
(
(R̂e)Txe − xe

)
︸ ︷︷ ︸

b̂e

]
[i]

for i = 1, . . . , 8, (2.92)

and to the corresponding modified per-vertex equations

[Mü+Du̇+ Âu = b̂][k] for k = 1, . . . , Nf , (2.93a)

uk = u0
k for k = Nf + 1, . . . , Nv. (2.93b)

Here, Â and b̂ are assembled according to Equations (2.67) and (2.68), respectively.

In the next section, we explain how the semidiscrete initial value problem obtained

from the finite element discretization is further discretized in time by introducing dis-

crete time steps. The element rotations for the corotational strain formulation are up-

dated once per time step. To incorporate the updated element rotations, the resulting

linear system of equations has to be updated in every time step, too.

2.2.6 Time Discretization

We employ the implicit Newmark time integration scheme for the time discretization

of the initial value problem. Using an implicit scheme allows us to use a reasonably

large time step size dt. In the following, we use the superscript (n) to refer to quantities

associated with the n-th time step.

The initial displacements u
(0)
k and initial velocities u̇

(0)
k are given as initial condi-

tions (2.30d) and (2.30e) of the initial boundary value problem, and the initial acceler-

ations ü
(0)
k are determined according to Equation (2.93) by

[Mü(0) +Du̇(0) + Â(0)u(0) = b̂
(0)
][k] for k = 1, . . . , Nf , (2.94a)

ü
(0)
k = 0 for k = Nf + 1, . . . , Nv. (2.94b)

The assembly of Â(0) and b̂
(0)

requires the element rotations Re(0), which are computed

based on the displacement vectors u
(0)
k according to Equations (2.89) and (2.90).
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According to the Newmark time integration scheme, for n > 0 it is

u̇
(n)
k =

2

dt

(
u

(n)
k − u

(n−1)
k

)
− u̇

(n−1)
k , (2.95)

ü
(n)
k =

4

dt2

(
u

(n)
k − u

(n−1)
k − u̇

(n−1)
k dt

)
− ü

(n−1)
k . (2.96)

Substituting Equations (2.95) and (2.96) into the initial value problem (2.93) leads

for each time step n to a linear system of equations with the unknown displacement

vectors u
(n)
k :

[(
4

dt2
M +

2

dt
D + Â(n)

)

︸ ︷︷ ︸
=A(n)

u(n)

= b̂(n) +M

(
4

dt2
(
u(n−1) + u̇(n−1)

)
+ ü(n−1)

)
+D

(
2

dt
u(n−1) + u̇(n−1)

)

︸ ︷︷ ︸
=b(n)

]

[k]

for k = 1, . . . , Nf (2.97a)

u
(n)
k = u0

k for k = Nf + 1, . . . , Nv (2.97b)

The element rotations Re(n) for the assembly of Â(n) and b̂
(n)

are computed based on

the displacement vectors u
(n−1)
k of the previous time step.

In summary, in each time step n > 0, the following computations have to be per-

formed:
Equations

1. For n = 1: Compute ü
(0)
k (2.94)

For n > 1: Compute u̇
(n−1)
k and ü

(n−1)
k (2.95), (2.96)

2. Compute element rotations Re(n) based on u
(n−1)
k (2.89), (2.90)

3. Assemble Â(n) and b̂
(n)

(2.92), (2.97)

4. Solve for u(n) (2.97)

2.3 Geometric Multigrid Solvers

Geometric multigrid solvers are known to be among the most efficient solvers for the

linear systems of equations arising from the discretization of partial differential equa-

tions of the form described above. In this thesis, we employ a geometric multigrid

method to solve the linear system of equations (2.97) (dynamic case) or (2.73) (static
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case).

In both cases, the linear system of equations is in the form

(
A11 A12

0 1

)(
u1

u2

)
=

(
b1

u0
2

)
, (2.98)

resulting from the classification of the vertices into Nf free and Nv−Nf fixed vertices.

This system is equivalent to the system

(
A11 0

0 1

)

︸ ︷︷ ︸
=Ah

(
u1

u2

)

︸ ︷︷ ︸
=uh

=

(
b1 −A12u

0
2

u0
2

)

︸ ︷︷ ︸
=bh

. (2.99)

Ah is a very large, sparse matrix, consisting of 3Nv rows and columns. Considering

a uniform Cartesian finite element grid, each vertex has at most 33 adjacent vertices.

Each matrix row and column thus has at most 33 · 3 = 81 potentially non-zero entries.

Ah is symmetric and positive definite due to using hyperelastic materials with positive

definite strain energy density functions, and due to a non-empty Dirichlet boundary

in the static case or a non-zero mass in the dynamic case. Such a large, sparse linear

system of equations is typically solved by using an iterative solution method.

2.3.1 The Multigrid V-Cycle

Let ũh be the current approximate solution, and rh = bh −Ahũh the current residual.

The current error eh = uh− ũh is determined by the residual equation Aheh = rh. By

solving the residual equation, the exact solution can be obtained from the approximate

solution according to uh = ũh + eh.

Basic iterative relaxation methods like Jacobi or Gauss-Seidel relaxation effectively

reduce high-frequency (oscillatory) error components, but they are ineffective in reduc-

ing low-frequency (smooth) error components. This typically causes the error reduction

to stall after a few iteration steps, i.e., the basic relaxation methods are very inefficient

on a single grid.

The main idea of multigrid is to accelerate the error reduction by discretizing the

considered problem on a hierarchy of successively coarser grids: The high-frequency

error components can be effectively reduced on the original grid by performing a few

relaxation steps. This leaves the low-frequency error components, i.e., the relaxation

leads to a smoothing of the error. The error thus can be represented and solved for on a

coarser grid, and then be used to correct the solution on the original grid.
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On the coarser grid, the remaining low-frequency error components appear at a

higher frequency. Therefore, the smoothing and coarse grid correction principle can be

applied recursively on a hierarchy of successively coarser grids. On the coarsest grid,

where the number of vertices/unknowns typically is very small, the residual equation

can be solved directly.

This approach leads to significant performance gains since every error component

can be effectively eliminated by a few relaxation steps on the appropriate grid, and, in

addition, the number of vertices/unknowns (and thus the computational effort) on the

successively coarser grids is significantly smaller than on the original grid. In particu-

lar, it can be shown that the resulting solver exhibits asymptotic linear runtime in the

number of vertices/unknowns, considering the discretization of the underlying partial

differential equation at ever smaller grid spacings.

In the following, we refer to the individual levels of the multigrid hierarchy by

h, 2h, 4h, . . . , (relating to the ever coarser grid spacings), or by using level numbers ` =

0, 1, 2, . . . , where level number 0 denotes the finest level of the hierarchy. Respective

sub- and superscripts are used to refer to entities at these levels.

The components of a multigrid method are a smoothing procedure, a coarsening

strategy to build the grid hierarchy, coarse grid operators (i.e., coarse grid versions of

the system matrix), transfer operators to restrict the residual to the respectively next

coarser grid and to interpolate the error back from this grid, and a cycle type (i.e., a

specification of the traversal order of the levels of the multigrid hierarchy).

Using a two-level grid hierarchy leads to a two-grid method. In the following, we

denote the coarse grid version of Ah by A2h, the restriction operator, which restricts the

residual to the coarse grid, by R2h
h , and the interpolation operator, which interpolates

the error back from the coarse grid, by Ih
2h. Each iteration cycle of the two-grid method,

which is referred to as two-grid cycle, consists of the following steps:

1. Relax Ahũh ≈ bh (n1 times).

2. Compute residual rh = bh −Ahũh.

3. Restrict residual to the coarse grid: r2h = R2h
h rh.

4. Solve residual equation on the coarse grid: A2he2h = r2h.

5. Interpolate error from the coarse grid: ẽh = Ih
2he

2h.

6. Apply coarse grid correction: ũh ← ũh + ẽh.

7. Relax Ahũh ≈ bh (n2 times).
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Figure 2.7: Illustration of the multigrid V-cycle scheme. S denotes the pre- and post-smoothing,

R denotes the computation of the residual and the restriction of the residual to the next coarser

level, and I denotes the interpolation of the error from the previously visited coarser level to the

current level and the coarse grid correction.

Typical values for the number n1 and n2 of pre- and post-smoothing steps are 1

or 2. Throughout this thesis, we use decoupled Gauss-Seidel relaxation, which means

that the three components of each (vector-valued) per-vertex equation are relaxed suc-

cessively. The vertices are visited in lexicographical order with respect to their 3D

position in the underlying grid. The relaxation of each scalar equation i ∈ {1, . . . , Nh}
is performed according to

ũh
i ← ũh

i + ω
1

Ah
ii


bhi −

Nh∑

j=1

Ah
ijũ

h
j


 . (2.100)

Here, 0 < ω < 2 is an under-/overrelaxation parameter (ω = 1 for no under-/over-

relaxation), and Nh denotes the number of scalar unknowns.

On a hierarchy of multiple grids, the two-grid method is recursively applied to solve

the residual equation (step 4) (e2h ≡ u2h, r2h ≡ b2h). In particular, using only a single

two-grid cycle to approximately solve the residual equation leads to a multigrid V-cycle

(see Figure 2.7): First, the grid hierarchy is traversed from the finest level to the second

coarsest level. At each level, n1 pre-smoothing relaxation steps are performed (step 1)

(using an initial guess of 0 for e2h ≡ u2h, e4h ≡ u4h, . . . ), and the residual is computed

(step 2) and restricted to the next coarser grid (step 3). On the coarsest grid, the residual

equation is solved directly (step 4). Then, the hierarchy is traversed from the second

coarsest level back to the finest level. At each level, the error is interpolated from

the previously visited coarser grid back to the current grid (step 5). The interpolated
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Level 0 Level 1 Level 2

Figure 2.8: The coarse grid hierarchy is constructed successively from the finest to the coarsest

level.

error is used to correct the solution on the current grid (step 6), and n2 post-smoothing

relaxation steps are performed (step 7).

More sophisticated traversal orders such as the multigrid W-cycle or the full multi-

grid cycle typically exhibit better convergence rates per cycle, but also increase the

computing time per cycle. In our experiments we found that for our application the

V-cycle offers the best convergence rate with respect to computing time.

In the following, we explain the coarsening strategy that we use, as well as our

choices of the coarse grid and transfer operators.

2.3.2 Coarse Grid Hierarchy

In this thesis, we consider a finite element decomposition of the object based on a

uniform Cartesian grid or an adaptive octree grid. The regular hexahedral grid structure

gives rise to a very efficient construction of a nested grid hierarchy, which is essential

for exploiting geometric multigrid schemes at their full potential.

Let us first consider a finite element decomposition based on a uniform Cartesian

grid. We build the coarse grid hierarchy successively from the finest to the coarsest

level (see Figure 2.8). With each coarser level, the grid cell size is doubled, such that

the domain of a cell on the next coarser level coincides with the domain of a block of 23

cells on the current level. The respectively next coarser level is constructed by creating

a cell if it covers at least one cell on the current level. At each hierarchy level a shared

vertex representation is generated. Note that this construction process does not impose

any restrictions on the size of the initial grid at the finest level. In particular, a cell at

the next coarser level is allowed to be only partially ‘filled’ with cells on the current

level, for instance at the object’s boundary. This construction principle, which has

already been used in the context of composite finite elements [LPR+09], thus enables
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to automatically create a coarse grid hierarchy independently of the complexity of the

shape of the object.

For a finite element decomposition based on an adaptive octree grid, the initial grid

(level ` = 0) consists of cells of sizes 2i (i = 0, 1, ...) with respect to the finest octree

level. The construction of the coarse grid hierarchy is performed in a similar way as

for the uniform case. At the transition from level ` to level ` + 1, cells of size 2` are

merged into cells of size 2`+1. Cells that are larger than 2` are passed on to the next

coarser level.

According to the described construction principle, cells are merged solely based on

their spatial location. Thus, for objects with complicated (concave) boundaries, phys-

ically disconnected parts might be merged into the same coarse grid cell, which leads

to a reduced coarse grid approximation quality and therefore to a reduced convergence

rate. In Chapter 4, we will present a novel approach for the efficient simulation of

cuts in deformable objects. The cutting of an object leads to very complex boundaries,

where disconnected parts are located directly adjacent to each other. To avoid a re-

duction of the multigrid convergence rate, we will propose a novel grid hierarchy that

explicitly represents the cuts on the coarse grids.

2.3.3 Coarse Grid Operators and Transfer Operators

Generally, there are two approaches for the generation of the coarse grid operators for

a geometric multigrid solver. The first approach explicitly discretizes the partial differ-

ential equation on the individual grids of the hierarchy, and independently selects re-

striction and interpolation operators. The second approach is based on the variational

properties of multigrid [BHM00]. Here, the partial differential equation is only dis-

cretized on the finest grid. The coarse grid versions of Ah are constructed successively

from fine to coarse via A2h = R2h
h AhIh

2h (so-called Galerkin-based coarsening), and

the restriction operators are obtained by transposition of the interpolation operators,

i.e., R2h
h =

(
Ih
2h

)T
. Typically, the first approach is computationally less expensive, but

can fail for problems with variable coefficients and complicated boundary conditions,

which possibly cannot be adequately discretized on the coarse grids. We therefore

employ the second approach, which automatically handles variable coefficients and

complicated boundary conditions, and is more robust in that the convergence of the

resulting multigrid scheme is guaranteed. Corresponding to the discretization of the

displacements by trilinear shape functions on the finest grid, the error is represented

by trilinear shape functions on the coarse grids. This leads to trilinear interpolation

operators Ih
2h.
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The variational properties are motivated as follows: The goal is to determine the

coarse grid correction such that the current error is reduced as much as possible. In

other words, the goal is to determine the error e2h ∈ R
N2h

on the coarse grid such that

the interpolated error ẽh = Ih
2he

2h is a best-approximation of the error eh on the fine

grid, which is determined by the residual equation Aheh = rh:

‖eh − Ih
2he

2h‖Ah = min
w2h∈RN2h

‖eh − Ih
2hw

2h‖Ah . (2.101)

Here, ‖v‖A =
√
vTAv is the A-energy norm, where A is a symmetric, positive defi-

nite matrix.

It can be shown that Equation (2.101) is equivalent to

(v2h)T(Ih
2h)

T
(
AhIh

2he
2h − rh

)
= 0 ∀v2h ∈ R

N2h

. (2.102)

This is equivalent to

(Ih
2h)

TAhIh
2h︸ ︷︷ ︸

=A2h

e2h = (Ih
2h)

T

︸ ︷︷ ︸
=R2h

h

rh, (2.103)

which directly yields the coarse grid operator A2h = R2h
h AhIh

2h and the restriction

operator R2h
h = (Ih

2h)
T.

For a symmetric, positive definite matrix Ah, it can be shown [TOS01] that a multi-

grid method based on the variational principles is converging for any coarse grid hier-

archy, any full rank interpolation operators, and any converging smoother (i.e., Gauss-

Seidel relaxation, or damped Jacobi relaxation with a suitably selected underrelaxation

parameter). Note that this guarantees a minimum level of robustness, but does not state

anything about the convergence rate, which depends on the quality of the interplay be-

tween smoother and coarse grid correction. We will demonstrate the efficiency of our

solver and its superior performance compared to alternative numerical solution methods

in Chapters 3 and 4 by showing convergence plots for a number of experiments.

Instead of the linear system (2.99), we could equivalently consider the reduced sys-

tem

A11︸︷︷︸
=Ah

u1︸︷︷︸
=uh

= b1 −A12u
0
2︸ ︷︷ ︸

=bh

, (2.104)

where the unknown vector u2, comprising the displacements at fixed vertices, has been

eliminated. Then, however, we would also have to remove degrees of freedom on the

coarse grids of the multigrid hierarchy to preserve the full rank of the interpolation

operators, and thus to guarantee the convergence of the solver. By not eliminating the



42 CHAPTER 2. FUNDAMENTALS

displacements at fixed vertices such an adaptation is not required, allowing us to handle

free and fixed vertices identically from an algorithmic point of view.

2.4 GPUs and GPU Computing

A graphics processing unit (GPU) is a specialized processor dedicated to 3D graphics

rendering. GPUs are ubiquitous in today’s personal computers and workstations. Early

graphics hardware was limited to the function of a simple digital-analog converter, gen-

erating analog signals for a computer display from a 2D raster image stored in video

memory. For 3D graphics rendering, this 2D raster image had to be computed on the

CPU. With the increasing demand for real-time 3D graphics in computer games in the

1990s, CPU performance became a severe bottleneck. This led to the development of

specialized graphics processing units, particulary designed to perform the traditional

operations in 3D computer graphics at a significantly higher performance than a CPU.

At the beginning, these GPUs performed only the rasterization and fragment process-

ing (in particular texture filtering), while the geometry processing was still done on the

CPU. The first GPU implementing the entire graphics pipeline was NVIDIA’s NV10 in

1999. In the next years, the developments in GPU technology led from a configurable

fixed-function pipeline to a programmable pipeline, capable of executing user-defined

programs in the vertex and fragment stages. With each further GPU generation, par-

ticular limitations with respect to programmability and accessing of memory resources

were alleviated. Today, GPUs provide a level of programmability which is comparable

to that of CPUs, and memory resources can be accessed from all programmable stages

of the pipeline. The pipeline is exposed by the standardized graphics APIs OpenGL

and Microsoft’s Direct3D, which are accompanied by the shader languages GLSL and

HLSL, respectively, to program the individual stages of the pipeline. For the work

presented in this thesis we use the Direct3D API.

Due to their massively parallel architecture particularly designed for high through-

put, GPUs exhibit a tremendous floating point performance and memory bandwidth.

Starting with the first programmable GPUs, research has been pursued to exploit this

performance for compute-intensive general purpose applications, not necessarily re-

lated to computer graphics [OLG+07]. At the beginning, the GPU hardware was only

accessible via graphics APIs, meaning that computations had to be manually mapped

onto the graphics pipeline. This was achieved by implementing a computational kernel

as a fragment program running in the fragment stage of the pipeline. A kernel was

launched by rendering a simple geometry (such as a rectangle) in order to generate
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fragments and thus execute this fragment program on a set of data elements. The input

and output data had to be mapped onto 2D textures. Early work in GPU computing

furthermore had to cope with the limitations of the first GPU generations, in particular

including the restriction to non-IEEE compliant single precision floating point arith-

metic, missing support for integer and bit arithmetic, and limitations in the flexibility of

memory access operations, i.e., it was possible to read from arbitrary memory locations

via texture fetches, but write access was possible only to the memory location in the

frame buffer that corresponds to the respective pixel (no scattered writes).

However, GPU vendors recognized the potential of GPUs for general purpose com-

puting, and particularly tailored the architecture of their GPUs not only to high per-

formance 3D graphics rendering, but also to serious high performance computing. In

2006, NVIDIA presented CUDA3, referring to a specific GPU architecture that supports

GPGPU computing, as well as to a GPU computing API. The CUDA API provides a

hardware abstraction (programming model) and a software environment that expose

the GPU’s general purpose computing capabilities. The computational kernels are im-

plemented using a C-like programming language. The CUDA API allows to flexibly

access the GPU’s computing and memory resources, without resorting to the graphics

pipeline. In particular, it allows to access video memory over a linear address space,

and enables to perform read and write accesses at arbitrary locations. The CUDA ar-

chitecture was first implemented by NVIDIA’s G80 GPU (presented in 2006). This

GPU provided integer and bit arithmetic, but floating point arithmetic was limited to

IEEE compliant single precision. NVIDIA’s GT200 GPU (presented in 2008) then pro-

vided support for IEEE compliant double precision floating point arithmetic. However,

the double precision performance was only 1/8 of the single precision performance.

This limitation was removed by NVIDIA’s GF100 “Fermi” GPU (presented in 2010),

where double precision operations are running at 1/2 of the speed of single precision

operations.

The CUDA API, which is used in this thesis, is only available on NVIDIA GPUs.

There are other GPU computing APIs, such as OpenCL and Microsoft’s DirectCom-

pute, which provide a programming model that is virtually identical to the CUDA pro-

gramming model, but are independent from a particular hardware vendor. OpenCL is

even available on non-GPU parallel hardware architectures, such as multi-core CPUs.

The system architecture of a modern personal computer or workstation is depicted

in Figure 3.7 (page 71). Here, the GPU along with a dedicated video memory is located

on a dedicated graphics card, which is connected to the system via the PCI Express

3Acronym for ‘Compute Unified Device Architecture’
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Textures)

Input Assembler Stage

Vertex Shader Stage

Geometry Shader Stage
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Rasterizer Stage

Pixel Shader Stage

Output Merger Stage

Figure 2.9: Graphics pipeline as exposed by shader model 4.0 hardware and the Direct3D 10

API (according to [Mic10], adapted). The stages shown in red color are fully programmable.

The geometry shader stage, the stream output stage, as well as the fragment processing part of

the pipeline can be deactivated (this is indicated by the switches).

bus. Note that low-end systems often are not equipped with a dedicated graphics card.

Instead, the GPU is located on the motherboard, or CPU and GPU are even integrated

into a single chip. The video memory then is often realized as a portion of the system’s

main memory (i.e., the main memory is shared between CPU and GPU).

In the following, we give a short introduction into the Direct3D 10 programmable

graphics pipeline (Section 2.4.1) and into GPU computing based on the CUDA API

(Section 2.4.2).

2.4.1 The Direct3D 10 Programmable Graphics Pipeline

The graphics pipeline is a hardware abstraction that describes the operation of the GPU

for 3D graphics rendering. We describe the individual stages of this pipeline (see Figure

2.9) as it is exposed by shader model 4.0 hardware and the Direct3D 10 API [Mic10]:

• Input Assembler Stage. The geometry of a 3D scene is composed of geometric

primitives, i.e., points, lines, and triangles, each consisting of one, two, or three
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vertices. The vertices are accompanied by per-vertex attributes such as position,

normal, color, or texture coordinates. The input assembler stage reads the per-

vertex attributes from video memory, assembles the vertices into primitives, and

feeds these primitives as a stream into the graphics pipeline.

• Vertex Shader Stage. The vertex shader stage operates on the individual vertices

by modifying their per-vertex attributes, including removing or adding attributes.

This stage is fully programmable, and is typically used to apply a sequence of

coordinate transformations to the vertices, i.e., the world, view, and projection

transformation.

• Geometry Shader Stage. The geometry shader stage takes individual primitives

as input. For each incoming primitive, the geometry shader can output a small,

variable number of primitives (including the possibility to output zero primitives),

with each primitive consisting of vertices accompanied by per-vertex attributes.

The output primitives have to be of a fixed type, which may be different than the

type of the input primitives. This stage is fully programmable, and is typically

used for amplification or de-amplification of geometry.

• Stream Output Stage. The stream output stage can be used to write the stream of

primitives emitted by the vertex or geometry shader stage back into video mem-

ory. The primitives can then be re-fed into the pipeline in a subsequent rendering

pass.

• Rasterizer Stage. The rasterizer stage clips each primitive at the view frustum

and performs the perspective division and view port transformation to transform

the vertices from homogeneous clip space into screen space. It then performs

the rasterization (scan-conversion) of the primitive, i.e., it generates a fragment

for each covered pixel. In this way, the rasterizer stage converts the stream of

primitives into a stream of fragments. It determines the per-fragment attributes

such as depth, normal, color, or texture coordinates by linear interpolation (with

perspective correction, corresponding to a linear interpolation in 3D view space)

from the per-vertex attributes.

• Pixel Shader Stage. The pixel shader stage operates on the individual fragments

and computes the fragment’s color value from the per-fragment attributes. This

stage is fully programmable and is typically used to perform texturing and lighting

computations. It provides the possibility to modify a fragment’s depth value, or

to discard a fragment.
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• Output Merger Stage. The output merger stage writes the fragments into the

frame buffer. It performs depth and stencil testing, as well as blending operations.

2.4.2 The CUDA Architecture and Computing API

The architecture of a GPU is particularly tailored to achieving high throughput on data

parallel computations, where the same operations are performed on a large number of

data elements—in computer graphics, these data elements are geometric primitives,

vertices, and fragments. Such an architecture is characterized by a massively parallel

design based on a large number of processing units.

In 2006, NVIDIA presented CUDA [NVI10b], referring to a GPU architecture and

a GPU computing API that enable general purpose GPU computing on NVIDIA GPUs.

The CUDA architecture is based on a GPU design where dedicated fragment and vertex

processors of previous GPU generations were replaced by unified processors executing

vertex, geometry, fragment, and computing programs. In contrast to previous GPU

generations, these processors solely execute scalar operations. An overview of differ-

ent generations of NVIDIA GPUs based on this architecture is given in Table 2.1. The

CUDA API provides a hardware abstraction (programming model) and a software en-

vironment that expose the GPU’s computing capabilities. The computational kernels

are implemented using a C-like programming language. In the following, we give a

short introduction into GPU computing using the CUDA API and NVIDIA’s GF100

(“Fermi”) GPU, introduced in 2010 [NVI09].

CPUs and GPUs exhibit different architectures and programming models. CPUs

are designed to execute one to a few different instruction streams (task parallelism). To

increase operational throughput, modern CPU designs are based on detecting instruc-

tion level parallelism within the sequential instruction streams to simultaneously feed

multiple execution units, leading to superscalar pipelines with out-of-order execution.

To hide memory access latencies, large caches are used. As a consequence, a large

portion of the CPU’s die is used for sophisticated control logic and large caches, and

only a small portion for a small number of execution units.

In contrast, GPUs are designed to execute a very high number of identical instruc-

tion streams, each performing the same operations on a single data element (data paral-

lelism). To increase operational throughput, a GPU design is based on a large number

of execution units, which can easily be fed by independent instructions from separate

instruction streams. Memory access latencies are hidden by instantaneously switching

between threads, which are permanently resident. This results in a die usage where a

large portion is used for a large number of execution units, and only a small portion
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Graphics Card NVIDIA

GeForce

GTX 8800

NVIDIA

GeForce

GTX 280

NVIDIA

GeForce

GTX 480

NVIDIA

Tesla

C2070

Year of Introduction 2006 2008 2010 2010

GPU G80 GT200 GF100 GF100

GPU Architecture Code Name Tesla Tesla Fermi Fermi

# Streaming Multiprocessors (SM) 16 30 15 14

# CUDA Cores per SM 8 8 32 32

# CUDA Cores total 128 240 480 448

# Registers per SM 8K 16K 32K 32K

Shared Memory per SM (KB) 16 16 48 or 16 48 or 16

Max. # Resident Threads per SM 768 1024 1536 1536

Processor Clock (MHz) 1350 1296 1401 1150

Peak # FLOPs per Clock Cycle

• Single Precision 256 480 960 896

• Double Precision — 60 120∗ 448

Peak FP Performance (GFLOPS)

• Single Precision 346 622 1340 1030

• Double Precision — 77.8 168∗ 515

Video Memory (MB) 768 1024 1536 6144

Memory Clock (MHz) 900 1107 1848 1500

Memory Interface Width (bit) 384 512 384 384

Memory Bandwidth (GB/s) 80.5 132 165 134

L1 Cache per SM (KB) — — 16 or 48 16 or 48

L2 Cache (KB) — — 768 768

Table 2.1: Overview of NVIDIA graphics cards equipped with different generations of GPUs

based on the CUDA architecture. ∗On the consumer-level NVIDIA GeForce GTX 480 graphics

card, only 1/4 of the double precision floating point performance of the GF100 GPU is avail-

able. For comparison, a 4-core Intel Xeon X5560 processor (introduced in 2009) achieves a

theoretical peak floating point performance of 89.6 GFLOPS for single and 44.8 GFLOPS for

double precision, and offers a memory bandwidth of 29.8 GB/s (in combination with DDR3

1333MHz RAM).

for a relatively simple control logic and small caches. In addition, since 3D graphics

rendering is very memory-throughput intensive, GPUs are equipped with a memory

interface that provides much higher throughput rates than that of a CPU.

As a consequence of the different architectures and programming models, GPUs

exhibit a significantly higher (theoretical) peak floating point performance and memory

throughput than CPUs, but are much more difficult to program, since computations and

data structures have to be particularly mapped onto the specific, massively parallel GPU

architecture in order to effectively exploit the GPU’s resources.

In the CUDA programming model, the GPU acts as a coprocessor of the CPU. A

computation is decomposed into sequential and parallel parts, which are executed on

the CPU and GPU, respectively. Each parallel part is implemented as a single function
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Figure 2.10: Simplified schematic overview of the Fermi CUDA architecture (according to

[NVI09], adapted).

referred to as kernel, which is formulated in a C-like programming language. A kernel

is executed many times in parallel. The GPU computation is initiated by the CPU, with

the number of kernel executions being specified in the kernel call. For each execution

of the kernel, a separate thread is spawned. The threads are executed in parallel on

the GPU’s processing units, with thread management and scheduling being performed

entirely by the GPU. The kernels operate on data stored in video memory. These data

are persistent over multiple kernel calls. Data between CPU and GPU are exchanged

via memory copies between main memory and video memory, which are initiated by

the CPU. These data are transferred over the PCI Express bus. Kernel and memory

copies can be executed synchronously or asynchronously, i.e., the respective calls can

be blocking or non-blocking. If asynchronous execution is used, computations on the

CPU, computations on the GPU, and data transfers can overlap, which potentially in-

creases overall performance.

The Fermi GPU consists of 15 streaming multiprocessors (SM) (see Figure 2.10).

Each multiprocessor is equipped with 32 scalar CUDA cores4 for integer and single

and double precision floating point operations, 16 load/store units for memory access

operations, as well as 4 special function units for transcendental operations. Each multi-

processor is equipped with a register file as well as a small low-latency on-chip memory

block. Memory accesses to off-chip video memory are cached using a two-level cache

hierarchy.

4In previous NVIDIA GPU generations, the CUDA cores were referred to as streaming processors (SP).
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The threads are organized in groups of identical size, referred to as thread blocks.

Threads are resident on the multiprocessors at thread block granularity: All threads of

a thread block are concurrently and permanently resident on the same multiprocessor,

until the execution of all threads of the thread block is completed. On each multipro-

cessor, multiple thread blocks can be concurrently resident. Only the threads in the

same thread block can cooperate by sharing data via on-chip memory and by synchro-

nizing their execution. The number of thread blocks as well as the number of threads

per thread block is specified in the kernel call.

The thread blocks as well as the threads within each thread block are enumerated.

Thus, each thread is identified by a unique (block ID, thread ID) pair. This pair can

be accessed from within the kernel, and is used to adapt the runtime behavior of the

threads, for example in such a way as each thread processes a different data element.

The threads of each thread block are executed in groups of 32 called warps. A

multiprocessor executes the instructions of the threads of a warp in lock step. NVIDIA

refers to this execution model as SIMT (single instruction, multiple threads), since the

same instruction is executed simultaneously for multiple threads. Each instruction is

issued to one of four groups of execution units (2 groups of 16 CUDA cores, 1 group

of 4 load/store units, 1 group of 4 special function units). As a consequence, the GPU

works most efficiently if all threads within one warp follow the same execution path. If

the threads in a warp take different branches, these branches are executed sequentially

(while some of the execution units are idling), which decreases overall performance.

