TLTI

TECHNISCHE
UNIVERSITAT
MUNCHEN

INSTITUT FUR INFORMATIK

Sonderforschungsbereich 342:
Methoden und Werkzeuge fiir die Nutzung
paralleler Rechnerarchitekturen

Analysing Input/Output Capabilities of
Mobile Processes with a Generic Type
System

Barbara Konig

TUM-10009
SFB-Bericht Nr. 342/05/00 A
April 00

TUM-INFO-04-10009-0/1.—FI

Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

(©2000 SFB 342 Methoden und Werkzeuge fiir

Anforderungen an:

Druck:

die Nutzung paralleler Architekturen

Prof. Dr. A. Bode

Sprecher SFB 342

Institut fiir Informatik
Technische Universitdt Miinchen
D-80290 Miinchen, Germany

Fakultat fir Informatik der
Technischen Universitat Miinchen

Analysing Input/Output-Capabilities of Mobile
Processes with a Generic Type Systeém

Barbara Konig koeni gb@ n. t um de)

Fakultat fur Informatik, Technische Universitat Milren

Abstract. We introduce a generic type system (based on Milner's satesy)

for the synchronous polyadiecalculus, allowing us to mechanise the analysis of
input/output capabilities of mobile processes. The patan the generic type
system is a lattice-ordered monoid, the elements of whiehuaed to describe
the capabilities of channels with respect to their inpupaticapabilities. The
type system can be instantiated in order to check procepgpies such as upper
and lower bounds on the number of active channels, confllmt@bsence of
blocked processes.

1 Introduction

For the analysis and verification of processes there aredisiwo approaches: meth-
ods that are complete, but cannot be fully mechanised, ahdautomatic methods
which are consequently not complete, i.e. not all procesatsfying the property to be
checked are recognised.

One promising direction for the latter approach is to usestypsort systems and
type inference with rather complex types abstracting frootess behaviour. In the last
few years there have been several papers presenting sieblystems for the polyadic
w-calculus and other process calculi, checking e.g. inpipiat behaviour [15], absence
of deadlocks [7], security properties [1, 4], allocatiorpefmissions to names [16] and
many others. Types are compositional and thus allow reuggaimation obtained in
the analysis of smaller subsystems.

One drawback of the type systems mentioned above is thelfatthey are spe-
cialised to check very specific properties. A much more gdregsproach is a theory
of types by Honda [6] which is based on typed algebras andgivelassification of
type systems. This theory is very general and it is thus secgdo prove the subject
reduction property and the correctness of a type systenvéayénstance. Our paper
attempts to fill the gap between the two extremes. We presgenaric type system
where we can show the subject reduction property for thergénase, and by instan-
tiating the type system we are able to analyse specific ptiepef processes. Despite
its generality, our type system can be used to generatérexigpe systems, or at least
subsets of them. With the introduction of residuation (ekpgd below) we can even
type some processes which are not typable by comparableygpems.

We concentrate on properties connected to input/outpatihipes of processes in
the synchronous polyadie-calculus. Compared to many other type systems a type of a
process in our setting is not a constraint on the environimecntext of the process (as

* Research supported by SFB 342 (subproject A3) of the DFG.

in [15]), but rather a representation of the capabilitiethefprocess itself. Composing
two processes in our setting means adding their capabilitie

In our examples (see section 5) we check properties suchpas apd lower bounds
on the number of active channels, confluence, absence dédaanput or output pre-
fixes. Determining these capabilities of a process invobteesiting and we attempt to
keep this concept as general as possible by basing the geppé system on com-
mutative monoids. Instantiating a type system mainly imgslchoosing an appropriate
monoid, and monoid elements associated with input and optpfixes (e.g. for count-
ing the number of prefixes with a certain subject).

Instead of giving the precise answer to every question, ypg system uses over-
approximation (e.g. we can expect results of the form “tleeeat most two active
channels with subject at any given time”). Hence plain monoids are not sufficieat, b
we need ordered monoids (so-called lattice-ordered mgmmid-monoids), equipped
with a partial order compatible with summation.

There is a huge class of lattice-ordered monoids which aieluated, i.e. some
limited form of subtraction can be defined. Residuation capiit to good use in pro-
cess analysis. Consider, e.g. the prodéss z.x.0. While P increases the number of
occurrences of the output prefixby one, it does not do so for the input prefixsince
we are interested exclusively in the number of prefixes orotiter level (i.e. in pre-
fixes which are currently active) andcan only be reached by a communication with
which decreases the number of input prefixes in the envirohtneone. This decrease
can be anticipated when typing, and is taken into consideration by subtracting one
from the number of input prefixes.

The type of a process contains an assignment of names tcesaris mapping of
sorts to strings of sorts (as in [13]), keeping track of cledmamities, i.e. if channet has
sorts, andn-ary tuples are communicated viathens will be mapped to a string of
sorts having length, being the sorts of the respective channels. Thus, suctégsing
also guarantees the absence of runtime errors producedshbyatthing arities. Further-
more a monoid element is assigned to each sofhe monoid element is expected to
be an upper bound for the capabilities of all channels hasamty.

The rest of this paper is structured as follows: in sectioredmroduce some pre-
liminaries, by giving a short summary of tlrecalculus, presenting lattice-ordered com-
mutative monoids and defining the notion of type (and someatipas on types). In
section 3 we present the type system and show the subjedtti@dyroperty for its
most general version, i.e. for arbitrary I-monoids. We tdemonstrate how the type
system can be used for process analysis (section 4), bygdirehconnection between
the type of a process and its input/output capabilitiess Beiction concludes with the
sketch of an algorithm for type inference. We will then dissgome examples, related
work and directions for future work.

2 Preliminaries

2.1 Thew-Calculus

Thew-calculus [12,13] is an influential paradigm describing amication and mo-
bility of processes. In this paper we will consider the syodous polyadier-calculus

without choice and matching, and replication is only defiftgdnput prefixes. Its syn-
tax is as follows:

P:u=0|(ve:s)P | PPy | ®(2).P | x(9).P | 2(9).P

wheres is an element from a fixed set of soft&ndz is taken from a fixed set of names
N.g=wy ...y, andz = z; ... z, are abbreviations for sequences with elements from
N. We callz(z) output prefixandz(g) input prefix

The set of all free names (i.e. names not bound by eitterby an input prefix) of
a processP is denoted byn(P). The process obtained by replacing the free nages
by z; in P (and avoiding capture) is calleél{z/7}.

Structural congruence is the smallest congruence obelgagites in the upper part
of table 1, and equating processes that can be convertednietanother by consistent
renaming of bound namesv{conversion). We use a reduction semantics as for the
chemical abstract machine [2] instead of a labelled traorsiemantics.

Q

£ (C-Com) P,|P, = P|Py (C-0) Plo=P
’g’ (C-AS9 Pi|(P2|Ps) = (P1|Py)| Ps
O
t_SU (C-ResTRL) (vz: s)(ry:)P = (vy: t)(ve:)P ife#y
S| (C-ReSTR) ((wa: s)P)|Po = (va: s)(PA|P>) if & & In(Py)
(%)
(R-Comm) 2(2).Q | x(9).P — Q| P{z/3}

3 (R-REP) 5(2).Q | !2(5).P = Q | P{2/q} | '2(9).P
S| oy] oy
é (R-PAR) PlQ — P'|Q (R-ResTR) (va: s)P = (vo: s)P'
(0]
[a'd

Q=P PP, P=qQ

(R_EQU) Q = Q/

Table 1.operational semantics of thecalculus

Consider the following processes which we will use as an @kain this paper (we
omit the final0):

F= c(r).J<r>.d(a).E<a> S =d(s).s(h1, ha).d{h1) T =¢lhy.c(x) H= 71(1'1, i)

There is a forwardef which receives requests on a chanaeforwards them on a
channeld to a server, receives the answer and sends it baek Dine servelS receives
requests o, and we assume that these requests come with a navhere the server
can get further information. The server obtains this infation, processes it and sends
the answer back od (in our example we keep the “processing part” very simple, th
server just sends back the first component). Furtherffiasea trigger process, starting

the execution of" and receiving the result in the end, aflddelivers information to
the server.

We can combine the processEs S, T', H to obtainP as the entire system. If we
wantF andS$ to be persistent, we regavel .

P=T|H]|(vd:sq)(F|9) P =T | H|(vd:sq)(1F |15)

A programmer analysing this piece of code might be intecesighe following
properties: input/output behaviour, upper and lower boamdhe number of channels
being active, confluence properties and absence of bloctedtkgs that never find a
communication partner. E.g., examiniRgwill reveal that at any given time every name
is used for input and output at most once and #had therefore confluent.

