
TECHNISCHEUNIVERSIT�ATM �UNCHEN
INSTITUT F�UR INFORMATIKSonderforshungsbereih 342:Methoden und Werkzeuge f�ur die Nutzungparalleler Rehnerarhitekturen

A General Framework for Types inGraph RewritingBarbara K�onig

TUM-I0014SFB-Beriht Nr. 342/10/00 ASeptember 00

TUM{INFO{09-I0014-0/1.{FIAlle Rehte vorbehaltenNahdruk auh auszugsweise verboten2000 SFB 342 Methoden und Werkzeuge f�urdie Nutzung paralleler ArhitekturenAnforderungen an: Prof. Dr. A. BodeSpreher SFB 342Institut f�ur InformatikTehnishe Universit�at M�unhenD-80290 M�unhen, GermanyDruk: Fakult�at f�ur Informatik derTehnishen Universit�at M�unhen

A General Framework for Types in Graph Rewriting?Barbara K�onig (koenigb�in.tum.de)Fakult�at f�ur Informatik, Tehnishe Universit�at M�unhenAbstrat. A general framework for typing graph rewriting systems is presented: the ideais to statially derive a type graph from a given graph. In ontrast to the original graph, thetype graph is invariant under redution, but still ontains meaningful behaviour information.We present onditions, a type system for graph rewriting should satisfy, and a methodologyfor proving these onditions. In three ase studies it is shown how to inorporate existingtype systems (for the polyadi �-alulus and for a onurrent objet-oriented alulus) anda new type system into the general framework.1 IntrodutionIn the past, many formalisms for the spei�ation of onurrent and distributed systems haveemerged. Some of them are aimed at providing an enompassing theory: a very general frameworkin whih to desribe and reason about interonneted proesses. Examples are ation aluli [18℄,rewriting logi [16℄ and graph rewriting [3℄ (for a omparison see [4℄). They all ontain a method ofbuilding terms (or graphs) from basi elements and a method of deriving redution rules desribingthe dynami behaviour of these terms in an operational way.A general theory is useful, if onepts appearing in instanes of a theory an be generalised,yielding guidelines and relieving us of the burden to prove universal onepts for every single speialase. An example for suh a generalisation is the work presented for ation aluli in [15℄ where amethod for deriving a labelled transition semantis from a set of reation rules is presented. Weonentrate on graph rewriting (more spei�ally hypergraph rewriting) and attempt to generalisethe onept of type systems, where, in this ontext, a type may be a rather omplex struture.Compared to ation aluli1 and rewriting logi, graph rewriting di�ers in a signi�ant wayin that onnetions between omponents are desribed expliitly (by onneting them by edges)rather than impliitly (by referring to the same hannel name). We laim that this feature|together with the fat that it is easy to add an additional layer ontaining annotations and on-straints to a graph|an simplify the design of a type system and therefore the stati analysis ofa graph rewriting system.After introduing our model of graph rewriting and a method for annotating graphs, we willpresent a general framework for type systems where both|the expression to be typed and thetype itself|are hypergraphs and will show how to redue the proof obligations for instantiationsof the framework. We are interested in the following properties: orretness of a type system (if anexpression has a ertain type, then we an onlude that this expression has ertain properties),the subjet redution property (types are invariant under redution) and ompositionality (thetype of an expression an always be derived from the types of its subexpressions). Parts of theproofs of these properties an already be onduted for the general ase.We will then show that our framework is realisti by instantiating it to two well-known typesystems: a type system avoiding run-time errors in the polyadi �-alulus [17℄ and a type systemavoiding \message not understood"-errors in a onurrent objet-oriented setting. As a �nal exam-ple we model reeption and exeution of an untrustworthy applet and hek that no trustworthydata is ever modi�ed by the applet.Note that we do not present a method for automatially deriving a type system from a givenset of rewrite rules. In this paper we are rather interested in �xing the minimal properties a type? Researh supported by SFB 342 (subprojet A3) of the DFG.1 Here we mean ation aluli in their standard string notation. There is also a graph notation for ationaluli, see e.g. [7℄.

system should satisfy and in the development of a proof methodology whih simpli�es the task ofshowing that these properties are indeed met.2 Hypergraph Rewriting and Hypergraph AnnotationWe �rst de�ne some basi notions onerning hypergraphs (see also [6℄) and a method for indu-tively onstruting hypergraphs.De�nition 1. (Hypergraph)Let L be a �xed set of labels. A hypergraph H = (VH ; EH ; sH ; lH ; �H) onsists of a set of nodesVH , a set of edges EH , a onnetion mapping sH : EH ! V �H , an edge labelling lH : EH ! Land a string �H 2 V �H of external nodes. A hypergraph morphism � : H ! H 0 (onsisting of �V :VH ! VH0 and �E : EH ! EH0) maps nodes to nodes and edges to edges, preserving onnetionsand labelling, i.e.2 �V (sH(e)) = sH0 (�E(e)) and lH(e) = lH0(�E(e)). A strong morphism (denotedby the arrow �) additionally preserves the external nodes, i.e. �V (�H) = �H0 . We write H �= H 0(H is isomorphi to H 0) if there is a bijetive strong morphism from H to H 0.The arity of a hypergraph H is de�ned as ar(H) = j�H j while the arity of an edge e of H isar(e) = jsH(e)j. External nodes are the interfae of a hypergraph towards its environment and areused to attah hypergraphs.Notation: We all a hypergraph disrete, if its edge set is empty. By mwe denote a disrete graph of arity m 2 lN with m nodes where everynode is external (see Figure (a) to the right, external nodes are labelled(1), (2), : : : in their respetive order).The hypergraph H = [l℄n ontains exatly one edge e with label l wheresH(e) = �H , ar(e) = n and3VH = Set(�H) (see (b), nodes are orderedfrom left to right).
(a) ... (m)(1)(b) ...l

(1) (n)
The next step is to de�ne a method (�rst introdued in [10℄) for the annotation of hyper-graphs with lattie elements and to desribe how these annotations hange under morphisms.We use annotated hypergraphs as types where the annotations an be onsidered as extra typinginformation, therefore we use the terms annotated hypergraph and type graph as synonyms.De�nition 2. (Annotated Hypergraphs) Let A be a mapping assigning a lattie A(H) =(I;�) to every hypergraph and a funtion A� : A(H) ! A(H 0) to every morphism � : H ! H 0.We assume that A satis�es:A� Æ A = A�Æ AidH = idA(H) A�(a _ b) = A�(a) _ A�(b) A�(?) = ?where _ is the join-operation, a and b are two elements of the lattie A(H) and ? is its bottomelement.If a 2 A(H), then H [a℄ is alled an annotated hypergraph. And � : H [a℄ !A H 0[a0℄ is alledan A-morphism if � : H ! H 0 is a hypergraph morphism and A�(a) � a0. Furthermore H [a℄ andH 0[a0℄ are alled isomorphi if there is a strong bijetive A-morphism � with A�(a) = a0 betweenthem.Example: We onsider the following annotation mapping A: let (ffalse ; trueg;�) be the booleanlattie where false < true. We de�ne A(H) to be the set of all mappings from VH into ffalse ; trueg(whih yields a lattie with pointwise order). By hoosing an element of A(H) we �x a subset ofthe nodes. So let a : VH ! ffalse ; trueg be an element of A(H) and let � : H ! H 0, v0 2 VH .We de�ne: A�(a) = a0 where a0(v0) = W�(v)=v0 a(v). That is, if a node v with annotation true ismapped to a node v0 by �, the annotation of v0 will also be true.2 The appliation of �V to a string of nodes is de�ned pointwise.3 Set(~s) is the set of all elements of a string ~s

From the point of view of ategory theory, A is a funtor from the ategory of hypergraphs andhypergraph morphisms into the ategory of latties and join-morphisms (i.e. funtions preservingthe join operation of the lattie).We now introdue a method for attahing (annotated) hypergraphs with a onstrution planonsisting of disrete graph morphisms.De�nition 3. (Hypergraph Constrution) Let H1[a1℄; : : : ; Hn[an℄ be annotated hypergraphsand let �i : mi ! D; 1 � i � n be hypergraph morphisms where ar(Hi) = mi and D is disrete.Furthermore let �i :mi � Hi be the unique strong morphisms.For this onstrution we assume that the node and edge sets of H1, . . . , Hn and D are pairwisedisjoint. Furthermore let � be the smallest equivalene on their nodes satisfying �i(v) � �i(v) if1 � i � n, v 2 Vmi . The nodes of the onstruted graph are the equivalene lasses of �. We de�neD ni=1(Hi; �i) = ((VD [[ni=1 VHi)=�;[ni=1 EHi ; sH ; lH ; �H)where sH(e) = [v1℄� : : : [vk℄� if e 2 EHi and sHi(e) = v1 : : : vk. Furthermore lH(e) = lHi(e) ife 2 EHi . And we de�ne �H = [v1℄� : : : [vk℄� if �D = v1 : : : vk.If n = 0, the result of the onstrution is D itself.We onstrut embeddings � : D � H and �i : Hi ! H by mapping every node to its equivalenelass and every edge to itself. Then the onstrution of annotated graphs an be de�ned as follows:D ni=1(Hi[ai℄; �i) = � D ni=1(Hi; �i)�h_ni=1A�i(ai)iIn other words: we join all graphs D;H1; : : : ; Hn and fuse exatly the nodes whih are theimage of one and the same node in the mi, �D beomes the new sequene of external nodes.Lattie annotations are joined if the annotated nodes are merged. In terms of ategory theory,D ni=1(Hi[ai℄; �i) is the olimit of the �i and the �i regarded as A-morphisms (D and the miare annotated with the bottom element ?). The properties of the annotation mapping, given inDe�nition 2, are needed to show that D ni=1(Hi[ai℄; �i) is in fat a olimit.Proposition 1. Let H [a1℄; : : : ; Hn[an℄ be annotated hypergraphs with with mi = ar(Hi), let �i :mi[?℄ !A D[?℄ be disrete morphisms and let �i : mi[?℄ �A Hi[ai℄ be the unique strong mor-phisms.Then H [a℄ = D ni=1(Hi[ai℄; �i) (with morphisms �i, � of De�nition 3) is the olimit of the �iand the �i in the ategory of annotated hypergraphs and A-morphisms.Proof. We �rst have to show that �i Æ �i = � Æ �i holds: all v 2 Vmi satisfy �i(v) � �i(v)by de�nition by � is the equivalene de�ned in De�nition 3. Therefore �i(�i(v)) = [�i(v)℄� =[�i(v)℄� = �(�i(v)).Now we assume that there is another annotated hypergraph H 0[a0℄ and A-morphisms �0i :Hi[ai℄ !A H 0[a0℄ and �0 : D[?℄ �A H 0[a0℄ suh that �0i Æ �i = �0 Æ �i. In order to show that H [a℄is a olimit we need to onstrut a unique A-morphism : H [a℄ �A H 0[a0℄ suh that Æ �i = �0iand Æ � = �0.The nodes and edges of H [a℄ are de�ned in De�nition 3. The only possible de�nition of whihsatis�es the onditions above is to set (�i(e)) = �0i(e) and ([v℄�) = ��0(v) if v 2 VD�0i(v) if v 2 VHiIt is straightforward to show that is well-de�ned. It rests to prove that it is an A-morphism:A (a) = A (_ni=1A�i(ai)) =_ni=1A (A�i (ai)) =_ni=1A Æ�i(ai)=_ni=1A�0i(ai) �_ni=1 a0 = a0

Example: we present a small example for graph onstrution, where we ombine hypergraphsH1; H2 with the disrete morphisms �1 : 3 ! D and �2 : 2 ! D depited in Figure (A) below(ignore the grey nodes for the moment). The resulting hypergraph is H .
m2

m1

φ
1

ζ 2

(A)

ζ

(1)(1) (2)

(2)

D

H

H

φ
2

1

2

φ

η1

2η

(3)

B

(1) (2)

A

(1) (2)

C

BAC

(1)

(2) H

(1) (2) (3)

1

(1) (2)

C

(1) (2)

(3)

B

(1) (2)

A

(B)

The following points are noteworthy:{ the �rst external node of m1 and the �rst external node of m2 are mapped to the same nodein D, whih means that the respetive nodes of H1 and H2 are to be fused in H .{ the hypergraph H2 has dupliates in the sequene of its external nodes. This auses all nodesthat are to be fused with either the �rst or the seond node of H2 to be fused themselves,whih happens to the two nodes attahed to the A-edge.{ the disrete graph D ontains an internal and an external node whih are not in the range ofthe �i. This indiates that they are still present in the resulting graph H , but not attahed toany edge.If we assume an annotation mapping as in the example above (mapping the node set to ftrue; falseg)forH1 andH2 and shade all nodes that are labelled true with grey, then, in the annotation mappingfor H , exatly the nodes that are the image of at least one grey node will be again grey.We also use another, more intuitive notation for graph onstrution. Let�i : mi ! D, 1 � i � n. Then we depit D ni=1(Hi; �i) by drawing thehypergraph (VD ; fe1; : : : ; eng; sH ; lH ; �D) where sH(ei) = �i(�mi) andlH(ei) = Hi. ...H1 H2
(n)(1)

Example: we an draw n 2i=1(Hi; �i) where �1; �2 : n � n as in the piture above (note thatthe edges have dashed lines). Here we fuse the external nodes of H1 and H2 in their respetiveorder and denote the resulting graph by H12H2. If there is an edge with a dashed line labelledwith an edge [l℄n we rather draw it with a solid line and label it with l (see e.g. the seond �gurein setion 4.1).In our example above, the new notation looks as drawn in Figure (B).De�nition 4. (Hypergraph Rewriting) Let R be a set of pairs (L;R) (alled rewriting rules),where the left-hand side L and the right-hand side R are both hypergraphs of the same arity. Then!R is the smallest relation generated by the pairs of R and losed under hypergraph onstrution.In our approah we generate the same transition system as in the double-pushout approah tograph rewriting desribed in [2℄ (for details see [13℄).We need one more onept: a linear mapping whih is an indutively de�ned transformation,mapping hypergraphs to hypergraphs and adding annotation.