Note, however, that threads of different warps can take different branches without per-

formance penalty. Each multiprocessor is equipped with two hardware schedulers,

which simultaneously issue instructions from the set of warps that are resident on the

multiprocessor. The hardware schedulers automatically schedule warps in such a way

as to hide latencies, for example caused by memory access operations or data depen-

dencies between successive instructions. Switching between warps has no cost, since

the threads of a thread block are permanently resident on a multiprocessor (indepen-

dently of whether they are running, blocked, or waiting). As a consequence, however,

the register file is partitioned among all threads and the shared memory among all

thread blocks residing on a multiprocessor, which significantly reduces the number of

registers available to each thread and the amount of shared memory available to each

thread block. Conversely, the number of threads and thread blocks that can be concur-

rently resident on a multiprocessor is determined by the amount of resources required

by each thread and thread block. The more resources are required per thread and thread

block, the smaller is the number of concurrently resident threads, and thus the smaller
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Memory Space Location Read/Write Scope Lifetime

Register On-chip R/W A single thread Thread

Local Off-chip R/W A single thread Thread

Shared On-chip R/W All threads in a single thread block Thread block

Global Off-chip R/W All threads and host Application

Texture Off-chip R All threads and host Application

Constant Off-chip R All threads and host Application

Table 2.2: Overview of the memory spaces available in the CUDA programming model (ac-

cording to [NVI10a], adapted).

are the thread scheduler’s possibilities to hide latencies. Moreover, the total resource

requirements of the threads of a thread block must not exceed the resource capacities

of a multiprocessor, since all threads of a thread block are concurrently resident on a

single multiprocessor.

The Fermi GPU executes accesses to off-chip video memory at a fix granularity

of 128 bytes, i.e., the GPU reads or writes contiguous blocks of 128 bytes that are

aligned at 128-byte boundaries. The hardware coalesces parallel memory accesses

of the threads of a warp that lie in the same 128-byte segment into a single memory

transaction. To reduce memory access latencies as well as to effectively exploit the

GPU’s memory bandwidth, parallel accesses of the threads of a warp should therefore

lie closely packed in memory. Specifically, if the i-th thread of a warp (half warp)

accesses the i-th 32-bit (64-bit) word of a 128-byte segment, these accesses are com-

bined into a single memory transaction and the GPU’s memory bandwidth is optimally

used. Accesses to off-chip video memory are cached by a two-level cache hierarchy of

limited size.

In the CUDA programming model, several memory spaces are available (see Table

2.2 for an overview). Registers are local to a single thread. Since they are located on-

chip, register accesses are very fast. Registers are managed entirely by the compiler to

store automatic variables. Local memory is also local to a single thread, but in contrast

to registers, local memory is located in off-chip video memory. Access speed is the

same as for global memory, i.e., accesses are cached by the GPU’s two-level cache

hierarchy, and cache misses come with high latencies. Local memory is used by the

compiler to temporarily spill registers when the number of available registers per thread

is not sufficient. Shared memory is local to a single thread block, i.e., can be accessed

by all threads of this thread block. Since shared memory is located in the small on-

chip memory block of each multiprocessor, accesses are very fast. Shared memory

is typically used for thread cooperation, i.e., to exchange data among the threads of a

thread block, or as a manually managed cache for global memory to reduce the number
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of redundant global memory accesses. Global memory is accessible from all threads

and the host CPU. In particular, data stored in global memory are persistent for the

entire lifetime of an application. Global memory is located in off-chip video memory.

Accesses to global memory are cached by the GPU’s two-level cache hierarchy. In case

of a cache miss, a global memory access comes with a significantly higher latency than

an access to on-chip registers or shared memory. Texture memory and constant memory

are two further memory spaces that are globally accessible to all threads, persistent

for the lifetime of an application, and located in off-chip video memory. These two

memory spaces are read-only from the GPU, and can be read and written by the host

CPU via memory copies. In addition, parts of the global memory space can be blended

into the texture memory space. Accesses to texture and constant memory are cached

by a small, separate texture and constant cache, respectively. Using texture memory

enables to exploit the GPU’s texture units for (low-precision) interpolation and handling

of boundary cases.

As a consequence of the specific parallel architecture of the GPU, to effectively

exploit the GPU’s high computational power and memory bandwidth, several program-

ming guidelines have to be considered. First, a computation must exhibit a sufficient

amount of fine-grained parallelism to fully occupy the GPU’s large number of parallel

processing units. Second, the threads in the same warp should follow the same ex-

ecution path to avoid serial execution of different branches. Third, it is important to

choose memory layouts that support coalescing of memory access operations to opti-

mally use the GPU’s memory bandwidth. Fourth, the resource requirements (registers

and shared memory) per thread and thread block should be kept at a minimum such

that a high number of threads can be concurrently resident on the GPU, which enables

the hardware scheduler to effectively hide latencies. Fifth, it must be considered that

only the threads in the same thread block can be synchronized during runtime of a ker-

nel. Global synchronization can only be achieved by sequentially executing separate

kernels.
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Chapter 3

A Real-Time Multigrid Finite

Hexahedra Method for Elasticity

Simulation using CUDA

In this chapter, we present a multigrid approach for simulating linear elastic deformable

objects in real time on recent NVIDIA GPU architectures. To accurately simulate de-

formations exhibiting large rotations we use the corotational formulation of strain. Our

method is based on a finite element discretization of the deformable object using hex-

ahedra. It draws upon recent work on multigrid schemes for the efficient numerical

solution of partial differential equations on such discretizations. Due to the regular

shape of the numerical stencil induced by the hexahedral regime, and since we use

matrix-free formulations of all multigrid steps, computations and data layout can be

restructured to avoid execution divergence of parallel running threads and to enable

coalescing of memory accesses into single memory transactions. This enables to effec-

tively exploit the GPU’s parallel processing units and high memory bandwidth via the

CUDA computing API. We demonstrate performance gains of up to a factor of 27 and 4

compared to a highly optimized CPU implementation on a single CPU core and 8 CPU

cores, respectively. For hexahedral models consisting of as many as 269,000 elements

our approach achieves physics-based simulation at 11 time steps per second.

This chapter is based on material that has been originally published in C. Dick, J. Georgii, and R. Westermann,

A real-time multigrid finite hexahedra method for elasticity simulation using CUDA, Simulation Modelling Practice

and Theory 19 (2011), no. 2, 801–816 [DGW11b]. The copyright for this material is owned by Elsevier.

53
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Figure 3.1: Left: A deformed hexahedral object consisting of 30,000 elements is shown. Right:

By using a high-resolution render surface that is bound to the deformed representation a visually

continuous appearance is achieved.

3.1 Introduction

Over the last years, graphics processing units (GPUs) have shown a substantial per-

formance increase on intrinsically parallel computations. Key to this evolution is the

GPU’s design for massively parallel tasks, with the emphasis on maximizing total

throughput of all parallel units. The ability to simultaneously use many processing

units and to exploit thread level parallelism to hide latency have led to impressive per-

formance increases in a number of scientific applications. One prominent example is

NVIDIA’s Fermi GPU [NVI09], on which we have based our current developments.

We present a novel geometric multigrid finite element method on the GPU, and we

show the potential of this method for simulating elastic objects in real time on desktop

PCs. To the best of our knowledge, this is the first multigrid finite element approach

for solving linear elasticity problems that is realized entirely on the GPU. Since we use

the corotational formulation of strain, even deformations that exhibit large rotations can

be simulated at high physical accuracy. The CUDA computing API [NVI10b] is used

because in contrast to graphics APIs like OpenGL or Direct3D it gives the programmer

direct control over all available computing and memory resources on the GPU.

To effectively exploit the GPU’s massively parallel multi-threading architecture, an

algorithm must be restructured to expose a sufficient amount of fine-grained parallelism

down or beyond one thread per data element. These threads should follow one common

execution path and exhibit memory access patterns that enable coalescing of memory

accesses to effectively exploit the massive number of processing units and the massive

memory bandwidth available on the GPU.
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The particular restructuring we propose is based on a regular hexahedral discretiza-

tion of the simulation domain, which provides a number of advantages for GPU-based

deformable object simulation: First, a hexahedral discretization of a given object bound-

ary surface can be generated in a robust way and at very high speed, including a multi-

resolution representation, which is required in a geometric multigrid approach. Second,

the regular topology of the hexahedral grid leads to a numerical stencil of the same

regular shape at each simulation vertex. This enables parallel processing of vertices

using the same execution path and allows for memory layouts that support coalesc-

ing of memory access operations. Third, since all hexahedral elements have the same

shape, only the precomputed element matrices of a single element are needed, which

greatly reduces memory requirements. The mass and stiffness matrices of a specific

finite element are obtained from these matrices by scaling with the element’s density

and Young’s modulus, respectively.

Due to these advantages, we achieve performance gains of up to a factor of 27

compared to an optimized parallel CPU implementation running on a single CPU core.

Even compared to the CPU implementation running on 8 CPU cores, our GPU imple-

mentation is a factor of up to 4 faster. This speed-up results from both the arithmetic

and memory throughput on the Fermi GPU. Our CUDA implementation of the multi-

grid method achieves update rates of 120 time steps per second for models consisting

of 12,000 hexahedral elements. For large models consisting of 269,000 elements, 11

time steps per second can still be achieved. Each time step includes the re-assembly

of the system of equations, which is necessary due to the co-rotated strain formula-

tion, as well as two multigrid V-cycles for solving this system. In combination with

a high-resolution render surface, which is bound to the simulation model via precom-

puted interpolation weights, a visually continuous rendering of the deformable body is

achieved (see Figure 3.1).

3.2 Related Work

Over the last years, considerable effort has been spent on the efficient realization of

general techniques of numerical computing on programmable GPUs [HG07, OHL+08].

Recent work in this field has increasingly focused on the use of the CUDA computing

API [NVI10b], addressing a multitude of different applications ranging from image

processing and scientific visualization to fluid simulation and protein folding.

Over the last decades, extensive research has been pursued on the use of three-

dimensional finite element (FE) methods to predict the mechanical response of de-
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formable materials to applied forces (see, for example, [Bat02] for a thorough overview).

FE methods are attractive because they can realistically simulate the dynamic behav-

ior of elastic materials, including the simulation of internal stresses due to exerted

forces. Algorithmic improvements of FE methods, steering towards real-time simu-

lation for computer animation and virtual surgery simulation have been addressed in

[BNC96, CDA99, MDM+02, EKS03].

In real-time applications, most commonly the linearized theory of elasticity based

on the infinitesimal strain tensor is used. However, since the infinitesimal strain tensor

is not invariant under rotations, computed displacements tend to diverge from the cor-

rect solution in case of large rotations. The corotational formulation of strain [RB86]

accounts explicitly for the per-element rotations in the strain computation and thus can

handle non-linear relations in the elastic quantities. The efficient integration of the coro-

tational formulation into real-time approaches has been demonstrated in [MDM+02,

HS04, GW08].

Among the fastest numerical solution methods for solving the systems of linear

equations arising in deformable model simulation are multigrid methods [Bra77, Hac85,

BHM00]. In a number of previous works, geometric multigrid schemes for solving

the partial differential equations describing elastic deformations have been developed

[PH90, AD99, SB10]. Interactive multigrid approaches for simulating linear elastic

materials on tetrahedral and hexahedral grids have been proposed in [WT04, GW06]

and [DGBW08], respectively.

FE-based deformable body simulation on the GPU has been addressed in a number

of publications. The exploitation of a GPU-based conjugate gradient solver for acceler-

ating the numerical simulation of the FE model has been reported in [WH04, LJWD08].

[RNS06] presented a GPU-based FE surface method for cloth simulation. An overview

of early GPU-accelerated techniques for surgical simulation is given by [SM06]. These

approaches are mainly based on mass-spring systems [MHS05]. Finite element solvers

for non-linear elasticity simulation using graphics APIs and CUDA were presented by

[TCO08] and [CTA+08], respectively. Both approaches build upon Lagrangian explicit

dynamics [MJLW07] to avoid locking effects. While [TCO08] employed a tetrahedral

domain discretization, a discretization using hexahedral finite elements was used by

[CTA+08]. [GSMY+08] demonstrated clear performance gains for a multigrid Poisson

solver on the GPU.
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3.3 GPU-Aware Elasticity Simulation

In the following we outline the algorithms that are used to enable fast and stable numer-

ical simulation of deformable bodies based on linear elasticity combined with the coro-

tational formulation of strain to accurately simulate deformations with large rotations.

Special emphasis is put on the restructuring of these algorithms to support an efficient

mapping onto the GPU, involving matrix-free formulations of all computational steps.

3.3.1 Finite Element Discretization

Our approach is based on a finite element discretization of the deformable object using

hexahedral elements with trilinear shape functions. The discretization is built from a

voxelization of the object into a Cartesian grid structure, i.e., each voxel is classified

as inside or outside of the object boundary. The simulation model is then obtained by

creating a hexahedral finite element for each interior voxel.

The regular hexahedral structure gives rise to a very efficient construction of a

nested grid hierarchy, which is essential for exploiting geometric multigrid schemes

at their full potential. Due to the regular structure of the hexahedral discretization,

computations can be parallelized effectively on SIMD architectures like GPUs.

The finite element discretization of the governing partial differential equation leads

to the per-element equations

8∑

j=1

(
M e

[ij]üj +De
[ij]u̇j +Ke

[ij]uj

)
= f e

[i] , i = 1, . . . , 8, (3.1)

where M e, De, Ke, and f e are the element mass matrix, the element damping matrix,

the element stiffness matrix, and the element load vector, respectively (see Chapter 2 for

details). Here, uj are the displacement vectors at the element’s vertices (j = 1, . . . , 8),

and u̇j and üj their first and second time derivatives.

Since all finite elements have the same shape, all element matrices can be obtained

from the precomputed element matrices of a single, generic element by scaling with the

element’s density and Young’s modulus values (see Section 2.2.3). We use velocity-

dependent Rayleigh damping, meaning that the element damping matrices are defined

by De = α1M
e + α2K

e with α1, α2 ≥ 0. Requiring only a single element mass and

stiffness matrix accelerates the setup phase for the simulation and significantly reduces

memory requirements.

For the corotational formulation of strain, the term Ke
[ij]uj in Equation (3.1) is re-
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placed by the term ReKe
[ij]

(
(Re)T(xj + uj)− xj

)
, where Re is the current element

rotation, and xj are the positions of the element’s vertices in the reference configura-

tion:

8∑

j=1

(
Me

[ij]üj +De
[ij]u̇j +ReKe

[ij](R
e)T

︸ ︷︷ ︸
Âe

[ij]

uj

)
=

fe
[i] −ReKe

[ij]

(
(Re)Txj − xj

)

︸ ︷︷ ︸
b̂e
[i]

, i = 1, . . . , 8. (3.2)

Applying the Newmark time integration scheme

u̇j =
2

dt

(
uj − uold

j

)
− u̇old

j , (3.3a)

üj =
4

dt2
(
uj − uold

j − u̇old
j dt

)
− üold

j , (3.3b)

finally leads to

8∑

j=1

(
4

dt2
Me

[ij] +
2

dt
De

[ij] + Âe
[ij]

)

︸ ︷︷ ︸
Ae

[ij]

uj =

b̂e[i] +

8∑

j=1

(
Me

[ij]

(
4

dt2
(
uold
j + u̇old

j dt
)
+ üold

j

)
+De

[ij]

(
2

dt
uold
j + u̇old

j

))

︸ ︷︷ ︸
be
[i]

,

i = 1, . . . , 8, (3.4)

where uold
j , u̇j

old, üold
j are the displacement vectors and their time derivatives of the

previous time step, and dt denotes the length of the time step.

The global linear system of equations is assembled from the per-element equations

by taking into account that elements share vertices, i.e., that there is one common

uj at a shared vertex. More precisely, a per-vertex equation is built for every vertex

x = (x1, x2, x3) of the finite element grid by accumulating the respective per-element

equations from the 8 incident hexahedra. x denotes integer coordinates of the vertex

with respect to the underlying hexahedral grid. This results in per-vertex equations that

reside on a 33 stencil of 27 adjacent vertices (this stencil may be cropped at the object

boundary):
1∑

i=−1

Ax
i ux+i = bx. (3.5)



3.3. GPU-AWARE ELASTICITY SIMULATION 59

Here, Ax
i is the accumulated 3 × 3-matrix coefficient associated with the adjacent ver-

tex x+i, where i = (i1, i2, i3) is the relative position of the adjacent vertex with respect

to vertex x. The notation i = −1, . . . ,1 means iterating over all 27 3-tuples of the set

{−1, 0, 1}3, i.e. (−1,−1,−1), (0,−1,−1), (1,−1,−1), . . . , (1, 1, 1). ux denotes the

displacement vector at vertex x, and bx is the accumulated right-hand side vector of

the per-vertex equation of vertex x. Dirichlet boundary conditions are implemented by

replacing the per-vertex equations of fixed vertices with dummy equations 1ux = u0
x.

To maintain the symmetry of the global system matrix, we also adapt the per-vertex

equations of the free vertices by bringing the coefficients associated with fixed vertices

to the right-hand side (see Section 2.3).

3.3.2 Multigrid Solver

Numerical multigrid solvers are known to be among the most efficient solvers for the

linear systems of equations arising from the discretization of elliptic second-order par-

tial differential equations. Our geometric multigrid solver extends previous work by

introducing a method to perform the computations for every element or vertex in lock-

step using only coordinated memory accesses. Due to this property, the solver can

effectively be mapped onto the GPU via the CUDA API.

Coarse Grid Hierarchy From a given hexahedral finite element grid, a coarse grid

hierarchy is built in a bottom-up process by successively considering hexahedral grids

of double cell size, i.e., the domain of a cell on the next coarser level coincides with the

domain of a block of 23 cells on the current level. The respective next coarser level is

constructed by creating a cell if it covers at least one cell on the current level. On each

hierarchy level a shared vertex representation is computed. This process is repeated

until the number of vertices on the coarsest level is below a given threshold. Note

that this construction process does not impose any restrictions on the size of the initial

hexahedral model on the finest level. In particular, a cell on the next coarser level is

allowed to be only partially ‘filled’ with cells on the current level, for instance, at the

object boundary.

Coarse Grid Equations In the following, the respective current level and the next

coarser level of the grid hierarchy are indicated by sub- and superscripts h and 2h,

referring to the levels’ relative grid spacings. The multigrid solver requires coarse grid

versions of the system matrix A as well as restriction and interpolation operators to

transfer quantities between subsequent grid levels. We use trilinear interpolation for the
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Restriction Interpolation
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Figure 3.2: Weights used to transfer quantities between two adjacent grids in the multigrid

hierarchy (blue and red vertices belong to the finer and the coarser grid, respectively). For

simplicity, the weights are shown only for selected vertices in 2D.

multigrid interpolation operator Ih
2h, and the multigrid restriction operator R2h

h is cho-

sen to be the transpose of the interpolation operator, i.e., R2h
h = (Ih

2h)
T. Furthermore,

we use Galerkin-based coarsening, i.e., the coarse grid versions of the system matrix

are successively built from fine to coarse grids via A2h = R2h
h Ah Ih

2h. In a matrix-free

formulation, the coarse grid equations are built by distributing the equations at the fine

grid vertices to the coarse grid vertices and by simultaneously substituting the fine grid

unknowns by interpolation from the coarse grid unknowns, using the weights illustrated

in Figure 3.2.

To construct the equations on the coarse grids, we propose a two-step approach as

illustrated in Figure 3.3. First, the equations at the fine grid vertices are distributed to

the coarse grid vertices (this is the restriction R2h
h , corresponding to computing linear

combinations of the rows of Ah), yielding a 53 stencil on the fine grid with associated

coefficients B. Second, these coefficients are distributed to the coarse grid vertices

(this is the interpolation Ih
2h, corresponding to computing linear combinations of the

columns of Ah), thereby reducing the stencil to a 33 domain on the coarse grid. Note

that the coarse grid vertex x corresponds to the fine grid vertex 2x due to the different

grid spacings. The construction is described by the following equations:

hBx
i =

1∑

k=−1

|ij−kj |≤1 , j=1,2,3

wk
hA2x+k

i−k , i = −2, . . . ,2, (3.6)

2hAx
i =

1∑

k=−1

|2ij+kj |≤2 , j=1,2,3

wk
hBx

2i+k , i = −1, . . . ,1. (3.7)
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Figure 3.3: Illustration of the construction of the coarse grid equation for a specific vertex

(center vertex marked with a red arrow). In the first step (left), a linear combination of the

per-vertex equations (their stencils and the used weights are shown in different colors) in the

33 fine grid (blue vertices) neighborhood of the considered vertex is computed. The resulting

equation resides on a 53 stencil on the fine grid. In the second step (right), this equations is

restricted to a 33 stencil (shown in red color) on the coarse grid (red vertices) by substituting

the unknowns at the fine grid vertices by interpolation from the unknowns at the coarse grid

vertices, corresponding to a distribution of the respective coefficients from the fine grid to the

coarse grid vertices (black arrows and weights). Note that the weights shown in the figure

correspond to the 2D case; the weights for the 3D case are given in the text.

In these equations, wk = (2 − |k1|) (2 − |k2|) (2 − |k3|)/8 are the weights used for

restriction and interpolation. The additional conditions for the summation index vari-

ables ensure that no coefficients are fetched outside the valid ranges (−1, . . . ,1 for

coefficients A, and −2, . . . ,2 for coefficients B).

Multigrid V-Cycle The linear system of equations is solved by performing multigrid

V-cycles, each consisting of the following steps:

1. Gauss-Seidel relaxation of the per-vertex equations (Equation 3.5) (n1 steps).

2. Computation of the residual rh
x:

rh
x = bhx −

1∑

i=−1

hAx
i uh

x+i. (3.8)
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3. Restriction of the residual to the next coarser grid:

r2h
x =

1∑

i=−1

wi r
h
2x+i. (3.9)

4. On the next coarser grid, the error e2h
x corresponding to the residual is determined

by the residual equation

1∑

i=−1

2hAx
i e2h

x+i = r2h
x . (3.10)

The residual equation is solved by applying this scheme recursively (e2h
x ≡ u2h

x ,

r2h
x ≡ b2hx ) or solved directly if the coarsest level is reached.

5. Interpolation of the error back from the next coarser grid:

eh
x =

1∑

i=−1

x+i≡0 (mod 2)

wi e
2h
(x+i)/2 . (3.11)

The condition x + i ≡ 0 (mod 2) ensures that only coarse grid locations are

considered.

6. Coarse grid correction: uh
x ← uh

x + eh
x.

7. Gauss-Seidel relaxation of the per-vertex equations (Equation 3.5) (n2 steps).

In our implementation, we use n1 = 2 pre-smoothing and n2 = 1 post-smoothing

decoupled Gauss-Seidel relaxation steps per V-cycle (ω = 1). On the coarsest level, a

conjugate gradient solver is employed.

3.4 CUDA Implementation

The CUDA implementation of the multigrid finite hexahedra method consists of two

parts: a preprocess for creating the finite element model, including the multigrid hierar-

chy, and the real-time simulation of the deformable model. In the preprocess, the finite

element model is constructed and packed into several index arrays, which are stored in

GPU memory. Then, the finite element model is used for the real-time simulation of

the object’s deformations due to applied forces.
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In the following, we first explain the data structures used to represent the finite el-

ement model in GPU memory (Section 3.4.1). We then show how the computations

are parallelized and mapped onto the CUDA threading model (Section 3.4.2). The

description of our CUDA implementation is completed by presenting a memory lay-

out that enables coalesced memory accesses and thus facilitates using the full memory

bandwidth available on the GPU (Section 3.4.3).

3.4.1 Data Structures

The finite element model, including the multigrid hierarchy, is stored on the GPU using

an indexed representation, i.e., finite elements and vertices1 are addressed via indices.

These indices are determined by enumerating the finite elements and the vertices in a

specific order that will be explained in Section 3.4.3. The indices are counted from 0

and represented as 32-bit integer values. When referencing neighbors, parents, etc., a

special index value of −1 is used to specify that an element or vertex is not existing.

For each finite element, we store its incident vertices, yielding an array with eight

indices per element. For each vertex in the multigrid hierarchy, we store its neighbor

vertices, i.e., the vertices in the 33 domain of the numerical stencil (array with 27 indices

per vertex), the vertices on the next finer level that restrict to the considered vertex

(array with 27 indices per vertex), as well as the vertices on the next coarser level which

the considered vertex interpolates from (array with eight indices per vertex). Note that

only up to 8 of the potential 27 indices in Equation 3.11 are required due to the condition

that vertices have to lie on the coarse grid. If less vertices are required, we store −1
to mark invalid indices. For each vertex on the simulation level, we additionally store

its incident finite elements (array with eight indices per vertex), as well as its initial

position in the undeformed state (array with three scalars per vertex). Note that these

arrays are read-only, i.e., do not change during runtime.

Furthermore, for each finite element, we store the elastic modulus and density (two

arrays, each with one scalar per element), and for each vertex on the simulation level,

we store the external force vector acting at that vertex (array with three scalars per

vertex) and whether the vertex is free or fixed (array with one bool per vertex). These

three arrays can be written during runtime, for example to interactively change the

applied forces or to adapt the stiffness of the finite elements.

The numerical simulation requires further arrays: For each finite element, we store a

1Note that the term ‘finite element’ only refers to the grid cells on the simulation level (i.e., the finest level)

of the multigrid hierarchy, but ‘vertices’ refers to the vertices on all levels of the multigrid hierarchy, unless noted

otherwise.
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rotation matrix according to the corotational strain formulation (array with nine scalars

per element). For each vertex in the multigrid hierarchy, we allocate memory for the

per-vertex equations, i.e., the 3 × 3-matrix coefficients hAx
i (array with 27 · 9 scalars

per vertex), the right-hand side vectors bhx (array with three scalars per vertex), the dis-

placement vectors uh
x (array with three scalars per vertex), and the residual vectors rh

x

(array with three scalars per vertex). For each vertex on the simulation level, we fur-

thermore store the displacement vectors uold
x and their first and second time derivatives

u̇old
x , üold

x of the previous time step for Newmark time integration (three arrays, each

with three scalars per vertex).

It is worth noting that the index-based representation of the finite element model—

in contrast to an index-free representation based on a rectangular domain with implicit

neighborhood relationships—has the advantage of requiring significantly less memory.

This is due to the fact that the memory overhead induced by the index structures is small

compared to the memory that would have to be allocated for the per-vertex equations for

void regions outside of the object. Another advantage of the index-based representation

is that it yields compact lists of elements and vertices (no void ranges), which greatly

simplifies an efficient mapping of the computation onto the CUDA threading model, as

shown in the next section. Despite of its slightly more irregular nature, we will show

in Section 3.4.3 that the index-based representation nevertheless allows for CUDA-

friendly memory layouts and can thus exploit the full bandwidth provided by the GPU.

3.4.2 Parallelization

In the following we discuss how the substeps of one simulation time step are paral-

lelized and mapped onto the CUDA threading model. Note that we are using the coro-

tational strain formulation, which requires to update the simulation level equations as

well as the coarse grid equations in every time step to consider the current element

rotations.

Computation of the Element Rotations The element rotations are computed by polar

decomposition [Hig86] of the elements’ average deformation gradients. To parallelize

these computations, we assign one CUDA thread to each finite element. Each thread

fetches the current displacement vectors at the element’s vertices from global GPU

memory, determines the average deformation gradient, and iteratively computes its po-

lar decomposition using five iteration steps. The resulting rotation matrix is stored in

global memory.
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Assembly of Simulation Level Equations For the assembly of the per-vertex equations

on the simulation level, we assign one CUDA thread to each vertex. Each thread fetches

the indices of the incident elements, and then loads the elements’ density and elastic

modulus values as well as the elements’ current rotations. Furthermore, the thread

fetches the external force applied at its vertex, the displacement vector at this vertex

and its first and second time derivatives of the previous time step, as well as the ini-

tial positions and the fixation status of the vertices in the 33 neighborhood. Using the

precomputed element matrices of a single, generic element, which are stored in cached

constant memory, the thread assembles the per-vertex equation consisting of the 27

3 × 3-matrix coefficients as well as the right-hand side vector. Trading using an exces-

sive number of registers per thread for an increase of memory traffic, the coefficients

are assembled in global memory using read-modify-write operations.

Assembly of Coarse Grid Equations The levels of the multigrid hierarchy are assem-

bled successively with one kernel call per level. We assign 9 CUDA threads to each ver-

tex of the current level. The 9 threads first load the vertex indices of the corresponding

33 neighborhood on the previous finer level into shared memory. They then assemble

the 27 3 × 3-matrix coefficients of the per-vertex equation. Each thread computes one

of the 9 scalar components of every coefficient. To avoid costly read-modify-write op-

erations to global memory, each thread uses 27 registers to accumulate the coefficients.

To ensure lock-step execution, we map each group of 32 vertices onto 9 warps (9 × 32

threads) such that the i-th thread of each warp is assigned to the i-th vertex.

Gauss-Seidel Relaxation The sequential version of the Gauss-Seidel algorithm tra-

verses the vertices at a particular level and successively relaxes each per-vertex equa-

tion. For the relaxation of an equation, the updated displacement vectors at the pre-

viously visited vertices are used. To parallelize the Gauss-Seidel algorithm, these de-

pendencies have to be considered. We employ the so-called multi-color Gauss-Seidel

algorithm, which partitions the set of vertices into multiple subsets such that the ver-

tices within each subset can be relaxed in parallel. The subsets, however, have to be

processed sequentially. For the numerical stencil in our application, 8 subsets are re-

quired. They are defined by {x | x1 mod 2 = i1, x2 mod 2 = i2, x3 mod 2 = i3},
i ∈ {0, 1}3, i.e., when dividing the domain into blocks of 23 vertices, the k-th vertex

(k = 1, . . . , 8) of each block belongs to the k-th subset.

To process the subsets sequentially, we issue one CUDA kernel call per subset.

To compensate the reduced parallelism, which is especially important for medium-
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resolution finite element models having only a moderate number of vertices, we assign

13 CUDA threads to each vertex. Each thread computes two summands of the sum in

Equation 3.5. For each summand, the thread first fetches the index of the respective

neighbor vertex, and then fetches the corresponding displacement vector. The respec-

tive 3 × 3-matrix coefficients are also loaded from global memory. The sum is then

computed by a logarithmic reduction operation. The first thread finally computes the

new displacement vector and writes it back into global memory. To ensure lock-step

execution, we map each group of 32 vertices onto 13 warps (13× 32 threads) such that

the i-th thread of each warp is assigned to the i-th vertex.

Computation of Residual For the computation of the residual, we assign one CUDA

thread to each vertex. The computation is similar to the computation performed in the

Gauss-Seidel relaxation step. In contrast, however, the residual computation does not

exhibit any data dependencies, thus all vertices can be processed in parallel.

