Critical Systems Design with UML!sht

Jan Jurjens*

Software & Systems Engineering, Dep. of Informatics
Munich University of Technology, Germany

Abstract. Despite years of successful research into using formal meth-
ods for the development of critical concurrent systems, there are still too
many failures of critical systems in practice. Part of the reason is that
use formal methods is often seen to be to costly.

The Unified Modeling Language offers an unprecedented opportunity for
high-quality critical systems development that is feasible in an industrial
context, since many developers are trained in UML and are using it
already.

Our aim is to aid the difficult task of developing dependable systems in
an approach based on a formal fragment of the Unified Modeling Lan-

guage called UMthht. We extend the notation to capture dependability
requirements and related physical properties. This way we encapsulate
knowledge on prudent dependability engineering and make it available
to developers which may not be specialized in dependability. One can
also go further by checking whether the constraints associated with the
stereotypes are fulfilled in a given specification, by performing a formal
analysis.

1 Introduction

There is an increasing desire to exploit the flexibility of software-based
systems in the context of critical concurrent systems where predictabil-
ity is essential. Examples include the use of embedded systems in various
application domains, such as fly-by-wire in Avionics, drive-by-wire in Au-
tomotive etc. .

Given the high dependability requirements in such systems, a thor-
ough design method is necessary, since failures may have quite severe
consequences. Since there are faults in any operational system, fault-
tolerance is used at execution time “to provide, by redundancy, service
complying with the specification in spite of faults occurred or occurring”
[Lap92]. Forms of redundancy commonly employed include space redun-
dancy (physical copies of a resource), time redundancy (rerunning func-
tions) and information redundancy (error-correcting codes). To resolve

* http://www.jurjens.de/jan — juerjens@in.tum.de

the used redundancy one may require complex protocols whose correct-
ness can be non-obvious [Rus94]. Mistakes in the use of redundancy and
the design of these protocols can thus again lead to problems. Therefore
reliability mechanisms cannot be “blindly” inserted into a critical system,
but the overall system development must take reliability aspects into ac-
count. Furthermore, sometimes dependability mechanisms cannot be used
off-the-shelf, but have to be designed specifically to satisfy given require-
ments (for example on the hardware). Such mechanisms are notoriously
hard to design correctly, even for experts, as many examples of protocols
designed by experts that were later found to contains flaws show.

Spectacular examples for software failures in practice include problems
with Ariane 5 rockets: An independent inquiry board set up to investigate
the explosive failure in 1997 said the flight control system failed because
of errors in computer software design.! Whether the Dec. 12 2002 fatal
failure relates to software problems as well is currently being investigated.

Any support to aid dependable systems development is thus dearly
needed. In particular, it would be desirable to consider dependability
aspects already in the design phase, before a system is actually imple-
mented, since removing flaws in the design phase saves cost and time.

This has motivated a significant amount of research into using for-
mal methods for dependable systems development. However, part of the
difficulty of critical systems development is that correctness is often in
conflict to cost. Where thorough methods of system design pose high cost
through personnel training and use, they are all too often avoided.

The Unified Modeling Language (UML, [RJB99, UMLO1], the de facto
industry-standard in object-oriented modeling) offers an unprecedented
opportunity for high-quality critical systems development that is feasible
in an industrial context.

— As the de facto standard in industrial modeling, a large number of
developers is trained in UML.

— Compared to previous notations with a user community of comparable
size, UML is relatively precisely defined.

Here we use a fragment of UML called UMLIgM defined by a tex-
tual program notation together with a formal semantics, because this is
sufficient to demonstrate our ideas and because for space-restrictions we
cannot consider the complete UML, whose definition in [UMLO1] consists
of about 800 pages altogether. We emphasize that we view it merely as
a convenient means to transport our ideas concerning certain aspects of

! See http://news.bbc.co.uk/2/hi/science/nature/2569115.stm .

UML. A similar approach is taken in [BLP01] with the notation SMDL.
Note, however, that here our goal is not to generate code, and not to
be in any way complete in our description of UML beyond the aspects
relevant for the ideas we want to present here. This allows our notation
to be more abstract and compact (for example, there are no labels). For
a more comprehensive fragment of UML with a formal semantics, see
[Jiir02b, Jiir03]. A prototype analysis tool for UMLY8M is being devel-
oped in student projects [Sha02, Men03] (currently focused on security
aspects).

