
Criti
al Systems Design with UMLlightJan J�urjens?Software & Systems Engineering, Dep. of Informati
sMuni
h University of Te
hnology, GermanyAbstra
t. Despite years of su

essful resear
h into using formal meth-ods for the development of 
riti
al 
on
urrent systems, there are still toomany failures of 
riti
al systems in pra
ti
e. Part of the reason is thatuse formal methods is often seen to be to 
ostly.The Uni�ed Modeling Language o�ers an unpre
edented opportunity forhigh-quality 
riti
al systems development that is feasible in an industrial
ontext, sin
e many developers are trained in UML and are using italready.Our aim is to aid the diÆ
ult task of developing dependable systems inan approa
h based on a formal fragment of the Uni�ed Modeling Lan-guage 
alled UMLlight. We extend the notation to 
apture dependabilityrequirements and related physi
al properties. This way we en
apsulateknowledge on prudent dependability engineering and make it availableto developers whi
h may not be spe
ialized in dependability. One 
analso go further by 
he
king whether the 
onstraints asso
iated with thestereotypes are ful�lled in a given spe
i�
ation, by performing a formalanalysis.1 Introdu
tionThere is an in
reasing desire to exploit the 
exibility of software-basedsystems in the 
ontext of 
riti
al 
on
urrent systems where predi
tabil-ity is essential. Examples in
lude the use of embedded systems in variousappli
ation domains, su
h as 
y-by-wire in Avioni
s, drive-by-wire in Au-tomotive et
. .Given the high dependability requirements in su
h systems, a thor-ough design method is ne
essary, sin
e failures may have quite severe
onsequen
es. Sin
e there are faults in any operational system, fault-toleran
e is used at exe
ution time \to provide, by redundan
y, servi
e
omplying with the spe
i�
ation in spite of faults o

urred or o

urring"[Lap92℄. Forms of redundan
y 
ommonly employed in
lude spa
e redun-dan
y (physi
al 
opies of a resour
e), time redundan
y (rerunning fun
-tions) and information redundan
y (error-
orre
ting 
odes). To resolve? http://www.jurjens.de/jan { juerjens�in.tum.de1



the used redundan
y one may require 
omplex proto
ols whose 
orre
t-ness 
an be non-obvious [Rus94℄. Mistakes in the use of redundan
y andthe design of these proto
ols 
an thus again lead to problems. Thereforereliability me
hanisms 
annot be \blindly" inserted into a 
riti
al system,but the overall system development must take reliability aspe
ts into a
-
ount. Furthermore, sometimes dependability me
hanisms 
annot be usedo�-the-shelf, but have to be designed spe
i�
ally to satisfy given require-ments (for example on the hardware). Su
h me
hanisms are notoriouslyhard to design 
orre
tly, even for experts, as many examples of proto
olsdesigned by experts that were later found to 
ontains 
aws show.Spe
ta
ular examples for software failures in pra
ti
e in
lude problemswith Ariane 5 ro
kets: An independent inquiry board set up to investigatethe explosive failure in 1997 said the 
ight 
ontrol system failed be
auseof errors in 
omputer software design.1 Whether the De
. 12 2002 fatalfailure relates to software problems as well is 
urrently being investigated.Any support to aid dependable systems development is thus dearlyneeded. In parti
ular, it would be desirable to 
onsider dependabilityaspe
ts already in the design phase, before a system is a
tually imple-mented, sin
e removing 
aws in the design phase saves 
ost and time.This has motivated a signi�
ant amount of resear
h into using for-mal methods for dependable systems development. However, part of thediÆ
ulty of 
riti
al systems development is that 
orre
tness is often in
on
i
t to 
ost. Where thorough methods of system design pose high 
ostthrough personnel training and use, they are all too often avoided.The Uni�ed Modeling Language (UML, [RJB99, UML01℄, the de fa
toindustry-standard in obje
t-oriented modeling) o�ers an unpre
edentedopportunity for high-quality 
riti
al systems development that is feasiblein an industrial 
ontext.{ As the de fa
to standard in industrial modeling, a large number ofdevelopers is trained in UML.{ Compared to previous notations with a user 
ommunity of 
omparablesize, UML is relatively pre
isely de�ned.Here we use a fragment of UML 
alled UMLlight de�ned by a tex-tual program notation together with a formal semanti
s, be
ause this issuÆ
ient to demonstrate our ideas and be
ause for spa
e-restri
tions we
annot 
onsider the 
omplete UML, whose de�nition in [UML01℄ 
onsistsof about 800 pages altogether. We emphasize that we view it merely asa 
onvenient means to transport our ideas 
on
erning 
ertain aspe
ts of1 See http://news.bb
.
o.uk/2/hi/s
ien
e/nature/2569115.stm .2