Transfer Operators For the transfer operators, we again assign one CUDA thread to

each vertex. For the restriction operator, each thread iterates over the corresponding

neighborhood on the next finer level to compute a weighted average of the residual

vectors. For each neighbor, the thread first fetches the respective vertex index, and then

loads the corresponding residual vector. The weighted average is finally written back

into global memory, constituting the right-hand side vector of the per-vertex equation

of the thread’s vertex. Additionally, the thread initializes the displacement vector at its

vertex with 0.

The interpolation operator is implemented in a similar way. Each thread iterates

over the corresponding neighborhood on the next coarser level and computes a weighted

average of the coarse grid correction vectors. This vector is added to the displacement

vector at the thread’s vertex.

Note that the transfer operators have to be implemented as gathering operations.

Scattering would require atomic read-modify-write accesses to global GPU memory,

since multiple threads might scatter to the same memory location. Furthermore, read-

modify-write operations would increase memory traffic.

Conjugate Gradient Solver on the Coarsest Level Considering that the number of ver-

tices on the coarsest level is too small to fully exploit the parallelism offered by the

GPU, and that global synchronization via multiple kernel calls is rather expensive, we

run the conjugate gradient solver for the coarsest level on a single multiprocessor. We
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assign one CUDA thread to each vertex. The maximum number of vertices on the coars-

est level is thus limited by the maximum number of threads per thread block (1024 on

the Fermi GPU). To obtain an efficient multigrid V-cycle we use as many multigrid lev-

els as are required to reduce the number of vertices on the coarsest level to less than 512.

In the CUDA threading model, threads are organized in larger groups called thread

blocks. All threads in a thread block are scheduled on the same multiprocessor and

can cooperate via on-chip shared memory. For our implementation, experiments have

shown that using a thread block of minimum size (32 elements/vertices per thread

block) yields the best performance.

3.4.3 CUDA-friendly Memory Layout

The simulation of deformable objects comes with high memory requirements. Due

to the underlying finite element discretization, the numerical stencil of a single vertex

consists of 27 coefficients, with each coefficient being a 3 × 3-matrix. Moreover, the

stencil is not constant for all vertices, but it varies due to different material parame-

ters associated with each element and due to the corotational strain formulation. The

numerical stencil leads to memory requirements of about 1 KB per vertex using 32-bit

single floating point precision (2 KB per vertex using double precision).

A primary goal of our CUDA implementation thus is to effectively exploit the high

memory bandwidth available on the GPU. In contrast to CPUs, maintaining data lo-

cality is not the main criterion for optimizing memory throughput on the GPU. Due

to the specific hardware architecture of CUDA-enabled GPUs, it is mandatory to thor-

oughly coordinate memory access operations of parallel running threads in such a way

that multiple memory accesses can be coalesced into single memory transactions. The

Fermi GPU performs memory accesses at a fix granularity of 128 bytes, i.e., the GPU

reads and writes entire blocks of 128 bytes that are aligned at 128-byte boundaries.

Parallel memory accesses of the threads of a warp (consisting of 32 threads running in

lock-step) that lie in the same 128-byte segment are coalesced into one single transac-

tion. To maximize memory throughput, data thus should be organized in such a way

that the i-th thread of a warp (half warp) accesses the i-th 32-bit (64-bit) word of a 128-

byte segment. It is worth noting that without coalesced memory accesses, the effective

memory throughput can decrease down to 1/32 of the GPU’s memory bandwidth (in

the case of requiring just a single 32-bit word of a 128-byte segment). Furthermore,

since all threads in a warp are blocked until all memory access operations of the warp

are finished, considerably higher latencies are introduced.
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Figure 3.4: Memory layout for a generic array v with n elements, each consisting of m 32-

bit scalar components. vij denotes the j-th component of the i-th element of the array. The

j-th components of all elements are stored sequentially in a separate memory block. If the i-th
thread accesses the i-th element, the memory accesses can be optimally coalesced into 128-byte

memory transactions (blue).

In the following, we describe how the data used in our application are stored in

memory to allow for coalesced memory access operations. The main principle is to

store each array of vectors or matrices such that their scalar components are grouped

into separate memory blocks, i.e., the j-th components of all vectors/matrices of the

array are sequentially stored in the j-th block. For the assignment of indices to the finite

elements and vertices, we enumerate the elements as well as the vertices of each subset

(for the multi-color Gauss-Seidel algorithm) in lexicographical order according to their

3D integer position (z first, y second, x third), with the vertices being enumerated

continuously over all subsets and multigrid levels.

To align the memory accesses of warps at multiples of 128 bytes, the number of

vertices per subset are rounded up to multiples of 32, i.e, the index of the first vertex of

each subset is a multiple of 32. (The additional dummy vertices are marked as invalid

by storing −1 in all index structures corresponding to these vertices.) In Figure 3.4, we

illustrate this memory layout for a generic array consisting of n elements with m scalar
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Figure 3.5: Illustration of the efficiency for accessing data at the neighboring vertices. The

colors of the vertices correspond to the subsets used for multi-color Gauss-Seidel relaxation.

The numbers denote the indices of the vertices and correspond to the relative location of the

per-vertex data in memory. In the example, the green vertices access data stored at their lower-

left neighbors, which are all in the same subset (red vertices). Note that if the threads are

sequentially assigned to the green vertices, the threads access the data at the neighbor vertices

in contiguous memory blocks (except at the object’s boundary).

components per element. For each kernel call, we map each contiguous block of 32

indices onto a warp (or several warps) of 32 threads. If the i-th thread accesses the i-th

element of the array, the memory accesses are maximally coalesced and yield optimal

memory throughput.

In our application, this setting is always met when a thread assigned to a specific

element or vertex accesses data that are specific to that element or thread. However,

when a thread accesses data belonging to a neighboring vertex (for example, when ac-

cessing the displacement vectors u in the Gauss-Seidel relaxation step), the situation is

slightly different. In this case, the threads belonging to a warp still read a contiguous

block of memory (except at the object’s boundary), as illustrated in Figure 3.5. How-

ever, since this block in general is not aligned at a 128-byte boundary, the hardware can

only coalesce these memory accesses into two instead of one memory transaction.

3.5 Rendering

Even though the proposed CUDA implementation of elasticity simulation allows using

model discretizations at reasonable resolution, a high-resolution render surface is re-

quired to achieve a visually continuous representation. To maintain and render such a

representation efficiently on the GPU, we use CUDA and the graphics API Direct3D in

combination.

We use the triangle surface mesh that is initially used to build the finite element

model by voxelization. This surface mesh is stored in GPU memory, represented as
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Figure 3.6: Binding of a high-resolution render surface (blue) to the hexahedral simulation grid.

Each render surface vertex is bound to the closest hexahedron with respect to the center of the

elements (gray dashed lines). Magenta arrows indicate the element vertices used for trilinear

interpolation/extrapolation (for simplicity shown only for two selected vertices).

an Direct3D index array that contains for every triangle references into a shared vertex

array with associated per-vertex attributes. The shared vertex array is stored on the

GPU as an Direct3D buffer object. Notably CUDA can directly write into Direct3D

resources, thereby avoiding any copying operations.

The vertices of the render surface are bound to the vertices of the simulation grid

via interpolation weights as illustrated in Figure 3.6. For every render vertex, we deter-

mine the simulation element closest to this vertex—by using the distance between the

vertex and the element center—and compute the trilinear interpolation/extrapolation

weights of the element vertices. These weights, together with respective references to

the simulation vertices, are computed in the preprocess and stored in GPU memory.

At runtime, the displacement vectors at the simulation vertices are computed via

CUDA as proposed in the previous Section, and the render surface vertices are updated

according to these displacements using the precomputed weights. Note that also the last

step is performed via a CUDA compute kernel, which directly updates the Direct3D

vertex array. Finally, the render surface is displayed using triangle rasterization.

3.6 Results

We analyze the performance of our CUDA-based multigrid finite element approach

for simulating deformable objects using the Stanford bunny model at different reso-

lutions, ranging from 12,000 to 269,000 hexahedral finite elements (see Figure 3.13).

All of our experiments were run on a high-end workstation, equipped with two quad

core Intel Xeon X5560 processors (based on the Nehalem microarchitecture) running at

2.8 GHz, 48 GB of DDR3 1333 MHz RAM, and an NVIDIA GeForce GTX 480 graph-
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Figure 3.7: Illustration of the architecture of the workstation used for performance measure-

ments.

ics card with 1.5 GB of video memory (see Figure 3.7). Each CPU core can issue a

SIMD floating point ADD and a SIMD floating point MUL operation simultaneously

in every clock cycle (with a SIMD width of 4 for single and 2 for double floating point

precision). Each CPU with 4 cores thus exhibits a theoretical peak performance of 89.6

GFLOPS for single and 44.8 GFLOPS for double precision. Respectively half of the

RAM is attached to each CPU’s internal memory controller via triple channel, yielding

an overall theoretical memory bandwidth of 29.8 GB/s per CPU. The two CPUs and

the northbridge communicate via point-to-point quick path interconnect (QPI), which

provides a theoretical bandwidth of 11.9 GB/s in each direction. Note that our system

has a non-uniform memory access (NUMA) architecture, since accesses to a CPU’s re-

spective local memory are faster than accesses to its respective remote memory, which

have to be performed via quick path interconnect.

The Fermi GPU on the graphics card is equipped with 480 scalar CUDA cores, run-

ning at 1401 MHz. Each of these cores is capable of performing one fused multiply-add

(FMA) operation per clock at single floating point precision, or one FMA operation ev-

ery two clocks at double precision. However, on the consumer-level NVIDIA GTX 480

graphics card, only 1/4 of the double precision floating point performance of the Fermi

GPU is available. This corresponds to a theoretical peak performance of 1.34 TFLOPS

for single and 168 GFLOPS for double precision. The theoretical memory bandwidth

between the GPU and the video memory is 165 GB/s.
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Model #MG GPU CPU, 1 Core CPU, 2 Cores

#Hex. #Vert. Levels Steps/s GFLOPS GB/s Steps/s GFLOPS GB/s Steps/s GFLOPS GB/s

11,900 14,600 4 120 33.3 45.6 7.92 2.21 3.02 14.9 4.16 5.68

33,300 38,700 4 61.9 44.6 60.5 2.99 2.15 2.92 5.76 4.15 5.63

94,300 105,000 5 27.5 52.7 71.3 1.09 2.09 2.83 2.13 4.07 5.51

269,000 291,000 5 10.8 56.2 75.7 0.396 2.05 2.79 0.77 4.02 5.41

Model #MG CPU, 4 Cores CPU, 8 Cores

#Hex. #Vert. Levels Steps/s GFLOPS GB/s Steps/s GFLOPS GB/s

11,900 14,600 4 26.0 7.24 9.89 41.1 11.5 15.7

33,300 38,700 4 10.2 7.36 9.99 17.2 12.4 16.8

94,300 105,000 5 3.78 7.24 9.80 6.67 12.8 17.3

269,000 291,000 5 1.39 7.24 9.74 2.43 12.7 17.1

Table 3.1: Simulation performance on the GPU and CPU for different finite element models

using single floating point precision. For each resolution, we first specify the number of hex-

ahedral elements and the number of vertices (on the simulation level), as well as the number

of multigrid levels. We then specify the simulation time steps per second, the sustained rate of

floating point operations per second in GFLOPS, and the sustained effective memory through-

put in GB/s achieved on the GPU and on the CPU using 1, 2, 4, and 8 cores, respectively.

Model #MG GPU CPU, 1 Core CPU, 2 Cores

#Hex. #Vert. Levels Steps/s GFLOPS GB/s Steps/s GFLOPS GB/s Steps/s GFLOPS GB/s

11,900 14,600 4 91.9 25.6 67.7 6.93 1.93 5.11 12.8 3.56 9.41

33,300 38,700 4 41.4 29.8 78.3 2.58 1.86 4.88 4.78 3.44 9.03

94,300 105,000 5 17.1 32.7 85.4 0.951 1.82 4.76 1.77 3.40 8.88

269,000 291,000 5 6.54 34.2 88.8 0.345 1.80 4.68 0.64 3.33 8.67

Model #MG CPU, 4 Cores CPU, 8 Cores

#Hex. #Vert. Levels Steps/s GFLOPS GB/s Steps/s GFLOPS GB/s

11,900 14,600 4 20.6 5.73 15.1 31.6 8.81 23.3

33,300 38,700 4 7.70 5.54 14.5 12.9 9.32 24.5

94,300 105,000 5 2.85 5.47 14.3 4.75 9.09 23.8

269,000 291,000 5 1.02 5.34 13.9 1.69 8.81 22.9

Table 3.2: Simulation performance using double floating point precision. The columns are

analogous to Table 3.1.
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CUDA Kernel FLOPs % Bytes R/W % % GPU Time

Single Double Single Double

Computation of element rotations 470 2 160 300 1 0 1

Assembly of sim. level equations 10000 51 6600 13000 23 33 30

Assembly of coarse grid equations 3200 17 5100 10000 18 24 21

Gauss-Seidel relaxation 6 × 660 20 6 × 1800 6 × 3500 39 27 33

Computation of residual 2 × 620 6 2 × 1800 2 × 3500 13 11 12

Restriction of residual 2 × 210 2 2 × 580 2 × 1000 4 1 1

Interpol. of error and coarse grid corr. 2 × 39 0 2 × 200 2 × 350 1 2 1

CG solver on coarsest level 2 × 3 0 2 × 1 2 × 1 0 1 1

Total (per finite element per time step) 19000 28000 54000

Table 3.3: Detailed analysis of the costs per finite element per time step (total costs per time

step divided by the number of finite elements) for each individual CUDA kernel. The analysis

is based on the bunny model with 269,000 elements. From left to right, the columns contain

the kernel, the number of FLOPs, the respective percentage of the total number of FLOPs, the

number of bytes read and written for single and double floating point precision, the respective

percentage of the total number of bytes read and written, and finally the measured percentage

of GPU time spent for each individual kernel using single and double precision, respectively.

The factors 6× and 2× correspond to performing 2 V-cycles per time step, each with 2 pre- and

1 post-smoothing Gauss-Seidel steps.

Tables 3.1 and 3.2 show the performance of our implementation using single and

double floating point precision, respectively. The construction of the simulation model

is performed in a preprocess on the CPU. Each time step includes the computation of the

element rotations, the assembly of the per-vertex equations on the simulation level and

on the coarse grids of the multigrid hierarchy, as well as two multigrid V-cycles, each

with two pre-smoothing and one post-smoothing Gauss-Seidel relaxation steps. The

sustained rate of floating point operations performed per second in GFLOPS as well

as the sustained memory throughput in GB/s are obtained by manually counting the

number of floating point operations performed by each kernel, as well as the number

of bytes read and written by each kernel (see Table 3.3). The statistics thus report

the effective memory throughput, i.e., the transfer of unnecessary data due to the fix

memory transaction size of 128 bytes and cache hits are not considered. Note, however,

that due to our optimized memory layout that facilitates coalescing of memory accesses

and due to the fact that almost all data—the coefficients of the per-vertex equations—

are not accessed repeatedly in a kernel, the effective memory throughput should be close

to the physical memory throughput. On the GPU using single floating point precision,

we achieve 120 time steps per second for the 12,000 element model and 11 time steps

per second for the 269,000 element model. For double precision, the update rates are

92 and 6.5 time steps per second, respectively.
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Updating and rendering a high-resolution render surface (70,000 triangles) that was

bound to the simulation grid took less than 6.5 ms in all examples. This time is not

included in the timings in Tables 3.1 and 3.2.

In order to analyze the performance gain that is achieved by our GPU-based im-

plementation, we compare it to an optimized CPU-based implementation that has been

parallelized using OpenMP. The CPU implementation is very similar to the GPU imple-

mentation in that we use the same data structures and algorithms. The differences are

as follows: On the CPU, we use one thread per core (with a fix assignment of threads

to cores), and each thread processes a block of elements or vertices—in contrast to the

GPU, where we use one or several threads per element or vertex. Corresponding to

the different mapping of the work onto threads, we use different memory layouts on the

CPU and GPU. On the CPU, we store the scalar components of each element of an array

directly one after another, whereas on the GPU the elements are stored interleaved by

grouping corresponding scalar components of the array elements into separate memory

blocks, as described in Section 3.4.3.

To achieve optimal performance on our NUMA CPU target architecture operated

under Windows 7, we store the thread-local per-element and per-vertex data in the

respective CPU’s local memory. The operating system’s default strategy for assigning

a memory page to a memory frame is to choose a page from the local memory of that

CPU which performs the first read/write access to the frame (‘first touch’ strategy).

Thus, by initializing the respective memory addresses from within the respective thread

directly after virtual memory allocation, the intended memory assignment is obtained.

We compare the GPU-based implementation to the CPU-based implementation run-

ning on 1, 2, 4, and 8 CPU cores, respectively. When using 1, 2, and 4 cores, we use

cores belonging to the same CPU. The time steps per second, GFLOPS, and memory

throughputs are listed in Tables 3.1 and 3.2. Figure 3.8 shows the simulation time steps

per second on the GPU and on the CPU. The respective speed-up factors, measured

with respect to a single CPU core, are given in Figure 3.9.

The diagram shows that the speed-up on the GPU increases with the model reso-

lution due to a better utilization of the GPU’s massively parallel architecture with in-

creasing model size. For the largest model consisting of 269,000 finite elements, with

respect to a single CPU core we achieve a speed-up of 27 for single and of 19 for double

floating point precision. Even with respect to 8 CPU cores, the GPU is still a factor of

about 4 faster for single and double precision. Figures 3.10 and 3.11 show the floating

point performance (in GFLOPS) and the memory throughput (in GB/s), respectively.

For the largest model we achieve 56 GFLOPS (single precision) and 34 GFLOPS
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Figure 3.12: Convergence of our multigrid solver (red) and a conjugate gradient solver with

Jacobi preconditioner (green) with respect to computing time on a single CPU core, using two

different model sizes as well as single and double floating point precision. The ordinate shows

the reduction of the norm of the residual with respect to the start of the solver. (E = 106 Pa,

ν = 0.3, ρ = 105 kg/m3, dt = 50ms, edge length of hexahedral elements is 2.8 mm and

1.4 mm, respectively)

(double precision) on the GPU. Since these values are clearly below the theoretical

arithmetic throughput of the GPU, we assume that our GPU implementation is memory-

bound. This is confirmed by the statistics on memory throughput, which report sus-

tained rates of 76 GB/s for single and 89 GB/s for double precision, which is about half

of the theoretical memory bandwidth. The decrease of performance when switching

from single to double precision thus results from the doubled memory size of double

precision values compared to single precision values. On the CPU using 1 core, we

achieve about 2 GFLOPS for both single and double precision. 2 cores almost yield

twice the performance of 1 core. Since the two cores are on the same CPU and thus use

the same memory connection, this indicates that our CPU implementation is compute-

bound on a single core. The statistics further show a better scalability in the number of

cores for single precision than for double precision, and further report an increasing im-
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Figure 3.13: Deformations of the Stanford bunny model (94,300 elements). The left image

shows the model in the undeformed state. Simulation runs at 28 (17) time steps per second

using single (double) floating point precision.

pact on performance when switching from single to double precision with an increasing

number of cores. This indicates that for double precision the CPU implementation is

becoming memory-bound as more and more CPU cores are used. For the 269K element

model, the CPU implementation achieves speed-ups of 1.76 and 1.65 using single and

double precision, respectively, when going from 1 to 2 CPUs (4 to 8 cores).

In the future, we will also investigate the parallelization of our implementation on

multiple GPUs. Since on current architectures GPU-to-GPU communication has to be

initiated by the CPU and performed via PCI Express, we expect the scalability to be

limited by the high latencies that are introduced.

In summary, the speed-ups achieved by the GPU compared to the CPU result from

both the higher floating point performance and memory bandwidth on the GPU. Since

for our application the limiting factor on the GPU is memory throughput, we expect the

performance on future GPU architectures to be strongly related to the available memory

bandwidth.

Finally, we also analyze the convergence behavior of our multigrid solver to demon-

strate its suitability for the simulation on complicated domains. Figure 3.12 shows the

reduction of the norm of the residual achieved by the multigrid solver (red curves) with

respect to computing time. The convergence behavior of a conjugate gradient (CG)

solver with Jacobi preconditioner (green curves) is shown for comparison. Note that

the timings were performed on the CPU (using 1 core) to allow for a precise mea-

surement of the individual solver cycles. As can be seen, the multigrid solver exhibits

a constant rate of residual reduction over time, which is characteristic for this solver

type. Furthermore, the multigrid solver is significantly more efficient than a CG solver,

in that in a given time budget it reduces the residual by a much higher factor than the

CG solver. Note that we simulate the dynamics of deformable objects, thus the solution

from the previous time step provides a very good initial guess to start with in the current
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time step. Due to this, we achieve high simulation accuracy using only 2 V-cycles per

time step.

3.7 Conclusion and Future Work

In this chapter, we have presented a real-time method for physics-based elasticity sim-

ulation using CUDA on NVIDIA’s Fermi GPU. The method employs the power of nu-

merical multigrid schemes for the efficient solution of the governing system of partial

differential equations based on a finite element discretization. Underlying our approach

is a hexahedral discretization of the simulation domain, giving rise to efficient algo-

rithms for model construction and parallel simulation. By introducing a discretization-

specific restructuring on the algorithmic level, the multigrid simulation scheme can

efficiently be mapped onto the GPU via the CUDA computing API. In this way, sig-

nificant performance gains can be achieved compared to our optimized parallel CPU

implementation.

Our method also opens a number of areas for future research. Since our application

is memory-bound, a mixed floating point precision approach as proposed in [CBB+10]

might alleviate memory bandwidth limitations and further increase simulation perfor-

mance. Another interesting question is how to parallelize the method on GPU clus-

ters. Parallelization strategies similar to the one proposed in [SB10] will be considered,

with the focus on minimizing inter-GPU communication. An additional challenge is

to integrate GPU-based collision detection and handling in real-time deformable body

simulations. Image-based techniques as proposed in [GKW07] will be investigated for

this purpose.
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Chapter 4

A Hexahedral Multigrid Approach for

Simulating Cuts in Deformable

Objects

In this chapter, we present a hexahedral finite element method for simulating cuts in

linear elastic bodies using the corotational formulation of strain at high computational

efficiency. Key to our approach is a novel embedding of adaptive element refinements

and topological changes of the simulation grid into a geometric multigrid solver. Start-

ing with a coarse hexahedral simulation grid, this grid is adaptively refined at the sur-

face of a cutting tool until a finest resolution level, and the cut is modeled by separating

elements along the cell faces at this level. To represent the induced discontinuities on

successive multigrid levels, the affected coarse grid cells are duplicated and the re-

sulting connectivity components are distributed to either side of the cut. Drawing upon

recent work on octree and multigrid schemes for the numerical solution of partial differ-

ential equations, we develop efficient algorithms for updating the systems of equations

of the adaptive finite element discretization and the multigrid hierarchy. To construct

a surface that accurately aligns with the cuts, we adapt the splitting cubes algorithm to

the specific linked voxel representation of the simulation domain we use. The chapter

is completed by a convergence analysis of the finite element solver and a performance

comparison to alternative numerical solution methods. These investigations show that

our approach offers high computational efficiency and physical accuracy, and that it

This chapter is based on material that has been originally published in C. Dick, J. Georgii, and R. Westermann,

A hexahedral multigrid approach for simulating cuts in deformable objects, IEEE Transactions on Visualization and

Computer Graphics 17 (2011), no. 11, 1663–1675 [DGW11a]. The copyright for this material is owned by the

IEEE.
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Figure 4.1: Cuts in the Stanford Armadillo model. An adaptive finite hexahedra model consist-

ing of 493K simulation elements is used. Adaptive refinements of the simulation mesh along

the cuts result in 76K, 150K, and 153K additional elements, from left to right. Cutting and

simulation is performed at 9 to 11 seconds per time step.

enables cutting of deformable bodies at very high resolutions.

4.1 Introduction

In this chapter, we propose a method for realistically simulating complicated cuts in

linear elastic deformable objects. Our approach is different from previous approaches

in that it does not treat the cutting procedure and the numerical solution scheme inde-

pendently, but intertwines both procedures in a way that enables high computational

efficiency. We achieve this by developing a novel embedding of adaptive finite element

refinements and topological changes of the simulation grid into a geometric multigrid

method [Bra77, Hac85, BHM00]. Adaptivity enables representing complicated cuts at

very high resolution, and the multigrid method achieves optimal computational com-

plexity that is linear in the number of simulation elements. Figure 4.1 shows some cuts

that have been performed using our approach.

Underlying the basic multigrid idea is the principle of coupling multiple scales, for

instance, by using a geometric model hierarchy equipped with transfer operators to

propagate quantities across the scales. The use of such a hierarchy, in general, imposes

performance limitations when using multigrid schemes in combination with cutting

schemes based on tetrahedral [BMG99, BG00, MK00] or polyhedral [WBG07] finite

elements. Since element subdivision generates unstructured meshes in general, there

are no canonical coarse versions of the mesh and the construction of a geometric model

hierarchy becomes very complicated. Due to this reason, incorporating subdivision

based cutting into geometric multigrid schemes has not yet been considered.
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Instead of explicitly modeling the boundary induced by a cut in the finite element

discretization, this boundary can also be incorporated into the basis functions of the

finite dimensional solution spaces [BM97, SCB01]. This enables using a coarse sim-

ulation grid that does not depend on the shape of the object. The same principle is

underlying the extended finite element method (XFEM) [BB99], which enriches the

finite element spaces by employing additional step functions to represent material dis-

continuities. XFEM has mainly been used to accurately simulate material interfaces

and crack propagation [MDB99, SMMB00], and just recently its potential for cut-

ting and fracturing deformable objects in graphics applications has been recognized

[AH08, JK09, KMB+09].

Since the XFEM method uses a static simulation grid for which a hierarchy can

be constructed in a preprocess, its embedding into a multigrid solver is possible in

principle. However, the modeling of high resolution cuts, for instance via enrichment

textures [KMB+09], requires large systems of equations to be solved, and it comes at

the expense of increasing the computational cost of element integration.

4.2 Contribution

We propose a novel algorithm for physics-based cutting of linear elastic deformable

bodies using hexahedral finite elements. Simulation elements that are touched by the

cutting tool are recursively subdivided using a regular octree refinement. This results

in an adaptive finite hexahedron approximation of the cut object. An example is given

in Figure 4.2.

The octree is refined until a sufficient approximation is reached, and on this sub-

division level cutting is performed along the element faces. The adaptive refinement

allows arbitrarily thin and complicated structures to be sliced, and it can be employed

to adapt the octree to material jumps in heterogeneous materials. Examples demonstrat-

ing these possibilities are shown in Figure 4.13. Since all elements have the same shape

the method only requires scaled instances of the precomputed element matrices of one

generic element to accommodate whatever deformation is applied. This eliminates the

need for element integration at runtime and significantly reduces storage requirements.

The deformable object has to be discretized on the adaptive octree that is generated

by the cutting algorithm. Since none of the previous multigrid approaches considers

cuts of the simulation grid, we propose a novel algorithm to embed the induced discon-

tinuities in the geometric multigrid hierarchy, including fast algorithms for updating

the resulting systems of equations. On the coarse resolution levels the algorithm dupli-
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Figure 4.2: Cross-section through an adaptive octree grid without (left) and with (right) a cut.

cates respective cells and distributes the per-cell equations to the duplicates according

to the separated material components. We present a detailed convergence analysis of

our solver and a thorough comparison to alternative solution methods.

Rendering a smooth polygon surface that aligns with the cuts is very difficult since

it can undergo complicated topological changes. In particular, a render surface that is

bound to the initial simulation grid as proposed in [DDBC99, MG04, GW05, BPWG07]

cannot easily be employed for this purpose. Due to this reason we use the splitting

cubes algorithm [PGCS09] on a dual grid to compute a watertight boundary surface

directly from the 3D simulation grid. By computing separate per-vertex normals for

each individual triangle, high quality rendering is achieved.

To clearly focus our work on the efficient cutting and simulation of a finite element

model, collision detection and response is not considered. Please note that this is not a

limitation of the presented approach. In fact, any state of the art collision handling algo-

rithm that uses surface meshes for collision detection and external forces for collision

response could be directly integrated.

The remainder of this chapter is as follows: In the next section we review work that

is related to ours. Then we describe the cutting algorithm from a purely geometric per-

spective. Section 4.5 discusses the embedding of adaptive finite element refinements

and topological changes of the simulation grid into the multigrid scheme. Section 4.6

presents the specific adaptations to the splitting cubes algorithm to reconstruct an ac-

curate boundary surface from the simulation grid. A detailed analysis of the proposed

algorithm, both with respect to performance and convergence is given in Section 4.7.

We conclude the chapter with a comparison to alternative approaches and some ideas

on future challenges in the field.
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4.3 Related Work

Starting with the seminal work of Terzopoulos and co-workers [TPBF87, TF88], phy-

sics-based methods for simulating deformable models have been researched extensively

in computer graphics for the last two decades. A good overview of the multitude of

methods for realistically simulating deformable bodies can be found in [NMK+06]. For

example, boundary element models [JP99], adaptive and multiresolution approaches

[DDCB01, CGC+02, GKS02], grid-less techniques [MHTG05, SSIF07], and finite el-

ement methods [BNC96, WDGT01] have been proposed. The simulation of brittle

fracture based on finite elements was described by O’Brien and Hodgins [OH99] and

later extended to ductile fracture [OBH02]. [NKJF09] proposed a composite element

formulation that considers varying material properties within a coarse element.

Tetrahedral subdivision methods for cutting deformable objects were introduced in

[BMG99, MK00]. To reduce the number of ill-shaped elements, Nienhuys and van der

Stappen proposed cutting along the element faces [NvdS00]. Cotin et al. and Forest et

al. deleted elements that were cut [CDA00, FDA02]. Smooth cuts that also reduce the

number of ill-shaped elements were achieved by adaptively aligning mesh edges and

faces with the cutting surface [NvdS01, SHS01, SOG06]. By restricting subdivisions

to a few refinement patterns [BG00, BGTG03] the number of additional simulation el-

ements caused by a cut can be reduced. A multi-resolution approach for this method

was presented by Ganovelli et al. [GCMS00]. The virtual node algorithm [MBF04]

avoids ill-shaped elements by duplicating simulation elements and re-assigning mate-

rial components on both sides of a cut.

Wicke et al. and Kaufmann et al. introduced polyhedral subdivision [WBG07,

MKB+08], which splits initial tetrahedra into polyhedra and then subdivides these ele-

ments further. Extended finite element methods [BB99] enrich a finite element model

with specific basis functions to capture discontinuities in the simulation elements. The

use of XFEM for virtual surgery simulation [AH08, JK09] and cutting in 2D thin shells

[KMB+09] has been demonstrated. Sifakis et al. clipped a high-resolution material

boundary surface mesh against a coarse simulation mesh to consider fine material com-

ponents in a coarse elasticity simulation [SDF07].

