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 1 

 

 

 

 

Technical Report 

 
Signaling direction of motion at the output of retina. 

From biophysics of neural computation to computational models. 
 

 

 

 

Aurel Vasile Martiniuc and Alois Knoll 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Robotics and Embedded Systems, Computer Science Department,  

Technical University of Munich, Germany 

September, 2009 
 

 

 

 

 



 2 

 

 

 

 

 

Abstract. The estimation of motion direction from time varying images is a fundamental task of 

both biological and artificial visual systems. Directional selective neurons are found in all species; 

moreover, in many of them, direction of motion is signaled already at the output of retina being 

carried to higher brain areas. Here we use simple schemes to investigate how directional selectivity 

changes for cells postsynaptic to retinal neurons. We show how sharpening in directional 

selectivity is achieved at the output of retina. The goal of this work is to infer from biophysics of 

neural computation and build computational models to account for direction of visual stimulus 

motion. A compromise between biological plausibility and computational efficacy is ubiquitous. 

However, the dimension of this compromise is an issue of scientific debate. 
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1. Introduction to basics of neural computation 

 

Recently increasing amount of scientific efforts is dedicated to bring together two distinct 

scientific approaches consisting in biophysics of neurons and information processing. Investigating 

how neurons process information one must consider both aspects, ionic channels, synapses, 

dendrites, axons, neurons and computation that they perform, i. e. multiplications in dendritic tree 

of a neuron. 

Neurons are unique in their capability to edit and propagate signals very fast over fairy large 

distances. To do this, they generate typical electrical pulses known as action potentials in response 

to chemical or other impulses, which propagate along the nerve fibers (axons) toward other cells. 

The dendritic tree allows a neuron to receive inputs from many other neurons through synaptic 

connections. Along with these morphological features, neurons have physiological specializations 

i.e. a large variety of membrane-spanning ion-channels that selectively allow ions to move into or 

out of the cell. Perhaps one of the most sophisticated stochastic computational mechanisms 

consists in the manner in which ionic channels control the flow of ions across the cell membrane 

by opening and closing in response to voltage changes. The electrical signal of relevance to the 

nervous system is the difference in electrical potential between the inside and outside of a cell. 

Resting membrane potential (the potential at equilibrium maintained by ion pumps in the cell 

membrane) is known to be negative as compared with extracellular medium. Current in the form of 

charged ions flowing into or out of the cell through ionic channels will depolarize (less negative) 

or hyperpolarize (more negative) the membrane potential. If a neuron is depolarized sufficiently to 
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raise the membrane potential above the threshold level the neuron generates an action potential. 

Action potential generation however, depends on the history of cell firing in the sense that for a 

few milliseconds after an action potential was fired there is a refractory period during which there 

is impossible for the cell to fire another action potential. While action potentials are the only 

membrane potential fluctuations capable to propagate over large distances, there are also 

subthreshold potential fluctuations which are severely attenuated over relatively small distances. 

The mechanism through which neurons commonly communicate continues with the synaptic cleft 

– the place where axons terminates at synapses, where the voltage transient of the action potential 

opens ion channels producing an influx of Ca 2+ that leads to release of neurotransmitter. The 

neurotransmitter binds to the specific appropriate receptor at the postsynaptic side and open ion 

conducting channels. Depending on the nature of the ion flow, the synapses can have an excitatory 

(depolarizing) effect or an inhibitory (hyperpolarizing) effect at the postsynaptic level.   

Because action potentials are abrupt changes in membrane potential, they can be detected by 

measuring the current just outside of a neuron’s soma or axon (extracellular recording). The 

individual spikes last for only a few milliseconds, with most of the structure being confined to an 

even smaller window of time. It is useful to treat the spikes as instantaneous events that can be 

characterized completely by the time at which they occur. 

Typically neurons respond to a given stimulus by producing complex spike sequences that reflect 

both the intrinsic dynamics of the neuron and temporal characteristics of the stimulus. Neural 

responses can vary from trial to trial even if the same stimulus is presented repeatedly. The 

complexity and variability of spike trains do not allow us to characterize them deterministically. 

As a consequence, models that can account for the probabilities that different spike sequences are 

evoked by specific stimulus are usually sought.  
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Basic spike train statistics 

Firing Rate 

 

A spike train containing n neurons can be represented as a sequence of times at which each spike 

occurs ti where i = 1, 2, ..., n on the interval 0 <= ti <= T. 

The neural response function r(t) is a sum of Dirac delta functions located at points defined by the 

spike times: 
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If we define Dirac delta function :  
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And calculate the spike count rate as r = n/T , then : 
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Time dependent firing rate represents the average number of spikes appearing during a short time 

interval divided by the duration of the interval.  
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Spike Triggered Average 

 

Ideally, a neuron will respond primarily to a single physical feature of a presented stimulus. The 

significant feature can be expressed as a time dependent variable s(t), and the other attributes of the 

stimulus can be ignored. For each spike time ti there is a corresponding section of the stimulus, s(ti 

− τ), which begins a certain time before the spike occurs. The spike triggered average (STA), 

written C(τ), is the average of each of these stimulus segments: 
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Reverse Correlation Function  

The STA can also be expressed in the form of an integral by utilizing the conveniently defined 

neural response function. 
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The integral form of C(τ) is particularly useful if we note that the crosscorrelation of r(t) and s(t), 

which are both real functions, is defined as: 
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The relationship given by combining last two equations: 
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Because of the argument of the correlation function is negative, the STA is often called the reverse 

correlation function and it is proportional to the correlation of the firing rate with the stimulus at 

preceding times.  

The results obtained by STA depend on the particular set of stimuli used during the experiment. To 

find a more accurate correlation it is the best choice to use a stimulus that is uncorrelated from one 

time to the next. In this way we can sample the neural response to stimulus fluctuations at all 

frequencies with equal weight. White noise stimulus has the defining characteristic that its value at 

any time is uncorrelated with its value at any other time (equal power at any frequencies). 

Autocorrelation function of any stimulus is:  
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For white noise stimulus the autocorrelation function is 0 in the range –T/2 <τ < T/2 except when  

τ=0 and for this value )(2 τδσ
sss

Q = , where 
s

σ  which has the units of stimulus times the square 

root of unit time, reflects the magnitude of the variability of the white noise.  

The STA is a standard way of characterizing the selectivity of a neuron. The STA and reverse 

correlation can be used to construct linear estimates of firing rates evoked by arbitrary time 

dependent stimulus. These techniques have been used extensively to characterize properties of 

visually responsive neurons in early visual system: retina – LGN -V1. However, complex cells in 

V1 and neurons in higher areas (V2, etc) have more complex and nonlinear features in their visual 

responses which can not be captured by these linear techniques.  
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The activity of a neuron at time t depends on the behavior of stimulus over a period of time of 

several hundreds of milliseconds before t. Using reverse correlation method one address the 

problem of finding the estimate of firing rate rest(t) evoked by stimulus s(t). In a simple manner 

one can construct rest(t) as a weighted sum of stimulus intensity values taken at times prior t : 

∫
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First term accounts for the background activity when stimulus s=0. This integral is a linear filter in 

which the kernel D(τ) shows how strong and with which sign the intensity value of the stimulus at 

time t- τ affects the firing rate at time t. This linear estimate represents first two terms in Volterra 

expansion in powers of stimulus. D(τ) is called the first order Wiener kernel, or simply the Wiener 

kernel, after Norbert Wiener, whose modifications of the Volterra expansion made it easier to use. 

According to the last equation, the relationship between r(t) and s(t) can be estimated using only 

the function D(τ). If this kernel can be calculated, then it is possible to reproduce or predict the 

response to a given stimulus. To construct an accurate firing rate estimate one has to optimize the 

kernel by minimizing the squared difference between estimated response and recorded response. 

This optimal kernel will be found solving the equation: 
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It is already known that for such a stimulus as white noise the optimal kernel that provides the best 

linear estimation of the firing rate is : 
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Consequently, the best method to find the optimal kernel which to describe the linear response of a 

neuron is to calculate the STA in response to white noise stimulus.  
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Unfortunately the method described above fails when it has to predict highly nonlinear responses 

of some neurons. An improvement consists in adding some static nonlinearities to the linear 

estimate of the firing rate which to prevent firing rate to become negative and / or to account for 

the well known property of neuronal response saturation with stimulus increase. These static 

nonlinearities are known as threshold operation and saturation. 

Thus a nonlinear function of linearly filtered stimulus is usually added: 
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The function F can be fitted using recorded data and should not allow firing rate estimate to 

become neither unrealistically large nor negative. Finally, a complete linear model to predict the 

spike trains of a particular type of neurons in response to a stimulus can be constructed using the 

firing rate estimate as described above to drive a stochastic spike generator.  Using Poisson spike 

generator spikes are generated by comparing spiking probability in a small time interval r(t)∆(t) 

with a random threshold. 
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 Descriptions of visual responses based on reverse correlation technique are approximate and they 

do not explain how visual responses arise from synaptic, cellular, and network properties of retinal, 

LGN and cortical circuits. For this purpose biophysics of neural computation must be taken into 

account. A very brief introduction to bioelectricity is therefore necessary. 

All neurons are bounded by an insulating membrane that separates the electrochemical 

compartment inside the cell from the surrounding extracellular space. An electric potential exists 

across the cellular membrane due to the difference in the distribution of ions between the inside 

and the outside of the neuron. Te cell membrane is a lipid bilayer acting as a capacitor being 

impermeable to majority of the charged molecules. Trans-membrane proteins play an important 

role by closing and opening ion channels in response to environmental stimuli and thus modulate 

membrane potential. Due to the fact that the probability for these channels to be opened or closed 

depends on membrane potential they are known as voltage-gated channels. Many of the channels 

are highly selective allowing only one type of ions to pass through. When a neuron is inactive 

inside the membrane is an excess of negative charges so that at rest, the membrane (equilibrium) 

potential is negative. At this state, the flow of ions into the cell matches the flow out of the cell. 

This equilibrium can be disturbed by opening or closing ionic channels and thus membrane 

potential will fluctuate as well. Potential differences between different parts of a neuron cause ions 

to move within the cell. The intracellular medium provides resistance to such a flow. The 

intracellular resistivity can be also used to crudely estimate the conductance of a single channel. 

Neurons that have relatively negligible spatial variations in membrane potential it is known as 

electrotonically compact and they can be described by a single membrane potential. In this 

condition the membrane capacitance (Cm) is related to the membrane potential and to the amount 
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of charge Q by standard equation Q=CmV and explains how much current it is needed to change 

the membrane potential at a given rate (dQ/dt). The basic time scale for changes in membrane 

potential is set by membrane time constant (τm =RmCm).  When the equilibrium state is achieved 

the net flow of the ions will be zero. The particular potential that satisfies the balancing conditions 

is  

[ ]
[ ]

)ln(
derationInsiIonConcent

iderationOutsIonConcent

z

V
E T= , which is also known as Nernst equation and it applies for 

channels that allows only one single type of ions to pass through them. Some channels are not 

selective and in this case E takes intermediate values between equilibrium potentials of the 

individual ion types that pass through and it is called reversal potential. A conductance with 

reversal potential E tends to move the membrane potential of the neuron toward value of E. Thus, 

positive reversal potentials (i.e. Na+, Ca2+) tend to depolarize a neuron while negative reversal 

potentials (i.e. K+) tends to hyperpolarize the neuron. A conductance with E near resting potential 

will conduct little net current but they have another important effect, that is, to change membrane 

resistance of the neuron. This is called a shunting conductance. In the same manner, a synaptic 

conductance is also called excitatory or inhibitory based on its reversal potential values. Synapses 

with reversal potentials lower than the threshold value of membrane potential for generating an 

action potential are called inhibitory while synapses with reversal potential higher than the 

threshold are called excitatory.  