To support using UML for dependable systems development, we de-
fine some stereotypes capturing dependability requirements and related
physical properties. This way we encapsulate knowledge on prudent de-
pendability engineering and thereby make it available to developers which
may not be specialized in dependability. One can also go further by check-
ing whether the constraints associated with the stereotypes are fulfilled
in a given specification, if desired by performing a formal analysis.

Some of the ideas reported here were or will be presented in an invited
talk at FDL’02 [Jir02a] and tutorials on formal development of critical
systems with UML at Safecomp 2002, Software Engineering 2003, and
ETAPS 2003 (each unpublished).

After presenting some background on dependability and on UML ex-
tension mechanisms in the following subsections, we define the UM light
notation used in this paper to formally evaluate UML specifications for
dependability requirements in Section 2. We introduce the stereotypes
suggested for safe concurrent systems development in Section 3, together
with examples of their use. After pointing to related work, we indicate
future work and end with a conclusion.

Dependability Reliability goals for safety-critical systems are often ex-
pressed quantitatively via the maximum allowed failure rate. For example,
critical services of the Advanced Automation System (AAS, providing Air
Traffic Control services) should be unavailable at most 3 seconds a year
[CDDY0]. To prevent any single catastrophic failure in any aircraft of a
given type during its entire life-time one estimates that the maximum
admissible failure rate for each failure condition is about 10~ per hour
[LT82, p.37]. Since 10° hours amounts to over 100,000 years, one may not
achieve confidence that a system has such a degree of dependability just
by testing.

This motivates the use of formal methods. Faced with feasability as-
pects, one often abstracts from probabilities by assuming that failures are

masked perfectly, in order to keep the model as simple as possible. Then
probabilistic behaviour is factored out into fault-tolerance components.
[Jir01] gives conditions under which it is justified to abstract from failure
probabilities.

We use the following examples for failure semantics in this paper.

— crash/performance failure semantics means that a component may
crash or may deliver the requested data only after the specified time
limit, but it is assumed to be partially correct.

— value failure semantics means that a component may deliver incorrect
values (represented by the error message).

UML extension mechanisms The three main “lightweight” extension
mechanisms are stereotypes, tagged values and constraints. Stereotypes,
in double angle brackets, define new types of modeling elements extending
the semantics of existing types in the UML metamodel. A tagged value is
a name-value pair in curly brackets associating data with model elements.
Constraints may also be attached.

For the stereotypes suggested here, we give validation rules evaluating
a model against included dependability requirements. For this we extend
a formal semantics for the used fragment of UML in a modular way with
a formal notion of failures.

2 UMLlight

We briefly sketch the necessary foundations for formally analysing UML
specifications in the context of concurrent system design. For some of
the constraints one needs to check we need to refer to a precisely defined
semantics of behavioral aspects.

Here we only need a behavioural semantics for a simplified fragment
of UML statecharts (defined here using the UMLI8t notation, building
on the work in [Jur02b, Jur03]).

In UML the objects or components communicate through messages
received in their input queues and released to their output queues. Thus
for each component C of a given system, our semantics below defines a
process pc which iteratively reads input from the input queues and adds
output to the output queues. The behavioral semantics of this process
models the run-to-completion semantics of UML statecharts. To evaluate
the safety of the system with respect to a given failure semantics, the
processes modelling the system components are composed with failure

expression
error value
variable (z € Var)
data value (d € Data)
3 list concatenation
head(E) head of list
tail(E) tail of list

8 |_'|i

Fig. 1. Expressions.

processes with the specified failure semantics defined from the stereotypes
at the communication links in the deployment and class diagrams, as
explained in Section 3.

Specification language We define the UMLI8Rt potation for simplified
UML statecharts.

Processes communicate by sending messages to other processes, which
are held in a queue until received by the receipient (thus communication
is asynchronous). Processes are defined by programs that describe the
output at a given point in time given the received input. Local state can
be maintained through the use of local variables, and used for iteration
(for instance, for coding while loops) which can be defined using CCS-style
guarded recursive equations (defined below).