De�nition 5. (Linear Mapping) A funtion from hypergraphs to hypergraphs is alled arity-preserving if it preserves arity and isomorphism lasses of hypergraphs.Let t be an arity-preserving funtion that maps hypergraphs of the form [l℄n to annotatedhypergraphs. Then t an be extended to arbitrary hypergraphs by de�ning t(D ni=1([li℄ni ; �i)) =D ni=1(t([li℄ni); �i) and is then alled a linear mapping.A linear mapping satis�es t(D ni=1(Hi; �i)) �= D ni=1(t(Hi); �i) for arbitrary hypergraphs Hi.Note that the onstrution operator on the left-hand side of the equation works on ordinaryhypergraphs, while the one on the right-hand side operates on annotated hypergraphs.3 Stati Analysis and Type Systems for Graph RewritingHaving introdued all underlying notions we now speify the requirements for type systems. Weassume that there is a �xed set R of rewrite rules, an annotation mapping A, a prediate X onhypergraphs (representing the property we want to hek), a property Y on type graphs and arelation . with the following meaning: if H . T where H is a hypergraph and T a type graph(annotated wrt. to A), then H has type T . It is required that H and T have the same arity.We demand that . satis�es the following onditions: �rst, a type should ontain informationonerning the properties of a hypergraph, i.e. if a hypergraph has a type and Y holds for thistype, then we an be sure that the property X holds.H . T ^ Y (T)) X(H) (orretness) (1)Note that in the short version of this paper [11℄, we have omitted the prediate Y , sine it isalways true for the two examples presented there. But for some examples (see setion 4.3) it isonvenient to have possibility to perform an additional hek on the type graph.During redution, the type stays invariant.H . T ^ H !R H 0) H 0 . T (subjet redution property) (2)From (1) and (2) we an onlude that H .T , Y (T) and H !�R H 0 imply X(H 0), that is X holdsduring the entire redution.The strongA-morphisms introdued in De�nition 2 impose a preorder on type graphs. It shouldalways be possible to weaken the type with respet to that preorder.H . T ^ T �A T 0) H . T 0 (weakening) (3)We also demand that the type system is ompositional, i.e a graph has a type if and only if thistype an be obtained by typing its subgraphs and ombining these types. We an not sensiblydemand that the type of an expression is obtained by ombining the types of the subgraphs inexatly the same way the expression is onstruted, so we introdue a partial arity-preservingmapping f doing some post-proessing.8 i:Hi . Ti) D ni=1(Hi; �i) . f(D ni=1(Ti; �i))D ni=1(Hi; �i) . T) 9Ti: (Hi . Ti and f(D ni=1(Ti; �i))�A T) (ompositionality) (4)A last ondition|the existene of minimal types|may not be stritly needed for type systems,but type systems satisfying this ondition are muh easier to handle.H typable) 9T : (H . T ^ (H . T 0 () T �A T 0)) (minimal types) (5)Let us now assume that types are omputed from graphs in the following way: there is a linearmapping t, suh that H . f(t(H)), if f(t(H)) is de�ned, and all other types of H are derived bythe weakening rule, i.e. f(t(H)) is the minimal type of H .The meaning of the mappings t and f an be explained as follows: t is a transformation loalto edges, abstrating from irrelevant details and adding annotation information to a graph. The

mapping f on the other hand, is a global operation, merging or removing parts of a graph in orderto antiipate future redutions and thus ensure the subjet redution property. In the example insetion 4.1 f \folds" a graph into itself, hene the letter f . In order to obtain ompositionality, itis required that f an be applied arbitrarily often at any stage of type inferene, without losinginformation (see ondition (7) of Theorem 1).This early restrition to a somewhat more speialised type system is partly motivated by thefat that it allows a lassial rule-based formulation. By de�nition H . T holds if and only iff(t(H)) �A T . And this, in turn, holds if and only if H . T an be derived with the followingtyping rules:[l℄m . f(t([l℄m)) 8 i:Hi . TiD ni=1(Hi; �i) . f(D ni=1(Ti; �i)) H . T; T �A T 0H . T 0In this setting it is suÆient to prove some simpler onditions, espeially the proof of (2) anbe onduted loally.Theorem 1. Let A be a �xed annotation mapping, let f be an arity-preserving mapping as above,let t be a linear mapping, let X and Y be prediates on hypergraphs respetively type graphs andlet H . T if and only if f(t(H))�A T . Let us further assume that f and Y satisfy4T �A T 0 ^ Y (T 0)) Y (T) (6)f(D ni=1(Ti; �i)) �= f(D ni=1(f(Ti); �i)) (7)T �A T 0) f(T)�A f(T 0) (8)Then the relation . satis�es onditions (1){(5) if and only if it satis�esY (f(t(H)))) X(H) (9)(L;R) 2 R) f(t(R))�A f(t(L)) (10)Proof. Note that in the short version of this paper [11℄, we have omitted the prediate Y . This isequivalent to setting Y (T) = true for every type graph T .We �rst show that (9) and (10) imply (1){(5)(1) Let H . T and Y (T). From the de�nition of . it follows that f(t(H)) �A T and (6) impliesthat Y (f(t(H))) is satis�ed. With (9) we onlude that X(H) holds.(2) Let H . T and H !R H 0. From the de�nition of . it follows that f(t(H))�A T .The relation !R is de�ned via the losure of R under hypergraph onstrution, i.e. H �=D ni=1(Hi; �i), H 0 �= D ni=1(H 0i ; �i) and there is a rule (L;R) 2 R suh that Hj �= L andH 0j �= R. For all other i with i 6= j it holds that Hi �= H 0i .Sine f and t preserve isomorphism lasses, it holds that f(t(Hi)) �= f(t(H 0i)) and with (10)it follows that f(t(R))�A f(t(L)).Sine A-morphisms are preserved by graph onstrution (this an easily be shown via theharaterisation of graph onstrution as a olimit) it follows thatD ni=1(f(t(H 0i)); �i)�A D ni=1(f(t(Hi)); �i)Conditions (8) and (7) imply thatf(t(H 0)) �= f(D ni=1(f(t(H 0i)); �i))�A f(D ni=1(f(t(Hi)); �i)) �= f(t(H))�A TThus f(t(H 0))�A T and this implies H 0 . T .(3) Let H . T and T �A T 0. From the de�nition of . it follows that f(t(H)) �A T �A T 0 andtherefore H . T 0.4 In an equation of the form T �= T 0 we assume that T is de�ned if and only if T 0 is de�ned. And in aondition of the form T �A T 0 we assume that T is de�ned if T 0 is de�ned.

(4) We show that both diretions are satis�ed:{ we assume that there are type graphs Ti suh that Hi .Ti. It follows that f(t(Hi))�A Ti.Sine A-morphisms are preserved by graph onstrution (see above) and by the operationf (see ondition (8)) we onlude thatf(t(D ni=1(Hi; �i))) (7)�= f(D ni=1(f(t(Hi)); �i))�A f(D ni=1(Ti; �i))And therefore D ni=1(Hi; �i) . f(D ni=1(Ti; �i)).{ let D ni=1(Hi; �i) . T . From the de�nition of . and with (7) it follows thatf(D ni=1(f(t(Hi)); �i))�A TWe set Ti = f(t(Hi)) and Hi . Ti is also satis�ed.(5) Let H be typable, i.e. T = f(t(H)) is de�ned. We show that T is the minimal type.If H . T 0 for any type graph T 0 it follows from the de�nition of . that T �= f(t(H))�A T 0.If, on the other hand, T �= f(t(H))�A T 0, it follows immediately with (3) that H . T 0.We will now show that (1){(5) imply (9) and (10).(9) We assume that Y (f(t(H))) holds. Sine H .f(t(H)), ondition (1) implies that X(H) holds.(10) let (L;R) 2 R, that is L!R R and L.f(t(L)). Condition (2) implies that R.f(t(L)). Andfrom the de�nition of . it follows that f(t(R))�A f(t(L)).Note: it is a diret onsequene of ondition (7) above that the operator f is idempotent, i.e.f(f(T)) �= f(T). Just take the identity graph onstrution with n = 1 and �1 : n � n wheren = ar(T).The operation f an often be haraterised by a universal property with the intuitive notionthat f(T) is the \smallest" type graph (wrt. the preorder �A) for whih T �A f(T) and aproperty C hold. The morphism T �A f(T) an also be seen as the initial element in a ommaategory (T # F) where F is the obvious funtor from the ategory of hypergraphs satisfyingC (with all strong morphisms between them) into the ategory of all hypergraphs with strongmorphisms.Proposition 2. Let C be a property on type graphs suh that f(T) an be haraterised in thefollowing way: f(T) satis�es C, there is a morphism � : T �A f(T) and for every other morphism�0 : T !A T 0 where C(T 0) holds, there is a unique morphism : f(T)!A T 0 suh that Æ� = �0.Furthermore we demand that if there exists a morphism � : T !A T 0 suh that C(T 0) holds, thenf(T) is de�ned.Then if f(T) is de�ned, it is unique up to isomorphism. Furthermore f satis�es onditions (7)and (8).Proof. We �rst show that f(T) is unique up to isomorphism, if it exists. The property (also alleduniversal property) whih f(T) satis�es is depited in Figure 1(a). Let us assume that there isanother graph T whih also satis�es this property.Thus � : T �A f(T) and � : T �A T . Beause f(T) as well as T an take the role of T 0 inFigure 1(a), it follows that there exist morphisms �1 : T �A f(T) and �2 : f(T)�A T suh that�1 Æ � = � and �2 Æ � = � (see 1(b)).
T f(T), C(f(T))

1(a)

T’, C(T’)

9! φ

φ φ

φ

T f(T)

T

1

2

1(b)

T f(T), C(f(T))

T’ f(T’), C(f(T’))

1(c)

The universal property must also hold if we set T 0 = f(T) in Figure 1(a) and use the morphism� twie. We have two andidates for the unique morphism satisfying Æ� = �. One is the identityon f(T) and the other is �1 Æ �2. Sine is unique, it follows that �1 Æ �2 = id f(T), whih impliesthat �1 is surjetive and �2 is injetive.We an apply the same argument to T and obtain �2 Æ �1 = idT , whih implies that �2 issurjetive and �1 is injetive.So both morphisms, �1 and �2, are isomorphisms and we onlude that f(T) �= T .We next show that ondition (8) is satis�ed. If T !A T 0 and T 0 �A f(T 0) (beause of thede�nition of f), it follows that T !A f(T 0), and beause of the universal property for f(T), thisimplies the existene of a morphism f(T)!A f(T 0) (see Figure 1()).If T �A T 0 is a strong morphism, then f(T)�A f(T 0) is also strong.At last we prove that ondition (7) holds. Let T = D ni=1(Ti; �i) and T = D ni=1(f(Ti); �i). Weshow that there exists an isomorphism from f(T) to f(T).Sine T (together with morphisms �i and �) is the olimit of the �i and the �i, the square (a) inFigure 1(d) below ommutes and is a olimit. Let i : Ti �A f(Ti) be the A-morphisms satisfyingthe universal property. The i Æ �i are the only strong morphisms from mi into f(Ti). Let T(together with morphisms �0i and �) be the olimit generated by the �i and the i Æ �i.It is a standard property of olimits (see e.g. [2℄) that this implies the existene of a morphism : T �A T suh that Æ � = � and the square (b) in Figure 1(d) is again a olimit.Furthermore let T : T �A f(T) and T : T �A f(T) be the morphisms satisfying theuniversal property.
Ti

f(Ti)

ζi

i
φ

ψ
i

Tψ

mi D

T

T f(T)

f(T)
η

ψ

i

Tiη’ ψ

1(d)
φ

φ

(a)

(b)

Ti

f(Ti)

ζi

i
φ

ψ
i

Tψ

mi D

T

T f(T)

f(T)
η Ti ψ

ψ

φ

φ φ

iη’

’ ’’

1(e)

2
1ρ

ρSine T Æ : T �A f(T), it follows from the universal property of f(T) that there is a uniquemorphism �1 : f(T)�A f(T) suh that �1 Æ T = T Æ .It also holds that T Æ�i : Ti !A f(T) and the universal property of f(Ti) implies the existeneof a unique morphism �0 : f(Ti)!A f(T) suh that �0 Æ i = T Æ �i.Furthermore �0 : f(Ti) !A f(T) and T : T �A f(T). Thus the universal property of theolimit (b) implies that there exists a morphism �00 : T �A f(T) suh that �00 Æ �0i = �0 and�00 Æ = T (the last ondition implies that �00 is a strong morphism).At last, the morphism �00 : T �A f(T) and the universal property of f(T) imply that thereexists a unique morphism �2 : f(T)�A f(T) suh that �2 Æ T = �00.In the last step we will show that �1 and �2 are both bijetive and inverse to eah other byproving �1 Æ �2 = id f(T) and �2 Æ �1 = idf(T).{ we show �2 Æ �1 = idf(T). It holds that (�2 Æ �1) Æ T = �2 Æ T Æ = �00 Æ = T .Sine the morphism satisfying this property is unique (universal property of f(T)), and id f(T)is already satisfying it, we onlude that �2 Æ �1 = idf(T).{ we show that �1 Æ �0 = T Æ �0i. It holds that (�1 Æ �0) Æ i = �1 Æ T Æ �i = T Æ Æ �i =(T Æ �0i) Æ i. A morphism satisfying this property is unique (universal property of f(Ti)) andthus �1 Æ �0 = T Æ �0i.{ we show that �1 Æ �00 = T . It holds that (�1 Æ �00) Æ = �1 Æ T = T Æ and (�1 Æ �00) Æ �0i =�1 Æ �0 = T Æ �0i. A morphism satisfying this property is unique (universal property of theolimit (b)) and thus �1 Æ �00 = T .

