
TECHNISCHEUNIVERSIT�ATM �UNCHEN
INSTITUT F�UR INFORMATIKSonderfors
hungsberei
h 342:Methoden und Werkzeuge f�ur die Nutzungparalleler Re
hnerar
hitekturen

Analysing Input/Output Capabilities ofMobile Pro
esses with a Generi
 TypeSystemBarbara K�onig

TUM-I0009SFB-Beri
ht Nr. 342/05/00 AApril 00

TUM{INFO{04-I0009-0/1.{FIAlle Re
hte vorbehaltenNa
hdru
k au
h auszugsweise verboten

2000 SFB 342 Methoden und Werkzeuge f�urdie Nutzung paralleler Ar
hitekturenAnforderungen an: Prof. Dr. A. BodeSpre
her SFB 342Institut f�ur InformatikTe
hnis
he Universit�at M�un
henD-80290 M�un
hen, GermanyDru
k: Fakult�at f�ur Informatik derTe
hnis
hen Universit�at M�un
hen

Analysing Input/Output-Capabilities of Mobile
Processes with a Generic Type System?

Barbara König(koenigb@in.tum.de)

Fakultät für Informatik, Technische Universität München

Abstract. We introduce a generic type system (based on Milner’s sort system)
for the synchronouspolyadic�-calculus, allowing us to mechanise the analysis of
input/output capabilities of mobile processes. The parameter of the generic type
system is a lattice-ordered monoid, the elements of which are used to describe
the capabilities of channels with respect to their input/output-capabilities. The
type system can be instantiated in order to check process properties such as upper
and lower bounds on the number of active channels, confluenceand absence of
blocked processes.

1 Introduction

For the analysis and verification of processes there are basically two approaches: meth-
ods that are complete, but cannot be fully mechanised, and fully automatic methods
which are consequently not complete, i.e. not all processessatisfying the property to be
checked are recognised.

One promising direction for the latter approach is to use type or sort systems and
type inference with rather complex types abstracting from process behaviour. In the last
few years there have been several papers presenting such type systems for the polyadic�-calculus and other process calculi, checking e.g. input/outputbehaviour [15], absence
of deadlocks [7], security properties [1, 4], allocation ofpermissions to names [16] and
many others. Types are compositional and thus allow reuse ofinformation obtained in
the analysis of smaller subsystems.

One drawback of the type systems mentioned above is the fact that they are spe-
cialised to check very specific properties. A much more general approach is a theory
of types by Honda [6] which is based on typed algebras and gives a classification of
type systems. This theory is very general and it is thus necessary to prove the subject
reduction property and the correctness of a type system for every instance. Our paper
attempts to fill the gap between the two extremes. We present ageneric type system
where we can show the subject reduction property for the general case, and by instan-
tiating the type system we are able to analyse specific properties of processes. Despite
its generality, our type system can be used to generate existing type systems, or at least
subsets of them. With the introduction of residuation (explained below) we can even
type some processes which are not typable by comparable typesystems.

We concentrate on properties connected to input/output capabilities of processes in
the synchronous polyadic�-calculus. Compared to many other type systems a type of a
process in our setting is not a constraint on the environmentor context of the process (as? Research supported by SFB 342 (subproject A3) of the DFG.

in [15]), but rather a representation of the capabilities ofthe process itself. Composing
two processes in our setting means adding their capabilities.

In our examples (see section 5) we check properties such as upper and lower bounds
on the number of active channels, confluence, absence of blocked input or output pre-
fixes. Determining these capabilities of a process involvescounting and we attempt to
keep this concept as general as possible by basing the generic type system on com-
mutative monoids. Instantiating a type system mainly involves choosing an appropriate
monoid, and monoid elements associated with input and output prefixes (e.g. for count-
ing the number of prefixes with a certain subject).

Instead of giving the precise answer to every question, our type system uses over-
approximation (e.g. we can expect results of the form “thereare at most two active
channels with subjectx at any given time”). Hence plain monoids are not sufficient, but
we need ordered monoids (so-called lattice-ordered monoids or l-monoids), equipped
with a partial order compatible with summation.

There is a huge class of lattice-ordered monoids which are residuated, i.e. some
limited form of subtraction can be defined. Residuation can be put to good use in pro-
cess analysis. Consider, e.g. the processP = �x:x:0. WhileP increases the number of
occurrences of the output prefix�x by one, it does not do so for the input prefixx, since
we are interested exclusively in the number of prefixes on theouter level (i.e. in pre-
fixes which are currently active) andx can only be reached by a communication with�x
which decreases the number of input prefixes in the environment by one. This decrease
can be anticipated when typingP , and is taken into consideration by subtracting one
from the number of input prefixes.

The type of a process contains an assignment of names to sortsand a mapping of
sorts to strings of sorts (as in [13]), keeping track of channel arities, i.e. if channelx has
sorts, andn-ary tuples are communicated viax, thens will be mapped to a string of
sorts having lengthn, being the sorts of the respective channels. Thus, successful typing
also guarantees the absence of runtime errors produced by mismatching arities. Further-
more a monoid element is assigned to each sorts. The monoid element is expected to
be an upper bound for the capabilities of all channels havingsorts.

The rest of this paper is structured as follows: in section 2 we introduce some pre-
liminaries, by giving a short summary of the�-calculus, presenting lattice-ordered com-
mutative monoids and defining the notion of type (and some operations on types). In
section 3 we present the type system and show the subject reduction property for its
most general version, i.e. for arbitrary l-monoids. We thendemonstrate how the type
system can be used for process analysis (section 4), by giving the connection between
the type of a process and its input/output capabilities. This section concludes with the
sketch of an algorithm for type inference. We will then discuss some examples, related
work and directions for future work.

2 Preliminaries

2.1 The�-Calculus

The�-calculus [12,13] is an influential paradigm describing communication and mo-
bility of processes. In this paper we will consider the synchronous polyadic�-calculus

without choice and matching, and replication is only definedfor input prefixes. Its syn-
tax is as follows:P ::= 0 j (�x : s)P j P1jP2 j �xh~zi:P j x(~y):P j !x(~y):P
wheres is an element from a fixed set of sortsS andx is taken from a fixed set of namesN . ~y = y1 : : : yn and~z = z1 : : : zn are abbreviations for sequences with elements fromN . We call�xh~zi output prefixandx(~y) input prefix.

The set of all free names (i.e. names not bound by either� or by an input prefix) of
a processP is denoted byfn(P). The process obtained by replacing the free namesyi
byxi in P (and avoiding capture) is calledPf~x=~yg.

Structural congruence is the smallest congruence obeying the rules in the upper part
of table 1, and equating processes that can be converted intoone another by consistent
renaming of bound names (�-conversion). We use a reduction semantics as for the
chemical abstract machine [2] instead of a labelled transition semantics.

S
tr

u
ct

u
ra

lC
o

n
g

ru
e

n
ce

(C-COM) P1jP2 � P2jP1 (C-0) P j0 � P
(C-ASS) P1j(P2jP3) � (P1jP2)jP3

(C-RESTR1) (�x : s)(�y : t)P � (�y : t)(�x : s)P if x 6= y
(C-RESTR2) ((�x : s)P1)jP2 � (�x : s)(P1jP2) if x 62 fn(P2)

R
e

d
u

ct
io

n
R

u
le

s

(R-COMM) �xh~zi:Q j x(~y):P ! Q j Pf~z=~yg
(R-REP) �xh~zi:Q j !x(~y):P ! Q j Pf~z=~yg j !x(~y):P

(R-PAR)
P ! P 0P jQ! P 0jQ (R-RESTR)

P ! P 0(�x : s)P ! (�x : s)P 0
(R-EQU)

Q � P;P ! P 0; P 0 � Q0Q! Q0
Table 1.operational semantics of the�-calculus

Consider the following processes which we will use as an example in this paper (we
omit the final0):F =
(r): �dhri:d(a):�
hai S = d(s):s(h1; h2): �dhh1i T = �
hhi:
(x) H = �hhi1; i2i
There is a forwarderF which receives requests on a channel
, forwards them on a
channeld to a server, receives the answer and sends it back on
. The serverS receives
requests ond, and we assume that these requests come with a names where the server
can get further information. The server obtains this information, processes it and sends
the answer back ond (in our example we keep the “processing part” very simple, the
server just sends back the first component). FurthermoreT is a trigger process, starting

the execution ofF and receiving the result in the end, andH delivers information to
the server.

We can combine the processesF , S, T , H to obtainP as the entire system. If we
wantF andS to be persistent, we regardP 0.P = T j H j (�d : sd)(F j S) P 0 = T j H j (�d : sd)(!F j!S)

A programmer analysing this piece of code might be interested in the following
properties: input/output behaviour, upper and lower boundon the number of channels
being active, confluence properties and absence of blocked prefixes that never find a
communication partner. E.g., examiningP will reveal that at any given time every name
is used for input and output at most once and thatP is therefore confluent.

2.2 Residuated Lattice-ordered Monoids

Lattice-ordered monoids are a well-developed mathematical concept (see e.g. [3]). We
are interested in commutative residuated l-monoids in order to represent input/output
capabilities.