2.2 Residuated Lattice-ordered Monoids

Lattice-ordered monoids are a well-developed mathemataacept (see e.g. [3]). We
are interested in commutative residuated I-monoids inroimeepresent input/output
capabilities.

Definition 1. (Lattice-ordered Monoid)
A commutative lattice-ordered monoid (I-monoisa tuple(7, +, <) wherel is a
set,+ : I x I — I is a binary operation an& is a partial order which satisfy:

- (I,+) is a commutative monoid, i.& is associative and commutative, and there
is a unit0 with 0 + « = « for every monoid elemente 1.

— (I, <) is alattice, i.e.< is a partial order, where two elementsb € T have gjoin
(or least upper bound) v b and ameet(or greatest lower bound) A b.

— [contains a bottom elemett, the smallest element i and a top element, the
greatest element ii.

—Fora,b,celia+(bVe)=(a+b)V(a+c)anda+ (bAc) = (a+b)A(a+c)

Any I-monoid (1, +, <) is associated with an I-monoid, &, <) wherea & b =
(a +b) VaVband.L is the unit. The significance &b can be made clear with the
following consideration: monoid elements will be used todlsorts, being an upper
bound for the capabilities of channels having this sort.,Evg assume that a free name
z and a bound namg have sorts, indicating that, during reductiom, might replacey.
The capabilities ofc andy area respectivelyb. What capability should be associated
with s? In the presence of positive monoid elements only, b is the correct answer.
If, however,a is negativea + b is actually smaller thah and if z has not yet replaced
y, the monoid element associated withinderestimates the capabilities;ofSince we
use over-approximation the correct sort label i b.

Definition 2. (Residuated I-monoid)Let (7, +, <) be an I-monoid and let, b € I.
Theresiduala — b is the smallest: (if it exists) such that: < = + b. [is called
residuatedf all residualsa — b exist inI fora, b € I.

Example:one I-monoid which we will later use for the analysis of preses is
10 = ({nonel, O, both}, v, <) wherenone< | < both none< O < bothand the
monoid operation is the join, i.e. the -monoid degenertieslattice. A channel name
has for example capabili@ if it is used at most for output and capabilligthif it may
be used for both output and input.

In order to count the number of inputs or outputs we use thenaid Z>° =
(Z U {00, —0}, +, <) with all integers includingo and —oo (00 + (—o0) = —o0).
Residuation is subtraction for all monoid elements diffiéfeom oo and —oo.

The cartesian product of two I-monoids, €45° x 7., is also an I-monoid.

We use the following inequations concerning residuatedihoids: for all elements
a, b, c of a residuated I-monoid it holds that

a<(a—=b)+b (a+b—-b<a (a+b)—c<(a—c)+b
(@+b)v0O< (@V0)+(bvo) a+b<adb L+Ll=1 T+T=T

lifa<0 0 ifa=0

And we definesig(a) = {T ifa>0 undefinedbtherwise

3 The Type System and its Properties

We define the notion of types and type assignments which Heeady been informally
introduced in section 1.

Definition 3. (Type Assignment)Let S be a fixed set of sorts and I€f, +, <) be a
fixed I-monoid. A type assignmefit= obr; mp;z1: (s1/a1), ..., 25 (sp/a,) (ab-
breviated by op; mp; #: {(5§/a)) consists of aort mappingpbr : S — S* (mapping
sorts toobject sorty a mappingny : S — I (assigning a monoid element to every
sort) and an assignment of channel namggo tuples consisting of a sot and a
monoid element;.

We define soft(z;) = s; and T, y: {¢t/b) denotes op; mp; &: (5/ay,y: (t/b).

Sorts are used to control the mobility of names. That @bif(s) = s1...s,, we
know that onlyn-tuples of channel names with sostsare sent or received via a channel
with sorts. If a free name: and a bound namghave the same sort, we have to take into
account that: may replacey during the reduction. We also use sorts as an intermediate
level between names and monoid elements, sinceawvitbnversion it is problematic to
assign monoid elements directly to names.

Monoid elements appear in two places: in the range pfand in the tuples : {s/a).
The idea is to sum up the capabilitiessofvith + in « while « is still free and add: to
mr(s) with & as soon ag is hidden. We have to usg according to the explanation
given in section 2.2. The other possibility would be to immagely add the capabili-
ties tomp(s) with & (without storing them iru first), but sinceu + b < a & b, this
would lead to looser bounds. (It would, however, be possibiee case where we only
consider monoid elements greater than or equ@] since in this case- and® always
coincide.)

In the rest of this paper we use the operations on type assigisngiven in ta-
ble 2 (all operations on sequences are conducted pointviisé\DD-MON) we add
a monoid element to a type assignmerif by addinga to mp(s) (with @) and leav-
ing everything else unchanged. Add*® denotes(...(I'{sva10){s=2a2) | {sman),
(ADD-CAP) describes how to add a monoid element corresponding to a naimthis
caseb is added directly (with+) to the monoid elements assigned to hames, rather than
to those assigned to sorts.

(ADD-MON) (ob;m; &: (3/a))$**) = obym'; &: (3/a)
wherem'(s’) = { m(s)all s =2
m oS (

s) otherwise
(ADD-CAP) (obym;@: {3/a)) + =; : b= (obym;&: (/&)
- Jai+b if i = _]
wherec; = {Clj otherwise

(Sum) (obym;z: (3/a)) ® (obym'; &: <§/l~)>) =obmadm';z: (3/a+ l~)>
(JoIN) (obym;&: (§/a)) Vb =obym;&: ($/aVb)
(ORD) (ob;m;@: (3/a)) < (ob;m';&: (5/b)) <= m < m'anda <b

(REMOVE) If I'= A,z : {s/a), then\{z} = A

Table 2. Operations on type assignments

Summationl”’ ® I'" (SuM) is defined for type assignments which contain the same
names (having identical sorts) and which satisfly = oby: (i.e. they have the same
sort structure). In this case & m’ anda + b denote the pointwise summation. The
summation on type assignments has a counterpart (denotdtelsame symbol) in
Honda’s work [6].

In (JOIN) a pointwise join with every monoid element assigned to annkhname
and the monoid elemetis defined. And finally we need a partial order on type as-
signments (@&D) and an operation removing an assumption on a narftem a type
assignment (RMOVE).

The operations on type assignments satisfy the followiwgla

Lemma 1. It holds that
F(s’a)(@A:(F@A)(s’a) (F't+z:a)@A=T@®A)+z:a
(A, z: (s/a))¥ = AWD g2 (s.a) (D8N = (plean (s

Furthermore® is associative and commutative.

Proof. Straightforward from the definition of the operations.

We are now ready to define the rules of the type system (se=3jfdutandin are
fixed monoid elements (whene must be comparable) representing the capabilities
of output respectively input prefixes.

I'FPT<A
AF P

nk P, FE P
hel, P1|P2

(T-<) I'vO0 F 0(T-N) (T-PAR)

I'w: (s/a),z: <t~,l~)> F P
([2: (E,B))VO,&:: (s/(a—in)VO+ou - z(z).

5 (T-OuT) ifobr(s)=1¢

I'x: {s/a),y: <t~/l~)> []~3
(I'V0,2: (s/(a—outVO+in)) + 2(g).

— (T-IN) if obr(s) =

I'F oa@).P
S (TRestR) Az (s/atsigin)) Fla@) P (o)
if '@ <I'andl'= A, z: {t/a)

I'\{z},z: (s/a)
{@a) (va: s)

Table 3. Rules of the type system

The intuitive meaning of the rules is as follows:

(T-<) We can always over-approximate the capabilities of a gaice

(T-NiL) The nil process can have an arbitrary type assignmentjgedithe monoid
elements of the free names are greater than

(T-PAR) The parallel composition of two processes can be typed bjngdheir re-
spective type assignments.

(T-OuT) First we subtracin from the monoid element associated with the subject
z of the output prefix, since the emergencefoimeans the removal of an input
prefix with subject: somewhere else in the environment. We then take the join of
all monoid elements an@ since we only consider capabilities on the outer level of
processes and thus we only consider future influence byip®siapabilities, but
not by negative ones (since we are doing over-approximgtiarthe endout is
added to the monoid element associated with
Furthermore we have to check that the sort structure isoire. sincer, ... , z,
are communicated via, the string of their sorts must be the object sort of the sort
of z.

(T-IN) As described for (T-OT), we subtracbut, take the join with0 and then add
in. Furthermore we check the correctness of the sort struatiadove.