The total current that flows across the membrane through all of its channels is called membrane 

current of the neuron and is quantified by summing currents due to all of the different types of 

channels including voltage-gated or synaptic channels. The difference between membrane 

potential and reversal potential (for a particular type of channel) is called the driving force. 

Summing over all different type of channels we have total membrane current: 
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ii EVgI )( , where factor gi represents the conductance due to these channels. 

While a membrane conductance changes over time, there are some factors that are constant 

contributing to the membrane current and they are called leakage currents. These are typically, the 

ion pumps currents to maintain the equilibrium nonzero: )( lll EVgI −= . The values of leakage 

conductance and resting potentials are usually specific to the cell that is being modeled.  

A neuron will typically fire an action potential when its membrane potential is above a threshold 

value. During the action potential, the membrane potential follows a rapid, stereotyped trajectory 

and then returns to a value that is hyperpolarized relative to the threshold potential. In the 

constraints of single-compartment model (membrane potential is treated as a single variable) the 

efforts are focused to describe how charges flow into and out of a neuron and affect its membrane 

potential. Our present day understanding and methods of modeling neural excitability have been 

significantly influenced by the landmark work of Hodgkin and Huxley in which they unveiled the 

key properties of a ionic conductance underlying the nerve action potential. Their model accurately 

describes the stochastic manner in which different voltage-dependent conductances produce action 

potentials. Presumably, the HH model represents the closest attempt to describe and predict at a 

biophysically plausible level the manner in which information is edited at single neuron level. On 

the other hand models can be simplified and still capture neuronal response for most of the 

neurons. In this manner simulations can be dramatically accelerated it’s true in detriment of less 

biological plausibility. However, there are scientific hypothesis which definitely can be verified 

involving simpler approaches and still remain accurate.  Integrate and fire neuron models are a 

valuable tool to perform this task. Endowed with specific synaptic conductances this simple model 

becomes a powerful tool to investigate information processing. Basic integrate and fire model 

assumes that an action potential is fired whenever the membrane potential reaches a threshold 
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value Vh. After the action potential, the membrane potential is reset to a value below the threshold 

potential. If the details of an action potential generation processes are not important for a particular 

modeling goal, the membrane current is modeled in as much details as is necessary.  

Synaptic transmission at a spike mediated chemical synapse begins when an action potential 

invades the presynaptic terminal and activates voltage dependent Ca2+ channels. This causes 

vesicles containing transmitter molecules to fuse with the cell membranes and release their 

contents into synaptic cleft between the pre- and postsynaptic sides of the synapse. The transmitter 

molecules then bind to appropriate receptors of postsynaptic neuron and leads to opening of ion 

channels that modifies the conductance of postsynaptic neuron.  

 There are two classes of synaptic conductances that are distinguished by whether the transmitter 

binds to the synaptic channel and activates it directly, or the transmitter binds to a distinct receptor 

that activates the conductance indirectly. First type of synaptic conductance is called ionotropic 

and activates more rapidly than the second class called metabotropic. A synaptic conductance can 

be excitatory (glutamate neurotransmitter) or inhibitory (GABA). For the excitatory synapse 

receptor types are AMPA (fast activating and deactivating) and NMDA (considerably slower). 

GABA activates two important inhibitory synaptic conductances in the brain. GABAa (fast 

ionotropic) GABAb (slower metabotropic). Synaptic inputs can be incorporated in Integrate and 

fire neuron model by adding to the passive elements, the synaptic conductance specific for the 

particular goal of the modeling. A variant of classic I&F model is built by adding an excitatory 

synaptic conductance, an inhibitory synaptic conductance and an afterhyperpolarization 

conductance in order to take into account the refractory period. This conductance will control the 

membrane potential time course to the resting potential. 

The membrane potential )(tV  of the I&F neuron is governed by 
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An action potential is generated whenever the membrane reaches the threshold threshV . 

The first term on the right side of the equation describes the leakage current while the second term 

describes the effect of afterhyperpolarization (AHP) following each action potential. The input of 

the neuron is provided through excitatory channels (third term on right side) resulting in excitatory 

postsynaptic potentials (EPSPs). In the same manner inhibitory conductances can be added as well.  

A time-dependent conductance is modeled using “alpha-function”: 
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And membrane time constant given by 

mmm Cg 1−=τ , where τm represents the membrane time constant, gm is the membrane conductance 

and Cm is the membrane capacitance. 

Up to know we saw aspects of the basics of neural computations from both point of view – 

computational neuroscience and biophysics of neural computation. Computational models are 

trying to handle with the manner in which neurons encode and/or decode information within the 

nervous system using statistics to contribute to infer robust engineering solutions from the 

spectacular and most efficient manner of nervous system capacity to deal with different issues, and 

to transform them in computational models able to help us in information processing. From the 

biophysical point of view the degree of complexity moves toward descriptive models. How 

synaptic connections are functioning, how important plasticity is, what scale to use, single cell or 

neural network or for example how spike timing is supported by neurobiology? We sought a 
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simple manner to decipher how information is processed within nervous system, a compromise 

between the randomness and high non-linearity introduced by biological systems and pragmatism 

that engineering is feed with in order to achieve successfully functional systems which can not 

afford errors in performing their tasks.    
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2. Early Visual System. Direction Selectivity. 

 

 

First stages in visual system are represented by retina, lateral geniculate nucleus (LGN) and 

primary visual cortex. Visual information is firstly encoded in trains of action potentials at the 

output of retina by one type of retinal cells type called retinal ganglion cells. Their axons are 

grouped together and leave retina through optic disc passing through optic chiasm and ending 

(mostly) in LGN. Excitatory and inhibitory synapses (of a high degree of complexity) are then 

formed in both directions between LGN and primary visual cortex. (Fig.1) 

 

 

Fig.1  Stages of early visual system. Axons of retinal ganglion cells form optic nerves and carry on visual information 

through the optic chiasm mainly in to the lateral geniculate nucleus. From lateral geniculate nucleus visual information 

is further on processed in to the primary visual cortex (Adapted from Dayan and Abbott,2001). 
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Information flow through the retina following a direct path, from light receptors to bipolar cells to 

ganglion cells, and an indirect path, in which horizontal cells may be interposed between the 

receptors and bipolars, and amacrine cells between bipolars and retinal ganglion cells.(Fig.2) 

 

 

 

Fig.2 Structure of retina. Retina is a highly organized structure in separate layers containing cell bodies, axons and 

synapses. Among different cell types of retina, the only cell type that is firing action potentials is retinal ganglion cells. 

These cells encode the visual stimulation and represent the final output of retina toward next stages in visual system.  

 

The direct path is highly specific or compact, in the sense that one receptor or only relatively few 

feed into a bipolar cell, and only one or relatively few bipolars feed into a ganglion cell. The 

indirect path is more diffuse, or extended, through wider lateral connections. Despite the fact that 

retina is very well organized structure, the information within retina is processed in a very complex 

manner. The main interest of our report is focused on retinal ganglion cells (RGC). Ganglion cells 

receive the incoming signals and produce spike trains that contain precise temporal and spatial 

information about the patterns of light initially detected by the photoreceptors. There are numerous 

 

 



 19 

types of ganglion cells, each of which conveys information about a specific feature of an image 

detected by the photoreceptors. It has been established that the structure, function, and central 

projections of RGCs are highly correlated.  

The receptive field (RF) is defined as the area of visual space within which one can influence the 

activity of a neuron. The RF is very often used by neurophysiologists to study the function of 

visually responsive neurons, because it characterizes the transformation between the visual image 

and neuronal activity. To describe how a neuron processes the visual image, one must characterize 

its RF in the joint space-time domain. It is also well known that LGN and RGC have similar 

center-surround receptive fields.  

 

Direction Selectivity in retinal ganglion cells 

 

The mammalian retina contains several different types of ganglion cells, most of which respond to 

one or more specific features of a visual image, such as contrast, color, or motion. Some ganglion 

cell types are motion sensitive, meaning they respond to temporal changes in luminance within 

their receptive fields, corresponding both to images moving across the field of vision as well as to 

self-motion of the organism. 

A subset of motion sensitive cells responds differentially to the directions of stimulus motion. 

These Direction Selective (DS) ganglion cells show interesting properties, most of which have 

been subject for extensive research efforts for the last 40 years. Firstly, Barlow and Levick in 1965 

deduced that inhibitory inputs to a DS cell make ineffective excitation for movement in the cell’s 

null direction, while excitatory inputs are strongly enhanced for movement in the opposite, 
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preferred direction. Movement in intermediate directions produces intermediate levels of inhibition 

or excitation which are used to calculate the degree of directional tuning. 

Research conducted on rabbit retinas has revealed two different types of DS ganglion cells in the 

retina – ON OFF  DS cells and ON DS cells. ON OFF DS cells show the response to the 

movement of a stimulus that is lighter or darker than the background field, while ON DS cells are 

excited only by objects that are lighter than the background. Several other discrepancies between 

these two cell types’ responses construct a particular spike train signature for each of them. ON 

OFF DS cells respond to high values of stimulus speeds. ON DS cells, in contrast, respond 

optimally to stimuli moving at slow speeds. Four subtypes of ON OFF DS cells can be classified 

by the orientation of the preferred direction of the cell, which points to one end either the 

horizontal or vertical ocular axis. 

Each of the four types responds preferentially to objects moving either to the left, right, top, or 

bottom. The retina is completely covered by the receptive fields of each subtype of ON OFF DS 

cell. ON DS cells comprise only three distinct subtypes; the preferred directions of each ON DS 

cell points in one of three directions aligned with a different set of axes. 

The ON-OFF and ON  cell types send the directional information to different nuclei, the ON-OFF 

DS cells to the dorsal lateral geniculate nucleus and the superior colliculus  whereas the ON DS 

cells represent the main input to the accessory optic system. The functional properties of cells in 

the accessory optic system are consistent with their input from ON-DS cells in many species 

including primates. 

However, in general, DSRGCs represent a model system to investigate information processing 

within the nervous system. As above stated these neurons respond vigorously to the preferred 

direction of visual stimulus and remain silenced when stimulus is moving in the opposite null 
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direction. The intermediate responses are used to calculate the index of selectivity for direction of 

movement (Fig. 3) as described by Taylor and Vaney in 2002, for a rabbit DSRGC: 
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Recorded activity at all of the presented direction of movement allows us to calculate the firing 

rate of the neuron as response to the stimulus presentation. Neurons with DSi =1 are selective for 

one single direction while DSi =0 represents non direction selective neurons. For ON OFF 

DSRGCs DSi is around 0.5 and direction selectivity for ON DSRGCs is somewhat lower around 

DSi =0.3.    

 

 

 

 

 

 

 

 

 

 

Fig. 3 Direction Selectivity Index calculated from a recorded ON OFF DSRRGC of a rabbit retina, in response to 

drifting grating bars moving at different directions 45 degrees apart. Preferred direction of this cell is shown to be at 90 

degrees with an index of selectivity characteristic for the ON-OFF direction selective cells at this stage in the primary 

visual cortex, DSi = 0.49. 
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We show in the followings the neural response of several ON-OFF DSRGCs extracellulary 

recorded using multi-electrode array and outline some of the basic response properties of this cell 

type. Firstly, it worth to be noted that ON-OFF DSRGC encode visual information regarding 

stimulus presented, in a particular manner, by firing boats of rapid activity followed by large 

periods of silence (Fig.4 & Fig.5). This particular encoding manner is already known as burst-like 

activity and plays a very important role in information transmission from retina to higher level. 