Definition 1. (Lattice-ordered Monoid)
A commutative lattice-ordered monoid (l-monoid)is a tuple(I;+;�) whereI is a

set,+ : I � I ! I is a binary operation and� is a partial order which satisfy:

– (I;+) is a commutative monoid, i.e.+ is associative and commutative, and there
is a unit0 with 0 + a = a for every monoid elementa 2 I.

– (I;�) is a lattice, i.e.� is a partial order, where two elementsa; b 2 I have ajoin
(or least upper bound)a _ b and ameet(or greatest lower bound)a ^ b.

– I contains a bottom element?, the smallest element inI, and a top element>, the
greatest element inI.

– For a; b;
 2 I: a+(b_
) = (a+ b)_ (a+
) anda+(b^
) = (a+ b)^ (a+
)
Any l-monoid (I;+;�) is associated with an l-monoid(I;�;�) wherea � b =(a + b) _ a _ b and? is the unit. The significance of� can be made clear with the

following consideration: monoid elements will be used to label sorts, being an upper
bound for the capabilities of channels having this sort. E.g., we assume that a free namex and a bound namey have sorts, indicating that, during reduction,x might replacey.
The capabilities ofx andy area respectivelyb. What capability should be associated
with s? In the presence of positive monoid elements only,a + b is the correct answer.
If, however,a is negative,a + b is actually smaller thanb and ifx has not yet replacedy, the monoid element associated withs underestimates the capabilities ofy. Since we
use over-approximation the correct sort label isa� b.
Definition 2. (Residuated l-monoid)Let (I;+;�) be an l-monoid and leta; b 2 I.
The residuala � b is the smallestx (if it exists) such thata � x + b. I is called
residuatedif all residualsa� b exist inI for a; b 2 I.

Example:one l-monoid which we will later use for the analysis of processes isIO = (fnone; I;O; bothg;_;�) wherenone� I � both, none� O � bothand the
monoid operation is the join, i.e. the l-monoid degeneratesto a lattice. A channel name
has for example capabilityO if it is used at most for output and capabilitybothif it may
be used for both output and input.

In order to count the number of inputs or outputs we use the l-monoidZ1 =(Z[f1;�1g;+;�) with all integers including1 and�1 (1 + (�1) = �1).
Residuation is subtraction for all monoid elements different from1 and�1.

The cartesian product of two l-monoids, e.g.Z1�Z1, is also an l-monoid.

We use the following inequations concerning residuated l-monoids: for all elementsa; b;
 of a residuated l-monoid it holds thata � (a� b) + b (a+ b)� b � a (a + b)�
 � (a�
) + b(a+ b) _ 0 � (a _ 0) + (b _ 0) a+ b � a� b ?+? = ? >+ > = >
And we define:sig(a) = �? if a < 0 0 if a = 0> if a > 0 undefinedotherwise

3 The Type System and its Properties

We define the notion of types and type assignments which have already been informally
introduced in section 1.

Definition 3. (Type Assignment)Let S be a fixed set of sorts and let(I;+;�) be a
fixed l-monoid. A type assignment� = ob� ;m� ;x1 : hs1=a1i; : : : ; xn : hsn=ani (ab-
breviated by ob� ;m� ; ~x : h~s=~ai) consists of asort mappingob� : S ! S� (mapping
sorts toobject sorts), a mappingm� : S ! I (assigning a monoid element to every
sort) and an assignment of channel namesxi to tuples consisting of a sortsi and a
monoid elementai.

We define sort� (xi) = si and�; y : ht=bi denotes ob� ;m� ; ~x : h~s=~ai; y : ht=bi.
Sorts are used to control the mobility of names. That is ifob� (s) = s1 : : : sn, we

know that onlyn-tuples of channel names with sortssi are sent or received via a channel
with sorts. If a free namex and a bound namey have the same sort, we have to take into
account thatx may replacey during the reduction. We also use sorts as an intermediate
level between names and monoid elements, since with�-conversion it is problematic to
assign monoid elements directly to names.

Monoid elements appear in two places: in the range ofm� and in the tuplesx : hs=ai.
The idea is to sum up the capabilities ofx with + in a while x is still free and adda tom� (s) with � as soon asx is hidden. We have to use� according to the explanation
given in section 2.2. The other possibility would be to immediately add the capabili-
ties tom� (s) with � (without storing them ina first), but sincea + b � a � b, this
would lead to looser bounds. (It would, however, be possiblein the case where we only
consider monoid elements greater than or equal to0, since in this case+ and� always
coincide.)

In the rest of this paper we use the operations on type assignments given in ta-
ble 2 (all operations on sequences are conducted pointwise): in (ADD-MON) we add
a monoid elementa to a type assignment� by addinga to m� (s) (with �) and leav-
ing everything else unchanged. And� h~s;~ai denotes(: : : (� hs1;a1i)hs2;a2i : : :)hsn;ani.
(ADD-CAP) describes how to add a monoid element corresponding to a namex. In this
caseb is added directly (with+) to the monoid elements assigned to names, rather than
to those assigned to sorts.

(ADD-MON) (ob;m; ~x : h~s=~ai)hs;ai = ob;m0; ~x : h~s=~ai
wherem0(s0) = �m(s)� a if s = s0m(s) otherwise

(ADD-CAP) (ob;m; ~x : h~s=~ai) + xi : b = (ob;m; ~x : h~s=~
i)
where
j = �ai + b if i = jaj otherwise

(SUM) (ob;m; ~x : h~s=~ai) ~ (ob;m0; ~x : h~s=~bi) = ob;m�m0; ~x : h~s=~a +~bi
(JOIN) (ob;m; ~x : h~s=~ai) _ b = ob;m; ~x : h~s=~a _ bi

(ORD) (ob;m; ~x : h~s=~ai) � (ob;m0; ~x : h~s=~bi) () m � m0 and~a � ~b
(REMOVE) If � = �;x : hs=ai, then�nfxg = �

Table 2.Operations on type assignments

Summation� ~ � 0 (SUM) is defined for type assignments which contain the same
names (having identical sorts) and which satisfyob� = ob� 0 (i.e. they have the same
sort structure). In this casem � m0 and~a + ~b denote the pointwise summation. The
summation on type assignments has a counterpart (denoted bythe same symbol) in
Honda’s work [6].

In (JOIN) a pointwise join with every monoid element assigned to a channel name
and the monoid elementb is defined. And finally we need a partial order on type as-
signments (ORD) and an operation removing an assumption on a namex from a type
assignment (REMOVE).

The operations on type assignments satisfy the following laws:

Lemma 1. It holds that� hs;ai ~� = (� ~�)hs;ai (� + x : a) ~� = (� ~�) + x : a(�;x : hs=ai)hy;bi = �hy;bi; x : hs; ai (� hs;ai)ht;bi = (� ht;bi)hs;ai
Furthermore~ is associative and commutative.

Proof. Straightforward from the definition of the operations.

We are now ready to define the rules of the type system (see table 3).outandin are
fixed monoid elements (wherein must be comparable to0) representing the capabilities
of output respectively input prefixes.� ` P; � � �� ` P (T-�) � _ 0 ` 0 (T-NIL)

�1 ` P1; �2 ` P2�1 ~ �2 ` P1 j P2 (T-PAR)�; x : hs=ai; ~z : h~t;~bi ` P(�; ~z : h~t;~bi) _ 0; x : hs=(a � in) _ 0 + outi ` �xh~zi:P (T-OUT) if ob� (s) = ~t�; x : hs=ai; ~y : h~t=~bi ` P(� _ 0; x : hs=(a � out) _ 0 + ini)h~t;~bi ` x(~y):P (T-IN) if ob� (s) = ~t�nfxg; x : hs=ai ` P� hx;ai ` (�x : s)P (T-RESTR)
� ` x(~y):P�; x : hs=a+ sig(in)i ` !x(~y):P (T-REP)

if � ~ � � � and� = �;x : ht=ai
Table 3.Rules of the type system

The intuitive meaning of the rules is as follows:

(T-�) We can always over-approximate the capabilities of a process.
(T-NIL) The nil process can have an arbitrary type assignment, provided the monoid

elements of the free names are greater than0.
(T-PAR) The parallel composition of two processes can be typed by adding their re-

spective type assignments.
(T-OUT) First we subtractin from the monoid elementa associated with the subjectx of the output prefix, since the emergence ofP means the removal of an input

prefix with subjectx somewhere else in the environment. We then take the join of
all monoid elements and0, since we only consider capabilities on the outer level of
processes and thus we only consider future influence by positive capabilities, but
not by negative ones (since we are doing over-approximation). In the endout is
added to the monoid element associated withx.
Furthermore we have to check that the sort structure is correct, i.e. sincez1; : : : ; zn
are communicated viax, the string of their sorts must be the object sort of the sort
of x.