Since, in this caseyy, ..., y, are bound by the input prefix, all assumptions on
these names are removed from the type assignment, and thiedridrelements are
added to the rest of the type assignment with

(T-RESTR) Ifaname is hidden, we remove the assumption on it, butrrétéormation
on its capabilities by adding its monoid element to the typgignment and by
keeping the sort.

(T-ReP) In this rule we have to make sure that a replicated process ygpe assign-
ment which is either idempotent or gets smaller when addédet. This can be
achieved ifl" contains only negative or idempotent monoid elements.

And furthermore, since we know that infinitely many copiethefinput prefix with
subjectr are available, we add, T or 0, according to the value .

The type system satisfies the following substitution lemmhich is central for
proving the subject reduction property:

Lemma 2. (Substitution)Letz # y be two names.
If X = (I, x: {s/a),y: {s/b)) F P,theny’ = (I',z: {s/a+ b)) F P{z/y}.

Proof. By induction on the typing rules:

(T-0) P = 0 and it follows thate > 0 andb > 0 and thus als@ + 5 > 0. (T-0)
implies thatl', «: {(s/a +b) F P.

(T-<) Y + PandY < X.We can assume that = I",z: (s/a'},y: {s/V)
whereI” < I',a’ < a and¥’ < b. It follows with the induction hypothesis
that I, z: (s/a’ + b)Y F P{z/y}, and this type assignment is smaller (in the
<-relation) thanl’, z: {t/a + b) = X’ and thusY’ + P{z/y}.

(T-PAR) P = Py | Py, thatisP{z/y} = Pi{z/y} | P2{z/y} and

L e {s/a;),y: {s/b;) b P, i€ {1,2}
Y=T1® Iy, 2:{s/ay + az),y: {s/b1 + b3)

with I' = I't ® I3, a = ay + a3 andb = by + b. From the induction hypothesis
it follows that I';, z: (s/a; + b;) F Pi{x/y}. This implies thaty” = Iy ®
oz {s/fay +az + by + b3y F P{x/y}.

(T-OuT) P = z{%).Q), thatis

Az {t/d) F Q
Y=AVO0,z: {t/(a' —iN)VO+outy - P

andoby (t) = obyx (sortz(%)).

Now let o be a substitution which replacesby = and is constant on all other
names. Since the sorts efandy are equal it holds thatorts: (o (w)) = sorts (w)
for all names in¥.

It thus follows thatoby:(sorts:(o(z))) = obg(sortz(z)) = obg(t) =
obz(sortz (%)) = obg:(sorts:(c(%))) and thus the condition for the typing of

P{z/y} = o(2){c(2)).(Q{x/y}) is satisfied.

We now distinguish the following cases:

zZ£x Az #y Inthis caseA = A’ x: (s/a), y: {s/b). It follows with the in-
duction hypothesis thal\’, x: {s/a + b}, z: {t/a’) F Q{x/y}. And we can

conclude that
A'VO0,z: {(s/(a+b)V0),z: (¢t/(a’ —in) VO +ouy - P{z/y}

Since(a+b) V0 < aV0+bVO0 (see section 2.2) this type assignment smaller
(in the <-relation) than

Y =A'V0,z:(s/aV0+bV0),z:{t/(a’ —in)V 0+ ouf
And with (T-<) it follows that X’ + P{z/y}

z=x Az #y InthiscaseA = A’ y: (s/b),t = s anda = d. It follows
from the induction hypothesis that’, z: (s/a + b) + Q{z/y} andY =
A'VO0,z:{s/((a+b)—iN)VO+outy - P{x, y}.
On the other hand’ = A’ v 0,y: (s/bV 0),z: (s/(a —in) V 0 + out) and
Y =A"V0,z: {s/(a —in) vO0+out+ bV 0). And since (see section 2.2)

((a+b) —in) V04 out< ((a—in)+b) VvV 0+ out
<(a—in)vO0+5bVvO0+out
the type assignmeiit is smaller thant” and (T<) impliesX’ + P{z/y}.
z = x Az # y: thisis analogous to the case above.
(T-IN) P =z(2).Q), thatis
Az {t)a),Z: {1,&) F Q
Y= (AV0,z:(t/(a’ —ou)) V0 +in))H) - P

andoby (t) = t.

Now leto be again a substitution which replageby = and is constant on all other

names. Since the sorts efandy are equal it holds thaorts (o (w)) = sorts (w)

for all names in¥.

It thus follows thatoby; (sorty: (o (2))) = obs(sorts(z)) = oby (t) = ¢ and thus

the condition for the typing oP {z/y} = o(2)(2).(Q{x/y}) is satisfied.

We can assume that y andz are different from all names ih We now distinguish

the following cases:

z#£x Az #y Inthiscased = A/, z: (s/a),y: (s/b). It follows with the induc-
tion hypothesis that

Az (sfa+by,z: (t/d'), z: <t~/5> F Qi{z/y}
And we can conclude that
(A'V0,2: (s/(a+b)V0),z: (t/(d' —out) vV O+in)59) + Pla/y}

Since(a+b) V0 < aV0+bVO0 (see section 2.2) this type assignment smaller
(in the <-relation) than

S = (A'VO0,z: (s/aV0+bV0),z: (t/(d —out) V0 +iny)(H

And with (T-<) it follows that X’ + P{z/y}
z=x Az #y Inthiscased = A’ y: {s/b),t = s anda = «’. It follows with
the induction hypothesis that

Al (sfa+b), 22 (i/é) F Q{x/y) ~

T =(A"VO0,z:(t/((a+b)—outvO0+in)he - Pl y}
On the other hand

Y=AV0,y:(s/bVO0),x:{s/(a—ouV0+in),Z: (t/¢)

X = (A'V0,2: (s/(a—out) VO+in+bV0))H

And since (see section 2.2)

((a+b) —ou) VO +in < ((a—out)+b)VO+in
<(a—ouh vVO+bVvO0+in

the type assignmefitis smaller thar” and (T<C) impliesthatY” + P{z/y}.
z = x Az # y: thisis analogous to the case above.
(T-RESTR) P = (vz: 1)Q, thatisA\{z},z: (t/a’) F Qand¥ = A(L*) | P,
Sincez is bound, we can assume that# = andz # y, thusA has the form
Az (s/a), y: {s/b). The induction hypothesis implies that

AN{z},z: (s/a+b),z: (t/d'y F Q{z/y}

Therefore(A/, z: (s/a 4+ b))(»%) F P{x/y}. This type assignment is the same
as(A) Bz (s/a+b) =X
(T-REP) P =!2(%).Q, thatis

A,z {t/d) F 2(2).Q
Y =Az:{t/a' +sig(in)y - P

(A, z: {t/a"y) ® (A, z: {t/a'y) < A, z: {t/d)

We distinguish the following cases:
z#£ x, 2 # y. Inthis caseA = A’ z: (s/a),y: {s/b) and it follows from the
induction hypothesis that

Az (sfa+ by, z: (t/d) F (2(2).Q){z/y}

(Al z: (s]a+b),z: (t/d")) ® (A, x: (s/a+b),z: (t/a'})
=A®A z:{(s/atb+a+b)z:(t/d +d)
< Az {s/a+ by, z: (t/ad)

And therefore
Y= Az (sfa+ by, z: {t/d' + sig(in)) + P{z/y}

z=ux,z#y Inthis caseA = A’ y: (s/b),t = s anda = «’. The induction
hypothesis implies that

Az (sfa+b) F (2(2).Q){z/y}
As above we can conclude that
Az (s/(a+b+sigin)) = P{z/y}

z # ¢,z = y. Analogous to the second case

The types defined in table 3 are not yet invariant under réaluctather than/”, a
modified type assignmerit satisfies the subject reduction property.

Let I' = obym; #: (5/a) and definel’ = (ob;m; &: (5/0))(>%. That is we add
all monoid elements of the remaining free names:itwith . Constructing” directly
during the typing process does not seem to be possible, siadest have to sum up
monoid elements with and then add them to the type tree withthe moment they
are hidden.

In order to show the subject reduction property we need thefing lemma:

Lemma3. If I,z : (s/a) - P andxz ¢ fn(P) it follows thata > 0 andl" - P.And
furthermore ifI” = P and I does not contain a name thenrl’,z : (s/a) + P for
any sorts and any monoid element> 0 (weakening).

Now we can state the subject reduction property in the falhgway:

Proposition 1. (Subject Reduction Property)lf P = () andY + P, then it holds
alsothaty + @Q.AndifP — P’andX P then there exists a type assignméiit
suchthat™’ + P’andY’ < X.

Proof. We show the first half of the proposition by induction on thkeswf structural
congruence.

a-conversion Let (vy: s)P = (vz: s)(P{z/y}). (We assume that & fn(P)).