{ �nally we show that �1 Æ �2 = idf(T). It holds that (�1 Æ �2) Æ T = �1 Æ �00 = T . From theuniversal property of f(T) we know that a morphism satisfying this property is unique andid f(T) is already satisfying it. So it follows that �1 Æ �2 = id f(T).It is left to show that f(T) is de�ned if and only if f(T) is de�ned: let f(T) be de�ned, then thereis, aording to Figure 1(d), a morphism T Æ : T �A f(T), i.e. there is a morphism from Tinto a hypergraph satisfying C. The preonditions then imply that f(T) is de�ned.If, on the other hand, f(T) is de�ned, then there are morphisms T Æ �i : Ti !A f(T), whihimplies that the f(Ti) and therefore also T are de�ned. It follows that there exists a morphism�00 : T �A f(T) (see Figure 1(e)) where f(T) satis�es C and therefore f(T) is de�ned.4 Case Studies4.1 A Type System for the Polyadi �-CalulusWe present a graph rewriting semantis for the asynhronous polyadi �-alulus [17℄ withouthoie and mathing, already introdued in [12℄. Di�erent ways of enoding the �-alulus intograph rewriting an be found in [21, 5, 4℄.We apply the theory presented in setion 3, introdue a type system avoiding runtime errorsprodued by mismathing arities and show that it satis�es the onditions of Theorem 1. Afterwardswe show that a graph has a type if and only if the orresponding �-alulus proess has a type ina standard type system with in�nite regular trees.De�nition 6. (Proess Graphs) A proess graph P is indutively de�ned as follows: P is ahypergraph with a dupliate-free string of external nodes. Furthermore eah edge e is either labelledwith (k; n)Q where Q is again a proess graph, 1 � n � ar(Q) and 1 � k � ar(e) = ar(Q)�n (e isa proess waiting for a message with n ports arriving at its k-th node), with !Q where ar(Q) = ar(e)(e is a proess whih an repliate itself) or with the onstant M (e is a message sent to its lastnode).The redution relation is generated by the rules in (A) (repliation) and by rule (B) (reeptionof a message by a proess) and is losed under isomorphism and graph onstrution.
(A)

(m)(m) (1)(1) Q!Q !Q (B) if n = r(m+ 1)(m) (m+ r)(k)(1) QM(k; n)QA proess graph may ontain a bad redex, if it ontains a subgraph orresponding to the left-hand side of rule (B) with n 6= r, so we de�ne the prediate X as follows: X(P) if and only if Pdoes not ontain a bad redex.We now propose a type system for proess graphs by de�ning the mappings t and f . (Notethat in this ase, the type graphs are trivially annotated by ?, and so we omit the annotationmapping.)The linear t mapping is de�ned on the hyperedges as follows:t([M ℄n) = [3℄n (3 is a new edge label), t([!Q℄m) = t(Q) andt([(k; n)Q℄m) is de�ned as in the image to the right (in the notationexplained after De�nition 3). It is only de�ned if n+m = ar(Q).t(Q)
(1) (k) (m)t([(k; n)Q℄m) =

3
nThe mapping f is de�ned as in Proposition 2 where C is de�ned as follows5C(T) () 8 e1; e2 2 ET : (bsT (e1)ar(e1) = bsT (e2)ar(e2)) e1 = e2)5 bsi extrats the i-th element of a string s.

The linear mapping t extrats the ommuniation struture from a proess graph, i.e. an edgeof the form [3℄n indiates that its nodes (exept the last) might be sent or reeived via its lastnode. Then f makes sure that the arity of the arriving message mathes the expeted arity andthat nodes that might get fused during redution are already fused in f(t(H)).The ondition that we want to hek is simply that f(t(H)) is de�ned. Thus we set Y (T) = truefor every type graph T .Proposition 3. The trivial annotation mapping A (where every lattie onsists of a single element?), the mappings f and t and the prediates X and Y de�ned above satisfy onditions (6){(10) ofTheorem 1. Thus if P . T and Y (T), then P will never produe a bad redex during redution.Proof. We show that A, f , t, X , Y satisfy the onditions of Theorem 1.(6) This holds obviously sine Y (T) = true for every graph T .(7)&(8) We have to show that the onditions of Proposition 2 are satis�ed. The universal propertyholds by de�nition and it is left to show that f(T) is de�ned whenever there is a morphism� : T ! T 0 with C(T 0).We de�ne a ondition on equivalenes � on the nodes and edges of T :(bsT (e)ar(e) � bsT (e0)ar(e0)) e � e0) ^ (e � e0) 8 j: bsT (e)j � bsT (e0)j)^ (e � e0) lT (e) = lT (e0)) (11)That is, a hypergraph fatored by � is well-de�ned (sine � is a ongruene) and it satis�esC.It is easy to hek that the intersetion of two equivalenes satisfying this ondition, againsatis�es the ondition. So the smallest equivalene � satisfying (11) does either not exist (ifthere are no equivalenes satisfying (11)), or it is the intersetion of all equivalenes satisfyingthe ondition.Now let the equivalene �0 on T be de�ned in the following way: e �0 e0 () �(e) = �(e0) andv �0 v0 () �(v) = �(v0). It is straightforward to hek that �0 also satis�es ondition (11),therefore � exists and ���0.So we an de�ne f(T) = T=�, i.e. T fatored by the equivalene �. The morphism : T �f(T) maps eah node or edge to its equivalene lass and obviously f(T) satis�es ondition C.We still have to show that the universal property holds: let � : T ! T 0 again be a morphismsuh that C(T 0) holds. We de�ne an equivalene �0 as above. A morphism �0 : f(T)! T 0 anbe de�ned as follows �0([v℄�) = �(v) and �0([e℄�) = �(e). It is well de�ned beause of ���0and it satis�es �0 Æ = �.It is left to show that �0 is unique: we assume that there is another morphism �00 : f(T)! T 0suh that �00 Æ = �. Then �00([v℄�) = �00((v)) = �(v) = �0([v℄�). The same is true for theedges and so �0 and �00 oinide.(9) Let Y (f(t(H))) hold, whih means that f(t(H)) is de�ned. Let us assume that H ontains abad redex Red , whih implies that t(H) ontains t(Red) whih is depited in the �gure below(n 6= r).
... (k)

t(Q)

(m)(1) n

e e’

(m+1) (m+r)Furthermore f(t(H)) is de�ned only if f(t(Red)) is de�ned. We show that f(t(Red)) is un-de�ned. The two edges to the right of t(Red) are denoted by e respetively e0. We assumethat there is a morphism : t(Red) �A f(t(Red)). It holds that bsf(t(Red))((e))ar(e) = (bst(Red)(e)ar(e)) = (bst(Red)(e0)ar(e)) = bsf(t(Red))((e0))ar(e) and ondition C im-plies that (e) = (e0), but sine they have di�erent arities, this an not be the ase.(10) We show the loal subjet redution property for both rules (or in the ase of (A) for bothdiretions)

(A) We �rst onsider the diretion from right to left, i.e. L = Q2[!Q℄m and R = [!Q℄m. Weassume that f(t(Q2[!Q℄m)) is de�ned and sine f(t(Q2[!Q℄m)) �= f(f(t(Q))2t([!Q℄m)) weknow that f(t(Q)) is also de�ned and there exists a strong A-morphism from f(t(Q)) intof(t(Q2[!Q℄m)).Conerning the diretion from left to right, i.e. L = [!Q℄m and R = Q2[!Q℄m: we assumethat f(t(L)) �= f(t(Q)) is de�ned and therefore f(t(Q))2f(t(Q)) �= f(t(Q))2f(t([!Q℄m))is de�ned. Sine there is an A-morphism from this graph into f(t(Q)) �= f(t(L)), it followswith Proposition 2, that f(t(R)) �= f(f(t(Q))2f(t([!Q℄m))) is de�ned and that f(t(R))�Af(f(t(L))) �= f(t(L)).(B) In this ase f(t(R)) �= f(t(Q)) and t(L) is the type graph depited above in the proofof ondition (9), but in this ase r = n. With ondition (7) and the graph onstrutionoperation we an transform f(t(L)) as shown in the �gure below.
... ...

(1)

= f(f()

...... (k)

t(Q)

(m)(1) n (m+1) (m+n)

)

= f(

...... (k)

t(Q)

(m)(1) n (m+k)(m+1)... ...

... ... (2n+1)

) = f(

...... (k) (m)(1) (m+k)(m+1)...

)

...... (k) (m)(1) n (m+k)(m+1)... ...

...(2,n+2) (n+1,2n+1)f(t(Q)) f(t(Q))

(n+2)(n+1)(1) (2)

And from the fat that A-morphisms are preserved by graph onstrution, from ondi-tion (8) and from f(t(Q)) �= f(f(t(Q))), it follows that f(t(R)) �= f(t(Q))�A f(t(L)).We now ompare our type system to a standard type system of the �-alulus. An enoding ofproess graphs into the asynhronous �-alulus (for the operational semantis of the �-alulussee appendix A) an be de�ned as follows.De�nition 7. (Enoding) Let P be a proess graph, let N be the name set of the �-alulus andlet ~t 2 N � suh that j~tj = ar(P). We de�ne �~t(P) indutively as follows:�a1:::an+1([M ℄n+1) = an+1ha1; : : : ; ani �~t([!Q℄m) =!�~t(Q)�a1:::am([(k; n)Q℄m) = ak(x1; : : : ; xn):�a1:::amx1:::xn(Q)�~t(D ni=1(Pi; �i)) = (� �(VDnSet(�D)))(��(�1(�m1))(P1) j : : : j ��(�n(�mn))(Pn))where �i :mi ! D, 1 � i � n and � : VD ! N is a mapping suh that � restrited to VDnSet(�D)is injetive, �(VDnSet(�D))\�(Set(�D)) = ; and �(�D) = ~t. Furthermore the x1; : : : ; xn 2 N arefresh names.The enoding of a disrete graph is inluded in the last ase, if we set n = 0 and assume thatthe empty parallel omposition yields the nil proess 0.An operational orrespondene an be stated as follows:Proposition 4. Let p be an arbitrary expression in the asynhronous polyadi �-alulus withoutsummation. Then there exists a proess graph P and a dupliate-free string ~t 2 N � suh that�~t(P) � p. Furthermore for proess graphs P; P 0 and for every dupliate-free string ~t 2 N � withj~tj = ar(P) = ar(P 0) it is true that:� P �= P 0 implies �~t(P) � �~t(P 0) � P !� P 0 implies �~t(P)!� �~t(P)� �~t(P)!� p 6= wrong implies that P !� Q and �~t(Q) � p for some proess graph Q.