Octree-based physical simulation of fluids and gases was shown in [Pop03, SY04,

LGF04]. Both restricted and unrestricted octrees were used. To achieve high reso-

lution of small scale details, one focus was on deriving adaptive finite difference dis-

cretizations of the governing equations. Finite element discretizations for the numer-

ical solution of partial differential equations on restricted octrees were introduced in
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[HH07, SB10].

Multigrid approaches have recently gained much attention in the computer graphics

community due to their optimal computational complexity. The applications range from

fluid simulation [BFGS03] and deformable body simulation [WT04, GW06, SYBF06]

to image processing [KH08] and texture synthesis [JCM07]. Interactive multigrid ap-

proaches for simulating linear elastic materials on hexahedral grids were presented in

[DGBW08, ZSTB10]. Since it is well known that the multigrid convergence is lowered

in case of complicated material boundaries, [ZSTB10] proposed a numerical bound-

ary smoother for finite difference schemes. An adaptation of the basis functions on

the coarser levels to more accurately represent the covered boundary was proposed in

[SW06, PRS07, LPR+09].

4.4 Cutting Algorithm

To enable the efficient embedding of the cutting algorithm into a geometric multigrid

scheme, we avoid any unstructured grid refinement and instead cut along the element

faces in a hexahedral simulation grid that adaptively refines along the cut. This results

in an adaptive octree grid. The octree’s leaf cells represent the simulation elements

and store the corresponding vertices. At the cells on the finest level we store links

that are marked as connected or disconnected depending on whether the corresponding

elements have been detached by the cut. The links that are cut by the object’s boundary

are also marked as disconnected. Each octree cell is equipped with memory references

to its child cells, its parent cell, and the neighboring cells on the same level.

For the sake of simplicity, we first describe the cutting algorithm in a uniform grid

before we introduce the extensions that are necessary to perform a cut in an adaptive

octree grid.

4.4.1 Cuts—Uniform Grid

In the following we assume that the object to be cut has been discretized into a uniform

hexahedral (voxel) grid. Discretization means building a binary representation, where

every voxel is classified as inside or outside depending on whether its center is in the

interior of the object or not. Inside voxels represent the finite elements that are used in

the physics-based simulation.

We leverage a linked volume representation [FG99] in which the centers of face

adjacent elements are connected via links. Initially, each 3D element has six links, and
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Figure 4.3: Left: 2D illustration of the linked volume representation, consisting of a set of

finite elements (gray) that are connected via links (red). These links are disconnected (dashed,

gray) at the object boundary (blue) and when cut by a cutting surface (violet). Right: Bounding

boxes (dashed) of deformed finite elements used to accelerate the link/blade intersection test.

The links are deformed according to the (trilinear) deformation of the elements. Each element’s

bounding box covers half of each link emanating from this element.

the links that are intersected by the surface of the object are marked as disconnected.

Cutting the FE-model is performed by disconnecting the links that are cut by the cutting

blade (see Figure 4.3 (left) for an illustration).

The blade is realized as a triangle mesh, which is built from consecutive cut-lines

that are induced via a cutting tool. To find the links that are cut, all links in the vicinity

of the cutting front, i.e., the surface spanned by the current and the last cut-line, are

tested for an intersection with the triangles representing this front.

Since the intersection test has to be performed in the deformed object state, in gen-

eral the cutting blade needs to be tested against all connected links. To prune as many

links as possible before testing against the blade, the blade’s axis-aligned bounding box

is tested first. In addition, every finite element stores its axis-aligned bounding box (see

Figure 4.3 (right)), and a bounding box hierarchy is created to prune needless tests. By

using this information the broad phase intersection test reduces to simple bounding box

tests, and only a few link-triangle tests are required in the narrow phase.

4.4.2 Cuts—Octree Grid

In order to avoid using a uniform finite element representation at the finest resolution

level, we employ an adaptive object discretization, i.e., an octree grid, where the oc-

tree’s leaf cells represent the finite elements. An adaptive representation allows using

the fine level simulation elements at the locations where they are needed to resolve the



88 CHAPTER 4. SIMULATION OF CUTS IN DEFORMABLE OBJECTS

Figure 4.4: Illustration of the bounding boxes (dashed) of the octree finite elements (gray) used

in the link/blade intersection test.

object boundary accurately. Thus, it can reduce the number of simulation elements

significantly, and therefore improves the performance of the finite element simulation.

The octree grid is built from an initial uniform object discretization in a coarse-to-

fine procedure. The resolution of this discretization is chosen such that it can adequately

model the physical behavior of the object’s inner part. In an interactive application, it

can be set to a resolution that allows simulating the deforming body at reasonable speed.

Starting with this discretization, at each level the cells containing at least one link

that would be cut by the object boundary are refined regularly into 23 smaller cells.

Finally, all cells that do not contain at least one finest level cell center that is in the

object’s interior are deleted from the octree structure. Note that the cell centers at the

finest level, and thus also the link positions, can be computed without that a cell has to

be refined explicitly down to the finest resolution.

The octree refines adaptively along the object’s boundary while it models the ob-

ject’s interior away from the boundary at the selected coarser resolution. It is restricted

to not have level differences between adjacent elements—sharing a vertex, an edge, or

a face—of more than one (see Figure 4.2). In this way abrupt changes in the structural

material representation are avoided.

Cutting is performed by traversing the octree and performing a regular 1:8 split of

the leaf cells to be refined. The refinement criterion is the same as is used to initially

refine the octree grid along the object boundary. On the finest level no split is per-

formed but the links that are cut are disconnected. To accelerate the intersection test

between the blade and the elements, each element stores its axis-aligned bounding box.

Figure 4.4 illustrates the bounding boxes for adjacent elements at different resolution

levels.

The refinement procedure creates additional elements, whose number increases pro-
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portional to the object’s surface increase. Upon refining an element, the octree is up-

dated to ensure only level transitions of at most one. The bounding boxes of new

elements are computed on-the-fly.

4.5 Discontinuous Multigrid Solver

Our simulation approach is based on linear elasticity, combined with the corotational

formulation of strain to accurately simulate deformations with large rotations. The

governing system of partial differential equations is discretized by using a hexahedral

finite element discretization based on the adaptive octree grid described in the previous

section and the implicit Newmark time integration scheme, leading to a linear system

of equations Au = b in each time step. For details, we refer the reader to Chapter 2.

To solve this linear system of equations, we have developed a computationally effi-

cient geometric multigrid solver. This solver is based on a novel strategy to incorporate

complex topology changes induced by cuts into the coarse grid hierarchy in order to

avoid a severe decrease of the solver’s convergence rate when cuts are introduced. For

an introduction to geometric multigrid solvers, we refer the reader to Section 2.3.

We use trilinear interpolation operators Ih
2h, and the restriction operators R2h

h and

coarse grid operators A2h are chosen according to the variational properties of multi-

grid, i.e., R2h
h =

(
Ih
2h

)T
and A2h = R2h

h Ah Ih
2h. We employ V-cycles with 1 pre- and

1 post-smoothing decoupled Gauss-Seidel relaxation steps (ω = 1.7). On the coarsest

level, a Cholesky solver [TCRM03] is used. Our implementation is based on a matrix-

free formulation of all multigrid components (see Chapter 3).

4.5.1 Hierarchy Construction—Uniform Grid

The challenge in developing a multigrid approach that supports topological changes

of the simulation grid lies in constructing the coarse grid hierarchy. Since cuts on the

finest level also have to be modeled on the coarse levels, cells cannot simply be merged

based on their spatial relationship. This would correspond to merging physically and

mechanically disconnected parts, and it would result in low approximation quality on

the coarse grids and very slow convergence of the solver. In the following we describe

the novel principle underlying our hierarchy construction. For the sake of clarity we

first restrict the discussion to a uniform hexahedral grid with cuts.

The common approach to build a hexahedral multigrid hierarchy is to merge blocks

of 23 cells into one coarse grid cell. Note that cells are allowed to be only partially
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Figure 4.5: Construction of the coarse multigrid levels based on the undirected graph represen-

tation (red) in a uniform grid. The blocks of double cell size, in which connected components

(green) are searched, are marked in blue. Duplicated cells are indicated in dark gray. The

numbers denote integer coordinates in the underlying lattice.

filled with cells at the previous level, for example at the object’s boundary. To respect

physically disconnected parts of the simulation domain, we perform a similar merging

strategy, but we explicitly consider the connectivity between the cells to possibly gen-

erate more than one coarse grid cell at the same position. A similar strategy has been

pursued by Aftosmis et al. [ABA00] to handle complex embedded object boundaries

in a multigrid solver for computational fluid dynamics.

The basic idea underlying our construction is to interpret each grid of the hier-

archy as an undirected graph (C`, E `). The level number ` = 0 denotes the finest

level of the hierarchy, and ascending numbers denote successively coarser levels. The

nodes C` of each graph represent the cells of the respective grid, and the edges E ` ⊆{
{c1, c2} | c1, c2 ∈ C`, c1 6= c2

}
describe the connectivity between face-adjacent cells.

Connected cells share their vertices. In the following, a cell c ∈ C` with domain

[xc, xc + 1] × [yc, yc + 1] × [zc, zc + 1] in the underlying lattice (with a spacing of

2` relative to the spacing of the finest level) is associated with position (xc, yc, zc).

At the finest level, the nodes C0 correspond to the finite elements, and the edges

E0 correspond to the links introduced in Section 4.4.1. Starting on the finest level

and proceeding to the second coarsest level, the following two steps are performed
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Level 0 Level 1 Level 2

Figure 4.6: Construction of the coarse multigrid levels based on the undirected graph represen-

tation in an octree grid. The notation is analogous to Figure 4.5.

subsequently at each level ` = 0, 1, . . . to build the coarse grid hierarchy (see also the

2D example in Figure 4.5):

Step 1: Analogous to the common approach, blocks of double grid cell size are con-

sidered. Let C`(x,y,z) ⊆ C`, x, y, z ∈ Z denote the set of nodes corresponding to the cells

of such a block, defined by C`(x,y,z) =
{
c ∈ C` | bxc/2c = x, byc/2c = y, bzc/2c = z

}
.

By performing a depth first search on the subgraph of (C`, E `) induced by the nodes

C`(x,y,z), the connected components of this subgraph are determined. For each connected

component, a coarse grid cell C ∈ C`+1 at position (xC , yC , zC) = (x, y, z) is created,

which subsumes the fine grid cells belonging to this component.

Step 2: The connectivity between cells on the coarse grid is determined from the

connectivity on the fine grid. Two coarse grid cells C1 and C2 are connected iff there

exist two connected fine grid cells c1 and c2 that are merged into C1 and C2, respectively.

I.e., it is {C1, C2} ∈ E `+1 iff there exist c1 in C1 and c2 in C2 such that {c1, c2} ∈
E `. The notation c in C denotes that the fine grid cell c is belonging to the connected

component corresponding to the coarse grid cell C.

The hierarchy that is constructed in this way has the property that small cuts disap-

pear at coarser resolution levels. This is in-line with the multigrid idea that the coarse

grid levels describe the macroscopic behavior of the body. Small cuts do not strongly

affect this behavior and can therefore be neglected at one of the coarser levels.
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4.5.2 Hierarchy Construction—Octree Grid

Building the hierarchy on the octree grid proceeds similar to the uniform case, with the

exception that on each multigrid level it must be considered that cells with different

size exist. At the transition from multigrid level ` to level ` + 1, only cells of size 2`

are merged. All other cells are passed on to the next coarser level. In Figure 4.6 a 2D

example of the construction process is given.

4.5.3 Construction of Coarse Grid Equations

Once the cell hierarchy has been constructed, the coarse grid equations have to be built

correspondingly. Since the corotational strain formulation is used, the equations have

to be rebuilt in every time step to account for the element rotations.

Since all simulation elements have the same shape and only differ in size, we only

need to precompute the element matrices of a single, generic element. The element

matrices of an arbitrary element can be obtained from these matrices by appropriately

scaling with the element’s side length, density, and Young’s modulus (see 2.2.3).

The restricted octree discretization leads to hanging vertices lying in the interior of

other cells’ edges or faces. To obtain a continuous discretization of the displacement

(finest grid) or the error (coarse grids) using trilinear shape functions, a hanging vertex

does not represent a degree of freedom but the value at this vertex is determined by

linear (along edges) or bilinear (on faces) interpolation. Thus, we eliminate unknowns

at hanging vertices via interpolation from unknowns at non-hanging vertices. Each cell

finally depends on eight non-hanging vertices (which are not necessarily the geometric

vertices of the cell), and we associate the cell with these vertices. This approach corre-

sponds to the special finite elements introduced by Wang [Wan01] and extended to 3D

by Sampath and Biros [SB10].

Computing the Galerkin coarse grid operators A2h = R2h
h AhIh

2h means distribut-

ing the equations at the fine grid vertices to the respective coarse grid vertices (re-

striction R2h
h ), at the same time substituting the unknowns at the fine grid vertices by

interpolation from the unknowns at the coarse grid vertices (interpolation Ih
2h). The

respective weights of the trilinear interpolation operator Ih
2h and the restriction operator

R2h
h =

(
Ih
2h

)T
are illustrated in Figure 4.7.

We compute the equations on each multigrid level per cell, since this leads to con-

stant memory requirements per cell to store the equations and to constant memory

access patterns during equation construction. In contrast, constructing the equations

per shared vertex would yield varying memory requirements and access patterns, since
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Figure 4.7: Trilinear weights used to distribute the per-cell equations of a fine grid cell (red)

to its corresponding coarse grid cell (blue) (restriction). For the interpolation of the unknowns

from the coarse grid, the same weights are used. For simplicity reasons, the distribution is only

illustrated for selected vertices.

vertices can have a varying number of adjacent vertices due to the irregular topology

induced by cutting.

At a specific level, the left-hand sides of the equations for each cell c are stored as

rows of an 8×8-matrix Ac, with each entry being itself a 3×3-matrix. The matrix AC

for a coarse grid cell C on the next coarser level is then computed from the matrices Ac

of those cells c which are merged into cell C as follows:

AC
[mn] =

∑

c in C

8∑

i=1


wc→C

i→m︸ ︷︷ ︸
Restr.

8∑

j=1

wC→c
n→j︸ ︷︷ ︸

Interp.

Ac
[ij]


 , m, n = 1, . . . , 8. (4.1)

In this equation, i, j,m, n are cell-local vertex indices, and wc→C
i→m and wC→c

n→j are the

corresponding weights for restriction and interpolation between the cells c on the fine

grid and the coarse grid cell C, respectively (see Figure 4.7). Since all element matrices

are symmetric (considering 24×24-matrices with scalar entries, i.e., Ac
pq = Ac

qp, p, q =

1, . . . , 24), we only have to compute and store the matrices’ lower triangular parts. To

simulate very large models consisting of millions of elements, memory requirements

can be reduced significantly by not storing the equations on the finest level, since they
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can be built on-the-fly from the generic element matrices and the element rotations.

To finally solve the system of equations, in the relaxation step and the residual com-

putation step of the multigrid V-cycle equations per shared vertex have to be considered.

These per-vertex equations are assembled from the per-cell equations as follows: At a

shared vertex V , described by the set of cell vertices V ⊂ C` × {1, . . . , 8} that are

coalesced into this vertex, we accumulate the per-cell equations at these cell vertices.

The resulting per-vertex equation at the shared vertex V then is

∑

(c,i)∈V

8∑

j=1

Ac
[ij]u

V (c,j) = bV . (4.2)

Here, c ∈ C` denotes a cell incident to the shared vertex and i, j ∈ {1, . . . , 8} denote

cell-local vertex indices. V (c, j) is the shared vertex corresponding to vertex j of cell

c, and uV (c,j) is the displacement/error at this vertex. bV is the right-hand side/residual

at vertex V .

4.6 Surface Construction

To reconstruct a smooth polygonal surface that is aligned with the separated object

parts we use the splitting cubes algorithm [PGCS09]. In a hexahedral simulation grid

the splitting cubes algorithm constructs the surface topology in each cell depending on

the patterns of the edges that are cut. The algorithm introduces additional points in

the interior of the cells to construct a smooth surface representation. The placement of

these points is driven by the normals of the cut surface at the intersection points (see

Figure 4.8).

In order to use the splitting cubes algorithm in our approach, we have to adapt

the algorithm to the particular simulation data structure we use, i.e., the linked voxel

representation. Therefore, we consider the dual grid representation that is built from

the links between the simulation elements. These links define the connectivity between

the simulation elements, and exactly these links are cut by the cutting tool. For each

link that is cut we store two distances from the link end points to the respective nearest

cut point on that link. In this way, the cubic cells of the dual grid are cut at their edges,

which results in a representation that allows us to directly apply the splitting cubes

algorithm on these cells.

To let the reconstructed surface move according to the object deformations we bind

the surface to the simulation vertices. For vertices on the links that are cut, the corre-
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Figure 4.8: Dual grid (bold lines) consisting of the links between the elements. For each cell

of the dual grid a local render surface is built via the splitting cubes algorithm. The surface is

spanned by the intersection points (red) between the cutting blade and the element links, and

by the normal of the cutting tool at these points (red arrows). Vertices are bound to the nearest

element of the respective connected component (thin blue and magenta arrows to the respective

element centers).
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Figure 4.9: Left: Standard per-vertex normals computed by averaging the face normals of

all incident triangles lead to rendering artifacts at cutting edges. Right: Only face normals of

triangles with the same cut ID are averaged, enabling smooth rendering of cutting surfaces while

preserving sharp cutting edges.

sponding simulation element is found by following the links to the left or to the right,

respectively. To handle interior vertices we utilize the fact that each interior vertex is

associated to a unique surface patch in the splitting cubes approach. Therefore, for an

interior vertex the respective hexahedra can be found by following the links of the edges

that are cut by the respective surface patch. From the determined set of hexahedra we

choose the one that has the shortest distance to the surface vertex. The interior vertex

is then bound to this hexahedron by means of trilinear interpolation or extrapolation.

Using standard per-vertex normals, which are computed by averaging the face nor-

mals of all triangles incident to the vertex, leads to rendering artifacts at cutting edges

as shown in Figure 4.9. To achieve a visually pleasant rendering of the splitting cubes

surface, we render both sharp cutting edges as well as smooth cutting surfaces by em-

ploying separate per-vertex normals for each individual triangle. To compute these

normals, we make use of a cut surface ID, which is incremented for each new cut and

then stored at the links intersected by this cut together with the distances. These IDs are

distributed to the incident triangles of the splitting cubes surface, and for each triangle

vertex the normal is computed by averaging the face normals of the incident triangles

with the same ID as the considered triangle. The cut surface IDs can also be used to

color the arising cutting surfaces differently (see Figure 4.1 right).
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#Hexahedra #MG Time [sec]

Model Initial Cut Levels Cutting Simulation

Bunny 118K (755K) 197K 5 0.693 2.42 (9.31)

Cube 83.3K (512K) 230K 4 0.781 3.13 (7.05)

Armadillo 493K (3717K) 643K 6 2.24 8.24 (47.2)

Bunny 2 26.1K (94.3K) 42.4K 4 0.143 0.498 (1.12)

Bunny 3 5.48K (11.9K) 8.27K 3 0.0286 0.0928 (0.130)

Table 4.1: Timing statistics for cutting different deformable models using our adaptive finite

element approach. Numbers in parentheses show respective measures for a uniform grid at the

finest resolution level.

4.7 Results and Analysis

In the following we analyze our method and show results that have been produced using

this method. The analysis includes performance measures, a detailed evaluation of the

convergence rates of the multigrid solver, and a comparison to alternative numerical

solvers. All of our experiments were run on a desktop PC, equipped with an Intel

Xeon X5560 2.8 GHz processor (we use a single core), 8 GB of RAM, and an NVIDIA

GeForce GTX 280 graphics card.

4.7.1 Performance

Table 4.1 lists the deformable models we used and gives timings for cutting and sim-

ulation. The first three entries correspond to Figures 4.14 (left), 4.11 (right), and 4.1

(middle). The last two entries also correspond to the model shown in Figure 4.14 (left),

but using an adaptive octree discretization reduced by one (Bunny 2) or two (Bunny

3) octree levels. The second and third column give the initial number of simulation

elements and the number of elements due to adaptive refinements along the cuts. The

fourth column specifies the number of levels of the multigrid hierarchy. The next col-

umn shows the time spent on adaptively refining the octree and rebuilding the finite

element model. Note that these steps are only required when the cutting tool is moved.

Finally, the time required to perform one time step is given. It includes the times it

takes to recompute the equations on the simulation level and all coarse grids (as shown

in Equation 4.1) and to perform three multigrid V-cycles with one pre- and one post-

smoothing Gauss-Seidel step. In a dynamic simulation this is a reasonable choice since

the solution from the last time step typically gives a good initial guess to start with

in the current time step. These times are measured for the adaptively refined models.

Times in parentheses are for a uniform grid at the finest resolution level.
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Model MG Time MG Error CG Error CG Time

[sec] Reduction Reduction [sec]

Bunny 1.30 0.100 0.935 9.76

Cube 1.94 0.0145 0.870 31.9

Armadillo 4.35 0.0190 0.973 101

Bunny 2 0.270 0.107 0.864 1.22

Bunny 3 0.0532 0.0734 0.655 0.172

Table 4.2: Comparison of the adaptive MG solver to a CG solver with Jacobi preconditioner.

Solver times are given for one time step. The error reduction is computed as ‖e3‖2 / ‖e0‖2,

where e0 and e3 are the linearized error vectors before and after the time step, respectively. The

last column shows the time that is required by CG to achieved the same error reduction as MG.

Table 4.1 demonstrates the advantages of an adaptive octree discretization over a

uniform discretization. It shows that a considerable amount of elements can be saved,

yet modeling the induced discontinuities at equal resolution. For the higher resolution

models only 1/6 of the number of elements of the uniform grid are required. In general,

this allows resolving the boundaries at a significantly higher resolution than would be

possible in a uniform setting, giving the possibility to apply very complicated and thin

cuts. Remarkably, even though the numerical simulation on an octree discretization

is much more complicated than on a uniform discretization, the reduced number of

elements also results in a significant performance gain over the uniform setting. In

our scenarios, speed-ups between a factor of 4 and 5 are achieved. Furthermore, the

statistics show that the computation time per simulation step depends linearly on the

number of finite elements.

To demonstrate the computational efficiency and accuracy of the adaptive MG ap-

proach, in Table 4.2 we show a comparison of the experiments in Table 4.1 to the very

same setup using a CG solver with Jacobi preconditioner. In this table only the solver

times, i.e., the times required for solving the equations on the finest level, are consid-

ered. For the MG solver this means that the given times (2nd column) also include the

construction of the equations on the coarse multigrid levels. The 3rd column gives the

error reduction that was achieved by the adaptive MG solver. In the 4th column we

show the error reduction by the CG solver within the same period of time as given in

the 2nd column. Finally, the 5th column shows the times required by the CG solver to

achieve the same error reduction as the MG solver.
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Figure 4.10: Multigrid convergence. Left: Differently oriented cuts through a cube (Figure

4.11, right). Right: The Armadillo model (Figure 4.1, middle) having different mass.

4.7.2 Multigrid Convergence Analysis

To demonstrate the effectiveness of the multigrid solver for simulating objects with

complicated boundaries as induced by a cut, in Figure 4.10 (left) we show the solver’s

convergence for the scenario in Figure 4.11 (right). The curves show the total error

reduction ‖ek‖2 / ‖e0‖2 dependent on the number k of V-cycles, with ek denoting the

error after the k-th V-cycle. The error is determined by using the solution obtained by

a direct solver (Cholesky) as ground truth.

Three different tests were performed, all of them using a cube model aligned with

the axes of the simulation grid: a) no cuts were performed, b) a grid-like cutting tool

consisting of square blades aligned with the simulation grid was moved into the cube

for a distance of half the cube’s edge length, c) the cutting tool was rotated against

the axes of the simulation grid to create cuts that are not aligned with the simulation

grid. In each of the experiments the cuts were performed at a single point in time, and

the solver’s performance was measured for simulating the next time step right after the

model was cut.

In experiment a) the grids of all multigrid levels exactly cover the domain of the

cube, giving rise to an optimal multigrid hierarchy. A convergence rate ρ = 0.66 is

achieved. The convergence rate is computed as ρ = (‖ek2‖2 / ‖ek1‖2)
1/(k2−k1) and

denotes the average error reduction per V-cycle for those cycles k1 through k2 which

exhibit a stable convergence rate. Experiments b) and c) demonstrate the influence of

complicated boundaries on the convergence. In b) and c) the same spacing between the

individual blades is used, but in contrast to b) a jagged object boundary is generated in
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Figure 4.11: In one time step a cube model (83K hexahedral elements) is cut using a grid-like

cutting tool consisting of square blades, resulting in 204K (left) and 230K (right) elements. A

radial force field is applied to fan out the resulting rods. Note that rods with different size bend

differently. Cutting and simulation take less than 3.5 seconds (left) and 3.9 seconds (right) per

time step.

c) due to the cut orientation.

In both scenarios the convergence rate decreases to 0.75. This decrease is in line

with previous findings in the context of geometric multigrid schemes, which have indi-

cated decreasing convergence in case the coarse grid cells can no longer approximate

the object’s domain accurately, which is the case if the material is cut into disconnected

parts. Notably, however, the convergence behavior does not depend on the smoothness

of the boundary of the object.

To clearly demonstrate the effectiveness of our novel coarse grid hierarchy, Figure

4.10 (left) also shows the solver’s convergence for experiment b) when a standard hier-

archy is used, i.e., when cells are merged solely based on their spatial location without

considering the connectivity between cells. In this case, the convergence rate degener-

ates from 0.66 for experiment a) (for a convex object without cuts, our novel hierarchy

is identical to a standard hierarchy) to 0.99 for experiment b).

In another example we analyze the influence of the model dynamics on the solver’s

convergence. Typically, the convergence rate of an iterative solver increases with the

relative magnitude of the main diagonal of the system matrix. Since the values on the

main diagonal of our system matrix depend on the mass of the object, higher element

masses yield better convergence rates, as indicated in Figure 4.10 (right) for the model

shown in Figure 4.1 (middle). In comparison we have also simulated the static problem

where the dynamics is not considered (gray curve). This curve indicates that indepen-

dent of the object’s mass a convergence rate of at least 0.85 can be achieved for this

model by the multigrid solver.
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Figure 4.12: Computational efficiency of different numerical solvers for deformable object

simulation. The corresponding models are shown in Figures 4.11 (right) and 4.1 (middle). For

the second model, medium and zero mass is used.

4.7.3 Solver Comparison

In the following we compare the performance of the multigrid solver to alternative

solvers that are widely used for simulating deformable objects. One important aspect

in this analysis is the potential of the solver to reduce the error at most in a given period

of time. This is required, for instance, to guarantee a given response time in interactive

scenarios.

For the models shown in Figures 4.11 (right), and 4.1 (middle) with medium and

zero mass, Figure 4.12 shows the error reduction of different numerical solvers over

time for the solution of the first simulation time step, i.e., the cuts are performed to the

object in its initial position, and an initial guess of 0 is used for the displacements. Here,

e(t) is the error after the respective solver has run for time t. In this comparison the

respective initialization times of the solvers are included, i.e., each solver starts solely

from the finest level equations and all computations specific to the solver—in case of

the multigrid solver the construction of the coarse grids, the assembly of the coarse grid
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Figure 4.13: Left: Cutting of thin slices (initially 345,000 hexahedra, 429,000 hexahedra after

cutting). Cutting and simulation take 7.3 seconds per time step. Right: Cutting of a heteroge-

neous model (initially 83,000 hexahedra, 321,000 hexahedra after cutting). The cube consists

of very stiff material, except of a thin horizontal layer at half height, leading to buckling of the

rods. Cutting and simulation are performed at 5.5 seconds per time step.

equations, and the initialization of the direct solver on the coarsest level—are included

in the timings.

We analyze the Cholesky solver of the TAUCS library [TCRM03], a CG solver with

Jacobi preconditioner, and the proposed multigrid solver. The multigrid solver is either

used directly (MG) or as a preconditioner for the conjugate gradient method (CGMG).

For each solver a cross on the respective curve highlights the structural initialization

time that is only required in case of topological changes. For the Cholesky solver,

structural initialization consists of the symbolical factorization of the system matrix.

For the multigrid solver, structural initialization refers to the construction of the coarse

grid hierarchy. (For MG and CGMG the crosses fall onto the same position.) CG does

not have a structural initialization time.

Besides needing a vast amount of time to solve the system of linear equations,

Cholesky turns out to be impractical for applications requiring a first approximation

of the solution within a short time interval. CG-Jacobi shows a significantly slower

convergence rate than MG and CGMG. Both multigrid solvers converge much faster

towards the solution than their competitors and, in particular, they are able to provide

good approximations in a significantly shorter time. CGMG increases the error re-

duction per time slightly, but this benefit only pays off if a large number of cycles is

performed.
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Figure 4.14: A potpourri of different cuts is applied to the Stanford bunny model to demonstrate

the flexibility of our approach. Multiple overlapping cuts (middle) can be handled accurately.

From left to right, the cut models consist of 197,000, 166,000, and 177,000 hexahedral elements.

Cutting and simulation are performed at approximately 3.1, 2.6, and 2.8 seconds per time step,

respectively.

4.8 Conclusion and Future Work

In this chapter, we have proposed an efficient approach for physics-based cutting of

deformable objects. This approach employs an adaptive octree grid to represent cuts at

very fine scales. The cutting algorithm is incorporated into a multigrid scheme, giving

rise to a numerical solver that can handle topological changes in the simulation grid at

high computational efficiency. To reconstruct a smooth surface from the disconnected

object parts, an extension of the splitting cubes approach has been proposed. This

extension uses the dual simulation grid to build a boundary surface that is consistent

with the cuts in the simulation grid.

It is worth noting that in a particular scenario, the unrestricted refinement along a cut

may result in more elements than would actually be required to solve accurately. For

instance, homogenization approaches [NKJF09, KMOD09] could possibly reduce the

number of elements by identifying the material properties at coarser scales from those

of their constituents and using only the respective coarse grid cells in the simulation.

Thus, even with less efficient numerical solvers homogenization approaches can often

simulate very fast. In the general case, however, such approaches yield an approx-

imation to the numerical solution on a finer discretization using ‘non-homogenized’

finite elements, since they reduce the number of degrees of freedom to solve for. The

principle underlying our approach is to simulate on a finite element model that has as

many degrees of freedom as given by the initial discretization and to achieve high speed

by employing a computationally efficient numerical solver. Thus, our approach always

simulates accurately at the possible expense of a higher number of simulation elements.