We assume sets Op of messsage names (including the completion mes-
sage), Var of variables and Data of data values to be used as arguments of
messages. The values communicated over channels are formal expressions
built from the error value 1, variables, and data values using concatena-
tion as defined in Figure 1 (with the usual equations for concatenation,
head(), and tail()).

UMLYgEt gtatecharts are defined inductively in Figure 2. Here k£ €
{y,t,z} is the kind of the action, representing entry, transition-bound,
and exit, resp. . exp € Exp is an expression, msg = op(exp) a message,
var € Var a variable, and bezp is a Boolean expressions over (Exp, =).
In the op(var) expression, the incoming value is assigned to the variable.?

One can specify iteration (corresponding to transition loops in the
diagrammatic presentation of statecharts) by using guarded recursion of

the form A ¥ E (A) where A occurs in E only within subexpressions of
the form a.F as in CCS. Guardedness ensure that such equations have
unique solutions.

% Note that our usage of ¢ is different from that in [BLPO1].

act ::= actions

outy (msg) output of expression
var :=y exp assignment

trs = transitions
op(var)[bexplact: ... acty

pu= programs
trs.p firing of transition
pi||p2 parallel composition
p1+ p2 nondeterminism
0 final state
P1; P2 submachine composition

Fig. 2. UMLEBM spatecharts.

Here we follow some of the reductions regarding statechart constructs
proposed in [RACHO00, Cav00]:

— entry and exit actions are factored into the transitions (which thus
need to allow more than one action).

— This way the distinction between internal and external transitions
becomes implicit.

— Synch states can be modelled using other constructs.

Furthermore we omit the following features because they are orthog-
onal to the ideas we would like to present here.

— history states and deferred events,

— type hierarchies,

— creation and deletion of state machines,
— transitions crossing state borders.

Internal activities are themselves again modelled by statechart expres-
sions.

The structural operational semantics of the programs is given in

Figure 3. It is of the form (5,p)oP(ewp)gt(msg)(s’,p’) where p,p’ are pro-

grams, s,s’ are valuations of the variables appearing in p,p’ (called
“states”), op(exp) specifies that the transition will be fired at reception
of the message op with argument exp, and msg is a list of messages send
out when the transition is fired. In the first rule, op(exp) is the message
expected in trs, bexp(s) the condition in trs evaluated at state s, msg
the list of messages send out by the actions in trs, and var is the list of
variables assigned the list of values exp by the actions in #rs. Note that
the ordering in the case of the assignments means that variables may be

(s,trs.p)op(”p)ﬂn(msg)(s[var — exp|,p) bexp(s) = true
op(exp);out(ms op(exp);out(ms
(S7p1) ot p)_>(gl)(slapll)7(37p2) vt p)_>(gl)(827p’2)

)Op(ewp)out(n_tfgvxlmsgz)(

(s,p1llp2 514 82,7 ||ph)

(s, I)OP(ewp);tE)t(msm)()Dp(ezp);ﬁt(msgz)

5,p1), ~3(s, p2
op(ewp);gt(msgl)(

and symmetric
S, pll | |p2)

(s,p) (s, p')
t

rs

(5,p1 +p2)=(s',p')

(s,p1]|p2)

and symmetric

(8, 2)op2(ewp2)i7>ut(m892)(512,p/)7 (87pl)opl(ea:pl)gut(msm)m(s,hp,l), _‘H(S,pl)opQ(esz)i;ut(msg)

op2 (517P2);0ut(m392‘><‘m391)
(5,p1;p2) - (s > 89,p)

Fig. 3. Structural Operational Semantics.

assigned several different values, and the last value then remains to be
assigned. In the second rule, msg; <1 msgo is a non-deterministic merge of
the two lists msg; and msgs and s; < s9 a non-deterministic merge of the
two states sy, s (which means that at variables where there is a conflict
in the assignments, one of the two values is chosen non-deterministically).
More precisely, this rule represents a set of rules for each possibility to re-

solve the mentioned non-deteminism. In the third rule, —3(s, p)tig means
that there is no transition labelled ¢rs from (s, p) and “symmetric” means
that there is an analogous rule obtained by swapping the subscripts 1 and
2. In the last rule tifx is defined as tr—f, but only referring to the exit actions
among the actions of ¢trs (including out actions and variable assignments).