UML. A similar approa
h is taken in [BLP01℄ with the notation SMDL.Note, however, that here our goal is not to generate 
ode, and not tobe in any way 
omplete in our des
ription of UML beyond the aspe
tsrelevant for the ideas we want to present here. This allows our notationto be more abstra
t and 
ompa
t (for example, there are no labels). Fora more 
omprehensive fragment of UML with a formal semanti
s, see[J�ur02b, J�ur03℄. A prototype analysis tool for UMLlight is being devel-oped in student proje
ts [Sha02, Men03℄ (
urrently fo
used on se
urityaspe
ts).To support using UML for dependable systems development, we de-�ne some stereotypes 
apturing dependability requirements and relatedphysi
al properties. This way we en
apsulate knowledge on prudent de-pendability engineering and thereby make it available to developers whi
hmay not be spe
ialized in dependability. One 
an also go further by 
he
k-ing whether the 
onstraints asso
iated with the stereotypes are ful�lledin a given spe
i�
ation, if desired by performing a formal analysis.Some of the ideas reported here were or will be presented in an invitedtalk at FDL'02 [J�ur02a℄ and tutorials on formal development of 
riti
alsystems with UML at Safe
omp 2002, Software Engineering 2003, andETAPS 2003 (ea
h unpublished).After presenting some ba
kground on dependability and on UML ex-tension me
hanisms in the following subse
tions, we de�ne the UMLlightnotation used in this paper to formally evaluate UML spe
i�
ations fordependability requirements in Se
tion 2. We introdu
e the stereotypessuggested for safe 
on
urrent systems development in Se
tion 3, togetherwith examples of their use. After pointing to related work, we indi
atefuture work and end with a 
on
lusion.Dependability Reliability goals for safety-
riti
al systems are often ex-pressed quantitatively via the maximum allowed failure rate. For example,
riti
al servi
es of the Advan
ed Automation System (AAS, providing AirTraÆ
 Control servi
es) should be unavailable at most 3 se
onds a year[CDD90℄. To prevent any single 
atastrophi
 failure in any air
raft of agiven type during its entire life-time one estimates that the maximumadmissible failure rate for ea
h failure 
ondition is about 10�9 per hour[LT82, p.37℄. Sin
e 109 hours amounts to over 100,000 years, one may nota
hieve 
on�den
e that a system has su
h a degree of dependability justby testing.This motivates the use of formal methods. Fa
ed with feasability as-pe
ts, one often abstra
ts from probabilities by assuming that failures are3



masked perfe
tly, in order to keep the model as simple as possible. Thenprobabilisti
 behaviour is fa
tored out into fault-toleran
e 
omponents.[J�ur01℄ gives 
onditions under whi
h it is justi�ed to abstra
t from failureprobabilities.We use the following examples for failure semanti
s in this paper.{ 
rash/performan
e failure semanti
s means that a 
omponent may
rash or may deliver the requested data only after the spe
i�ed timelimit, but it is assumed to be partially 
orre
t.{ value failure semanti
s means that a 
omponent may deliver in
orre
tvalues (represented by the error message ?).UML extension me
hanisms The three main \lightweight" extensionme
hanisms are stereotypes, tagged values and 
onstraints. Stereotypes,in double angle bra
kets, de�ne new types of modeling elements extendingthe semanti
s of existing types in the UML metamodel. A tagged value isa name-value pair in 
urly bra
kets asso
iating data with model elements.Constraints may also be atta
hed.For the stereotypes suggested here, we give validation rules evaluatinga model against in
luded dependability requirements. For this we extenda formal semanti
s for the used fragment of UML in a modular way witha formal notion of failures.2 UMLlightWe brie
y sket
h the ne
essary foundations for formally analysing UMLspe
i�
ations in the 
ontext of 
on
urrent system design. For some ofthe 
onstraints one needs to 
he
k we need to refer to a pre
isely de�nedsemanti
s of behavioral aspe
ts.Here we only need a behavioural semanti
s for a simpli�ed fragmentof UML state
harts (de�ned here using the UMLlight notation, buildingon the work in [J�ur02b, J�ur03℄).In UML the obje
ts or 
omponents 
ommuni
ate through messagesre
eived in their input queues and released to their output queues. Thusfor ea
h 
omponent C of a given system, our semanti
s below de�nes apro
ess pC whi
h iteratively reads input from the input queues and addsoutput to the output queues. The behavioral semanti
s of this pro
essmodels the run-to-
ompletion semanti
s of UML state
harts. To evaluatethe safety of the system with respe
t to a given failure semanti
s, thepro
esses modelling the system 
omponents are 
omposed with failure4