Comparing with ON DSRGC, burs-like activity of ON-OFF DSRGC is a spike train signature and 

can explain some discrepancies between the manners in which direction selectivity is processed at 

the output of this different retinal ganglion cell types. For example, sharpening in direction 

selectivity at the output of ON-OFF DSRGCs is more pronounced and simply achieved only by 

monosynaptic mechanism. For this type of cell we will show that one to one connection from 

retina to dLGN suffice to have a better signaling of direction of stimulus motion already at LGN 

level. It is not yet fully understood how exactly the sharpening in direction selectivity at the output 

of retina is achieved but we will show that burst-like activity in ON-OFF DSRGCs is crucial to 

sharpens the tuning curves of directional selective responses. RGCs fire remarkably precise (better 

than a neural response characterized by Poisson statistics), starting with rapid firing at the 

beginning of an appropriate stimulus presentation followed by a period of silence and ending with 

another burst at the end of stimulus presentation (Fig.4 & Fig.5). Tuning curves encoding 

directional selectivity of ON-OFF DSRGCs present a sharp orientation at preferred direction (Fig. 

4) based on a fundamental characteristic of neural response of this cell type, namely their enhanced 

response at preferred direction and weak at intermediate non-preferred direction. However, it is not 

simply the firing rate which can entirely encode direction selectivity at this level. We built 

artificial spike trains mimicking ON-OFF DSRGCs with the same indexes of selectivity, firing rate 
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and directional tuning, following a Poisson distribution. These artificial spike trains did not 

produce the same degree of directional tuning at the output of their post-synaptic counterpart. If 

firing rate was the key in a better signaling stimulus direction of motion then we should find the 

same sharpening in direction selectivity in both cases, recorded ON-OFF DSRGCs and artificial 

spike trains which mimic them. The only difference between recorded and artificial spike trains 

was burst-like activity. We found substantially lower burst-like activity in artificial spike trains 

than in the recorded trains. Additionally, burst rate for artificial trains was not tuned at preferred 

direction, as was the case for recorded trains, and moreover bursts tuning of recorded trains, were 

more sharpened, showing an index of selectivity always higher than the index of selectivity of 

firing rate. We will show in the next chapter how burst-like activity helps in a primordial manner 

to achieve a better signaling the direction of stimulus motion at the postsynaptic counterpart. 
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Fig. 4 Neural response extracellularly recorded of five ON-OFF DSRGCs. Stimulus presented consisted in drifting 

grating bars moved in 7 different directions 45 degrees apart. Direction selective neuron responses were recorded and 

tuning curves for all trials were built. Three of the cells have preferred direction at 90 degrees  and two of them at 270 

degrees and 315 degrees, respectively. Left lower side shows the neural response recorded for each trial and right side 

shows the tuning curves indicating the preferred directions. 
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Fig. 5 Recorded activity of an ON-OFF DSRGC with preferred direction at 90 degrees. There are eight raster plots 

showing the activity of the cell in response to stimulus presentation at eight different directions 45 degrees apart. At 

trial three (90 degrees), left side second raster plot, we can see that the recorded activity was more intense than at the 

intermediate response (other raster plots). 
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Barlow and Levick in 1965 characterized ON-OFF direction selective ganglion cells in the rabbit 

retina and firstly proposed a model for direction selectivity in which asymmetry of either 

excitation or inhibition is required. After many research efforts on this topic there is not yet well 

known exactly where and how direction selectivity in ON-OFF DSRGCs is achieved. Over the 

years it has been generally accepted that direction selectivity is mediated mainly by the 

suppression of excitation during movement in the null direction, but not in the preferred direction. 

Recent results show that excitation and inhibition are already direction selective, that is, excitation 

is larger during the preferred direction while inhibition is larger during the null direction. This 

implies that direction selectivity is already computed presynaptically to DSRGCs. However, 

evidences of postsynaptic computation of direction selectivity where also revealed consisting 

mainly in postsynaptic interaction of the excitation with spatially offset inhibition. Presumably pre- 

and postsynaptic mechanisms, at multiple layers and sophisticated connectivity, both determine 

direction selectivity at DSRGCs (Stasheff and Masland, 2002, Amthor and Grzywacz, 1993, Fried 

et al., 2002, Taylor and Vaney, 2002).  

 

Sharpening in direction selectivity at retinogeniculate synapse 

 

In a seminal work Levick 1969, demonstrated that neurons postsynaptic to DSRGCs are signaling 

direction of visual stimulus motion more selectively than their counterparts. He found direction 

selective neurons in LGN of rabbit to be more directional selective.  

Levick model proposed a sharpening in directional selectivity at LGN neuron based on convergent 

input of different DSRGCs, with similar receptive field but with opposite preferred direction, upon 

the same LGN neuron (Fig. 6). Blitz and Regehr have shown that most of the LGN cells are 

receiving inputs from one up to three RGCs. However, it is generally agreed that there is one 
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single RGC that mainly drives one LGN neuron counterpart (Cleland et al. 1971, Kaplan et al. 

1987, Usrey et al. 1998, Sinchich et al. 2007), one third of LGN neurons could receive also 

inhibitory inputs from the same RGC counterpart but with 1ms delay (so called locked inhibition) 

and two thirds which could receive inhibitory inputs with different time delay from different RGCs 

(non-locked inhibition)(Regehr 2005). 

 

 

Fig. 6 Levick model for sharpening in direction selectivity at LGN level. Two ON-OFF DSRGCs with similar 

receptive field (green) but with opposite preferred directions, send convergent excitatory and inhibitory synaptic inputs 

to the same postsynaptic LGN cell. Inhibitory synaptic input can arrive via a local interneuron or directly to the LGN 

cell. The mechanism suggest that at non-preferred directions inhibitory input act upon excitatory input and sharpens 

the degree os direction selectivity. 
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Recently Casti et al. 2007, and Carandini et al. 2007 have shown that using simple models one 

could investigate retinogeniculate synaptic mechanism based on the idea that most important fact 

that influence information transmission from RGCs to LGN neurons could be post synaptic 

summation and that presynaptic plasticity might not be a primordial mechanism in the editing of 

retinal spikes 

Paired spikes efficacy enhancement was already shown at retinogeniculate synapse. Sequences of 

rapid firing activity have a better chance to induce postsynaptic spikes than isolated input spikes 

(Carandini 2007). While single EPSPs on their own do not reach threshold, rapid spiking activity 

in the DSRGC can trigger LGN spikes (Fig2). It is not yet well understood the role of synaptic 

plasticity at retinogeniculate synapse, additionally inputs other than retinal afferents (cortical, 

reticular or brainstem) can complicate modeling LGN neuron discharge. In a simple approach, 

taking into account only direct synaptic connection between DSRGCs and their postsynaptic 

counterparts we show, further on in this work, that sharpening in direction selectivity at 

postsynaptic level is achieved based on intrinsic properties of ON-OFF DSRGCs combined with 

postsynaptic summation and spike threshold (Fig. 7).  
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Fig.7  Sharpening of directional selectivity from retinal direction selective ganglion cells to postsynaptic model 

neurons. (Left) Mean tuning curves of three ON/OFF DSRGC (with preferred direction at 90 degrees of stimulus 

orientation) recorded in the same retinal patch. Normalized response of the cells is on the Y axis and stimulus 

orientation on X axis. (Right) LGN model neuron, calculated using the response of excitatory input from DSRGC, 

shows a sharpening in the tuning curve suggesting a higher degree of directional selectivity.  

 

We have seen up to now how direction selective retinal ganglion cells respond to a stimulus 

presentation, how their response is encoded in their firing rates tuned at preferred direction and 

how these neuronal responses characterized by an index of selectivity (Fig.3), can show us 

accurately the direction of stimulus motion. We also have seen from the neural response (Fig.5) 

that ON-OFF DSRGCs present a very important characteristic well known as burst-like activity, 

consisting in rapid boats of firing activity followed by periods of silence (Fig.4). We next will 

suggest a mechanistic model which help us explain how neurons postsynaptic to ON-OFF 

DSRGCs are signaling better the direction of stimulus movement.  
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3. Sharpening in direction selectivity at the output of retina 

 

 

The estimation of motion direction from time varying retinal images is a fundamental task of 

visual systems. Neurons that selectively respond to directional visual motion are found in
 
all 

species. In many of them already in the retina direction selective neurons signal their preferred 

direction of movement. Recent evidence suggests that direction selectivity is carried from the 

retina to higher brain areas. Here we adopt a simple model – inspired by recent work of Casti et al. 

(2008) and Carandini et al. (2007) - to investigate how directional selectivity changes for cells 

postsynaptic to retinal neurons. Our model analysis shows that directional selectivity increases 

over a wide parameter range. The degree of directional selectivity positively correlates with the 

probability of burst-like firing of presynaptic direction selective retinal ganglion cells Sharpening 

does not increase for polysynaptic inputs. We therefore suggest that sharpening is a simple effect 

of the intrinsic spiking pattern of the DSRGCs combined with summation of excitatory 

postsynaptic potentials (EPSP) and spike threshold in postsynaptic neurons. 
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Background  

As early as in the mammalian retina the direction of visual motion is computed by so-called 

direction selective ganglion cells (DSRGC). These cells signal object movement in a preferred 

direction and are silent to movement in the opposite, null direction. The cells, however, show an 

intermediate response to intermediate directions that is used to calculate a characteristic tuning 

index.  

DSRGCs have been extensively characterized in the rabbit retina (Barlow and Levick 1964; Euler 

2002; Vaney 1981, 1981b, 1994) but occur in many other species as well (mouse: Weng  et al. 

(2005, Meister&Sanes 2008, Barres&Feller 2009); cat: Stanford and Sherman (1984); rat: Dann 

and Buhl (1987)).  

Retinal direction selective cells can be separated in ON-OFF cells - if they respond at the 

beginning and the end of an incremental or decremental light stimulus - and in ON cells – if they 

respond at the beginning of an incremental light stimulus only. In the mouse retina a new OFF 

direction slective type has been recently discovered (Meister&Sanes, 2008) The ON-OFF and ON  

cell types send the directional information to different nuclei, the ON-OFF DS cells to the dorsal 

lateral geniculate nucleus and the superior colliculus (Cleland and Levick 1974a, Vaney et al. 

1981a); whereas the ON DS cells represent the main input to the accessory optic system (Buhl and 

Peichl 1986). The functional properties of cells in the accessory optic system are consistent with 

their input from ON-DS cells in many species including primates. [in the cat: Grasse et al. (1984); 

rat: van der Togt et al. (1993); and in primates: Mustari and Fuchs (1989), Hoffmann and Distler 

(1989).] 

One caveat in studying directional selectivity in higher brain areas is the accessibility of these 

cells. Only occasional responses were recorded in the dLGN of the rabbit. A classical study for 
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ON-OFF direction selective neurons in the rabbit’s dorsal geniculate nucleus (Levick et al., 1969) 

reports a higher directional selectivity for LGN neurons compared to retinal DSRGCs. On the 

opposite, direction of motion can be estimated from the population response of many ganglion 

cells in the retina using multielectrode arrays (Devries et al 1997).  

In this study we took advantage of simultaneously recorded DSRGCs and asked under what 

conditions neurons postsynaptic to the DSRGC provide a more accurate directional tuning. We 

investigated monosynaptic connections where the recorded spike train of DSRGC provides the 

presynaptic input to a postsynaptic model neuron. We also checked if polysynaptic inputs from 

DSRGCs tuned to the same preferred direction led to a further increase of the directional tuning.  