The proposed method opens a number of future research directions. Since in the
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current approach we fix the resolution of the simulation grid in the interior of the de-

forming object, the resulting number of degrees of freedom might not be sufficient to

accurately represent the induced deformations. Therefore, a dynamic adaptation of the

finite element discretization in the object’s interior is desirable. This can directly be

integrated into our approach, but it first requires to develop an a priori oracle to decide

where to refine.

Another interesting question is how to efficiently adapt a high resolution render

surface to the topological changes of the simulation mesh. In the current approach the

resolution of the finite element model and the render surface are coupled due to the use

of the splitting cubes algorithm. Even though it is possible to bind a higher resolution

render surface to the vertices of the initial simulation grid, it is unclear how to adapt

this surface to the induced topological changes at a speed comparable to that of the

simulation.

Furthermore, we will also integrate collision handling into our approach. In par-

ticular we plan to use the deforming splitting cubes surface to detect self-collisions

[TKH+05] and to propagate the collision response to the respective simulation ele-

ments.



Chapter 5

Computational Steering for Implant

Planning in Orthopedics

Fast and reliable methods for predicting in-vivo bone stresses are of great importance

for implant planning in orthopedics. To avoid adaptive remodeling with cortical thin-

ning and increased porosity of the bone due to stress shielding, in a preoperative plan-

ning process the optimal implant shape, size, and position has to be determined. This

process involves interactive implant positioning within the bone as well as simulation

and visualization of the stresses within bone and implant. In this chapter, we present a

prototype of such a visual analysis tool, which provides the first computational steer-

ing environment for optimal implant selection and positioning. This prototype consid-

ers patient-specific biomechanical properties of the bone to select the optimal implant

shape, size, and position according to the prediction of the individual load transfer from

the implant to the bone. We employ our GPU-based multigrid finite element solver for

real-time elasticity simulation to compute the bone stress distribution at interactive up-

date rates. By utilizing a real-time GPU-method to detect elements that are covered

by the movable implant, we can automatically generate computational models from

patient-specific CT scans in real-time, and we can instantly feed these models into the

simulation process. In combination with GPU-based visualization techniques for the

resulting stress tensor fields, this enables to interactively investigate the effect of differ-

ent implant shapes, sizes, and positions on the stress distribution in the patient-specific

bone, and thus provides a new quality of orthopedic surgery planning.

This chapter is based on material that has been originally published in C. Dick, J. Georgii, R. Burgkart, and

R. Westermann, Computational steering for patient-specific implant planning in orthopedics, Proc. Eurographics

Workshop on Visual Computing for Biomedicine, 2008, pp. 83–92 [DGBW08]. The copyright for this material is

owned by Eurographics.

105
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Cortical Bone

Trabecular Bone

Figure 5.1: Cross section through a human femur, showing the bone shell consisting of stiff

cortical bone and the bone interior consisting of spongious trabecular bone.

5.1 Introduction and Related Work

Methods for predicting in-vivo bone stresses are of great importance for clinical appli-

cations such as fracture fixation or total hip joint replacement. Such procedures call for

highly efficient and reliable analysis tools that allow the surgeon during an interactive,

preoperative design loop to find the optimal shape, size, and position of an implant

by matching its mechanical properties with those of the individual bone. The clinical

relevance of such a planning approach is due to the well known fact that an essen-

tial determinant factor for the long term stability of an implant is a physiological load

transmission to the adjacent bone stock.

A human bone consists of two types of tissue (see Figure 5.1): Stiff cortical bone,

forming the outer shell, as well as spongious trabecular bone in the interior. These two

types of bone tissue are the consequence of a natural optimization process. Bone is a

living tissue and adapts to changes of the mechanical load situation (for example due

to bone growth) by bone formation or resorption, dependent on whether the load has

increased or decreased, respectively. In this way, the bone continuously provides high

mechanical stability at light weight. Paradoxically, bone resorption also occurs if the

load exceeds a certain critical magnitude.

The insertion of an implant changes the stress distribution in the bone in that stresses
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Figure 5.2: X-rays of a patient’s proximal femur, taken immediately (left) and two years after

the insertion of an implant (right). In the right X-ray, a significant reduction of the density of

the cortical bone around the upper part of the implant stem is visible. This degeneration of bone

tissue is a consequence of stress shielding.

Image reprinted from W. D. Bugbee, W. J. Culpepper, II, C. A. Engh, Jr., and C. A. Engh, Sr.,

Long-term clinical consequences of stress-shielding after total hip arthroplasty without cement,

Journal of Bone and Joint Surgery, American Volume 79 (1997), no. 7, 1007–1012 [BCEE97],

with kind permission from The Journal of Bone and Joint Surgery.
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Figure 5.3: Preoperative implant planning based on an X-ray of the patient’s hip joint and a set

of transparent 2D template sheets with the outlines of the implants.

Image reprinted from M. Rudert, U. Leichtle, C. Leichtle, and W. Thomas, Implantation tech-

nique for the CUT-type femoral neck endoprosthesis, Operative Orthopädie und Traumatologie

19 (2007), no. 5/6, 458–472 [RLLT07], with kind permission from Springer Science + Business

Media.

are bypassed by the implant, which leads a reduction of stresses in certain regions of

the bone. This effect is referred to as stress shielding. As a consequence of the bone’s

adaptation to changes in the stress patterns, stress shielding causes a degeneration of

bone tissue (see Figure 5.2), which can finally lead to osteopenia, bone fracture, or

aseptic loosening of the implant [OH78, SV02].

The main objective is thus to simulate the mechanical response of the patient-

specific bone and the implant to an applied load, and to find of all possible implant

shapes, sizes, and positions the one that results in the most physiological stress distri-

bution, i.e., minimizes stress shielding. The challenge in developing such an analysis

tool results from the complexity of simulating stresses in a physically correct way and

at interactive update rates, and from the difficulty of considering a movable implant

with specific mechanical properties in such a simulation. Furthermore, such a tool is
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highly demanding on advanced visualization technology because it requires simultane-

ous visualization of dynamically changing surface and volume structures at rates that

allow for interactive monitoring and analysis.

Due to the aforementioned challenges, to the best of our knowledge, so far no surgi-

cal planning system incorporates the biomechanical data about the patient-specific bone

and the implants into the planning process. In the majority of clinical centers world-

wide, the preoperative planning for the selection of an implant, e.g., an endoprosthesis

for total hip joint replacement, is performed on an X-ray of the patient’s bone, using a

set of transparent template sheets with the outlines of the implants [Wix08] (see Figure

5.3). The drawbacks and limitations of such a two-dimensional approach are obvious,

especially because rotational misalignment cannot be controlled and the position of the

endoprosthesis can only be revised in 2D planes.

To overcome these limitations, 3D planning systems have been developed in the

last years that provide a 3D visualization of the implant position using patient-specific

CT data [HEPP01, KOO+09, STWH00, VCT+04]. These systems are used for im-

plant selection from a set of standard prostheses as well as for designing custom-

made implants for abnormal anatomies. To accurately reproduce the planned implant

position during surgery, computer-assisted navigation systems have been developed

[AP04, WG04, Wix08]. Since the existing systems are purely geometry-based, stress

shielding is so far only considered according to the surgeon’s subjective medical ex-

perience. However, to allow for a precise and objective assessment of an implant with

respect to stress shielding, the prediction of the stress distribution in the patient-specific

bone and the implant is mandatory. This information is still missing in current 3D plan-

ning systems.

5.2 Contribution

We present a prototypical 3D implant planning system that addresses the aforemen-

tioned requirements (see Figure 5.4). Following previous work in orthopedics

[BOM+07, TSH+07, YTM07], we use 3D finite element analysis to simulate the

stresses in the bone and implant due to applied loads. The physical model underly-

ing our approach is based on linear elasticity and thus mimics the behavior of the bone

at the macro-level during normal movements [KGW+94]. The mechanical properties

of the bone are derived directly from the Hounsfield units of the voxels in a measured

CT scan as proposed in [KLS94, KF03]. In particular, we use our GPU-based finite

element method for the simulation of elastic objects (see Chapter 3), reduced to the
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Figure 5.4: Screenshots of our simulation environment: Left: Semi-transparent rendering of the

femur, including the boundary between cortical and trabecular bone, supports the interactive

positioning of the implant. To specify the removal of the femoral head, two cutting planes

(red and green) are used. The directions and positions of the applied forces are indicated by

the arrows and the small spheres. Right: The simulated stresses in the bone and implant are

visualized by using volume rendering.
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simulation of the static behavior of linear elastic material. This method enables to sim-

ulate the stresses in the bone and implant in quasi real-time on a standard desktop PC.

In particular, we achieve simulation rates of more than 13 updates per second using a

finite element model at half the resolution of the CT scan (i.e., one hexahedral finite

element per 23 CT voxels), and still more than 2 updates per second at the resolution of

the CT scan (i.e., one hexahedral finite element per CT voxel).

To further improve the proposed system towards a computational steering environ-

ment, we have integrated 3D visualization and interaction mechanisms. Specifically,

we enable the user to interactively place implants of different shape and size in the

patient-specific bone and to apply loads on the bone and the implant, and we provide

immediate visual feedback of simulated stresses via volume ray-casting based on the

scalar von Mises stress. In addition, we provide the option to visualize the absolute von

Mises stress values via color coding on a set of parallel, axial slices through the bone.

To the best of our knowledge, this is the first time that changes in bone stresses due

to variations in implant shape, size, and position and external loads can be monitored

and analyzed in quasi real time. This has been made possible by a fully automatic

approach for the generation of a computational model based on the initial CT scan. A

fast voxelization technique is employed to determine all CT voxels that are covered

by the implant, which then get assigned the material properties of this implant. The

FE analysis considers these voxels and simulates their interaction with the surrounding

bone voxels under load. As the voxelization process is performed entirely on the GPU,

it does not impose any performance constraints.

In our work, we exemplarily focus on implant planning for total hip joint replace-

ment. Considering that alone this particular medical procedure is performed more than

one million times per year worldwide, and 135,000 times in Germany [GG06], demon-

strates that our tool is of high clinical relevance. Even though the proposed advanced

surgery planning based on CT scans—considering the additional effort of acquiring

these scans as well as the additional radiation exposure of the patients—might not be

required for every standard surgery, it is of particularly high importance for complicated

anatomies and revision cases.

The remainder of this chapter is organized as follows: In the following section, we

give an overview of our prototypical 3D planning system. Next, we address application-

specific extensions to our GPU-based finite element simulation method, including the

generation of the computational model of the bone and the implant. The following sec-

tion discusses the visualization of the virtual 3D environment and the simulated stress

distributions. We then explain the integration of the simulation and visualization com-
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Figure 5.5: Overview of the proposed surgery support system.

ponents into the overall system for the realization of a computational steering environ-

ment. Finally, we demonstrate the application of our system to a real-world scenario,

and give a detailed performance analysis of the individual components.

5.3 System Overview

Figure 5.5 illustrates the different components of the 3D planning system for hip joint

replacement. The system is divided into preprocesses and the interactive steering loop.

The preprocesses are performed once before interactive implant selection and position-

ing and stress monitoring starts, and include the acquisition of the CT scan, the seg-

mentation of the bone voxel model from this scan, as well as the creation of the finite

element model. The preprocesses are performed on the CPU. The interactive steering

loop comprises the simulation and visualization of the stress distribution in the bone

and implant. For the stress simulation, we first voxelize the implant surface mesh in

its current position to determine the CT voxels covered by the implant, which then get

assigned the material properties of this implant. We then update the underlying linear

system of equations to consider the modified material properties of the finite elements,

and solve this system by using our efficient multigrid solver. The simulated stresses are

visualized. Simulation and visualization are each running on a separate GPU.

5.4 Simulation

In this section, we describe the simulation component of our computational steering

environment, including the creation of the computational model of the bone from a

patient-specific CT scan. According to the widely accepted assumption of linear elastic

response of the bone under normal load, our model is based on linear elasticity using

heterogeneous material properties described by the Young’s modulus E. We assume
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the material to be isotropic, which is a common abstraction from the real bone behavior

due to the difficulty in identifying the anisotropic material parameters.

The stress computation is based on our GPU-based finite element method for the

simulation of elastic objects (see Chapter 3). However, we now simulate the static

deformation behavior of a linear elastic body, i.e., dynamics and the corotational for-

mulation of strain have been deactivated. Using a finite element discretization, this

behavior is described by the linear system of equations (2.73).

One central aspect of our computational steering approach is the possibility to ob-

tain immediate visual feedback of the stress patterns while the surgeon interactively

positions the implant in the simulation environment. Therefore, we provide a novel

approach to handle a movable implant in the numerical simulation. This approach is

described in Section 5.4.2.

5.4.1 Finite Element Model Creation

The finite element model of the bone is generated from a patient-specific, high-resolution

CT scan. The axial scan was performed on a Siemens Sensation Cardiac 64 CT scan-

ner with 1.0 mm slice thickness and 0.75 mm pixel size. The samples are given on a

256 × 256 × 470 lattice. In a preprocess, the bone is segmented from the CT data, i.e.,

the voxels are classified into bone voxels and exterior voxels, and the exterior voxels are

removed from the voxel model. Then, for each voxel, we derive the Young’s modulus

value E (in MPa) from the Hounsfield unit HU according to [KLS94, KF03]

E(HU) =





33900 (8.2106 · 10−4HU + 0.057663)
2.20

HU ≤ 320

10200 (8.2106 · 10−4HU + 0.057663)
2.01

HU ≥ 660

5307 (8.2106 · 10−4HU + 0.057663) + 469 320 < HU < 660

. (5.1)

From the bone voxel model, we generate a finite element model consisting of hex-

ahedral finite elements aligned on a 3D Cartesian grid, such that each hexahedron sub-

sumes a block of n3 CT voxels. A finite element is created if at least one voxel of the

respective block exists. The Young’s modulus values of the finite elements are obtained

by averaging the Young’s modulus values of the respective voxels. In order to obtain a

well-posed static elasticity problem, we use a minimum Young’s modulus value for the

finite elements of 10 MPa. For the Poisson’s ratio ν a value of 0.3 is used.

In our experiments, we use finite element models at the resolution of the CT scan,

i.e., one hexahedron per CT voxel (n = 1), and at half the resolution of the CT scan,

i.e., one hexahedron per 23 CT voxels (n = 2).



114 CHAPTER 5. COMPUTATIONAL STEERING IN ORTHOPEDICS

The distal part of the femur is fixed (indicated by the horizontal plane (blue color)

in Figure 5.4). Since in our current implementation the fixation is not changed during

the interactive steering of the simulation, we remove all hexahedra that are completely

fixed (i.e, that have 8 fixed vertices) from the finite element model.

5.4.2 Modeling of the Implant

During a total hip joint replacement surgery, the femoral head is removed, and the inner

trabecular bone is partially removed in order to be able to insert the implant (for details

about the medical procedure we refer the reader to [RLLT07]).

One possible approach for obtaining a computational model reflecting this medical

procedure would be to delete the bone voxels corresponding to the parts of the bone

that are removed by the surgeon, then to build a new finite element model of the bone,

and finally to explicitly simulate the interaction of the bone model with a separate

finite element model of the implant. Since these are very difficult and time-consuming

operations, we have developed a different approach that enables us to generate the

computational model as well as to perform the simulation based on this model both in

real time.

The basic idea of our approach is to directly incorporate the implant into the finite

element model of the bone by assigning the material properties of the implant to the

bone voxels that are covered by the implant in its current position. To determine these

voxels, we compute a voxelization of the implant surface triangle mesh with respect to

the CT voxel grid, which directly classifies the voxels into bone and implant voxels.

Since the voxelization has to be recomputed whenever the implant is moved, we com-

pute the voxelization directly on the GPU to avoid any performance constraints (see

Section 5.4.3 for a detailed description of the voxelization algorithm). By using this

approach, we simulate a non-slip boundary between the bone and the implant, which

is a reasonable approximation since the implant is fixed in the bone. For the implant

voxels, we use a Young’s modulus of 110 GPa, corresponding to the respective value

for titanium alloys.

The removal of the femoral head region is modeled by assigning a Young’s modulus

of 0 to the respective bone voxels. By using two cutting planes (see Figure 5.4), this

region is specified as the intersection of the positive half spaces spanned by these planes.

After updating the voxels’ material properties, we recompute the material properties

of the finite elements as described in the previous section, and we update the underlying

linear system of equations to reflect the modified material properties of the finite ele-

ments. It is worth noting that in our approach the finite element model is not changed,
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Figure 5.6: GPU-based voxelization of a triangle surface mesh using two rendering passes.

In the first pass, the depth layers are captured by using the stencil-routed k-buffer. The depth

information is used in the second pass to create the voxelization.

because neither are hexahedral cells removed nor added to the model. Therefore, we

only have to recompute the coefficients of the per-vertex equations. The index struc-

tures used to represent the finite element model and the multigrid hierarchy, which are

computed on the CPU in a preprocess (see Chapter 3), remain unchanged during the

entire runtime of the simulation.

5.4.3 GPU-Based Voxelization

In our computational steering approach, the implant is modeled by adapting the Young’s

modulus values of the bone voxels that are covered by the implant. By using a GPU-

based voxelization method, and thus by exploiting the rasterization and parallel pro-

cessing capabilities available on recent GPUs, we can accurately determine these voxels

in each simulation frame without performance constraints.

Our voxelization method uses two rendering passes (see Figure 5.6). In the first

pass, the implant mesh is rendered into a stencil routed k-buffer [MB07] to obtain its

depth layers. In the second pass, the depth information is used to build a 3D binary

volume representing the voxelization of the implant.

The stencil routed k-buffer allows capturing of multiple fragments per texel in a

single rendering pass. When writing to a multisampled texture while multisample an-

tialiasing is disabled, an incoming fragment is spread to all subsamples of the respective

texel, but the stencil is tested individually for each subsample. At the beginning, the

stencil buffer is initialized with the values 2, 3, 4, . . . , 9 for the eight subsamples of

each texel. The stencil test is set to “passing if equal to 2”, and the stencil fail and

pass operation is set to “decrementing”. Depth testing is disabled. With respect to a

specific texel, for the first incoming fragment the stencil test passes exactly for the first
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subsample, and thus the fragment is written into this subsample. After execution of the

stencil operation, the resulting stencil values are 1, 2, 3, . . . , 8. For the second incoming

fragment the stencil test thus passes exactly for the second subsample. In this way, the

incoming fragments for a texel are successively routed to different subsamples, i.e., the

i-th fragment is stored in the i-th subsample. This functionality allows us to capture

multiple fragments per texel in a single rendering pass.

In the first rendering pass, we render the implant’s surface mesh into the k-buffer

to capture the depth layers of the implant. The only attribute being associated with the

fragments is the voxel space depth, thus the k-buffer consists of a single component

floating point texture. Current graphics hardware supports up to eight subsamples per

texel, and thus enables capturing of up to eight depth layers in a single rendering pass—

to voxelize objects with higher depth complexity further rendering passes would be

required [MB07]. We use an orthographic projection with a view frustum matching the

bounding box of the voxel volume, and we choose a view port that aligns the texels in

the k-buffer with the voxel grid. Front/back face culling and depth testing are disabled.

By rendering the implant’s mesh, each texel captures the voxel space depth values of

the entry and exit points of an imaginary ray through the implant.

In the second pass, we build the 3D binary volume representing the implant. This

volume is stored in a four component unsigned integer 3D texture (R32G32B32A32),

with each voxel being encoded into one bit. Thus, 128 voxel slices are stored in one

3D texture slice. By adding the SV RenderTargetArrayIndex semantic to the geometry

shader output declaration, which enables the geometry shader to specify the respective

target slice within the 3D texture, the entire volume can be created in a single rendering

pass.

The bit patterns representing the voxelization are created in the fragment shader.

By using up to 8 render targets and thus simultaneously accessing 8 texture slices, the

fragment shader can output a vector of up to 1024 voxels at once. First, the k-buffer

entry corresponding to the respective ray is read and the depth values are sorted in

ascending order. Each consecutive pair of depth values then represents an entry and an

exit point into and from the implant. If zentry, zexit denote the voxel space depth values,

the entry and exit voxel indices kentry, kexit are determined by kentry =
⌈
zentry − 1

2

⌉
and

kexit =
⌊
zexit − 1

2

⌋
. The corresponding voxel block between the entry and the exit voxel

is created by adding
∑kexit

i=kentry
2i = 2kexit+1 − 2kentry to the bit pattern. Note that due

to the triangle rasterization rules and due to the specific rounding in the computation

of kentry and kexit, a voxel is created iff the voxel center is lying in the interior of the

surface mesh.



5.5. VISUALIZATION 117

5.4.4 Stress Calculation

After the per-vertex displacement vectors uk are computed according to Equation (2.73),

the stresses acting in the bone and the implant are determined according to Equations

(2.35) and (2.58) as

σ(x) = C
e
ε(x)

= C
e
Be(x)ue

, x ∈ Ωe. (5.2)

In this chapter, the stress visualization is based on the scalar von Mises stress

[Bat02], which is computed from the stress tensor σ according to

σMises =
√
σ2
11 + σ2

22 + σ2
33 − σ11σ22 − σ11σ33 − σ22σ33 + 3(σ2

12 + σ2
13 + σ2

23). (5.3)

For the GPU-based visualization of the stress tensor field, we sample this field at

the centers xe
C of the finite elements to obtain a per-element stress tensor σe, i.e.,

σe = σ(xe
C)

= C
e
Be(xe

C)︸ ︷︷ ︸
Se

ue

= Seue.

(5.4)

Since all elements have the same shape, and since the per-element elasticity tensor

Ce scales linearly with the Young’s modulus value, we only need a single, precomputed

instance of the matrix Se.

The corresponding von Mises stress values σe
Mises are stored in a 3D texture with the

resolution of the hexahedral finite element grid. This texture is sampled by means of

trilinear interpolation during the visualization process.

5.5 Visualization

For the rendering of the virtual 3D environment and the visualization of the simula-

tion results, we use GPU-based rendering techniques. In particular, we employ semi-

transparent rendering of surface meshes for the bone and the implant, and volume ray-

casting for the von Mises stress scalar field. These techniques enable us to simultane-

ously render the simulation objects as well as the simulation results and thus to show

the results in their respective context, without limiting perception due to occlusions. To

render opaque and semi-transparent geometry as well as the volume in correct visibility
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order, we use a multi-pass approach, which again utilizes the stencil-routed k-buffer.

Note that in the considered application the occurring displacements are small and

do not lead to a significant deformation of the bone and implant geometry. Therefore,

the deformation of the bone and implant geometry is neglected in the visualization, i.e.,

we render this geometry in the undeformed state.

First, we render all opaque geometry into the frame buffer with enabled depth test-

ing. The content of the depth buffer is later used during ray-casting to correctly handle

occlusions of semi-transparent geometry and the volume rendering by opaque objects.

Then, we render all semi-transparent geometry into an off-screen k-buffer, with depth

testing as well as front/back face culling being disabled. By means of the k-buffer we

can capture for each pixel up to eight incoming fragments, independently of the render-

ing order of the geometry. In our current implementation, we store with each fragment

its depth value and its surface normal (needed for diffuse lighting) in camera space as

well as an object ID, which is later used to access a small GPU lookup table storing the

material colors of the respective object. Since these values are encoded into 2× 32 bits,

we choose a two component unsigned integer texture format (R32G32) for the k-buffer.

We then use a full-screen rendering pass to ray-cast the volume as well as to si-

multaneously render the semi-transparent geometry. Our ray-casting approach is based

on the technique proposed by Krüger and Westermann [KW03]. For each pixel, we

first analytically compute the corresponding ray’s entry and exit point into and from

the volume. Furthermore, we fetch the pixel’s k-buffer entry, i.e., the fragments of the

semi-transparent geometry for that pixel, and sort them with respect to ascending cam-

era space depth values. We also fetch the pixel’s depth value from the depth buffer

and back-project the depth value into camera space. The depth value is used to handle

occlusions by opaque objects.

Along the ray, we accumulate the color-contributions of the semi-transparent frag-

ments and of the volume by using front-to-back blending. We first accumulate the

semi-transparent fragments that are lying in front of the volume. We then ray-cast the

volume by sampling the volume along the ray. The depth of the next sampling position

is determined as the minimum of the depth of the previous sampling position plus the

depth increment corresponding to the given step size (which is chosen as half the voxel

size), and the depth of the next semi-transparent fragment. The semi-transparent geom-

etry is incorporated into the ray-casting process by blending a fragment when the depth

of the fragment is equal to the depth of the current sampling position. After ray-casting

the volume, we accumulate the semi-transparent fragments that are lying behind the

volume. Whenever the ray hits the opaque geometry, it is terminated. The accumulated
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color is finally written into the frame buffer by using alpha blending with the opaque

geometry.

For rendering the von Mises stress on a set of parallel, axial slices through the bone,

we proceed analogously. However, we sample the volume only at the intersection points

of the ray with the slices. The respective sampling positions are determined by using

the analytical description of the slices and the ray. The von Mises stress values are

mapped onto colors by means of a rainbow color map.

Due to the hexahedral finite element discretization of the bone, the von Mises stress

field slightly sticks out from the smooth bone surface. To achieve a more appealing

visualization of the von Mises stress volume, we clip its rendering at the bone surface,

i.e., we only sample the von Mises stress volume when the sampling position is lying

in the interior of the bone mesh. This is determined by using a boolean flag during ray-

casting that is toggled whenever a bone surface fragment is encountered. The slices are

clipped analogously.

5.6 System Integration

To enable a smooth interaction with the system, we use two separate threads, one for

the simulation (referred to as the simulation thread), and one for the visualization and

the handling of the user input (referred to as the render thread). Each thread operates

on a thread-local set of buffers storing the simulation parameters and the simulation

results. The simulation parameters include the implant position, the cutting planes,

and the forces that are applied to the bone and the implant. The simulation results

comprise the per-vertex displacement vectors, as well as the Young’s modulus values of

the finite elements (the latter information is necessary to compute the stresses from the

displacements). For the communication between the two threads, another set of buffers,

referred to as the intermediate buffers, is used. Accesses to the intermediate buffers

must be performed mutually exclusive, i.e., critical section synchronization primitives

must be used to prevent simultaneous accesses.

The threads continuously execute a simulation loop and a rendering loop, with each

iteration being referred to as a frame. In each simulation frame, the simulation thread

1.) copies the current simulation parameters from the intermediate buffers into his local

buffers, 2.) runs the simulation, and 3.) finally copies the new simulation results from

his local buffers into the intermediate buffers. In each render frame, the render thread

1.) handles the user input, 2.) copies the current simulation parameters from his local

buffers into the intermediate buffers, 3.) if new simulation results are available, copies
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the new results from the intermediate buffers into his local buffers, and 4.) generates

the visualization.

Simulation and visualization are each performed on a separate GPU. To minimize

GPU-to-GPU traffic, which has to be performed via PCI Express buses, we only transfer

the (densely packed) per-vertex displacement vectors and the (densely packed) Young’s

modulus values of the finite elements. The von Mises stress field is then directly com-

puted on the visualization GPU by employing a dedicated CUDA kernel, and stored in

a 3D texture for visualization (see Section 5.4.4). The latter step is based on the inter-

operability between CUDA and Direct3D 10, which enables writing into 3D textures

from CUDA kernels.

In the following, we describe how the individual simulation and the visualization

components described in the previous sections are integrated into the system. In each

simulation frame, we first voxelize the implant surface mesh into a 3D texture using our

GPU-based voxelization algorithm (see Section 5.4.3). We then compute the Young’s

modulus values of the finite elements, using the Young’s modulus values of the bone

voxels (stored in a 3D texture), the voxelization of the implant, and the analytical de-

scription of the cutting planes specifying the part of the femoral head that is to be

removed (see Sections 5.4.1 and 5.4.2). The Young’s modulus values of the finite ele-

ments are downloaded to the CPU, to be later transferred to the visualization GPU for

the computation of the stresses.

We then update the per-vertex equations on the simulation level, as well as on the

coarse grids of the multigrid hierarchy. To reassemble only those per-vertex equations

which are affected by the changes of the Young’s modulus values, we employ a boolean

flag at each vertex that specifies whether the respective equation needs to be reassem-

bled (a ‘changed’ vertex) or not. On the simulation level, the ‘changed’ vertices are

exactly those vertices which are incident to a hexahedral finite element with changed

Young’s modulus. On the coarse grid levels, the ‘changed’ vertices are exactly those

vertices which interpolate from a ‘changed’ vertex on the previous finer level. The flags

are successively propagated from the finest to the coarsest level. Note that the voxeliza-

tion of the implant and the update of the equations are completely skipped if the implant

and cutting plane configuration has not changed with respect to the previous simulation

frame.

We then upload the per-vertex forces to the GPU, which constitute the right hand

side of the underlying linear system of equations, and approximately solve this system

by performing two multigrid V-cycles, each with two pre-smoothing and one post-

smoothing decoupled Gauss-Seidel relaxation steps (ω = 1) (see Chapter 3). On the
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coarsest level, we employ the Cholesky solver from the TAUCS library [TCRM03].

Even though this solver is running on the CPU—which requires to download the coars-

est level linear system of equations to the CPU, as well as to upload its solution back to

the GPU—our experiments have shown that for the considered application this strategy

is faster than employing a conjugate gradient solver running entirely on the GPU. The

reason is that due to the inhomogeneous material properties of the bone, a high num-

ber of CG cycles is required to achieve a sufficient correction from the coarsest grid.

The computed per-vertex displacement vectors are downloaded to the CPU, to be later

uploaded to the visualization GPU.

The iterative nature of the employed multigrid solver enables providing a fast and

reasonably accurate feedback in a very short time interval, which is crucial in the con-

text of a computational steering environment. Since we use the results from the previous

simulation frame as initial values for the current frame, the multigrid solver is succes-

sively improving the solution with each further frame when the simulation parameters

remain unchanged. After 4 to 8 V-cycles, the solution is already visually indistinguish-

able from the exact solution, as we will demonstrate in the following section.

For the visualization, the per-vertex displacements and the Young’s modulus values

of the finite elements are uploaded to the visualization GPU. We then compute the

von Mises stress scalar field, which is stored in a 3D texture to enable GPU-based

trilinear interpolation in this field (see Section 5.4.4). The von Mises stress field is

finally visualized using the techniques described in Section 5.5.

5.7 Results

In this section, we give a detailed analysis of the performance and accuracy of our

surgery support system. All benchmarks were run on a high-end workstation, equipped

with two quad core Intel Xeon X5560 processors running at 2.8 GHz, 48 GB of DDR3

1333 MHz RAM, and two NVIDIA Tesla C2070 graphics and computing cards, each

with 6 GB of video memory.