(T-IN) As described for (T-OUT), we subtractout, take the join with0 and then add
in. Furthermore we check the correctness of the sort structureas above.
Since, in this case,y1; : : : ; yn are bound by the input prefix, all assumptions on
these names are removed from the type assignment, and their monoid elements are
added to the rest of the type assignment with�.

(T-RESTR) If a name is hidden, we remove the assumption on it, but retain information
on its capabilities by adding its monoid element to the type assignment and by
keeping the sort.

(T-REP) In this rule we have to make sure that a replicated process has a type assign-
ment which is either idempotent or gets smaller when added toitself. This can be
achieved if� contains only negative or idempotent monoid elements.
And furthermore, since we know that infinitely many copies ofthe input prefix with
subjectx are available, we add?,> or 0, according to the value ofin.

The type system satisfies the following substitution lemma,which is central for
proving the subject reduction property:

Lemma 2. (Substitution)Letx 6= y be two names.
If � = (�; x : hs=ai; y : hs=bi) ` P , then�0 = (�; x : hs=a+ bi) ` Pfx=yg.

Proof. By induction on the typing rules:

(T-0) P = 0 and it follows thata � 0 andb � 0 and thus alsoa + b � 0. (T-0)
implies that�; x : hs=a + bi ` P .

(T-�) � ` P and � � �. We can assume that� = � 0; x : hs=a0i; y : hs=b0i
where� 0 � � , a0 � a and b0 � b. It follows with the induction hypothesis
that� 0; x : hs=a0 + b0i ` Pfx=yg, and this type assignment is smaller (in the�-relation) than�; x : ht=a+ bi = �0 and thus�0 ` Pfx=yg.

(T-PAR) P = P1 j P2, that isPfx=yg = P1fx=yg j P2fx=yg and�i; x : hs=aii; y : hs=bii ` Pi; i 2 f1; 2g� = �1 ~ �2; x : hs=a1 + a2i; y : hs=b1 + b2i
with � = �1 ~ �2, a = a1 + a2 andb = b1 + b2. From the induction hypothesis
it follows that �i; x : hs=ai + bii ` Pifx=yg. This implies that�0 = �1 ~�2; x : hs=a1 + a2 + b1 + b2i ` Pfx=yg.

(T-OUT) P = �zh~zi:Q, that is �; z : ht=a0i ` Q� = � _ 0; z : ht=(a0 � in) _ 0 + outi ` P
andob�(t) = ob�(sort�(~z)).
Now let � be a substitution which replacesy by x and is constant on all other
names. Since the sorts ofx andy are equal it holds thatsort�0(�(w)) = sort�(w)
for all names in�.
It thus follows that ob�0(sort�0(�(z))) = ob�(sort�(z)) = ob�(t) =
ob�(sort�(~z)) = ob�0(sort�0(�(~z))) and thus the condition for the typing ofPfx=yg = �(z)h�(~z)i:(Qfx=yg) is satisfied.
We now distinguish the following cases:z 6= x ^ z 6= y: In this case� = �0; x : hs=ai; y : hs=bi. It follows with the in-

duction hypothesis that�0; x : hs=a + bi; z : ht=a0i ` Qfx=yg. And we can
conclude that�0 _ 0; x : hs=(a+ b) _ 0i; z : ht=(a0 � in) _ 0 + outi ` Pfx=yg
Since(a+ b)_0 � a_0+ b_0 (see section 2.2) this type assignment smaller
(in the�-relation) than�0 = �0 _ 0; x : hs=a _ 0 + b _ 0i; z : ht=(a0 � in) _ 0 + outi
And with (T-�) it follows that�0 ` Pfx=yg

z = x ^ z 6= y: In this case� = �0; y : hs=bi, t = s and a = a0. It follows
from the induction hypothesis that�0; x : hs=a + bi ` Qfx=yg and� =�0 _ 0; x : hs=((a + b)� in) _ 0 + outi ` Pfx; yg.
On the other hand� = �0 _ 0; y : hs=b _ 0i; x : hs=(a � in) _ 0 + outi and�0 = �0 _ 0; x : hs=(a� in) _ 0 + out+ b _ 0i. And since (see section 2.2)((a+ b)� in) _ 0 + out� ((a� in) + b) _ 0 + out� (a� in) _ 0 + b _ 0 + out

the type assignment� is smaller than�0 and (T-�) implies�0 ` Pfx=yg.z = x ^ z 6= y: this is analogous to the case above.
(T-IN) P = z(~z):Q, that is �; z : ht=a0i; ~z : h~t; ~
i ` Q� = (� _ 0; z : ht=(a0 � out) _ 0 + ini)h~t;~
i ` P

andob�(t) = ~t.
Now let� be again a substitution which replacesy by x and is constant on all other
names. Since the sorts ofx andy are equal it holds thatsort�0(�(w)) = sort�(w)
for all names in�.
It thus follows thatob�0(sort�0(�(z))) = ob�(sort�(z)) = ob�(t) = ~t and thus
the condition for the typing ofPfx=yg = �(z)(~z):(Qfx=yg) is satisfied.
We can assume thatx, y andz are different from all names in~z. We now distinguish
the following cases:z 6= x ^ z 6= y: In this case� = �0; x : hs=ai; y : hs=bi. It follows with the induc-

tion hypothesis that�0; x : hs=a+ bi; z : ht=a0i; ~z : h~t=~
i ` Qfx=yg
And we can conclude that(�0 _ 0; x : hs=(a+ b) _ 0i; z : ht=(a0 � out) _ 0 + ini)h~t;~
i ` Pfx=yg
Since(a+ b)_0 � a_0+ b_0 (see section 2.2) this type assignment smaller
(in the�-relation) than�0 = (�0 _ 0; x : hs=a _ 0 + b _ 0i; z : ht=(a0 � out) _ 0 + ini)h~t;~
i
And with (T-�) it follows that�0 ` Pfx=ygz = x ^ z 6= y: In this case� = �0; y : hs=bi, t = s anda = a0. It follows with
the induction hypothesis that�0; x : hs=a + bi; ~z : h~t=~
i ` Qfx=yg� = (�0 _ 0; x : ht=((a + b)� out) _ 0 + ini)h~t;~
i ` Pfx; yg
On the other hand� = �0 _ 0; y : hs=b _ 0i; x : hs=(a� out) _ 0 + ini; ~z : h~t=~
i�0 = (�0 _ 0; x : hs=(a � out) _ 0 + in + b _ 0i)h~t;~
i

And since (see section 2.2)((a+ b)� out) _ 0 + in � ((a� out) + b) _ 0 + in� (a� out) _ 0 + b _ 0 + in

the type assignment� is smaller than�0 and (T-�) implies that�0 ` Pfx=yg.z = x ^ z 6= y: this is analogous to the case above.
(T-RESTR) P = (�z : t)Q, that is�nfzg; z : ht=a0i ` Q and� = �ht;a0i ` P .

Sincez is bound, we can assume thatz 6= x and z 6= y, thus� has the form�0; x : hs=ai; y : hs=bi. The induction hypothesis implies that�0nfzg; x : hs=a + bi; z : ht=a0i ` Qfx=yg
Therefore(�0; x : hs=a + bi)ht;a0i ` Pfx=yg. This type assignment is the same
as(�0)ht;ai; x : hs=a + bi = �0

(T-REP) P =!z(~z):Q, that is �; z : ht=a0i ` z(~z):Q� = �; z : ht=a0 + sig(in)i ` P(�; z : ht=a0i) ~ (�; z : ht=a0i) � �; z : ht=a0i
We distinguish the following cases:z 6= x, z 6= y: In this case� = �0; x : hs=ai; y : hs=bi and it follows from the

induction hypothesis that�0; x : hs=a + bi; z : ht=a0i ` (z(~z):Q)fx=yg(�0; x : hs=a+ bi; z : ht=a0i)~ (�0; x : hs=a + bi; z : ht=a0i)= �0 ~�0; x : hs=a + b+ a+ bi; z : ht=a0 + a0i� �0; x : hs=a + bi; z : ht=a0i
And therefore�0 = �0; x : hs=a+ bi; z : ht=a0 + sig(in)i ` Pfx=ygz = x, z 6= y: In this case� = �0; y : hs=bi, t = s anda = a0. The induction
hypothesis implies that�0; x : hs=a + bi ` (z(~z):Q)fx=yg
As above we can conclude that�0; x : hs=(a+ b+ sig(in))i ` Pfx=ygz 6= x, z = y: Analogous to the second case 2

The types defined in table 3 are not yet invariant under reduction: rather than� , a
modified type assignment� satisfies the subject reduction property.

Let � = ob;m; ~x : h~s=~ai and define� = (ob;m; ~x : h~s=~0i)h~s;~ai. That is we add
all monoid elements of the remaining free names tom with�. Constructing� directly
during the typing process does not seem to be possible, sincewe first have to sum up
monoid elements with+ and then add them to the type tree with� the moment they
are hidden.

In order to show the subject reduction property we need the following lemma:

Lemma 3. If �; x : hs=ai ` P andx 62 fn(P) it follows thata � 0 and� ` P . And
furthermore if� ` P and� does not contain a namex, then�; x : hs=ai ` P for
any sorts and any monoid elementa � 0 (weakening).