We adopted a simple integrate-and-fire model that has been validated recently for the retina-

geniculate pathway of the cat and primate respectively (Casti et al., 2008; Carandini et al., 2007). 

The simulated postsynaptic neuron (SPN) receives excitatory input and, in some simulations, 

inhibitory input from its retinal presynaptic partner. We show that sharpening of directional tuning 

occurs over a wide range of biophysically reasonable parameters for ON-OFF direction selective 

cells but less so for ON direction selective cells. To explain the discrepancy we characterize the 

spike train properties of the two cell types. We find that burst-like activity in one cell type (ON-

OFF DSRGC) is responsible for the broad parameter range that lead to directional sharpening. In a 

last set of simulations we investigate model neurons that receive polysynaptic direction selective 

inputs. Presynaptic ON-OFF DS cells synapsing onto the same postsynaptic cells do not improve 

the tuning compared to monosynaptic cells. However, the parameter range describing the strength 

of presynaptic excitatory input, shifted toward lower values, in order to achieve sharpening in 

directional tuning at postsynaptic model neuron. In this situation the strength of excitatory synapse 

does not necessary have to be high in order to achieve sharpening in direction selectivity. By 
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contrary if two strong excitatory inputs arrive simultaneous at the same postsynaptic neuron, 

almost each EPSP will give rise to an action potential (AP) at the postsynaptic neuron and no 

sharpening in direction selectivity can be achieved.  

In an important work, in 1988, Soodak and Simpson have shown that neurons in AOS nuclei (of 

rabbit) have similar basic visual response properties with those of ON DSRGCs which provide 

direct synaptic input to them. In our simulations we asked whether convergent presynaptic inputs 

from synchronous ON DSRGCs could sharpen direction selectivity at a postsynaptic cell 

resembling an AOS neuron. Our results show improved direction selectivity at SPN even if only 

two ON DSRGCs were combined and suggest that higher sharpening might be achieved if a larger 

number of ON DSRGCs converge on the same AOS neuron. 
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Methods 

Experimental Data 

We used data recorded from retinal ganglion cells of the adult isolated rabbit retina. The data 

acquisition using a 60 channel multi-electrode array (Multichannelsystems, Reutlingen, Germany) 

and off-line analysis has been described in (Zeck and Masland, 2007).  

Direction selectivity was tested using a square wave spatial grating moved in N = 8 equally 

separated directions
N

ii

π
ϕ

2
⋅= , i = 0,1,…,N-1. For each direction the grating (spatial frequency 

1 cycles/mm) was presented for 7 seconds at a temporal frequency of 1 Hz followed by a stimulus 

free interval of the same length. The total stimulus length ranged from 600 to 1200 seconds. The 

spatial extent of the moving grating was ~ 7 µm
2
 on the retina. Thus multiple cells were stimulated 

and recorded simultaneously. Individual tuning curves were obtained considering the firing rate of 

each cell for each of the eight equidistant directions. Data from 10 ON-OFF DSRGCs and from 3 

ON DSRGCs were used in this study. 

Direction Selectivity Index 

To quantify the directional tuning of a neuron, we used the direction selectivity index (DSi) as 

described by Taylor and Vaney (2002),  
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ρ

is a vector pointing in the direction of the stimulus with the length equal to the number of spikes 

recorded during presentation of the stimulus ( ir ). The DSi explains the directional tuning based on 

the firing rates for different particular movement directions of the visual stimulus. The minimum 
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value of 0 characterizes a non-directional neuron whereas the maximum value of 1 characterizes a 

neuron that responds for a single direction of movement. The higher the DSi the higher direction 

selectivity is. 

Measure of burst-like activity 

In order to have a better understanding of the mechanism that presumably underlies the sharpening 

in direction selectivity of DSRGCs, we evaluated the burst-like firing of DSRGCs and 

postsynaptic model neurons. Burst-like firing events were defined as (at least two) spikes 

occurring after a prolonged period of silence, i.e. inter spike interval (ISI) larger than 50 ms, 

followed by an ISI shorter than 5 ms (Godwin et al. 1996b; Guido et al. 1995; Lu et al. 1992). 

Burst rate was defined as the number of burst-like firing events per time. Thus, we scanned the 

spike train of each cell (10 ON-OFF DSRGC and 3 ON DSRGC) for each stimulus direction (8 

different directions) and each stimulus repetition (7 stimulus repetitions at each direction). The 

burst rate was then quantified as total number of calculated bursts divided by total duration of 

stimulus presentation for each cell. 

Modeling postsynaptic neurons  

 

For modeling neurons postsynaptic to DSRGCs, we used a conductance-based “integrate and fire” 

(I&F) neuron model that had originally been introduced by Wörgötter and Koch (1991). This 

model was also used by Casti et al. (2008) to describe the response of LGN neurons to input from 

retinal ganglion cells (RGCs). The membrane potential )(tV  of the I&F neuron is governed by 

∑∑ −−−−−−−−=
s

see

f

faamm ttgEVttgEVgVV
dt

dV
C )()()()()( rest . (2) 
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An action potential is generated whenever the membrane reaches the threshold threshV  (Fig 1). The 

first term on the right side of Eq. (2) describes the leakage current while the second term describes 

the effect of afterhyperpolarization (AHP) following each action potential. The input of the neuron 

is provided through excitatory channels (third term on right side) resulting in EPSPs. In a single 

case, we also considered “locked inhibition”, i.e. inhibition that follows excitation with a fixed 

delay iet∆  ( Fig3b), and an additional inhibitory current ∑ ∆−−−−
s iesii tttgEV )()(  was added.  

The time-dependent conductances are modeled using “alpha-functions” (Rall, 1967; Jack et al., 

1975). 
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We also introduce the membrane time constant given by 

mmm Cg 1−=τ  .  (4) 

 



 37 

 

Fig. 1: Simulation of a neuron postsynaptic to direction selective retinal ganglion cell(Transfer ratio for this data 

segment is aprox. 0.3). a) Spike sequence of a retinal direction selective ganglion cell. The input spikes that provide 

(excitatory) input to a simulated postsynaptic neuron. b) Time course of the membrane potential Vm of a PMN/SPSN 

computed by integration of Eq. (2). c) Spike sequence of the SPN. Resulting firing events of the SPN (firing threshold 

is Vthresh = -45mV). 

Table 1 summarizes the values used for the different model parameters. In the majority of plots, 

we varied the maximum excitatory conductance (while other parameters were kept constant). We 

set all parameters that were kept constant, to values found by Casti et al. (2008) to best describe 

the behavior of LGN neurons. Equation (2) was integrated using a first order Euler method with a 

time step of 0.1 ms. 
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Table 1: Parameter values used in this study (for parameter that can have different values, its typical value is 

highlighted in bold face). The membrane conductance can be calculated from Eq. (4), 
mmm

Cg 1−=τ . 

Parameter Value(s) 

Membrane time constant  τm 5 / 8 / 10 / 12 / 15 / 20 ms 

Membrane capacitance  Cm 1 nF 

(Membrane conductance  gm 
0.2 / 0.125 / 0.1 / 0.07 / 0.05 µS) 

Resting potential  Vrest -60 mV 

Threshold potential  Vthresh -45 mV 

Excitatory reversal potential Ee  20 mV 

Inhibitory reversal potential Ei -90 mV 

Afterhypolarisation reversal potential Ea -95 mV 

Maximum excitatory conductance gmax,e 0.02 / 0.03 / 0.04/0.05 / 0.06/0.07 / 0.1 / 

0.15 µS 

Maximum inhibitory conductance gmax,i  0 / 0.02 / 0.03 / 0.04 / 0.06 / 0.1 / 0.15 µS 

Maximum afterhypolarisation conductance gmax,a  0.59 µS 

Excitatory time constant τe 1 ms 

Excitatory time constant τi 1 ms 

Afterhypolarisation time constant τa 0.5 ms 

Time delay for locked inhibition ∆tie 1 ms 
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Index of Sharpening 

To compare the direction selectivity of the output of the simulated postsynaptic neuron (SPN) with 

that of the driving neuron, we define the index of sharpening as 

)(

)(

DSRGCDSi

SPNDSi
iS = . (5) 

iS > 1 means that the SPN shows higher directional selectivity than the presynaptic neuron. 

In order to investigate the role of presynaptic property (i.e. burst-like activity) we calculated index 

of directional selectivity from burst rate in the same manner as from firing rate in response to 

stimulus presented at 8 different directions of movement. For particular values of gmaxe (see 

Table2) at which the postsynaptic DSi is highest we found DSi burst rate closely matching DSi 

SPN. Thus : 

DSi(SPN) ≈ DSi(Burst) . Further on the linear approximation: 

)(

)(

DSRGCDSi

BurstDSi
iS ≈ (5.1) 

 

Spike Transfer Ratio 

Similar to Casti et al. (2008), we define the spike transfer ratio, 

spikes DSRGC#

spikes SPN#
=TFR  , (6) 

where “#” stands for “number of” (or “rate of”). According to Casti et al. (2008), the TFR of LGN-

cells for input from (non-direction selective) RGCs is between 0.07 and 0.7 (with median 0.34, see 

table 2 in Casti et al., 2008). 
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In our simulations the TFR usually depends on stimulus direction φi and thus DSi and iS  are often 

calculated from simulation runs with different TFR. For this reason, we use the maximum TFR 

value over all stimulus directions,  

)(max  ii ϕTFRTFR =  .  (7)  

In the figures of the result section we highlight those results where TFR is within the range 

[0.07, 0.7]. 

Artificial spike trains 

In order to investigate which properties of spike trains effect sharpening, we also generated 

“artificial spike trains”. These spike trains have the same average spike rates for different stimulus 

directions - and thus the same DSi - as spike trains recorded from DSRGCs. The firing probability 

was equally distributed over time according to a Poisson process except for defined refractory 

periods after each spike event. Spike trains with refractory period of 2 ms, 5 ms and 10 ms were 

generated. 
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 Results 

Sharpening of direction selectivity from ON-OFF direction selective cells 

The model adopted here incorporates several mechanisms that presumably dictate the editing 

manner of presynaptic input - the membrane passive properties of the simulated postsynaptic 

model neuron (SPN), (i.e. the membrane time constant), the excitatory synaptic conductance that 

determines the EPSPs and inhibitory synaptic conductance to characterize IPSPs. 

We firstly looked at the directional tuning of the SPN response that receive monosynaptic input 

according to the spike timing of direction selective retinal ganglion cells (DSRGCs) recorded 

extracellularly with a multi-electrode array. While only the strength of synaptic excitatory 

conductance (parameter gmaxe) was varied, the other parameters were kept fixed as in Table1 

(similar biological plausible values as proposed by Woergoetter and Koch, 2001, and Casti 2008).  

We found that the direction selectivity index DSi, Eq. (1), of the SPN was higher than that of the 

presynaptic ON-OFF DSRGC over a considerable range of the excitatory synaptic conductance 

(Fig 2a). The strength of the synaptic conductance was varied under the assumptions that the ratio 

of pre- and postsynaptic cells firing rate is restricted to the interval 0.07 and 0.7 (Casti 2008) and 

took values from 0 to 0.12 uS. The degree of sharpening – the index of sharpening (iS)- is 

expressed in the following as the ratio of post- and presynaptic direction selective indices. (Eq.5). 