If ¥ F (vy:s)P it follows thatX > s> andI'\{y}, y: (s/a) F P.From
lemma 3 it follows thatl'\{z, y},y: (s/a),z: {s/0} + P.Lemma 2 then im-
plies thatI'\{x,y}, z: (s/a + 0) F P{z/y}. It follows that (I'\{y}){** F
(ve: s)(P{z/y}) and thereforel - (vz: s)(P{x/y}) (if y is contained in", it
might be necessary to add an assumptiory aacording to lemma 3).

Since everyv-conversion can be reverted by one or mareonversions, the other
direction follows immediately.

(C-Com) obvious, sinces is commutative (see lemma 1)

(C-0) If ¥ + P |oitfollowsthatY > I'® (AV 0) wherel' - P andAisan
arbitrary type assignment. It holds th&t< I ® (A v 0) < X and with (T<) it
follows thaty F P.

If, on the other hand}y’ + P whereX = ob; m; #:
assignmentA = oy m/; i: (3/0) wherem' (s) =
AFoO0andY=XYX® A+ P|O.

(C-Ass) obvious with the associativity af (see lemma 1)

(C-RESTRL) Let(va: s)(vy: t)P = (vy: t)(ve: s)P wherex # y.

If X F (va: s)(vy:)P itfollows that > (160" and 1\ {y, z}, y: (t/b),
z:{s/ay F P.We can interchange andy (see also lemma 1) and this =
(4N and P\ (&, y}, 2+ (s/a), y: {t/b) F P.

ThereforeX + (vy: t)(va: s)P.

(C-RESTR2) Let((va: s)Py) | P2 = (va: s)(Py | Pz) wherex ¢ fn(Py).

If ¥ F ((va:s)Py) | Pyitfollowsthaty > I'i@ Iy wherel, = Py, I} > T'{*®
and I'\{z},z: {(s/a) F+ P;. Sincex ¢ fn(P;) it follows with lemma 3 that
o\{z},z : (s/0) F P,. Therefore(I' ® I')\{z},z: (s/a+0) F P, | P, (I

(§/a), we can construct a type
L foreverys € 5. A satisfies

contains an: if and only if I', contains an). Thus(I' @ I5) + (va: s) (P |
P)and(I'® Fg)(s’“) =" I, < eI, <X Then (T<) implies that
Y F (va:s)(Pr| Pa).

If, on the other hand¥' F (va: s)(P; | P;) we can conclude that > 1{se),
N{z},z:{(s/a) > Ih® Iy andI; = I'/,z:{(s/a;) + P, i € {1,2}. Since
z ¢ fn(Pz) it follows with lemma 3 that:; > 0 and therefore > ay + az > a3 +
0 = ay. Itfollows that(I})¢"* + (va: s)Py. Since it holds thal} + P, (see
lemma 3), we conclude thaf})") @ Iy = (I ® I3+ ((va: s)Py) |
P,. If ¥ does not contain the nameit follows that ¥ > (I'] ® F2’)<s"“> and

thereforeX ((va: s)P1) | Pz. In the other case we have to add an assumption

on z according to lemma 3.
closure under context: this follows immediately since typing is compositional

The second statement is shown by induction on the reduaties.rFor the induc-
tion we need a stronger hypothesis than the one stated alMevehow that iy’ - P
andP — P’ then there are type assignmeni§ A, a sequencé of names occurring
in A and a sequence of monoid elementsf equal length such that

Z/ - P/ Z/ SA_i_i, a A(SOI’tA(i‘),&) S ¥ (1)
Having shown (1) we can conclude that
37 <A+z:a< A{sorta (£),a) < Y

(The middle inequality holds sinded (¢ + a) < (b@® a) & ¢.) Itis left to show that (1)

holds:

(R-CommMm) Let P = 2(2).Q | zg.R, P = Q | R{%Z/y} andX + P.Thisimpliesthe
use of the following typing rulés

Lz {ifb) e (s/a) F Q
NN=TIvo0,z:¢/bv0),z: (s/(a—ou)y VO+in) F 2(2).Q

Y,z {ujéy, y: {v,a),x:{s'"/a'y F R
To= (V0,2 (@/éV0),z: (s'/(a’ —in) VO +out)% F z(7).R
And we know thabby(s) = t andoby (s') = %. And sinceX > I'y® I'; is defined,
it follows thats = s’ andf = .

> (vo)® (Y08 v0),z: (/(bV0)+ (V0)),
z:(s/(a—out) VO0+in+ (a’ —in) V0 + out)

We know that
(rvo)ye XD vy >rer®) Gv0o)+(EV0)>b+eé
(a—ou VO+in+ (a’ —in) Vv 0+ out>
(a —out) + out+ (¢’ —in)+in>a+d

1 We assume that # z; for any j. In the other case, the proof has to be modified, but can be

conducted analogously.

Thus
>Ter%® 2. ({/b+&),2: (s/a+a')
Sinceoby = oby it follows thata = ¢ = obr(s) = oby(s") = ¢ and the substitu-
tion lemma (lemma 2) is applicable which implies:
Y, 2 {t)a+é),x: (s/d’) F R{Z/y}
ThusX’ F Q| R{Z/y} with
Y=Tel 2 {/atb+d),e:(s/atad)

We nowsetd = I'® 7, 2: (t/b+ &), z: (s/a + a’) and show that condition (1)
is satisfied: we usé as the sequence of hames ands the sequence of monoid
elements.

Alsota@)a) — A0G = P o 8@ 2 (/b4 &), 2: (sfa+dy< ¥
Y =T@®lz {la+b+é&),z:(sjat+dy=A+%:a
(R-PAR) LetP = Q|R, Q@ — @', P = Q'|RandX + P.Inthiscasel' + @,

Y F RandX > I' ® 7. The induction hypothesis implies that there are type
assignmentg\,, I'” such that

'@ I'<A+ia AP o p

It followsthatY' = I'" ® 7 is defined and>” + @' | R.NowsetA = A, ® 7.
It holds that

A(sortA(i),a) — A(lsortAl(i),a) ®T <I's 0% <x
Y=T'eY<(A4i:a) el =A@ +i:a=A+i:a
(R-REP) Let P = 2(2).Q | 'z(9).R, P' = Q | R{Z/y} | \z(y).Rand¥ + P.
We will first show that ifA + !z(g).R, then it holds also that z(9).R |
'2(g).R. If A F12(g).R, it holds that

I' v z(9).R
A,z {s/a+sig(in)) F'lz(g).R

wherel'® I' < I'' I = A,z: {s/a) andA > A, z: (s/a + sig(in)) = A", It
follows that" ® A’ F z(g).R |'z(y).R and

I'e A = (A z:s/a)) ® (A, z: (s/a + sig(in)})
=A® A x:{s/fa+a+sig(in)) < A, z: (s/a+sig(in)) < A

Therefored F z(3).R |'z(9).R.

We know that¥ > 1 ® A where? + #(%).QQ andA + 'z(g).R. As shown above
it holds thatd + z(g).R |lz(g).RandthusY > T @ A F #(2).Q | =(y).R |
z(9).R. From (R-@wmmMm) and (R-RAR) we know that the proposition holds for
reduction by communication and reduction underneath dlpbcamposition and
it follows that there exists a type assignmeritsuch thaty” + @ | R{Z/y} |
!z(y).R and condition (1) is satisfied.

l_
l_

(R-RESTR) Let P = (ve: s)Q, P/ = (vz: 5)@Q and@ — Q. Furthermore

I\{z},2: (s/a) F Q
i) (ve: s)Q

We assume thdt does not contain an assumptiongn.e.I'\{z} = I'. Otherwise
we proceed withl"\{«} instead ofl" and add the missing assumption later with
lemma 3. We know that > {54,

The induction hypothesis implies that there exist typegassentsAy, z: {s/b)
andI”, z: {s/c) and sequences, a such that

I z:{(s/c) F Q' I z:(s/c) < (Ar,z: (s/b))+ 7 :a
(Ay, 2 (s/b))OM1® < T s (s/a)

Now (T-RESTR) implies thatX’ = (F’)<s’c) F (vz: s)Q’. We distinguish two
cases:
— (Vie {l,...,n}: & # x;):in this casec < b < a. We defineA = Ags’b).
Then

A(sorta (8),d) A(SortAI(f)@))(s,b) < b)Y < pls,a)

= (4
S =) <A+ a @) < AP yia=A+ia

— (z = z;): in this case(i : @); denotes the sequence of thewherez; has
been dropped: < b+ a; andb < a. We defineA = Ags’b@‘”). Since thej-th
element ofsorta, () is s it holds that

- , ta, (£),a); A, (8),d), (850
Alsorta(#),a); _ (A(ls,b@a]))(sor (),a) _ (A(lsort L (&),))()
< isa) <y
T = (M < (A4 (2 :a))) < AP 4 (@ a),
= A+ (i‘ : gl)j

4 Using the Type System for Process Analysis

As in other type systems for mobile processes, a type gusgargbsence of runtime
errors which may appear in the form of arity mismatches indb®@munication rules
(R-Comm) and (R-ReP), but it also enables us to perform more detailed proceds ana
ysis.