Figures 5.7 to 5.10 show the simulation results obtained by our virtual 3D plan-

ning system for a real-world scenario. The finite element model of the femur has been

derived from a clinical CT scan of the patient. In the figures, we show both the phys-

iological stress distribution in the intact femur, as well as the stress distribution after

insertion of a specific implant. In particular, we simulate the stress distribution for a

classical G2 implant with a long stem, as well as for a modern CUT implant with a

short stem. For the latter implant, we perform the simulation using both a straight as
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Figure 5.7: From left to right: Volume rendering of the simulated von Mises stresses in the

intact bone, and after the insertion of a G2 implant, a CUT implant with straight conus, and a

CUT implant with angled conus, respectively. Simulation was performed at a resolution of one

hexahedral finite element per CT voxel.

Figure 5.8: Volume rendering of the simulated von Mises stresses (setup analogous to Figure

5.7). Simulation was performed at a resolution of one hexahedral finite element per 23 CT

voxels.
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Figure 5.9: Color coding of simulated von Mises stresses on a set of parallel, axial slices (setup

analogous to Figure 5.7). Simulation was performed at a resolution of one hexahedral finite

element per CT voxel.

Figure 5.10: Color coding of simulated von Mises stresses on a set of parallel, axial slices

(setup analogous to Figure 5.7). Simulation was performed at a resolution of one hexahedral

finite element per 23 CT voxels.
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well as an angled conus. The modular assembly of the implant (consisting of stem,

conus, and ball) enables to accurately reproduce the hip joint rotation center.

In our simulation, we apply two force vectors to the bone and the implant. These

force vectors represent the accumulated muscular force of the hip abductors acting at

the trochanter major, and the contact force in the hip joint resulting from the muscular

forces of the abductors and the body weight. In the figures, we have applied a joint con-

tact force of 1500 N and a muscular force of 1125 N, corresponding to the load situation

of a healthy hip joint in the standing position for a body mass of 75 kg (muscular force

: joint contact force : half body weight = 3 : 4 : 1 [Mül71]). In addition to the manual

specification of the forces, we provide the option to apply the specific forces occurring

over an entire motion cycle, such as of normal walking or stair climbing (see Figures

6.8 and 6.9 on pages 148 and 149 for an example). The respective contact forces were

measured in-vivo by Bergmann et al. [BDH+01] using instrumented implants, and the

respective muscular forces were computed by Heller et al. [HBD+01] using a musculo-

skeletal model of the human lower extremity. The data were published by Bergmann

on the HIP 98 CD [Ber01].

In the figures, we show the simulation results for two different resolutions of the

finite element model, i.e., one hexahedron per CT voxel, and one hexahedron per 23

CT voxels. The figures demonstrate a high agreement between the stress distributions

obtained for the two resolutions. The finer resolution model even resolves the trabecu-

lar structures in the bone, which become indirectly visible in the stress patterns. When

comparing the stress patterns in the intact bone, and those resulting from the insertion

of a specific implant, the figures show that the insertion of the classical long-stemmed

G2 implant leads to a significant reduction of the stresses in the region around the im-

plant stem. These results are confirmed by X-rays showing the postoperative long-term

change of bone density for this implant type (see Figure 5.2). There, a significant degen-

eration of bone tissue in exactly these regions due to stress shielding can be observed.

The figures also clearly demonstrate that the stress distribution resulting from the inser-

tion of a modern short-stemmed CUT implant much better resembles the physiological

stress state.

Table 5.1 shows the performance of our simulation support system for the two finite

element model resolutions (first row). The second, third, and fourth row list the number

of hexahedral elements, the number of vertices, as well as the number of multigrid

levels for the respective FE model resolution. The next three rows give the time for

a single simulation frame, split into the time for the voxelization of the implant, the

time for the assembly of all per-vertex equations on the simulation level and the coarse
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CT Voxels per Hexahedron 23 13

#Hexahedra 97,700 734,000

#Vertices 110,000 782,000

#MG Levels 5 6

Voxelize Implant [ms] 0.872 0.872

Assemble Equations [ms] 41.7 266

Solve [ms] 32.7 208

Total [ms] 75.2 475

Simulation Update Rate [1/s] 13.3 2.10

Table 5.1: Timing statistics of our surgery support system. Note that these timings correspond

to the worst-case in that we measure the time to reassemble all per-vertex equations, even

though the majority of equations are unchanged with respect to the previous simulation cycle. In

particular, if the implant configuration has not changed with respect to the previous simulation

cycle, the implant voxelization and the equation assembly step are completely skipped.

grids of the multigrid hierarchy (this time includes the computation of the Young’s

modulus values of the finite elements, and the download of these values to the CPU),

as well as the time to approximately solve the underlying linear system of equations by

performing two multigrid V-cycles (this time includes the upload of the per-vertex force

vectors to the GPU, as well as the download of the per-vertex displacement vectors

to the CPU). The time for the implant voxelization (22,500 triangles) is the same for

both finite element model resolutions, since the voxelization is always performed at the

resolution of the CT voxel grid. The following two rows contain the total time of a

single simulation frame, as well as the number of simulation frames per second.

Note that the specified simulation frame times and numbers of simulation frames

per second correspond to the worst case. Due to our optimized implementation, in each

frame only a small number of per-vertex equations has to be reassembled in practice.

In particular, if the implant configuration has not changed with respect to the previous

frame, for example during interactive monitoring of the change of stresses due to dif-

ferent loading conditions, the implant voxelization and the update of equation step are

completely skipped.

With update rates of more than 13 simulation frames per second at half CT resolu-

tion, and still more than 2 frames per second at CT resolution, fast response times are

guaranteed, which enables an interactive, visually-guided steering of the simulation.

Since we use two separate threads for the simulation and the visualization, the ren-

dering frame rate is decoupled from the simulation frame rate, which enables a smooth

interaction with the system even for the highest finite element model resolution. On a

1920× 1200 view port, the visualization is running at a frame rate of more than 60 fps.
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Figure 5.11: Multigrid convergence study, using a resolution of one hexahedral finite element

per CT voxel, and starting with an initial value of 0 for the per-vertex displacement vectors.

From left to right, the figures show the simulated von Mises stresses after 2, 4, and 8 V-cycles,

and after full convergence of the solver.

In Figure 5.11 we finally demonstrate the convergence behavior of our multigrid

solver for the particular application. For this experiment, we start with an initial value

of 0 for the per-vertex displacement vectors uk, and show the von Mises stress distri-

bution after 2, 4, and 8 V-cycles, as well as the solution after the solver has reached

convergence. The figure demonstrates that the solution after 2 V-cycles already is in

close visual agreement with the fully converged solution, and that the solution after 4

to 8 V-cycles is virtually indistinguishable from this solution.

5.8 Conclusion and Future Work

In this chapter, we have presented the first computational steering environment for opti-

mal implant selection and positioning. Our results demonstrate that by using advanced

numerical schemes for finite element analysis, interactive yet highly accurate simula-

tions are possible today on desktop PC systems. Combined with efficient visualization

schemes including surface and volume rendering, a powerful visual computing tool for

implant planning in orthopedics has been developed.

In the future, we will validate the results of our simulation with respect to real-
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world experiments. Further directions of research are the integration of anisotropic

material laws into the simulation, with the directions of anisotropy being derived from

the trabecular structures in a high-resolution CT scan, as well as the explicit modeling

of the contact zone between implant and bone.
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Chapter 6

Stress Tensor Field Visualization for

Implant Planning in Orthopedics

We demonstrate the application of advanced 3D visualization techniques to determine

the optimal implant design and position in hip joint replacement planning. Our methods

take as input the physiological stress distribution inside a patient’s bone under load and

the stress distribution inside this bone under the same load after a simulated replacement

surgery. The visualization aims at showing principal stress directions and magnitudes,

as well as differences in both distributions. By visualizing changes of normal and shear

stresses with respect to the principal stress directions of the physiological state, a com-

parative analysis of the physiological stress distribution and the stress distribution with

implant is provided, and the implant parameters that minimize stress shielding, i.e.,

most closely replicate the physiological stress state, can be determined. Our method

combines volume rendering for the visualization of stress magnitudes with the trac-

ing of short line segments for the visualization of stress directions. To improve depth

perception, semi-transparent, shaded, and antialiased lines are rendered in correct visi-

bility order, and they are attenuated by the volume rendering. We use a focus+context

approach to visually guide the user to relevant regions in the data, and to support a

detailed stress analysis in these regions while preserving spatial context information.

Since all of our techniques have been realized on the GPU, they can immediately react

to changes in the simulated stress tensor field and thus provide an effective means for

optimal implant selection and positioning in a computational steering environment.

This chapter is based on material that has been originally published in C. Dick, J. Georgii, R. Burgkart, and R.

Westermann, Stress tensor field visualization for implant planning in orthopedics, IEEE Transactions on Visualiza-

tion and Computer Graphics 15 (2009), no. 6, 1399–1406 [DGBW09b]. The copyright for this material is owned by

the IEEE.
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Figure 6.1: Interactive visualizations (< 50 ms) of simulated stress tensor fields for a human

femur under load, using our methods. Top left: Principal stress directions and magnitudes in the

physiological state (violet = tension, green = compression). Top right: Principal stresses after a

simulated implant surgery. Bottom left: Change of normal stresses with respect to the principal

stress directions of the physiological state (red = increase, yellow = decrease). Bottom right:

Change of shear stresses.
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6.1 Introduction

3D simulation and visualization methods for in-vivo bone stresses are of great im-

portance in hip joint replacement planning, since they support the surgeon in find-

ing the optimal shape, size, and position of an implant during a preoperative design

loop. This is due to the fact that an essential factor for the long-term stability of an

implant is the load transmission to the adjacent bone stock. In particular, an opti-

mized femoral stem should minimize stress shielding, i.e., provide bone stress pat-

terns that are close to the physiological stress state, in order to avoid a degeneration of

bone tissue with the consecutive effects of osteopenia, fracture and aseptic loosening

[BWW+08, KOO+09, OH78, RSG+08, SV02].

Physically-based simulation of the mechanical response of a bone to an applied load

(without or with an inserted implant) has been addressed in a number of research papers

[BWW+08, BOM+07, TSH+07, YPJM07]. In Chapter 5 we have shown the advantage

of real-time simulation, which provides the possibility to obtain immediate feedback

to changes of the implant shape, size, and position as well as the exerted forces in the

context of a computational steering environment. So far, these approaches visualize

simulation results only by rendering scalar stress tensor norms on surfaces, or by using

volume rendering of the respective scalar fields (see Figure 6.3). However, for medical

purposes this kind of visualization is limited by the fact that it neglects important direc-

tional information in the simulated stress tensor fields. Furthermore, since an optimal

implant should provide a bone stress distribution close to the physiological stress state,

the surgeon needs a comparative visualization of the two stress distributions. To the

best of our knowledge, such a comparative visual analysis of the stress patterns result-

ing from a simulated implant surgery to the physiological stress state has not yet been

reported in the literature.

6.2 Contribution

To the best of our knowledge, we present the first interactive visualization approach

for dynamically changing 3D stress tensor fields, and we demonstrate the application

of this approach to find the most optimal implant shape, size and position in hip joint

replacement planning. We use volume rendering to show stress magnitudes, and we

combine it with semi-transparent, shaded, and antialiased lines to indicate stress direc-

tions. To improve depth perception, these lines are rendered in correct visibility order,

attenuated by the volume rendering. Since the proposed visualization techniques run
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entirely on the GPU, high frame rates can be achieved even for dynamically changing

stress tensor fields. Therefore, the techniques provide an effective means for analyzing

changing stress patterns as they are simulated in computational steering environments.

The user can flexibly change a number of visualization parameters such as trans-

parency and color to explore the underlying 3D stress tensor field. Furthermore, changes

of normal and shear stresses with respect to the principal stress directions of the phys-

iological state can be visualized, thus allowing for an immediate recognition of the

regions where stress shielding occurs. To restrict the user’s attention to the relevant re-

gions and to enable a precise, yet context-preserving analysis of the stress directions in

these regions, a focus+context technique is used. Only in the focus region fine details

of the stress directions are shown, while the stress directions in the context region are

visualized with lines on a much coarser scale.

A first qualitative evaluation of our visualization techniques shows the importance

of the proposed methodologies for preoperative implant selection and positioning. Even

though the visualizations differ vastly from the current state-of-the-art, practitioners

have indicated an immediate medical benefit from these visualizations.

6.3 Related Work

In this section, we survey related work in the area of the visualization of second-order,

symmetric tensor fields, with the most prominent examples of stress/strain as well as

diffusion tensor fields. A 3D second-order, symmetric tensor is represented by a sym-

metric 3 × 3-matrix (six independent scalar values), and is thus uniquely character-

ized by its three eigenvalues and three mutually orthogonal eigenvectors. By sorting

the three eigenvalues, the corresponding eigenvectors can be classified into the ma-

jor/medium/minor eigenvector, resulting in three eigenvector fields. Most of the pro-

posed visualization methods make use of the eigendecomposition.

Previous work can be classified into glyph-based approaches, methods originating

from vector field visualization based on line/surface tracing or line integral convolu-

tion, direct volume rendering techniques, topology-based visualization methods, and

approaches based on the visualization of the physical effect of the tensor field on the

underlying media.

Glyph based approaches map the tensor field’s local properties onto the shape and

visual appearance of graphical icons. Simple glyph-based visualization techniques are

hedgehogs, which represent the three eigenvectors by short lines, the absolute eigenval-

ues by the line length, and the sign of the eigenvalue by the line color, or ellipsoids, with
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half axes aligned to the eigenvectors and scaled according to the (normalized) eigen-

values [LAK+98]. To avoid visual ambiguities, more advanced primitives are used, for

example composite shapes [WMM+02] or superquadric tensor glyphs [Kin04].

A broad class of methods adopts approaches from vector field visualization. These

approaches can be divided into line and surface tracing methods, and techniques that

are based on line integral convolution (LIC). Examples for the first category are hyper-

streamlines [DH93], which are traced in the major eigenvector field, and which have

an ellipsoidal cross section that is determined by the medium and minor eigenvalues,

as well as streamlines, streamtubes and streamsurfaces, which are used in the context

of diffusion tensor field visualization [ZDL03, ZB02]. To visualize the differences be-

tween two diffusion tensor fields, da Silva et al. [dSZDL01] proposed color-coding of

streamlines to visualize the distance between corresponding fibers. To allow for the

interactive visualization of static tensor fields based on the tracing approaches, several

GPU-based rendering methods were presented. This includes the ray-casting of thin

threads splatted into a volume [WKZL04], stress nets, which are limited to 2D tensor

fields [WB05], ray-casting of hyperstreamlines [RBE+06], rendering of streamtubes by

textured triangle strips [MSE+06], and the rendering of streamtubes combined with a

level of detail technique [PFK07]. Kondratieva et al. [KKW05] presented a GPU-based

particle tracing method for diffusion tensor fields that even performs the tracing directly

on the GPU.

LIC-based approaches are based on the adaptation of the filter kernel parameters

[SEHW02] or of the shape of the filter kernel domain [ZP03] to the local tensor field,

or they apply the LIC to each eigenvector field separately, and then overlay the result-

ing images [HFH+04]. Tensor field visualization techniques based on direct volume

rendering [BW03, KWH00] use a complex mapping to obtain a color volume from

the tensor field. Topology-based approaches [DH94, HLL97, ZPP05] compute and vi-

sualize the degenerated points/lines and the separating lines/surfaces of a tensor field.

Another method interprets the tensor field as a stress tensor field, and visualizes its

deforming effect on the underlying media [BP98, ZP02].

Each of the proposed visualization methods has advantages and disadvantages. Due

to the complex nature of a second-order, symmetric 3D tensor field—at each point,

three directions and three scalar values have to be visualized—most of the proposed

techniques suffer from occlusion and visual cluttering problems, which often reduces

their application to the 2D case, and/or they are difficult to interpret, at least for the

non-expert.
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Figure 6.2: Quantities used in the definition of the stress vector, and illustration of the decom-

position of the stress vector into normal and shear stress components.

6.4 Stress Tensor Field Visualization

Stress is a measure of the internal forces acting within a deformable body. Given a

point x as well as a normal vector n specifying the orientation of an infinitely small,

imaginary area element passing through that point, the stress vector t(x,n) is defined

as a force density (force per unit area) t(x,n) = dF
dA

, where dF denotes the force

vector that the material on the positive side of the normal exerts on the material on the

negative side via the area element dA (see Figure 6.2 and Section 2.1.4).

At each point, the state of stress is fully described by the stress vectors for three

mutually orthogonal orientations of the area element. In particular, the stress tensor

σ contains the stress vectors for the three orientations corresponding to the axes of a

Cartesian coordinate system. For an arbitrary orientation of the area element speci-

fied by its normal vector n, the stress vector is determined by σn. This vector can

be decomposed into a normal stress and a shear stress component, acting orthogonally

and tangentially on the area element, respectively. For each stress tensor, there are three

mutually orthogonal orientations of the area element where the shear stress components

vanish. For these orientations, the normal stresses are called the principal stresses of

the stress tensor. Mathematically, the principal stress magnitudes are the eigenvalues

of the stress tensor, and they are independent of the coordinate system in which the

stress tensor is given. The associated eigenvectors are the principal stress directions,

and they are given with respect to the current coordinate system. The sign of the princi-

pal stress magnitudes classifies the stresses into tension (positive sign) or compression

(negative sign). However, since there are three principal stresses acting at each point,

the classification is with respect to a specific direction.

Our computational steering environment for implant planning in orthopedics com-

putes the stress tensor field in quasi real-time whenever the exerted external forces or

the shape or position of the implant are changed. The stress computation is based on a
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finite element model consisting of hexahedral finite elements aligned on a 3D Cartesian

grid, which is built from patient-specific CT data in a preprocess. For the GPU-based

visualization of the stress tensor field, we sample this field at the centers of the finite

elements, and store the stress tensor components in a set of 3D textures. These textures

are sampled by means of componentwise trilinear interpolation. It is worth noting that

in our application the occurring displacements are typically so small that—from a visu-

alization point of view—they do not result in a significant change of the body’s shape

and thus can be ignored in the visualization.

6.4.1 Principal Stresses

A human femur is made of two different types of bone tissue—compact cortical bone

forming its outer shell, and spongious trabecular bone occupying its interior (see top

left image in Figure 6.3). These two different types of bone tissue result from a natural

optimization process, which allows the femur to be load-bearing and light-weight at

the same time. Bone is living tissue that is subject to a life-long remodeling process,

consisting of bone resorption and bone formation, and driven by the mechanical load

situation on the bone [Kum05]. For an unchanging load situation, bone resorption and

formation are at equilibrium. This equilibrium is disturbed, however, if the mechanical

load situation is changed (for example due to bone growth). A larger (smaller) deforma-

tion causes an increase of bone formation (resorption), which will decrease (increase)

the deformation, until the equilibrium is restored. In this way, the bone adapts itself to

changes in the load situation to provide optimal mechanical stability at light weight. As

a consequence of this natural adaptation process, the trabeculae of the spongy bone are

aligned along the principal stress directions (Wolff’s law [Wol92]). This can be clearly

seen in the top left and bottom right image of Figure 6.3, which show a cut through a

real femur and the visualization of the principal stresses in a simulated physiological

stress distribution, respectively. Since the trabecular structures—and thus the princi-

pal stress directions in the physiological state—are well-known by orthopedic surgeons

from their education and daily work with X-rays (see top right image in Figure 6.3,

which is taken from medical literature and which shows a 2D sketch of the principal

stress directions in a human femur), visualizing principal stresses gives the surgeon an

intuitive way to judge the stress distribution resulting from a simulated implant surgery.

In particular, this approach is much more intuitive than previous approaches based on

the scalar von Mises norm [Bat02], which is used in the bottom left image of Figure

6.3.

Following these ideas, we combine volume ray-casting for the visualization of stress
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Figure 6.3: Top left: Cross section of a human femur showing the cortical and trabecular

structures. Top right: Schematic overview of the principal stress directions in 2D (according

to Pauwels [Pau73]). Bottom left: 3D volume rendering of the scalar von Mises stress norm.

Bottom right: Visualization of the principal stresses using the method proposed in this work.
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magnitudes, color-coded according to tension and compression, with the rendering of

semi-transparent lines for the visualization of stress directions.

For the volume rendering of the principal stress magnitudes, we use the following

mapping to assign a color to the stress tensor at a given point. First, we compute

the tensor’s eigenvalues and eigenvectors. We then determine for each principal stress

magnitude σi, i ∈ {1, 2, 3} a color contribution (RGBi, αi) as follows (using non-

associated colors): The color RGBi is determined by the classification into tension

(violet) and compression (green), and the respective opacity αi is proportional to the

absolute stress magnitude, i.e.,

RGBi =





violet if σi ≥ 0

green if σi < 0
, αi = saturate (c · |σi|) , (6.1)

where c is a user-specified scaling factor. In this way, regions with low stresses are al-

most transparent and do not occlude regions with high stresses. Since stress magnitude

is finally represented by the brightness of the associated color αi ·RGBi, the violet and

the green base color are selected such that they have the same luminance. The three

color contributions at a point are accumulated to get the final color (RGB,α) for the

point according to

RGB =

∑3
i=1 αi ·RGBi∑3

i=1 αi

, α = saturate

(
3∑

i=1

αi

)
. (6.2)

To add directional information to the visualization, we trace lines along the three

eigenvector fields, with six traces originating from each seed-point (two for each prin-

cipal stress direction and its opposite direction). We choose the seed-points on a

regular Cartesian grid that is restricted by the bone surface, and we slightly jitter

each seed position. To accurately integrate the lines of principal stress, we apply a

fourth-order Runge-Kutta scheme with fixed step size. During tracing, the eigenvector-

decomposition is computed on-the-fly for each sample point. To ensure directional

consistency within a trace (note that the eigenvector direction is not uniquely deter-

mined), we flip computed eigenvectors if the angle to the current line direction is larger

than 90◦. We restrict the length of the traces to a user-specified limit, since the principal

stress directions are a local property of the tensor field. The line is colored according

to the principal stress magnitude in the trace direction, using the same color mapping

as is used for the volume rendering. In this way, stress lines representing low stresses

are almost transparent and thus do not occlude stress lines with high stresses.
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Figure 6.4: Decomposition of the stress tensor σ with respect to the reference directions ê1
(left) and ê2 (right) into normal stresses σ1 and σ2 and shear stresses τ1 and τ2. The figure

shows the 2D case for simplicity.

6.4.2 Comparison to Physiological Stress State

One major problem in implant surgery is the change of the bone stress distribution due

to the insertion of the implant. In particular, the stiffening of the bone by the implant

as well as an unphysiological load transmission from the implant to the bone lead to a

removal of stress from certain regions in the bone, which is called stress shielding. Due

to the bone’s adaptation to changed stress patterns, stress shielding causes degeneration

of bone tissue, which finally may lead to fracture or loosening of the implant. Paradox-

ically, degeneration of bone tissue also occurs when the stress exceeds a certain critical

stress magnitude [Kum05]. Therefore, the ultimate goal of the medical procedure is to

keep the stress distribution after insertion of an implant as close as possible to the phys-

iological state. We address this requirement by providing a novel method to visualize

differences between the simulated stress tensor field resulting from a virtual implant

surgery and the physiological stress distribution. Our idea is to use the directions of the

trabecular structures—which correspond to the principal stress directions in the physi-

ological state—as a reference frame at each point for decomposing the stress tensors of

both fields into normal stress and shear stress components, and then to visualize differ-

ences with respect to these components. It is worth noting that by using these reference

frames, in the physiological state the normal stresses are principal stresses and the shear

stresses vanish, corresponding to an optimal loading of the trabecular structures.

As a first step, our approach requires a model of the trabeculae. While in principle

the main trabeculae are visible in high-resolution CT scans, we choose a model-driven

approximation here. We define the reference directions by means of the principal stress
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directions that arise from the default loading of the intact bone (standing position). This

model can be obtained by using the available simulation back end. It is worth noting

that the intent of the proposed comparative visualization method is to show changes of

normal and shear stresses with respect to the trabecular directions. Since the visualiza-

tion’s physical significance thus depends on the accuracy of the reference frames, let us

mention here that we could employ any other, more accurate trabeculae model, too.

Using the trabeculae model, we can decompose any stress tensor σ at a given sample

point with respect to the local reference frame êi, i ∈ {1, 2, 3}, i.e., the trabecular

directions, yielding a stress vector for each direction as illustrated in Figure 6.4. Each

stress vector is then further decomposed into the normal stress component (magnitude

σi) along the direction êi and the orthogonal shear stress component (magnitude τi) by

σi = êT
i σ êi , i ∈ {1, 2, 3}, (6.3a)

τi = ‖σ êi − σi êi‖2 , i ∈ {1, 2, 3}. (6.3b)

The visualization maps the differences of the absolute normal/shear stress magni-

tudes onto colors of the respective principal stress lines in the physiological stress dis-

tribution, using a similar color mapping as described in the previous section, but with

different base colors. Analogously to the visualization of the principal stresses, these

lines are attenuated by the volume rendering of the accumulated values for all direc-

tions. Since changes of normal/shear stress magnitudes with respect to the physiologi-

cal stress distribution are highly important for the surgeon, we use highlight colors red

and yellow to visualize the increase and decrease of the stress magnitudes, respectively.

Due to the semi-transparent rendering of the lines with their alpha value depending on

the magnitude of the differences, only those lines are visible which reflect a significant

change in the load transmission and thus are of relevance for the surgeon. Since stresses

within the implant are not of primary interest in the preoperative planning phase, these

stresses can be hidden in the visualization as it is shown in Figure 6.5.

We provide four different visualization modes in order to reduce the information

shown to the surgeon at once, which are shown in Figure 6.5:

Tension view: Change of normal stresses that are classified as tension in the physio-

logical state.

Compression view: Change of normal stresses that are classified as compression in the

physiological state.

Normal view: Change of normal stresses (tension and compression).

Shear view: Change of shear stresses.
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Figure 6.5: Different options for the comparative visualization of the stress distribution after

a simulated implant surgery and the physiological stress distribution (red = increase, yellow =

decrease). Top left: Change of normal stresses, tension only. Top right: Change of normal

stresses, compression only. Bottom left: Change of normal stresses, both tension and compres-

sion. Bottom right: Change of shear stresses.
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6.5 GPU-Based Implementation

To ensure immediate updates of the visualization whenever visualization parameters or

the underlying stress tensor field are changed, we exploit computational, bandwidth,

and rendering capacities on the GPU for stress tensor field visualization. In combina-

tion with a finite element simulation method that provides interactive update rates, the

GPU implementation enables the surgeon to interactively explore the effects of different

implant shapes, sizes, and positions as well as varying loads on the stress distribution

inside the patient-specific bone.

6.5.1 Eigendecomposition

As described in Section 6.4.1, our visualization method requires the computation of the

principal stresses of a given stress tensor, i.e., its eigenvalues and eigenvectors. Our

implementation uses the eigensolver algorithm proposed by Hasan et al. [HBPA01],

which allows for the analytical computation of the eigenvalues and eigenvectors of a

symmetric, positive definite 3 × 3-matrix. For a GPU implementation, an analytical

solver is preferable to an iterative algorithm, since a constant runtime better fits to the

GPU’s lock-step execution of parallel threads. On the GPU, Hasan et al.’s algorithm

has recently been used for eigendecomposition in the context of DT-MRI visualization

[KKW05], but in contrast to diffusion tensors, which are positive definite, i.e., which

only have positive eigenvalues, stress tensors have eigenvalues of arbitrary sign. Fortu-

nately, from the proof given by Hasan et al. it can be deduced that the algorithm is also

applicable to non-positive definite, symmetric 3 × 3-matrices. In this case, however,

the algorithm does not implicitly return the eigenvalues in ascending order so that an

explicit sorting of the three eigenvalues is required.

6.5.2 Line Tracing

The GPU-based computation of the stress lines is similar to the particle advection

method presented in [KKKW05]. We use a fixed number of vertices per line, as well

as a fixed step size. First, the seed-points are computed on the CPU and are uploaded

into a buffer on the GPU. Then, starting from the seed-points, the lines are succes-

sively traced on the GPU by using a multi-pass “ping-pong” technique, which in each

rendering pass simultaneously performs one trace step for each line.

The lines’ vertices are stored in two texture sets, which are alternately used as input

and output. For each vertex, we store its position, the tangential direction of the stress
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line at that position (i.e., the eigenvector), the stress magnitude (i.e., the eigenvalue), as

well as a number encoding which eigenvector field (major/medium/minor) the respec-

tive line follows. Therefore, each texture set consists of two four-component, floating-

point textures. The stress tensor field is stored in two three-component, floating point

3D textures. This enables us to directly use the GPU’s texture sampling capabilities for

trilinear, componentwise interpolation within the tensor field. The eigendecomposition

of the interpolated tensor is computed on-the-fly by employing the method described in

the previous section.

Tracing lines with a length of N vertices requires N rendering passes. In pass 0,

the seed-point of each line is fetched from the buffer and written into texture set 0. In

all other passes i = 1, 2, ..., N − 1, each line’s previous vertex i − 1 is fetched from

texture set (i − 1) mod 2, and each line’s new vertex i is computed using fourth-order

Runge-Kutta integration. The new vertices are stored in texture set i mod 2.

6.5.3 Rendering

For the GPU-based visualization of the 3D stress tensor field, we combine volume ray-

casting and semi-transparent line rendering. While the volume rendering is used to

simultaneously visualize the three stress magnitudes at each point, the lines are used to

visualize selected stress directions as well as the stress magnitudes along these direc-

tions. The semi-transparent lines and the volume are rendered in correct visibility order,

which considerably improves depth perception, since the lines are attenuated with in-

creasing depth (see Figure 6.6 for a comparison of different rendering techniques).

The correct visibility order is achieved by using the stencil-routed k-buffer proposed

by Myers and Bavoil [MB07], in a similar way as it was used in Chapter 5 for the

simultaneous rendering of semi-transparent surfaces and volumes. The stencil-routed

k-buffer can capture up to eight incoming fragments per pixel in a single rendering pass.

It is thus significantly faster than depth-peeling, which can only capture one fragment

per pixel in each pass. In our application, four rendering passes, i.e., up to 32 fragments

per pixel, are typically sufficient.

The k-buffer consists of a multisampled texture accompanied by a stencil buffer,

which is used to route the fragments falling into one pixel to individual subsamples in

the texture. To capture more than eight fragments per pixel, the geometry has to be ren-

dered successively into multiple k-buffers using different initial stencil values for each

buffer. Since the maximum number of incoming fragments to a pixel, i.e., the number of

required rendering passes, is not known a priori, we employ occlusion queries to detect

at runtime whether an overflow of the k-buffer has occurred, i.e, whether further ren-
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Figure 6.6: Comparison of different rendering techniques: Left: Opaque lines without antialias-

ing. Middle: Semi-transparent lines with antialiasing. Right: Semi-transparent antialiased lines

with volume attenuation (proposed method).

dering passes are required. For details, we refer the reader to the original work [MB07].

In our application, where we use the k-buffer to render semi-transparent geometry in

correct visibility order, we reduce the maximum number of incoming fragments per

pixel by discarding all line fragments with an alpha value < 0.02 during rendering,

since these fragments would only have an insignificant contribution to the final image.