� �~t(P)!� wrong if and only if P !� P 0 for some proess graph P 0 ontaining a bad redexProof. We do not show this proposition here, but refer the reader to [12℄.We now ompare our type system with a standard type system of the �-alulus: a type tree isa potentially in�nite ordered tree with only �nitely many non-isomorphi subtrees. A type tree isrepresented by the tuple [t1; : : : ; tn℄ where t1; : : : ; tn are again type trees, the hildren of the root.A type assignment � = x1 : t1; : : : ; xn : tn assigns names to type trees where � (xi) = ti. Therules of the type system are simpli�ed versions of the ones from [19℄, obtained by removing thesubtyping annotations.� ` 0 � ` p � ` q� ` p j q � ` p� ` ! p �; a : t ` p� ` (�a)p� (a) = [t1; : : : ; tm℄ �; x1 : t1; : : : ; xm : tm ` p� ` a(x1; : : : ; xm):p � (a) = [� (a1) : : : ; � (am)℄� ` aha1; : : : ; amiWe will now show that if a proess graph has a type, then its enoding has a type in the�-alulus type system and vie versa. In order to express this we �rst desribe the unfolding of atype graph into type trees.Proposition 5. Let T be a type graph and let � be a mapping from VT into the set of type trees.The mapping � is alled onsistent, if it satis�es for every edge e 2 ET : sT (e) = v1 : : : vnv)�(v) = [�(v1); : : : ; �(vn)℄. Every type graph of the form f(t(P)) has suh a onsistent mapping.Let P . T with n = ar(T) and let � be a onsistent mapping for T . Then it holds for everydupliate-free string ~t of length n that b~t1 : �(b�T 1); : : : ; b~tn : �(b�T n) ` �~t(P).Now let � ` �~t(P). Then there exists a type graph T suh that P .T and a onsistent mapping� suh that for every 1 � i � j~tj it holds that �(b�T i) = � (b~ti).Proof. We �rst show two lemmata:Lemma A: let � : T ! T 0 and let �0 be a mapping whih is onsistent for T 0. We de�ne�(v) = �0(�(v)) for every v 2 VT and laim that � is onsistent for T .Proof: let e 2 ET with sT (e) = v1 : : : vnv. Then�(v) = �0(�(v)) = �0(�(bsT (e)n+1)) = �0(bsT 0(�(e))n+1)= [�0(bsT 0(�(e))1); : : : ; �0(bsT 0(�(e))n)℄= [�0(�(bsT (e)1)); : : : ; �0(�(bsT (e)n))℄ = [�(bsT (e)1); : : : ; �(bsT (e)n)℄= [�(v1); : : : ; �(vn)℄Lemma B: let T be a type graph whih has a onsistent mapping �. Then it holds that f(T) isde�ned and there is a onsistent mapping �0 for f(T) suh that �0(b�f(T)i) = �(b�T i).Proof: we de�ne an equivalene u on the nodes and edges of T in the following way: e1 ue2 () �(bsT (e1)ar(e1)) = �(bsT (e2)ar(e2)) and v1 u v2 if and only if v1 = v2 or there areedges e1; e2 and an index i suh that e1 u e2 and bsT (ej)i = vj , j 2 f1; 2g.Fatoring T by u yields a well-de�ned hypergraph T=u.We will prove that v1 u v2 implies �(v1) = �(v2): if v1 u v2 then either v1 = v2 and the laimis obviously true, or there are edges e1; e2 suh that e1 u e2 and bsT (ej)i = vj , j 2 f1; 2g.e1 u e2 implies that �(bsT (e1)ar(e1)) = �(bsT (e2)ar(e2)). Sine � is onsistent it holds that�(v1) = �(bsT (e1)i) = �(bsT (e2)i) = �(v2).We de�ne a onsistent mapping �u for T= u: let �u([v℄u) = �(v). From what we havejust shown, it follows that �u is well-de�ned and it is left to show that it is onsistent:let sT=u([e℄u) = [v1℄u : : : [vn℄u[vn+1℄u suh that vj = bsT (e)j . It follows that �u([vn+1℄u) =�(vn+1) = [�(v1); : : : ; �(vn)℄ = [�u([v1℄u); : : : ; �u([vn℄u)℄ and therefore �u is onsistent.We next show that T= u satis�es ondition C: let [e1℄u and [e2℄u be two edges suh thatbsT=u([e1℄u)ar(e1) = bsT=u([e2℄u)ar(e2). Then [bsT (e1)ar(e1)℄u = [bsT (e2)ar(e2)℄u and also

bsT (e1)ar(e1) u bsT (e2)ar(e2). Therefore �(bsT (e1)ar(e1)) = �(bsT (e2)ar(e2)) and from thede�nition of u it follows that e1 u e2 and thus [e1℄u = [e2℄u.Now let � : T � T=u a morphism whih maps eah node or edge to its equivalene lass.Sine C(T=u) holds, it follows from Proposition 2 and the de�nition of f , that f(T) is de�ned,and there are morphisms : T � f(T) and �0 : f(T)� T=u suh that �0 Æ = �.With Lemma A, we an derive a onsistent mapping �0 for f(T) by de�ning �0(v0) = �u(�0(v0)).And it holds that�(b�T i) = �u([b�T i℄u) = �u(b�T=ui) = �u(�0(b�f(T)i)) = �0(b�f(T)i)We �rst show that f(t(P)) has a onsistent mapping �: we know that f(t(P)) satis�es ondition C.So we an de�ne: for any node v of T for whih there is no edge e 2 VT with bsT (e)ar(e) = v, let�(v) be an arbitrary type tree. For all other nodes v there is a unique edge e with bsT (e)ar(e) = vand we set �(v) = [�(v1); : : : ; �(vn)℄ if sT (e) = v1 : : : vnv. The de�nition has a smallest �xed-point,whih is then our mapping �.We an now prove the two main parts of the proposition.Type graphs ! �-alulus: let P .T whih implies that there is a morphism � : f(t(P))� T .Furthermore let �0 be a mapping whih is onsistent for T .Now we an de�ne a mapping � on the nodes of f(t(P)) with �(v) = �0(�(v)). From Lemma Ait follows that � is also onsistent and furthermore � and �0 oinide on the external nodes.So it is suÆient to show our laim for T = f(t(P)).We will do so by indution on P but with a stronger indution hypothesis: let ~t be a stringof names (possibly with dupliates), � be a onsistent mapping for T = f(t(P)) suh thatb~ti = b~tj implies �(b�i) = �(b�j) (we will say that � and ~t are ompatible). Then it holdsthat b~t1 : �(b�T 1); : : : ; b~tn : �(b�T n) ` �~t(P).From this we an derive the original laim, sine there we demand that ~t is dupliate-free.{ P = [M ℄n+1, that is T = f(t(P)) = [3℄n+1 and let � be a onsistent mapping for T andlet ~t be a string of names, ompatible with �.The type assignment � = b~ti : �(b�T i) is well-de�ned beause of the ompatibil-ity of � and ~t. And sine � is onsistent, it holds that � (b~tn+1) = �(b�T n+1) =[�(b�T 1); : : : ; �(b�T n)℄ = [� (b~t1); : : : ; � (b~tn)℄.Therefore the typing rules for the �-alulus imply that � ` b~tn+1hb~t1; : : : ; b~tni =�~t(P).{ P = [!Q℄m, that is T = f(t(P)) = f(t(Q)). Let � be a onsistent mapping for T and let ~tbe ompatible with �. From the indution hypothesis it follows that � = b~ti : �(b�T i) `�~t(Q). Then the typing rules for the �-alulus imply that � `!�~t(Q) = �~t(P).{ P = [(k; n)Q℄m, that is T = f(t(P)) has the form depited in the �gure below.
(1) (k) n(m)

f(t(Q)))f(Now let � be a onsistent mapping for T and let ~t be ompatible with �. Let � : f(t(Q))!T be the embedding of T 0 = f(t(Q)) into T and we de�ne a mapping �0 on the nodes off(t(Q)) suh that �0(v) = �(�(v)). Aording to Lemma A, �0 is onsistent.Let ~s = ~tx1 : : : xn, where x1; : : : ; xn are fresh names. Sine � and ~t are ompatible, �0 and~s are also ompatible.So it follows with the indution hypothesis that � = b~si : �0(b�T 0i) ` �~s(Q).Let vi = bsT (e)i, where e 2 ET is the unique edge satisfying bsT (e)ar(e) = b�T k. Itholds that vi = �(b�T 0m+i). Furthermore�(b~tk) = �(b~sk) = �0(b�T 0k) = �(b�T k) = [�(v1); : : : ; �(vn)℄= [�(�(b�T 0m+1)); : : : ; �(�(b�T 0m+n))℄= [�(b~sm+1); : : : ; �(b~sm+n)℄ = [�(x1); : : : ; �(xn)℄

This implies that b~ti : �0(b�T 0i) ` b~tk(x1; : : : ; xn):�~s(Q). And sine �0(b�T 0i) =�(b�T i) for 1 � i � m, it holds that b~ti : �(b�T i) ` �~t(P).{ P = D ni=1(Pi; �i), i.e. T = f(t(P)) �= f(D ni=1(f(t(Pi)); �i)).Let T = D ni=1(f(t(Pi)); �i), let �i : f(t(Pi)) ! T and � : D ! T be the standardembeddings generated by graph onstrution and let : T � T be the morphism satisfyingthe universal property of f(T) = T . We also set Ti = f(t(Pi)).We de�ne mappings �i on the Ti by setting �i(v) = �((�i(v))). Aording to Lemma A,the �i are onsistent.We now prove a property onerning � and �: let � : VD ! N be the funtion de�ned inthe enoding (De�nition 7). We show that �(v) = �(v0) implies �((�(v))) = �((�(v0))).If �(v) = �(v0), then either v = v0 and the laim holds obviously, or there are indiesi; j suh that v = b�Di, v0 = b�Dj and b~ti = b~tj . Then it follows with the fat that� and ~t are ompatible, that �((�(v))) = �((�(b�Di))) = �(b�T i) = �(b�T j) =�((�(b�Dj))) = �((�(v0))).We show that �i and �(�i(�mi)) are ompatible: let b�(�i(�mi))j = b�(�i(�mi))k. Thisimplies that �(�i(b�mij)) = �(�i(b�mik)) and it follows that�i(b�Tij) = �((�i(b�Tij))) = �((�(�i(b�mij)))) = �((�(�i(b�mik))))= �((�i(b�Tik))) = �i(b�Tik)Then the indution hypothesis implies that�i = b�(�i(�mi))j : �i(b�Tij) ` ��(�i(�mi))(Pi)Now let � be a type assignment, ontaining all assignments of the form �(v) : �((�(v)))for all v 2 VD. Beause of (�(v) = �(v0)) �((�(v))) = �((�(v0)))) shown above itfollows that � is well-de�ned and sine �i(b�Tij) = �((�(�i(�mi)))), it follows that �an be obtained from any �i by adding extra type assignments. Thus it follows from theweakening rule for the �-alulus type system, that � ` ��(�i(�mi))(Pi). And with the rulefor parallel omposition it follows that� ` ��(�1(�m1))(P1) j : : : j ��(�n(�mn))(Pn)Now let � be a type assignment ontaining all assignments of the form �(v) : �((�(v)))for v 2 Set(�D). With the rule for hiding of the �-alulus type system, it follows that� ` (� �(VDnSet(�D)))(��(�i(�mi))(P1) j : : : j ��(�i(�mi))(Pn)) = �~t(P)It is left to show that � = b~ti : �(b�T i). This is quite straightforward, sine �(v),v 2 Set(�D) is exatly b~ti if v = b�Di, and in this ase �((�(v))) = �((�(b�Di))) =�(b�T i).�-alulus ! type graphs: now let � ` �~t(P), where ~t is a dupliate-free sequene of names.We show that T = f(t(P)) is de�ned and that there is a mapping � onsistent with T , suhthat �(b�T i) = � (b~ti). We proeed by indution on P .{ P = [M ℄n+1, whih implies that �~t(P) = b~tn+1hb~t1; : : : ; b~tni.Sine � ` p, it holds that � (b~tn+1) = [� (b~t1); : : : ; � (b~tn)℄.We set T = t(P) = [3℄n+1 and furthermore we de�ne a mapping � on the nodes of Twith �(b�T i) = � (b~ti). � is obviously onsistent, and it follows with Lemma B thatT = f(T) = f(t(P)) is de�ned and has a onsistent mapping � suh that �(b�T i) =�(b�T i) = � (b~ti).{ P = [!Q℄m, whih implies that �~t(P) =!�~t(Q).The typing rules of the �-alulus imply that � ` �~t(Q). Then it follows from the indutionhypothesis that T = f(t(Q)) is de�ned, there is a mapping � on the nodes of T whih isonsistent and �(b�T i) = � (b~ti).Sine T = f(t(P)) = f(t(Q)) = T , T is also de�ned and we an use � = � as a onsistentmapping with the appropriate properties.