4.1 Process Capabilities

The aim of this paper is to construct type systems yieldirfuisesults for the analysis
and verification of parallel processes. In our case the gehgre system gives infor-
mation concerning structural properties of a process,céheconcerning its input and

output capabilities. We will now formally define the conrientbetween the type of a
process and its capabilities.

Let P be a process and letbe a free name occurring id. We defineP’s capability
wrt. z by adding the following monoid elements: for every usexafs an output port
we addout and for every use of as an input port we adith. Notice that we do not
continue summation after prefixes (see table 4).

Ce(0)=0 Co(P|Q)=Co(P)+ Ca(@)

o outif z = = . inifx =2
Ca(2(g)-P) = {0 otherwise C#(#(9)-P) = {0 otherwise
. sig(in) if z = C.(P)if
Co(12(2).P) = {0 A otﬁerw?se Callvy:)P) = {0 w otﬁefwzi/se

Table 4. Determining the capabilities of a process

Proposition 2. If I' - P, P — P’ and is a free name oF it follows thatC,, (P’) <
my(sortr(x)), i.e. we determine the sort efand look up the corresponding monoid el-
ementinl". And if P contains a subexpressigny: s')(it follows that the capabilities
of y will never exceedny(s’).

Proof. We have to show that if’ - P andz is a free name o, thenC, (P) <
my(sortr()). Then for any success@t’ of P this follows immediately from the sub-
ject reduction property (proposition 1).

This can easily be done by induction ¢hand the only problematic case is repli-
cation: if ¥ = I, z: {(s/a) F !2(%).Q, it follows from (T-Rep) that I, z: {(s/b) F
z(%).Q, wherel' > I'" anda > b+ sig(in). Sincel”, z: {s/b) was produced by typing
rule (T-IN) (and maybe rule () it follows thatb > (a’—in)Vv0-+outfor some monoid
element’. This implies that: > (¢’ — out) vV 0 4 in+ sig(in) > in+ sig(in) = sig(in).

And thereforel, (P) = sig(in) < a < mp(s)®a = mx(s) = mx(sorty(z)). For
all other names: # z it is straightforward to show that. (P) = 0 < my(sortg (z)).

The properties we can derive are of the form: “ileaysthe case that', (P) < a”.
There are many other interesting properties of a differantre we would like to derive.
In section 5 we give some examples describing how these grepean be handled.

4.2 Composition of Type Systems

Given two type systems checking certain capabilities otesses, it is not difficult to
construct a type system computing upper bounds for tupleapmbilities. Let

T, = (I;,out,in;, X;), 7€ {1,2}

be two type systems, where theare lattice-ordered monoidsuyt;, in; are the monoid
elements representing output respectively input cagisifind theX; are predicates on
type assignments, selecting only types satisfying a cep@iperty. Because of (%)

a predicate is only sensible ¥, (") andI" > A imply X;(A). (Example:A predicate
X; is true for all type assignments guaranteeing that any aidarused as an input

channel and as an output channel at most once.) We sa¥;tichecks a predicat;
on processes if' + P andX;(I') imply Y;(P). (In our exampleY;(P) could state
that P is confluent, see also section 5.3.)

ThenT = (I; x I, (out, out), (iny, in2), X') checks the conjunction &f, andY,
if X(i1,72) = X1(i1)AX2(42) and it checks the disjunction &% andY; if X (41, 2) =
X1 (41) V X3 (i2). (All monoid operations otf; x I, are conducted pointwise.)

4.3 Type Inference

In order to support our claim that the type system is usefutife automated analysis
of processes, we roughly sketch a type inference algorittetgrmining the smallest
type (in the< relation defined in section 3) of a proceBsprovidedP has a type. In
order to make sure that a smallest type exists, we imposeotloeving condition on
the I-monoid: for every monoid elemeatc I there is a smallest elemedt such that
a < a' anda’ + o' < o' (the same must be true for the operatip)?.

The algorithm proceeds in two steps:

— In the first step we determine the assignment of sorts to nameéshe mapping
obr. This may be done by representioigas a graph and refinirab step by step by
collapsing graph nodes every time we encounter a consttine formob(s) = s.

Or we can use the sort inference algorithm by Simon Gay [5].

— Inthe second step we compute the monoid elements by indumtithe structure of
P.Inthis case the typing rules are already very construdiiemain complication
arises from typing rule (T-BP). Here we require that the monoidsatisfies the
condition stated above. So (because of rule{))-we may replace every monoid
element: with its corresponding’ in the type assignment that we have derived so
far.

A straightforward implementation of the algorithm has aimnme complexity quadra-
ticin the size ofP. Ameliorations are certainly possible by using efficiegialthms for
unification and by finding an intelligent strategy for conipgtthe monoid elements.

5 Examples

We now get back to the two example procesgeand P’ introduced in section 2.1
and type them with several instantiations of our type systed thereby show how to
mechanise process analysis in these cases.

2 Every I-monoid useful for process analysis that we have caoness so far satisfies this con-
dition. In the case of.*°, a’ is oo for positivea anda itself for all other elements.

We use the algorithm presented in section 4.3 to derive a type
Sc Sd assignment” for P and P’ and in the first step obtain a sort
structureobr as shown in the figure to the lefolf, is the
(%R %bl same forP and P’). If there is an arrow labelledb; from
sort s to sortt, thent is thei-th element of the sequence
S obr(s). The assignment of names (in brackets we give the

1
oy sz bound names) to sorts is:
S c: 8. (disq) hyir(ss,hi,7): 81 d2(sha): s2

In the second step the monoid elememis(s) are computed (see below) in order
to give an upper bound for all names having sort

5.1 Input/Output Behaviour of Channels

One simple application of our type system is to check whethannels are used for
input, output or for both. We use the mondi@ (with elementshone O—“output only”,
I-“input only” andboth) introduced in section 2.2. We set= |, out= O.

For both processeB and P’ we obtain the same type assignments with monoid
elements shown in table 5 (row 1), isg, h; are used neither for input nor output while
all other names may be used for both. Note that, becauseid@ieg®n, typingF' alone
yields capability for namee, but no output capability. acquires output capability only
if communication with the environment is taking place.

This type system is similar to the one in [15] (apart from thet that we consider
types as a representation of process capabilities, rdtaardonstraints on the environ-
ment), our type system however lacks a concept of co- anda@rtance and thus our
bounds are less tight.

5.2 Upper Bounds on the Number of Active Channels

We attempt to define a type system, similar to the one presént@] for our frame-
work, i.e. we want to check how often a channel is used eithreinput or output.

We use the I-monoid.> x Z = (cartesian product of the set of integers withand
—o0) introduced in section 2.2. The first component represdrestimber of active
output prefixes (with a fixed subject) and the second compaeeresents the number
of active input prefixes.

We setout = (1,0), in = (0,1), and typing the processd? and P’ yields the
results given in table 5 (rows 2 & 3). Since férthe upper bound is alwayg, 1) or
smaller we can conclude that there is at most one active pgotiand one active output
port for any given subject at a time. F&f we can guarantee that, egalways occurs
at most once as an output prefix, although it occurs under lecaépn (see monoid
elementny(s.)).

5.3 Confluence

As in [8] we can use upper bounds on the number of active chsriaegyuarantee
confluence forr-calculus processes (see also [14]). Lebe a process, and for every

|Property to be checked | my(sa) | my(se) | my(s1) |mp(s2)]
1{Input/Output behaviour oP and P’ both both both none
2|Upper bounds on active channels/in|| (1,1) (1,1) (1,1) (
3|Upper bounds on active channels|| (oo, o0) | (1,00) | (1,00) | (
4|Lower bounds on active channels#h|| (—1,0) | (-=1,0) |(-1,-1)| (
5 (
6 (

Lower bounds on active channelsiti||(—oo, 00)|(—00, 00)|(—0co, —1)
Avoiding blocked output prefixes iR’ || (o0, 00) | (1,00) | (1,-1)

Table 5. Resulting monoid elements for different instantiationshef generic type system

namez in ¢ which is either free or bound by the scope operatdr holds that its
capabilities never excedd, 1). Then we can guarantee that every channel (also bound
channels) occurs at most once at any given time as activeéamgoutput prefix, and we
have non-overlapping redexes in (R3@m). Thus we can conclude that@ —* @’,
Q' — @1 and@’ — @2, then either); = Q- or there is a proces§; such that
@1 — @3 and@Q)2 — Qs.