The main reason for sharpening is the relative spike reduction in response to non-preferred 

stimulus directions. Fig 2a shows an example of one ON-OFF DSRGC and its SPN counterpart 

with directional tuning for different gmaxe values. DSi for this retinal cell was 0.49 and preferred 

direction at 90 degrees. With excitatory synaptic input only, the SPN counterpart in this example, 

is more directional selective than its retinal driver. We found iS for SPN higher than 1 for gmaxe = 

0.06 uS (iS=1.4) up to gmaxe=0.1(iS=1.2).    
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We calculated the degree of sharpening for a total of ten ON-OFF direction selective neurons (Fig 

2b) up to a value of gmaxe that leads to a transfer ratio of 0.7. For all simulated cells we obtain 

sharpening of directional selectivity.  

However, weak synaptic inputs (i.e. gmaxe < 0.04 µS) did not lead to sharpening in direction 

selectivity, except for only one of the cells, mainly due to a very low transfer ratio (TFR, Eq.7) 

(i.e. bellow 0.07 minimum limit) and thus iS=0. As the strength of excitatory synaptic input grew, 

for 8 (out of ten) cells iS stepped over 1 already at gmaxe=0.04 µS (Fig 2b), for two cells TFR still 

remained under the limit value, and thus iS was set to 0. Excitatory synaptic inputs with gmaxe 

≥0.05 µS always led to iS>1. Mean value (Fig 2b-red curve) of iS =1.30 (std=0.20, n=10) at 

gmaxe=0.05 µS and has slightly decreased to iS=1.11 (std=0.06, n=10) at gmaxe=0.1 µS. For a 

strong synapse as described by gmaxe=0.12 µS, iS =0 again, while TFR exceeds maximum value 

of 0.7. At this value already almost every EPSP is capable to provoke an AP at the SPN and thus 

DSi of the SPN approximate DSi of presynaptic cell, situation depicted by green rectangle area in 

Fig. 2b which shows that iS stays close to 1 if TFR was ignored. Mean iS (at gmaxe=0.12 µS 

without taking into consideration TFR) = 0.97(std= 0.02, n=10). 

The degree of sharpening however depends on the tuning of the presynaptic cell. For an excitatory 

synapse of gmaxe = 0.06 µS, the iS decreases for increasing direction selective indices of retinal 

drive as indicated in Fig 2c. As expected, for ON-OFF DSRGCs with low DSi, sharpening at the 

SPN counterpart is stronger than that observed for high presynaptic DSi, while maximum possible 

value of DSi is 1(a cell selective for only one direction of stimulus movement) highly selective 

ON-OFF DSRGCs do not lead to much more directional selective postsynaptic counterparts. Fig2d 

shows inverse proportionality between indexes of sharpening (iS) at SPN and DSi at retinal cells. 

iS is decreasing when DSi is increasing.(iS decreases with a slope as calculated from Fig 2d 
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Tan(α)=diff(iS)/diff(DSi); α= 67.72º). In conclusion sharpening in directional selectivity was 

achieved for all tested ON-OFF DSRGCs and was more prominent for presynaptic inputs with a 

lower DSi.  

 

 

Fig.2: The directional tuning of model neurons increases if ON-OFF direction selective cells provide monosynaptic 

input. Index of Sharpening iS = DSi(PMN)/DSi(DSRGC), Eq. (5). Red dots indicate the values for which transfer ratio 

was between the considered limits of 0.07-0.7. 

 

a) Normalized (mean) responses (averaged over 7 trials of 12sec each) of an ON-OFF (blue curve) and of SPNs 

receiving excitatory input from the DSRGC for different synaptic conductances gmax,e. While the DSRGC has direction 

selectivity index DSi = 0.49, the simulated neurons have higher DSi values and thus iS > 1: For gmax,e = 0.1 µS (red 

curve) we have DSi=0.59 resulting in iS = 1.2. For gmax,e = 0.08 µS (green curve), we have DSi = 0.66 and iS = 1.34, 

for gmax,e = 0.06 µS (black curve) DSi = 0.71 and iS = 1.4 

b) Index of sharpening (IS) computed from 10 ON-OFF DSRGCs and their simulated postsynaptic counterparts for 

different maximum excitatory conductance gmax,e (black curves). On the average (red curve), we find sharpening 

(IS > 1) for gmax,e  ≥ 0.04 µS up to 0.1 µS. For gmax,e  ≥ 0.12 µS no significant sharpening is observed (DSi(PMN) ≈ 
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DSi(DSRGC), iS ≈ 1)  because each input spikes triggers an output spikes in the simulated postsynaptic neuron for 

high synaptic conductances, see green rectangle. For DSRGCs with high DSi, maximum iS=DSi(PMN)/DSi(DSRGC) 

is usually lower than for DSRGCs with low DSi.  

c) Direction selectivity index for postsynaptic model neuron is higher than direction selectivity index of ON-OFF 

DSRGCs (for all cells). For this figure gmaxe= 0.06 µS. 

d) The degree of sharpening depends on presynaptic direction selectivity. The higher the DSi of presynaptic cell the 

lower the iS at SPN. 

 

In a next set of simulations we investigate how robust sharpening is against variations (of 

postsynaptic parameters) in the membrane time constant (Fig 3a) and against introduction of 

additional inhibitory conductance (Fig 3b).  

 

Fig. 3: Index of sharpening for a postsynaptic model neuron that receives input from a DSRGC (050414_ch78) in 

dependence on maximum excitatory conductance gmax,e and membrane time constant τm a) or maximum inhibitory 

conductance gmax,i 

b) The black contour line highlights areas where TFR is within the range [0.07, 0.7]. 
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We varied the membrane time constant in order to capture the additional effect that this 

postsynaptic parameter could have over the iS. As membrane time constant increases (membrane 

conductance decreases) we found that sharpening is achieved at low gmaxe values (Fig.3a, for 

τm=15 ms, gmaxe =0.03 µS, iS=1.59). However, if strength of excitatory synaptic input is 

increased no sharpening is achieved if τm  >15 ms. (iS=0.97). By contrary, at low τm  values a 

sharpening is achieved only for strong excitatory synaptic input (τm  = 5ms, gmaxe=0.1 µS, 

iS=1.31). At any fixed τm  value the degree of sharpening at SPN respects the same trend and 

decrease as the strength of gmaxe increase.  

Thus, at biologically plausible values for time membrane constant we found sharpening in 

direction selectivity at postsynaptic model neuron for a large interval of gmaxe values (Fig3a). 

Stimulus that is larger than center of receptive field could provoke additional (excitatory and/or 

inhibitory) inputs from neighbor retinal cells directly or by mean of local interneurons (Alitto & 

Usrey 2005, Carandini 2007). To investigate the effect of such a situation additionally to excitatory 

synaptic input we used inhibitory synaptic input convergent on the same postsynaptic model 

neuron. For the inhibitory conductance we used a fixed time delay of 1 ms with respect to the 

excitatory inputs. Both, excitatory and inhibitory synaptic inputs are sent by the same DSRGC 

main driver. Time locked excitation and inhibition has been found in the retinogeniculate pathway 

(Regher et al. 2005). Variation of these parameters under the transfer ratio restriction demonstrates 

that over a wide range of model parameters the postsynaptic neuron has a higher index of direction 

selectivity. 

As expected if gmaxi increased (strong inhibition) gmaxe must also increase in order to achieve 

sharpening at SPN. Similarly with previous simulations, at any fixed gmaxi value iS decreases 

with increasing gmaxe (Fig3b). 
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Altogether, these scenarios presented that far suggest that direct monosynaptic excitatory input 

suffice to achieve sharpening at postsynaptic neuron for a wide range of biologically plausible 

synaptic strengths. Additional parameters, describing postsynaptic neuron properties or involving 

polysynaptic mechanism, do not radically change the sharpening in direction selectivity at SPN.    

Sharpening of direction selectivity from ON direction selective cells 

In addition to the ON-OFF direction selective neurons, we investigated a second type of direction 

selective cells – the ON DS cells. These cells have broader directional tuning and thus smaller DS 

indices than ON-OFF DS cells.  

In contrast to the extensive sharpening of small DS indices from ON-OFF cells (Fig 2c) we do not 

find much sharpening for the three ON DS cells investigated (Fig 4a). The simulations were 

performed analogous to the ON-OFF DS cells with the constraint on the transfer ratio. For one of 

the cells we found sharpening at SPN only for a single gmaxe value (Fig4a, gmaxe = 0.1 µS, iS = 

1.1) while the other two cells presented iS higher than 1 for a restricted range of gmaxe values 

(gmaxe ≥ 0.07 µS and gmaxe ≤ 0.1 µS). The degree of sharpening is less pronounced than in the 

case of ON-OFF DSRGCs and in mean it starts exceed 1 only at gmaxe=0.07 µS when iS = 1.11. 

Beyond gmaxe = 0.1 µS no sharpening is achieved due to the fact that such strong synaptic input is 

generating almost at each EPSP an AP at SPN so that iS tends to be almost 1 (as indicated by the 

blue curve in Fig4a if TFR were ignored). Thus, for ONDS RGCs we found less sharpening when 

comparing with ON-OFF DSRGCs in the same simulation conditions. 
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Fig 4. iS for ON DS and Artificial spike trains 

a) Index of sharpening for 3 ON DSRGCs . For ON-DSRGCs, sharpening is usually less pronounced and achieved 

only for higher conductances gmax,e  ≥ 0.07 µS. Red dots in the plots indicate gmaxe values for which TFR is in the 

validation domain, while blue dashed lines indicate the iS value if TFR were ignored. 

b) Index of sharpening for artificial spike trains and post-synaptic model counterparts. Refractory periods are 2 ms 

(dashed curves), 5 ms (continuous curves), and 20 ms (dash-dotted curves). 

For each refractory period two set of artificial spike trains were generated that have the same firing rates and thus the 

same DSi values as two ON-OFF DSRGCs, namely ‘DSRGC_ch55 and ‘DSRGC_ch78’. Blue plots represent artificial 

spike trains that mimic an ON DS cell. Best sharpening is obtained for 2 msec refractory period spike trains for ON-

OFF DSRGCs and is less present as refractory period increase. At 20 msec iS>1 only at gmaxe = 0.1 µS.  For ON 

DSRGC we found iS>1 only for a single gmaxe value = 0.1 µS.  
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Sharpening of directional selectivity from artificial spike trains mimicking direction selective 

neurons. 

Apparently the presynaptic degree of directional tuning does not provide evidence how the 

sharpening works. We therefore considered artificial spike trains that mimicked the firing rate and 

thus directional tuning of ON-OFF as well as ON DS cells. The spike trains followed a poisson 

distribution. We calculate the postsynaptic sharpening for a total of nine artificial spike trains. 

Each spike train mimicked the directional tuning of either an ON-OFF DS cell with high index of 

selectivity(DSi=0.72), an ON-OFF DS cell with smaller index of selectivity (DSi=0.49) and an ON 

DS cell(DSi=0.34). For each of the three firing rates we consider three refractory periods: 2msec, 5 

msec and 20 msecs. The best sharpening is found for short interspike intervals (i.e. refractory 

period of 2 msec). This holds true for simulated spike trains with different average firing rate 

(Fig4b blue and black dashed curves). For this spike trains (with small refractory period of 2 msec) 

the sharpening at SPN is achieved for an interval of gmaxe =[0.07 – 0.1] µS. Increasing refractory 

period at 5 msec we found sharpening for a more restricted interval of gmaxe = [0.08 – 0.1] µS 

(Fig4). For the spike trains with 20 msec refractory period we found sharpening only for 

gmaxe=0.1 µS. For the artificial spike trains mimicking ON DS cell we could see sharpening only 

at gmaxe=0.1 µS and only if refractory period was set at 2 msec (Fig4b blue dashed curve). 