{ P = [(k; n)Q℄m, whih implies that �~t(P) = b~tk(x1; : : : ; xn):�~tx1:::xn(Q).It follows from the typing rules of the �-alulus that �; x1 : t1; : : : ; xn : tn ` �~tx1:::xn(Q)where � (b~tk) = [t1; : : : ; tn℄. Then the indution hypothesis implies that T = f(t(Q)) isde�ned and that there is a onsistent mapping � for T suh that �(b�T i) = � (b~ti) if1 � i � m and �(b�T m+i) = ti if 1 � i � n.Now let T̂ be de�ned as in the �gure below.
(1) (k) n(m)

f(t(Q)) eWe know that f(T̂) = f(t(P)) if both are de�ned. In order to show that f(T̂) is de�ned,we onstrut a onsistent mapping �̂: let � : T ! T̂ be the standard embedding of T intoT̂ , � is bijetive on the node sets. So we an de�ne �̂(�(v)) = �(v). The mapping �̂ isonsistent for all edges of T = f(t(Q)), so it suÆes to show that �̂ is onsistent for thenew edge e: sT̂ (e) = �(b�T m+1) : : : �(b�T m+n)�(b�T k) and therefore�̂(�(b�T k)) = �(b�T k) = � (b~tk) = [t1; : : : ; tn℄= [�(b�T m+1); : : : ; �(b�T m+n)℄= [�̂(�(b�T m+1)); : : : ; �̂(�(b�T m+n))℄Thus �̂ is onsistent for T̂ and with Lemma B it follows that T = f(T̂) is de�ned and thatthere is a onsistent mapping � for T suh that �(b�T i) = �̂(b�T̂ i) = �(b�T i) = � (b~ti).{ P = D ni=1(Pi; �i) whih implies that�~t(P) = (� �(VDnSet(�D)))(��(�1(�m1))(P1) j : : : j ��(�n(�mn))(Pn))and � : VD ! N and �(�D) = ~t. (Note that this ase also overs disrete graphs, i.e. thease where n = 0.)It follows from the typing rules of the �-alulus that there is a type assignment �, whihis exatly � enrihed by type assignments of the form �(v) : tv for all v 2 VDnSet(�D)and that � ` ��(�i(�mi))(Pi).The indution hypothesis thus implies that all Ti = f(t(Pi)) are de�ned and that thereare mappings �i onsistent with Ti suh that �i(b�Tij) = �(b�(�i(�mi))j).Now we de�ne T̂ = D ni=1(Ti; �i). We know that T = f(t(P)) is de�ned if and only if f(T̂)is de�ned. In order to show this, we de�ne a onsistent mapping �̂ for T̂ . We assume that�i : Ti ! T̂ , � : D � T̂ are the standard embeddings generated by the graph onstrutionand we de�ne �̂ in the following way:�̂(v̂) = ��i(v) if v̂ = �i(v)�(�(v)) = tv if v̂ = �(v)We �rst have to show that �̂ is well-de�ned: let �i : mi � Ti be the unique strongmorphisms from mi into Ti. When we restrit all morphisms to the node sets, then the(�i)V and �V are still the olimit of the (�i)V and the (�i)V . We show that �Æ�Æ (�i)V =�i Æ (�i)V : �(�(�i(b�mij))) = �i(b�Tij) = �i(�i(b�mij))Beause of the olimit property, there must be a unique mapping �0 from the nodes of T̂into the set of type trees suh that �0 Æ (�i)V = �i and �0 Æ �V = � Æ �. So �0 is exatlythe � de�ned above.It is left to show that �̂ is onsistent with T̂ : let e be one of the edges of T̂ and it followsthat there must be a e0 2 ETi suh that e = �i(e0). If sT̂ (e) = v1 : : : vn+1, it follows that

vj = �i(bsTi(e0)j). Thus�̂(vn+1) = �̂(�i(bsTi(e0)n+1)) = �i(bsTi(e0)n+1)= [�i(bsTi(e0)1); : : : ; �i(bsTi(e0)n)℄= [�̂(�i(bsTi(e0)1)); : : : ; �̂(�i(bsTi(e0)n))℄ = [�̂(v1); : : : ; �̂(vn)℄Lemma B implies that T = f(T̂) = f(t(P)) is de�ned and that there is a mapping � on-sistent with T suh that �(b�T i) = �̂(b�T̂ i). Thus it holds that �(b�T i) = �̂(b�T̂ i) =�̂(�(b�Di)) = �(�(b�Di)) = �(b~ti).Example: as an example, look at the proess graph P depited in Figure (1) below. It onsistsof two edges, both able to repliate themselves, where the edge on the left-hand side waits forinoming messages on its �rst and only node. Eah message should be equipped with two nodes,to the �rst of whih another message is sent. The edge on the right-hand side produes arbitrarilymany messages to be reeived by the edge on the left-hand side. Note that this proess graphhas an in�nite redution sequene (not even ounting the repliation steps) and if we denote theinnermost proess graph of arity 3 in the left-hand side edge by P 0, then P !� P2P 02 : : :2P 0.
(1)

(1)

(1) (3)(2)

(1) (3)(2)

(1)

!

(2) (3)
c

(1,2)

!

a b

M

M

If we set ~t = ab, its �-alulus ounterpart �~t(P) = ! a(x; y):xhai j ! ahb; i = p, whih reduesto ! a(x; y):xhai j ! ahb; i j bhi j : : : j bhi. The proess p an be typed under the type assignment� = a : t; b : [t℄; : t0 where t0 is an arbitrary type tree and t is the solution of the �xed-pointequation t = [[t℄; t0℄. Note that the in�nity of the tree is not aused by repliation, but rather bythe fat that the left-hand side proess emits its own name as the ontent of a message.Now, omputing t(P) yields the type graph depited in Figure (D) below, where the edge inthe middle is generated by applying t to the proess abstration [(1; 2)Q℄1, and the other twoedges are generated by t([M ℄2) respetively t([M ℄3). Computing f(t(P)) fuses the two rightmostedges. We indiate a onsistent mapping � by mapping the nodes to appropriate type trees. Thisonsistent mapping orresponds exatly to the type assignment � given above.
(1) (2) (3)

f

(1) (2) (3)
σ:

(2)
t [t] t’

4.2 Conurrent Objet-Oriented ProgrammingWe now show how to model a onurrent objet-oriented system by graph rewriting and thenpresent a type system. In our model, several objets may ompete in order to reeive a message,and several messages might be waiting at the same objet. Typially, type systems in objet-oriented programming are there to ensure that an objet that reeives a message is able to proessit.

De�nition 8. (Conurrent objet-oriented rewrite system) Let (C; <:) be a lattie of lasseswith a top lass6 > and a bottom lass ?. We denote lasses by the letters A;B;C; : : :. Further-more let M be a set of method names. The funtion ar : C [M ! lNnf0g assigns an arity to everylass or method name.An objet graph G is a hypergraph with a dupliate-free string of external nodes, labelled withelements of Cnf?g [M where for every edge e it holds that ar(e) = ar(lG(e)). A onurrentobjet-oriented rewrite system (speifying the semantis) onsists of a set of rules R satisfying thefollowing onditions:{ the left-hand side of a rule always has the form shown in Figure (C) below (where A 2 Cnf?g,ar(A) = n, m 2M, ar(m) = k + 1).The right-hand side is again an objet graph of arityn + k. If a left-hand side RA;m exists, we say that Aunderstands m. (C)A m = RA;m
(1) (n) (n + k)(n + 1){ If A <: B, A 6= ? and B understands m, then A also understands m.{ For all m 2M, either fA j A understands mg is empty or it ontains a greatest element.An objet graph G ontains a \message not understood"-error if G ontains a subgraph RA;m, butA does not understand m.Thus the prediate X for this setion is de�ned as follows: X(G) if and only if G does notontain a \message not understood"-error.In ontrast to the previous setion, we now use annotated type graphs: the annotation mappingA assigns a lattie (fa : VH ! C �Cg;�)) to every hypergraph H . The partial order is de�ned asfollows: a1 � a2 () 8v: (a1(v) = (A1; B2) ^ a2(v) = (A2; B2)) A1 <: A2 ^ B1 :> B2), i.e.we have ovariane in the �rst and ontravariane in the seond position. If a node v is labelled(A;B), this has the following intuitive meaning: we an aept at least as many messages as anobjet of lass A on this node and we an send at most as many messages as an objet of lass Ban aept.Furthermore we de�ne A�(a)(v0) = W�(v)=v0 a(v) where � : H ! H 0, a is an element of A(H)and v0 2 VH0 .We now de�ne the operator f : let T [a℄ be a type graph of arity n where it holds for all nodesv that a(v) = (A;B) implies A <: B (otherwise f is unde�ned). Then f redues the graph to itsstring of external nodes, i.e f(T [a℄) = n[b℄ where b(b�ni) = a(b�T i). We aept a type graph, ifit is de�ned, i.e. if f is suessful. So we de�ne Y (T [a℄) = true for all type graphs T .The linear mapping t determines the type of a lass or method. It is neessary to hoose alinear mapping that preserves the interfae of left-hand and right-hand sides, i.e. we an use anyt that satis�es ondition (10) and the following two onditions below for A 2 Cnf?g and m 2M:t([A℄n) = [A℄n[a℄ where a(b�[A℄n1) � (A;>)t([m℄n) = [m℄n[a℄ where a(b�[m℄nn) � (?;maxfB j B understands mg)Proposition 6. The annotation mapping A, the mappings f and t and the prediates X and Yde�ned above satisfy onditions (6){(10) of Theorem 1. Thus if G.T and Y (G), then G will neverprodue a \message not understood"-error during redution.Proof. We show that A; f; t; Y;X satisfy onditions (6){(10) of Theorem 1.(6) This property does trivially hold sine Y (T [a℄) = true for all T .(8) Let � : T [a℄�A T 0[a0℄. It holds that f(T [a℄) = n[b℄ and f(T 0[a0℄) = n[b0℄ where n = ar(T) =ar(T 0), b(b�ni) = a(b�T i) and b0(b�ni) = a0(b�T 0i). There is trivially a strong morphismfrom n into n (the identity) and furthermore b0(b�ni) = a0(b�T 0i) � A�(a)(b�T 0i) =W�(v)=b�T 0 i a(v) � a(b�T i) = b(b�ni).And thus f(T [a℄)�A f(T 0[a0℄).6 This orresponds to the lass Objet in Java

(7) let Ti[ai℄ be type graphs and we setT = D ni=1(Ti[ai℄; �i); Ti[ai℄ = f(Ti[ai℄); T [a℄ = D ni=1(Ti[ai℄; �i)We prove that f(T) �= f(T).It is lear from the de�nition of f that f(T)�A T , if f(T) is de�ned. So we have the situationdepited in the �gure below
ζi

i
φ

ψ
i

Ti

[ai]

[ai]

mi D

T

T

η

ψ

i

iη

φ

(b)

(a)

’

Ti

[a]

[a]

φ
f(T[a]) =

f(T[a]) =

n

n

[b]

[b](a) is a olimit, and the i Æ �i are the unique strong morphisms from mi into Ti. We assumethat the �i and � are the olimit of the �i and the i Æ �i. It follows from standard propertiesof olimits that there is a morphism : T [a℄ �A T [a℄ suh that Æ � = � and (b) is also aolimit.We �rst show that a((v)) = a(v) holds for all v 2 VT : note that whenever (v) = �i(v0) forany v0 2 VTi , then it follows from the de�nition of graph onstrution that v0 is an externalnode of Ti and therefore aj(v0) = W j(v00)=v0 aj(v00), where all aj(v00) are equal.a((v)) = _nj=1_�j (v0)= (v) aj(v0) =_nj=1_�j (v0)= (v)_ j(v00)=v0 aj(v00)= _nj=1_�j (j(v00))= (v) aj(v00) =_nj=1_ (�0j(v00))= (v) aj(v00)= inj._nj=1_�0j (v00)=v aj(v00) = a(v)In the next step we prove that f(T [a℄) is de�ned, i.e. T [a℄ satis�es ondition (12), if and onlyif f(T [a℄) is de�ned. 8 v 2 VT : (a(v) = (A;B)) A <: B) (12)We �rst assume that T [a℄ satis�es (12). Sine T [a℄ �A T [a℄ and (12) is preserved by inversemorphisms, it follows that f(T [a℄) is also de�ned.Now let f(T [a℄) be de�ned, i.e. the f(Ti[ai℄) = Ti[ai℄ are de�ned and T [a℄ satis�es (12). Letv 2 VT . We distinguish two ases:{ v is not in the range of �: in this ase there is a unique i and a unique node v0 2 VTi suhthat �i(v0) = v and ai(v0) = a(v). Therefore a(v) = (A;B) implies A <: B sine Ti[ai℄satis�es ondition (12).{ v is in the range of �: in this ase there is a node v0 2 VT suh that v = (v0) and (seeabove) a(v) = a((v0)) = a(v0). Sine T [a℄ satis�es (12) it holds that a(v) = (A;B) impliesA <: B.It is left to show that f(T [a℄) = n[b℄ and f(T [a℄) = n[b℄ are isomorphi. The underlying graphsare learly isomorphi and it is left to prove that b = b:b(b�ni) = a(b�T i) = a((b�T i)) = a(b�T i) = b(b�ni)(9) we assume that Y (f(t(G))) holds, whih implies that f(t(G)) is de�ned, or|in other words|ifT [a℄ = t(G), v 2 VT and a(v) = (A;B), then it holds that A <: B.We now assume that G has a subgraph RA;m and we show that A understands m. It followsthat there is a morphism � : t(RA;m)!A t(G). We set T [a℄ = t(RA;m).From the onditions imposed on t it follows thata(b�T 1) � (A;?) and a(b�T 1) � (?;maxfB j B understands mg)

Now let a(b�T 1) = (C;D) and a(�(b�T 1)) = (C 0; D0). Sine � is an A-morphism, it holdsthat (C;D) � (C 0; D0) and therefore C <: C 0 and D :> D0. Furthermore? 6= A <: C <: C 0 <: D0 <: D <: maxfB j B understands mgThen it follows from De�nition 8 that A understands m.(10) this is satis�ed beause of the ondition imposed on t.In this ase we do not prove that this type systems orresponds to an objet-oriented typesystem, but rather present a semi-formal argument: we give the syntax and a type system for asmall objet alulus, and furthermore an enoding into hypergraphs, without really de�ning thesemantis. For the formal semantis of objet aluli see [20, 9℄, among others.An expression e in the objet alulus either has the form new A(e1; : : : ; en) where A 2 Cnf?gand ar(A) = n + 1 or e:m(e1; : : : ; en) where m 2 M and ar(m) = n + 2. The ei are againexpressions. Every lass A is assigned an (ar(A)�1)-tuple of lasses de�ning the type of the �eldsof A (A : (A1; : : : ; An)) and every method m with ar(m) = n + 2 de�ned in lass B is assigneda type B:m : C1; : : : ; Cn ! C. If a method is overwritten in a sublass it is required to have thesame type. A simple type systems looks as follows:e : A; A <: Be : B A : (A1; : : : ; An); ei : Ainew A(e1; : : : ; en) : A e : B; B:m : C1; : : : ; Cn ! C; ei : Cie:m(e1; : : : ; en) : CNow an enoding [[�℄℄ an be de�ned as shownin the �gure to the right. We introdue theonvention that the penultimate node of amessage an be used to aess the result af-ter the rewriting step. ...