Given a sequence ¢ of input messages and a process p, we write [p](¢)

for the set of sequences o of output messages such that there are transi-

. opn(expn);out(msgn))
tions (pn, Sp) = (Pn+1,Snt1) for n = 0,...,k with pg = p,

sp is the state where all variables are evaluated at 1, and such that
it = (opp(expyp))n and o is the concatenation of the sequences msgy
(each n). This is the set of possible sequences of output messages of p
given the sequence of input messages 1.

3 Stereotypes for safety analysis

In Figure 4 we give the suggested stereotypes, together with their tags and
constraints. The constraints, which in the table are only named briefly, are
formulated and explained in the remainder of the section. Figure 5 gives
the corresponding tags. Note that some of the stereotypes on subsystems
refer to stereotypes on model elements contained in the subsystems. For
example, the constraint of the « containment) stereotype refers to con-
tained objects stereotyped «critical) (which in turn have tags {level}).
The relations between the elements of the tables are explained below in
detail.

Stereotype Base Class |Tags |Constraints Description
risk link, node |failure risks
crash/performance|link, node crash/performance
failure semantics
value link, node value
failure semantics
guarantee link, node |goal guarantees
redundancy dependency,|model redundancy model
component
safe links subsystem dependency safety enforces safe
matched by links communication links
secrecy dependency assumes secrecy
safe subsystem «call», «send» respect|structural interaction
dependency data safety data safety
critical object secret critical object
containment subsystem prevents down-flow information flow
Fig. 4. Stereotypes
Tag |Stereotype |Type |Multipl.|Description

* specifies risks

specifies guarantees
redundancy model

failure|risk
goal |guarantee
model [redundancy|{none, majority, fastest}

P ({delay, corruption, loss})

P ({immediate, correct, eventual})|*
*

Fig. 5. Tags

Well-formedness rules We explain the stereotypes and tags given in
Figures 4 and 5 and give examples. By their nature, some of the con-
straints can be enforced at the level of abstract syntax (such as « safe links»),

Risk |Failuresnonc ()
Crash/performance|{loss,delay}
Value {corruption}

Fig. 6. Failure semantics

while others refer to the formal definitions in Section 2 (such as
« containment)). Note that even checking the latter can be mechanized
given appropriate tool-support.

Redundancy This stereotype of dependencies and components and its
associated tag {model} can be used to describe the redundancy model that
should be implemented for the communication along the dependency or
the values computed by the component. Here we consider the redundancy
models none, majority, fastest meaning that there is no redundancy, there
is replication with majority vote, or replication where the fastest result
is taken (but of course there are others, which can easily be incorporated
in our approach).

Risk, crash/performance, value With the stereotype « physical risk» on
links and nodes in deployment diagrams one can describe the risks arising
when using these links or nodes, using the associated tag {failure}, which
may have any subset of {delay, corruption,loss} as its value. In the case of
nodes, these concern the respective communication links connected with
the node. Alternatively, one may use the stereotypes « crash/performance »
or «value), which describe specific failure semantics (by giving the rele-
vant subset of {delay, corruption,loss}): For each redundancy model R,
we have a function Failuresp(s) from a given stereotype
s € {«crash/performance», «value»} to a set of strings Failuresg(s)C
{delay, corruption,loss}.

If there are several such stereotypes relevant to a given link (possibly
arising from a node connected to it), the union of the relevant failure sets
is considered.

This way we can evaluate UML specifications. We make use of this
for the constraints of the remaining stereotypes.

As an example for a failures function, Figure 5 gives the one for the
absence of any redundancy mechanism (R = none).

guarantee «call» or «send» dependencies in object or component dia-
grams stereotyped « guarantee) are supposed to provide the goals de-
scribed in the associated tag {goal} for the data that is sent along them

as arguments or return values of operations or signals. The goals may be
any subset of {immediate, correct, eventual}. This stereotype is used in
the constraint for the stereotype « safe links».

safe links This stereotype, which may label subsystems, is used to ensure
that safety requirements on the communication are met by the physical
layer. More precisely, the constraint enforces that for each dependency
d with redundancy model R stereotyped «guarantee)» between subsys-
tems or objects on different nodes n,m, we have a communication link [
between n and m with stereotype s such that

— if {goal} has immediate as one of its values then delay ¢ Failuresg(s),

— if {goal} has correct as one of its values then corruption ¢ Failuresg(s),
and

— if {goal} has eventual as one of its values then loss ¢ Failuresg(s).