Now we can state the subject reduction property in the following way:

Proposition 1. (Subject Reduction Property)If P � Q and� ` P , then it holds
also that� ` Q. And ifP ! P 0 and� ` P then there exists a type assignment�0
such that�0 ` P 0 and�0 � �.

Proof. We show the first half of the proposition by induction on the rules of structural
congruence.�-conversion Let (�y : s)P � (�x : s)(Pfx=yg). (We assume thatx 62 fn(P)).

If � ` (�y : s)P it follows that� � � hs;ai and�nfyg; y : hs=ai ` P . From
lemma 3 it follows that�nfx; yg; y : hs=ai; x : hs=0i ` P . Lemma 2 then im-
plies that�nfx; yg; x : hs=a + 0i ` Pfx=yg. It follows that (�nfyg)hs;ai `(�x : s)(Pfx=yg) and therefore� ` (�x : s)(Pfx=yg) (if y is contained in� , it
might be necessary to add an assumption ony according to lemma 3).
Since every�-conversion can be reverted by one or more�-conversions, the other
direction follows immediately.

(C-COM) obvious, since~ is commutative (see lemma 1)
(C-0) If � ` P j 0 it follows that� � � ~ (� _ 0) where� ` P and� is an

arbitrary type assignment. It holds that� � � ~ (� _ 0) � � and with (T-�) it
follows that� ` P .
If, on the other hand,� ` P where� = ob;m; ~x : h~s=~ai, we can construct a type
assignment� = ob;m0; ~x: h~s=~0i wherem0(s) = ? for everys 2 S. � satisfies� ` 0 and� = � ~� ` P j 0.

(C-ASS) obvious with the associativity of~ (see lemma 1)
(C-RESTR1) Let (�x : s)(�y : t)P � (�y : t)(�x : s)P wherex 6= y.

If � ` (�x : s)(�y : t)P it follows that� � (� ht;bi)hs;ai and�nfy; xg; y : ht=bi;x : hs=ai ` P . We can interchangex andy (see also lemma 1) and thus� =(� hs;ai)ht;bi and�nfx; yg; x : hs=ai; y : ht=bi ` P .
Therefore� ` (�y : t)(�x : s)P .

(C-RESTR2) Let ((�x : s)P1) j P2 � (�x : s)(P1 j P2) wherex 62 fn(P2).
If � ` ((�x : s)P1) j P2 it follows that� � �1~�2 where�2 ` P2,�1 � � hs;ai
and �nfxg; x : hs=ai ` P1. Sincex 62 fn(P2) it follows with lemma 3 that�2nfxg; x : hs=0i ` P2. Therefore(� ~ �2)nfxg; x : hs=a + 0i ` P1 j P2 (�

contains anx if and only if�2 contains anx). Thus(� ~ �2)hs;ai ` (�x : s)(P1 jP2) and(� ~ �2)hs;ai = � hs;ai ~ �2 � �1 ~ �2 � �. Then (T-�) implies that� ` (�x : s)(P1 j P2).
If, on the other hand,� ` (�x : s)(P1 j P2) we can conclude that� � � hs;ai,�nfxg; x : hs=ai � �1 ~ �2 and�i = � 0i ; x : hs=aii ` Pi, i 2 f1; 2g. Sincex 62 fn(P2) it follows with lemma 3 thata2 � 0 and thereforea � a1 + a2 � a1 +0 = a1. It follows that(� 01)hs;a1i ` (�x : s)P1. Since it holds that� 02 ` P2 (see
lemma 3), we conclude that(� 01)hs;a1i ~ � 02 = (� 01 ~ � 02)hs;a1i ` ((�x : s)P1) jP2. If � does not contain the namex it follows that� � (� 01 ~ � 02)hs;a1i and
therefore� ` ((�x : s)P1) j P2. In the other case we have to add an assumption
onx according to lemma 3.

closure under context: this follows immediately since typing is compositional

The second statement is shown by induction on the reduction rules. For the induc-
tion we need a stronger hypothesis than the one stated above.We show that if� ` P
andP ! P 0 then there are type assignments�0;�, a sequence~x of names occurring
in � and a sequence of monoid elements~a of equal length such that�0 ` P 0 �0 � �+ ~x : ~a �hsort�(~x);~ai � � (1)

Having shown (1) we can conclude that�0 � �+ ~x : ~a � �hsort�(~x);~ai � �
(The middle inequality holds sinceb� (
+ a) � (b� a)�
.) It is left to show that (1)
holds:

(R-COMM) LetP = �xh~zi:Q j x~y:R, P 0 = Q j Rf~z=~yg and� ` P . This implies the
use of the following typing rules1:�; ~z : h~t=~bi; x : hs=ai ` Q�1 = � _ 0; ~z : h~t=~b _ 0i; x : hs=(a� out) _ 0 + ini ` �xh~zi:Q�; ~z : h~u=~
i; ~y : h~v; ~ai; x : hs0=a0i ` R�2 = (� _ 0; ~z : h~u=~
 _ 0i; x : hs0=(a0 � in) _ 0 + outi)h~v;~ai ` x(~y):R
And we know thatob� (s) = ~t andob� (s0) = ~v. And since� � �1~�2 is defined,
it follows thats = s0 and~t = ~u.� � (� _ 0)~ (� h~v;~ai _ 0); ~z : h~t=(~b _ 0) + (~
 _ 0)i;x : hs=(a � out) _ 0 + in + (a0 � in) _ 0 + outi
We know that(� _ 0)~ (� h~v;~ai _ 0) � � ~ � (~v;~a) (~b _ 0) + (~
 _ 0) � ~b+ ~
(a� out) _ 0 + in + (a0 � in) _ 0 + out�(a � out) + out+ (a0 � in) + in � a+ a0

1 We assume thatx 6= zj for any j. In the other case, the proof has to be modified, but can be
conducted analogously.

Thus � � � ~ � h~v;~ai; ~z : h~t=~b+ ~
i; x : hs=a + a0i
Sinceob� = ob� it follows that ~u = ~t = ob� (s) = ob� (s0) = ~v and the substitu-
tion lemma (lemma 2) is applicable which implies:�; ~z : h~t=~a+ ~
i; x : hs=a0i ` Rf~z=~yg
Thus�0 ` Q j Rf~z=~yg with�0 = � ~ �; ~z : h~t=~a+ ~b+ ~
i; x : hs=a+ a0i
We now set� = � ~ �; ~z : h~t=~b + ~
i; x : hs=a + a0i and show that condition (1)
is satisfied: we use~z as the sequence of names and~a as the sequence of monoid
elements.�hsort�(~z);~ai = �h~v;~ai = � ~ � h~v;~ai; ~z : h~t=~b+ ~
i; x : hs=a+ a0i � ��0 = � ~ �; ~z : h~t=~a+ ~b+ ~
i; x : hs=a + a0i = �+ ~z : ~a

(R-PAR) Let P = QjR, Q ! Q0, P 0 = Q0jR and� ` P . In this case� ` Q,� ` R and� � � ~ � . The induction hypothesis implies that there are type
assignments�1; � 0 such that� 0 ` Q0 � 0 � �1 + ~x : ~a �hsort�1 (~x);~ai1 � �
It follows that�0 = � 0 ~ � is defined and�0 ` Q0 j R. Now set� = �1 ~ � .
It holds that�hsort�(~x);~ai = �hsort�1 (~x);~ai1 ~ � � � ~ � � ��0 = � 0 ~ � � (�1 + ~x : ~a) ~ � = (�1 ~ �) + ~x : ~a = �+ ~x : ~a

(R-REP) Let P = �xh~zi:Q j !x(~y):R, P 0 = Q j Rf~z=~yg j !x(~y):R and� ` P .
We will first show that if� ` !x(~y):R, then it holds also that� ` x(~y):R j!x(~y):R. If � ` !x(~y):R, it holds that� ` x(~y):R�; x : hs=a + sig(in)i ` !x(~y):R
where� ~ � � � , � = �;x : hs=ai and� � �;x : hs=a + sig(in)i = �0. It
follows that� ~�0 ` x(~y):R j!x(~y):R and� ~�0 = (�;x : s=ai) ~ (�;x : hs=a + sig(in)i)= �~�;x : hs=a+ a+ sig(in)i � �;x : hs=a+ sig(in)i � �
Therefore� ` x(~y):R j!x(~y):R.
We know that� � � ~ � where� ` ~xh~zi:Q and� ` !x(~y):R. As shown above
it holds that� ` x(~y):R j!x(~y):R and thus� � � ~ � ` ~xh~zi:Q j x(~y):R j!x(~y):R. From (R-COMM) and (R-PAR) we know that the proposition holds for
reduction by communication and reduction underneath a parallel composition and
it follows that there exists a type assignment�0 such that�0 ` Q j Rf~z=~yg j!x(~y):R and condition (1) is satisfied.