Row 2 in table 5 provides upper bouiit] 1) for all capabilities inP. So we can
state thatP is confluent. Note that the same process would not be recedjasconflu-
ent by the type system in [8].

5.4 Lower Bounds on the Number of Active Channels

The type system is not limited to statements of the form:rélz¢ mostn active chan-
nels”, we can also guarantee that theresdifeastn active channels. In order to achieve
this, we use the type system above and justinvert the partat, i.e. we take instead
of <, outandin remain unchanged. This means also that the join the new partial
order is now the meet of the original partial order. Typing® does not give us much
information, since we cannot guarantee that there are stthea- 0 prefixes active at
any given time (see table 5, row 4) for any channel. In facheéwer bounds are even
(—1) stating that the respective channel removes input (or aufafixes instead of
making them available. In this cage—* 0 which means that no lower bounds can be
guaranteed.

Typing P’ yields the monoid elements given in table 5 (row 5) whichestahat
input prefixes with subjects d are available infinitely often.

5.5 Avoiding Blocked Prefixes

Another interesting feature is to avoid blocked prefixes, prefixes which are wait-
ing for a non-existing communication partner. We will firgfile—with the help of a
lattice-ordered monoid—what it means for an output prefigedlocked.

We takeZ> x Z* as an I-monoid and define a new partial ordérj) C (¢, j/) iff
i < i andj > j'. The first component represents the number of output predixéshe
second the number of input prefixes of the same subjett= (1, 0) andin = (0, 1).
We say a name is blockingin P, if P —* P/, C,(P’) O (1,0) (i.e. there is at least
one output prefix with subjeat and no corresponding input prefixes) and for 2t

with P* —* P it follows thatC, (P”) 3 (1, 0) (no communication wittx: will ever
take place).

We can, e.g., avoid this situation, by demanding that it 8agk the case that
Cy(P") = (a,b) and eitherw < 0 orb > 1 (i.e.(a,b) 2 (1,0)). We take the I-monoid
andout in introduced above. This type system can be obtained by cdngpastype
system establishing upper bounds for input prefixes and stadléeshing lower bounds
for output prefixes (see section 4.2). In this way we find oat #il output prefixes
with subjectsc andd are non-blocking inP’ (see table 5, row 6, where the tuples are
composed out of the first component of the tuples in row 3 aadgsétond component
of the tuplesin row 5).

This type system is not the only way to check for blocked pesfixhere are alter-
natives which can be employed in case this version fails.

6 Connection to Linear Types

Atype system that has close connections to ours is the ligparsystem by Kobayashi,
Pierce and Turner [8], since it also involves the typing gftutioutput capabilities of
processes. “Linear” in this context means that the typeesysthecks if a name is used
once or several times for output respectively input.

The central aim of [8] is to introduce a new notion of barbedgroence by reducing
the possible contexts of a process. This question has natduressed in this paper,
itis an interesting direction for future work. In the resttbis section we will highlight
differences and interesting connections between the tp® $ystems.

Our method of identifying linear channels is to establisperbounds on the num-
ber of active channels and to check that these upper bouad=sjaal or smaller than
one. Another approach would be to transform the type systej] idirectly into our
framework, by using the capabilities presented therefdren an I-monoid{|*, 11, 71, {1
S 919,79, 19 where| = 6, ! = {o} (output),? = {i} (input),}= {7, o}. We define

VY —

v = oo ey o= {0 D00
The orderon{1,w} is 1 < w. (The operations were defined partially in [8].) This is an
I-monoid, which is, however, not residuated, since gg-?! is not defined. (The set
{z | | < =471} contains two minimal elements and|*.)

As an alternative we use the I-monoid based on th&8ek Z°° (see section 5.2).

The two type systems differ in their definition of “linear cimeels”: while in [8] a
channel is considered to be linear if it is used at most oncanfiut and output during
the entire execution of a process, we consider a channel tmésr if at any given
moment during the execution of a process it is active at mose dor input and/or
output. Thus our notion of “linear” encompasses the notiojg].

Our notion of “linear” still implies confluence respectiygdartial confluence. The
processP in our examples is identified as a confluent process (seeregiB), while
this would not be the case in the type system in [8].

The type system in [8] checks that output prefixes are alwatsimed with a corre-
sponding input prefix and vice versa. At first sight this relskas our method of avoid-
ing blocked prefixes (see section 5.5). But since we onlyidengctive prefixes the
effects are different. While in [8] the procegs = (vz: {!)(x.z.0) can be typed,
stating thatr is linear and both input and output prefix are used, our tygeesys for
avoiding blocked prefixes rejects this process, since ittigadly blocked.

Our type system has one deficiency, in that it sometimes appreximates too
much. Consider, for exampl@ = = | ¥ | Z{x) | Z{y). Following [8] this process
is associated with the type: :1“[[1[]],z :?![],y :1*[] + @ whereas in our type
system, we can only state thétl-) wheremy(sortr(z)) = (2, 0), mp(sortr(z)) =
my(sortp(y)) = (1, 1), i.e. we have merged the upper bounds#andy and have
lost information, which means that we can no longer stateathsiused only for input
andw is used only for output.

This situation can probably be amended by introducing squibgy i.e. covariant and
contravariant types as in [15].

7 Conclusion and Future Work

This work has a similar aim as that of Honda [6], in that it aiés to describe a gen-
eral framework for process analysis using type systems. d¥eentrate on a more
specialised but still generic type system, which enable® ypgove the subject reduc-
tion property for the general case. We have shown that, gegpigenerality, the type
system can be instantiated in order to yield type systenagaelto existing ones. We
have also shown how to parameterise type systems and whthbkiparameters are
feasible (in our case an I-monoid).

Our type system was derived from a type system for a grapbeqa®cess calculus
with graphs as types, which make it easier to add additioslabiour information and
which have a clear correspondence to associated monoi@eisrfvia morphisms and
categorical functors) [10]. A graph-based type system taitfices instead of monoids
was presented in [11]. For lattices or positive cones of kaids, generic type systems
are much easier to present. The main complication arises fran-positive elements
and residuation.

Inspiration for this work came from papers deriving infotioa on the behaviour
of a process by inspecting its input/output capabilitieshsas [15, 14, 8]. In order to
conduct process analysis concerning more complex preggds was done e.g. in [7,
4]) it is necessary to use type systems assigning behaudomiation (i.e. monoid
elements in our case) not only to single channels, but ratharples of channels or
other more complex structures. This normally results innai sedditive type system, in
the terminology of Honda [6], while our present type systsstiictly additive. In order
to extend this type system, a first solution would be to alloenoid labels for-ary
tuples of names. Another idea is to integrate it into thegrateal framework presented
in [11], which would allow us to specify very general behawidescriptions.

We believe that generic type systems can be developed ial® saitable for fast
debugging and the analysis of concurrent programs. Thestegtis to apply the type

system presented here to “real-life examples” and to maikste programming lan-
guages.

Remark: this report is the extended version of [9].

Acknowledgements:l would like to thank the anonymous referees for their hdlpfu

comments, especially for the suggestion to use a sort syiatggad of type trees.

References

10.

11.

12.

13.

14.

15.

16.

. Martin Abadi. Secrecy by typing in security protocols.Theoretical Aspects of Computer

Software pages 611-638. Springer-Verlag, 1997.

. Gérard Berry and Gérard Boudol. The chemical abstraathime. Theoretical Computer

Science96:217-248,1992.

. G. Birkhoff. Lattice Theory American Mathematical Society, third edition, 1967.
. Chiara Bodei, Pierpaolo Degano, Flemming Nielson, anghndaRiis Nielson. Control flow

analysis for the pi-calculus. IRroc. of CONCUR '98

. Simon J. Gay. A sort inference algorithm for the polyadhcalculus. InProc. of POPL ‘93

ACM, 1993.

. KoheiHonda. Composing processesPhoc. of POPL'96 pages 344-357. ACM, 1996.
. Naoki Kobayashi. A partially deadlock-free typed pracealculus. InProc. of LICS '97

pages 128-139. IEEE, Computer Society Press, 1997.

. Naoki Kobayashi, Benjamin C. Pierce, and David N. Turhémearity and the pi-calculus.

In Proc. of POPL'96 pages 358-371. ACM, 1996.