E ::= expression? error valuex variable (x 2 Var)d data value (d 2 Data)E1 :: E2 list 
on
atenationhead(E) head of listtail(E) tail of listFig. 1. Expressions.pro
esses with the spe
i�ed failure semanti
s de�ned from the stereotypesat the 
ommuni
ation links in the deployment and 
lass diagrams, asexplained in Se
tion 3.Spe
i�
ation language We de�ne the UMLlight notation for simpli�edUML state
harts.Pro
esses 
ommuni
ate by sending messages to other pro
esses, whi
hare held in a queue until re
eived by the re
eipient (thus 
ommuni
ationis asyn
hronous). Pro
esses are de�ned by programs that des
ribe theoutput at a given point in time given the re
eived input. Lo
al state 
anbe maintained through the use of lo
al variables, and used for iteration(for instan
e, for 
oding while loops) whi
h 
an be de�ned using CCS-styleguarded re
ursive equations (de�ned below).We assume sets Op of messsage names (in
luding the 
ompletion mes-sage),Var of variables andData of data values to be used as arguments ofmessages. The values 
ommuni
ated over 
hannels are formal expressionsbuilt from the error value ?, variables, and data values using 
on
atena-tion as de�ned in Figure 1 (with the usual equations for 
on
atenation,head(), and tail()).UMLlight state
harts are de�ned indu
tively in Figure 2. Here k 2fy; t; xg is the kind of the a
tion, representing entry, transition-bound,and exit, resp. . exp 2 Exp is an expression, msg = op(exp) a message,var 2 Var a variable, and bexp is a Boolean expressions over (Exp;=).In the op(var) expression, the in
oming value is assigned to the variable.2One 
an spe
ify iteration (
orresponding to transition loops in thediagrammati
 presentation of state
harts) by using guarded re
ursion ofthe form A def= E(A) where A o

urs in E only within subexpressions ofthe form a:F as in CCS. Guardedness ensure that su
h equations haveunique solutions.2 Note that our usage of \;" is di�erent from that in [BLP01℄.5



a
t ::= a
tionsoutk(msg) output of expressionvar :=k exp assignmenttrs ::= transitionsop(var)[bexp℄a
t1 : : : a
tnp ::= programstrs:p �ring of transitionp1jjp2 parallel 
ompositionp1 + p2 nondeterminism0 �nal statep1; p2 subma
hine 
ompositionFig. 2. UMLlight state
harts.Here we follow some of the redu
tions regarding state
hart 
onstru
tsproposed in [RACH00, Cav00℄:{ entry and exit a
tions are fa
tored into the transitions (whi
h thusneed to allow more than one a
tion).{ This way the distin
tion between internal and external transitionsbe
omes impli
it.{ Syn
h states 
an be modelled using other 
onstru
ts.Furthermore we omit the following features be
ause they are orthog-onal to the ideas we would like to present here.{ history states and deferred events,{ type hierar
hies,{ 
reation and deletion of state ma
hines,{ transitions 
rossing state borders.Internal a
tivities are themselves again modelled by state
hart expres-sions.The stru
tural operational semanti
s of the programs is given inFigure 3. It is of the form (s; p)op(exp);out(msg)! (s0; p0) where p; p0 are pro-grams, s; s0 are valuations of the variables appearing in p; p0 (
alled\states"), op(exp) spe
i�es that the transition will be �red at re
eptionof the message op with argument exp, and msg is a list of messages sendout when the transition is �red. In the �rst rule, op(exp) is the messageexpe
ted in trs, bexp(s) the 
ondition in trs evaluated at state s, msgthe list of messages send out by the a
tions in trs, and var is the list ofvariables assigned the list of values exp by the a
tions in trs. Note thatthe ordering in the 
ase of the assignments means that variables may be6