The visualization is generated in multiple passes. First, all opaque scene geometry

is rendered into the frame buffer, with depth testing being enabled. The depth buffer

content is later used during ray-casting to correctly clip semi-transparent geometry and

the volume at the opaque geometry. Then, all semi-transparent geometry is rendered

into the screen-aligned k-buffers, with depth testing as well as front/back face culling

being disabled, so that all fragments are captured. The semi-transparent geometry con-

sists of the bone and the implant surface mesh, as well as the semi-transparent stress

lines. For each bone and implant fragment, we store its depth and normal in camera

space, as well as an object ID, which is later used to assign material colors. For the

lines, we store the depth in camera space as well as the RGBA color of the fragment.

All of these values are encoded into 2 × 32 bits, requiring a two-component unsigned

integer texture format.

To render the stress lines, which have been traced using the method described in

Section 6.5.2 and stored in two textures, the lines’ vertices are fetched from these tex-

tures in the vertex shader. We render shaded and antialiased lines to improve perception.

This is achieved by employing the geometry shader to expand each line segment into

a screen aligned quad, which is conceptually similar to the method proposed by Mer-

hof et al. [MSE+06]. The expansion is performed in screen space, so that the lines

are rendered with a specific pixel width. We apply transparency-based antialiasing us-

ing a box filter kernel [CD05]. Employing non-associated colors, this is implemented
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Figure 6.7: Focus and context visualization of 3D stress tensor fields. Top left: Spatial context

is lost if only the stress lines are shown. Top right: Increasing the opacity of the bone’s surface

improves the spatial perception but washes out the lines. Bottom left: Fewer and thicker lines

improve the perception of the global stress distribution but do not allow for a detailed analysis.

Bottom right: Focus+context visualization provides the spatial context and the global stress

distribution, and allows for a detailed stress analysis in the focus region.
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by multiplying a fragment’s alpha value with saturate(w − d) in the fragment shader,

where w > 1.5 denotes half the line width and d the distance of the fragment’s center

from the line’s centerline, both values measured in pixels. To enhance the lines’ silhou-

ettes, we multiply the fragment’s RGB color components by saturate ((w − 1.5)− d),

which introduces thin black borders along the lines.

After all semi-transparent fragments have been captured, we use a full-screen render

pass to perform the volume rendering as well as to simultaneously create the final im-

age. For each pixel, in the fragment shader we first fetch the semi-transparent fragments

corresponding to that pixel and sort them according to ascending depth. Furthermore,

we clip at the opaque geometry by using the pixel’s depth buffer value. If the view

ray corresponding to the pixel does not intersect the volume, the fragments lying in

front of the opaque geometry are blended front-to-back, and the result is blended with

the frame buffer content. Otherwise, we ray-cast the volume along the ray and simul-

taneously incorporate the semi-transparent fragments in correct depth order. At each

sample point, two texture fetches are performed to obtain the componentwise interpo-

lated stress tensor, and its eigenvalues are computed to derive the sample’s color. This

color is accumulated along the ray with the semi-transparent fragments via front-to-

back blending. If the ray reaches the depth of the opaque geometry it is terminated, and

the accumulated color value is blended with the frame buffer content.

Due to the discrete tensor field voxelization, the volume and the stress lines can ap-

pear slightly outside of the bone surface mesh. We therefore improve the visualization

by clipping the volume and line rendering at the bone surface. This is implemented by

using a flag that specifies whether the current sampling/fragment position is inside or

outside the bone surface. The flag is toggled whenever a semi-transparent bone mesh

fragment is blended. Using this flag, the color contribution of the volume or a semi-

transparent line fragment is only blended if the respective position is lying inside of the

bone. The removal of the stress visualization within the implant mesh is implemented

analogously.

6.6 Focus+Context

To emphasize important regions in the data and to support a detailed stress analysis in

these regions, we employ a lens-like focus+context metaphor as proposed by Krüger et

al. [KSW06] for scalar volume rendering. We also use a sphere-shaped focus region

that snaps onto the bone surface, but in contrast to showing different structures in the

context and the focus region, we show the same structures at different resolutions. In the
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context region, the density and thickness of the stress lines is decreased and increased,

respectively, while the opacity of the bone’s surface is increased.

This particular visualization approach is motivated by the observation that a detailed

stress analysis requires fine details of the stress directions, which can be achieved by

using a high seeding density of the stress lines. Furthermore, the bone’s surface has

to be completely transparent to optimally reveal these details. By only showing the

stress lines, however, spatial perception is significantly reduced, especially if the user

navigates around the bone. As a consequence, we increase the surface’s opacity in the

context region, yielding a considerably improved perception of the spatial relationships.

The problem now is that in the context region the blending of the bone’s surface with

the finely detailed directional structures results in a rather flat visualization showing

low contrast and little structural information. To circumvent this drawback we reduce

the seeding density of the stress lines in the context region, at the same time making

them thicker and thus more distinguishable. By doing so, we provide important spatial

context information of the bone as well as the global stress distribution, at the same

time enabling a precise analysis of the focus region as demonstrated in Figure 6.7.

Increasing the seeding density of the stress lines is implemented by increasing the

spacing of the regular Cartesian grid that is used for the placement of the seed lines

as described in Section 6.4.1. Only within the focus region we insert additional seed-

points located in the middle between the existing ones. To achieve a visually continuous

visualization, i.e., to avoid that lines suddenly pop up or disappear during movements of

the focus region, we proceed as follows: The additional seed-points are placed within

a sphere region located at the focus region center, but with a radius of the sum of the

radius of the focus region plus the trace length. For the stress lines originating from the

original seed-points, we use a total line width of 10 pixels, with the exception of line

segments located within the focus region, for which we use a line width of 6 pixels (with

a smooth transition at the border of the focus region). For the stress lines originating

from the additional seed-points, we always use a total line width of 6 pixels, but for

line segments located outside of the focus region, we set the alpha value to 0 (again

with a smooth transition at the border of the focus region).

6.7 Results and Evaluation

We have integrated the proposed visualization techniques for 3D stress tensor fields into

the virtual implant planning tool presented in Chapter 5, which simulates the stresses

in a human femur under load without and with an inserted implant. The tool allows the
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user to interactively adapt the shape, size, and position of the implant as well as exerted

forces.

All images were created in less than 50 ms on a standard desktop PC, equipped

with an Intel Core 2 Quad Q9450 2.66 GHz processor, 8 GB of RAM, and an NVIDIA

GeForce GTX 280 graphics card with 1024 MB of local video memory. The view port

size was 1280 × 1024. The resolution of the tensor field is 89 × 83 × 182 voxels at

a spacing of 1.5 mm × 1.5 mm × 2 mm. The trace length is 40 mm, the step size is

0.5 mm, and the seed points are located on a Cartesian grid with a spacing of 12 mm in

the context region and 6 mm in the focus region.

In Figure 6.1, we demonstrate the effectiveness of our visualization techniques for

the precise analysis of 3D stress tensor fields. First, we visualize tension (violet) and

compression (green) as they arise in a healthy femur under a typical load. Next, we

show the same data set after a virtual implant surgery. It is clearly visible how the

implant changes the stress distribution in the surrounding bone tissue. To allow for a

more precise comparison, we apply our novel comparative visualization technique in

the next image. We use colors red and yellow to visualize the increase and decrease

of the normal stresses. In this image, the stress shielding in the lower cortical region

of the femoral head becomes apparent (yellow region). The last image visualizes the

shear stresses that arise mainly around the implant. In addition, in Figures 6.8 and 6.9,

we show the principal stresses in the intact bone and after insertion of an implant over

an entire motion cycle of stair climbing.

The relevance of the visualization techniques for orthopedic surgeons is demon-

strated in Figures 6.10 and 6.11. We show comparative stress visualizations for two

implant types and positions. It is clearly visible that the common G2 implants yield to

stress shielding in large areas of the femur, especially in the cortical region close to the

cut surface. The images demonstrate that modern shorter CUT implants yield a better

physiological load transmission. However, these implants are more sensitive to correct

positioning. If the implant does not have direct contact to the cortical region, the load

transmission exhibits higher stress shielding and higher shear stresses, which increases

the risk of fracture or aseptic loosening. These examples demonstrate that our visual-

ization techniques help the surgeon to understand and evaluate the complex mechanical

situation arising in hip joint replacement surgery. Consequently, the surgeon can opti-

mize the shape, size, and position of the implant to ensure the best possible long-term

prognosis for the patient.

To obtain a feedback on the importance of the proposed methodologies to practi-

tioners and the additional benefits they can derive, we have pursued a first qualitative
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Figure 6.8: Simulation of the physiological stress distribution in the intact bone during stair

climbing. The eight images show an entire motion cycle with a time interval of 0.2 s between

two successive images. The muscular and joint contact forces were taken from [Ber01].
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Figure 6.9: Simulation of the stress distribution during stair climbing (analogous to Figure 6.8)

after insertion of the CUT implant.
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G2 – normal stresses G2 – shear stresses

Figure 6.10: Visualization of the changes of the stress distribution for the G2 implant.

evaluation of the orthopedic implant planning tool. We have shown the tool to five

experienced orthopedic surgeons (assistant or associate professors) at the Klinikum

Rechts der Isar, Technische Universität München. Specifically, we have shown to them

visualizations of the stress distribution in two patient-specific data sets without and

with three different implants, each inserted at two slightly different positions. We have

asked them to judge whether the results can be easily understood and are in line with

their intuitive expectation, in particular with respect to an immediate assessment of the

patient-specific differences in the stress distributions induced by different implant types

and positions.

All surgeons rated the proposed stress visualization methods as highly relevant in

practice, especially because an intuitive perception of the different kinds of stresses, i.e.,

tension and compression, as well as their main directional structure in combination with

the stress magnitudes is given. All of them stated that the comparative visualization

of the stress distributions provides an intuitive and clearly visible rating of different

implants, and that the use of such a support tool for preoperative implant selection can

significantly reduce the risk of stress shielding. An even stronger statement has been

made by all surgeons with respect to the use of the tool in the preoperative planning

phase for patients with anatomical anomalies, e.g., pronounced hip-joint dysplasia and

bone deformation, or in the context of revision interventions. All five surgeons have
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CUT (non-optimal pos.) – normal stresses CUT (non-optimal pos.) – shear stresses

CUT (optimal pos.) – normal stresses CUT (optimal pos.) – shear stresses

Figure 6.11: Visualization of the changes of the stress distribution for the CUT implant at

different positions. It is clearly visible that the CUT implant reduces the stress shielding in the

cortical region and yields a more physiological load transmission than the G2 implant (Figure

6.10). Optimal positioning of the CUT implant yields less stress shielding as well as reduced

shear stresses around the implant (top vs. bottom row of images).
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indicated strong interests to use the tool for this purpose, even though it causes an

additional temporal expense. Due to the more precise and predictable operative care,

this temporal expense would be accepted. Two surgeons were pointing out the value of

the tool in education, because all variants and results thereof can be tested, compared,

and analyzed virtually.

The focus+context technique was considered to be an interesting feature of the sys-

tem. However, there were some concerns with respect to its usability in clinical prac-

tice, since the focus region was placed manually in the demonstration. The majority of

the surgeons requested that the focus region should be automatically placed at a medical

point of interest (e.g., at the calcar region at the proximal medial femur), a feature we

will integrate in the future. Two surgeons were critical concerning the current realiza-

tion of the tool, because it does not yet support a default mechanism to automatically

place the implant into a physiologically meaningful initial position. It was also seen

problematic, whether the tool can really be used to precisely analyze the most optimal

position of a selected implant. Here it was conjectured that the fine-granular adjustment

as provided by the tool might be difficult to be mimicked in reality.

6.8 Conclusion

In this chapter, we have presented advanced, yet interactive, visualization techniques

for 3D stress tensor fields. To the best of our knowledge, this is the first approach that

allows for the interactive visual exploration of dynamically changing 3D stress tensor

fields. Due to the sophisticated visualization options provided, surgeons get deep in-

sights into the highly complex stress tensor data sets arising in preoperative implant

planning environments. Especially, we have demonstrated the importance of compar-

ing the stress distribution after an implant has been inserted with the physiological

stress state, and we have provided powerful novel visualization techniques for this pur-

pose. These techniques allow the surgeon to optimize the shape, size, and position of

the implant with respect to the specific patient, which finally improves the long-term

prognosis of the patient.



Chapter 7

Distance Visualization for Implant

Planning in Orthopedics

An instant and quantitative assessment of spatial distances between two objects plays

an important role in interactive applications such as virtual model assembly, medical

operation planning, or computational steering. While some research has been done on

the development of distance-based measures between two objects, only very few at-

tempts have been reported to visualize such measures in interactive scenarios. In this

chapter we present two different approaches for this purpose, and we investigate the

effectiveness of these approaches for intuitive 3D implant positioning in a medical op-

eration planning system. The first approach uses cylindrical glyphs to depict distances,

which smoothly adapt their shape and color to changing distances when the objects are

moved. This approach computes distances directly on the polygonal object representa-

tions by means of ray/triangle mesh intersection. The second approach introduces a set

of slices as additional geometric structures, and uses color coding on surfaces to indi-

cate distances. This approach obtains distances from a precomputed distance field of

each object. The major findings of the performed user study indicate that a visualization

that can facilitate an instant and quantitative analysis of distances between two objects

in interactive 3D scenarios is demanding, yet can be achieved by including additional

monocular cues into the visualization.

This chapter is based on material that has been originally published in C. Dick, R. Burgkart, and R. Wester-

mann, Distance visualization for interactive 3D implant planning, IEEE Transactions on Visualization and Computer

Graphics 17 (2011), no. 12, 2173–2182 [DBW11]. The copyright for this material is owned by the IEEE.
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Figure 7.1: Distance visualization for interactive (> 30 fps) preoperative implant planning us-

ing color coding on the implant surface (left), oriented distance glyphs (middle), and color

coding on the implant surface and on a set of additional axial slices (right).

7.1 Introduction and Related Work

Whenever a user in an interactive computer environment is faced with the problem of

positioning an object relative to another object, additional cues are required to support

an instant communication of the absolute spatial distance of the controlled object to the

other object. Even though a number of such cues can be used in general, for example,

audio cues or haptic feedback, in most environments only binocular or monoscopic

views and mouse-based interaction is available. Furthermore, as for spatial stimuli

the visual sense predominates, followed by audition and touch [WW80], binocular or

monocular visual cues are usually the preferred indicators.

Psychovisual experiments, however, have indicated that stereopsis provides only

relative depth information, which allows inferring on the location of an object relative

to another object rather than the absolute distance between them. Monocular cues, such

as motion effects or additional geometric structures embedded into a visualization, on

the other hand, can effectively indicate absolute distances. Without such direct cues,

the estimation of absolute spatial distance between objects becomes very difficult, and

typically requires a mental indirection to infer an accurate estimate. Let us refer to the

textbooks by Steinman et al. [SSG00] and Schwartz [Sch04] for a scientific review of

these arguments.

An example where color is used to indicate distance is given in Figure 7.1 (left): The

minimum distances between points on an implant and the surface of a bone into which

the implant should be placed are color-coded on the implant. In previous work, color

(and iso-contours in color distributions) has been shown to be quite effective at indicat-

ing where distance falls below a critical value, and in combination with color legends
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distance-based coloring even supports quantitative investigations [DMA+01, MLD+04,

SPP+10]. As can be seen, however, such visualizations fail in communicating contex-

tual information that is required to effectively interpret distance. Regardless of the

specific distance measure that is used, such as shortest distances via distance fields

[Gué01, JBS06, RCD+10], spatial distance always ‘connects’ two reference points, and

the human is used to interpret distance in the context of such references. Due to this

observation, distance coding in still images via connecting structures such as lines or

glyphs has been shown to be very effective. Pang et al. [PWL97] used line primitives of

varying length to indicate distances between two surfaces, and in [PTSP02, RCD+10]

point-to-point distances between two selected anatomical features were visualized via

arrow glyphs accompanied by textual annotations. Without such connecting structures

the user has difficulties to associate the points the color is referring to and to use her

experience for interpretation.

Apart from the question for an adequate visual encoding of absolute distances in

still images, another aspect becomes very important in interactive environments where

the user’s eyes fixate on the controlled objects and track their motion and orientation.

In this case, distances to other objects have to be communicated via peripheral vision,

which is the ability to gather information from the environment other than the point of

focus. Peripheral vision directs our attention to slight movements in the environment

around us, and it is processed significantly faster than vision requiring color. To the best

of our knowledge, an investigation of the potential of glyphs for revealing distances be-

tween two moving objects in interactive scenarios—taking into account the possibility

to dynamically change their shape, size, color, and density—has not been performed so

far.

Based on the aforementioned observations, in this chapter we provide novel monoc-

ular cues for effectively revealing point-to-point distances between two objects in in-

teractive environments. Based on the mentioned previous techniques using static lines

and glyphs we propose a number of extensions to exploit the human’s peripheral vi-

sion, and we investigate the effectiveness of these extensions in an application-specific

user study. Specifically, we address an application in which the user has to position an

object with respect to another object that is fixed in space. The underlying application

is implant planning for hip joint replacements, where in a preoperative planning phase

a surgeon tries to find the patient-specific optimal implant shape, size, and position. In

this application, the user can interactively translate and rotate both models together or

only the implant relative to the bone.

The monocular cues we present indicate distance via additional geometric structures
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that smoothly adapt their shape, appearance, or position to changing distance distribu-

tions. Two different kinds of monocular cues are provided: For interactive scenarios

we have developed dynamically changing and colored distance glyphs to effectively

employ peripheral vision for gathering distance information. An example demonstrat-

ing the visual sensation produced by these glyphs is given in Figure 7.1 (middle). Note

that even in a still image the absolute distances can be revealed much more intuitively

compared to pure color coding as in Figure 7.1 (left). One important reason is that

the glyphs serve as ‘bridging’ structures between the implant and the bone surface,

enabling the user to associate the distance values to geometric points on the surfaces.

For still images, where peripheral vision is not relevant for perceiving distances, we

embed slices into the 3D visualization, and we further augment these slices by colors

indicating distance (see Figure 7.1, right). The advantage of this kind of visualization

is that it allows for a better observation of the implant due to the sparsity of the used

geometric elements, yet providing visual indicators of the spatial relationships between

the two objects.

For both types of visual cues, by carefully selecting the shape and appearance

attributes of the used graphical primitives, critical regions where the moved implant

comes close to the bone surface are identified preattentively, i.e., they are detected very

rapidly and accurately by the low-level visual system. The low-level visual system is

associated with the lateral geniculate nucleus, or simply called visual thalamus, which

is part of the thalamus and responsible for reducing the optical input that is further pro-

cessed by the visual cortex. In our application, the preattentive visual features we are

exploiting to accommodate a rapid analysis of distances are hue, shape, and density of

the additional geometric structures. For a more elaborate discussion of the preattentive

mechanisms of the low-level visual system let us refer to [Hea99, SW00].

Throughout this chapter we will present the methodology underlying the two new

approaches for visualizing spatial distances, and we will analyze the particular strengths

as well as the differences and limitations of these approaches in the context of preop-

erative implant planning. To the best of our knowledge, this is the first time that spa-

tial distance visualization between two objects in interactive environments is addressed

other than by color.

The remainder of this chapter is as follows: In the next section we present the med-

ical application for which our distance visualization techniques are developed. Section

7.3 outlines the specific distance measures we use and describes how these measures

are mapped onto meaningful graphical representations, such as glyphs and slices. The

dedicated GPU implementation of all approaches, by which it is possible to achieve
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Calcar Region

Lateral Wall

Figure 7.2: Cross section through a human femur, showing the bone shell consisting of stiff

cortical bone and the bone interior consisting of spongious trabecular bone.

interactive frame rates even for large and complicated data sets, is discussed in Section

7.4. The result section demonstrates the application of our techniques and compares the

results to each other. We conclude the chapter with a summary of the basic advantages

and disadvantages of both techniques.

7.2 Medical Background

A human femur consists of two types of tissue: The outer shell of the bone consists

of stiff cortical bone, whereas the interior consists of spongious trabecular bone (see

Figure 7.2). For total hip joint replacement, the femoral head is removed, and the inner

trabecular bone has to be partially removed in order to be able to insert the implant.

During preoperative planning, the patient-specific optimal implant shape, size, and

position has to be determined according to certain geometrical as well as biomechanical

criteria. The geometrical criteria include that the implant has to fit into the interior of the

cortical bone shell, without penetrating this shell, and that the joint rotation center has

to be preserved. The main biomechanical criterion is related to the stress distribution

in the loaded femur, in that the stress distribution after insertion of the implant should

closely match the preoperative, physiological stress distribution. For an optimal load

transmission from the implant to the adjacent bone stock, it is important that the implant
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has tight press fit contact to the remaining bone shell, in particular in the calcar region

and—especially for short stemmed implant designs—the lateral wall of the femur. If

the implant has not sufficient contact in these regions, the stress distribution is changed

significantly in that stresses are moved almost completely from regions with no contact

to regions with contact. An unphysiological stress distribution can lead to a substantial

resorption of bone tissue, with the consequences of fracture or loosening of the implant.

Our computational steering environment for implant planning in orthopedics (see

Chapter 5) so far uses semi-transparent rendering of the bone and implant surfaces to

visualize the implant position three-dimensionally within the bone, which only allows

for a very limited perception of the geometric relationships and absolute distances, i.e.,

the distances between bone and implant. In the considered application, however, the

perception of the geometric relationships and absolute distances is highly important for

a precise and intuitive navigation of the implant in the virtual 3D environment, for val-

idating if the current implant configuration meets the described geometrical criteria, as

well as for analyzing if a particular unphysiological stress distribution results from the

implant not having sufficient contact with the bone, and in this case, how the implant

has to be moved or changed in size in order to establish this contact. Therefore, the goal

of the work presented in this chapter was to develop dedicated visualization methods

that allow for a rapid perception of the geometric relationships and absolute distances

between implant and bone. In the computational steering environment, the surgeon can

then flexibly switch between the distance and the stress visualization (or use both visu-

alizations simultaneously on a split screen) in order to find the patient-specific optimal

implant shape, size, and position.

7.3 Distance Visualization

For the particular application of preoperative implant planning, we employ a triangle

mesh of the outer bone surface, a triangle mesh enclosing the trabecular region of the

bone and thus separating the cortical and trabecular regions, and a triangle mesh of

the implant surface. The first two meshes, which are in the following referred to as

the outer and inner bone mesh, are obtained by segmentation from a CT scan. The

distances that are of primary relevance for preoperative planning are those between the

inner bone mesh and the implant mesh. To simplify the notation, we typically omit the

differentiation between inner and outer bone mesh in the following.
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Figure 7.3: Distance rendering using oriented glyphs, located at certain seed points on the

implant surface: Left: Orienting the glyphs orthogonally to the implant surface enables an ef-

fective perception of the spatial relationships. Right: Orienting the glyphs toward the respective

closest point on the bone surface makes perception of the spatial relationships rather difficult.

7.3.1 Glyph-based Distance Visualization

Our first approach for the visualization of distances between bone and implant mesh is

based on rendering cylindrical glyphs at selected seed points on the implant surface.

We use cylindrical glyphs since these provide an intuitive means to depict distances:

The height of the cylinder visualizes the represented distance, and its axis specifies the

direction along which the distance is measured. There are distinct strategies to choose

the radius of the cylinder: For example, by using a radius proportional to the cylinder’s

height, the glyph is scaled isotropically with a scaling factor proportional to distance.

In contrast, by using a radius inverse proportional to the height (i.e., the product of

radius and height is constant), the radius is increasing if the distance is decreasing, and

vice versa. This suggests that the glyphs are clamped between the two surfaces, and

that they are elastically deforming according to the relative movements of the surfaces,

i.e., the glyphs are squeezed with decreasing distances. We use the latter strategy due to

this intuitive—since physically plausible—relation between changes of distances and

effects on the glyphs. In addition, for the considered medical application, small distance
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values are of high relevance. By increasing the radius with decreasing height, it is

ensured that the glyphs representing small distances remain visible.

For the glyph-based approach, distances between the two surfaces are measured or-

thogonally to the implant surface and are determined by means of ray/triangle mesh

intersection. By orienting the glyphs orthogonally to the implant surface, their ori-

entations are changing smoothly with the implant surface, which enables an effective

perception of the spatial relationships. In contrast, orienting the glyphs toward the re-

spective closest point on the bone surface leads to abrupt changes of the glyphs’ orienta-

tions, which introduces visual clutter and makes perception of the spatial relationships

rather difficult (see Figure 7.3).

Since large distances are of minor relevance, we only render glyphs representing

distances below a certain maximum value dmax. In this way, we also avoid visual clut-

tering of the glyphs (see Figure 7.4). To avoid that glyphs suddenly pop up or disappear

when the represented distance crosses dmax, we fade out the glyphs by rendering them

as semi-transparent objects. In particular, we linearly interpolate a glyph’s alpha value

from 1 to 0 for distances from dmax/2 to dmax. Furthermore, to avoid that the glyphs’

radii become arbitrary large, we clamp the radii at a certain maximum value rmax. To

ensure that glyphs do not overlap, we prescribe a minimum distance between each pair

of seed points of δ = 2rmax.

We only render glyphs on those parts of the implant surface which are lying in the

interior of the bone. To avoid that the glyphs are hidden by the bone surface, we render

the bone meshes semi-transparently. If the implant sticks out of the bone surface, the

implant is in a geometrically invalid position. Therefore, at the transition from bone

interior to exterior and vice versa, we abruptly remove the glyphs (no fading out) to

attract the attention of the user. In addition, we colorize the parts of the implant surface

that are lying outside of the bone mesh by using blue color, which is in high contrast to

the other colors used for the bone and implant surfaces and the glyphs.

Besides adapting the shape of the glyphs, we additionally colorize the glyphs to

encode the represented distance. We linearly interpolate between colors green and

red, where green color is used for a distance of dmax, and the highlighting red color

(corresponding to the importance of small distances) for a distance of 0. This smoothly

varying color map was chosen to avoid a rapid change of colors when the glyphs’ sizes

are changing, which would otherwise disturb the perception of size changes.

The glyph seed points are computed once when a particular implant mesh is se-

lected. In particular, we use spatially fixed seed points and a uniform seeding density.

Besides the important goal of achieving visual coherence, these choices are motivated
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Figure 7.4: Distance rendering using oriented glyphs: Left: Rendering glyphs for all distances

leads to visual cluttering. Right: By rendering glyphs only for distances up to a certain maxi-

mum value, visual cluttering can be avoided.

as follows: By using spatially fixed seed points, we avoid that changes of visualized

distances due to moving of the implant are overlaid by changes of visualized distances

due to moving of the seed points, which would distract from precisely monitoring the

implant’s position. Furthermore, by using a fixed seeding density, increasing distances

(corresponding to decreasing radii of the glyphs) lead to a visual thinning out of the

glyphs. For the considered application, this is in accordance with the fact that large

distances are of minor interest.

To determine the seed points, we proceed as follows: In the first step, we build a

list of potential seed points L′ by iterating over the individual triangles of the implant

surface mesh. For each triangle, we test if all edge lengths are at most δ. If this is the

case, we add the triangle’s barycenter to L′. Otherwise, we perform a 1:4 split of the

triangle, and proceed recursively on the newly created triangles. In the second step, we

build the list of seed points L by iterating over L′. For each potential seed point P ,

we test if all seed points already contained in L have at least a distance of δ from P

(measured in 3D space). If this is the case, P is added to L, otherwise it is discarded.

Since this algorithm considers the individual triangles of the implant mesh separately,
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it is very robust in that it is independent of the mesh quality.

7.3.2 Slice-based Distance Visualization

One approach for the visualization of the distances between two surfaces is to display

at each surface point the distance to the nearest point on the respective other surface

via color coding [DMA+01, MLD+04, SPP+10]. This can be realized by using a 3D

distance field [JBS06] for each of the two surfaces. Given a set of feature points Σ ⊂
R

3, a distance field is a mapping dΣ : R3 → R that specifies for each point x in three-

dimensional space the distance to the nearest feature point: dΣ(x) = infy∈Σ ‖y − x‖2.

A distance field for a particular surface is obtained by choosing Σ to be the set of points

on this surface. To create the described visualization, for the first surface, the second

surface’s distance field is sampled at the points on the first surface, and vice versa.

Algorithmically, a distance field can be obtained by means of a distance transform

[JBS06].

For our application of interactive 3D implant planning, this visualization approach is

shown in Figure 7.1 (left). Here, the distance volume of the bone surface is visualized

on the surface of the implant. To provide a large number of distinguishable colors

for conveying absolute distance values effectively, a rainbow color map ranging from

red (small distance) to violet (large distance) is used. This choice was motivated by

our observation that the known shortcomings of rainbow color maps, as for instance

discussed in [BTI07], are much less severe in our application scenario. Since here

the user’s perception is supported by 3D geometry that provides additional depth cues,

and the color variation on the implant changes dynamically according to the issued

movements, the rainbow color map can convey a very accurate and intuitive image of

absolute distances.

Figure 7.1 (left), however, demonstrates that the spatial relationships between the

nested meshes along the viewing direction cannot be recognized. As a consequence,

it is not intuitively obvious how the implant has to be moved in order to optimize the

distances between bone and implant with respect to the specific medical requirements,

which makes navigation in an interactive setting rather difficult.

To address this issue, we propose to augment the visualization by rendering addi-

tional geometric structures that bridge the volume between implant and bone. Since

slicing planes are still the predominant tool for analyzing 3D data in medical diagnosis,

and thus are graphical elements to which doctors are accustomed through experience,

we render a set of parallel, axial slices passing through the bone and implant, as shown

in Figure 7.6 (top left). From the intersection pattern of the slices with the bone and
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Figure 7.5: Left: Distance measure (red) at points (yellow) in the volume between bone and

implant (for simplicity, the 2D case is shown). Right: Approximation of this distance measure

using distance fields (blue: bone distance field, magenta: implant distance field).

implant the spatial relationships become directly visible. By using an orthographic

projection, leading to a parallel rendering of the slices in screen space, occlusions in-

troduced by the slices can be kept at a minimum.

However, it is still difficult to relate the color-coded distances on the implant to

the spatial relationships. This can be improved by visualizing color-coded distances

also on the slices. Rendering the distance field of the bone not only on the implant

but also on the slices results in ring-shaped structures, as illustrated in Figure 7.6 (top

right), with the number of rings between implant and bone being a visual clue for

the distance. However, on the slices the color coding then only provides the distance

of the respective point to the bone, without incorporating the distance to the implant.

In particular, the colors on the slices do not change upon movements of the implant,

rendering this approach as rather non-intuitive in an interactive setting.