. Barbara Konig. Analysing input/output-capabilitifsobile processes with a generic type

system. InProc. of ICALP 2000

Barbara Konig. Description and Verification of Mobile Processes with Grapéwriting
TechniquesPhD thesis, Technische Universitat Miinchen, 1999.

Barbara Konig. Generating type systems for procegshgralnProc. of CONCUR '99
pages 352-367. Springer-Verlag, 1999. LNCS 1664.

R. Milner, J. Parrow, and D. Walker. A calculus of mobilgesses.Information and
Computation100(1):1-77, 1992.

Robin Milner. The polyadicr-calculus: a tutorial. In F. L. Hamer, W. Brauer, and
H. Schwichtenberg, editorgogic and Algebra of Specificatio®springer-Verlag, Heidel-
berg, 1993.

Uwe Nestmann and Martin Steffen. Typing confluenceSétond International ERCIM
Workshop on Formal Methods in Industrial Critical Syste@sgena, Italy, July 4-5, 1997)
pages 77-101, 1997.

Benjamin Pierce and Davide Sangiorgi. Typing and subgyfor mobile processes. Iroc.
of LICS ‘93 pages 376-385, 1993.

James Riely and Matthew Hennessy. Distributed prosesgelocation failures. IRroc. of
ICALP’97, pages 471-481. Springer-Verlag, 1997. LNCS 1256.

SFB 342: Methoden und Werkzeuge fur die Nutzung paralleler
Rechnerarchitekturen

bisher erschienen :
Reihe A

Liste aller erschienenen Berichte von 1990-1994
auf besondere Anforderung

342/01/95 A Hans-Joachim Bungartz: Higher Order Finitertelats on Sparse Grids

342/02/95 A Tao Zhang, Seonglim Kang, Lester R. Lipsky: Tegdmance of Parallel Comput-
ers: Order Statistics and Amdahl’s Law

342/03/95 A Lester R. Lipsky, Appie van de Liefvoort: Tramshation of the Kronecker Product
of Identical Servers to a Reduced Product Space

342/04/95 A Pierre Fiorini, Lester R. Lipsky, Wen-Jung Hskppie van de Liefvoort: Auto-
Correlation of Lag-k For Customers Departing From Semi#darProcesses

342/05/95 A Sascha Hilgenfeldt, Robert Balder, Christophgér: Sparse Grids: Applications to
Multi-dimensional Schrodinger Problems

342/06/95 A Maximilian Fuchs: Formal Design of a Model-N @ter

342/07/95 A Hans-Joachim Bungartz, Stefan Schulte: Caupteblems in Microsystem Technol-
ogy

342/08/95 A Alexander Pfaffinger: Parallel CommunicationWorkstation Networks with Com-
plex Topologies

342/09/95 A Ketil Stglen: Assumption/Commitment RulesBata-flow Networks - with an Em-
phasis on Completeness

342/10/95 A Ketil Stglen, Max Fuchs: A Formal Method for Haede/Software Co-Design

342/11/95 A Thomas Schnekenburger: The ALDY Load DistitiuSystem

342/12/95 A Javier Esparza, Stefan Romer, Walter Voglartmprovement of McMillan’s Unfold-

ing Algorithm

342/13/95 A Stephan Melzer, Javier Esparza: Checking BySteperties via Integer Program-
ming

342/14/95 A Radu Grosu, Ketil Stglen: A Denotational Model¥obile Point-to-Point Dataflow
Networks

342/15/95 A Andrei Kovalyov, Javier Esparza: A Polynomidgérithm to Compute the Concur-
rency Relation of Free-Choice Signal Transition Graphs

342/16/95 A Bernhard Schatz, Katharina Spies: Formalga&ymur logischen Kernsprache der
Focus-Entwicklungsmethodik

342/17/95 A Georg Stellner: Using CoCheck on a Network of K§tations

342/18/95 A Arndt Bode, Thomas Ludwig, Vaidy Sunderam, Rdl&Vismuller: Workshop on
PVM, MPI, Tools and Applications

342/19/95 A Thomas Schnekenburger: Integration of LoadrDigion into ParMod-C

342/20/95 A Ketil Stglen: Refinement Principles Supporthmg Transition from Asynchronous to
Synchronous Communication

342/21/95 A Andreas Listl, Giannis Bozas: Performance &aising Subpages for Cache Co-
herency Control

342/22/95 A Volker Heun, Ernst W. Mayr: Embedding GraphdwvBbunded Treewidth into Opti-
mal Hypercubes

342/23/95 A Petr Jancar, Javier Esparza: Deciding Fiageof Petri Nets up to Bisimulation

342/24/95 A M. Jung, U. Rude: Implicit Extrapolation Metteffor Variable Coefficient Problems

342/01/96 A Michael Griebel, Tilman Neunhoeffer, Hans Reghlgebraic Multigrid Methods for
the Solution of the Navier-Stokes Equations in Complic&@edmetries

342/02/96 A Thomas Grauschopf, Michael Griebel, Hans Reglaédditive Multilevel-
Preconditioners based on Bilinear Interpolation, MatriepBndent Geometric
Coarsening and Algebraic-Multigrid Coarsening for Sec@mnder Elliptic PDEs

Reihe A

342/03/96 A Volker Heun, Ernst W. Mayr: Optimal Dynamic Edgisjoint Embeddings of Com-
plete Binary Trees into Hypercubes

342/04/96 A Thomas Huckle: Efficient Computation of Sparpprximate Inverses

342/05/96 A Thomas Ludwig, Roland Wismuller, Vaidy Surader Arndt Bode: OMIS — On-line
Monitoring Interface Specification

342/06/96 A Ekkart Kindler: A Compositional Partial OrdexrBantics for Petri Net Components

342/07/96 A Richard Mayr: Some Results on Basic Parallet&sses

342/08/96 A Ralph Radermacher, Frank Weimer: INSEL Syiaxecht

342/09/96 A P.P. Spies, C. Eckert, M. Lange, D. Marek, R. Radeher, F. Weimer, H.-M.
Windisch: Sprachkonzepte zur Konstruktion verteiltert8yse

342/10/96 A Stefan Lamberts, Thomas Ludwig, Christian &@pérndt Bode: PFSLib — A File
System for Parallel Programming Environments

342/11/96 A Manfred Broy, Gheorghe Stefanescu: The Algeth Stream Processing Functions

342/12/96 A Javier Esparza: Reachability in Live and SaéeRehoice Petri Nets is NP-complete

342/13/96 A Radu Grosu, Ketil Stglen: A Denotational Model¥obile Many-to-Many Data-flow
Networks

342/14/96 A Giannis Bozas, Michael Jaedicke, Andreas LB#rnhard Mitschang, Angelika
Reiser, Stephan Zimmermann: On Transforming a Sequer@iell3BMS into a Par-
allel One: First Results and Experiences of the MIDAS Ptojec

342/15/96 A Richard Mayr: A Tableau System for Model Cheghitetri Nets with a Fragment of
the Linear Timeu -Calculus

342/16/96 A Ursula Hinkel, Katharina Spies: Anleitung zge3ifikation von mobilen, dynamis-
chen Focus-Netzen

342/17/96 A Richard Mayr: Model Checking PA-Processes

342/18/96 A Michaela Huhn, Peter Niebert, Frank Wallnett:yRur Model Checker on Diet: Ver-
ification on Local States

342/01/97 A Tobias Muller, Stefan Lamberts, Ursula Ma&eorg Stellner: Evaluierung der Leis-
tungsf’ahigkeit eines ATM-Netzes mit parallelen Prograiemmibliotheken

342/02/97 A Hans-Joachim Bungartz and Thomas Dornseiferrsg Grids: Recent Developments
for Elliptic Partial Differential Equations

342/03/97 A Bernhard Mitschang: Technologie f’ur ParallBlatenbanken - Bericht zum Work-
shop

342/04/97 A nicht erschienen

342/05/97 A Hans-Joachim Bungartz, Ralf Ebner, Stefan BeHdierarchische Basen zur effizien-
ten Kopplung substrukturierter Probleme der Strukturraadh

342/06/97 A Hans-Joachim Bungartz, Anton Frank, FloriaridvleTiiman Neunhoeffer, Stefan
Schulte: Fluid Structure Interaction: 3D Numerical Sintida and Visualization of
a Micropump

342/07/97 A Javier Esparza, Stephan Melzer: Model ChedKihgusing Constraint Programming

342/08/97 A Niels Reimer: Untersuchung von Strategiervéiteiltes Last- und Ressourcenman-
agement