Example In Figure 7, given the redundancy model R = none, the
constraint for the stereotype «safe links» is violated: The model does not
provide the goal immediate given R = none, because the Internet commu-
nication link between web-server and client does not provide the needed
safety guarantee according to the Failures, . (crash/per formance) sce-
nario.

client/server «safe links»
client machine «guarantee» server machine
client apps |1 ___ ,iQ‘,’"ﬁ"ff,'TT?F’,‘?‘F?},} , server apps
«call»
«crash/performance»

Fig. 7. Example safe links usage

critical We assume that we are given an ordered set Levels of safety
levels. Then this stereotype labels objects whose instances are critical
in some way, as specified by the associated tags {level} (for each level
level € Levels), the values of which are data values or attributes of

10

the current object with the required to be protected by the given safety
level. This protection is enforced by the constraints of the stereotypes
« safe dependency » and « containment)» which label subsystems that con-
tain « critical » objects.

safe dependency This stereotype, used to label subsystems containing ob-
ject diagrams or static structure diagrams, ensures that the «call» and
(send» dependencies between objects or subsystems respect the safety
requirements on the data that may be communicated along them. More
exactly, we assume that each level € Levels has an associated set of
goals goals(level)C{immediate, correct,eventual}. Then the constraint
enforced by this stereotype is that if there is a «call» or «send» depen-
dency from an object (or subsystem) C' to an object (or subsystem) D
then the following conditions are fulfilled.

— For any message name n offered by D, the safety level of n is the same
in C as in D.

— If a message name offered by D has safety level level and goal €
goals(level), then goal is one of the goals provided by the dependency.

Example Figure 8 shows a sensor/controller subsystem stereotyped with
the requirement «safe dependency». We assume that immediate €
goals(realtime). The given specification violates the constraint for this
stereotype, since Sensor and the «call» dependency do not provide the
realtime goal immediate for measure() required by Controller.

Sensor/controller «safe dependency» HT
switch(): Bool
Sensor Controller «critical»
«call» { realtime={ measure()} }
mesure(): Value o

Fig. 8. Example safe dependency usage

11

Containment This stereotype of subsystems enforces safe containment
following an approach proposed in [DS99] by making use of the associated
safety levels. For this we define an ordering on the set Levels as follows:
For 1,1" € Levels we have | <1 if goals(l)Cgoals(l").

Then the «containment» constraint is that in the stereotyped sub-
system, the value of any data element of level [may only be influenced
by data of the same or a higher safety level: Write H([) for the set of
messages of level [or higher. Given a sequence m of messages, we write
m| ;) for the sequence of messages derived from those in m by deleting

all events the message names of which are not in H(l). For a set M of

sequences of messages, we define M| def {m|y :m e M}.

Definition 1. Given a UML'9h statechart p and a safety level |, we say
that p provides containment with respect to | if for any two sequences 1,
of input messages, gy = gq) implies [plidgqy = [plilao)-

Intuitively, providing containment means that an output should in no
way depend on inputs of a lower level.

Example The example in Figure 9 shows the diagrammatic repre-
sentation of a Fuel Controller that computes the amount of used fuel of
an airplane from the distance travelled so far. This is done (quite simplis-
tically for the purpose of the example) by multiplying the distance with
a constant (supposed to give the amount of fuel consumed per length
unit). Because of different air resistance, this constant depends on the
fact whether the wheels of the plane were pulled in-board or (mistakenly)
left outside. This is modelled by having two states corresponding to the
state of the wheels, and having different constants ¢ # d. Now the re-
sult of the message fuel is supposed to be of the level sa fe. However, the
message wheelsin giving the state of the wheels is not assigned any safety
level. Therefore this example violates « containment », because a safe value
depends on a value not at least of level safe. This can be checked using
the textual representation of the UMLY8M process p defined by:

p = fuel(z)[truelout(return(d.z)).p
+wheelsin(y)[y = false].p
+wheelsin(y)y = true].p’

p' = fuel(z)[truelout(return(c.x)).p
+wheelsin(y)[y = false].p
+wheelsin(y)y = true].p’

Then considering the sequences 1 = (wheelsin(true), fuel(l)) and
J = (wheelsin(false), fuel(1)), and the safety level | = safe, we have

12

1y = duq), but [[p]]'iLH(l) = {return(c)} # {return(d)} = [[p]]jLH(l)
since ¢ # d by assumption on ¢, d.