(R-RESTR) Let P = (�x : s)Q, P 0 = (�x : s)Q0 andQ! Q0. Furthermore�nfxg; x : hs=ai ` Q� hs;ai ` (�x : s)Q
We assume that� does not contain an assumption onx, i.e.�nfxg = � . Otherwise
we proceed with�nfxg instead of� and add the missing assumption later with
lemma 3. We know that� � � hs;ai.
The induction hypothesis implies that there exist type assignments�1; x : hs=bi
and� 0; x : hs=
i and sequences~x, ~a such that� 0; x : hs=
i ` Q0 � 0; x : hs=
i � (�1; x : hs=bi) + ~x : ~a(�1; x : hs=bi)hsort�1(~x) ;~ai � �; x : hs=ai
Now (T-RESTR) implies that�0 = (� 0)hs;
i ` (�x : s)Q0. We distinguish two
cases:

– (8i 2 f1; : : : ; ng : x 6= xi): in this case
 � b � a. We define� = �hs;bi1 .
Then �hsort�(~x);~ai = (�hsort�1 (~x);~ai1)hs;bi � � hs;bi � � hs;ai�0 = (� 0)hs;
i � (�1 + ~x : ~a)hs;
i � �hs;bi1 + ~x : ~a = �+ ~x : ~a

– (x = xj): in this case(~x : ~a)j denotes the sequence of thexi wherexj has

been dropped.
 � b+ aj andb � a. We define� = �hs;b�aji1 . Since thej-th
element ofsort�1(~x) is s it holds that�hsort�(~x);~aij = (�hs;b�aji1)hsort�1 (~x);~aij = (�hsort�1 (~x);~ai1)hs;bi� � hs;ai � ��0 = (� 0)hs;
i � (�1 + (~x : ~a)j)hs;b+aj i � �hs;b�aji1 + (~x : ~a)j= �+ (~x : ~a)j 2

4 Using the Type System for Process Analysis

As in other type systems for mobile processes, a type guarantees absence of runtime
errors which may appear in the form of arity mismatches in thecommunication rules
(R-COMM) and (R-REP), but it also enables us to perform more detailed process anal-
ysis.

4.1 Process Capabilities

The aim of this paper is to construct type systems yielding useful results for the analysis
and verification of parallel processes. In our case the generic type system gives infor-
mation concerning structural properties of a process, especially concerning its input and

output capabilities. We will now formally define the connection between the type of a
process and its capabilities.

LetP be a process and letx be a free name occurring inP . We defineP ’s capability
wrt. x by adding the following monoid elements: for every use ofx as an output port
we addout and for every use ofx as an input port we addin. Notice that we do not
continue summation after prefixes (see table 4).Cx(0) = 0 Cx(P j Q) = Cx(P) + Cx(Q)Cx(�zh~yi:P) = �out if x = z0 otherwise

Cx(z(~y):P) = �
in if x = z0 otherwiseCx(!z(~z):P) = �

sig(in) if x = z0 otherwise
Cx((�y : s)P) = �Cx(P) if x 6= y0 otherwise

Table 4.Determining the capabilities of a process

Proposition 2. If � ` P , P ! P 0 andx is a free name ofP it follows thatCx(P 0) �m� (sort� (x)), i.e. we determine the sort ofx and look up the corresponding monoid el-
ement in� . And ifP contains a subexpression(�y : s0)Q it follows that the capabilities
of y will never exceedm� (s0).
Proof. We have to show that if� ` P andx is a free name ofP , thenCx(P) �m� (sort� (x)). Then for any successorP 0 of P this follows immediately from the sub-
ject reduction property (proposition 1).

This can easily be done by induction onP and the only problematic case is repli-
cation: if� = �; z : hs=ai ` !z(~z):Q, it follows from (T-REP) that� 0; z : hs=bi `z(~z):Q, where� � � 0 anda � b+sig(in). Since� 0; z : hs=bi was produced by typing
rule (T-IN) (and maybe rule (T-�) it follows thatb � (a0�in)_0+outfor some monoid
elementa0. This implies thata � (a0�out)_0+ in+sig(in) � in+sig(in) = sig(in).

And thereforeCz(P) = sig(in) � a � m� (s)�a = m�(s) = m�(sort�(z)). For
all other namesx 6= z it is straightforward to show thatCx(P) = 0 � m�(sort�(x)).

The properties we can derive are of the form: “it isalwaysthe case thatCx(P) � a”.
There are many other interesting properties of a different nature we would like to derive.
In section 5 we give some examples describing how these properties can be handled.

4.2 Composition of Type Systems

Given two type systems checking certain capabilities of processes, it is not difficult to
construct a type system computing upper bounds for tuples ofcapabilities. LetTi = (Ii; outi; ini; Xi); i 2 f1; 2g
be two type systems, where theIi are lattice-ordered monoids,outi; ini are the monoid
elements representing output respectively input capabilities and theXi are predicates on
type assignments, selecting only types satisfying a certain property. Because of (T-�)
a predicate is only sensible ifXi(�) and� � � imply Xi(�). (Example:A predicateXi is true for all type assignments guaranteeing that any channel is used as an input

channel and as an output channel at most once.) We say thatTi checks a predicateYi
on processes if� ` P andXi(�) imply Yi(P). (In our exampleYi(P) could state
thatP is confluent, see also section 5.3.)

ThenT = (I1� I2; (out1; out2); (in1; in2); X) checks the conjunction ofY1 andY2
if X(i1; i2) = X1(i1)^X2(i2) and it checks the disjunction ofY1 andY2 if X(i1; i2) =X1(i1) _X2(i2). (All monoid operations onI1 � I2 are conducted pointwise.)

4.3 Type Inference

In order to support our claim that the type system is useful for the automated analysis
of processes, we roughly sketch a type inference algorithm,determining the smallest
type (in the� relation defined in section 3) of a processP , providedP has a type. In
order to make sure that a smallest type exists, we impose the following condition on
the l-monoid: for every monoid elementa 2 I there is a smallest elementa0 such thata � a0 anda0 + a0 � a0 (the same must be true for the operation�)2.

The algorithm proceeds in two steps:

– In the first step we determine the assignment of sorts to namesand the mapping
ob� . This may be done by representingobas a graph and refiningobstep by step by
collapsing graph nodes every time we encounter a constraintof the formob(s) = ~s.
Or we can use the sort inference algorithm by Simon Gay [5].

– In the second step we compute the monoid elements by induction on the structure ofP . In this case the typing rules are already very constructive, the main complication
arises from typing rule (T-REP). Here we require that the monoidI satisfies the
condition stated above. So (because of rule (T-�)) we may replace every monoid
elementa with its correspondinga0 in the type assignment that we have derived so
far.

A straightforward implementation of the algorithmhas a runtime complexity quadra-
tic in the size ofP . Ameliorations are certainly possible by using efficient algorithms for
unification and by finding an intelligent strategy for computing the monoid elements.

5 Examples

We now get back to the two example processesP andP 0 introduced in section 2.1
and type them with several instantiations of our type system, and thereby show how to
mechanise process analysis in these cases.

2 Every l-monoid useful for process analysis that we have comeacross so far satisfies this con-
dition. In the case ofZ1, a0 is1 for positivea anda itself for all other elements.

s2

ob1 ob2

ob1ob1

c sd

s1

s
We use the algorithm presented in section 4.3 to derive a type
assignment� for P andP 0 and in the first step obtain a sort
structureob� as shown in the figure to the left (ob� is the
same forP andP 0). If there is an arrow labelledobi from
sort s to sort t, then t is the i-th element of the sequence
ob� (s). The assignment of names (in brackets we give the
bound names) to sorts is:
 : s
 (d : sd) h; i1(; s; h1; r) : s1 i2(; h2) : s2

In the second step the monoid elementsm� (s) are computed (see below) in order
to give an upper bound for all names having sorts.
5.1 Input/Output Behaviour of Channels

One simple application of our type system is to check whetherchannels are used for
input, output or for both. We use the monoidIO (with elementsnone, O–“output only”,
I–“input only” andboth) introduced in section 2.2. We setin = I, out= O.

For both processesP andP 0 we obtain the same type assignments with monoid
elements shown in table 5 (row 1), i.e.i2, h2 are used neither for input nor output while
all other names may be used for both. Note that, because of residuation, typingF alone
yields capabilityI for name
, but no output capability.
 acquires output capability only
if communication with the environment is taking place.

This type system is similar to the one in [15] (apart from the fact that we consider
types as a representation of process capabilities, rather than constraints on the environ-
ment), our type system however lacks a concept of co- and contravariance and thus our
bounds are less tight.

5.2 Upper Bounds on the Number of Active Channels

We attempt to define a type system, similar to the one presented in [8] for our frame-
work, i.e. we want to check how often a channel is used either for input or output.

We use the l-monoidZ1�Z1 (cartesian product of the set of integers with1 and�1) introduced in section 2.2. The first component represents the number of active
output prefixes (with a fixed subject) and the second component represents the number
of active input prefixes.