...

...

...

[[e℄℄ mA
[[newA(e1; : : : ; en)℄℄ = [[e:m(e1; : : : ; em)℄℄ =[[e1℄℄ [[en℄℄ [[e1℄℄ [[en℄℄(1) (1)If A : (A1; : : : ; An) we de�ne t in suh a way that the n + 1 external nodes of t([A℄n+1) areannotated by (A;>), (?; A1), : : :, (?; An). And if B:m : C1; : : : ; Cn ! C (where B is the maximallass whih understands method m), we annotate the external nodes of t([m℄n+2) by (?; C1), : : :,(?; Cn), (C;>), (?; B). Now we an show by indution on the typing rules that if e : A, then thereexists a type graph T [a℄ suh that [[e℄℄ . T [a℄ and a(b�T 1) = (A;>).Proof: we show a stronger indution hypothesis. If e : A, then f(t([[e℄℄)) is de�ned andf(t([[e℄℄)) = 1[a℄ where a(b�11) = (A0;>) � (A;>). With the weakening rule (3) we then obtainthe original laim.{ Let e : B where e : A and A <: B. With the indution hypothesis it follows that f(t([[e℄℄)) =1[a℄ where a(b�11) = (B0;>) � (B;>). And sine B <: A, we also obtain (B0;>) � (A;>).{ Let e = new A(e1; : : : ; en) : A where A : (A1; : : : ; An) and ei : Ai. From the indutionhypothesis it follows that f(t([[ei℄℄)) = 1[ai℄ is de�ned and that ai(b�11) = (A0i;>) � (Ai;>).Now we an onlude that

[[]]e

ne[[]]))f(t(

(, A 1)
(, A)n (A,)

(, A 1)
(, A)n

(1)

f(

...

A

...

)

(1) (,)n(1) (,)1A’ A’

, A)nnA’((1)
(A,)

(1)
(A,)f(

...

A
)

A’(,1 A 1)

=

f(t()) = =f(

(1) ...

A

...))1e[[]]f(t(

)

(A,)

=

The last step is de�ned sine A0i <: Ai.

{ Let e = e0:m(e1; : : : ; en) : A where e0 : B, B:m : C1; : : : ; Cn ! A and ei : Ci. From theindution hypothesis it follows that f(t([[ei℄℄)), 0 � i � n is de�ned and that f(t([[ei℄℄)) = 1[ai℄with a0(b�T01) = (B0;>) � (B;>) and ai(b�Ti1) = (C 0i ;>) � (Ci;>) for 1 � i � n.So we an onlude that:
[[]]ef(t()) = f(t(

[[]]

ne[[]]))f(t(

(, B) (A,))C,(n
1)C,(

me0

...))1e[[]]f(t(

f(t())

(1)
...

f(

(1) (,)1C’

,)(1) (B

)C, n(C’n)(A,
(1)

)(A,

1)C,(C’1, B)(B’

) = f(
m

...

(1)
...

1)C,((, B)
)C,(n (A,)

(1) (,)C’n

) =

m

...

) =
(1)

f(The last step is de�ned sine B0 <: B and C 0i <: Ci.4.3 A Seurity Poliy for Untrustworthy AppletsIn this last ase study we show how to onstrut a new type system rather than simulate an existingone. We have the following senario: an applet is reeived and is exeuted in an environmentontaining trustworthy and untrustworthy objets. By de�nition, all objets in the applet areuntrustworthy. Objets may interat with eah other and modify eah other. An untrustworthyobjet must not modify a trustworthy one.In order to ahieve this, two solutions are appliable: the �rst solution is that every objethas to authentiate itself by some sort of protool during runtime, whih an be rather ostly.The seond solution is that, after reeption of the applet, a stati type hek is performed whihexludes the possibility of trust violation for at least a subset of trustworthy objets. For theseobjets there is no need to ondut the authenti�ation protool. Sine typing is ompositional,it is suÆient to ompute the type of the environment only one. Thus, if a rather small applet isreeived, the omputation of its type and the omposition of the two types is heap.The system model is as follows: both, environment and applet are represented by hypergraphsand an be ombined by some suitable onstrution operation. There are three forms of edges:objets, request messages and update messages.Eah objet (represented by an edge) has a unique name N 2 N , a behaviour B 2 B, alearane l 2 ft; ug indiating if the objet is trustworthy or untrustworthy and a �xed arityn 2 lN. Objets may spontaneously send request or update messages. A request message is anedge of arity 2 whih is labelled reqi, meaning that the i-th �eld of an objet is requested andshould be merged with the seond node of the message. An update message is an edge of arity 1whih is labelled upd(N;B; l), meaning that the reeiving objet should hange its name to N ,its behaviour to B and its learane to l. Aording to its behaviour B, an objet only sends andaepts a subset of all messages, so RB (the set of all rewrite rules for behaviour B) is a subset ofthe rules depited in the �gure below.
......(1) (n)(1) (j)

(n+1)(i,n+1)......(i)

(k) ...

(n)(1) (1) (n)

(n)... (n)(j)(1)(n) (1)

...(1) (n)(1) ... (n)

req

req

(N’,B’,cl’)(N,B,cl)

(N,B,cl)

(N,B,cl) upd(N’,B’cl’)

(N,B,cl)

upd(N’,B’))

req upd(N’,B’,cl)

jk

i

i

(send j

(N,B,cl)

i)(receive req

)i(send

(N,B,cl) (N,B,cl)

(receive upd) (2)

(4)(3)

(1)

The learane labels are only there for lari�ation of the problem, but they are not yet thesolution. In pratie nothing would keep an objet from sending a message with a faked label.We say that B emits B0 if the rule (sendj upd(N 0; B0; l 0)) is ontained in RB . For tehnialreasons we demand that the \emits"-relation does not have yles.The set R of all rewrite rules is the union of the RB . We want to make sure that for a ertainobjet of name N no program will ever ontain a subgraph in the form of the left-hand side ofrule (2) where l = t and l 0 = u. We all this a trust violation for N . The prediate XN holds fora program P , if P does not ontain a trust violation for N .We an regard the set ft; ug as a lattie with elements t and u where t < u. Then our typegraphs have the following form: edges are labelled either by (N;B) 2 N � B (then they areannotated by an element from ft; ug) or by reqi (trivial annotations) or by upd (annotationsfrom ft; ug). Let a be an annotation assigning lattie elements to the respetive edges. We de�neA�(a)(e0) = W�(e)=e0 a(e) if � : H ! H 0 and e0 2 EH0 .The linear mapping t|whih antiipates all omponents that might be introdued into thegraph during redution and reates information for f on how they should be merged|is de�nedas depited in the �gure below. We de�ne 1�i�nTi = T12 : : :2Tn. The image of an objetedge is de�ned via the auxiliary mapping tl whih takes into aount all the rules whih may beapplied to the objet edge. Beause of the ondition on the \emits"-relation, the onstrution oft terminates and is well-de�ned.
t cl (receive upd) =

t([req i]2)

= [req 2]it([(N,B,cl)]n)

(1)

t cl i(receive req) =

(N,B)cl

t

...(j)(1) (n)... ...

t()[(N’,B’,cl)]ncl

(1)
i

...

...... (j) ... (n)...(i)
t cl (send jk req (send) =

cl

t([(N,B,cl)]

t([upd(N,B,cl)]1) =

n

...
r

(k)(1) (n)
t cl

R

j upd(N’,B’)) =

t cl) = (r)
B

(1) (n)

(1) ... (n) ...

ii

upd

upd reqreq updThe operation f an now be de�ned aording to Proposition 2 where an annotated hypergraphT [a℄ satis�es property C if and only if it holds for all e1; e2 2 ET thatlT (e1) = lT (e2) 2 fupdg [[i2lNfreqig ^ bsT (e1)1 = bsT (e2)1) e1 = e2In other words: if two message edges are sent to the same node, they are merged. This is basiallyequivalent to the ondition C imposed in setion 4.1.It is left to de�ne a prediate YN in order to infer the absene of trust violation for a trustworthyobjet of name N : let T [a℄ be a type graph. We say that YN (T [a℄) holds if no untrustworthy updatemessage is attahed to an edge labelled (N;B) for any behaviour B:8 e; e0 2 ET : ((9B : lT (e) = (N;B)) ^ lT (e0) = upd ^ bsT (e0)1 = bsT (e)1) a(e0) = t)Proposition 7. The annotation mapping A, the mappings f and t and the prediates XN andYN de�ned above satisfy onditions (6){(10) of Theorem 1. Thus if P . T and YN (P), then therewill never be a trust violation for an objet of name N in P .Proof. We show that A; f; t;X; Y satisfy the onditions of Theorem 1.(6) We show that YN is preserved by invariant morphisms: let � : T [a℄!A T 0[a0℄ and YN (T 0[a0℄).Now let e; e0 2 ET suh that there is a behaviour desription B with lT (e) = (N;B), fur-thermore lT (e0) = upd and bsT (e0)1 = bsT (e)1. Sine labels and the onnetion fun-tion are preserved by morphisms, it follows that lT 0(�(e)) = (N;B), lT 0(�(e0)) = upd andbsT 0(�(e0))1 = bsT 0(�(e))1. Sine YN (T 0[a0℄) holds, we onlude that a0(�(e0)) = t.Sine � is an A-morphism it follows that a(e) � a0(�(e)) = t and therefore a(e0) = t.

(7) & (8) Showing that f satis�es the universal property (as de�ned in Proposition 2) withrespet to ondition C is analogous to proving the same fat for proess graphs (see the proofof Proposition 3).(9) Let YN (f(t(H))). We show that this impliesXN(H): let us assume thatH ontains a subgraphorresponding to the left-hand side L of rule (2) where l = t. Then there is an A-morphismfrom f(t(L)) into f(t(H)) and sine YN is preserved by inverse A-morphisms, it follows thatYN (f(t(L))) and also YN (t(L)) hold. The type graph t(L) has the following form:
(1) (n)

r R B
t cl(r)

e e’

...

(N,B)

...

cl’ t()[(N’,B’,cl’)]nt updAnd sine YN is satis�ed, it follows that l0 = t.(10) We show that this property holds for all four types of rules. For a rule r, we set TN;B;lr =[(N;B)℄n[a℄2 r2RBnfrgtl(r) where a(e) = l for the only edge e of [(N;B)℄n. That is TN;B;lris t([(N;B; l)℄n) without tl(r), or t([(N;B; l)℄n) = TN;B;lr 2tl(r).(1) r = (reeive req i). In this ase we onlude
(1) (n)(i,n+1) ...

......(i)(1) (n)

...

)

......(i)(1) (n)

=f(

......(1) (n) (n+1)(i)

T N,B,cl
r

)

(n+1)

t([req i])2

......(1) (n)(i) (n+1)

= f(t(L)))

=

...(i)(1) (n)...(i)(1) (n) (n+1)

=
r

t)f(cl r
N,B,clT

(i)

(r)

...

f(t(R)) = f()T N,B,cl

...

n)f(t([(N,B,cl]

f(

......(1) (n) (n+1)

ii

req i

i reqreq

ireq

req

req i

(2) r = (reeive upd). In this ase it holds that
An))f(t([(N’,B’,cl’] =

n))f(t([(N’,B’,cl’]

...(1) (n)

upd

n))upd f(t([(N’,B’,cl’]upd

...(1) (n) ...

=

t([(N,B,cl]n) = f(t(L)))

f(t(R)) =

f(T N,B,cl
r

f()

)

T N,B,cl
r

cl’

cl’t

f(

......(1) (n)(i)

t([upd(N’,B’,cl’)]
1
)(3) r = (send jk req i). Here we know that

T N,B,cl

(1) (j) (k) (n)

r
=

=A

(1) (j) (k) (n) ...