(s; trs:p)op(exp);out(msg)! (s[var 7! exp℄; p) bexp(s) = true(s; p1)op(exp);out(msg1)! (s1; p01); (s; p2)op(exp);out(msg1)! (s2; p02)(s; p1jjp2)op(exp)out(msg1./msg2)! (s1 ./ s2; p01jjp02)(s; p1)op(exp);out(msg1)! (s; p01);:9(s; p2)op(exp);out(msg2)!(s; p1jjp2)op(exp);out(msg1)! (s; p01jjp2) and symmetri
(s; p1)trs!(s0; p0)(s; p1 + p2)trs!(s0; p0) and symmetri
(s; p2)op2(exp2);out(msg2)! (s02; p0); (s; p1)op1(exp1);out(msg1)! x(s01; p01);:9(s; p1)op2(exp2);out(msg0)!(s; p1; p2)op2(exp2);out(msg2./msg1)! (s02 ./ s01; p0)Fig. 3. Stru
tural Operational Semanti
s.
assigned several di�erent values, and the last value then remains to beassigned. In the se
ond rule,msg1 ./ msg2 is a non-deterministi
 merge ofthe two listsmsg1 andmsg2 and s1 ./ s2 a non-deterministi
 merge of thetwo states s1; s2 (whi
h means that at variables where there is a 
on
i
tin the assignments, one of the two values is 
hosen non-deterministi
ally).More pre
isely, this rule represents a set of rules for ea
h possibility to re-solve the mentioned non-deteminism. In the third rule, :9(s; p)trs! meansthat there is no transition labelled trs from (s; p) and \symmetri
" meansthat there is an analogous rule obtained by swapping the subs
ripts 1 and2. In the last rule trs!x is de�ned as trs!, but only referring to the exit a
tionsamong the a
tions of trs (in
luding out a
tions and variable assignments).Given a sequen
e i of input messages and a pro
ess p, we write JpK(i)for the set of sequen
es o of output messages su
h that there are transi-tions (pn; sn)opn(expn);out(msgn)! (pn+1; sn+1) for n = 0; : : : ; k with p0 = p,s0 is the state where all variables are evaluated at ?, and su
h thati = (opn(expn))n and o is the 
on
atenation of the sequen
es msgn(ea
h n). This is the set of possible sequen
es of output messages of pgiven the sequen
e of input messages i.7



3 Stereotypes for safety analysisIn Figure 4 we give the suggested stereotypes, together with their tags and
onstraints. The 
onstraints, whi
h in the table are only named brie
y, areformulated and explained in the remainder of the se
tion. Figure 5 givesthe 
orresponding tags. Note that some of the stereotypes on subsystemsrefer to stereotypes on model elements 
ontained in the subsystems. Forexample, the 
onstraint of the hh 
ontainment ii stereotype refers to 
on-tained obje
ts stereotyped hh 
riti
al ii (whi
h in turn have tags flevelg).The relations between the elements of the tables are explained below indetail.Stereotype Base Class Tags Constraints Des
riptionrisk link, node failure risks
rash/performan
e link, node 
rash/performan
efailure semanti
svalue link, node valuefailure semanti
sguarantee link, node goal guaranteesredundan
y dependen
y, model redundan
y model
omponentsafe links subsystem dependen
y safety enfor
es safemat
hed by links 
ommuni
ation linksse
re
y dependen
y assumes se
re
ysafe subsystem hh 
all ii, hh send ii respe
t stru
tural intera
tiondependen
y data safety data safety
riti
al obje
t se
ret 
riti
al obje
t
ontainment subsystem prevents down-
ow information 
owFig. 4. StereotypesTag Stereotype Type Multipl. Des
riptionfailure risk P(fdelay, 
orruption, lossg) * spe
i�es risksgoal guarantee P(fimmediate, 
orre
t, eventualg) * spe
i�es guaranteesmodel redundan
y fnone, majority, fastestg * redundan
y modelFig. 5. TagsWell-formedness rules We explain the stereotypes and tags given inFigures 4 and 5 and give examples. By their nature, some of the 
on-straints 
an be enfor
ed at the level of abstra
t syntax (su
h as hh safe links ii),8