Constructed artificial spike trains have the same firing rates as the retinal recorded cells which they 

mimic. If firing rates of the presynaptic cell would be responsible for sharpening at postsynaptic 

neuron, than one would expect similar iS (and for similar gmaxe values) to be obtained at the 

output of artificial spike trains with the same DSi as the recorded cells. 
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Burst-like spiking is responsible for sharpening of directional selectivity  

Our results presented so far indicate that sharpening of directional tuning does not depend on the 

neuron’s firing rate that is different for the different presentation directions (compare Fig 2b and 

Fig. 4).  Artificial spike trains with poisson statistic suggest that intrinsic spike train properties are 

responsible for sharpening of directional tuning. We therefore investigated the intrinsic spike train 

properties of ON-OFF DSRGCs. We selected a parameter often used in the analysis of LGN 

neurons: the percentage of bursting. Burst-like events are identified and quantified as described in 

Methods (Section 2.3). We calculated the burst-rate in the response of ON-OFF DS cells as well as 

ON DS and artificial poisson-like spike trains. 

Fig5 a,b,c show the tuning curves for three ON-OFF DSRGCs calculated from firing rate (red 

curve) and burst rate (blue curve). The preferred direction indicated by maximal firing rate 

coincides with the preferred direction calculated from  burst rate. That is, at preferred direction 

ON-OFF DSRGCs show burst-like activity more than at intermediate directions. In this way the 

probability of evoking an AP at SPN becomes higher at preferred direction while two (or more) 

closed (in time) EPSPs are more successful in rising membrane potential of SPN above the 

threshold. This phenomenon is known as paired spike enhancement and has been demonstrated at 

many synapses (Usrey et al. 1998, Carandini et al. 2007). The burst rate for ONDS cells and 

artificial spike trains was almost equal zero (Fig5d,e). Mean burst rate (the average for all 7 

stimulus repetitions) at preferred direction was 0.38 [bursts/sec], for the in Fig5d, and did not 

exactly matched the preferred direction of 315º indicated by firing rate tuning curve (burst rate 

tuning curve show a maximum at 0 º). For all three ON DSRGCs we investigated the mean burst 

rate at preferred directions was 0.29[bursts/sec]. For the ten ON-OFF DSRGCs we found a mean 
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burst rate at preferred direction (of 9.40 [bursts/sec]) significantly higher than for ON DS cells or 

artificial spike trains. It is already well known that these two different RGC types posses different 

spike train signatures (Zeck et al, 2007). 

The burst rate for each presentation direction can be used to calculate the degree of directional 

selectivity. Once we calculated the burst rate at each direction of stimulus presentation we next 

used DSi (see Methods) in a manner similar to that used for firing rate, and we calculate the 

direction selectivity index for burst-like spiking.  

The directional selectivity calculated from bursts is higher than the directional selectivity obtained 

from firing rates (Fig 6a). For all of the cells we used in this study calculated DSi from burst rate 

was higher than DSi presynaptic but very close to DSi postsynaptic calculated from firing rates 

when excitatory synaptic input has the strength which leads to highest DSi at SPN (Table2). As in 

the Eq.5, the sharpening index is calculated as the ratio of post and presynaptic indices of 

selectivity. While postsynaptic DSi’s calculated from firing rates match DSi’s calculated from 

bursts at presynaptic cells, consequently the ratio of the two indices (DSi burst and DSi firing rate) 

closely corresponds to the index of sharpening (Fig6b, linear fit Eq5.1) for all ten ON-OFF 

DSRGCs at the synaptic maximum conductance which lead to the highest sharpening in direction 

selectivity. As a consequence, burst-like activity in presynaptic ON-OFF DSRGCs could closely 

predict the degree of sharpening at postsynaptic target under these circumstances. Fig6b suggest 

how the strength of sharpening in direction selectivity could be inferred at presynaptic level 

already. That bursts are recognized to be very efficient in transmitting information at different 

stages within the brain is already well known. In our example burst-like activity seems to be the 

key in signaling better the direction of motion of visual stimulus at the output of retina.  
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Table 2. Parameter values for ten investigated ON-OFF cells. Chxx_xx indicate the identity of the cell and retinal 

patch. DSi SPN closely matches DSi Burst Rate. Values of gmaxe indicated the synaptic strength at which the DSi 

SPN is highest. 

 

Cell DSi Burst Rate DSi SPN gmaxe (µS) 

Ch 55_050203 0.75 0.75 0.05 

Ch 78_050203 0.84 0.80 0.05 

Ch 25_050203 0.77 0.77 0.05 

Ch 85_050203 0.73 0.73 0.04 

Ch 55_050414 0.77 0.73 0.04 

Ch 72_050414 0.71 0.68 0.06 

Ch 84_050414 0.76 0.80 0.05 

Ch16 0.74 0.76 0.05 

Ch36 0.71 0.71 0.05 

Ch46 0.74 0.78 0.05 
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Fig. 5: Normalized firing rates (red curves) and burst rates (blue curves) of  three ON-OFF-DSRGCs,  DSRGC_ch55 

a), DSRGC_ch74 b), DSRGC_ch78 c), of an ON-DSRGC DSRGC_ch17 d), and an artificial spike train with 2ms 

refractory period that has the same firing rates as DSRGC_ch55 e). For ON DS cell and artificial spike train burst like 

activity is very low. 

 

Fig 6. a) Direction selectivity indexes for ten ON-OFF DSRCs. DSi calculated from burst-like activity is always 

higher than DSi calculated from firing rates in response to stimulus presentation. 

b) Index of sharpening accurately matches the ratio of selectivity indexes calculated from burst and firing rates. While 

burst-like activity is more pronounced at preferred direction, this intrinsic presynaptic property plays a prominent role 
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in sharpening of direction selectivity at postsynaptic neuron. Index of sharpening is approximated as Eq.5.1 and thus 

can be predicted by ratio of the two directional selectivity indexes.  

 

 

Polysynaptic directional selective input onto one model neuron 

 

So far we considered monosynaptic connections of a DSRGC with a model neuron. It is  assumed 

that several retinal cells can converge on the same postsynaptic target (Regehr et al. 2005, Sinchich 

et al. 2007, Usrey et al. 1998). However, the synaptic strength of each parameter is unknown. In 

the following we consider polysynaptic input with equal weights  from several DSRGC to a model 

postsynaptic neuron and asked if simultaneous convergent synaptic inputs from ON-OFF DSRGCs 

with the same preferred direction can lead to a higher  sharpening as compared to previously 

analyzed monosynaptic scenario. 

We recorded three ON-OFF DSRGCs in the same retinal portion responding preferentially to the 

same direction of stimulus movement (90 degrees preferred direction). In a second recording 

portion we recorded other three pairs, each comprising two neurons with same preferred direction 

(180, 0 and 135 degrees respectively). In this way we formed in total 6 pairs of combined ON-OFF 

DSRGCs. We calculated cross correlation histograms (CCH) for these pairs of neurons 

simultaneously recorded. Further on we aligned the spike trains of formed pairs in order to form 

simultaneous synaptic inputs to the same postsynaptic neuron. We found a correlated activity with 

a time lag in CCH of 2 ms for which a maximum correlation between their spike trains was 

achieved. 

In each pair of ON-OFF DSRGCs sending convergent excitatory inputs to the SPN, each cell has 

different DSi. At the output of model neuron we always found a sharpening in direction selectivity 
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as compared to any individual DSRGC. However, for the input neuron with the highest DSi the 

degree of sharpening was lower as compared to the monosynaptic case . For the six pairs of 

neurons presented in Fig7 a) direction selectivity index at postsynaptic neuron is higher than (DSi 

SPN = [0.73; 0.74; 0.75; 0.77; 0.79]), presynaptic direction selectivity indices (DSi RGC Є [0.37-

0.72]). 

Comparing with monosynaptic mechanism, two excitatory synaptic inputs of the same strength (of 

cells with the same preferred direction) simultaneously converging on the postsynaptic model 

neuron did not improve the degree of sharpening at the postsynaptic output (Fig 7b). However, the 

effect of simultaneous polysynaptic input consisted in shifting the range of the values for gmaxe at 

which sharpening in direction selectivity was produced. This shift was toward lower gmaxe values. 

As expected, if two simultaneous excitatory synaptic inputs converge on the same postsynaptic 

target, then the strength of the synaptic conductances must not be too high. At gmaxe=0.03 µS 

already the maximum sharpening is achieved. When gmaxe is increased, the number of APs at 

SPN increased also and for gmaxe =0.07 µS the transfer ratio is already exceeding the maximum 

limit of 0.7.  

This result suggest that, even if the synaptic mechanism involve more retinal projection 

converging on the same postsynaptic target (Regehr et al. 2005, Usrey et al. 1998) only one single 

cell is mainly driving the postsynaptic counterpart and thus dictating its response properties 

including the degree of direction selectivity.  

Part of the cells recorded on the multielectrode array in our experiments, were proved to be non-

directional selective and thus have a very low index of selectivity, bellow 0.1. We further asked 

what could be the effect of two cells, from the same recording patch, one directional selective and 

one non-directional selective (NDS) sending convergent excitatory input to the same model 
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postsynaptic neuron. Thus, we selected two NDS-RGCs from the same recording patch and 

combined them separately, in pairs of two, with four different ON-OF DSRGCs. For each of the 

pair formed (one NDS and one ON-OFF DSRGC) we found at the postsynaptic simulated neuron 

an index of sharpening less than 1.   Fig7 c shows the situation as described above. In all of the 

combinations we found DSi SPN smaller than presynaptic DSi DSRGC meaning that no 

sharpening in direction selectivity can be achieved in this condition. dLGN in the thalamus is a 

target for multiple retinal ganglion cell types but the most important is that they that each type 

apparently terminates on a distinct set of dLGN neurons and that these neurons are often 

segregated in separate sublaminae or subnuclei of the dLGN (Berson 2008). In our simulations we 

show that if hypothetically a direction selective and a non-direction selective RGC would project 

on the same postsynaptic target, the output would loose information regarding direction of 

stimulus motion.   

Taking advantage of multielectrode array technique we further considered polysynaptic excitatory 

inputs consisting in five ON-OFF DSGRCS (from the same recording patch) driving one 

postsynaptic model neuron (Fig7 d). We wanted to test if neurons selective for different preferred 

directions (90, 270 and 315 degrees respectively) lead to sharpening in direction selectivity at the 

simulated postsynaptic neuron. For ON-OFF cells indices of selectivity were higher than DSi SPN 

and thus we could not observe a sharpening in directional selectivity at SPN (DSi SPN =0.38 and 

DSi ON-OFF DSRGCs = 0.41; 0.49; 0.65; 0.72; 0.72). Thus, at least in our simulation conditions, 

polysynaptic mechanism involving neighboring ON-OFF DSRGCs with the same strength of the 

excitatory synaptic conductance but with different preferred directions projecting on the same 

postsynaptic target do not improve the degree of sharpening at postsynaptic level, by contrary the 

output is signaling less the direction of stimulus movement. 
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Fig7 a) Sharpening in direction selectivity achieved from polysynaptic inputs formed by pairs of two ON-OFF 

DSRGCs . SPN shows a higher DSi for each pair. Synaptic strength was set at gmaxe= 0.06 µS. 

b) Index of sharpening for three different ON-OFF DSRGCs which send monosynaptic inputs to the postsynaptic cell 

(blue curves) and index of sharpening for each combination pair of two cells in polysynaptic mechanism(red, green 

and black curves). The degree of sharpening is almost the same comparing the mono and polysynaptic scenarios. The 

effect in case of two convergent inputs on the same SPN can be noticed in iS >1 for lower values of gmaxe (i.e. starts 

at 0.03 µS for polysynaptic case and at 0.04 µS for monosynaptic case). If gmaxe is increased no sharpening is 

observed already at gmaxe = 0.07 µS for polysynaptic case while for monosynaptic connection iS is still higher than 1 

up to gmaxe = 0.1 µS. 

c) ON-OFF DSRGC and non-DSRGC synapsing onto one model neuron, all recorded on the same patch. DSi for ON-

OFF cells are higher than  DSi for SPN, indicating non direction selectivity postsynaptic neuron. 

d) Five  neurons synapsing onto one model neuron. DSi SPN=0.38. All the ON-OFF DSRGCs have DSi DSRGC > 

DSi SPN. 
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ON DSRGCs convergent inputs sharpens direction selectivity at the postsynaptic target. 