To enable a direct visualization of the distances between bone and implant on the

slices, we first have to define a reasonable distance measure at the points in the volume

between implant and bone. Considering a point x, a reasonable choice would be the

minimum length of all line segments passing through x and connecting a point on

the implant and bone surface, respectively (see Figure 7.5). On the bone and implant

surfaces, this definition reduces to the distance to the nearest point on the respective

other surface. In case of parallel or concentric surfaces (as is the case in the current

application), this measure can be well approximated by dBone(x) + dImplant(x), where

dBone and dImplant denote the distance fields of the bone and implant, respectively. These

distance fields have to be computed only once when the respective mesh is changed.

The result is illustrated in Figure 7.6 (bottom left).

To achieve a high-quality visualization, we render slices of a certain thickness

(1 mm) instead of infinitely thin slices (as is illustrated in Figure 7.6, bottom right for

comparison). If the view direction is falling into the slice plane, infinitely thin slices
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Figure 7.6: Color coding of distances on the slices: Top left: No color coding of distances. Top

right: Distance to the bone. Bottom left: Sum of the distance to the bone and the distance to the

implant. Bottom right: Infinitely thin slices without contours.
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Figure 7.7: Focus+context visualization: Left: To avoid that colors are washed out by the bone

surface, the surface’s opacity is reduced. However, this reduces the spatial context information.

Right: By using a focus+context approach, the colors are saturated in the important regions,

and at the same time the spatial context information is preserved.

would become invisible. Furthermore, we render black contours along the intersection

lines of the slices with the bone and the implant. In this way, partially overlapping

projections of slices can be clearly distinguished.

To color-code the distances, we employ a rainbow color scale that is obtained from

the HSV color space, using a hue from 0◦ = red to 270◦ = violet. The red end of

the scale (highlighting color) is used to encode the distance value 0, the violet end to

encode a certain maximum value dmax. Analogous to the glyph-based approach, to

clearly indicate when the implant has left the interior of the bone, i.e., a geometrically

invalid positioning of the implant, the parts of the implant that have left the interior

are rendered in a distinct color. Here, we use white color, which is in high contrast to

the red color used to encode the smallest distances. In this way geometrically invalid

positions are immediately visible.

For the 3D visualization, we use semi-transparent rendering of the bone surfaces.

To hide non-important regions with large distances between bone and implant from the

visualization, we use a focus+context approach (see Figure 7.7) by scaling the opacity
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of the fragments of the outer bone surface with the factor (saturate(dImplant(x)/r))
2,

where r denotes the radius of the focus region, and x is the world space position of the

respective fragment. This leads to high and low opacities of the outer bone surface in

regions with large and small distances between bone and implant, respectively. In this

way, the important regions with small distances between bone and implant, especially

the calcar region and the lateral femoral wall, are clearly visible, and at the same time,

the perception of the outer shape of the bone and thus of the spatial relationships is

improved.

Additionally, we provide the possibility to render the implant as a semi-transparent

surface. This enables the surgeon to monitor the distances between bone and implant

also on the back side of the implant, which are otherwise hidden by an opaque implant

(see Figure 7.11, right, and Figure 7.12, right). Since the user can rotate the entire scene

consisting of bone and implant, note however that a clear view on the relevant parts can

even be obtained when a color-coded, opaque implant surface is used.

7.4 GPU-Based Implementation

To achieve interactive update rates, we have realized our visualization methods on the

GPU. Our implementation is based on the stencil-routed k-buffer [MB07], which en-

ables to render semi-transparent surfaces in correct visibility order. Considering the

complex spatial situation with multiple nested meshes, semi-transparent rendering is

essential to avoid occlusions. In contrast to z-buffer-based rendering of opaque geome-

try, where of the set of fragments incoming to the same pixel only the fragment with the

smallest depth is captured, the k-buffer allows to capture up to 8 fragments incoming

to a pixel. To capture up to 32 fragments per pixel, we employ 4 k-buffer slices, which

are filled by rendering the semi-transparent geometry 4 times. For each fragment, we

store 2 × 32 bits to encode an object ID, the fragment’s depth in camera space, as well

as the fragment’s RGBA color value.

Using the k-buffer, rendering of the scene is performed in three steps: In the first

step, all opaque geometry is rendered into the standard frame buffer. In the second

step, all semi-transparent geometry is rendered into the k-buffer. The semi-transparent

geometry consists of the bone surface meshes, the implant surface mesh, as well as

the glyphs for our glyph-based distance visualization method. In the third step, a full

screen ray-casting pass is performed. First, for each pixel the fragments stored in the

k-buffer are fetched. These fragments are then sorted according to ascending camera

space depth and blended using front-to-back blending, up to the camera space depth of
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the opaque geometry, which is obtained by accessing the frame buffer and projecting

the clip space depth back into camera space. The accumulated color value is finally

blended with the color value of the opaque geometry stored in the frame buffer.

For our glyph-based visualization approach, the glyphs have to be updated whenever

the implant position is changed. This update is performed on the CPU. For each glyph

seed point, we determine the intersection point of the ray emanating from the seed point

in the direction of the outward implant surface normal with the inner bone surface. If no

intersection is found, the seed point is lying outside of the inner bone surface, and the

seed point is skipped. The distance value is then obtained from the distance between

the seed point and the intersection point. To achieve interactive update rates, a kd-tree

acceleration structure is used to determine ray/mesh intersections. The glyphs’ seed

points, normals, and heights are then uploaded into a buffer on the GPU, and by using

a single generic cylinder triangle mesh, the glyphs are rendered as semi-transparent

geometry using instanced rendering.

For the slice-based distance visualization, the slices are rendered on-the-fly during

the ray-casting process by analytically computing the intersections between the rays

and the slicing planes. To generate the distance fields of the bone and implant used

by this approach, we first create a voxelization for each of the two meshes, using the

GPU-based algorithm described in [DGBW08]. We then compute a distance transform

of each voxel volume, using the GPU-based algorithm described in [SKW09]. By uti-

lizing the GPU, these computations can be performed in less than 2 seconds for a voxel

resolution of 0.25 mm, allowing the user to almost instantaneously switch between dif-

ferent implant shapes and sizes. The distance fields are stored in GPU memory as 3D

textures and are sampled using trilinear interpolation.

During the ray traversal of each pixel’s stack of fragments, we maintain three flags

specifying whether the current position of the ray is lying inside the outer bone mesh,

inside the inner bone mesh, and inside the implant mesh, respectively. These flags are

toggled whenever a fragment of the respective mesh (identified by the fragment’s object

ID) is encountered. The flags are used to clip the rendering of the slices at the bone and

implant surfaces, to distinctly colorize the parts of the implant lying outside of the inner

bone mesh, and to achieve a high-quality rendering of the inner and outer bone mesh:

Since the inner and the outer bone mesh are generated in separated processes, it is

possible that the inner mesh slightly sticks out of the outer mesh. This is fixed during

rendering by clipping the inner mesh at the outer mesh, and by creating additional inner

bone mesh fragments on-the-fly during ray-casting to close the resulting holes.

The rendering of contours along the intersection lines of the slices with the bone
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and the implant is performed in screen space. Whenever a slice fragment is created, we

test in a 5 × 5 neighborhood of adjacent pixels whether the (potential) slice fragment

corresponding to the respective neighboring pixel is lying outside of the outer bone

surface or within the implant. If such a pixel is found, the center fragment is a border

fragment and is colored accordingly, taking into account the number of neighboring

‘outside’ fragments to obtain antialiased contours.

7.5 Results and Evaluation

All images shown in this chapter were rendered in less than 30 ms on a standard desktop

PC, equipped with an Intel Core 2 Quad Q9450 2.66 GHz processor, 8 GB of RAM, and

an NVIDIA GeForce GTX 480 graphics card with 1536 MB of local video memory.

The view port size was 1920 × 1200.

To validate the effectiveness of the developed distance visualization methods, we

have performed a user study. In this study, the images were created using the follow-

ing visualization parameters: General parameters: αOuter Bone = 0.2 for focus+context

disabled, αOuter Bone = 0.9 for focus+context enabled, αInner Bone = 0.2, αImplant =

1.0 or 0.35, focus radius r = 30mm. Parameters for glyph-based visualization: r · d =

5mm2, rmax = 2.5mm, dmax = 10mm (i.e., red corresponds to a distance of 0 mm,

green to 10 mm). Parameters for slice-based visualization: Resolution of distance fields

0.25 mm, slice spacing 15 mm, slice thickness 1 mm, dmax = 16mm (i.e., red corre-

sponds to a distance of 0 mm, violet to 16 mm).

7.5.1 User Study

For the user study we recruited 30 participants, comprised of 21 computer science and

6 medical students as well as 3 experienced orthopedic surgeons. The participants were

selected to be right-handed, and to have no color vision deficiency. All participants were

daily users of computers. The students were exposed to the application for the first time.

The three surgeons knew the underlying application including the stress visualization,

but also used the distance visualization for the first time. The study was performed

using the desktop PC described above with a standard 24 inch monitor. The position of

the implant was alternatively controlled using the mouse or a Sensable Phantom Omni

haptic device [Sen] (force feedback was not implemented). Simultaneous rotations

and translations of the bone and implant model were controlled by mouse or keyboard

input, respectively. For each user, an individual session of about 50-60 minutes was



7.5. RESULTS AND EVALUATION 169

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

T
im

e
 (

s)

User

Interactive Implant Positioning, Mouse, CUT Implant

Color

Glyphs

Slices

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

T
im

e
 (

s)

User

Interactive Implant Positioning, Mouse, G2 Implant

Color

Glyphs

Slices

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

T
im

e
 (

s)

User

Interactive Implant Positioning, Phantom, CUT Implant

Color

Glyphs

Slices

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

T
im

e
 (

s)

User

Interactive Implant Positioning, Phantom, G2 Implant

Color

Glyphs

Slices

Figure 7.8: Time (in seconds) needed by the individual users for interactive implant positioning

(Experiment 1) dependent on the input device and the distance visualization method, as well as

on the implant shape.

performed. Each session consisted of a demonstration and training phase, and three

experiments.

Demonstration and Training Phase. The goal of the demonstration and training

phase was to acquaint the participants with the visualization methods and the interac-

tion mechanisms for controlling the implant position using the mouse and the Phantom

device. To accelerate the learning process, in this phase we used a simplified geometri-

cal setup consisting of two cylinders of different size, with the larger one (resembling

the bone) being fixed. Initially, the smaller cylinder was located outside of the larger

cylinder, and its main axis was rotated against the main axis of this cylinder. The task

was to move the smaller cylinder (resembling the implant) such that it is concentrically

centered inside the larger cylinder.

Firstly, the task was demonstrated to each participant individually using all of the

three distance visualization methods, i.e., color coding on the implant surface, the

glyph-based approach, and the slice-based approach, as well as both the mouse and

the Phantom device. During the demonstration, the meaning of the graphical represen-

tations employed in our distance visualization methods, as well as the specific mapping

of mouse and Phantom inputs onto movements of the implant, was verbally explained

to the participant. After the demonstration, which took about 5 minutes, the participants

were asked to perform the task. For each combination of visualization method and in-

put device, about 2 minutes of training time were granted. The entire demonstration

and training phase took about 20 minutes.

Experiment 1. In the first experiment, we quantitatively and qualitatively evaluated

the three distance visualization methods within the interactive 3D environment. In

contrast to the training phase, this experiment was performed using the real bone and

implant geometry. The participants were asked to place the implant in a certain position

within the bone. This target position was explained to the participants by means of a

sketch showing a 2D cross section of the bone and the implant in the target position.

In particular, the target position was precisely specified by the following criteria: a) the
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Mouse Phantom

Implant Color Glyphs Slices Color Glyphs Slices

CUT 109 52 61 96 48 56

G2 99 57 53 88 53 48

Table 7.1: Average time (in seconds) needed by the users for interactive implant positioning

(Experiment 1) dependent on the input device and the distance visualization method (columns),

as well as on the implant shape (rows).

Implant Color Glyphs Slices

CUT 0/0/30 19/11/0 11/19/0

G2 0/0/30 5/25/0 25/5/0

Table 7.2: Rankings of the distance visualization methods for interactive implant position-

ing (Experiment 1). The table shows the numbers of users that ranked the respective method

first/second/third.

implant must be located inside the cortical bone shell without penetrating this shell, b)

the distances between implant and bone in the calcar region and at the lateral wall of

the femur must be minimized, and c) the rotation center of the joint must be preserved

(i.e., the ball of the implant must be centered within the femoral head).

The participants were asked to perform this task a total of 12 times, using the three

distance visualization methods, two different implant shapes (CUT and G2), and the

two input devices. The implant was always placed at the same starting position outside

of the bone, with a different orientation than in the target position, and always the

same initial view point was selected. To avoid biasing due to learning effects, with

each participant we permuted the order in which the individual visualization methods,

implants, and input devices were tested. During the experiment, we measured the time

that was needed by the participants to navigate the implant into the target position,

allowing a tolerance of 3 mm wrt translation and 5◦ wrt rotation. If the participant was

not able to reach the target position within a 3 minute time interval, we proceeded with

the next configuration. The times measured for each individual participant are shown

in Figure 7.8, the average times are given in Table 7.1.

In addition, for each of the two implant shapes we asked the participants for a sub-

jective ranking (first, second, third) of the three visualization methods according to their

capability to communicate spatial relationships and distances. The rankings are shown

in Table 7.2.

The results clearly demonstrate the effectiveness of our novel glyph- and slice-based

distance visualization methods. Compared to pure color coding of distances, these

methods allow for a significantly faster navigation of the implant into the target posi-
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Implant Color Glyphs Slices

CUT 0/0/90 27/63/0 63/27/0

G2 0/0/90 6/84/0 84/6/0

Table 7.3: Rankings of the distance visualization methods in still images (Experiment 2). The

table shows the numbers of times each method was ranked first/second/third.

tion. Notably, by using color only the task could not be accomplished by 6 of the users

within the 3 minute time limit.

For the positioning of the CUT implant (see Figure 7.1), the majority of the users

preferred the glyph-based approach over the slice-based approach. This is mainly due to

the continuous movement of the glyphs, generating an additional visual attraction that

can be processed instantly by the visual system. Especially the use of ‘marshmallow’-

like cylindrical glyphs, which simulate quite plausibly the physical deformations of

elastic glyphs under pressure, was received very positively by the users. The good

matching of this approach with the users’ expectation and experience in reality was

given the main reason for this positive response. Considering the slice-based approach,

the users criticized the fixation of the slicing planes to a few positions in the 3D domain.

Due to this, a non-uniform distance distribution across the implant surface cannot easily

be perceived during interactive placement of the implant. In addition, as the distance

values within a slice are referring to 3D points that are not in the slicing plane, with

increasing distances no immediate spatial correspondence is given between what is

seen in the slice and the objects in the scene.

In contrast, for the positioning of the significantly larger G2 implant (see Figures

7.11 and 7.12), the majority of the users indicated a strong preference of the slice-based

approach over the glyph-based approach. Due to its large size, this implant has to be

navigated in a very narrow surrounding, giving a rather homogeneous distance distri-

bution on the implant. Here, it turns out that in situations were the distances between

the implant and the bone are uniformly low, glyph-based approaches fail in clearly de-

picting these distances. In such cases the very fine differences in the distance values

cannot be perceived effectively anymore, and the large number of glyphs everywhere

on the implant induces visual clutter.

Experiment 2. In the second experiment, we qualitatively evaluated the three dis-

tance visualization methods within 2D still images. We prepared 6 sets of images,

showing the two implants in 3 different (optimal and non-optimal) positions and from

different view points. Each set consists of three images, each image showing the same

implant in the same position and from the same view point, but each using a different

distance visualization method. The three images of a set are simultaneously shown to
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Figure 7.9: Comparison of different glyph types and different strategies to adapt glyphs to

changing distances: Left: Squeezed cylindrical glyphs, uniform seeding density. Middle:

Squeezed arrow glyphs, uniform seeding density. Right: Scaled arrow glyphs, adaptive seeding

density.

the user on the monitor. With each user, we permuted the order in which the sets are

presented, as well as the order of the images of each set on the screen. For each set, we

asked the participant for a subjective ranking of the three visualization methods accord-

ing to their capability to communicate spatial relationships and distances, analogous to

Experiment 1. The rankings are given in Table 7.3.

Interestingly, a different feedback was given than in Experiment 1. Still, both glyph-

based and slice-based approaches are rated superior over the pure color coding ap-

proach. However, the results show that for 2D still images the slice-based approach

is preferred by the users for both the CUT and the G2 implant. Since the slices, and

the coloring on them, can very effectively depict the implant and the bone structure, in

case of a 2D still image it seems very easy for our visual system to infer on the spatial

relationships between the implant and the bone also in the regions between the slices.

Furthermore, since slicing planes restrict the visualization to only a few regions in the

domain, visual clutter is significantly reduced, giving a more undisturbed view on the

relevant structures.

Experiment 3. In the third experiment, we quantitatively and qualitatively evalu-

ated the effect of differently shaped glyphs on the perception of spatial relationships

and distances. Besides the ‘marshmallow’-like cylindrical glyphs, we provided arrow

glyphs where—analogous to the cylinders—the length of the arrow represents the dis-

tance, and the axis represents the directions along which the distance is measured. The

arrow glyphs were scaled either in the same way as for the cylindrical glyphs (a smaller

distance results in a larger arrow width) or were scaled isotropically (a smaller distance

results in a smaller arrow width). In the latter case, the seeding density was increased
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Cylinders Arrows Arrows

Squeezed Squeezed Scaled

Interactive 22/8/0 0/0/30 8/22/0

Still Image 28/62/0 0/0/90 62/28/0

Table 7.4: Rankings of different glyph shapes as well as different strategies to adapt glyphs to

changing distances for interactive implant positioning and in still images (Experiment 3). The

table shows the numbers of times each method was ranked first/second/third.

Cylinders Arrows Arrows

Squeezed Squeezed Scaled

Time 6.4 7.2 2.3

Accuracy 15% 27% 19%

Table 7.5: Average time (in seconds) needed by the users to estimated the distance represented

by a glyph, dependent on the glyph shape and the strategy to adapt glyphs to changing distances

(Experiment 3). The second row shows the achieved estimation accuracy.

with decreasing distance to avoid that small distances become invisible. In Figure 7.9,

the different options are shown next to each other. The idea behind using arrows instead

of cylinders was to improve the perception of the spatial orientation of the glyphs, since

an arrow head (cone) projects onto two clearly distinguishable shapes when seen from

the side (triangle) or from the top (circle).

Using an adaptive seeding density of the glyphs is implemented as follows: We

first generate a set of uniformly distributed seed points with a minimum spacing of

δ = 0.5mm, using the strategy described in Section 7.3.1. In contrast to the case of

using a uniform seeding density, we now create glyphs only at a subset of the seed

points. In particular, we iterate over the set of seed points in a fix order, and create

a glyph at the currently considered seed point if that glyph does not overlap with any

previously created glyph. More precisely, a glyph with radius r at a seed point x is

created, if for all of the previously created glyphs with respective radius r′ and seed

point x′ the condition ‖x − x′‖2 ≥ r + r′ is satisfied. The radius r of the glyph

(determined by the arrow head) is computed as r = 0.2d, where d denotes the height of

the glyph (length of the arrow), i.e., the represented distance.

Firstly, we asked the users to move the CUT implant in the interactive 3D envi-

ronment and to monitor the change of distances between bone and implant, using the

three different glyph options. We then asked the users for a ranking of these options

according to their capability to communicate spatial relationships and distances and for

comments. The rankings are given in Table 7.4.

For interactive positioning there was a preference of all users for squeezed cylin-
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drical glyphs over squeezed arrow glyphs. As the key reasons for this judgment it was

reported that the squeezing of arrows was observed a rather unrealistic and thus non-

intuitive effect, and especially when arrows become extremely flat or thin, their usual

and expected potential to indicate spatial orientation was lost, making the rendering of

the arrow head unnecessary.

Comparing squeezed cylindrical glyphs and isotropically scaled arrow glyphs, cylin-

drical glyphs were favored by over 70% of the users. Considering the arrow glyphs,

many users were distracted by glyphs popping up or disappearing (this is a conse-

quence of the adaptation of the seeding density, when larger glyphs are replaced by

smaller glyphs, and vice versa), and particularly appreciated the visual coherence of

the ‘marshmallow’-like cylindrical glyphs. In addition, a small number of users crit-

icized the visual clutter introduced by the increasing number of arrow glyphs when

distances become small.

We then asked the users to rank the different glyph options in still images. This was

performed similarly as in Experiment 2 by using 3 sets of images showing the CUT

implant. The rankings are shown in Table 7.4. The results show a clear preference of the

users for the isotropically scaled arrow glyphs over the ‘marshmallow’-like cylindrical

glyphs. In contrast to the dynamic view, where the arrow glyphs suffer from a limited

visual coherence, in the static view the strength of arrows to better depict the glyphs’

orientation was observed a clear advantage over cylinders.

Finally, we analyzed the different glyph options with respect to their capability to

communicate absolute distances. We prepared three images, showing the CUT implant

in different positions and from different view points. For each image, a different glyph

option was used to depict the distances. In each image, 3 glyphs were labeled with the

respective distances represented by these glyphs. The color scale was hidden from the

participants. For each image, we then asked the participants to estimate the distances

represented by another selected 5 glyphs, and we measured the time that was needed by

the participants. The average times (per glyph) and estimation accuracies can be found

in Table 7.5. Using isotropically scaled arrow glyphs, over 85% of the users could give

the same quantitative estimate of absolute distance in one third of the time that was

needed when cylindrical glyphs were used.

7.5.2 Technical Improvements

After the study was finished, the users were asked for modifications or extensions they

could imagine for improving the proposed distance visualization. A small number of

users observed the change in saturation on the cap of the cylindrical glyphs when par-
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Figure 7.10: Left: Rendering artifacts resulting from the glyphs partially sticking out of the

bone surface. Middle: Clipping the glyphs at the bone surface does not resolve these artifacts.

Right: By reordering fragments along the view rays the artifacts are removed.

tially penetrating the white, semi-transparent bone surface mesh. Even though none of

the users considered this effect to have any negative influence on the distance percep-

tion, we integrated a rendering option into our tool to reduce this effect.

This rendering option is based on reordering the fragments of the semi-transparent

geometry along each view ray, which is implemented using the k-buffer as described in

Section 7.4. In our initial implementation, the fragments along each ray are sorted ac-

cording to ascending camera space depth, and then blended using front-to-back blend-

ing. The reordering is now performed on the sorted stack of fragments, before front-to-

back blending is applied.

Conceptually, if a ray enters a glyph before entering the bone, or leaves a glyph af-

ter leaving the bone (in both cases the glyph penetrates the bone surface), we move the

corresponding bone surface fragments in front of or behind the glyph surface fragment,

respectively. Entering and leaving of closed surfaces is determined by using flags that

are toggled whenever a fragment of the respective surface is encountered. Technically,

the reordering of fragments is implemented as follows: If the ray encounters an ‘en-

tering’ glyph fragment (i.e., a glyph fragment at the transition from the outside to the

inside of a glyph), starting from the current position, we search for ‘entering’ bone frag-

ments (from both the inner and outer bone surface mesh) along the ray within a certain

distance from this position. These fragments are moved in front of the glyph fragment,

without changing the relative order of the ‘entering’ bone fragments. Analogous, if

the ray encounters a ‘leaving’ glyph fragment, starting from the current position, we

search for ‘leaving’ bone fragments backwards along the ray within a certain distance

from this position. These fragments are moved behind the glyph fragment. In our

implementation the search distance is set to 5 mm.
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Figure 7.11: G2 implant, front view: Distance visualization using color coding on the implant

surface (left), oriented distance glyphs (middle left), and color coding on the implant surface

and on a set of axial slices (middle right). Additionally, we provide the possibility to render the

implant semi-transparently (right).

Figure 7.12: G2 implant from Figure 7.11, back view.
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The front-to-back blending is then performed on the reordered stack of fragments.

Even though it is clear that this approach cannot always guarantee that all transitions

are fixed and depends on the specified search distance, as demonstrated in Figure 7.10

it can very effectively eliminate virtually all of the transitions.

7.6 Conclusion and Future Work

In this chapter, we have presented two different approaches for visualizing distances

between two objects in 3D space. These approaches are specifically tailored to support

the user in the positioning of objects in interactive environments. We have introduced

novel GPU-based visualization techniques using dynamic glyphs to reveal distance,

depth, and directional information, and slicing planes on which distance values are in-

stantly updated during navigation. These approaches have been developed to support

3D implant positioning in a medical planning system, and their strengths and poten-

tial limitations in this particular application have been analyzed in a number of user

experiments.

In the future, we will analyze the capabilities of our approaches in other interactive

applications like virtual part assembly. The investigation of possibilities to automati-

cally integrate distance visualization techniques into medical and technical illustrations

will be another focus. From a perceptual point of view, we are very interested in the

analysis of the perceptual effects that are caused by the combination of stereo rendering

and the proposed distance visualization techniques. A more elaborate study of alterna-

tive or supplementary techniques for revealing distance, such as density volumes or

textual annotations, in interactive environments is mandatory.
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Chapter 8

Conclusion and Future Work

In this thesis, we have presented novel, sophisticated simulation and visualization tech-

niques for the realization of the first computational steering environment for preoper-

ative implant planning in orthopedics. This environment simulates and visualizes the

internal stresses in the patient-specific bone dependent on the selected implant shape,

size, and position, and thus allows the surgeon to interactively determine an implant

configuration that minimizes stress shielding, i.e., closely replicates the preoperative

stress state.

To this end, we have presented the first multigrid approach for the physics-based

real-time simulation of deformable objects that is implemented entirely on the GPU,

and we have developed novel real-time techniques for the visualization of the internal

stresses in elastic bodies, and for the visualization of the spatial distances between two

objects. In addition, we have presented the first approach for the simulation of cuts

in deformable objects that combines cutting with a computationally efficient geometric

multigrid solver.

Our techniques are based on three key ingredients. First, we employ a hexahedral

discretization of the simulation domain, which can be created and adapted in a very ef-

ficient and robust way. Second, our methods are based on efficient multigrid schemes to

solve the arising linear systems of equations. And third, we exploit the GPU’s massive

computational power and memory bandwidth for 3D graphics rendering and general

purpose computing. Our results clearly demonstrate that real-time simulation and com-

putational steering are possible on today’s desktop PCs at least for selected applications,

even when using discretizations at high resolutions.

We would like to emphasize that the applicability of the presented methods is not

limited to the described computational steering environment, but that our methods can

be used for all kinds of applications that require the real-time simulation of deformable

179
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objects and/or the visualization of the internal stresses in elastic bodies, such as virtual

surgery simulations or computational steering environments in mechanical engineering.

In the future, we will continue our research in physics-based real-time simulation.

First, we will use our GPU-based multigrid solver for real-time fluid simulation. Our

goal is to realize a virtual wind tunnel that allows the engineer to interactively study the

air flow around an object in a virtual 3D environment. In this application, complex fluid

domain boundaries around the object can occur. To accurately resolve these boundaries,

we will use an adaptive octree grid, and to improve the multigrid convergence rate,

we will use our novel approach for representing complicated topologies on the coarse

grids. Since the resulting semi-regular grid leads to varying shapes of the numerical

stencil at each vertex, the challenge is to find a mapping of the computations onto the

GPU that enables parallel processing of data elements using the same execution paths

as well as coalescing of memory accesses, and thus to effectively exploit the GPU’s

computational power and memory bandwidth.

In addition, we will work on the parallelization of our GPU-based multigrid solver

on multiple GPUs. Due to the inherently sequential structure of the multigrid V-cycle

(despite of the fact that the individual computational steps of the V-cycle are massively

parallel), a rather high number of synchronization operations is required. Therefore, the

challenge is to effectively hide latencies resulting from GPU-to-GPU communication

via PCI Express buses and InfiniBand network links.

Furthermore, we will pursue research on advanced multigrid schemes with strong

smoothers in the context of real-time elasticity and fluid simulation. Here, the goal

is to even further increase the accuracy of the approximate solution that is computed

in a given time interval. In particular for problems with rough coefficients, advanced

multigrid schemes have shown to provide better convergence rates than the standard

multigrid scheme with Gauss-Seidel smoother (see [TOS01] for an introduction). A

better convergence rate typically leads to performance advantages when solving a lin-

ear system until convergence and when solving a system for multiple right-hand sides.

However, for our application of real-time simulation it is important to note that we

are interested in computing only an approximate solution in a given time interval and

that we have to deal with a linear system of equations that changes in every simu-

lation update step. Many existing advanced schemes introduce a significant amount

of precomputations, significantly increase the computing time per cycle, and/or can-

not be parallelized efficiently on multi-/many-core architectures. For our application

of real-time simulation, these precomputations cannot be amortized over a large num-

ber of cycles, and the given time interval limits the maximum cycle time. Therefore,
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advanced multigrid schemes have to be developed that are particularly tailored to the

requirements in real-time simulation.

Another research direction will be the on-the-fly adaptation of the simulation grid

during runtime of the simulation. This provides improvements with respect to both

simulation speed and accuracy, since degrees of freedom are exactly used where they

are needed. However, this requires the development of effective a priori oracles that

decide where the mesh has to be adapted.
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[MDB99] Nicolas Moës, John Dolbow, and Ted Belytschko, A finite element method for crack

growth without remeshing, International Journal for Numerical Methods in Engineering

46 (1999), no. 1, 131–150.

[MDM+02] Matthias Müller, Julie Dorsey, Leonard McMillan, Robert Jagnow, and Barbara Cut-

ler, Stable real-time deformations, Proc. ACM SIGGRAPH/Eurographics Symposium on

Computer Animation, 2002, pp. 49–54.

[MG04] Matthias Müller and Markus Gross, Interactive virtual materials, Proc. Graphics Interface,

2004, pp. 239–246.

[MHS05] Jesper Mosegaard, Peder Herborg, and Thomas Sangild Sørensen, A GPU accelerated

spring mass system for surgical simulation, Studies in Health Technology and Informatics

111 (2005), 342–348.

[MHTG05] Matthias Müller, Bruno Heidelberger, Matthias Teschner, and Markus Gross, Meshless

deformations based on shape matching, ACM TOG 24 (2005), no. 3, 471–478.

[Mic10] Microsoft, Windows DirectX graphics documentation (part of the DirectX Software De-

velopment Kit), June 2010, http://www.microsoft.com/directx.

[MJLW07] Karol Miller, Grand Joldes, Dane Lance, and Adam Wittek, Total lagrangian explicit dy-

namics finite element algorithm for computing soft tissue deformation, Communications

in Numerical Methods in Engineering 23 (2007), no. 2, 121–134.

[MK00] Andrew B. Mor and Takeo Kanade, Modifying soft tissue models: Progressive cutting with

minimal new element creation, Proc. MICCAI, Lecture Notes in Computer Science, vol.

1935, 2000, pp. 598–608.

[MKB+08] Sebastian Martin, Peter Kaufmann, Mario Botsch, Martin Wicke, and Markus Gross,

Polyhedral finite elements using harmonic basis functions, Computer Graphics Forum 27

(2008), no. 5, 1521–1529.
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