Risk Failuresnone()Crash/performan
e floss,delaygValue f
orruptiongFig. 6. Failure semanti
swhile others refer to the formal de�nitions in Se
tion 2 (su
h ashh 
ontainment ii). Note that even 
he
king the latter 
an be me
hanizedgiven appropriate tool-support.Redundan
y This stereotype of dependen
ies and 
omponents and itsasso
iated tag fmodelg 
an be used to des
ribe the redundan
y model thatshould be implemented for the 
ommuni
ation along the dependen
y orthe values 
omputed by the 
omponent. Here we 
onsider the redundan
ymodels none, majority, fastest meaning that there is no redundan
y, thereis repli
ation with majority vote, or repli
ation where the fastest resultis taken (but of 
ourse there are others, whi
h 
an easily be in
orporatedin our approa
h).Risk, 
rash/performan
e, value With the stereotype hh physi
al risk ii onlinks and nodes in deployment diagrams one 
an des
ribe the risks arisingwhen using these links or nodes, using the asso
iated tag ffailureg, whi
hmay have any subset of fdelay; 
orruption; lossg as its value. In the 
ase ofnodes, these 
on
ern the respe
tive 
ommuni
ation links 
onne
ted withthe node. Alternatively, one may use the stereotypes hh 
rash=performan
e iior hh value ii, whi
h des
ribe spe
i�
 failure semanti
s (by giving the rele-vant subset of fdelay; 
orruption; lossg): For ea
h redundan
y model R,we have a fun
tion FailuresR(s) from a given stereotypes 2 fhh 
rash=performan
e ii; hh value iig to a set of strings FailuresR(s)�fdelay; 
orruption; lossg.If there are several su
h stereotypes relevant to a given link (possiblyarising from a node 
onne
ted to it), the union of the relevant failure setsis 
onsidered.This way we 
an evaluate UML spe
i�
ations. We make use of thisfor the 
onstraints of the remaining stereotypes.As an example for a failures fun
tion, Figure 5 gives the one for theabsen
e of any redundan
y me
hanism (R = none).guarantee hh 
all ii or hh send ii dependen
ies in obje
t or 
omponent dia-grams stereotyped hh guarantee ii are supposed to provide the goals de-s
ribed in the asso
iated tag fgoalg for the data that is sent along them9



as arguments or return values of operations or signals. The goals may beany subset of fimmediate; 
orre
t; eventualg. This stereotype is used inthe 
onstraint for the stereotype hh safe links ii.safe links This stereotype, whi
h may label subsystems, is used to ensurethat safety requirements on the 
ommuni
ation are met by the physi
allayer. More pre
isely, the 
onstraint enfor
es that for ea
h dependen
yd with redundan
y model R stereotyped hh guarantee ii between subsys-tems or obje
ts on di�erent nodes n;m, we have a 
ommuni
ation link lbetween n and m with stereotype s su
h that{ if fgoalg has immediate as one of its values then delay =2 FailuresR(s),{ if fgoalg has 
orre
t as one of its values then 
orruption =2 FailuresR(s),and{ if fgoalg has eventual as one of its values then loss =2 FailuresR(s).Example In Figure 7, given the redundan
y model R = none, the
onstraint for the stereotype hh safe links ii is violated: The model does notprovide the goal immediate given R = none, be
ause the Internet 
ommu-ni
ation link between web-server and 
lient does not provide the neededsafety guarantee a

ording to the Failuresnone(
rash=performan
e) s
e-nario.
client machine

client apps server apps

server machine

«call»

{goal={immediate}}
«guarantee»

«crash/performance»

«safe links»client/server

Fig. 7. Example safe links usage
riti
al We assume that we are given an ordered set Levels of safetylevels. Then this stereotype labels obje
ts whose instan
es are 
riti
alin some way, as spe
i�ed by the asso
iated tags flevelg (for ea
h levellevel 2 Levels), the values of whi
h are data values or attributes of10



the 
urrent obje
t with the required to be prote
ted by the given safetylevel. This prote
tion is enfor
ed by the 
onstraints of the stereotypeshh safe dependen
y ii and hh 
ontainment ii whi
h label subsystems that 
on-tain hh 
riti
al ii obje
ts.safe dependen
y This stereotype, used to label subsystems 
ontaining ob-je
t diagrams or stati
 stru
ture diagrams, ensures that the hh 
all ii andhh send ii dependen
ies between obje
ts or subsystems respe
t the safetyrequirements on the data that may be 
ommuni
ated along them. Moreexa
tly, we assume that ea
h level 2 Levels has an asso
iated set ofgoals goals(level)�fimmediate; 
orre
t; eventualg. Then the 
onstraintenfor
ed by this stereotype is that if there is a hh 
all ii or hh send ii depen-den
y from an obje
t (or subsystem) C to an obje
t (or subsystem) Dthen the following 
onditions are ful�lled.{ For any message name n o�ered by D, the safety level of n is the samein C as in D.{ If a message name o�ered by D has safety level level and goal 2goals(level), then goal is one of the goals provided by the dependen
y.Example Figure 8 shows a sensor/
ontroller subsystem stereotyped withthe requirement hh safe dependen
y ii. We assume that immediate 2goals(realtime). The given spe
i�
ation violates the 
onstraint for thisstereotype, sin
e Sensor and the hh 
all ii dependen
y do not provide therealtime goal immediate for measure() required by Controller.
«critical»Controller