 

We combined a pair of two recorded ON DSRGCs which send simultaneous convergent excitatory 

synaptic inputs to the same simulated postsynaptic neuron. The two ON DSRGCs have different 

indices of selectivity. For the first cell DSi1= 0.34 while for the second cell in the pair 

DSi2=0.30.We found that at the SPN the degree of sharpening in direction selectivity is slightly 

improved compared with monosynaptic scenario. Fig 8 show iS values for different gmaxe values 

a) when the degree of sharpening at SPN (DSi SPN) is compared with first ON DSRGC (with 

DSi1) and in b) comparing with the second cell (with DSi2). Maximum of the degree of 

sharpening achieved already for gmaxe=0.06 uS, is iS=1.54 at the SPN level while in 

monosynaptic mechanism (Fig4a) a maximum of sharpening was iS= 1.41 (obtained at one of the 

cells for gmaxe =0.07 uS). Fig8 show also the fact that a sharpening at SPN is obtained for a wider 

range of parameter gmaxe. Combining two ON-DSRGCs we found an improvement in signaling 

direction of stimulus at postsynaptic target. 
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Fig8 Sharpening in direction selectivity obtained when considering a pair of two ON DSRGCs  

a) Index of sharpening is obtained by dividing DSi SPN at DSi of the first cell in the pair which has DSi1=0.34. In this 

case iS reaches at maximum 1.54 a higher value than 1.41 which was achieved at maximum for one cell in 

monosynaptic mechanism. It is also obvious that for a larger domain of gmaxe values sharpening is obtained in 

polysynaptic mechanism.  

b) iS for the second cell in the pair is at maximum 1.48 still higher than monosynaptic case. In this situation iS is 

obtained by dividing DSi SPN at DSi of the second cell in the pair DSi2=0.30. 
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Discussions 

 

We sought a simple approach to investigate sharpening in direction selectivity at the output of 

rabbit retina. In this sense we used a simple model that proved to successfully describe 

retinogeniculate synaptic transmission in cat (Casti 2008 and primates (Carandini 2007) based on 

simple summation of EPSPs generated from recorded retinal spike trains followed by a threshold 

mechanism to generate AP at postsynaptic counterpart.   

 

Monosynaptic Input. Intrinsic presynaptic property of ON-OFF DSRGC 

 

In 2007 Sincich et al. have demonstrated that every spike within a burst at LGN neurons is 

generated by EPSP provoked by a retinal spike. In this logic there are a few chances that more than 

one AP at SPN to be evoked by a single EPSP. That further implies that if there is an AP at SPN it 

is due to at least one EPSP. Consequently, during boats of rapid firing activity there are higher 

chances to provoke more APs at SPN. Our results show the same. Burst-like activity at preferred 

direction was responsible for provoking a higher number of APs at SPN than at the intermediary 

directions (and thus  sharpening  directional tuning). Additionally they show that LGN neurons 

fired only if two EPSPs arrived sufficiently close in time. We found for all tested ON-OFF 

DSRGCs burst-like activity tuned at preferred direction, substantially higher than for ON 

DSRGCs. We therefore suggest that at preferred direction ON-OFF cells have a higher probability 

to successfully elicit an AP at postsynaptic target and thus to enhance the degree of direction 

selectivity.  



 60 

The degree of sharpening could be predicted presynaptically at ON OFF DSRGCs by evaluating 

burst tuning for different directions of stimulus movement. Indeed, at the synaptic strength that 

evoked a maximum of sharpening in direction selectivity, we found that selectivity index for burst 

firing at ON-OFF DSRGC closely matched selectivity index of SPN for firing rate. 

 

 

Polysynaptic input. Difference between ON-OFF AND ON DS cells 

 

In our simulations we found that monosynaptic excitatory input alone led to a better signaling 

direction of stimulus motion at SPN for a wide range of synaptic strength. Excitatory synaptic 

conductance was reported as crucial in retinogeniculate transmission models (Casti et al. 2007, 

Carandini et al. 2007). It is well known that more than one retinal ganglion cells project to the 

same postsynaptic target (Regehr et al. 2005) but only one cell will mainly drive it. We checked 

polysynaptic mechanism and we found that the degree of sharpening at SPN was not improved 

comparing to monosynaptic connectivity.  

Inhibition may also contributing to sharpening of directional tuning (Levick 1969) but in our 

simple approach inhibition did not dramatically change the degree of directional tuning at SPN (a 

minor role of inhibition was reported by Casti 2007 in a similar approach manner). It seems that 

rapid firing activity at ON OFF DSRGCs during presentation of stimulus moving at preferred 

direction is the key in narrowing the tuning curves at SPN. Indeed, we found significantly less 

similar property of burst-like activity in ON DSRGCs and artificial spike trains for which 

sharpening in direction selectivity at SPN was weak. Presumably for ON DSRGCs polysynaptic 
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mechanism (Soodak et al. 1988) is more likely to sharpen directional tuning at the postsynaptic 

target, while for ON-OFF DSRGCs polysynaptic inputs have had less efficacy. 

Research efforts dedicated to ON DSRGCs have revealed that ON DS cells comprise three 

physiological subtypes distinguished by their preferred directions, each corresponding to upward, 

downward, or temporal-to-nasal motion in the visual field (Oyster 1968). The same preferred 

directions are present in the neurons of AOS nuclei (medial, lateral and dorsal). Other many 

response properties of AOS neurons (i.e. selectivity for stimulus velocity and size) are similar to 

those of ON-DS RGCs and thus this type of RGC is presumably the predominant if not the only 

input to the AOS neurons (Soodak et al. 1988, Oyster 1972, Amthor et al 1989a) initiating the 

optokinetic reflex. 

It is suggested that AOS neurons’ large directionally selective receptive fields could be formed 

from convergent inputs from ON-DS RGCs (Soodak et al.1988). We found that two ON DSRGCs 

exhibiting correlated and synchronous firing activity (Ackert et al. 2006) sending excitatory 

synaptic input on the same postsynaptic neuron will contribute to a better degree of direction 

selectivity at the target. It is interesting to further investigate if a larger number of converging ON 

DSRGCs (Soodak et al. 1988) could give rise to a more significant sharpening in direction 

selectivity at AOS neurons. 
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4. Descriptive Model for ON-OFF DSRGC receptive field characterization 

 

Receptive field characterization is an important step in investigating basic properties of a visual 

neuron response. The center surround organization of retinal ganglion cells (and LGN neurons as 

well) explained many of their visual response properties. It is already well known that their 

behavior is well described by linear filtering of the stimulus presented over the receptive field. 

However, retinal ganglion cells present a wide variety of response characteristics some of them 

being nonlinear, among which is direction selectivity. To account for direction selectivity, the 

organization of receptive field must be treated as inseparable in space and time. Spatial structure of 

the receptive field reverses over time, so that the center and surround regions change their signs as 

the time advances. The key for inseparability is that there is a difference between the speeds at 

which they reverse their sign. The center of the receptive field of the ON-OFF DSRGCs changes 

the sign faster than the surround.  

For the case of separable space time receptive fields the center surround organization of an ON-

OFF RGC is very well captured by a difference of  two Gaussians (DOG).  
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Eq.1 Difference of two Gaussians fitted for a non-directional selective ON-OFF DSRGC extracellularly recorded.  

 

The center of the RF was placed at x=y=0, the two Gaussians representing the center and the 

surround, respectively. The size of the center and the surround is modeled by cσ  and 

sσ respectively, while B represents the strength of the surround of the receptive field.  
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Fig. 1 and Fig. 2 show an example of separable receptive field of an ON-OFF non-direction 

selective recorded in rabbit retina during a stimulus presentation consisting in grating bars moving 

in a particular direction for 12 seconds. 

 

 

 

 

Fig. 1 The separable center-surround spatial receptive field structure characterized by a central ON region and a 

surrounding OFF region. Data recorded for an ON-OFF RGC after a 12 s grating bar stimulus presentation. 

 

 



 64 

 

 

Fig.2 A fit of the receptive field shown in Fig. 1 using (Eq.1) a difference of Gaussians function, with σc=0.3o, σs=1.2o 

and B=2. 

 

It is suggested that direction selectivity can be described by linear spatiotemporal RF structure of 

ON-OFF DSRGCs. These cells with RF profile tilted in space-time domain are expected to show a 

preference for a direction of motion while cells with separable space time RF would not. However, 

linear prediction usually underestimates the degree of direction selectivity measured from the 

recorded spike trains as response to a moving stimulus such as drifting gratings.  These differences 

can be diminished if we take into account some nonlinearity in the cell’s response. The 

nonlinearities presumably will increase the degree of the direction selectivity modeled by linear 

spatiotemporal RF structure. We used in the following the white noise analysis and reverse 

correlation technique to build a descriptive model to characterize the spatio-temporal structure of 

ON-OFF DSRGCS. To successfully describe the formation of the receptive field we add static 
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nonlinearities which explain most of the dynamic changes in space and time of the ON-OFF 

DSRGCs receptive fields.  

The main steps we used are: 

1. Build white noise stimulus  

2. Record from ON-OFF DSRGCs stimulated with white noise stimulus 

3. Calculate the STA in response to white noise stimulus and extract the kernel 

4. Find the optimal kernel by adjusting the estimated firing rate to the recorded firing rate 

5. Record data with new stimulus, consisting drifting grating bars (as described in Ch. 3 Methods) 

6. Construct the linear model  

7. Add static non-linearities 

8. Compare predicted with recorded data 
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Mapping receptive fields of ON-OFF DSRGCs 
 

Neurons in retina operate on visual stimuli mostly in a linear fashion. However, some of retinal 

ganglion cells responses are not entirely linear. One of the response property which involves non-

linearities is represented by direction selectivity. To account for nonlinearities we propose a model 

in which model neurons have a linear receptive field, and static nonlinearities. To test this model 

we recorded responses from ON-OFF DSRGCs of rabbit retina. We estimate model parameters 

from a basic set of measurements using white noise stimulus and show that the model can 

accurately predict responses new stimuli.  

To adequately describe how a neuron processes the visual image, one must characterize its RF in 

the joint space-time domain. We used the white noise stimulation combined with Wiener kernel 

analysis to characterize neurons with arbitrarily complex nonlinear response properties. White 

noise stimulus has a flat power spectrum and has several advantages: the stochastic, highly 

interleaved stimulus spans a wide range of visual inputs, is relatively robust to fluctuations in 

responsivity, avoids adaptation to strong or prolonged stimuli and is well suited to simultaneous 

measurements from multiple neurons. 
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1. White Noise Stimulus and STA 

 

A white noise technique is presented for estimating the response properties of spiking visual 

system neurons. The technique is robust and appropriate to simultaneous recordings from multiple 

neurons. 