We setout = (1; 0), in = (0; 1), and typing the processesP andP 0 yields the
results given in table 5 (rows 2 & 3). Since forP the upper bound is always(1; 1) or
smaller we can conclude that there is at most one active inputport and one active output
port for any given subject at a time. ForP 0 we can guarantee that, e.g.�
 always occurs
at most once as an output prefix, although it occurs under a replication (see monoid
elementm� (s
)).
5.3 Confluence

As in [8] we can use upper bounds on the number of active channels to guarantee
confluence for�-calculus processes (see also [14]). LetQ be a process, and for every

Property to be checked m� (sd) m� (s
) m� (s1) m� (s2)
1 Input/Output behaviour ofP andP 0 both both both none
2 Upper bounds on active channels inP (1; 1) (1; 1) (1; 1) (0; 0)
3 Upper bounds on active channels inP 0 (1;1) (1;1) (1;1) (0; 0)
4 Lower bounds on active channels inP (�1; 0) (�1; 0) (�1;�1) (0; 0)
5 Lower bounds on active channels inP 0 (�1;1) (�1;1) (�1;�1) (0; 0)
6 Avoiding blocked output prefixes inP 0 (1;1) (1;1) (1;�1) (0; 0)

Table 5.Resulting monoid elements for different instantiations ofthe generic type system

namex in Q which is either free or bound by the scope operator� it holds that its
capabilities never exceed(1; 1). Then we can guarantee that every channel (also bound
channels) occurs at most once at any given time as active input and output prefix, and we
have non-overlapping redexes in (R-COMM). Thus we can conclude that ifQ !� Q0,Q0 ! Q1 andQ0 ! Q2, then eitherQ1 � Q2 or there is a processQ3 such thatQ1 ! Q3 andQ2 ! Q3.

Row 2 in table 5 provides upper bound(1; 1) for all capabilities inP . So we can
state thatP is confluent. Note that the same process would not be recognised as conflu-
ent by the type system in [8].

5.4 Lower Bounds on the Number of Active Channels

The type system is not limited to statements of the form: “there at mostn active chan-
nels”, we can also guarantee that there areat leastm active channels. In order to achieve
this, we use the type system above and just invert the partialorder, i.e. we take� instead
of �, out and in remain unchanged. This means also that the join_ in the new partial
order is now the meet̂ of the original partial order. TypingP does not give us much
information, since we cannot guarantee that there are at leastm > 0 prefixes active at
any given time (see table 5, row 4) for any channel. In fact, some lower bounds are even(�1) stating that the respective channel removes input (or output) prefixes instead of
making them available. In this caseP !� 0 which means that no lower bounds can be
guaranteed.

Typing P 0 yields the monoid elements given in table 5 (row 5) which states that
input prefixes with subjects
; d are available infinitely often.

5.5 Avoiding Blocked Prefixes

Another interesting feature is to avoid blocked prefixes, i.e. prefixes which are wait-
ing for a non-existing communication partner. We will first define—with the help of a
lattice-ordered monoid—what it means for an output prefix tobe blocked.

We takeZ1�Z1 as an l-monoid and define a new partial order:(i; j) v (i0; j0) iffi � i0 andj � j0. The first component represents the number of output prefixesand the
second the number of input prefixes of the same subject.out = (1; 0) and in = (0; 1).
We say a namex is blockingin P , if P !� P 0, Cx(P 0) w (1; 0) (i.e. there is at least
one output prefix with subjectx and no corresponding input prefixes) and for allP 00

with P 0 !� P 00 it follows thatCx(P 00) w (1; 0) (no communication withx will ever
take place).

We can, e.g., avoid this situation, by demanding that it is always the case thatCx(P 0) = (a; b) and eithera � 0 or b � 1 (i.e. (a; b) 6w (1; 0)). We take the l-monoid
andout; in introduced above. This type system can be obtained by composing a type
system establishing upper bounds for input prefixes and one establishing lower bounds
for output prefixes (see section 4.2). In this way we find out that all output prefixes
with subjects
 andd are non-blocking inP 0 (see table 5, row 6, where the tuples are
composed out of the first component of the tuples in row 3 and the second component
of the tuples in row 5).

This type system is not the only way to check for blocked prefixes. There are alter-
natives which can be employed in case this version fails.

6 Connection to Linear Types

A type system that has close connections to ours is the lineartype system by Kobayashi,
Pierce and Turner [8], since it also involves the typing of input/output capabilities of
processes. “Linear” in this context means that the type system checks if a name is used
once or several times for output respectively input.

The central aim of [8] is to introduce a new notion of barbed congruence by reducing
the possible contexts of a process. This question has not been addressed in this paper,
it is an interesting direction for future work. In the rest ofthis section we will highlight
differences and interesting connections between the two type systems.

Our method of identifying linear channels is to establish upper bounds on the num-
ber of active channels and to check that these upper bounds are equal or smaller than
one. Another approach would be to transform the type system in [8] directly into our
framework, by using the capabilities presented there, i.e.form an l-monoidfj1; !1; ?1; l1; j!; !!; ?!; l!g wherej = ;, ! = fog (output),? = fig (input),l= fi; og. We definepx _ qy = (p [q)x_y andpx + qy = � (p [q)x_y if p \ q = ;(p [q)! otherwise

The order onf1; !g is 1 � !. (The operations were defined partially in [8].) This is an
l-monoid, which is, however, not residuated, since e.g.j!�?1 is not defined. (The setfx j j! � x+?1g contains two minimal elements?1 andj!.)

As an alternative we use the l-monoid based on the setZ1�Z1 (see section 5.2).
The two type systems differ in their definition of “linear channels”: while in [8] a

channel is considered to be linear if it is used at most once for input and output during
the entire execution of a process, we consider a channel to belinear if at any given
moment during the execution of a process it is active at most once for input and/or
output. Thus our notion of “linear” encompasses the notion in [8].

Our notion of “linear” still implies confluence respectively partial confluence. The
processP in our examples is identified as a confluent process (see section 5.3), while
this would not be the case in the type system in [8].

The type system in [8] checks that output prefixes are always matched with a corre-
sponding input prefix and vice versa. At first sight this resembles our method of avoid-
ing blocked prefixes (see section 5.5). But since we only consider activeprefixes the
effects are different. While in [8] the processQ = (�x : l1)(x:�x:0) can be typed,
stating thatx is linear and both input and output prefix are used, our type systems for
avoiding blocked prefixes rejects this process, since it is actually blocked.

Our type system has one deficiency, in that it sometimes over-approximates too
much. Consider, for exampleQ = x j �y j �zhxi j �zhyi. Following [8] this process
is associated with the type:z :!![j1[℄℄; x :?1[℄; y :!1[℄ ` Q whereas in our type
system, we can only state that� ` Qwherem� (sort� (z)) = (2; 0),m� (sort� (x)) =m� (sort� (y)) = (1; 1), i.e. we have merged the upper bounds forx andy and have
lost information, which means that we can no longer state that x is used only for input
andw is used only for output.

This situation can probably be amended by introducing subtyping, i.e. covariant and
contravariant types as in [15].

7 Conclusion and Future Work

This work has a similar aim as that of Honda [6], in that it attempts to describe a gen-
eral framework for process analysis using type systems. We concentrate on a more
specialised but still generic type system, which enables usto prove the subject reduc-
tion property for the general case. We have shown that, despite its generality, the type
system can be instantiated in order to yield type systems related to existing ones. We
have also shown how to parameterise type systems and what kind of parameters are
feasible (in our case an l-monoid).

Our type system was derived from a type system for a graph-based process calculus
with graphs as types, which make it easier to add additional behaviour information and
which have a clear correspondence to associated monoid elements (via morphisms and
categorical functors) [10]. A graph-based type system withlattices instead of monoids
was presented in [11]. For lattices or positive cones of l-monoids, generic type systems
are much easier to present. The main complication arises from non-positive elements
and residuation.

Inspiration for this work came from papers deriving information on the behaviour
of a process by inspecting its input/output capabilities, such as [15,14, 8]. In order to
conduct process analysis concerning more complex properties (as was done e.g. in [7,
4]) it is necessary to use type systems assigning behaviour information (i.e. monoid
elements in our case) not only to single channels, but ratherto tuples of channels or
other more complex structures. This normally results in a semi-additive type system, in
the terminology of Honda [6], while our present type system is strictly additive. In order
to extend this type system, a first solution would be to allow monoid labels forn-ary
tuples of names. Another idea is to integrate it into the categorical framework presented
in [11], which would allow us to specify very general behaviour descriptions.

We believe that generic type systems can be developed into tools suitable for fast
debugging and the analysis of concurrent programs. The nextstep is to apply the type

system presented here to “real-life examples” and to more realistic programming lan-
guages.

Remark: this report is the extended version of [9].

Acknowledgements:I would like to thank the anonymous referees for their helpful
comments, especially for the suggestion to use a sort systeminstead of type trees.

References

1. Martı́n Abadi. Secrecy by typing in security protocols. In Theoretical Aspects of Computer
Software, pages 611–638. Springer-Verlag, 1997.