Fuel controller«fsg?et:?fﬂgfnt» o

fuel(x:Data):Data
wheelsin(x:Bool) fuel(x)/return(c.x) fuel(x)/return(d.x)

Fuel control /—\ Wheelsin(true) _ m
[Wheelsin WheelsOut]—‘

fuel(x:Data):Data \—/ wheelsin(false) \—/
wheelsin(x:Bool)

wheelsin(true) wheelsin(false)

Fig. 9. Example containment usage

Related Work To our knowledge, this is the first work proposing to
use UML for the formal development of safety-critical systems. Some of
the ideas reported here were or will be presented in an invited talk at
FDL’02 [Jur02a] and tutorials on formal development of critical systems
with UML at Safecomp 2002, Software Engineering 2003, and ETAPS
2003 (each unpublished). [Jir02c, Jiir03] proposes to use UML for devel-
oping security-critical systems. See also [JCFT02] for approaches relating
to other criticality requirements or for approaches to safety-critical devel-
opment without a formal basis.

Also relevant is the work towards a formal semantics of UML including
[LP99, KER99, RACH00, AM00, BLMF00, GI01], and notably [BLP01]
which is the approach most similar to the one here (but closer to the
concrete UML syntax for example by including state labels).

Research on the analysis of UML model for non-functional properties
includes [LL99, DMY02].

4 Conclusion and Future Work

We proposed to use a formal fragment of UML statecharts, called UML8ht
to aid development of safety-critical systems. Given the current state of
dependable systems in practice, with many failures reported continually,

13

this seems to be a useful line of research, since it enables developers
without a background in dependability to make use of dependability en-
gineering knowledge encapsulated in a widely used design notation. Since
the behavioral parts of UMLsafe are considered with a formal seman-
tics, this allows a formal evaluation (parts of which may be mechanized).
Thus even dependability experts undertaking a formal evaluation for cer-
tification purposes may profit from the possibility of using a specification
language that may be perceived to be more easily employed than some
traditional formal methods. Since UML specifications may already ex-
ist independently from the formal evaluation, this should reduce cost of
certification.

Note that one may use our approach without having to refer to a
formal semantics for UML. In that case, the constraints for the safety
requirements would have to be checked by a CASE tool and explained to
the user informally. It is however beneficial to have a formal reference that
tool providers can refer to if necessary; this is why we provide a formal
semantics for the used fragment of UML; a larger fragment is given in
[Jir02b].

For this line of research to be of practical value it is important to
develop tool support, for example by analysing the diagram data exported
from UML tools in XMI (a UML-specific XML dialect). This is currently
being done for the application domain of security [Sha02, Men03], an
extension to safety is planned.

In our presentation here we remained in the non-probabilistic situation
to keep it easily accessible. Sometimes, in safety-critical systems, one is
concerned with probabilities of system failures, although in many cases
one can abstract from concrete numbers, as shown in [Jiir01]. These ideas
can be incorporated in our context here, as initial attempts have shown
[Jir02a], which would be interesting to see worked out in detail.

References

[AMO00] J. Aradjo and A. Moreira. Specifying the behaviour of UML collaborations
using Object-Z. In Americas Conference on Information Systems (AMCIS).
Association for Information Systems, 2000.

[BLMFO00] J.-Michel Bruel, J. Lilius, A. Moreira, and R.B. France. Defining Precise
Semantics for UML. In ECOOP’2000 Workshop Reader, volume 1964 of
LNCS. Springer, 2000.

[BLPO01] D. Bjorklund, J. Lilius, and I. Porres. Towards efficient code synthesis from
statecharts. In Workshop of the pUML-Group [GIO1].