342/09/97 A Markus Pizka: Design and Implementation of tiJGNSEL-Compiler gic

342/10/97 A Manfred Broy, Franz Regensburger, Bernhar@&cltKatharina Spies: The Steam-
boiler Specification - A Case Study in Focus

342/11/97 A Christine Rockl: How to Make Substitution Rme® Strong Bisimilarity

342/12/97 A Christian B. Czech: Architektur und Konzept Bggsos-Kerns

342/13/97 A Jan Philipps, Alexander Schmidt: Traffic Flowtiata Flow

342/14/97 A Norbert Frohlich, Rolf Schlagenhaft, Josedfigg¢hmann: Partitioning VLSI-Circuits
for Parallel Simulation on Transistor Level

342/15/97 A Frank Weimer: DaViT: Ein System zur interakitivausfuhrung und zur Visual-
isierung von INSEL-Programmen

342/16/97 A Niels Reimer, Jurgen Rudolph, Katharina Spiesy FOCUS nach INSEL - Eine
Aufzugssteuerung

Reihe A

342/17/97 A Radu Grosu, Ketil Stglen, Manfred Broy: A Detiotzal Model for Mobile Point-to-
Point Data-flow Networks with Channel Sharing

342/18/97 A Christian Roder, Georg Stellner: Design ofd ddanagement for Parallel Applica-
tions in Networks of Heterogenous Workstations

342/19/97 A Frank Wallner: Model Checking LTL Using Net Ultfimgs

342/20/97 A Andreas Wolf, Andreas Kmoch: Einsatz eines matschen Theorembeweisers
in einer taktikgesteuerten Beweisumgebung zur LosungseiBeispiels aus der
Hardware-Verifikation — Fallstudie —

342/21/97 A Andreas Wolf, Marc Fuchs: Cooperative Pardllgbmated Theorem Proving

342/22/97 A T. Ludwig, R. Wismduller, V. Sunderam, A. BodeviCs - On-line Monitoring Inter-
face Specification (Version 2.0)

342/23/97 A Stephan Merkel: Verification of Fault Tolerarg@rithms Using PEP

342/24/97 A Manfred Broy, Max Breitling, Bernhard Schétatharina Spies: Summary of Case
Studies in Focus - Part Il

342/25/97 A Michael Jaedicke, Bernhard Mitschang: A Fraorévor Parallel Processing of Ag-
gregat and Scalar Functions in Object-Relational DBMS

342/26/97 A Marc Fuchs: Similarity-Based Lemma Generatigth Lemma-Delaying Tableau
Enumeration

342/27/97 A Max Breitling: Formalizing and Verifying Timeakp with FOCUS

342/28/97 A Peter Jakobi, Andreas Wolf: DBFW: A Simple Data® FrameWork for the Evalua-
tion and Maintenance of Automated Theorem Prover Data.(wmtumentation)

342/29/97 A Radu Grosu, Ketil Stglen: Compositional Speaifon of Mobile Systems

342/01/98 A A. Bode, A. Ganz, C. Gold, S. Petri, N. Reimer, Bhi8mann, T. Schnekenburger
(Herausgeber): "Anwendungsbezogene Lastverteiluni’y’'98

342/02/98 A Ursula Hinkel: Home Shopping - Die Spezifikatdmer Kommunikationsanwendung
in Focus

342/03/98 A Katharina Spies: Eine Methode zur formalen Magteng von Betriebssys-
temkonzepten

342/04/98 A Stefan Bischof, Ernst-W. Mayr: On-Line Schéudglof Parallel Jobs with Runtime
Restrictions

342/05/98 A St. Bischof, R. Ebner, Th. Erlebach: Load Bailsgpéor Problems with Good Bisec-
tors and Applications in Finite Element Simulatiofgorst-case Analysis and Practical
Results

342/06/98 A Giannis Bozas, Susanne Kober: Logging and CRsbovery in Shared-Disk
Database Systems

342/07/98 A Markus Pizka: Distributed Virtual Address Spatanagement in the MoDiS-OS

342/08/98 A Niels Reimer: Strategien fur ein verteiltest-aind Ressourcenmanagement

342/09/98 A Javier Esparza, Editor: Proceedings of INFNI9B

342/10/98 A Richard Mayr: Lossy Counter Machines

342/11/98 A Thomas Huckle: Matrix Multilevel Methods anaéEwnditioning

342/12/98 A Thomas Huckle: Approximate Sparsity Patteonghe Inverse of a Matrix and Pre-
conditioning

342/13/98 A Antonin Kucera, Richard Mayr: Weak Bisimilgnitith Infinite-State Systems can be
Decided in Polynomial Time

342/01/99 A Antonin Kucera, Richard Mayr: Simulation Pig&ron Simple Process Algebras

342/02/99 A Johann Schumann, Max Breitling: Formalisigrund Beweis einer Verfeinerung aus
FOCUS mit automatischen Theorembeweisern — Fallstudie —

342/03/99 A M. Bader, M. Schimper, Chr. Zenger: HierarchBases for the Indefinite Helmholtz
Equation

342/04/99 A Frank Strobl, Alexander Wisspeintner: Spegiiam of an Elevator Control System

342/05/99 A Ralf Ebner, Thomas Erlebach, Andreas Ganz,didaGold, Clemens Harlfinger,
Roland Wism”uller: A Framework for Recording and VisuatigiEvent Traces in Par-
allel Systems with Load Balancing

Reihe A

342/06/99 A Michael Jaedicke, Bernhard Mitschang: The Mdfterator Method: Integrating Al-
gorithms for the Efficient and Parallel Evaluation of Usesfided Predicates into OR-
DBMS

342/07/99 A Max Breitling, Jan Philipps: Black Box Views dafafe Machines

342/08/99 A Clara Nippl, Stephan Zimmermann, Bernhard dhiéeg: Design, Implementation
and Evaluation of Data Rivers for Efficient Intra-Query Hatsm

342/09/99 A Robert Sandner, Michael Mauderer: IntegriBegschreibung automatisierter Produk-
tionsanlagen - eine Evaluierung praxisnaher Beschre#iengniken

342/10/99 A Alexander Sabbah, Robert Sandner: Evaluafi®ewi Net and Automata Based De-
scription Techniques: An Industrial Case Study

342/01/00 A Javier Esparza, David Hansel, Peter Rossm&t#éfan Schwoon: Efficient Algorithm
for Model Checking Pushdown Systems

342/02/00 A Barbara Konig: Hypergraph Construction asdApplication to the Compositional
Modelling of Concurrency

342/03/00 A Max Breitling and Jan Philipps: Verification Brams for Dataflow Properties

342/04/00 A Gunther Rackl: Monitoring Globus ComponenitsiwiIMO

SFB 342 : Methoden und Werkzeuge fur die Nutzung paralleler
Rechnerarchitekturen

Reihe B

342/1/90 B Wolfgang Reisig: Petri Nets and Algebraic Speaifons

342/2/90 B Jorg Desel: On Abstraction of Nets

342/3/90 B Jorg Desel: Reduction and Design of Well-betidaree-choice Systems

342/4/90 B Franz Abstreiter, Michael Friedrich, Hansgéiir Plewan: Das Werkzeug runtime zur
Beobachtung verteilter und paralleler Programme

342/1/91 B Barbara Paech: Concurrency as a Modality

342/2/91 B Birgit Kandler, Markus Pawlowski: SAM: Eine Sert Toolbox -
Anwenderbeschreibung

342/3/91 B Erwin Loibl, Hans Obermaier, Markus Pawlowskit\brkshop uber Parallelisierung
von Datenbanksystemen

342/4/91 B Werner Pohlmann: A Limitation of Distributed Silation Methods

342/5/91 B Dominik Gomm, Ekkart Kindler: A Weakly Coherentrtdally Shared Memory
Scheme: Formal Specification and Analysis

342/6/91 B Dominik Gomm, Ekkart Kindler: Causality Basea&fication and Correctness Proof
of a Virtually Shared Memory Scheme

342/7/91 B W. Reisig: Concurrent Temporal Logic

342/1/92 B Malte Grosse, Christian B. Suttner: A Paralle@ithm for Set-of-Support
Christian B. Suttner: Parallel Computation of Multiple Sef-Support

342/2/92 B Arndt Bode, Hartmut Wedekind: Parallelrechridreorie, Hardware, Software, An-
wendungen

342/1/93 B Max Fuchs: Funktionale Spezifikation einer Gesetiigkeitsregelung

342/2/93 B Ekkart Kindler: Sicherheits- und Lebendigkeigenschaften: Ein Literaturtiberblick

342/1/94 B Andreas Listl; Thomas Schnekenburger; Michaieldfich: Zum Entwurf eines Pro-
totypen fur MIDAS