T N,B,cl
r

T N,B,cl
r

(1) (j) (k) (n)

f(

(k)

t)

t cl(r)

clf(

)

(1) (j)

=

(n)

f(T N,B,cl
r

(r)

f(

) f(t(L))

)f(t(R)) = reqreq ii

ireq

ireq

(4) r = (send j upd(N',B')) and in this ase we an onlude that
=f(T N,B,cl

r
t cl(r)

(n)(1) (j)

T N,B,cl
r

A T N,B,cl
r

=

=

f(

(n)(1) (j)

)cl

...

t([(N’,B’,cl)])n

f(T N,B,cl
r

t cl(r)

(n)(1) (j)

) f(t(L))

f(

f(t(R)) =

(1)

cl

...

t([(N’,B’,cl)])n)

cl

(n)

)

...... (j)

n

cl

...

t([(N’,B’,cl)]
...

t([(N’,B’,cl)])n

)

upd

upd

upd

upd

Example: we assume that there is an environment E into whih an applet A should be plugged,and the ombination P of environment and applet is obtained as shown in Figure (5) below. Weassume that E has already been typed and that E .T where T is depited in Figure (6). Althoughit is normally not possible to reonstrut the original graph from a type, we an speulate how thistype ould have originated: for example, E has two objets labelled with (N1; B1; t) respetively(N2; B2; t) where the �rst aepts request and update messages while the seond only aeptsupdate messages.
E AP =

(5)
(N1 ,B1)

(2) (3)

(N ,B)2 2 t = T

(1)

req 2

t
t

(6)

tupd updNow assume that we reeive an applet A from outside, whih has the form drawn in Figure (7).We have to make sure that all objets and update messages have the label \untrustworthy", whihholds in this ase. In order to type A, all we need to know is the rule set RB3 and in this ase weassume that it ontains the rules (reeive req2) and (reeive req3).
req 2

(1)

upd(N ,B ,u)3 3

(7)

req 2

(1)

req 2

(N ,B)3 3

req 3

upd

(8)

u
uSo, omputing t(A) yields the type graph drawn in Figure (8) and beause of ondition (4), theentire program P has a type T 0 as depited in Figure (9). T 0 is rather omplex and we will notdraw the entire graph here, but we will desribe its most important features: sine the �rst externalnode of T and the �rst external node of t(A) are merged, it follows that the two req2-edges sent

to these nodes are merged, whih auses the �rst node of the untrusted update message in t(A)and the �rst node of the edge labelled (N2; B2) to merge. Therefore YN2(T 0) does not hold, butYN1(T 0) holds. So we need an authentiation protool for the objet with name N2, but we anbe sure that no untrusted update message is ever sent to N1, although N1 an aept updatemessages.
(9)

T t(A)T’ = f()5 Conlusion and Comparison to Related WorkThis is a �rst tentative approah aimed at developing a general framework for the stati analysisof graph rewriting in the ontext of type systems. It is obvious that there are many type systemswhih do not �t well into our proposal. But sine we are able to apture the essene of twoimportant type systems, we assume to be on the right trak.Types are often used to make the onnetion of omponents and the ow of information througha system expliit (see e.g. the type system for the �-alulus, where the type trees indiate whihtuple of hannels is sent via whih hannel). Sine onnetions are already expliit in graphs, wean use them both as type and as the expression to be typed. Via morphisms we an establish alear onnetion between an expression and its type. Graphs are furthermore useful sine we aneasily add an extra layer of annotation (in our ase: annotation by lattie elements).Work that is very lose in spirit to ours is [8℄ by Honda whih also presents a general frameworkfor type systems. The underlying model is loser to standard proess algebras and the main fousis on the haraterisation and lassi�ation of type systems.The idea of omposing graphs in suh a way that they satisfy a ertain property was alreadypresented by Lafont in [14℄ where it is used to obtain deadlok-free nets.In graph rewriting there already exists a onept of typed graphs [1℄, related to ours, butnevertheless di�erent. In that work, a type graph is �xed a priori and there is only one type graphfor every set of produtions. Graphs are onsidered valid only if they an be mapped into the typegraph by a graph morphism (this is similar to our proposal). In our ase, we ompute the typegraphs a posteriori and it is a ruial point in the design of every type system to distinguish asmany graphs as possible by assigning di�erent type graphs to them.This paper is a ontinuation of the work presented in [10℄ where the idea of generi type systemsfor proess graphs (as de�ned in setion 4.1) was introdued, but no proof of the equivalene ofour type system to the standard type system for the �-alulus was given. The ideas presentedthere are now extended to general graph rewriting systems.Further work will onsist in better understanding the underlying mehanism of the type system.An interesting question in this ontext is the following: given a set of rewrite rules, is it possibleto automatially derive mappings f and t satisfying the onditions of Theorem 1? The ruialpoint here is the fat that yli dependenies may appear (i.e. there are two rules (L;R) and(L0; R0) where L and R0 ontain an edge labelled A and R and L0 ontain an edge labelled B), weavoided suh a situation in setion 4.3 by imposing an additional ondition on the \emits"-relation,otherwise the de�nition of the linear mapping t would not have been well-founded. Is there someway to uniformly treat suh situations? Probably some results onerning �xed-points are needed.Aknowledgements: I would like to thank Reiko Hekel and Andrea Corradini for theiromments on drafts of this paper, and Tobias Nipkow for his advie. I am also grateful to theanonymous referees for their valuable omments.Remark: this report is the extended version of [11℄.

Referenes1. A. Corradini, U. Montanari, and F. Rossi. Graph proesses. Fundamenta Informatiae, 26(3/4):241{265, 1996.2. H. Ehrig. Introdution to the algebrai theory of graphs. In Pro. 1st International Workshop onGraph Grammars, pages 1{69. Springer-Verlag, 1979. LNCS 73.3. H. Ehrig, H.-J. Kreowski, U. Montanari, and G. Rozenberg, editors. Handbook of Graph Grammarsand Computing by Graph Transformation, Vol.3: Conurreny, Parallellism, and Distribution. WorldSienti�, 1999.4. F. Gaddui and U. Montanari. Comparing logis for rewriting: Rewriting logi, ation aluli andtile logi. Theoretial Computer Siene, 2000. to appear.5. Philippa Gardner. Closed ation aluli. Theoretial Computer Siene (in assoiation with theonferene on Mathematial Foundations in Programming Semantis), 1998.6. Annegret Habel. Hyperedge Replaement: Grammars and Languages. Springer-Verlag, 1992. LNCS643.7. Masahito Hasegawa. Models of Sharing Graphs (A Categorial Semantis of Let and Letre). PhDthesis, University of Edingburgh, 1997. available in Springer Distinguished Dissertation Series.8. Kohei Honda. Composing proesses. In Pro. of POPL'96, pages 344{357. ACM, 1996.9. Atsushi Igarashi, Benjamin Piere, and Philip Wadler. Featherweight Java: A ore alulus for Javaand GJ. In Pro. of OOPSLA 1999, 1999.10. Barbara K�onig. Generating type systems for proess graphs. In Pro. of CONCUR '99, pages 352{367.Springer-Verlag, 1999. LNCS 1664.11. Barbara K�onig. A general framework for types in graph rewriting. In Pro. of FST&TCS 2000.Springer-Verlag, 2000. to appear.12. Barbara K�onig. A graph rewriting semantis for the polyadi pi-alulus. In Workshop on GraphTransformation and Visual Modeling Tehniques (Geneva, Switzerland), ICALP Workshops 2000,pages 451{458. Carleton Sienti�, 2000.13. Barbara K�onig. Hypergraph onstrution and its appliation to the ompositional modelling of on-urreny. In GRATRA 2000: Joint APPLIGRAPH/GETGRATS Workshop on Graph TransformationSystems, 2000. Proeedings available as Report Nr. 2000-2 (Tehnishe Universit�at Berlin).14. Yves Lafont. Interation nets. In Pro. of POPL '90, pages 95{108. ACM Press, 1990.15. James J. Leifer and Robin Milner. Deriving bisimulation ongruenes for reative systems. In Pro.of CONCUR 2000, 2000. LNCS 1877.16. Jos�e Meseguer. Rewriting logi as a semanti framework for onurreny: A progress report. InConurreny Theory, pages 331{372. Springer-Verlag, 1996. LNCS 1119.17. Robin Milner. The polyadi �-alulus: a tutorial. In F. L. Hamer, W. Brauer, and H. Shwihtenberg,editors, Logi and Algebra of Spei�ation. Springer-Verlag, Heidelberg, 1993.18. Robin Milner. Caluli for interation. Ata Informatia, 33(8):707{737, 1996.19. Benjamin Piere and Davide Sangiorgi. Typing and subtyping for mobile proesses. In Pro. of LICS`93, pages 376{385, 1993.20. David Walker. Objets in the �-alulus. Information and Computation, 116:253{271, 1995.21. Nobuko Yoshida. Graph notation for onurrent ombinators. In Pro. of TPPP '94. Springer-Verlag,1994. LNCS 907.A Semantis of the Asynhronous Polyadi �-CalulusIn setion 4.1 we have given an alternative semantis for the asynhronous polyadi �-alulusin terms of proess graphs. We have also presented an enoding from proess graphs into the�-alulus (more details an be found in [12℄). Here we give the syntax and semantis for thisvariant of the �-alulus, where we use the semantis given for its synhronous version in [19℄.

The asynhronous polyadi �-alulus without hoie and mathing an be desribed by thefollowing syntax where we assume that N is a �xed set of names, 2 N and ~a; ~x 2 N �:p := 0 (nil proess)j (�)p (restrition)j h~ai (output)j (~x):p (input)j p1jp2 (parallel omposition)j !p (repliation)j wrong (error)The operational semantis of the �-alulus is de�ned as follows: strutural ongruene � is thesmallest ongruene losed under renaming of bound names (�-onversion) and under the rulesgiven in the table below. The redution relation ! is generated by the rules listed below. Bypf~a=~xg we denote the substitution of the names b~xi by b~ai in p (with possible �-onversion inorder to avoid apture).Rules of Strutural Congruene:p1jp2 � p2jp1 p1j(p2jp3) � (p1jp2)jp3 (�)0 � 0 (�)(�b)p � (�b)(�)p((�)p1)jp2 � (�)(p1jp2) if 62 fn(p2) pj0 � p !p �!pjp!wrong � wrong wrong jp � wrong (�)wrong � wrongRedution Rules:(~x):p j h~ai ! pf~a=~xg if j~aj = j~xj (~x):p j h~ai ! wrong if j~aj 6= j~xjp! p0pjq ! p0jq p! p0(�)p! (�)p0 q � p; p! p0; p0 � q0q ! q0Note that repliation, whih is part of the strutural ongruene, is simulated by two redutionrules in the ase of proess graphs. Therefore the operational orrespondene in Proposition 4 doesnot hold for one-step redution, but for the transitive losure !� of the redution relations.With the �-alulus type system presented in setion 4.1, the same kind of mismathing aritiesas denoted by the term \bad redex" (introdued in setion 4.1) are avoided. So if � ` p, thenp6!�wrong .

SFB 342: Methoden und Werkzeuge f�ur die Nutzung parallelerRehnerarhitekturenbisher ershienen :Reihe A Liste aller ershienenen Berihte von 1990-1994auf besondere Anforderung342/01/95 A Hans-Joahim Bungartz: Higher Order Finite Elements on Sparse Grids342/02/95 A Tao Zhang, Seonglim Kang, Lester R. Lipsky: The Performane of ParallelComputers: Order Statistis and Amdahl's Law342/03/95 A Lester R. Lipsky, Appie van de Liefvoort: Transformation of the KronekerProdut of Idential Servers to a Redued Produt Spae342/04/95 A Pierre Fiorini, Lester R. Lipsky, Wen-Jung Hsin, Appie van de Liefvoort: Auto-Correlation of Lag-k For Customers Departing From Semi-Markov Proesses342/05/95 A Sasha Hilgenfeldt, Robert Balder, Christoph Zenger: Sparse Grids: Applia-tions to Multi-dimensional Shr�odinger Problems342/06/95 A Maximilian Fuhs: Formal Design of a Model-N Counter342/07/95 A Hans-Joahim Bungartz, Stefan Shulte: Coupled Problems in MirosystemTehnology342/08/95 A Alexander PfaÆnger: Parallel Communiation on Workstation Networks withComplex Topologies342/09/95 A Ketil St�len: Assumption/Commitment Rules for Data-ow Networks - withan Emphasis on Completeness342/10/95 A Ketil St�len, Max Fuhs: A Formal Method for Hardware/Software Co-Design342/11/95 A Thomas Shnekenburger: The ALDY Load Distribution System342/12/95 A Javier Esparza, Stefan R�omer, Walter Vogler: An Improvement of MMillan'sUnfolding Algorithm342/13/95 A Stephan Melzer, Javier Esparza: Cheking System Properties via Integer Pro-gramming342/14/95 A Radu Grosu, Ketil St�len: A Denotational Model for Mobile Point-to-PointDataow Networks342/15/95 A Andrei Kovalyov, Javier Esparza: A Polynomial Algorithm to Compute theConurreny Relation of Free-Choie Signal Transition Graphs342/16/95 A Bernhard Sh�atz, Katharina Spies: Formale Syntax zur logishen Kernspraheder Fous-Entwiklungsmethodik342/17/95 A Georg Stellner: Using CoChek on a Network of Workstations342/18/95 A Arndt Bode, Thomas Ludwig, Vaidy Sunderam, Roland Wism�uller: Workshopon PVM, MPI, Tools and Appliations342/19/95 A Thomas Shnekenburger: Integration of Load Distribution into ParMod-C342/20/95 A Ketil St�len: Re�nement Priniples Supporting the Transition from Asyn-hronous to Synhronous Communiation342/21/95 A Andreas Listl, Giannis Bozas: Performane Gains Using Subpages for CaheCohereny Control342/22/95 A Volker Heun, Ernst W. Mayr: Embedding Graphs with Bounded Treewidthinto Optimal Hyperubes