As we already mentioned white noise stimulus has the defining characteristic that its value at any 

time is uncorrelated with its value at any other time (Fig.3). 

 

 

Fig. 3 Frequency and spatial arrangement of binary white noise stimulus updated every 20 ms used for the recorded 

data from ON-OFF DSRGCs. 

For white noise stimulus the autocorrelation function is 0 in the range –T/2 <τ < T/2 except when  

τ=0 and for this value )(2 τδσ sssQ = , where sσ  which has the units of stimulus times the square 

root of unit time, reflects the magnitude of the variability of the white noise.  

The spike triggered average is related to the reverse correlation function as discussed already by : 

)()( ττ −= rsQ
T

n
C , and represents the average value of the stimulus a time interval tau before a 

spike is fired, and thus is proportional to the correlation of the firing rate with the stimulus at 
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Fig.4 Evolution of STA for one ON-OFF DSRGC recorded after white noise stimulus presentation. At 120 ms 

before a spike was fired STA has a maximum. Before 120 ms the receptive field is changing polarity. Sooner 

than 120 ms the stimulus has little or no influence for the receptive field. 

preceding times. Fig. 4 and Fig.5 show the STA calculated after white noise stimulus presentation 

from two ON-OFF DSRGCs recorded extracellularly from the same retinal patch. As can be 

noticed around 100-120 ms before a spike was triggered we found the maximum of the firing rate-

stimulus correlation. Fig. 6 shows the receptive field structure at maximum correlation for one of 

the recorded neurons. 
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Fig. 5 Evolution of STA for another ON-OFF DSRGC using white noise stimulus. Maximum correlation 

between stimulus and neural response is found at 100 ms before a spike is fired.  

 

 

 

  

 

   

 

 

 

 

 

 

Fig. 6 Receptive field of one ON-OFF DSRGC mapped with noise and STA described in Fig.4.  
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As we have seen the best kernel which describe the receptive field organization in response to 

white noise stimulus is related to STA by the relation:  

22
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For each of the recorded ON-OFF DSRGC we calculated the STA and the optimal kernel as above 

described. The spatial receptive field was defined as the average stimulus that preceded each spike 

in the range up to 300 ms. The lengths and widths of the subfields were quantified by fitting the 

spatial receptive fields, RF(X,Y), to elliptical Gaussians : 
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Where : 

 

a cen,sur = cos(theta)^2/2/sigma_x^2 + sin(theta)^2/2/sigma_y^2; 

b cen,sur = -sin(2*theta)/4/sigma_x^2 + sin(2*theta)/4/sigma_y^2 ; 

c cen,sur = sin(theta)^2/2/sigma_x^2 + cos(theta)^2/2/sigma_y^2; 

 

All parameters describing the spatial structure - magnitude, orientation, elongation, eccentricity, 

were fixed by fitting procedure  between white noise recorded data and predicted data as shown for 

example in Fig. 7.  

To account for the direction selectivity we constructed the receptive field as being non-separable in 

the space-time domain. To accomplish this we multiplied the center and surround (ON and OFF 

subfields) with separate functions of time, which describe the time course of the receptive fields 

separately for ON and OFF regions. Because of the difference between time course of the center 

and of the surround regions, the space time receptive field is not separable, although the center and 

the surround components are individually separable.  
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)*,exp(**,)*,exp(**,, 22 τβτβτατα surcensurcensurcensurcensurcenD
t

−−−=  

The parameters α cen,sur control the latency of the response in the center and the surround regions, 

and β cen,sur affect the time of the reversal.  

The complete form of our space-time optimal kernel is thus (Fig. 8 and Fig. 9): 

surDsurDcenDcenDD txytxyxyt ** −=  

 

 

 

 

 

Fig. 7 Comparison of measured and estimated firing rates of one ON-OFF DSRGC using white noise stimulus and 

reverse correlation technique. The timing and magnitude of recorded data are accurately predicted by model.  
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Fig. 8 Temporal course of optimal kernel inferred from best fitting recorded data with predicted data. Both ON and 

OFF structures are comprised. With 60-80 ms before a spike is fired the correlation between stimulus and firing rate is 

maximum. Time course of receptive center shows how the transformation between ON and OFF is produced. 

 

 

 

 

Fig. 9 Receptive field of ON-OFF DSRGC. Left. The center surround spatial structure of the receptive field. As time 

increases the ON OFF regions change the sign. Right. Optimal kernel fitted to match the receptive field 

transformations. 
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2. Drifting grating bars stimulus  

 

To test the model prediction we used a novel stimulus consisting in drifting bars moving in 

different directions 45 degrees apart: 

Ixyt = A*cos(k*x*cos(θ)+k*y*sin(θ)-φ)*cos(ω*t) 

The intensity of the stimulus oscillates in both, space and time. At any fixed time, it oscillates in 

direction perpendicular to the orientation angle (θ) as a function of position, with wavelength 

2*π/k. At any fixed position, it oscillates in time with period 2* π / ω (Fig. 10). Amplitude of the 

signal intensity is controlled by parameter A, while drifting phase is given by angle φ. 

 

Fig. 10 Grating bars stimulus – space-time evolution. The x location of the dark and light bars moves to the right as the 

time progresses upward, representing the motion of the gratings 
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3. Linear Non-linear model to predict direction selectivity 

 

The kernel needed to describe direction selectivity of ON-OFF DSRGC visual response property 

was first extracted using white noise stimulus as described above. We then used grating bars 

stimulus and construct a complete model to predict the direction selectivity of the recorded cells.  

The optimal kernel produces an estimate of the firing rate that is a linear filter of the stimulus. In 

order to deal with some of the deficiencies of the linear prediction we added a nonlinear function 

(F(L)) of the linearly filtered stimulus (Fig. 11). F is a function of the linear filter value 

instantaneously evaluated at the time of the rate estimation. Once that F is bounded from above 

and below, the estimated firing rate will never be negative or unrealistically large. Static 

nonlinearities are used to introduce both firing thresholds and saturation into estimates of neural 

responses. The model of spike trains evoked by our stimulus has been constructed by using firing 

rate estimate of equation bellow, to drive a Poisson process of spike generation.  

 

∫
∞

−=
0

)()()( τττ tIDdtL xytxyt
; ))(()( 0 tLFrtrest +=  
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Fig. 11 Linear – Non-linear model to simulate spiking responses to stimuli. The integral of the stimulus Ixyt times the 

optimal kernel Dxyt is first computed as being the linear filter. The estimated firing rate is the background firing rate 

plus a nonlinear function of the output of the linear filter calculation. Finally, the estimated firing rate is used to drive a 

Poisson process to generate the predicted spike trains. Ultimately, the DSi for the predicted activity is indicating the 

predicted degree of direction selectivity.  

 

Fig.12 Comparison between predicted and recorded spike trains. 

 

Stimulus S(t) Linear Filter 

∫= xytxyt DIdtL τ)(

 

Static NL 

)(0 LFrrest +=

 

Spike Generator 

randtrest >∆  

      Response Spike Train 

 
DSi – index of selectivity 
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Fig. 12 show us an example of predicted spike trains which reproduce the recorded spike train of 

an ON-OFF DSRGC stimulated for 12 s with a drifting grating bars stimulus. In the next step we 

calculated the index of selectivity in order compare the degree of directional tuning for the 

recorded and predicted spike trains. Remarkably, as seen in Fig. 14, the degree of selectivity and 

the direction of selectivity were accurately predicted. The index of selectivity DSi for the predicted 

data was DSi =0.48 and the index of selectivity obtained for recorded ON-OFF DSRGC was 

DSi=0.49. The preferred direction was also accurately indicated by our model (90 degrees for the 

example). 

 

Fig. 13 Recorded and predicted firing rates. The lower plot is the rate predicted by integrating the product of stimulus 

intensity and a linear filter followed by a function applied over the linear filter. The upper plot show the recorded data.  
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Ultimately, the goal of this work is to present an accurate model for direction selectivity in retina 

based on receptive field characterization. The fact that firing rate of the predicted data did not 

match 100% the recorded data can be explained taking into account different aspects (i.e. higher 

order of nonlinearities, spike generator, etc) but our scope was to build a model which accurately 

can indicate the degree of direction selectivity and the direction of stimulus movement. 

 

 

Fig. 14 Predicted and recorded tuning curves and indexes of selectivity. 
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Discussions 

 

For a majority of cells, the spatial structure of the RF changes as a function of time; thus, these 

RFs can be effectively characterized only in the space-time domain. Thus, to describe how a 

neuron processes the visual image, one must characterize its RF in the joint space-time domain. 

Space-time separability means that the three-dimensional RF, RF(x,y,t), can be described as the 

product of  a spatial structure, S(x,y), and a temporal structure, D(t) (i.e., RF(x,y,t) = S(x,y) x D(t)). 

For these cells, traditional methods of RF mapping (Fig.1 and Fig.2), which average responses 

over time, will not provide an accurate map of the RF. This inseparability is clearly illustrated by 

examining the spatiotemporal RFs of directional selective cells (Fig. 9. a,b).  

The temporal sequence of RF profiles in Fig. 9 a presented in a movie sequence show RF 

subregions apparently moving in time. However, the spatial structure of the RF remains 

approximately the same as time progresses. This characteristic form of space-time inseparability 

has implications for understanding motion selectivity. 

Because the x-t profile provides an accurate description of the visual response properties 

of most DS cells, we describe the spatiotemporal RF structure by making linear predictions of the 

response of a DS cell to a conventional stimulus. Fig. 13 shows predicted responses of a ON-OFF 

DSRGC with a space-time inseparable RF. 
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The essence of this approach is to obtain a complete description of the input-output relationship of 

a neuron (i.e., its RF profile) by testing it with a rich, spatiotemporal stimulus (i.e. white noise). By 

extending the traditional description of visual RFs into the joint space-time (x-y-t) domain, 

research efforts related to study of RF dynamics have provided new information about mechanisms 

of visual information processing in the early visual system pathways. A prominent conclusion of 

these studies is that the RF must be treated as a spatiotemporal entity.  

In principle, white-noise analysis can provide a complete characterization of the behavior 

of any nonlinear system. However, it is worth noting that successful application of these 

models has thus far been limited to the study of neurons in the early portions of the visual pathway, 

for which response properties are well described in terms of first- and second-order correlations. 

For neurons in higher visual areas, the increasing complexity of RF organization is likely to 

demand the measurement of higher-order correlations and consequently, longer recording times. 

The method we applied take into account nonlinearities that are present in most neurons, such as 

spike threshold and saturation. These nonlinearities stepped beyond principles of standard linear 

systems analysis. 

Moreover, the characteristic parameters of the static nonlinear model advantageously describe the 

relative sensitivity of the neuron to different aspects of the stimulus. 

The model we implemented here tries to explain the direction selectivity based on a basic property 

of the direction selective ON-OFF retinal ganglion cells, namely, the space-time inseparability. We 

have shown how using white noise stimulus and reverse correlation, we inferred the optimal kernel 

and used it to build a linear filter in order to predict neuronal responses to new stimulus. This 

kernel has the particularity that it describes the RF structure in both, space and time together. To 

enhance the predicted degree of directional tuning we used static nonlinearities.   
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As our ultimate goal is to accurately predict the directional tuning, we have shown using this 

model and recorded data from ON-OFF DSRGC (using two different stimuli) that based on space-

time inseparability of the DSRGCs’ RF one can predict the preferred direction of a DS cell.  

The model must be improved further and tested using for example another important DS cell type 

in the retina, namely ON DSRGC. One next step is also to test if the degree of sharpening at the 

postsynaptic target of these cells can be described using this method. 
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