2. Gérard Berry and Gérard Boudol. The chemical abstract machine. Theoretical Computer
Science, 96:217–248, 1992.

3. G. Birkhoff. Lattice Theory. American Mathematical Society, third edition, 1967.
4. Chiara Bodei, Pierpaolo Degano, Flemming Nielson, and Hanne Riis Nielson. Control flow

analysis for the pi-calculus. InProc. of CONCUR ’98.
5. Simon J. Gay. A sort inference algorithm for the polyadic�-calculus. InProc. of POPL ‘93.

ACM, 1993.
6. Kohei Honda. Composing processes. InProc. of POPL’96, pages 344–357. ACM, 1996.
7. Naoki Kobayashi. A partially deadlock-free typed process calculus. InProc. of LICS ’97,

pages 128–139. IEEE, Computer Society Press, 1997.
8. Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner.Linearity and the pi-calculus.

In Proc. of POPL’96, pages 358–371. ACM, 1996.
9. Barbara König. Analysing input/output-capabilities of mobile processes with a generic type

system. InProc. of ICALP 2000.
10. Barbara König. Description and Verification of Mobile Processes with GraphRewriting

Techniques. PhD thesis, Technische Universität München, 1999.
11. Barbara König. Generating type systems for process graphs. InProc. of CONCUR ’99,

pages 352–367. Springer-Verlag, 1999. LNCS 1664.
12. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes.Information and

Computation, 100(1):1–77, 1992.
13. Robin Milner. The polyadic�-calculus: a tutorial. In F. L. Hamer, W. Brauer, and

H. Schwichtenberg, editors,Logic and Algebra of Specification. Springer-Verlag, Heidel-
berg, 1993.

14. Uwe Nestmann and Martin Steffen. Typing confluence. InSecond International ERCIM
Workshop on Formal Methods in Industrial Critical Systems (Cesena, Italy, July 4–5, 1997),
pages 77–101, 1997.

15. Benjamin Pierce and Davide Sangiorgi. Typing and subtyping for mobile processes. InProc.
of LICS ‘93, pages 376–385, 1993.

16. James Riely and Matthew Hennessy. Distributed processes and location failures. InProc. of
ICALP’97, pages 471–481. Springer-Verlag, 1997. LNCS 1256.

SFB 342: Methoden und Werkzeuge für die Nutzung paralleler
Rechnerarchitekturen

bisher erschienen :

Reihe A

Liste aller erschienenen Berichte von 1990-1994
auf besondere Anforderung

342/01/95 A Hans-Joachim Bungartz: Higher Order Finite Elements on Sparse Grids
342/02/95 A Tao Zhang, Seonglim Kang, Lester R. Lipsky: The Performance of Parallel Comput-

ers: Order Statistics and Amdahl’s Law
342/03/95 A Lester R. Lipsky, Appie van de Liefvoort: Transformation of the Kronecker Product

of Identical Servers to a Reduced Product Space
342/04/95 A Pierre Fiorini, Lester R. Lipsky, Wen-Jung Hsin, Appie van de Liefvoort: Auto-

Correlation of Lag-k For Customers Departing From Semi-Markov Processes
342/05/95 A Sascha Hilgenfeldt, Robert Balder, Christoph Zenger: Sparse Grids: Applications to

Multi-dimensional Schrödinger Problems
342/06/95 A Maximilian Fuchs: Formal Design of a Model-N Counter
342/07/95 A Hans-Joachim Bungartz, Stefan Schulte: Coupled Problems in Microsystem Technol-

ogy
342/08/95 A Alexander Pfaffinger: Parallel Communication on Workstation Networks with Com-

plex Topologies
342/09/95 A Ketil Stølen: Assumption/Commitment Rules forData-flow Networks - with an Em-

phasis on Completeness
342/10/95 A Ketil Stølen, Max Fuchs: A Formal Method for Hardware/Software Co-Design
342/11/95 A Thomas Schnekenburger: The ALDY Load Distribution System
342/12/95 A Javier Esparza, Stefan Römer, Walter Vogler: An Improvement of McMillan’s Unfold-

ing Algorithm
342/13/95 A Stephan Melzer, Javier Esparza: Checking System Properties via Integer Program-

ming
342/14/95 A Radu Grosu, Ketil Stølen: A Denotational Model for Mobile Point-to-Point Dataflow

Networks
342/15/95 A Andrei Kovalyov, Javier Esparza: A Polynomial Algorithm to Compute the Concur-

rency Relation of Free-Choice Signal Transition Graphs
342/16/95 A Bernhard Schätz, Katharina Spies: Formale Syntax zur logischen Kernsprache der

Focus-Entwicklungsmethodik
342/17/95 A Georg Stellner: Using CoCheck on a Network of Workstations
342/18/95 A Arndt Bode, Thomas Ludwig, Vaidy Sunderam, Roland Wismüller: Workshop on

PVM, MPI, Tools and Applications
342/19/95 A Thomas Schnekenburger: Integration of Load Distribution into ParMod-C
342/20/95 A Ketil Stølen: Refinement Principles Supportingthe Transition from Asynchronous to

Synchronous Communication
342/21/95 A Andreas Listl, Giannis Bozas: Performance Gains Using Subpages for Cache Co-

herency Control
342/22/95 A Volker Heun, Ernst W. Mayr: Embedding Graphs with Bounded Treewidth into Opti-

mal Hypercubes
342/23/95 A Petr Jančar, Javier Esparza: Deciding Finiteness of Petri Nets up to Bisimulation
342/24/95 A M. Jung, U. Rüde: Implicit Extrapolation Methods for Variable Coefficient Problems
342/01/96 A Michael Griebel, Tilman Neunhoeffer, Hans Regler: Algebraic Multigrid Methods for

the Solution of the Navier-Stokes Equations in ComplicatedGeometries
342/02/96 A Thomas Grauschopf, Michael Griebel, Hans Regler: Additive Multilevel-

Preconditioners based on Bilinear Interpolation, Matrix Dependent Geometric
Coarsening and Algebraic-Multigrid Coarsening for SecondOrder Elliptic PDEs

Reihe A

342/03/96 A Volker Heun, Ernst W. Mayr: Optimal Dynamic Edge-Disjoint Embeddings of Com-
plete Binary Trees into Hypercubes

342/04/96 A Thomas Huckle: Efficient Computation of Sparse Approximate Inverses
342/05/96 A Thomas Ludwig, Roland Wismüller, Vaidy Sunderam, Arndt Bode: OMIS — On-line

Monitoring Interface Specification
342/06/96 A Ekkart Kindler: A Compositional Partial Order Semantics for Petri Net Components
342/07/96 A Richard Mayr: Some Results on Basic Parallel Processes
342/08/96 A Ralph Radermacher, Frank Weimer: INSEL Syntax-Bericht
342/09/96 A P.P. Spies, C. Eckert, M. Lange, D. Marek, R. Radermacher, F. Weimer, H.-M.

Windisch: Sprachkonzepte zur Konstruktion verteilter Systeme
342/10/96 A Stefan Lamberts, Thomas Ludwig, Christian Röder, Arndt Bode: PFSLib – A File

System for Parallel Programming Environments
342/11/96 A Manfred Broy, Gheorghe Ştefănescu: The Algebra of Stream Processing Functions
342/12/96 A Javier Esparza: Reachability in Live and Safe Free-Choice Petri Nets is NP-complete
342/13/96 A Radu Grosu, Ketil Stølen: A Denotational Model for MobileMany-to-Many Data-flow

Networks
342/14/96 A Giannis Bozas, Michael Jaedicke, Andreas Listl, Bernhard Mitschang, Angelika

Reiser, Stephan Zimmermann: On Transforming a Sequential SQL-DBMS into a Par-
allel One: First Results and Experiences of the MIDAS Project

342/15/96 A Richard Mayr: A Tableau System for Model Checking Petri Nets with a Fragment of
the Linear Time� -Calculus

342/16/96 A Ursula Hinkel, Katharina Spies: Anleitung zur Spezifikation von mobilen, dynamis-
chen Focus-Netzen

342/17/96 A Richard Mayr: Model Checking PA-Processes
342/18/96 A Michaela Huhn, Peter Niebert, Frank Wallner: Put your Model Checker on Diet: Ver-

ification on Local States
342/01/97 A Tobias Müller, Stefan Lamberts, Ursula Maier,Georg Stellner: Evaluierung der Leis-

tungsf”ahigkeit eines ATM-Netzes mit parallelen Programmierbibliotheken
342/02/97 A Hans-Joachim Bungartz and Thomas Dornseifer: Sparse Grids: Recent Developments

for Elliptic Partial Differential Equations
342/03/97 A Bernhard Mitschang: Technologie f”ur Parallele Datenbanken - Bericht zum Work-

shop
342/04/97 A nicht erschienen
342/05/97 A Hans-Joachim Bungartz, Ralf Ebner, Stefan Schulte: Hierarchische Basen zur effizien-

ten Kopplung substrukturierter Probleme der Strukturmechanik
342/06/97 A Hans-Joachim Bungartz, Anton Frank, Florian Meier, Tilman Neunhoeffer, Stefan