{realtime={measure()}}

switch(): Bool

Sensor

mesure(): Value

«call»

switch(): Bool

Sensor/controller
«safe dependency»

Fig. 8. Example safe dependen
y usage11



Containment This stereotype of subsystems enfor
es safe 
ontainmentfollowing an approa
h proposed in [DS99℄ by making use of the asso
iatedsafety levels. For this we de�ne an ordering on the set Levels as follows:For l; l0 2 Levels we have l � l0 if goals(l)�goals(l0).Then the hh 
ontainment ii 
onstraint is that in the stereotyped sub-system, the value of any data element of level l may only be in
uen
edby data of the same or a higher safety level: Write H(l) for the set ofmessages of level l or higher. Given a sequen
e m of messages, we writem�H(l) for the sequen
e of messages derived from those in m by deletingall events the message names of whi
h are not in H(l). For a set M ofsequen
es of messages, we de�ne M�H def= fm�H :m 2Mg.De�nition 1. Given a UMLlight state
hart p and a safety level l, we saythat p provides 
ontainment with respe
t to l if for any two sequen
es �; �of input messages, ��H(l) = ��H(l) implies JpKi�H(l) = JpKj�H(l).Intuitively, providing 
ontainment means that an output should in noway depend on inputs of a lower level.Example The example in Figure 9 shows the diagrammati
 repre-sentation of a Fuel Controller that 
omputes the amount of used fuel ofan airplane from the distan
e travelled so far. This is done (quite simplis-ti
ally for the purpose of the example) by multiplying the distan
e witha 
onstant (supposed to give the amount of fuel 
onsumed per lengthunit). Be
ause of di�erent air resistan
e, this 
onstant depends on thefa
t whether the wheels of the plane were pulled in-board or (mistakenly)left outside. This is modelled by having two states 
orresponding to thestate of the wheels, and having di�erent 
onstants 
 6= d. Now the re-sult of the message fuel is supposed to be of the level safe. However, themessage wheelsin giving the state of the wheels is not assigned any safetylevel. Therefore this example violates hh 
ontainment ii, be
ause a safe valuedepends on a value not at least of level safe. This 
an be 
he
ked usingthe textual representation of the UMLlight pro
ess p de�ned by:p = fuel(x)[true℄out(return(d:x)):p+wheelsin(y)[y = false℄:p+wheelsin(y)[y = true℄:p0p0 = fuel(x)[true℄out(return(
:x)):p+wheelsin(y)[y = false℄:p+wheelsin(y)[y = true℄:p0Then 
onsidering the sequen
es � = (wheelsin(true); fuel(1)) and� = (wheelsin(false); fuel(1)), and the safety level l = safe, we have12



��H(l) = ��H(l), but JpKi�H(l) = freturn(
)g 6= freturn(d)g = JpKj�H(l)sin
e 
 6= d by assumption on 
; d.
«containment»

WheelsOutWheelsIn

fuel(x:Data):Data

wheelsin(true)

wheelsin(false)

wheelsin(x:Bool)

{safe={fuel}}Fuel controller

Fuel control

fuel(x:Data):Data
wheelsin(x:Bool)

fuel(x)/return(d.x)fuel(x)/return(c.x)

wheelsin(true) wheelsin(false)Fig. 9. Example 
ontainment usageRelated Work To our knowledge, this is the �rst work proposing touse UML for the formal development of safety-
riti
al systems. Some ofthe ideas reported here were or will be presented in an invited talk atFDL'02 [J�ur02a℄ and tutorials on formal development of 
riti
al systemswith UML at Safe
omp 2002, Software Engineering 2003, and ETAPS2003 (ea
h unpublished). [J�ur02
, J�ur03℄ proposes to use UML for devel-oping se
urity-
riti
al systems. See also [JCF+02℄ for approa
hes relatingto other 
riti
ality requirements or for approa
hes to safety-
riti
al devel-opment without a formal basis.Also relevant is the work towards a formal semanti
s of UML in
luding[LP99, KER99, RACH00, AM00, BLMF00, GI01℄, and notably [BLP01℄whi
h is the approa
h most similar to the one here (but 
loser to the
on
rete UML syntax for example by in
luding state labels).Resear
h on the analysis of UML model for non-fun
tional propertiesin
ludes [LL99, DMY02℄.4 Con
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