Reihe A342/23/95 A Petr Jan�ar, Javier Esparza: Deiding Finiteness of Petri Nets up to Bisimula-tion342/24/95 A M. Jung, U. R�ude: Impliit Extrapolation Methods for Variable CoeÆientProblems342/01/96 A Mihael Griebel, Tilman Neunhoe�er, Hans Regler: Algebrai Multigrid Meth-ods for the Solution of the Navier-Stokes Equations in Compliated Geometries342/02/96 A Thomas Graushopf, Mihael Griebel, Hans Regler: Additive Multilevel-Preonditioners based on Bilinear Interpolation, Matrix Dependent Geomet-ri Coarsening and Algebrai-Multigrid Coarsening for Seond Order ElliptiPDEs342/03/96 A Volker Heun, Ernst W. Mayr: Optimal Dynami Edge-Disjoint Embeddings ofComplete Binary Trees into Hyperubes342/04/96 A Thomas Hukle: EÆient Computation of Sparse Approximate Inverses342/05/96 A Thomas Ludwig, Roland Wism�uller, Vaidy Sunderam, Arndt Bode: OMIS |On-line Monitoring Interfae Spei�ation342/06/96 A Ekkart Kindler: A Compositional Partial Order Semantis for Petri Net Com-ponents342/07/96 A Rihard Mayr: Some Results on Basi Parallel Proesses342/08/96 A Ralph Radermaher, Frank Weimer: INSEL Syntax-Beriht342/09/96 A P.P. Spies, C. Ekert, M. Lange, D. Marek, R. Radermaher, F. Weimer, H.-M.Windish: Sprahkonzepte zur Konstruktion verteilter Systeme342/10/96 A Stefan Lamberts, Thomas Ludwig, Christian R�oder, Arndt Bode: PFSLib { AFile System for Parallel Programming Environments342/11/96 A Manfred Broy, Gheorghe S�tef�anesu: The Algebra of Stream Proessing Fun-tions342/12/96 A Javier Esparza: Reahability in Live and Safe Free-Choie Petri Nets is NP-omplete342/13/96 A Radu Grosu, Ketil St�len: A Denotational Model for Mobile Many-to-ManyData-ow Networks342/14/96 A Giannis Bozas, Mihael Jaedike, Andreas Listl, Bernhard Mitshang, AngelikaReiser, Stephan Zimmermann: On Transforming a Sequential SQL-DBMS intoa Parallel One: First Results and Experienes of the MIDAS Projet342/15/96 A Rihard Mayr: A Tableau System for Model Cheking Petri Nets with a Frag-ment of the Linear Time � -Calulus342/16/96 A Ursula Hinkel, Katharina Spies: Anleitung zur Spezi�kation von mobilen, dy-namishen Fous-Netzen342/17/96 A Rihard Mayr: Model Cheking PA-Proesses342/18/96 A Mihaela Huhn, Peter Niebert, Frank Wallner: Put your Model Cheker onDiet: Veri�ation on Loal States342/01/97 A Tobias M�uller, Stefan Lamberts, Ursula Maier, Georg Stellner: Evaluierung derLeistungsf�ahigkeit eines ATM-Netzes mit parallelen Programmierbibliotheken342/02/97 A Hans-Joahim Bungartz and Thomas Dornseifer: Sparse Grids: Reent Devel-opments for Ellipti Partial Di�erential Equations342/03/97 A Bernhard Mitshang: Tehnologie f�ur Parallele Datenbanken - Beriht zumWorkshop342/04/97 A niht ershienen342/05/97 A Hans-Joahim Bungartz, Ralf Ebner, Stefan Shulte: Hierarhishe Basen zureÆzienten Kopplung substrukturierter Probleme der Strukturmehanik

Reihe A342/06/97 A Hans-JoahimBungartz, Anton Frank, Florian Meier, Tilman Neunhoe�er, Ste-fan Shulte: Fluid Struture Interation: 3D Numerial Simulation and Visual-ization of a Miropump342/07/97 A Javier Esparza, Stephan Melzer: Model Cheking LTL using Constraint Pro-gramming342/08/97 A Niels Reimer: Untersuhung von Strategien f�ur verteiltes Last- und Ressouren-management342/09/97 A Markus Pizka: Design and Implementation of the GNU INSEL-Compiler gi342/10/97 A Manfred Broy, Franz Regensburger, Bernhard Sh�atz, Katharina Spies: TheSteamboiler Spei�ation - A Case Study in Fous342/11/97 A Christine R�okl: How to Make Substitution Preserve Strong Bisimilarity342/12/97 A Christian B. Czeh: Arhitektur und Konzept des Dyos-Kerns342/13/97 A Jan Philipps, Alexander Shmidt: TraÆ Flow by Data Flow342/14/97 A Norbert Fr�ohlih, Rolf Shlagenhaft, Josef Fleishmann: Partitioning VLSI-Ciruits for Parallel Simulation on Transistor Level342/15/97 A Frank Weimer: DaViT: Ein System zur interaktiven Ausf�uhrung und zur Vi-sualisierung von INSEL-Programmen342/16/97 A Niels Reimer, J�urgen Rudolph, Katharina Spies: Von FOCUS nah INSEL -Eine Aufzugssteuerung342/17/97 A Radu Grosu, Ketil St�len, Manfred Broy: A Denotational Model for MobilePoint-to-Point Data-ow Networks with Channel Sharing342/18/97 A Christian R�oder, Georg Stellner: Design of Load Management for Parallel Ap-pliations in Networks of Heterogenous Workstations342/19/97 A Frank Wallner: Model Cheking LTL Using Net Unfoldings342/20/97 A AndreasWolf, Andreas Kmoh: Einsatz eines automatishen Theorembeweisersin einer taktikgesteuerten Beweisumgebung zur L�osung eines Beispiels aus derHardware-Veri�kation { Fallstudie {342/21/97 A Andreas Wolf, Mar Fuhs: Cooperative Parallel Automated Theorem Proving342/22/97 A T. Ludwig, R. Wism�uller, V. Sunderam, A. Bode: OMIS - On-line MonitoringInterfae Spei�ation (Version 2.0)342/23/97 A Stephan Merkel: Veri�ation of Fault Tolerant Algorithms Using PEP342/24/97 A Manfred Broy, Max Breitling, Bernhard Sh�atz, Katharina Spies: Summary ofCase Studies in Fous - Part II342/25/97 A Mihael Jaedike, Bernhard Mitshang: A Framework for Parallel Proessingof Aggregat and Salar Funtions in Objet-Relational DBMS342/26/97 A Mar Fuhs: Similarity-Based Lemma Generation with Lemma-DelayingTableau Enumeration342/27/97 A Max Breitling: Formalizing and Verifying TimeWarp with FOCUS342/28/97 A Peter Jakobi, Andreas Wolf: DBFW: A Simple DataBase FrameWork for theEvaluation and Maintenane of Automated Theorem Prover Data (inl. Dou-mentation)342/29/97 A Radu Grosu, Ketil St�len: Compositional Spei�ation of Mobile Systems342/01/98 A A. Bode, A. Ganz, C. Gold, S. Petri, N. Reimer, B. Shiemann, T. Shneken-burger (Herausgeber): \Anwendungsbezogene Lastverteilung", ALV'98342/02/98 A Ursula Hinkel: Home Shopping - Die Spezi�kation einer Kommunikationsan-wendung in Fous342/03/98 A Katharina Spies: Eine Methode zur formalen Modellierung von Betriebssys-temkonzepten

Reihe A342/04/98 A Stefan Bishof, Ernst W. Mayr: On-Line Sheduling of Parallel Jobs with Run-time Restritions342/05/98 A St. Bishof, R. Ebner, Th. Erlebah: Load Balaning for Problems with GoodBisetors and Appliations in Finite Element Simulations: Worst-ase Analysisand Pratial Results342/06/98 A Giannis Bozas, Susanne Kober: Logging and Crash Reovery in Shared-DiskDatabase Systems342/07/98 A Markus Pizka: Distributed Virtual Address Spae Management in the MoDiS-OS342/08/98 A Niels Reimer: Strategien f�ur ein verteiltes Last- und Ressourenmanagement342/09/98 A Javier Esparza, Editor: Proeedings of INFINITY'98342/10/98 A Rihard Mayr: Lossy Counter Mahines342/11/98 A Thomas Hukle: Matrix Multilevel Methods and Preonditioning342/12/98 A Thomas Hukle: Approximate Sparsity Patterns for the Inverse of a Matrixand Preonditioning342/13/98 A Antonin Kuera, Rihard Mayr: Weak Bisimilarity with In�nite-State Systemsan be Deided in Polynomial Time342/01/99 A Antonin Kuera, Rihard Mayr: Simulation Preorder on Simple Proess Alge-bras342/02/99 A Johann Shumann, Max Breitling: Formalisierung und Beweis einer Ver-feinerung aus FOCUS mit automatishen Theorembeweisern { Fallstudie {342/03/99 A M. Bader, M. Shimper, Chr. Zenger: Hierarhial Bases for the Inde�niteHelmholtz Equation342/04/99 A Frank Strobl, Alexander Wisspeintner: Spei�ation of an Elevator ControlSystem342/05/99 A Ralf Ebner, Thomas Erlebah, Andreas Ganz, Claudia Gold, Clemens Harl�n-ger, Roland Wism�uller: A Framework for Reording and Visualizing EventTraes in Parallel Systems with Load Balaning342/06/99 A Mihael Jaedike, Bernhard Mitshang: The Multi-Operator Method: Integrat-ing Algorithms for the EÆient and Parallel Evaluation of User-De�ned Pred-iates into ORDBMS342/07/99 A Max Breitling, Jan Philipps: Blak Box Views of State Mahines342/08/99 A Clara Nippl, Stephan Zimmermann, Bernhard Mitshang: Design, Implemen-tation and Evaluation of Data Rivers for EÆient Intra-Query Parallelism342/09/99 A Robert Sandner, Mihael Mauderer: Integrierte Beshreibung automatisierterProduktionsanlagen - eine Evaluierung praxisnaher Beshreibungstehniken342/10/99 A Alexander Sabbah, Robert Sandner: Evaluation of Petri Net and AutomataBased Desription Tehniques: An Industrial Case Study342/01/00 A Javier Esparza, David Hansel, Peter Rossmanith, Stefan Shwoon: EÆientAlgorithm for Model Cheking Pushdown Systems342/02/00 A Barbara K�onig: Hypergraph Constrution and Its Appliation to the Compo-sitional Modelling of Conurreny342/03/00 A Max Breitling and Jan Philipps: Veri�ation Diagrams for Dataow Properties342/04/00 A G�unther Rakl: Monitoring Globus Components with MIMO342/05/00 A Barbara K�onig: Analysing Input/Output Capabilities of Mobile Proesses witha Generi Type System342/06/00 A Mihael Bader, Christoph Zenger: A Parallel Solver for Convetion Di�usionEquations based on Nested Dissetion with Inomplete Elimination

Reihe A342/07/00 A Clara Nippl, Angelika Reiser, Bernhard Mitshang: Extending Database Fun-tionality to Support Frequent Itemset Proessing342/08/00 A Clara Nippl, Angelika Reiser, Bernhard Mitshang: Conquering the SearhSpae for the Calulation of the Maximal Frequent Set342/09/00A A Max Breitling, Jan Philipps: Transitions into Blak Box Views

SFB 342 : Methoden und Werkzeuge f�ur die Nutzung parallelerRehnerarhitekturenReihe B342/1/90 B Wolfgang Reisig: Petri Nets and Algebrai Spei�ations342/2/90 B J�org Desel: On Abstration of Nets342/3/90 B J�org Desel: Redution and Design of Well-behaved Free-hoie Systems342/4/90 B Franz Abstreiter, Mihael Friedrih, Hans-J�urgen Plewan: Das Werkzeug run-time zur Beobahtung verteilter und paralleler Programme342/1/91 B Barbara Paeh: Conurreny as a Modality342/2/91 B Birgit Kandler, Markus Pawlowski: SAM: Eine Sortier- Toolbox -Anwenderbeshreibung342/3/91 B Erwin Loibl, Hans Obermaier, Markus Pawlowski: 2. Workshop �uber Paral-lelisierung von Datenbanksystemen342/4/91 B Werner Pohlmann: A Limitation of Distributed Simulation Methods342/5/91 B Dominik Gomm, Ekkart Kindler: A Weakly Coherent Virtually Shared MemorySheme: Formal Spei�ation and Analysis342/6/91 B Dominik Gomm, Ekkart Kindler: Causality Based Spei�ation and Corret-ness Proof of a Virtually Shared Memory Sheme342/7/91 B W. Reisig: Conurrent Temporal Logi342/1/92 B Malte Grosse, Christian B. Suttner: A Parallel Algorithm for Set-of-SupportChristian B. Suttner: Parallel Computation of Multiple Sets-of-Support342/2/92 B Arndt Bode, Hartmut Wedekind: Parallelrehner: Theorie, Hardware, Software,Anwendungen342/1/93 B Max Fuhs: Funktionale Spezi�kation einer Geshwindigkeitsregelung342/2/93 B Ekkart Kindler: Siherheits- und Lebendigkeitseigenshaften: Ein Liter-atur�uberblik342/1/94 B Andreas Listl; Thomas Shnekenburger; Mihael Friedrih: Zum Entwurf einesPrototypen f�ur MIDAS