[Cav00] A. Cavarra. Applying Abstract State Machines to Formalize and Integrate the
UML Lightweight Method. PhD thesis, DMI, Universita di Catania, 2000.

14

[CDD90] F. Cristian, R. Dancey, and J. Dehn. High availability in the advanced

automation system. In Digest of Papers, The 20th International Symposium
on FaultTolerant Computing, Newcastle-UK, June 1990. IEEE.

[DMYO02] A. David, O. Méller, and Wang Yi. Formal verification of UML statecharts

[DS99)]

[FROY]

[GI01]

with real time extensions. In FASE 2002, volume 2306 of Incs, pages 218-232,
2002.

Bruno Dutertre and Victoria Stavridou. A model of noninterference for in-
tegrating mixed-criticality software components. In DCCA-7, Seventh IFIP
International Working Conference on Dependable Computing for Critical Ap-
plications, San Jose, CA, January 1999.

R. France and B. Rumpe, editors. Second International Conference on the
Unified Modeling Language - UML’99, volume 1723 of LNCS. Springer, 1999.
GI. Workshop of the pUML-Group, Lecture Notes in Informatics, 2001.

[JCFT02] J. Jiirjens, V. Cengarle, E. Fernandez, B. Rumpe, and R. Sandner, editors.

[Jir01]

[Jiir02al]

[Jiir02b]

[Jiir02c]

[Jiir03]
[KER99]
[Lap92]
[LL99]
[LP99]
[LT82]

[Men03]

Critical Systems Development with UML, number TUM-10208 in TUM tech-
nical report, 2002. UML’02 satellite workshop proceedings.

J. Jirjens. Abstracting from failure probabilities. In Second International
Conference on Application of Concurrency to System Design (ACSD 2001),
pages 53—-64. IEEE Computer Society, 2001.

J. Jirjens. Critical Systems Development with UML. In Forum on Design
Languages, Marseille, Sept. 24—27 2002. European Electronic Chips & Sys-
tems design Initiative (ECSI). Invited talk.

J. Jiirjens. Principles for Secure Systems Design. PhD thesis, Oxford Uni-
versity Computing Laboratory, Trinity Term 2002. Submitted.

J. Jirjens. UMLsec: Extending UML for secure systems development. In
J.-M. Jézéquel, H. Hussmann, and S. Cook, editors, UML 2002 — The Unified
Modeling Language, volume 2460 of LNCS, pages 412-425, Dresden, Sept. 30
— Oct. 4 2002. Springer. 5th International Conference.

J. Jiirjens. Secure Systems Development with UML. Springer, 2003. To be
published.

S. Kent, A. Evans, and B. Rumpe. UML Semantics FAQ. In ECOOP’99
Workshop Reader, volume 1743 of LNCS. Springer, 1999.

J.C. Laprie. Dependability: basic concepts and terminology. Dependable
Computing and Fault-Tolerant Systems, 5, 1992.

Xuandong Li and J. Lilius. Timing analysis of UML sequence diagrams. In
France and Rumpe [FR99], pages 661-674.

J. Lilius and I. Porres. Formalising UML state machines for model checking.
In France and Rumpe [FR99], pages 430-445.

E. Lloyd and W. Tye. Systematic safety: Safety assessment of aircraft sys-
tems, 1982. Reprinted 1992.

S. Meng. Secure database design with uml. Master’s thesis, Munich University
of Technology, 2003. In preparation.

[RACHO00] G. Reggio, E. Astesiano, C. Choppy, and H. Hufimann. Analysing UML

[RIB9Y]
[Rus94]

[Sha02]

active classes and associated state machines — A lightweight formal approach.
In T. Maibaum, editor, Fundamental Approaches to Software Engineering
(FASE2000), volume 1783 of LNCS, pages 127-146. Springer, 2000.

J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language
Reference Manual. Addison-Wesley, 1999.

J. Rushby. Critical system properties: Survey and taxonomy. Reliability
Engineering and System Safety, 43(2):189-219, 1994.

P. Shabalin. Design and possibilities for automated processing of UMLsec
models, 2002. Study project.

[UMLO01] UML Revision Task Force. OMG UML Specification v. 1.4. OMG Document

ad/01-09-67. Available at http : //www.omg.org/uml, 2001.

15