Schulte: Fluid Structure Interaction: 3D Numerical Simulation and Visualization of
a Micropump

342/07/97 A Javier Esparza, Stephan Melzer: Model CheckingLTL using Constraint Programming
342/08/97 A Niels Reimer: Untersuchung von Strategien fürverteiltes Last- und Ressourcenman-

agement
342/09/97 A Markus Pizka: Design and Implementation of the GNU INSEL-Compiler gic
342/10/97 A Manfred Broy, Franz Regensburger, Bernhard Schätz, Katharina Spies: The Steam-

boiler Specification - A Case Study in Focus
342/11/97 A Christine Röckl: How to Make Substitution Preserve Strong Bisimilarity
342/12/97 A Christian B. Czech: Architektur und Konzept desDycos-Kerns
342/13/97 A Jan Philipps, Alexander Schmidt: Traffic Flow byData Flow
342/14/97 A Norbert Fröhlich, Rolf Schlagenhaft, Josef Fleischmann: Partitioning VLSI-Circuits

for Parallel Simulation on Transistor Level
342/15/97 A Frank Weimer: DaViT: Ein System zur interaktiven Ausführung und zur Visual-

isierung von INSEL-Programmen
342/16/97 A Niels Reimer, Jürgen Rudolph, Katharina Spies: Von FOCUS nach INSEL - Eine

Aufzugssteuerung

Reihe A

342/17/97 A Radu Grosu, Ketil Stølen, Manfred Broy: A Denotational Model for Mobile Point-to-
Point Data-flow Networks with Channel Sharing

342/18/97 A Christian Röder, Georg Stellner: Design of Load Management for Parallel Applica-
tions in Networks of Heterogenous Workstations

342/19/97 A Frank Wallner: Model Checking LTL Using Net Unfoldings
342/20/97 A Andreas Wolf, Andreas Kmoch: Einsatz eines automatischen Theorembeweisers

in einer taktikgesteuerten Beweisumgebung zur Lösung eines Beispiels aus der
Hardware-Verifikation – Fallstudie –

342/21/97 A Andreas Wolf, Marc Fuchs: Cooperative ParallelAutomated Theorem Proving
342/22/97 A T. Ludwig, R. Wismüller, V. Sunderam, A. Bode: OMIS - On-line Monitoring Inter-

face Specification (Version 2.0)
342/23/97 A Stephan Merkel: Verification of Fault Tolerant Algorithms Using PEP
342/24/97 A Manfred Broy, Max Breitling, Bernhard Schätz,Katharina Spies: Summary of Case

Studies in Focus - Part II
342/25/97 A Michael Jaedicke, Bernhard Mitschang: A Framework for Parallel Processing of Ag-

gregat and Scalar Functions in Object-Relational DBMS
342/26/97 A Marc Fuchs: Similarity-Based Lemma Generationwith Lemma-Delaying Tableau

Enumeration
342/27/97 A Max Breitling: Formalizing and Verifying TimeWarp with FOCUS
342/28/97 A Peter Jakobi, Andreas Wolf: DBFW: A Simple DataBase FrameWork for the Evalua-

tion and Maintenance of Automated Theorem Prover Data (incl. Documentation)
342/29/97 A Radu Grosu, Ketil Stølen: Compositional Specification of Mobile Systems
342/01/98 A A. Bode, A. Ganz, C. Gold, S. Petri, N. Reimer, B. Schiemann, T. Schnekenburger

(Herausgeber): ”‘Anwendungsbezogene Lastverteilung”’,ALV’98
342/02/98 A Ursula Hinkel: Home Shopping - Die Spezifikationeiner Kommunikationsanwendung

in FOCUS

342/03/98 A Katharina Spies: Eine Methode zur formalen Modellierung von Betriebssys-
temkonzepten

342/04/98 A Stefan Bischof, Ernst-W. Mayr: On-Line Scheduling of Parallel Jobs with Runtime
Restrictions

342/05/98 A St. Bischof, R. Ebner, Th. Erlebach: Load Balancing for Problems with Good Bisec-
tors and Applications in Finite Element Simulations:Worst-case Analysis and Practical
Results

342/06/98 A Giannis Bozas, Susanne Kober: Logging and CrashRecovery in Shared-Disk
Database Systems

342/07/98 A Markus Pizka: Distributed Virtual Address Space Management in the MoDiS-OS
342/08/98 A Niels Reimer: Strategien für ein verteiltes Last- und Ressourcenmanagement
342/09/98 A Javier Esparza, Editor: Proceedings of INFINITY’98
342/10/98 A Richard Mayr: Lossy Counter Machines
342/11/98 A Thomas Huckle: Matrix Multilevel Methods and Preconditioning
342/12/98 A Thomas Huckle: Approximate Sparsity Patterns for the Inverse of a Matrix and Pre-

conditioning
342/13/98 A Antonin Kucera, Richard Mayr: Weak Bisimilarity with Infinite-State Systems can be

Decided in Polynomial Time
342/01/99 A Antonin Kucera, Richard Mayr: Simulation Preorder on Simple Process Algebras
342/02/99 A Johann Schumann, Max Breitling: Formalisierung und Beweis einer Verfeinerung aus

FOCUS mit automatischen Theorembeweisern – Fallstudie –
342/03/99 A M. Bader, M. Schimper, Chr. Zenger: Hierarchical Bases for the Indefinite Helmholtz

Equation
342/04/99 A Frank Strobl, Alexander Wisspeintner: Specification of an Elevator Control System
342/05/99 A Ralf Ebner, Thomas Erlebach, Andreas Ganz, Claudia Gold, Clemens Harlfinger,

Roland Wism”uller: A Framework for Recording and Visualizing Event Traces in Par-
allel Systems with Load Balancing

Reihe A

342/06/99 A Michael Jaedicke, Bernhard Mitschang: The Multi-Operator Method: Integrating Al-
gorithms for the Efficient and Parallel Evaluation of User-Defined Predicates into OR-
DBMS

342/07/99 A Max Breitling, Jan Philipps: Black Box Views of State Machines
342/08/99 A Clara Nippl, Stephan Zimmermann, Bernhard Mitschang: Design, Implementation

and Evaluation of Data Rivers for Efficient Intra-Query Parallelism
342/09/99 A Robert Sandner, Michael Mauderer: IntegrierteBeschreibung automatisierter Produk-

tionsanlagen - eine Evaluierung praxisnaher Beschreibungstechniken
342/10/99 A Alexander Sabbah, Robert Sandner: Evaluation of Petri Net and Automata Based De-

scription Techniques: An Industrial Case Study
342/01/00 A Javier Esparza, David Hansel, Peter Rossmanith, Stefan Schwoon: Efficient Algorithm

for Model Checking Pushdown Systems
342/02/00 A Barbara König: Hypergraph Construction and Its Application to the Compositional

Modelling of Concurrency
342/03/00 A Max Breitling and Jan Philipps: Verification Diagrams for Dataflow Properties
342/04/00 A Günther Rackl: Monitoring Globus Components with MIMO

SFB 342 : Methoden und Werkzeuge für die Nutzung paralleler
Rechnerarchitekturen

Reihe B

342/1/90 B Wolfgang Reisig: Petri Nets and Algebraic Specifications
342/2/90 B Jörg Desel: On Abstraction of Nets
342/3/90 B Jörg Desel: Reduction and Design of Well-behaved Free-choice Systems
342/4/90 B Franz Abstreiter, Michael Friedrich, Hans-Jürgen Plewan: Das Werkzeug runtime zur

Beobachtung verteilter und paralleler Programme
342/1/91 B Barbara Paech: Concurrency as a Modality
342/2/91 B Birgit Kandler, Markus Pawlowski: SAM: Eine Sortier- Toolbox -

Anwenderbeschreibung
342/3/91 B Erwin Loibl, Hans Obermaier, Markus Pawlowski: 2. Workshop über Parallelisierung

von Datenbanksystemen
342/4/91 B Werner Pohlmann: A Limitation of Distributed Simulation Methods
342/5/91 B Dominik Gomm, Ekkart Kindler: A Weakly Coherent Virtually Shared Memory

Scheme: Formal Specification and Analysis
342/6/91 B Dominik Gomm, Ekkart Kindler: Causality Based Specification and Correctness Proof

of a Virtually Shared Memory Scheme
342/7/91 B W. Reisig: Concurrent Temporal Logic
342/1/92 B Malte Grosse, Christian B. Suttner: A Parallel Algorithm for Set-of-Support

Christian B. Suttner: Parallel Computation of Multiple Sets-of-Support
342/2/92 B Arndt Bode, Hartmut Wedekind: Parallelrechner:Theorie, Hardware, Software, An-

wendungen
342/1/93 B Max Fuchs: Funktionale Spezifikation einer Geschwindigkeitsregelung
342/2/93 B Ekkart Kindler: Sicherheits- und Lebendigkeitseigenschaften: Ein Literaturüberblick
342/1/94 B Andreas Listl; Thomas Schnekenburger; Michael Friedrich: Zum Entwurf eines Pro-

totypen für MIDAS

